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MODAL FRAME CORRESPONDENCES GENERALIZED 
 
Johan van Benthem, Amsterdam & Stanford, January 2005 

 

Abstract 

 
Taking Löb's Axiom in modal provability logic as a running thread, we discuss some 

general methods for extending modal frame correspondences, mainly by adding fixed-

point operators to modal languages as well as their correspondence languages. Our 

suggestions are backed up by some new results – while we also refer to relevant work 

by earlier authors . But our main aim is advertizing the perspective, showing how 

modal languages with fixed-point operators are a natural medium to work with. 

 

1 Introduction: easy and hard correspondences    

The topic of this paper goes back to the mid 1970s, when a young Amsterdam logic 

circle including Wim Blok, Dick de Jongh and the present author, with visitors such as 

Craig Smorynski, was picking up an interest in modal logic. One special interest in 

those days has remained important since, viz. 
 

Löb's axiom   []([]p→p) → []p  
 

in the provability logic of arithmetic. This principle was discovered by Martin Löb, 

then one of our senior professors. At the time, I had just started working on modal 

correspondence theory for analyzing the relational frame content of modal axioms.   

This works quite neatly for the usual modal axioms such as the 
 

K4-axiom  []p → [][]p 
 

Let us call a modal  formula φ true at a point s in a frame F = (W, R) if it is true at s 

under all atomic valuations V on F. Here is perhaps the most famous correspondence: 
 
Fact 1       F, s |= []p → [][]p  iff F's accessibility relation R  is 

      transitive at s: i.e., F, s |= ∀y(Rxy → ∀z(Ryz → Rxz)). 
 
Proof  If the relation is transitive, []p → [][]p clearly holds under every valuation. 

Conversely, let F, s |= []p → [][]p. In particular, the K4-axiom will hold if we take 
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V(p) to be {y | Rsy}. But then, the antecedent  []p holds at s, and hence so does the 

consequent [][]p. And the latter states the transitivity, by the definition of V(p).      ♣ 

 
Now Löb's Axiom was a challenge, as it does not fit this simple pattern of analysis. 

One day in 1973, I found a semantic argument for its correct correspondence: 
 
Fact 2     Löb's Axiom is true at point s in a frame F = (W, R)  iff  

    (a)  F is upward R-well-founded starting from s, and also 

    (b)  F is transitive at s. 
 
Proof First, Löb's Axiom implies transitivity. Let Rsx and Rxy, but not Rsy. Setting 

V(p) = W – (x, y} makes Löb's Axiom false at s. Next, let (b) hold. If (a) fails, there is 

an ascending sequence s = s0 R s1 R s2 ... and setting  V(p) = W – {s0, s1, s2, ...} refutes 

Löb's Axiom at s. Conversely, if Löb's Axiom fails at s, there is an infinite upward 

sequence of ¬p-worlds. This arises by taking any successor of s where p fails, and 

repeatedly applying the truth of []([]p→p) – using transitivity.          ♣ 

 
Here the transitivity clause (b) was surprising, as the modal K4-axiom had always 

been postulated separately in provability logic. The next day, Dick de Jongh came up 

with a beautiful purely modal derivation of the transitivity axiom  from Löb's Axiom. 

It revolved around one well-chosen substitution instance  
 

[]([]([]p ∧  p)→ ([]p ∧ p)) → []([]p ∧ p). 

 
Remark 1 Consequence via substitution 

In the preceding semantic frame argument deriving clause (b), there is a matching 

substitution of a first-order definable predicate for the proposition letter p: 
 
 V(p) := {y | Rsy ∧ ∀z(Ryz → Rsz)} 
 
With this choice of a predicate p,  []([]p→p) holds at s, and hence so does []p by the 

validity of the Löb Axiom –  and transitivity then follows by the definition of V(p). 

This theme of modal deduction via suitable set-based substitutions is pursued more 

systematically in d'Agostino, van Benthem, Montanari & Policriti 1997.         ♣  
 
Later, Wim Blok got into the game, and found the much more complex derivation of 

[]p → [][]p from Grzegorczyk's Axiom, the counterpart of Löb's Axiom on reflexive 
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frames, using algebraic methods. (Cf. van Benthem & Blok 1978.) This was to have 

been one of many illustrations in a planned joint book on modal logic and universal 

algebra, commissioned by Anne Troelstra for "Studies in Logic" as a merge of our 

dissertations. The book never happened, though chapter drafts are still lying around. 

Our friendship remained, however, from those days until Wim's passing away. 
 
The present paper collects a few observations about the behaviour of Löb's Axiom, as 

a stepping stone for exploring some generalizations of modal frame correspondence. 

My main concern is whether the usual correspondence arguments can deliver more 

than they do in their traditional formulation. I think they do. 

 
2 Modal correspondence: from first-order to fixed-points 

Let us look first at the general reason behind the above K4-example. 
 
2.1 Frame correspondence by first-order substitutions 

Here is a result from Sahlqvist 1975, discovered independently in van Benthem 1974:  
 
Theorem 1 There is an algorithm computing first-order frame correspondents for 

modal formulas α→β with an antecedent α constructed from atoms possibly 
prefixed by universal modalities, conjunction, disjunction, and existential 
modalities, and the consequent β  any syntactically positive  modal formula. 

 
The translation algorithm for obtaining first-order frame properties works as follows:  
 

(a)  Translate the modal axiom into its standard first-order form, prefixed  
with monadic quantifiers for proposition letters: ∀x ∀P ST(φ)(P, x), 

  (b)  Pull out all existential modalities occurring in the antecedent,    
and turn them into bounded universal quantifiers in the prefix,  

(c)  Compute a first-order minimal valuation  for the proposition  
letters making the remaining portion of the antecedent true,  

(d)  Substitute this definable valuation for the proposition letters  
occurring in the body of the consequent – and if convenient,  

(e)  Perform some simplifications modulo logical equivalence.  
 

