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1 INTRODUCTION

This chapter introduces modal logic from a semantic perspective. That is, it presents modal logic
as a tool for talking aboutstructuresor models. But what kind of structures can modal logic talk
about?

There is no single answer. For example, modal logic can be given analgebraic semantics,
and under this interpretation modal logic is a tool for talking about what are known as boolean
algebras with operators. And modal logic can be given atopological semantics, so it can also
be viewed as a tool for talking about topologies. But although we briefly discuss algebraic
and topological semantics, for the most part this chapter focuses on modal logic as a tool for
talking aboutgraphs. To put it another way, this chapter is devoted to what is known as the
relational or Kripke semantics for modal logic. This is the best known and (with the exception
of algebraic semantics) the best explored style of modal semantics. It is also, arguably, the most
intuitive. Over the years modal logic has been applied in many different ways. It has been used
as a tool for reasoning about time, beliefs, computational systems, necessity and possibility, and
much else besides. These applications, though diverse, have something important in common:
the key ideas they employ (flows of time, relations between epistemic alternatives, transitions
between computational states, networks of possible worlds) can all be represented as simple
graph-like structures. And as we shall see, modal logic is an interesting tool for talking about
such structures: it provides a internal perspective on the information they contain.

But modal logic is not the only tool for talking about graphs, and this brings us to one of the
major themes of the chapter: the relationship between modal logic and other forms of logic. As
we shall see, under the graph-based perspective discussed here, modal logic is closely linked
to both first- and second-order classical logic. This immediately raises interesting questions.
How does modal logic compare with these logics as a tool for talking about graphs? Can modal
expressivity over graphs be characterised in terms of classical logic? We shall ask (and answer)
such questions in the course of the chapter.

Games (in various guises) are another recurring motif. The simple way that modal formulas
are interpreted on graphs naturally gives rise to games and game-like concepts. The most impor-
tant of these is the notion ofbisimulation. This is a relation between two models, weaker than
isomorphism, which can be thought of as a transition-matching game between two players. As
we shall see, this concept holds the key to modal model theory and characterises the link with
first-order logic.

This chapter has two pedagogical goals. The first is to provide a bread-and-butter introduction
to relational semantics for modal logic that can be used as a basis for tackling the more advanced
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chapters in this handbook. Thus the reader will find here definitions and discussions of all the
basic tools needed in modal model theory (such as the standard translation, generated submodels,
bounded morphisms, and so on). Basic results about these concepts are stated and some simple
proofs are given. But we have a second, more ambitious, goal: to help the reader think semanti-
cally. We want to give the reader a sense of how modal logicians view structure, and what they
look for when exploring new logics. To this end we have tried to isolate the intuitions that guide
working modal logicians, and to present them vividly. We also make numerous asides, some
of which touch on advanced logical topics. Their purpose is to situate the key ideas in a wider
context, and even beginners should try to follow them.

Here is our plan. In Section 2, we introduce basic modal languages and the graphs over which
they are interpreted. We give the satisfaction definition (which tells us how to interpret modal
formulas in such graphs) and the standard translation (which links modal logic with classical
logic). With these preliminaries out of the way, we are ready to go deeper. What can (and cannot)
modal languages say about graphs? In Section 3 we introduce the notion of bisimulation and use
it to develop some answers; among other things, we characterise modal logic as a fragment
of first-order logic. In Section 4 we examine the computability and computational complexity
of modal logic. A shift of topic? Not at all. In essence, this section examines modal logic
as a tool for talking aboutfinite graphs. In Section 5 we move to the level of frames and re-
examine the link between modal and classical logic. As we shall see, at this level the fundamental
correspondence is between modal logic and (monadic) second-order logic. In Section 6 we
move beyond the basic modal language and discuss a number of richer languages that offer more
expressivity. But what makes them all modal? As we shall see, many of the themes explored
in earlier sections re-emerge, and point towards an idea that seems to lie at the heart of modal
logic: guarding. Moreover, in some cases it is possible to prove Lindström-style characterisation
results. In Section 8 we discuss three alternatives to relational semantics, namely algebraic,
neighbourhood, and topological semantics. We conclude in Section 8.

One final remark. Wedon’t discuss modal proof-theory or related notions such as complete-
ness in any detail (these topics are the focus of Chapter 2 of this handbook). Although we haven’t
banished all mention of normal modal logics and completeness from the chapter, in our view tra-
ditional introductions to modal logic tend to overemphasise these topics. We want this chapter
to act as a counterbalance. As we hope to convince the reader, simply asking the question “But
what I can Isaywith these languages?” swiftly leads to interesting territory.

