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Abstract

Temporal logic arose at the border of philosophy and linguistics. From the seventies

onward, it became a major tool also in computer science and artificial intelligence,

which have become the most powerful source of new logical developments since.

We discuss some recent themes demonstrating new connections with modal logic.

In the course of this, we point out some new types of open research questions.
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1 Variety of Motivations

Temporal logic as an identifiable research area emerged in the 50s, largely due to the

pioneering efforts of Arthur Prior. Born some decades later than modern modal logic, it

turned out technically much like it. But unlike in the case of modal logic, from the start,

different motivations fed into temporal logic, coming from philosophy (analysis of

historical argumentations involving the structure of time), linguistics (description of

tenses and other temporal expressions in natural languages), and to some extent also

mathematics (theory of linear and branching orders, non-point-based geometries). This

breadth reflects, of course, the ubiquity of time in virtually every intellectual endeavour.

Van Benthem 1983 ("The Logic of Time") tries to systematize temporal logic across

these various motivations, even taking up issues in relativistic physical space-time. In

the 80s, temporal logic penetrated into further disciplines, such as cognitive psychology

(cf. Jackson & Michon 1985). By far the most spectacular development, however, has

taken place at the interface of logic with computer science and artificial intelligence,

where temporal logic itself really changed its agenda and its depth of reach. Broad

surveys across this more contemporary width are van Benthem 1983, 1989, 1995. This

paper presents some recent trends along this spectrum, without scholarly completeness.

There may not even be one unified field of logical studies of time. After all, it is not

quite clear that the different 'foster disciplines' are concerned with the same thing.

Physicists deal primarily with real-world space-time, linguists and psychologists with

'representation time', and computer scientists with machine-induced 'process time'. At

least, one has to be aware that these notions differ, and then, see if or how they relate.

E.g., linguistic representation time has to 'fit' space-time to keep us attuned to our

physical environment, and computational process-time needs to 'mesh' with space-time

to ensure reliable on-line performance. Much of this conceptual interfacing is non-

trivial, and remains to be done. Indeed, technically and sociologically, there are now

different communities in temporal logic with different styles and agendas, such as

those active in pure logic, computer science, or AI – while formal philosophers of time

are yet another separate breed. Perhaps the highest status has been achieved by the CS-

based variety of temporal logic developed by Amir Pnueli since the mid 70s, studying

temporal specification of desired executions of complex distributed programs (cf. De

Bakker, de Roever & Rozenberg, eds., 1989). This work was honoured by the 1996

Turing Award, the highest recognition in computer science. Even though this line still

shows many traces of the spirit and tools of traditional temporal logic, it is definitely

diverging. (E.g., the currently emerging work on specifying 'hybrid temporal systems'

is mixing the analysis of 'logical time' with standard physical engineering techniques).
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Another prominent line in computer science integrates concerns from temporal logic

with modern process theories (dynamic logic, µ–calculus, process algebra), surveyed in

Colin Stirling's contribution to this issue. (Cf. also Stirling 1992, Harel, Kozen &

Tiuryn 1996.) Our presentation will not attempt to cover this broad panorama. Instead,

we concentrate on a more traditional logical line in the field, emphasizing connections

with some newer developments in modal logic. But on occasion, we find further

evidence of the diversity of temporal structure. To mention one instance, in computing a

fixed point for a monotone operator (the key to modal and general process theories), the

natural approximation stages generate one more discrete 'cognitive evaluation time'!

To conclude, here is our view of temporal logic in a nutshell. This field sits at the

interface of many uses of time, across different disciplines. Its business is to offer a

conceptual framework in which one can model these views of time exactly, study their

common features, but also, see how they might be integrated. As a spin-off, the various

disciplines involved may also learn from each other's agendas. Our aim here is merely

to make a few of all possible comparisons, and highlight some current developments.

Moreover, we assume that the reader is familiar with the logical basics of the field.

2 Temporal Logic as Modal Logic

Prior's temporal logic may be viewed as a two-directional modal logic, with operators F

("at least once in the future") and P ("at least once in the past"). This makes temporal

logic and modal logic very close mathematically. Traditionally, however, one stressed a

philosophical difference in the 'direction of thought'. Given the relative concreteness of

its subject matter, temporal logic constructs description languages for independently

given temporal models, while modal logic is in the business of constructing models for

given modal languages. (The syntax of modality, alas, is clearer than its semantics.)

This particular distinction no longer works these days. Partly under the influence of

temporal logic (Gabbay 1981), over the past decade modal logicians, too, have turned

with zest to new language construction over Kripke models (or in CS speak: 'labeled

transition systems'). Technical themes therefore have tended to converge between the

fields. A typical example of this current trend is the theory of the 'process equivalence'

of bisimulation in the analysis of expressive power for modal or temporal languages.

2.1 Simulations: From Matching Single States To Matching Tuples

Prior's original propositional F, P language is invariant for two-sided bisimulations,

which are like standard modal bisimulations, but now with back-and-forth clauses for
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both successors and predecessors in the ordering. The resulting theory is largely the

same as in the modal case. In particular, a first-order formula  φ = φ(t)  in the language

with binary  <  (temporal precedence) and unary predicates P, Q, ... (one for each

proposition letter p, q, ...) is P, F–definable iff it is invariant for two-sided bisimulation.

(The purely modal proof of van Benthem 1976 goes through in toto.) This observation

can be used e.g. for quick proofs of non-TL-definability by concrete counterexamples.