For details of this 'substitution algorithm' and a proof of its semantic correctness,       
cf. Blackburn, de Rijke  &Venema 2000.  
 
Example 1 For the modal transitivity formula []p → [][]p,  
 



 4 

(a) yields ∀x: ∀P: ∀xy (Rxy → Py) → ∀z (Rxz  → ∀u (Rzu → Pu)),  
(b) is vacuous, while (c) yields the minimal valuation Ps := Rxs – and then  
(d) substitution yields ∀x: ∀xy(Rxy → Rxy) → ∀z(Rxz → ∀u(Rzu → Rxu)). 
The latter simplifies to the usual form ∀x: ∀z (Rxz  → ∀u (Rzu → Rxu)).     ♣ 

 
Concrete modal principles not covered by the substitution method are Löb's Axiom –  

and also the following formula, whose antecedent typically has the wrong form: 
 
 McKinsey Axiom []<>p  → <>[]p 
 
The McKinsey Axiom is not first-order definable (van Benthem 1974, 1983). 
 

2.2 An excursion on scattering 

The substitution method is quite strong. In particular, the above procedure also works 

if all modalities are entirely independent, as in the following variant of the K4-axiom: 

 
 
Fact 3    [1]p → [2][3]p also has a first-order frame correspondent, computed 
    in exactly the same fashion, viz. ∀x: ∀z (R2xz  → ∀u (R3zu → R1xu)). 
 
Here is the relevant general notion. 
 
Definition 1 The scattered version of a modal formula φ arises by marking each 

modality in φ uniquely with an index for its own accessibility relation.       ♣ 
 
The Sahlqvist Theorem applies to the scattered version of any implication of the above 

sort. The reason is that its conditions make statements about individual occurrences: 

they do not require pairwise co-ordination of occurrences. This sort of condition is 

frequent in logic, and hence many results have more general scattered versions. 

Scattering is of interest for several reasons. It suggests most general versions of modal 

results – and the interplay of many different modalities in a single formula fits with the 

current trend toward combining logics. E.g., in provability logic, different boxes could 

stand for the provability predicates of different arithmetical theories –  not just that of 

Peano Arithmetic. Even so, scattering does not always apply:  

 
Theorem 2 There are first-order frame-definable modal formulas  

whose scattered versions are not first-order frame-definable. 
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Proof  Consider the first-order definable modal formula which conjoins the K4 

transitivity axiom with the McKinsey Axiom (cf. van Benthem 1983):   
 

 ([]p → [][]p) & ([]<>p → <>[]p) 
 
Even its partly scattered version ([1]p → [1][1]p) & ([2]<2>p → <2>[2]p)  is not 

first-order definable. In any frame, taking the universal relation for R1 will verify the 

left conjunct, and so, substituting these, the purported total first-order equivalent 

would become a first-order equivalent for the McKinsey axiom: quod non.    ♣ 

 
Remark 2 Scattering proposition letters. 

One can also make each occurrence of a proposition letter unique in modal formulas. 

But this sort of scattering makes any modal axiom first-order definable! First, 

propositionally scattered formulas are either upward or downward monotone in each 

proposition letter p, depending on the polarity of p's single occurrence. Now van 

Benthem 1983 shows that modal formulas φ(p) which are upward (downward) mono-

tone  in p are frame-equivalent to φ(⊥) (φ(T)). So, propositionally scattered formulas 

are frame-equivalent to closed ones, and the latter are all first-order definable.      ♣ 

 
 
 
 
2.3 Frame correspondence and fixed-point logic 

Löb's Axiom is beyond the syntactic range of the Sahlqvist Theorem, as its antecedent 

has a modal box over an implication. But still, its frame-equivalent of transitivity plus 

well-foundedness, though not first-order, is definable in a natural extension – viz. 

LFP(FO): first-order logic with fixed-point operators (Ebbinghaus & Flum 1995).  

 
Fact 4    The well-founded part of any binary relation R is definable as a smallest 

     fixed-point of the monotone set operator  [](X) = {y | ∀z(Ryz → z∈X)}. 

  
The simple proof is, e.g., in Aczel 1977. The well-founded part can be written in the 

language of LFP(FO) as the smallest-fixed-point formula  µP, x• ∀y (Rxy → Py). 

 
How can we find modal frame equivalents of this extended LFP(FO)-definable form 

as systematically as first-order frame conditions?  The following subsection presents 
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some relevant results from van Benthem 2004A  – while the idea of fixed-point -based 

correspondences has also been investigated by different methods in Nonnengart & 

Szalas 1999, Goranko & Vakarelov  2003. For a start, Löb's Axiom suggests a general 

principle, as the minimal valuation step in the substitution algorithm still works. 

Consider the antecedent []([]p → p). If this modal formula holds anywhere in a model 

M, x, then there must be a smallest predicate P for p making it true at M, x – because 

of this set-theoretic property guaranteeing a minimal verifying predicate: 

 
Fact 5    If []([]pi → pi) holds at a world x for all i∈I,  

   then []([]P → P) holds at x for P = ∩ i∈I [[pi]]. 

 
This fact is easy to check. Here is the more general notion behind this observation. 

 
Definition 2 A first-order formula φ(P, Q) has the intersection property if, in every 

model M, whenever φ(P, Q) holds for all predicates in some family {Pi |i∈I}, it also 

holds for the intersection, that is: M, ∩Pi |= φ(P, Q).           ♣ 

 
Now, the Löb antecedent displays a typical syntactical format which ensures that the 

intersection property must hold. We can specify this more generally as follows. 
 