2 BASIC MODAL LOGIC

In this section we introduce the basic modal language and its relational semantics. We define
basic modal syntax, introduce models and frames, and give the satisfaction definition. We then
draw the reader’s attention to the internal perspective that modal languages offer on relational
structure, and explain why models and frames should be thought of as graphs. Following this
we give the standard translation. This enables us to convert any basic modal formula into a first-
order formula with one free variable. The standard translation is a bridge between the modal and
classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics

Given a collection of proposition symbols PROP= {p, q, r, . . .}, and modality symbols MOD=
{m,m′,m′′, . . .} (the choice of PROP and MOD is often called thesignatureor similarity type)
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we define thebasic modal language(over this signature) as follows:

ϕ ::= p | > |⊥| ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | 〈m〉ϕ | [m]ϕ.

That is, a basic modal formula is either a proposition symbol, a boolean constant, a boolean
combination of basic modal formulas, or (most interesting of all) a formula prefixed by a diamond
or a box. There is redundancy in the way we have defined basic modal languages: we don’t need
all these boolean connectives as primitives, and it will follow from the satisfaction definition
given below that[m]ϕ is equivalent to¬〈m〉¬ϕ. But we won’t bother picking out a preferred
set of primitives, as this is not relevant to our discussion. If there is only one modality in our
language (that is, if MOD has only one element) we simply write3 and2 for its diamond and
box forms. We often tacitly assume that some signature has been fixed, and say things like “the
basic modal language”, or “the basic modal language with one diamond”. We won’t need many
syntactic concepts in this chapter, but the following ones will be useful. First, thesubformulas
of a basic modal formulaϕ areϕ itself together with all the formulas used to buildϕ. Second,
we say that a subformulaψ of ϕ occurspositivelyif it is under the scope of an even number of
negations, otherwise we say it occursnegatively. Finally, themodal operator depthof a basic
modal formulaϕ is the maximum level of nesting of modalities inϕ, and we writemd(ϕ) to
denote this number.

A model(or Kripke model) M for the basic modal language (over some fixed signature) is a
triple M = (W, {Rm}m∈MOD, V ), whereW , thedomain, is a non-empty set (whose elements
we usually callpoints), eachRm is a binary relation onW , andV is a function (the valuation)
that assigns to each proposition symbolp in PROP a subsetV (p) of W ; think of V (p) as the set
of points inM wherep is true. The first two components(W, {Rm}m∈MOD) of M are called the
frameunderlying the model. If there is only one relation in the model, we typically write(W,R)
for its frame, and(W,R, V ) for the model itself. We encourage the reader to think of Kripke
models as graphs, and will shortly give some examples which show why this is helpful.

Supposew is a point in a modelM = (W, {Rm}m∈MOD, V ). Then we inductively define the
notion of a formulaϕ beingsatisfied(or true) in M at pointw as follows (we omit some of the
clauses for the booleans):

M, w |= p iff w ∈ V (p),
M, w |=⊥ never,

M, w |= ¬ϕ iff not M, w |= ϕ (notation:M, w 6|= ϕ),

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,

M, w |= ϕ→ ψ iff M, w 6|= ϕ or M, w |= ψ,

M, w |= 〈m〉ϕ iff for somev ∈W such thatRmwv we haveM, v |= ϕ,

M, w |= [m]ϕ iff for all v ∈W such thatRmwv we haveM, v |= ϕ.

A formulaϕ is globally satisfied(globally true) in a modelM if it is satisfied at all points in
M, and if this is the case we writeM |= ϕ. A formulaϕ is valid if it is globally satisfied in all
models, and if this is the case we write|= ϕ. A formulaϕ is satisfiable in a modelM if there is
some point inM at whichϕ is satisfied, andϕ is satisfiableif there is some point in some model
at which it is satisfied. These definitions are lifted to sets of formulas in the obvious way. For
example, a set of basic modal formulasΣ is satisfiable if there is some point in some model at
which all the formulas it contains are satisfied. A formulaϕ is asemantic consequenceof a set
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of formulasΣ if for all modelsM and all pointsw in M, if M, w |= Σ thenM, w |= ϕ, and in
such a case we writeΣ |= ϕ. Instead of writing{ϕ} |= ψ we writeϕ |= ψ.

We now have all the concepts needed to begin exploring modal logic. But instead of moving
on, let us reflect upon the ideas just introduced. First, note theinternal character of the modal
satisfaction definition:modal formulas talk about Kripke models from the inside. In first-order
classical logic, when we talk about a model, we do so from the outside. Asentenceof first-order
logic does not depend on the contextual information contained in assignments of values to vari-
ables: sentences take a bird’s-eye-view of structure, and, irrespective of the variable assignment
we use, are simply true or false of a given model. Modal logic works differently: we evaluate
formulasinsidemodelsat some particular point. A modal formula is like an automaton placed
inside a structure at some pointw, and forced to explore by making transitions to accessible
points. This may seem a fanciful way of thinking about the satisfaction definition, but it turns
out to be crucial. When we isolate the mathematical content of this intuition, we are led, fairly
directly, to the notion ofbisimulation, the key to modal model theory, which we will introduce
in Section 3.