To be sure, there are some minor technical differences here and there. For instance, the

standard modal technique of 'tree unraveling' has to be modified to allow for branching

patterns in two directions now, to make their behaviour more symmetric. Also, some

very smooth Gentzen-style decidability reductions available for modal logic fail for the

two-sided temporal language (Andréka, van Benthem & Németi 1998). Theoretically,

Spaan 1993 treats Prior's logic as a disjoint sum of two separate monomodal logics with

one 'connection axiom', making the two accessibility relations mutual converses. The

latter linkage can affect complexity of satisfiability for temporal logics in general. (In

particular, it may be higher than the maximum of the separate complexities for the two

monomodal components.) On the other hand, temporal logic repays us by having a

natural adjunction between the valid equivalence of (say)  Pφ → ψ  with φ → Gψ.

Early on, temporal logicians have started studying much stronger languages than Prior's

original one. A pioneering example was the system with operators S, U, devised in

Kamp 1966 to mirror the adverbs "since" and "until" of natural language. E.g.,  Uφψ
says about any point  t   that  φ  holds in some point  t'  later than t, while ψ holds in any

point in between  t  and  t' . (Sφψ  is the downward dual of this.) Kamp's Theorem says

that, at least over Dedekind complete linear orders with unary point predicates, every

first-order formula is definable in the S, U temporal language. This pilot result has

spawned a whole series of expressive completeness theorems for temporal languages

vis-à-vis first-order ones. These temporal languages have not yet been studied from a

simulation perspective, and they pose some interesting questions. For instance, which

stronger simulation is needed to characterise definability with S, U? (To see the

difference with the above, there is an obvious temporal bisimulation in the earlier sense

between a 2-cycle and a 1-cycle model, even though the former satisfies  UT⊥  while

the latter does not.) There is no evident Ehrenfeucht back-and-forth clause here, because

of the double  ∃∀  quantifier combination in the truth condition for  U . This particular

simulation problem was solved recently in Kurtonina and de Rijke 1997. Their solution

turns out to require a genuine extension of the game: temporal bisimulations now relate

both states and ordered pairs of states across temporal models.
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This move is really more general. As one increases expressive power of temporal

languages, the natural bisimulations move away from the computer science paradigm of

single state-links, and start relating pairs, triples, ... and in general, finite tuples of

temporal points (cf. van Benthem 1991). Such simulations are a bit harder to visualise

(van Benthem 1996 has concrete examples for processes). But in the limit, they move

closer to 'potential isomorphisms', i.e., non-empty sets of finite partial isomorphisms

satisfying the usual back-and-forth conditions which are natural model links for model

theorists (Barwise 1975). The latter are also the natural tool for dealing with many-

dimensional modal logics, interpreted at tuples of worlds up to a fixed finite length (cf.

the monograph Marx & Venema 1996). Immerman & Kozen 1987 have deconstructed

Kamp's Theorem in this finite-dimensional spirit. The key to expressive completeness

for a finite temporal operator formalism turns out to be restriction to some finite number

of variables used (free or bound) in the first-order language of its temporal model class.

Standard modal logic requires only two variables, as may be seen by exercising a little

care with the first-order 'standard translation' of its base language. And the same holds

for Prior's original  P, F  language. Using more sophisticated Ehrenfeucht game-style

arguments, Immerman & Kozen managed to show that three variables suffice for

writing any first-order assertion (in a language with a binary ordering predicate plus

unary properties of points) over linear orders, Dedekind complete or not.

The general model-theoretic notion which generalizes many bisimulations is that of a

potential k-isomorphism. This is a non-empty family  PI  of partial isomorphisms, each

of size at most k, which is closed under taking restrictions, and which satisfies the

following back-and-forth property. If the size of a partial isomorphism F  in  PI   is

smaller than  k , and we pick any object  d  in one model, then there is an object  e  in

the other model such that  F ∪ {(d, e)} is in  PI . Van Benthem 1991 proves that any

first-order formula is invariant for potential k–isomorphism iff it is definable by a first-

order formula with at most  k  variables in all, free or bound. (Barwise & van Benthem

1997 give a new technique extending this type of result to infinitary languages.) On the

other hand, we know from Gabbay 1981 that  k–variable fragments of first-order logic

have expressively equivalent k–dimensional temporal logics with some finite set of

operators. By and large, standard temporal languages make do with three variables.

That is, their compositional evaluation involves at most inspection of 3-point patterns of

'betweenness'. More complex 4-point patterns would be required, e.g., for defining

suprema or infima in a branching temporal ordering. Conversely, semantic 'pattern

invariance' may also help us in designing new languages, better suited for some

temporal  model class. For instance, instead of the somewhat traditional S, U language,
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the three-variable fragment of first-order logic itself, or its corresponding complete 3-

dimensional modal operator language, is a good (and in general, a richer) alternative for

the description of temporal structure. As a side benefit, its characterisation in terms of

potential 3–isomorphisms does not need special  ∃∀  tricks.

Conclusion. In current research, there is a tight fit between either designing some

language with a certain desired expressive power, or finding a simulation between

models having just the right disregard for details of structure. Equivalence theorems

may then state (there are various options) that a first-order formula is invariant for the

simulation iff    it is definable in the specified temporal language format. These are two

natural ways of studying 'temporal structure', which are profitably developed in tandem.

2.2 Quantifier Bounds and Decidability

From expressive power, we turn to complexity. Much is known about decidability or

more precise complexity of modal and temporal languages, over universal or restricted

model classes (cf. Chagrov & Zakharyashev 1997, Wolter & Zakharyashev 1996). Here

we only mention one recent general line of analysis, which covers both modal and

temporal languages. Prior's  F, P language is decidable, as may be shown by a simple

filtration argument (Goldblatt 1987). A more sophisticated reason for this phenomenon

is the following fact: the whole two-variable fragment of first-order logic is decidable

(Mortimer 1975). Next, the three-variable fragment of first-order logic is undecidable,

as it embeds all of relational set algebra. But then, what to do with the three-variable

temporal formalisms, needed, e.g., to transcribe the typical operators  S, U ?