Definition 3 A first-order formula is a PIA condition – this is a short-hand for: 
'positive antecedent implies atom' –  if it has the following syntactic form:  
 
 ∀x(φ(P, Q, x) → Px)      with P occurring only positively in φ(P, Q, x).         ♣ 

 
Example 2  Löb's Axiom. 

The antecedent has the first-order PIA form ∀y ((Rxy & ∀z(Ryz → Pz)) →  Py).       ♣ 
 

Example 3 Horn clauses. 

A simpler case of the PIA format is the universal Horn clause defining modal 
accessibility via the transitive closure of a relation R: Px ∧∀y∀z ((Py ∧ Ryz) → Pz)). 
The minimal predicate P satisfying this consists of all points R-reachable from x.      ♣ 
 
It is easy to see that  this syntactic format implies the preceding semantic property: 

 
Fact 6  PIA-conditions imply the Intersection Property.  
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By way of background, here is a general model-theoretic preservation result: 
 
Theorem 3 The following are equivalent for all first-order formulas  φ(P, Q): 
 (a) φ(P, Q)  has the Intersection Property w.r.t. predicate P 
 (b) φ(P, Q) is definable by a conjunction of PIA formulas. 
 

For our purposes, we rather need to know what minimal predicates defined using the 

Intersection Property look like. Here, standard fixed-point logic provides an answer: 

 
Fact 7    The minimal predicates for PIA-conditions are definable in LFP(FO). 

 
Example 3 already provided an illustration, as the transitive closure of an accessibility 

relation used there is typically definable in LFP(FO). Here is another one: 

 
Example 4 Computing the minimal valuation for Löb's Axiom. 

Analyzing []([]p→p) a bit more closely, the minimal predicate satisfying the 

antecedent of Löb's Axiom at a world x describes the following set of worlds: 
 
 {y | ∀z (Ryz→Rxz) & no infinite sequence of R-successors starts from y}. 
 
Then, if we substitute this description into the Löb consequent []p, precisely the  

usual, earlier-mentioned  conjunctive frame condition will result automatically.     

      ♣ 
 
Now, plugging these conditions into the above substitution algorithm yields an 

extension of the Sahlqvist Theorem with a broader class of frame correspondents:  

 
Theorem 4   Modal axioms with PIA antecedents and syntactically positive conse-

quents have their corresponding frame conditions definable  in LFP(FO).  

 

2.4 Further illustrations, and limits 

This extended correspondence method covers much more than the two examples so 

far. Here are a few more examples of PIA-conditions, in variants of Löb's Axiom.  

 

Example 5 Two simple Löb variants. 

(a) With the formula [](<>p→p) → []p, the relevant smallest fixed-point for p in  the 

antecedent is defined by µP, y• Rxy ∧ ∃z (Ryz ∧ Pz)), with x the current world. This 
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evaluates to the Falsum ⊥, and indeed the formula [](<>p→p) → []p is frame-

equivalent to []⊥, as may also be checked directly. (b) The well-known frame-

incomplete 'Henkin variant' of Löb's Axiom reads as follows: []([]p ↔ p) → []p.  

This may be rewritten equivalently as ([]([]p → p) ∧ [](p → []p)) → []p. Here, the 

antecedent is a conjunction of PIA-forms, and unpacking these as above yields the 

minimal fixed-point  µP, y• (Rxy ∧ ∀z (Ryz → Pz)) ∨ ∃z (Rxz ∧ Pz ∧ Rzy)).           ♣ 

 
But also, scattering makes sense again to obtain greater generality: 

 
Fact 8 The modal formula [1]([2]p → p) → [3]p is equivalent on frames  

 F= (W, R1 , R2, R3) to the conjunction of the two relational conditions 

 (a) R3 ; (R2)* ⊆ R1    (with (R2)* the reflexive-transitive closure of  R2) 

 (b) upward well-foundedness in the following sense: no world  x  

 starts an infinite upward sequence of worlds  x R3 y1 R2 y2 R2 y3 ... 

 
Proof  Scattered Löb implies the generalized transitivity clause (a) much as it implied 

transitivity before. Next, assuming the truth of (a), it is easy to see that any failure of 

scattered Löb produce an infinite upward y–sequence as forbidden in (b), while 

conversely, any valuation making p false only on such an infinite y-sequence will 

falsify the scattered Löb Axiom at the world x.          ♣ 

 
Remark 2   Fact 8 arose out of an email exchange with Chris Steinsvold (CUNY, New 

York), who had analyzed the partially scattered axiom [1]([2]p → p) → [1]p.          

The general correspondence was also found independently by Melvin Fitting.       ♣ 

 
But we can also look at quite different modal principles in the same way.  

 
Fact 9  The modal axiom (<>p ∧ [](p → []p)) → p has a PIA antecedent whose    

   minimal valuation yields the LFP(FO)-frame-condition that, whenever Rxy,     

   x can be reached from y by some finite sequence of successive R-steps.  

 
The complexity of the required substitutions can still vary considerably here, 

depending on the complexity of reaching the smallest fixed-point for the antecedent  

via the usual bottom-up ordinal approximation procedure. E.g., obtaining the well-



 9 

founded part of a relation may take any ordinal up to the size of the model. But for 

Horn clauses with just atomic antecedents, the approximation procedure will stabilize 

uniformly in any model by stage  ω, and the definitions will be simpler.  

 
Even so, there are limits. Not every modal axiom yields to the fixed-point approach! 