Second, note that basic modal languages are syntactically extremely simple: we are working
with languages of propositional logic augmented with additional unary operators. And yet these
languages clearly pack quantificational punch. Diamonds and boxes can be thought of as macros
that encode quantification overRm-accessible states in a perspicuous variable-free notation. We
will shortly define thestandard translation, which makes this macro analogy precise.

Third, note that Kripke models can (and in our opinion should) be thought of as graphs. As
we have already mentioned, modal logic has been applied in many different area. What these
areas have in common is that they deal with applications in which the important ideas can be
represented by relatively simple graph-like structures. Let’s consider some examples,

A classic interpretation of Kripke models of the form(W,R, V ) is to regard the points inW
as times, and the relationR as the relation of temporal precedence (that is,Rww′ means that
timew is earlier than timew′). Consider the graph in Figure 1. This shows a simple flow of time

t1 t2 t3 t4 t5

p p,q q

Figure 1. A simple temporal model

consisting of five points. Here we will take the precedence relation to be the transitive closure of
the next-time relation indicated by the arrows (after all, we think of the flow of time as transitive)
thus every pointti precedes all points to its right. Note that (as we would expect from the internal
perspective provided by modal languages) whether or not a formula is satisfied depends on where
(or in this example,when) it is evaluated. For example, the formulas3(p∧q) is satisfied at points
t1, t2 andt3 (because all these points are to the left oft4 where bothp andq are true together) but
not att4 andt5. On the other hand, becauseq is true att5, we have that3q is true att1, t2, t3 and
t4. One special case is worth remarking on: note that for any basic formulaϕ whatsoever,2ϕ
is satisfied att5. Why? Because the clause in the satisfaction definition for boxes says that2ϕ
is satisfied if and only ifϕ is satisfied atall R-accessible points. As no points areR-accessible
from t5 (it has no points to its right) this condition is trivially met.

The idea of using modal logic as a tool for temporal reasoning is due to Arthur Prior [94, 95].
His work offers what is probably the clearest example of modal logic being appreciated for
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its internal perspective. In languages such as English and Dutch, the default way of locating
information temporally is to use tenses, and tenses locate informationrelative to the point of
speech. For example, if at some timet I say “Clarence will fly”, then this will be true if at some
future timet′ Clarence does in fact fly. Prior viewed tensed talk as fundamental: we exist in
time, and have to deal with temporal information from the inside. He believed that the internal
perspective offered by modal languages made it an ideal tool for capturing the situated nature
of our experience and the context-dependent way we talk about it. Prior called his systemtense
logic. He wroteF for the forward looking (or future) diamond, and had a second diamond,
written P , for looking back into the past (so in Figure 1,P (p ∧ q) is true att5, for this point
is to the right oft4, wherep andq are true together). Prior needed backward looking operators
to mimic the effect of natural language past tense constructions; for further discussion of Prior’s
work in this area, see Chapter 19 of this handbook.

Our next example brings us to one of the currently most influential ways of thinking about
Kripke models; to view them as pictures of computational systems (we examine this perspec-
tive in more detail in Section 6 when we discuss Propositional Dynamic Logic and the modal
µ-calculus, and the computational interpretation underlies Chapters 12 and 17 of this handbook).
Consider the graph shown in Figure 2. This shows a finite state automaton for the formal lan-

s t

a b

a b

Figure 2. Finite state automaton foranbm(n,m > 0)

guageanbm (n,m > 0), that is, for the set of all strings consisting of a non-empty block of
as followed by a non-empty block ofbs. But this is precisely the type of graph we can use to
interpret a modal language. In this case it would be natural to work with a language with two di-
amonds〈a〉 and〈b〉. The〈a〉 diamond will be used to explore thea-transitions in the automaton,
while the〈b〉 diamond explores theb-transitions. It follows that all formulas of the form

〈a〉 · · · 〈a〉〈b〉 · · · 〈b〉>

(that is, an unbroken block of〈a〉 diamonds preceding an unbroken block of〈b〉 diamonds) are
satisfied at the start nodes, for all modality sequences of this form correspond to the strings
accepted by the automaton. Although simple, this example shows the key feature of many com-
putational interpretations of modal logic: the relations are thought of as processes (here our
processes are “read the symbola” and “read the symbolb”). Note that in this case we are think-
ing in terms of deterministic processes (each relation is a partial function) but we could just as
well work with arbitrary relations, which amounts to working with a non-deterministic models
of processes, and we shall do so in Section 6.