Here one can use an alternative analysis, proposed in Andréka, van Benthem & Németi

1997, which focuses on bounded quantifier patterns  ∃y (G(x, y) & φ(x, y)), where the

atom G(x, y) serves as a so-called guard. The Guarded Fragment GF consists of all

first-order formulas constructed from atoms with Booleans using this special schema of

quantification. This fragment runs across all finite-variable levels. GF is decidable,

indeed doubly-exponential time complete (Grädel 1997). Guarded analysis fits the basic

temporal language just as well as the basic modal one. The reason is that, in the above

guard atoms, we allow any order (or multiplicity) of the variables. Thus, there is no

special preference for successors ('Rxy') over predecessors ('Ryx'). As it stands,

however, this analysis does not apply to the richer temporal  S, U  language. For, the

first-order transcription of  Uφψ  is the provably non-guarded three-variable formula  ∃t'

( t<t' & φ(t') & ∀t'' (t<t''<t' → ψ(t''))) . If we are to prove general decidability here, there

must be some special feature which makes these formulas deviate from the 3-variable
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fragment in general. The explanation turns out to lie in an extension of GF with loose

guards (yielding 'pairwise guarded formulas' with conjunctions of atomic guards), in

which every pair of variables from  x, y  must occur in some conjunctive guard atom.

(Note that the above transcription of "until"  is indeed pairwise guarded.) The Pairwise

Guarded Fragment remains decidable, and therefore basic  S, U  logic is decidable via

translation into the latter (van Benthem 1997A). This first-order translation may also be

used for automated deduction in temporal logic, witness the resolution-style analysis of

GF and its ilk in De Nivelle 1997. By now, there is a variety of guarded languages,

providing further fine-structure for decidable temporal operators (van Benthem 1998A).

Conclusion. As with modal logics, decidability of basic temporal formalisms may be

understood by reference to powerful decidable first-order fragments. These are of new

kinds, different from the usual decidable 'fragments' studied in the literature.

Coda.    This is not the whole story, however. Guarded syntax analysis does not explain

the decidability of many special temporal model classes, such as transitive or linear

orders. For some of these, defining conditions are indeed (pairwise) guarded – but more

often, they are not. Of course, there need be no uniform explanation for all complexity

features of temporal reasoning. But there may be one over the ubiquitous transitive

models. Transitivity  ∀xyz ((Rxy & Ryz) → Rxz)  is not pairwise guarded. Decidability

of the two-variable first-order fragment does not apply either: transitivity essentially

needs 3 variables. Then why is its basic temporal logic easily decidable? There are two

possible routes here. One extends the syntactic scope of GF and its ilk, to find still

broader decidability results. We doubt that this is feasible. Transitivity is dangerous,

and can make first-order fragments undecidable (Börger, Grädel & Gurevich 1996). But

there is another diagnosis. Recall that propositional dynamic logic PDL, and even the

µ–calculus are decidable (Harel, Kozen & Tiuryn 1996). Now the basic modal logic  K4

over transitive models (basic temporal logic is similar)  is precisely the logic of any

iteration modality  [a* ]  over general models, without any special restrictions at all. This

is a genuinely different route. The PDL language cannot define transitivity. Like the

basic modal one, it is invariant for bisimulation (the infinitary conjunctions that define

iteration do not affect this), while transitivity is not. Hence, general decidability results

over transitive temporal models follow from the known decidability of PDL with a

converse operator, or more generally, from that of the temporal  µ–calculus. If we want

to achieve further generality, though, we must enter the realm of current speculation.

Open Question Find decidable fixed-point extensions of the Guarded Fragment.
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2.3 Unraveling and Coexistence

The preceding items showed that extended modal logic and temporal logic can really be

the same thing. But there are also natural settings in which we can contrast the two

styles of thinking. For a concrete example, consider something as well-known as the

sequence unraveling of any modal labeled transition system into a bisimilar tree. We

can think of the model as some kind of machine, where modalities describe possible

moves. By contrast, the unraveled tree is really a temporal model of 'possible histories'.

This allows for comparisons between different languages over these bisimilar models:

modal ML and temporal TL. We quote some relevant results from Andréka, van

Benthem & Németi 1998, referring to both standard tree unraveling and 'ω–unraveling',

a model construction procedure which simultaneously produces countably many copies

of each daughter node (and its subtree):

M ≡mod N iff tree(M) ≡ F, P tree(N)

M ≡mod N iff ω-tree(M) ≡ FOL ω-tree(M)

Thus, modal equivalence of machines may be upgraded to first-order equivalence of

their trees of histories. Here is an alternative analysis of the situation, not via linguistic

equivalence, but in terms of bisimulation and isomorphism (where  κ > |M|, |N| ):

M bisimilar to N iff κ-tree(M) isomorphic to κ-tree(N)

A more elaborate treatment of this kind of result may be found in D'Agostino 1998,

whose study of 'κ-branching bisimulations' generalizes the Barwise & Moss 1996

theory of circular sets. (The main operator of the matching languages counts alternative

routes at a fork – which has more temporal than modal motivation anyway.)

But further forms of coexistence between the two perspectives may occur. The temporal

style of thinking concentrates on branches, where histories take place. In particular, one

may only be interested in those branches which represent 'desirable histories', satisfying

special conditions of safety, liveness or fairness for the processes manifesting

themselves (cf. Pnueli 1989). (The latter are unrealistic for human histories, alas.)

Accordingly, one can restrict the branches in the unraveled model  tree(M)  to just the

'reasonable' runs in some sense.  Also, one can perform a two-way unraveling of  M  to

zigzagging time travels using both successors and predecessors, etcetera. All these

temporal structures share one feature: they become richer than the original models.