 
Fact 10       The tense-logical axiom expressing Dedekind Continuity 

               is not definable by a frame condition in LFP(FO). 

 
Proof Dedekind Continuity holds in (IR, <) and fails in (Q, <). But these two 

relational structures are equivalent w.r.t. LFP(FO)-sentences, as there is a potential 

isomorphism between them, for which such sentences are invariant.       ♣ 

 
Returning to the modal language, one often views the Löb antecedent []([]p→p) and 

the McKinsey antecedent []<>p as lying at the same level of complexity, beyond 

Sahlqvist forms. But in the present generalized analysis of minimizable predicates, the 

latter seems much more complicated than the former! 

 
Conjecture 1 The McKinsey Axiom has no LFP(FO)-definable correspondent.  

 

3 Modal fixed-point languages 
A conspicuous trend in modal logic is the strengthening of modal languages to remove 

expressive deficits of the base with just [], <>. This reflects a desire for logic design 

with optimal expressive power, without being hampered by the peculiarities of weaker 

languages bequeathed to us by our ancestors.  

 
3.1 The modal µ-calculus 

One such extended language fits very well with Section 2. It is the modal µ–calculus – 
the natural modal fragment of LFP(FO), and a natural extension of propositional 
dynamic logic. Harel, Kozen & Tiuryn 2000 has a quick tour of its syntax, semantics, 
and axiomatics. This formalism can define smallest fixed-points in the format  
 

µp• φ(p),  provided that p occurs only positively in φ.  
 
This adds general syntactic recursion, with no assumption on the accessibility order.  
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Definition 4 Fixed-point semantics. 

In any model M, the formula φ(p) defines an inclusion-monotone set transformation  
 

Fφ (X) = {s ∈ X | (M, p:=X), s |=φ} 
 
By the Tarski-Knaster Theorem, the operation Fφ  must have a smallest fixed-point. 

This can be reached bottom-up by ordinal approximation stages 
 
 φ0,    ...,    φα, φα+1,    ...,    φλ,    ... 

with φ0 = ∅, φα+1

 = Fφ (φα), and φλ = ∪α<λ φα  
 
The smallest fixed-point formula µp• φ(p) denotes the first stage where φα = φα+1.      ♣ 
 
Example 6 Transitive closure and dynamic logic. 

The µ-calculus can define a typical transitive closure modality from dynamic logic  
like  'some φ-world is reachable in finitely many Ra-steps': 

<a*>φ  = µp• φ ∨ <a>p.             ♣ 
 
Example 7 Well-foundedness again. 

The modal import of Fact 4 is this. The smallest fixed-point formula µp• []p defines 
the well-founded part of the accessibility relation for [] in any modal model.       ♣ 
 
The µ–calculus also includes greatest fixed points νp• φ(p), defined as  
 
 ¬µp• ¬φ(¬p). 
 
Smallest and greatest fixed-points need not coincide, and others may be in between.   
 
Finally, we recall that the µ–calculus is decidable,  and that its validities are 

effectively axiomatized by the following two simple proof rules on top of the minimal 

system K: 
 

 (i) µp• φ(p) ↔ φ(µp• φ(p))   Fixed-Point Axiom 
 (ii) if |– φ(α) → α, then |– µp• φ(p) → α Closure Rule 
 
3.2 Working with fixed-points in modal logic 

Given that the frame correspondence language for natural modal axioms involves 

LFP(FO) with fixed-point operators, it makes sense to also extend the modal language 



 11 

itself to a complete µ–calculus, restoring the balance between the two. This extended 

formalism is quite workable, as we will show by a few examples.  
 
For convenience, we dualize the above <a*>φ to a dynamic logic-style modality []*φ 

saying that φ is true at all worlds reachable in the transitive closure of the accessibility 

relation R for single []. The resulting language formalizes earlier correspondence 

arguments, and it also suggests new variations on modal axioms. 

 
Fact 11      []*([]p → p) →  []*p defines just upward well-foundedness of R.  

 
Thus, transitivity needs an additional explicit K4-axiom, separating the two aspects of 

Löb's provability logic explicitly.  We will return to this way of stating things later. 

 
Next, here is a formal correspondence argument recast as a modal deduction. 

 
Example 8 Scattered Löb Revisited. 

The scattered Löb Axiom of Fact 8 implied the frame condition that R3 ; (R2)* ⊆ R1, 

which corresponds to the modal axiom 
 
  [1]p → [3][2*]p 
 
In the right dynamic language this is indeed derivable from a scattered Löb Axiom: 
 
(a) [1]([2][2*]p → [2*]p) → [3] [2*]p) scattered Löb axiom with [2*]p for p 

(b) [2*]p ↔ p & [2][2*]p   fixed-point axiom for * 

(c) p → ([2][2*]p → [2*]p)   consequence of (b) 

(d) [1]p → [1]([2][2*]p → [2*]p)  consequence of (c) 

(e) [1]p → [3][2*]p    from (a), (d)        ♣ 

 
Another illustration of this modal formalization  is the original Fact 2 itself. It says that 

Löb's Axiom is equivalent to the K4-axiom plus the µ--calculus axiom  µp• []p for 

upward well-foundedness.  But this can also be shown by pure modal deduction!  

 
Theorem 6 Löb's Logic is equivalently axiomatized by the two principles  

(a)      []p → [][]p,    (b) µp• []p. 
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Proof  From Löb's Logic to (a) was an earlier-mentioned purely modal deduction.          