Another important application of modal languages is to model the logic of knowledge and
belief; this line of work was pioneered by Jaakko Hintikka [60], and as the more recent treatise
by Fagin, Halpern, Moses, and Vardi [35] makes clear, the study ofepistemic logiccontinues to
flourish. Again, simple graph-based intuitions underly this application. Consider, for example,
the graph shown in Figure 3. Here we see the epistemic states of a very simple agent. One state,
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q p s
q,p q

q,rq

e

Figure 3. Epistemic states of a simple agent

the agent’s current state, is markede. This represents the agents current knowledge (the agent
knows thatq is the case). The other states represent the way the world might be. For example,
although neitherp nor r are true in the current state, the agent views states in whichp andq are
true together, and states in whichr andq are true together (but not states in whichp andq andr
are all true together) as epistemically acceptable alternatives to the current state. That is3(p∧q)
(“p ∧ q is consistent with what the agent knows”) and3(r ∧ q) are both satisfied ate. Moreover
2q (“the agent knows thatq”) is satisfied ate, as at every epistemic alternative the information
q holds. Hintikka introduced the symbolK for this usage of box (that is, he wroteKq for “the
agent knows thatq”) and his notation is still standard in contemporary epistemic logic. Epistemic
logic is discussed in Chapters 18 and 20 of this handbook.

The next example is important for another reason. Modal logic is often viewed as an intrinsi-
cally intensionallogic, interpreted usingpossible world semantics. This view comes from what
is probably the most historically influential interpretation of modal logic, namely as the logic
of necessity and possibility. In this interpretation,3 is read as “possibly”,2 is read is “neces-
sarily”, and the points of the Kripke model are regarded as possible worlds. Unfortunately, this
interpretation has tended to overshadow the others, at least in certain research communities (some
philosophers view modal logic, intensionality, and possible worlds as inextricably intermingled).
To ensure that this illusion is dispelled, our last example will be completelyextensional. Consider
the graph in Figure 4.

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny

Figure 4. Ordinary individuals

This is the sort of extensional information that classical logics (such as first-order logic) are
often used for. But modal logic is at home here too. We can say lots of interesting things about
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such situations. For example

〈LOVES〉> ∧ 〈DETESTS〉〈LOVES〉>

is true when evaluated at Terry: he loves someone and he detests someone who loves someone.
Nowadays, modal logic is widely used for reasoning about such extensional situations. In par-
ticular, the concept languages which lie at the heart of thedescription logicsused in knowledge
representation are often notational variants of (various kinds of) modal languages. Description
logics are used in a wide range of applications for representing and reasoning about extensional
information. They are treated in depth in Chapter 13 of this handbook.

We’re almost ready to define the standard translation, but before doing so let’s deal with three
other matters. First, in most branches of logic and mathematics, there is a notion of two structures
being isomorphic, which can be glossed as “mathematically indistinguishable”. Let’s take this
opportunity to be precise about what isomorphism means in basic modal logic (we give the
definition for models and frames with one relation; it generalises straightforwardly to structures
with multiple relations).

DEFINITION 1 (Isomorphism). LetM = (W,R, V ) andM′ = (W ′, R′, V ′) be models, and
f : W 7→ W ′ a bijection. If for allw, v ∈ W we have thatRwv if and only ifRf(w)f(v) then
we say thatf is an isomorphism between the frames(W,R) and(W ′, R′) and that these frames
are isomorphic. If in addition we have, for all proposition lettersp, thatw ∈ V (p) if and only
if f(w) ∈ V ′(p) then we say thatf is an isomorphism between the modelsM andM′ and that
these models are isomorphic.

As this definition makes clear, if modelsM andM′ are isomorphic, each replicates perfectly
the information in the other. Hence the following result is unsurprising:

PROPOSITION 2.Let f be an isomorphism between modelsM and M′. Then for all basic
modal formulasϕ, and all pointsw in M, we have thatM, w |= ϕ if and only ifM, f(w) |= ϕ.

Proof. Immediate by induction on the construction ofϕ (see Lemma 9 for an example of such a
proof.) a

Second, we want to point out that it is possible to take a more dynamic perspective on the
satisfaction definition. In particular, we can think of it as a game. Let’s start with a concrete
example. Consider the model in Figure 5.

2 pp 1

3 4

Figure 5. The formula323p is true at1 and4, but false at2 and3

As the reader should check,323p is true at points1 and4, but false at points2 and3. Now
suppose we play the followingevaluation game. This game has two players, a Verifier (V) and
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a Falsifier (F), who disagree about the satisfiability of a formula in some model. The two player
react differently to the connectives in the formula: for example, occurrences of disjunction allow
V to make a choice as to which disjunct to verify, and force F to make both disjuncts false;
negation switches the roles of the two players; and diamonds make V pick a successor of the
current point, while boxes do the same for F. Moreover, for any propositional symbolp, V wins
thep-game ifp is true at the current state, otherwise F wins. A player also wins the game if the
other player must make a move for a modality but cannot.