Most conspicuously, an unraveled tree(M) is a model for a richer temporal language,

viz. a two-sorted branching temporal logic, interpreted over both points and branches.  I
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know of no good comparisons between the austere modal logic of a labeled transition

system and the richer branching temporal logic of its tree unraveling. But one would

assume that the latter encodes all of the former, so that there should be effective

translations between the two levels. (Incidentally, all information about  M  up to

bisimulation is contained in its characteristic infinitary modal Scott-formula,

constructed in Barwise & Moss 1996; cf. also van Benthem & Bergstra 1995. What

about a similar characterisation for branching temporal structures?)

Conclusion.  Standard modal languages over temporal models and branching temporal

languages over their tree unravelings are natural companions. Intuitively, the former

describe temporal 'potentialities', the latter temporal 'evolutions'. What are the

systematic logical relations between these two views of temporal structure?

Coda.     Sistla & Clarke 1985 even define truth of a linear-time temporal formula  φ  in
a model  M, s  as truth of  φ  at  s  on at least one branch in the unraveling of  M . (They

then determine the complexity of this notion for various temporal languages.) This

notion takes only a fragment of the full branching temporal logic over tree unravelings.

Can one still reduce this special notion to truth of ordinary modal formulas in  M ?

3 Temporal Geometry

Various systems extend the logical treatment of time to that of space. This is a natural

move. In common sense reasoning, we often switch from temporal to spatial metaphors,

and vice versa. In fact, some of the most beautiful axiomatisations for specific temporal

models in the literature combine the two realms, such as the characterization of the

complete modal logic of Minkowski space-time (Goldblatt 1980, Shehtman 1983). But

this direction is not what we have in mind for this section. Our idea is rather that

temporal models suggest new kinds of non-spatial geometry. Here is what we take to

the essence of any 'geometrical' approach. One works with 'flat' many-sorted pictures of

various geometrical objects, without higher set-theoretic constructions favouring one

sort (say, primitive points) over another (say, lines construed as point sets). We review

some geometrical objects that are naturally suggested by our preceding discussions.

3.1 Reification of Tuples in Many-Sorted Modal Logic

Usually, the only temporal objects considered are points. To be sure, the literature has

seen a development of a competing (or co-existing) paradigm of periods or intervals (cf.

van Benthem 1983), motivated largely by ontological preferences, plus the needs of

linguistic semantics. But the latter move is orthogonal to what we have in mind here,
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viz. the recent phenomenon of reification of 'constructed' temporal objects such as pairs

or tuples. One striking motivation for this move has been the desire to lower complexity

of existing modal or temporal logics. Another has been a return from many-dimensional

systems to standard one-dimensional (though many-sorted) modal languages.

A prime example of this trend is Arrow Logic, whose full version replaces Relational

Set Algebra by a two-sorted modal logic. Its intended models have two kinds of

primitive object: the original states, plus arrows standing for ordered pairs (transitions)

with their relevant internal structure. Notably, arrows naturally 'compose' among

themselves via ternary triangles, and they have points for their beginnings and ends.

'Propositions' will now stand for properties of states, and 'relations' for properties of

arrows. A good introduction to the resulting research program is Venema 1996. Arrow

Logic is close to more general algebraic logic, which mimicks the complete first-order

language. Thus, one can reify both pairs and triples when modalizing the full three-

variable first-order fragment, or more general tuples, as in Venema's Cylindric Modal

Logic, or Vakarelov's brand of Arrow Logic which manipulates sequences. Tuples of

arbitrary lengths then become modal or temporal objects per se, and our task is to

analyse their basic mathematical structure - without assuming that they must be

reducible to full Cartesian products of the underlying state set. Our general point is this.

These moves are not a mere auxiliary analysis for standard first-order logic (though

they do help us understand what is essential and what more accidental about the latter).

They are a full-fledged, less complex, independent alternative, treating tuples as

ontological first-class citizens. In particular, though first-order logic is undecidable, its

reified versions usually are not. Thus, many-dimensional modal logic over set-

theoretically composite tuples becomes many-sorted one-dimensional modal logic, say

over 'paths'. Just as in real geometry, we do not derive the properties of primitive

objects like lines from set-theoretic constructions out of points. We rather analyse them

directly, using our spatial intuitions. The same is true for arrow logics and more general

tuple logics. Nevertheless, it is fair to say that, beyond a few case studies, we do not yet

understand the general complexity effects of this strategy. Our guiding idea is 'trading

complexity for new objects'. Exactly what can be achieved in this fashion?

Summary. In addition to temporal points, point pairs may be viewed as independent

temporal objects ('transitions'), while general tuples become primitive 'temporal paths'.

This move lowers the complexity of standard many-dimensional temporal logics, and it

invites us to describe more general decidable temporal core geometries extending the

pair-based paradigm of Arrow Logic.
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3.2 Reification of Paths and Branches in Temporal Logic

Another prime candidate for reification in temporal logic arises in so-called 'branching

time' (cf. Section 2.3). In addition to points in time, one now has histories or branches.

Usually, temporal logicians treat the latter as certain sets of points (maximal chains),

and then have to cope with the complexities of the resulting second-order logic. But

there is a way around this, by taking branches or more general paths seriously as

temporal objects in their own right. Again, of course, this is exactly what happens in

ordinary geometry. One concrete example of this move is the reification of computation

paths, made in order to avoid infinitary notions, found in van Benthem, van Eyck &

Stebletsova 1995 on 'stuttering bisimulations' (modelling, amongst others, learning by

unwilling adolescents). Another case is the first-order treatment of branches in Zanardo

1990, who decreases dependence on set-theoretic existence axioms, and works with

'absolute' notions only. (The latter author is not to be confused with the Zanardo of the

present volume, who goes to the opposite extreme, and ties branching temporal logic to

some highly esotherical set theory.) For the sake of concreteness, here is an example.