Next, (b) is derived as follows. By the fixed-point axiom of the µ-calculus, we have 

that [] µp• []p → µp• []p. So it suffices to get []µp• []p. Now Löb's Axiom implies: 
 
 [] ([] µp• []p → µp• []p)  →  [] µp• []p  
 
and the antecedent of this is derivable by modal Necessitation from the converse of the 

µ-calculus  fixed-point axiom. Next, assume (a) and (b). We show that, in K4,  
 

µp• []p → ([]([] q → q)  → []q).  
 
By the earlier derivation rule for smallest fixed-points, µp• []p → α can proved for 

any formula α if []α → α can be proved.  But we can prove 
 
 []([]([] q → q)  → []q) →  ([]([] q → q)  → []q) 
 
by means of a straightforward derivation in K4.          ♣ 
 
Next, Löb's Axiom implies upward well-foundedness, and hence a form of inductive 
proof over this well-founded order. Thus, there must also be a direct connection 
between Löb's Axiom and the induction axiom of propositional dynamic logic : 
 

([]φ & [*](φ → []φ) → [*]φ              IND 
 
Fact 12 Löb's Axiom plus the Fixed-Point Axiom [*]φ ↔  ([]φ & [][*]φ)  

  (FIX) derive the Induction Axiom of propositional dynamic logic. 
 
Proof This can be shown using the above analysis of Löb's Axiom, since the 

Induction Axiom expresses the greatest fixed-point character of [*]. An explicit modal 

derivation is in van Benthem 2004B, which points out that earlier published logics of 

finite trees have a redundant axiom set of full PDL plus Löb's Axiom.         ♣ 

 
But one can also recast the link between provability logic and fixed-point logics: 
 
Theorem 7 Löb's Logic can be faithfully embedded into the µ–calculus. 
 
Proof   The translation doing this works as follows: 
 

(a) replace every  [] in a formula φ by its transitive closure version []* 
(b) for the resulting formula (φ)*, take the implication µp• [] p→ (φ)*. 
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It is straightforward to check that a plain modal formula φ is valid on transitive  

upward well-founded models iff µp• [] p→ (φ)* is valid on all models.    ♣ 

 
As a consequence, decidability of Löb's Logic follows from that of the µ–calculus. 

Other features may have applications, too, such as the latter's strong interpolation 

properties (d'Agostino & Hollenberg 2000). Now, the µ–calculus is much more 

expressive than the usual modal language of provability logic. But this extended 

setting also raises interesting  new issues in the latter area – for instance: 

 
Question 1 Can the usual arithmetical interpretation of provability logic  

be extended to provability logic with a full µ–calculus? 

 
3.3 Frame correspondence in  extended modal languages 

The µ–calculus is just one in a spectrum of extensions of the basic modal language. 

   
Fragments of the µ–calculus  A useful weaker language is propositional dynamic 

logic (PDL) with modalities [π] for program expressions π constructed out of atomic 

accessibility relations a, b, ... and tests ?φ on arbitrary formulas φ, using composition 

;, union ∪,  and iteration * on binary relations. PDL can deal with most of the 

preceding examples, witness  Fact 11, which says that a PDL-variant of Löb's Axiom 

defines   µp• []p. Further examples of its expressive power will follow in Section 3.4. 

Example 6 already showed how PDL is contained in the µ–calculus. Harel, Kozen & 

Tiuryn 2000 shows that it is strictly weaker, though.  

 
Fact 13 The fixed-point formula ¬µp• []p (or alternatively, νp• <>p)  

  is not PDL- definable. 
 
Proof   This formula defines the set of worlds where some infinite R-sequence starts, 

and this set is not PDL-definable – by a simple semantic argument.        ♣ 

 
Looking top-down, this observation shows that the µ–calculus  has natural fragments 

restricting its powers of recursion. One of these already occurred in Fact 9: 
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Definition 5 The ω –µ−calculus. 

The ω–µ−calculus only allows smallest fixed-point operators in the following 

existential format, then approximation sequences always stabilize by stage ω: 
 
 µp• φ(p)  with φ constructed according to the syntax 

 p | p-free formulas | ∧ | ∨ | existential modalities.               ♣ 

 
Van Benthem 1996 proves a preservation theorem showing the adequacy of this 

format for the required property of 'finite distributivity' for the approximation maps. 

Clearly, PDL is contained in the ω –µ−calculus. But there is a genuine hierarchy: 
 

Fact 14 The µ−ω –formula µp• ([1]⊥ ∧ [2]⊥) ∨ (<1>p ∧ <2>p)  

is not definable in PDL. 
 
Proof (Sketch) This formula expresses that there is a finite binary tree-like submodel 

starting from the current world, with both R1- and R2-daughters at each non-terminal 

node. Now PDL-formulas only describe reachability  along finite traces belonging to 

some regular language over tests and transitions. This tree property is not like that.    ♣ 

 
Still, PDL is closed under smallest simultaneous fixed-points of a yet more special 

type of recursion, consisting of disjunctions of existential formulas <π>p where the 

propositional recursion variables p occurs only in the end position. We omit details 

here (cf. van Benthem, van Eijck & Kooi 2005). 
 
Propositional quantifiers  But there are further relevant extended modal languages. In 

particular, the µ–calculus is related to the much stronger system SOML of modal logic 

with second-order quantifiers over proposition letters. Cf. ten Cate 2005 for a recent 

model-theoretic study of SOML. Fact 11 and Theorem 6 suggest the following. 
 
Fact 15 The µ–calculus is definable in SOML plus a PDL-style iteration 

modality []* referring to all worlds accessible from the current one. 
 