3 F
V wins

1 V

2 V

4 F

4 p 1 p
V wins

2 p
V wins

4 V

Figure 6. Initial segment of a game tree

So let’s play the game for323p at 1. Figure 6 shows (an initial segment of) the resulting
game tree. Note that V can always win. Her most obvious option is to play3 in response to
the outermost diamond; this leaves F with no possible response when faced with the task of
falsifying 23p. But V can also safely play4 on her first move. As the tree shows, irrespective of
F’s response, V can always reach a winning position. What this example suggests is completely
general: for any modelM, pointw, and basic formulaϕ, we have thatM, w |= ϕ if and only if
V has a winning strategy when theϕ-game is played inM starting atw.

Finally, some historical remarks. Where does the relational interpretation of modal logic
come from? The three authors usually cited as pioneers are Saul Kripke, Jaakko Hintikka, and
Stig Kanger. Kripke’s contributions are the best known (indeed relational semantics is often
called Kripke semantics) and Kripke [75, 76] are regarded as landmarks in the development
of modal semantics. But Hintikka independently developed the idea in his work on logics of
knowledge and belief (see, for example, his classic monograph “Knowledge and Belief” [60]).
Furthermore, although his work was not well known at the time, Kanger, in a series of papers
and monographs published in 1957, introduced relational semantics for modal logic (see, for
example, Kanger [70, 71]). Indeed, the idea of relational semantics seems to have been in the
air at around this time, and a number of other logicians (for example Arthur Prior and Richard
Montague) discussed similar ideas. For a detailed discussion of who did what and when, the
reader should consult Goldblatt [51].
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2.2 The standard translation

We now understand what modal languages are, how they can be interpreted in graphs, and why
this can be an interesting thing to do. What next? Well, if we were following a traditional path,
we would probably remark that as modal languages are to be used for reasoning, some sort of
proof system is called for. We might then point out that the set of all modal validities (that is, the
minimal modal logic) can be axiomatised by a Hilbert-style proof system calledK . The axioms
of K are:

1. All propositional tautologies,

2. 2(ϕ→ ψ)→ (2ϕ→ 2ψ).

And there are two rules of proof:modus ponens(if ` ϕ and` ϕ → ψ then` ψ) andmodal
generalisation(if ` ϕ then` 2ϕ). This looks like a standard axiomatisation of first-order
logic with 2 behaving like∀. But K has no analogs of the first-order axioms with tricky side
conditions on freedom and bondage of variables, such as∀xϕ→ [t/x]ϕ. This is no coincidence.
As the standard translation given below will make clear, modal logic is essentially a perspicuous
variable-free notation for a fragment of first-order logic.

But proof systems are not our goal. This chapter is concerned with semantic issues, so quite
different aspects of modal logic call for our attention. To get the ball rolling, let’s return to our
basic semantic entities (Kripke models) and ask what they actually are. This will provide a point
of entry to one of the main themes of the chapter: the relationship between modal and classical
logic.

So what is a Kripke model? No mystery here. A Kripke model(W, {Rm}m∈MOD, V ) is what
model theorists call arelational structure. That is, we have a domain of quantificationW , a
collection of binary relations over this domain, and a collection of unary relations as well (after
all, V (p) is a unary relation for eachp ∈ PROP). But this means that we are not forced to talk
about Kripke models using modal languages: they provide us with everything needed to interpret
classical languages too. For example, to talk about a model(W, {Rm}m∈MOD) using first-order
logic we would simply make use of a first-order language with a binary relation symbolRm for
everym ∈ MOD, and a unary relation symbolP for everyp ∈ PROP. Modal logicians have a
name for this language: they call it thefirst-order correspondence language(for the basic modal
language over PROP and MOD).

Why “correspondence language”? Because every basic modal formula (in the language over
PROP and MOD) corresponds to a first-order formula from this language via thestandard trans-
lation:

STx(p) = Px
STx(⊥) = ⊥

STx(¬ϕ) = ¬ STx(ϕ)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(〈m〉ϕ) = ∃y(Rmxy ∧ STy(ϕ))
STx([m]ϕ) = ∀y(Rmxy → STy(ϕ)).