Branching models  are tuples   M  =  (S , C, < , ON, R, V), with  S  a set of temporal

states,   C  the possible histories   of the system described by the model,  < temporal

precedence among states,  incidence  ON (s, σ)  says that state  s  lies on history  σ , and

R  is a modal alternative relation which says at each history and state which alternative

histories are accessible. The assignment  V  evaluates proposition letters at states. Now,

we can interpret the formulas of a branching modal-temporal language as follows, at

pairs of a history σ and some state s on it:

    • M , σ , s º p iff s ∈ V(p)

    • Boolean connectives have the usual truth conditions

    • M , σ , s  º Fφ iff M , σ , s' º φ  for some   s'> s

    • M , σ , s  ºoφ iff M , σ',  s º φ  for some  σ'  with  R (σ , s,  σ')

In this setting, temporal geometry may be brought out through correspondence with

natural laws of a branching temporal language. First, as in standard temporal logic, pure

F , P  principles express conditions on single histories. In particular, the usual Prior

axioms will make these linear orders. But now, a temporal-modal 'mixing law' like

(oFq ∧ oFr) → oF(q ∧ oFoPr)  will express a geometrical principle confluence

which may be computed by a modified correspondence substitution algorithm. It says,

for the web of histories as seen from any state  s  lying on a branch  h, that:
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∀s1∀s2∀h1∀h2  (  (ONsh1 ∧ ONsh2 ∧ ONs1h1 ∧ ONs2h2 ∧ s<s1 ∧ s<s2)

→ ∃s' (s1<s' ∧ s2<s' ∧ ∃h3∃h4 (ONs1h3 ∧ ONs'h3 ∧ ONs2h4 ∧ ONs'h4) )) 

Interesting geometrical properties may also be sought independently from the modal-

temporal formalism. An example is 'fusion closure' (Stirling 1989): "for any state

occurring in two histories, its past in the one and its future in the other may be glued

together so as to form a new history". As it happens, this is expressed after all, by the

modal-temporal formula (o(Hp ∧ Gq) ∧ o(Hr  ∧ Gs)) →  o(Hp ∧ Gs). But one can

also develop state-branch theories directly in first-order logic. In particular, what are

genuinely universal laws of History, and what are negotiable existence assumptions

about the availability of branches that reflect second-order axioms of choice?

One can also look at the matter more generally, as advocated in van Benthem 1996A.

Second-order logic or set theory hide complexity in an amorphous background, whereas

an axiomatic first-order theory of branches or paths forces us to explicitly identify the

basic structural principles that we want to work with. This amounts to doing our

conceptual homework in temporal modeling more properly, instead of appealing to

some grab bag. A further beneficial side-effect is that we can determine the price in

logical complexity of mathematical existence assumptions. Once again we see a game

of trading complexity for extra 'temporal objects': this time, making higher-order logics,

if not decidable, then at least recursively axiomatizable.

3.3 Modal Geometry

Our analogy with geometry invites a logical comparison. In Hilbert's "Grundlagen der

Geometrie" (1899) points and lines lived on a par. In Tarski's 'What is Elementary

Geometry?' (1953) points have become the only primitive objects, while line-talk was

reduced to statements involving pairs of objects. This was an excellent idea for

algebraic and model-theoretic reasons, but it was not faithful to geometrical thinking.

There are recent modal-style axiomatizations of traditional geometrical spaces: cf.

Balbiani, Fariñas, Tinchev & Vakarelov 1997. But these accept classical geometry in

toto, and do not innovate. (Also, these authors reduce everything to a one-sorted modal

universe, incurring a lot of spurious complexity.) Earlier work by Goldblatt on modal

topological structures may be relevant, too. But modal logics of space are not what we

are advocating here. In our view, temporal geometry would include at least this:

Primitive objects: points, lines, paths

Primitive relations: incidence, parallellism, orthogonality, and others
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The result is more complex than standard geometry, because paths are not straight lines.

For instance, we need an account of polygons and other closed paths as well. Modal

languages here would access these relations in the standard way, via modalities such as

<ON> (true at some point on the current line, or some line through the current point),

and SUMφψ (there exists some division of the current line into an initial  φ–part and a

final  ψ–part). The division of labour in such a temporal geometry will be as in the

earlier-mentioned Arrow Logic program: "decidable logics, undecidable mathematics".

But the first priority seems to be plain structural analysis of the first-order base theory

of points and paths on a par: i.e. just 'geometry'.

Conclusion. We have advocated development of independent temporal geometries,

as mathematical theories of interest for their own sake. Concrete samples of this style of

thinking are Rodenburg 1987 (branches in intuitionistic Beth models as histories in

'cognitive evaluation time'), van Benthem, van Eyck & Stebletsova 1995 (path

bisimulation in computation time), and Pratt & Lemon 1997 (model-theoretic geometry

of polygons in space – which also cover walks in temporal models).