Proof  A smallest fixed-point formula µp• φ(p) denotes the intersection of all 'pre-

fixed points' of the map Fφ (X) of Definition 4, where Fφ (X)⊆X. But the latter set is also 

defined by the SOML-formula ∀p: []*(φ(p) → p) → p.         ♣ 
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The PDL-addition is necessary here, since SOML-formulas by themselves have a finite 

modal depth to which they are insensitive, just like basic modal formulas. 
 
We conclude with a concrete example that the new formalisms really extend  the old. 
 
Fact 16 Well-foundedness is not definable in basic modal logic. 
 
Proof  Suppose that a modal formula φ defined well-foundedness. Then it fails at 0      

in the frame (N, S), with S the relation of immediate successor.  But then, by the finite 

depth property of basic modal formulas, φ would also fail at 0 in some finite frame  

({0, .., n}, S), which is well-founded. A similar argument works for the above formula 

p → <>*p, observing that the frames with a partial function R where it holds are just 

the collections of disjoint finite loops.                  ♣ 

 
The same proof shows that well-foundedness is not even definable in SOML.  
 
Frame correspondences in different fixed-point languages   Compared with the basic 
theory, languages with modal fixed-points support interesting new frame corres-
pondences.  Some of these occur inside propositional dynamic logic, others crucially 

involve the µ–calculus, and eventually, one could look at SOML as well.  
 

Example 9 Cyclic return simplified. 

The formula p → <>*p says that every point x is part of some finite R-loop.       ♣ 

 
Example 10 Term rewriting. 

The formula <>*[b] *p → [b] <>*p expresses the Weak Confluence property that  

points diverging from a common root  have a common successor in the transitive 

closure of the relation. Basic laws of term rewriting (cf. Bezem, Klop & de Vrijer 

2003) amount to implications between such modally definable graph properties .   ♣ 
 

These results are subsumed under the following generalization of Theorem 1. It is by 

no means the best possible result, but it shows one easy generalization. 
 
Theorem  8 There is an algorithm finding frame-correspondents in LFP(FO)  

 for all modal implications α → β  whose consequent β is wholly  

 positive, and whose antecedent α  is constructed using 
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 (a) proposition letters possibly prefixed by universal modalities [π] in whose  

 PDL-program π all proposition letters occur positively, and over these (b)  

 ∨, ∧, as well as existential modalities <σ> with a test-free PDL-program σ . 
 
Proof  (Outline) The main algorithm extracts universal prefixes for the <σ> as in 

Section 2. Next, the dynamic logic operators [π] express modal PIA-conditions  which 

can be used a basis for minimization inside LFP(FO).                ♣ 
 
Still, this version seems sub-optimal, as a genuine fixed-point version might describe 

the relevant syntax very differently.  
 
Example 11 Re-describing modalities. 

From a µ–calculus perspective, a universal modality [a*]p is a greatest fixed-point 

operator νq•  p ∧ [a]q. So, minimizing  for p here would compute the formidable-

looking iterated fixed-point formula  µp• νq•  p ∧ [a]q. One then sees that this is 

equivalent to the set of worlds a*-reachable from the current world –  which can also 

be described by one µ-type fixed-point in LFP(FO).       ♣ 

 
On the other hand, moving to weaker languages, one might drop the universal 

modalities in Theorem 8, and work inside just the ω –µ−calculus  or PDL. 

 
Question 2 What is the best possible formulation of the Sahlqvist Theorem   

in propositional dynamic logic? And in the modal µ–calculus? 

 
Cf. Goranko & Vakarelov  2003 for best results on fixed-point correspondence so far. 

Nonnengart & Szalas 1999 also provide a very general correspondence method DLS 

going back to Ackermann's Lemma in second-order logic. Finally, the SCAN 

algorithm of Gabbay & Ohlbach 1992 also covers both first- and higher-order cases. 

 
In addition to correspondence issues, there is also modal definability. Many modal 

formulas in our examples still satisfy the usual semantic properties of basic modal 

formulas: they are preserved under generated subframes, disjoint unions, p-morphic 

images, and anti-preserved under ultrafilter extensions. The first three hold for all µ–

calculus formulas, by their bisimulation invariance. As for anti-preservation under 

ultrafilter extensions, it is easy to see that the usual proof for the basic modal language 
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does not go through, as some sort of infinite disjunction splitting would be needed. But 

we have not been able to find a counter-example to the property as such. The typical 

difference with basic modal formulas might lie really in the finite evaluation bound of 

the former, as opposed to even PDL-formulas involving <>*.  

 
These observations suggest various newe questions. Here we merely state one: 

 
Question 3 Is there a Goldblatt-Thomason Theorem for modal logic with fixed- 

points, saying that the modally definable LFP(FO) frame classes are just  

those satisfying the stated  four semantic preservation properties? 

 
Remark 3 Extended languages and expressive completeness. 

Sometimes, a language extension to tense logic makes sense to express earlier 

correspondences compactly. Consider the modal axiom (<a>p ∧ [a](p → [a]p)) → p   

of Fact 9, expressing a variant of Cyclic Return. This frame property can also be 

expressed in propositional dynamic logic with a past tense operator as follows:  

 
 p → [a]<((PAST p)? ; a)*><a>p  
 

Venema 1991 shows the naturalness of 'versatile' formalisms with converse modalities  

for the purpose of defining the substitutions of Section 2 inside the modal language. 

The general point here is that languages with nominals naming specific worlds and 

backward-looking tense operators define minimal predicate substitutions – making  the 

modal language expressively complete for its own Sahlqvist correspondences.      ♣ 

 

4 An Excursion into Provability Logic 

The µ–calculus is perhaps the most natural modal fixed-point logic. But there are 

other, and older, modal fixed-point results! This section, which can be skipped without 

loss of continuity, discusses the linkage between the two perspectives. 