That is, the standard translation maps propositional symbols to unary predicates, commutes
with booleans, and handles boxes and diamonds by explicit first-order quantification overRm-
accessible points. The variabley used in the clauses for diamonds and boxes is chosen to be
any new variable (that is, one that has not been used so far in the translation). We remarked
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earlier that diamonds and boxes were essentially a simple macro notation encoding quantification
over accessible states; the standard translation expands these macros. Note thatSTx(ϕ) always
contains exactly one free variable (namelyx). This free variable is what allows the internal
perspective, typical of modal logic, to be mirrored in a classical language: assigning a value to
this variable is analogous to evaluating a modal formula inside a model at a certain point.

Here’s an example of the translation at work:

STx(p→ 3p) = STx(p)→ STx(3p)
= Px→ STx(3p)
= Px→ ∃y(Rxy ∧ STy(p))
= Px→ ∃y(Rxy ∧ Py).

As the reader can easily check,p → 3p and its standard translationPx → ∃y(Rxy ∧ Py) are
equisatisfiable in the following sense: for any modelM, and any pointw in M, we have that
M, w |= p → 3p if and only if M |= Px → ∃y(Rxy ∧ Py)[x ← w], where the notation
[x ← w] means assignw to the free variablex. Unsurprisingly, this relationship is completely
general:

PROPOSITION 3.For any basic modal formulaϕ, any modelM, and any pointw in M we
have thatM, w |= ϕ iff M |= STx(ϕ)[x← w].

Proof. There is practically nothing to prove. The clauses of the standard translation mirror the
clauses of the satisfaction definition. Hence the result is immediate by induction on the structure
of modal formulas. a

Thus the standard translation gives us a bridge between modal logic and classical logic. And
we can immediately use this bridge to transfer meta-theoretic results for first-order logic to modal
logic.

PROPOSITION 4.Basic modal logic has the compactness property. That is, ifΣ is a set of
basic modal formulas, and every finite subset ofΣ is satisfiable, thenΣ itself is satisfiable.
Moreover, basic model logic has the Löwenheim-Skolem property. That is, if a set of basic modal
formulasΣ is satisfiable in at least one infinite model, then it is satisfiable in models of every
infinite cardinality.

Proof. We show that basic modal logic has the Löwenheim-Skolem property. Suppose thatΣ
is a set of basic modal formulas that has at least one infinite model. LetSTx(Σ) be the set of
(first-order) formulas obtained by standardly translating all the formulas inΣ. Now, asΣ has
an infinite model, by Proposition 3 so doesSTx(Σ). But first-order logic has the L̈owenheim-
Skolem property, henceSTx(Σ) has a model of every infinite cardinality. But, again by appeal to
Proposition 3, each of these models satisfiesΣ, so basic modal logic has the Löwenheim-Skolem
property too. The argument showing it has the compactness property is similar. a

Another easy consequence of the standard translation is that the set of validities (in basic
modal languages) is recursively enumerable. For a basic modal formulaϕ is valid iff STx(Σ) is
a first-order validity, and the set of first-order validities is recursively enumerable.

Let’s sum up what we have learned so far. Propositional modal languages are syntactically
simple languages that offer a neat (variable-free) notation for talking about relational structures.
They talk about relational structures from the inside, using the modal operators to look for infor-
mation at accessible states. This internal perspective on models, coupled with the simplicity of
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modal syntax, means that propositional modal logic is an attractive tool for certain applications.
Moreover, viewed as a tool for talking about models, any basic model language can be regarded
as a fragment of its corresponding first-order language: the standard translation systematically
maps modal formulas to first-order formulas (in one free variable) and makes the quantification
over accessible states explicit. This allows us to quickly establish some basic modal meta-theory
by appeal to known results for first-order logic.

3 BISIMULATION AND DEFINABILITY

With the basics behind us it is time to look deeper. In particular, it is time to start mapping the
expressive strengths and weaknesses of the basic modal language. Now, the expressive power of
a language is usually measured in terms of the distinctions it can draw. A language with just the
two expressions “like” and “dislike” would provide only the roughest possible classification of
the world, whereas a richer language of assent and dissent would make it possible to draw finer
distinctions inside the accepted and rejected situations. So what distinctions can modal languages
draw? In this section we discuss this question at the level of models, and in Section 5 we shall
reconsider it at the level of frames. In what follows it will often be useful to think in terms of
pointed models. That is, we shall often present models together with an explicit distinguished
point to indicate where we are trying to find a difference.

3.1 Drawing distinctions

A modal language (and indeed any logical language whose formulas form a set) can distinguish
between some models(M, s) and(N, t), but not between all such pairs. For example, our basic
modal language can distinguish the pair of models shown in Figure 7 (in these graphs all points
are irreflexive).

s t

Figure 7.M andN are modally distinguishable.