4 Temporal Structures in Natural Language

Prior and his students had definite linguistic interests, which are reflected in the name

'tense logic' which was often used for the whole field. Through the 70s, there were

lively discussions about temporal representation of natural language. These brought to

light several inadequacies of basic temporal logic, and the need for richer formalisms

(cf. Aqvist & Guenthner 1977, or the radical first-order alternative Needham 1975). But

around 1980, Hans Kamp (...) put an end to the dominance of temporal logic in natural

language semantics, changing the research agenda to temporal 'discourse representation

theory' (Kamp 1979) which then became a general paradigm for linguistic interpretation

(Kamp & Reyle 1993, Kamp & van Eyck 1997). Its fundamental idea is that temporal

expressions serve as instructions for creating successive discourse representations,

which can – but need not – be 'embedded' into standard models at some separate later

stage. When viewed this way, in particular, verb tenses  do not behave like the logical

operators  P, F at all. (The latter are closer to the temporal auxiliaries in perfect and

future statements.) They rather serve as deictic expressions creating a sequence of

temporal reference points, moving the representation forward. There has been little

interaction between linguistic temporal semantics and temporal logic since. (Two

interesting exceptions are Ter Meulen & Seligman 1994, Dünges 1998.) Nevertheless,

important issues remain concerning natural language in a broader context of reasoning

and action. How does logical time meet up with linguistic representation time, and also,
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with real physical time? Some of the sophisticated phenomena that arise in descriptive

linguistics seem relevant and inspirational to temporal logic in the larger sense. For an

up-to-date survey of these matters with a computational and cognitive slant,  we refer to

Mark Steedman's chapter on 'Temporality' in the "Handbook of Logic and Language"

(J. van Benthem & A. ter Meulen, eds., 1997).

4.1 Temporal Constructions in Natural Language

One conspicuous feature of temporal expressions in natural language is their variety,

including tenses, auxiliaries, or temporal adverbs. They do not live in one syntactic

category of 'sentence operators'. Likewise, there seems to be a much greater ontological

variety than what one finds in sparse logical models. Temporal discourse refers to,

amongst others, points in time, extended intervals, but also events, or 'cases'. Thus,

standard temporal logic would need to be extended to match this greater richness – in

particular, with suitable generalized quantifiers for temporal adverbs such as "always",

"often", or "usually". (One noteworthy exception to this formal neglect is Galton 1985,

whose study of verb aspects took temporal logic much closer to real-life linguistic

phenomena, and introduced a lot of interesting new logical operators in the process.)

What makes these things rather difficult is a further complication. Temporal structure in

natural language is usually intertwined with other phenomena (context, defaults, etc.).

There are many subtleties in even such a relatively simple sentence as "Mary never

finishes her soup". For instance, "always" does not mean at all times, and indeed, the

exact assertion involves temporality intertwined with habits and generic expressions.

Another example is the recent ABN AMRO poster where Dutch soccer legend Johan

Cruyff says "I have to admit that there are some people who are better than me in some

things". Clearly, the quantification here is over kinds of people, things, and occasions,

rather than over individuals. Temporal logic has not yet begun to absorb such simple,

yet linguistically well-known points about natural language. Nevertheless, occasional

more sophisticated encounters occur. For instance, the challenging dissertation Leonoor

Oversteegen 1989 combines so-called 'A-series' (P, F-based) and 'B-series' (precedence-

event-based) structures from temporal logic to account for the dynamics of temporal

discourse. Another fruitful interface is current dynamic semantics for natural language,

discussed in the next section.

Conclusion. The variety of temporal expressions and temporal objects in natural

language is much greater than what is covered in the usual temporal logics. Although

this gap has been well-known for many years, hardly any active bridge building occurs.
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4.2 Dynamics of Evaluation

Dynamic semantics says that semantic evaluation is a logical process over some kind of

information states, and linguistic expressions are programs for evaluation or update, or

yet other cognitive processes over these states. In the case of time these processes

involve such typical phenomena as manipulating temporal perspective and exploiting

persistence of information through time. A toy example of this kind of system can be

extracted from Dekker 1993. We can interpret Prior's base language in the style of

dynamic predicate logic (Groenendijk & Stokhof 1991). The semantic format is this:

M, t, t' |= φ iff there exists a succesful evaluation of  φ
starting in  t  and ending in  t'

Fix a basic Priorean temporal model   M  =  (T , < , V) . Each formula  φ  will now

denote a binary transition relation  [[φ]]  on  T , constructed via the following induction:

     • atomic propositions  function as instantaneous tests:

[[p]] = { (t, t)  |  t ∈ V(p) }

     • conjunction  becomes sequential composition of two successive tasks:

[[φ∧ψ]] = { (t, t')  | for some  t'' ,  (t, t'') ∈ [[φ]] and  (t'', t') ∈ [[ψ]] }

     • futurity  involves making a step to the right and then starting again from there:

[[Fφ]] = { (t, t')  |  for some  t'' ,  t<t''  and   (t'', t') ∈ [[φ]] }

     and the explanation for the past operator  P   is analogous toward the left

     • one reasonable form of negation  is a test for 'strong failure':

[[¬φ]] = { (t, t)  |  for no  t' ,  (t, t') ∈ [[φ]] }

For further discussion of this system, cf. van Benthem 1995. In particular, 'procedural'

differences emerge between formulas which used to be equivalent in the basic logic.

Thus,  Fp∧q  is now read as an instruction to move first to some future point where  p  is

the case, and then test whether  q  holds there. The net effect is a transition to some

future point where both  p  and  q  hold. This outcome is similar to that of the formerly

non-equivalent instruction   F(p∧q)  moving us to some future point where successive

tests for  p  and  q  are succesful. But it is quite dissimilar to the procedural effect of the

permuted formula  q∧Fp . These sequential effects mirror the sequential nature of

temporal narrative. The resulting system turns the P, F language into a simple two-

dimensional modal logic, to which earlier techniques apply. A general move from unary
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modal logic to binary systems can create undecidability (think of Relational Algebra),

but this does not happen here. Dynamic tense logic remains decidable, something which

can be shown by guarded first-order analysis. But then, one can take advantage of the

richer structure of dynamic models, and introduce new dynamic operators, which may

increase complexity again. (One could also use some form of Arrow Logic to perform

this 'dynamification'.) The point of our presentation here is just to show how standard

temporal languages acquire new functions under a different style of interpretation. We

have demonstrated this for Prior's  P, F language. But one can also dynamify the richer

S, U language, which has a computational ring already, of imperative "while ... do ..."

instructions. Indeed, judging from current discussions in the linguistic literature,

interesting dynamifications may even be performed in a number of different ways.