 
4.1  The De Jongh-Sambin fixed-point theorem    

A celebrated result in provability logic is the following modal version of the 

arithmetical Fixed-Point Lemma underlying the proof of Gödel's Theorem: 
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Theorem 9 (De Jongh-Sambin) Consider any modal formula equivalence φ(p, q) 
in which proposition letters p only occur in the scope of at least one modality, 
while q is some sequence of other proposition letters. There exists a formula 
ψ(q) such that ψ(q) ↔ φ(ψ(q)), q) is provable in Löb's Logic, and moreover, 
any two solutions to this fixed-point equation w.r.t. φ are provably equivalent. 

 
For a proof, cf. Smorynski 1984. This author also gives a simple algorithm for 
computing the fixed-point ψ(q). Typical outcomes are the following fixed points: 
 
Example 12 Solving fixed-point equations in provability logic. 

Here are a few typical cases: 
 

    
equation: p ↔ []p  solution: p = T 

   p ↔ ¬[]p    p = ¬[]⊥ 

   p ↔ ([]p → q)   p = ([]q → q) 
 
More complex recursions arise when the body of the modal equation has multiple 
occurrences of p. Solutions are then obtained by iterating the single-step case.      ♣ 
 
There are two aspects to Theorem 9: (a) existence and uniqueness of the new predicate 

defined, and (b) explicit definability of that predicate in the modal base language. 

Here, existence and uniqueness of the predicate p is just a general property of all 

recursive definitions over well-founded orderings. But we also get the concrete 

information that this recursive predicate can be defined inside the original modal 

language, without explicit µ- or ν-operators. Let's compare this with the µ–calculus. 
 
4.2  Provability fixed-points and µ-calculus   

We can obviously compare the general approximation procedure of Section 3 and the 

special-purpose algorithm mentioned just now. For a start, evidently, definitions µp• 

φ(p) with only positive boxed occurrences of p in φ  fall under both approaches.  
 
Example 13 The fixed-point for the modal equation  p ↔ []p. 

µp• []p defined the well-founded  part of the order R. Thus, in well-founded models, it 
defines the whole universe – which explains Smorynski's solution T ('true').      ♣ 
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But the De Jongh-Sambin Theorem also allows for negative occurrences of p in the 

defining equation.  These fall outside of general fixed-point logics. 
 
Example 14 The fixed-point for the modal equation  p ↔ ¬[]p. 

Here, the approximation sequence for the set operator F¬[]p can fail to yield a fixed 

point, oscillating all the way. E.g., in the model (N, <), one gets ∅, N, ∅, N, ...          ♣ 
 
Actually, the situation in general fixed-point logic is a bit more complex. Formulas 

with mixed positive and negative occurrence can sometimes be admissible after all.  
 
Example 15 The mixed-occurrence formula  p ↔ (p ∨ ¬[]p). 

In this case, the approximation sequence will be monotonically non-decreasing, 

because of the initial disjunct p. So, in any model, there must be a smallest fixed-point. 

With our formula p ∨ ¬[]p, the sequence stabilizes at stage 2, yielding <>T. There is 

also a greatest fixed-point, which is the whole set defined by T.          ♣ 
 
This case is beyond Theorem 9, as  the first occurrence of p in p ∨ ¬[]p is not boxed. 

Indeed, there is no unique definability in this extended format, as the smallest and 

greatest fixed-points are different here. In fixed-point logic, this example motivates an 

extension of the monotonic case (Ebbinghaus & Flum 1995). 
 
Definition 6  Inflationary fixed-points for arbitrary formulas φ(p, q) without syntactic 

restrictions on the occurrences of p are computed using an ordinal approximation 

sequence which forces upward cumulation at successor steps: 
  
 φα+1 = φα   ∪  φ(φα), taking unions again at limit ordinals.          ♣ 
 
There is no guarantee that a set P where this stabilizes is a fixed-point for the modal 

formula φ(p, q). It is rather a fixed-point for the modified formula p ∨ φ(p, q).  

 
4.3 Combining the two sorts of fixed-point   

Comparison may also mean combination. Would adding general monotone fixed-

points extend the scope of the De Jongh-Sambin result? The answer is no. 
 
Fact 17    Any p-positive formula µp• φ(p) with  φ(p) having unboxed occurrences  

    of p is equivalent to one in which all occurrences of p occur boxed. 
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Proof  Without loss of generality,  we can take the formula to be of the form 
 
 µp• (p&A) ∨ B with only boxed occurrences of p in A, B  
 
Let φα  be the approximation sequence for φ = (p&A) ∨ B, and let Bα be such a   

sequence executed separately for the formula B. We have the following collapse: 
 
Lemma 1 φα = Bα     for all ordinals  α 
 
This is proved by induction. The zero and limit cases are obvious. Next, 
 
 φα+1    =  (φα   & A(φα)) ∨ B(φα) 

   = (Bα  & A(Bα)) ∨ B(Bα) 

 where, by the fact that FB is monotone: Bα  ⊆ B(Bα), and hence Bα ∩ A(Bα)) ⊆ B(Bα) 

= B(Bα) 

 = Bα+1 

Thus, the same fixed-point is computed by  the boxed formula µp• B.        ♣ 

 
Next, can we fit De Jongh-Sambin recursions into general fixed-point logic? Recall 

that well-founded relations have an inductive character: their domains are smallest 

fixed-points defined by µp• []p. On such orders, the whole universe is eventually 

computed through the monotonically increasing ordinal approximation stages  
 

D0, D1, .., Dα, ...  
 
of the modal  formula p ↔ []p. Now we cannot  compute similar cumulative stages 

for the fixed-point formula φ(p, q) in Theorem 9, as φ may have both positive and 

negative occurrences of the proposition letter p. But we can define the related 

monotonic sequence of inflationary fixed-points, defined above. As we noted, this 

inflationary process need not lead to a fixed-point for φ(p, q) per se. But this time, we 

do have monotone growth within the D-hierarchy, as the φ's stabilize  inside its stages: 
 
Fact 18      φα+1 ∩  Dα  =  φα ∩ Dα 
 
Thus a general fixed-point procedure for solving De Jongh-Sambin equations runs 

monotonically when restricted to approximation stages for a well-founded universe. 
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This prediction pans out for the above modal examples []p, ¬[]p, and []p → q. We 

will not prove this here, as we will re-describe the situation now.  
 