Here2(2⊥ ∨ 32⊥) is a modal formula that distinguishes these models: it is true inM at
s, but false inN at t. But now consider the pair of models shown in Figure 8 (in these graphs,u
is reflexive, and all other points are irreflexive). Is it possible tomodallydistinguish(M, s) from
(K, u)? That is, is it possible to find a (basic) modal formula that is true inM ats, but false inK
atu? Note that it is easy to distinguish them if we are allowed to use first-order logic: all points
in M (includings) are irreflexive, while pointu in K is reflexive, hence the first-order formula
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s u

Figure 8.M andK are not modally distinguishable.

Rxx is not satisfiable (under any variable assignment) in modelM, but it is satisfied inK when
u is assigned tox. But no matter how ingenious you are, are you will not find any formula in the
basic modal language that distinguishes these models at their designated points. Why is this?

3.2 Bisimulation

A natural approach to this question is to consider its dual: when should two models be viewed
as modally identical? For example, given a process interpretation, when would we view two
transition diagrams as representations of the same process? The modelM andK of Figure 8
provide an intuitive example: they seem to stand for the same process when we look at possible
actions and deadlocks. At each live stage, the process can enter a deadlock situation. By contrast,
M andN in Figure 7 are different, as not every state inN is threatened with immediate dead-
lock. Or consider the epistemic interpretation: when would we want to say that two graphs
represent the same epistemic information? For example we would probably want to identify the
two epistemic models shown in Figure 9 at their distinguished pointss andt.

q p s

pt q

qp

Figure 9. Two epistemically equivalent models.

After all, in essence both models present us with a two way choice: either we are in ap knowledge
state and there is a distinctq knowledge state that is compatible with what we know, or we are
in a q knowledge state and there is a distinctp knowledge state that is compatible with what we
know. The intuition that both these diagrams code the same information is captured by our modal
language: the reader will not find any modal formula that distinguishes them.
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The modal logician’s idea of asking when two distinct structures are modally identical (that is,
make the same modal formulas true) lies within an older (and broader) tradition of looking for the
structure preserving morphisms in a given mathematical domain, and letting the corresponding
theory describe those notions that are invariant for such morphisms. This is the spirit of Klein’s
Program in geometry, proposed around 1870, and still influential in many fields. Of course, there
is no unique answer to the question of when two structures are the same. This insight was stated
forcefully in recent years by President Clinton during the Lewinsky hearings:It all depends on
what you mean by “is”. Clinton’s Principle for modal logic means that we should first try to stip-
ulate some notion of structural equivalence for models that is appropriate for modal languages.
This is the purpose of the following definition (first formulated in van Benthem [116, 119]). We
state it here for models with one relationR, but the definition generalises straightforwardly to
models with any number of relations.

DEFINITION 5 (Bisimulation). A bisimulation between modelsM = (W,R, V ) andM′ =
(W ′, R′, V ′) is a non-empty binary relationE between their domains (that is,E ⊆ W ×W ′)
such that wheneverwEw′ we have that:

Atomic harmony: w andw′ satisfy the same proposition symbols,

Zig: if Rwv, then there exists a pointv′ (in M′) such thatvEv′ andR′w′v′, and

Zag: if R′w′v′, then there exists a pointv (in M) such thatvEv′ andRwv.

If there is a bisimulation between two modelsM andN, then we say thatM andN are bisimilar.
Moreover, we say that two states are bisimilar if they are related by some bisimulation.

Putting this in words: two states are bisimilar if they make the same atomic information true
and if, in addition, their transition possibilities match. That is, if a transition to a related state is
possible in one model, then the bisimulation must deliver a matching transition possibility in the
other. Atomic harmony coupled with the matching transitions concept embodied in the zigzag
clauses make bisimulation a natural notion of process equivalence, and indeed bisimulations
were independently discovered in computer science (see Park [90]).

Returning to the modelsM, K, andN considered above (and disregarding proposition sym-
bols) it is easy to see thatM andK are bisimilar: the dotted lines in Figure 10 indicate the
required bisimulation (note that the indicated bisimulation links the two designated points). Fur-
thermore, it is easy to see that there is no bisimulation that links the designated points ofN and
K. Why not? Because a move fromt to the right-hand world inN has no matching move inK:
moving downwards fromu is no option (end-points never bisimulate with points having succes-
sors) but neither is moving reflexively fromu to itself (as one can move fromu to a successor
which is an endpoint, but this can’t be done from the right-hand world inN).