Conclusion. Dynamic semantics provides a new view of – and use for – existing

temporal formalisms. The broad technical properties of this move may be understood as

a semantic shift from shorter to longer tuples in a many-dimensional modal setting.

Viewed somewhat differently, this dynamic move turns languages making descriptive

temporal statements into programming languages for verifying temporal statements.

4.3 Dynamics of Representation

Discourse Representation Theory takes an alternative view of the locus of dynamics.

Discourse creates successive temporal representations, which are annotated syntactic

structures that can be interpreted (later on) in standard models. A similar system are the

'dynamic aspect trees' of ter Meulen 1995. Van Benthem & ter Meulen 1997 discuss the

resulting architectural issues more generally. They distinguish two broad strategies,

dubbed Dynamics of Interpretation – turning texts into representation structures – and

Dynamics of Evaluation – locating the temporal dynamics in the successive state-

changes of semantic evaluation. The former is highlighted in a Tree Calculus, whose

objects are trees with nodes that can be annotated for propositional information, while

nodes are temporal locations that can stand in key relationships like precedence or

inclusion. Dynamic processes include: informational update (learning more about some

node), temporal update ('move rules' add nodes or temporal relations between nodes),

and what may be called perspectival update: shifting the 'active/current node' (the center

of attention). Like Kamp-style discourse representations, the resulting annotated trees

can be 'embedded' into temporal models, as if they were (abstract) 'pictures' of certain

parts of the latter. Such an embedding associates them with concrete logical statements.

A simple system will demonstrate this way of thinking.
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Consider finite trees with nodes and arrows that can be labeled for various relations.

Intuitively, the nodes stand for temporal points or small intervals at which events can

take place or states can hold. We assume that each tree has a designated initial point and

one currently active node. The simplest case is the tree with one single node, which is

both initial and current. Update conditions for such trees can be given in the format

UPD(φ) (T), where  φ  is some temporal statement, and  T  the current tree.

Atomic updates  UPD(q) (T)  are immediate: one writes  q  on the current node of  T .

Conjunctions trigger compositions of updates, as in the above dynamic semantics.

Updates with a future statement  UPD(Fφ) (T)  first add a new successor node (with a

labeled  <-link) to the current one, shift the 'current' marker to that new node, and then,

on the newly obtained tree  T' , proceed with  UPD(φ) (T') . The instruction for a past

statement  Pφ  is similar. These successive instructions create trees that form small

pictures of facts over time. Similar rules can be written for operators creating

subinterval-nodes for other temporal operators. Negations   ¬ φ  are treated somewhat

differently. Intuitively, they do not enrich the temporal picture, but exclude certain

continuations of it. (Thus, a negation is more like a general constraint or rule.) The

update adds a new 'negation-link' from the current node to a 'forbidden tree' obtained by

updating a single initial node tree with  φ . This completes the tree construction. A

proper semantic relationship between trees and temporal models is given by succesful

embeddings, being maps from nodes to temporal points in the right temporal relations,

and satisfying the right propositional information.

Remark.  The recursive clause for negations says a forbidden tree cannot be embedded

succesfully with its initial point equal to the current node. This is logical language.

Natural language has more restricted negations in temporal discourse. It uses atomic

polarities for verbs, plus 'general rules' for temporal adverbs ("always", "often", etc.).

An easy induction shows the following connection between the two dynamic systems:

Proposition For all Priorean F, P-formulas  φ, and all temporal models  M,

the following two assertions are equivalent:

(i) M, t, t' |= φ holds, as defined in the preceding section,

(ii) the map {(sin, t), (sout, t')} is a succesful embedding of the tree

UPD (φ)('single node') into M.

More general equivalences between the two dynamic strategies can be obtained as well,

since there is no constraint on the choice of states. This open end also recurs in general
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discussions of semantic compositionality: cf. Janssen 1997. (Cf. also Kaufmann 1998

on stack-based models as an intermediate between representation structures and models,

whose top-level stack handling incorporates the 'right frontier constraint' found in

several linguistic tree calculi. Further examples are in Kempson & Meyer Viol 1997.) In

the current literature, one sees more baroque notions of state, which encode a lot of

syntactic information. Nevertheless, the tree format has its attractions because of its

more concrete computational character. Thus, it also suggests new dynamic operations

without an immediate semantic counterpart, such as more complex shifts in the center

of attention in temporal discourse (cf. the computational model of Kameyama 1996).

One issue of particular logical interest is the locus of reasoning in this dynamic set up.

One can reason with trees as ordinary assertions about models via their embedding

conditions. This activity may be called (upper case) Inference in the classical sense.

But their is also (lower case) local inference in a more dynamic sense, which interleaves

with the very tree construction that determines what assertion we are making. (For

instance, one sometimes has to infer in order to see which statement is being made.)

Examples of the latter are so-called spreading rules, which transfer information from

one location in the tree to another. E.g., a past statement  Pφ  ("Mary cried") will be

transferred to all rightward nodes representing later time points, and a statement  [⇓]φ
(say a 'state assertion' about John's being tired) to all lower nodes representing

subintervals. But in addition, there are more sophisticated backtracking consistency

constraints, which determine whether some statement will be added at the current node,

or whether it must be attached to some later one.