Theorem 10 De Jongh-Sambin fixed-points can be found by the  

following simultaneous inflationary inductive definition: 

 r ↔ []r 
 p ↔ []r & φ(p, q)  
 
Proof  We compute the approximation stages for p, r simultaneously: 
 
 (rα+1, pα+1) = ([]rα, []rα ∧ φ( pα))   successors 

 (rλ, pλ)  = (∪α<λ rα, ∪α<λ pα)   limits 
 
Here the conjunct []r (rather than 'r') for p makes sure that the next stage of p is 

computed by reference to the new value of r. Now it suffices to prove the following 

relation between the approximation stages – written here with some abuse of notation: 
 
Lemma 2 If β<α, then  pα ∧  rβ   =   rα 

 
Note that this implies monotonicity: if β<α, then pβ → pα. 
 
Here, the main induction is best done on α, with an auxiliary one on β. The cases of 0 

and limit ordinals are straightforward. For the successor step, we need two auxiliary 

facts. The first expresses the invariance of modal formulas for generated submodels, 

and the second is an immediate consequence of the approximation procedure for r: 
 
 (i) M, P, x |= φ(p)  iff  M, P ∩ R*[x], x |= φ(p) 

(ii) Let R*[x] be all points reachable from x by some finite  

            number of R-steps. If x ∈ rα, then R*[x] ⊆ ∪β<α  rβ 

Now we compute - again with some beneficial abuse of notation: 
 
 x |= pα+1 ∧ rβ+1   iff  

x |= rα+1  ∧ φ(pα ) ∧ rβ+1  iff  

x |= φ (pα ) ∧ rβ+1  iff (by (i), (ii))  

x |=  φ ( pα ∧ rβ) ∧ rβ+1  iff (ind. hyp.)  

x |=  φ ( pβ) ∧ rβ+1  iff 

x |=  pβ+1                         ♣ 
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4.4 Why the explicit definability?   

Our µ–calculus analysis does not explain why provability fixed-points are explicitly 

definable in the modal base language. Indeed, the general reason seems unknown.  We 

do know that this explicit definability is not specific to the modal language: 
 
Theorem 11   Explicit definability for fixed-point equations with all occurrences of p 

in the scope of some operator holds for all propositional languages with 

generalized quantifiers  Qp over sets of worlds satisfying 

(a) = (i) above      Q(P) is true at x  iff  Q(P∩ Rx) is true at x Locality 

(b)        Qp → []Qp     Heredity 
 
This covers quantifiers Q like the modal "in some successor", the true first-order "in at 
most five successors", or the second-order "in most successors of each successor". Van 
Benthem 1987 has a proof for Theorem 11, in joint work with Dick de Jongh.  
 
But the general rationale of explicit definability still eludes us. One factor besides 
appropriate base quantifiers Q is transitivity of accessibility. E.g., the Gödel equation p 
↔ ¬[]p has no explicit modal solution on finite trees with the immediate successor 
relation. But there may be still deeper model-theoretic reasons for the success of 
Theorem 9 in provability logic in terms of general fixed-point logic. Here is a 
suggestive observation. Smallest and greatest fixed points for a first-order formula 
φ(P) coincide if φ(P) implies an explicit definition for P. But the converse is true as 
well, by a straightforward appeal to Beth's Theorem (cf. Smorynski 1984). Such 
explicit first-order definitions for unique first-order fixed-points even arise uniformly 
by some fixed finite approximation stage in every model where they are computed, by 
the Barwise-Moschovakis Theorem (I owe this reference to Martin Otto).    
      
Remark 4 Alternative modal formalisms for solving fixed-point equations. 
Visser and d'Agostino have suggested analyzing explicit definability in provability 
logic with ideas from Hollenberg 1998, using uniform interpolation properties of the 
µ-calculus and its associated languages with so-called bisimulation quantifiers.         ♣ 
 

5 Higher-order perspectives 

Many topics in the preceding sections suggest a further extension into second-order 

logic, which is the natural habitat of frame truth of modal formulas interpreted as 

monadic  Π1
1-sentences. For instance, the Sahlqvist Theorem for basic modal logic 
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also works with positive antecedents in any higher-order logic (van Benthem 1999). 

But as is well-known, our fixed-point extensions are also fragments of second-order 

logic. In particular, there might be Beth Theorems for suitable fragments of second-

order logic behind the modal fixed-point results discussed in Section 4. Van Benthem 

1983, ten Cate 2005 study modal logic partly as a way of finding well-behaved 

fragments of second-order logic.  This seems another interesting way  to go. 

 

6 Conclusion 
This note has shown how various aspects of provability logic, all high-lighted by Löb's 

Axiom, suggest a much broader background in modal and classical logic, with fixed-

point languages as a running thread. 30 years after our student days, the content of our 

modal boxes, even in very familiar settings, has not yet been exhausted! 
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