"Mary opened the door. She smiled." is interpreted as two events taking place 

at the same time. But "Mary opened the door. She closed it." is interpreted as 

a sequence of events, because of the incompatibility between the two actions.

In general, attachment for a new event is calculated according to some algorithm

involving closeness in the tree and consistency, which may have to operate recursively.

Thus, for a realistic linguistic account of temporal interpretation and inference, we need

a two-level logic, with fast inferential mechanisms at tree level spreading local

information, and supplying tests for consistency-based interpretation algorithms, while

more sophisticated but slower temporal inferences are postponed to the discourse level.

There are many further issues here. These include placement of conclusions in trees

according to 'focus', or deviant ternary structural rules for local and global inference.

(Cf. van Benthem & ter Meulen 1997 for details.)
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Conclusion. Temporal discourse in natural language mixes semantic interpretation

with inference at various levels, thereby challenging the standard division of labour in

temporal logic, whose syntax and semantics are traditional. This observation leads to

many new research questions. A traditional issue would be to isolate low-complexity

Horn Clause fragments, or Monotonicity fragments, for existing full temporal logics.

(Cf. van Benthem 1986.) Another would be to set up new two-level calculi of inference,

and more innovative temporal-logical architectures generally. Curiously, over the past

two decades, the study of temporal reasoning and representation has been a major

source of semantic innovation in natural language semantics, but not in logic itself!

5 Appendix: Further Interfaces

We conclude with a sketch of developments in other fields with some significance for

the above discussion. No complete coverage of the vast literature is intended! Cf. the

Temporal Logic chapters in the Handbooks Gabbay et al., eds., 1990/4, 1991/5 for that.

5.1 Computer Science

Temporal logic versus dynamic logic. There is a recurrent debate on 'temporal logic

versus dynamic logic' as a paradigm for program semantics (Lamport, Pratt, Pnueli).

Our plea has been for peaceful co-existence of abstract process time and the physical

time of system evolution. (Compare our technical questions in Section 2.3 about the

branching temporal logic of tree unravelings for state machines.)

Applied temporal logic. Standard temporal logic would be wise to keep up with the

Pnueli tradition! The latter has developed a diverging agenda, highlighting model

checking rather than consistency checking, which leads to different outcomes as to

complexity, emphasizing fixed models rather than whole model classes, etcetera.

Merges do occur, e.g., in practical computational systems mixing theorem proving with

model checking (SRI, Stanford CS; cf. Sipma, Uribe & Manna 1996). Other interesting

merges bring together temporal logics with rewrite systems (Denker 1998).

Metrical operators. Realistic practical modelling of processes and events will soon

involve quantitative information about passage of time, as in  <k>φ: " φ  will hold  k

time units from now", or "over some period of duration  k ". This requires an additional

calculus of quantities of some kind, tagged onto the temporal logic much as dynamic

logic merges propositional structure with program structure (Montanari & de Rijke

1997). More generally, current 'hybrid systems' merge logical techniques with standard

physical ones for the purpose of describing system evolutions in real time.
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Granularity. One temporal situation may be described at different levels of temporal

detail (seconds, days, centuries). Montanari 1996 has an elaborate many-level view of

temporal structure, with matching logics and complexity results. (Cf. Lamport's 1985

many-level theory of temporal 'views' in an interval setting.) With such different levels,

there is a special importance to logical operators effecting connections between them,

which serve as shifting modalities that 'zoom in' and 'out' (Blackburn & de Rijke 1997).

5.2 Artificial Intelligence

Connections between spatial and temporal reasoning. The editorial to the IJCAI satellite

volume Anger, Guesgen, Rodriguez & van Benthem 1997 has the main current issues.

Context logics. Buvac & McCarthy 1998 (and other papers in the research program of

'logical AI') discuss the structure of contexts, and shifts between them. This raises very

much the same issues as emerged for temporal logics in the lively debate of the 70s

about modal-style formalisms versus straight first-order translation in linguistic

semantics. (For a discussion of analogies, cf. van Benthem 1998B.)

Belief revision. Process time and real time may interact. Katsuno & Mendelzon 1992

are famous for their distinction between temporal update for a changing world versus

mere epistemic revision. (Ryan & Schobbens 1997 is an up-to-date modal analysis.)

Temporal epistemic logic has also been proposed as an alternative theory of cognitive

dynamics (Engelfriet 1996, Engelfriet & Treur 1996).

5.3 Physics and Philosophy of Science

Temporal logic in physical time. Temporal and modal structures in relativistic space-

time have been investigated in Rakic 1997, which endows Minkowski models with

additional common-sense structure. The result are models for richer temporal logics

with primitive relations of present, future, and causal connection. These may be

connected with issues in linguistic and logical semantics, witness Rakic' list of open

questions. This kind of research is also a demonstration of the use for renewed contacts

between logical semantics and work on space-time in the philosophy of science.

5.4 Cognitive Psychology

Temporal reasoning and representation have been long-standing concerns in cognitive

psychology (cf. Jackson & Michon 1985). Several developments discussed in this paper

seem relevant to human cognition – but, even more than with linguistics, this broader

interface for temporal logic has been regrettably unlively so far.
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6 Conclusions

We recapitulate the general themes and claims of this paper:

(1) the diversity of uses of time and their underlying temporal patterns

needs to be taken seriously

(2) temporal logic can provide a methodological unity across these, 

through (at least) techniques from general modal logic

(3) in particular, we need logical architectures for systematic connections

between different temporal modellings

(4) to keep the field on a healthy diet of challenges,  we need to absorb 

richer logical structures from natural language and cognition.

With our rather non-standard survey we hope to have shown at least two things.

Temporal logic is alive and well, and: it may still have most of its future ahead of it!
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