Given any modal modelM, bisimulations can be used in at a number of ways. The so-called
bisimulation contractionmakesM as small as possible. To define this, note that it follows from
Definition 5 that any union of bisimulations between two models is itself a bisimulation. There-
fore the union of all bisimulations between two models is a maximal bisimulation between them.
Now define a quotient ofM whose points are the equivalence classes of the maximal bisimula-
tion onM itself, and relate the equivalence class|w| to the equivalence class|v| iff |w| and|v|
contain pointsw′ andv′ such thatRw′v′. The map from points to their equivalence classes is a
bisimulation. For example, the bisimulation shown in Figure 10 betweenM andK is a bisimu-
lation contraction. Bisimulation contractions are the most compact representation of processes,
at least from a modal standpoint. They remove all the redundancies in the representation — but
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s u t

Figure 10.M andK are bisimilar,K andN are not.

also all aesthetic symmetries. (A butterfly is a redundant object, as one wing contains enough
information under this perspective.)

But bisimulations can also be used to make bigger models: one important construction which
does this is calledtree unraveling(for a very early paper using this construction, see Dummett
and Lemmon [31]; for an influential paper that made heavy use of it, see Sahlqvist [100]).

To unravel a model we take all finiteR-sequences of points inM that start at some point
w. These sequences form a tree with one-step extensions of sequences as the tree-successor
relation. Projection from a sequence to its last element is a bisimulation onto the originalM.
As an example, consider the unraveling of two element modelK around its distinguished point
u to the infinite comb-like structure shown in Figure 11 (we usev as the name of the other point
in this model). Reasoning about trees is often easier than reasoning about arbitrary graphs, and

<u> <u,v>

<u,u> <u,u,v>

<u,u,u> <u,u,u,v>

.

.

.

Figure 11. UnravelingK aroundu.

so this method is of considerable theoretical utility. Moreover, as we shall see in the following
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section, tree unraveling is relevant to thedecidabilityof modal logic.
Three other model constructions used in modal logic, namelydisjoint unions, generated sub-

models, andbounded morphisms(or p-morphisms) are also bisimulations. Historically, all three
constructions were widely used in modal logic more than a decade before the unifying concept
of a bisimulations was introduced (the classic source for these constructions is Segerberg [102],
where they are heavily used, often in combination, to prove completeness theorems). All three
constructions are fundamental tools in many areas of modal logic (for example, when reformu-
lated at the level of frames, they are key ingredients in the Goldblatt-Thomason Theorem which
we discuss in Section 5) so we take this opportunity to define them for models with one accessi-
bility relation. These definitions generalise straightforwardly to models of arbitrary signature.

The simplest construction is forming disjoint unions. If we have a pair of disjoint models
(that is a pair of models(W,R, V ) and(W ′, R′, V ′) such thatW andW ′ are disjoint) then their
disjoint union is the model(W ∪W ′, R ∪ R′, V + V ′), whereV + V ′ is the valuation defined
by V + V ′(p) = V (p) ∪ V ′(p), for all proposition symbolsp. That is, forming a disjoint union
of two models means lumping together all the information in the two graphs. What if the graphs
are not disjoint? Then we simply take disjoint isomorphic copies of the two models, and form
the disjoint union of the copies. This lumping together process can be generalised to arbitrarily
many models, which prompts the following definition.

DEFINITION 6 (Disjoint Unions). Given mutually disjoint modelsMi = (Wi, Ri, Vi), where
i ranges over the elements of some index setI, we define the disjoint union of these models
to beM = (W,R, V ), whereW =

⋃
i∈I Wi, R =

⋃
i∈I Ri, andV (p) =

⋃
i∈I Vi(p) for all

proposition symbolsp. To form the disjoint union of a collection of models that are not mutually
disjoint, we first take mutually disjoint isomorphic copies, and then form the disjoint union of
the copies.

It is immediate from this definition that any component modelMi of a disjoint unionM is
bisimilar with M: for the bisimulation relationE we simply take the identify relation. Identity
clearly satisfies the atomic harmony and zigzag conditions required of bisimulations.

Disjoint unions build bigger models from (collections of) smaller ones. Generated submodels
do the reverse. They arise by restricting attention to subgraphs of a given graph that are closed
under relational transitions. For example, consider the two graphs in Figure 12.

ss

Figure 12. Generating a submodel froms.

It is clear that the graph on the right arises by restricting attention to a certain transition-closed
subgraph of the graph on the left, namely the set of point reachable by taking sequences of
transitions froms. This motivates the following definition.

DEFINITION 7 (Generated Submodels).
Let M = (W,R, V ) be a model and letW ′ ⊆W . We say that a modelM′ = (W ′, R′, V ′) is

the restriction ofM toW ′ if R′ = R∩ (W ′×W ′) and for all proposition symbolp we have that
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V ′(p) = V (p)∩W ′. We say thatW ′ isR-closed if for allu ∈W ′, if Ruv thenv ∈W ′. Finally,
we say thatM′ is a generated submodel ofM iff M′ is the restriction ofM to anR-closed subset
of W .

If M′ = (W ′, R′, V ′) is a generated submodel ofM = (W,R, V ), andS ⊆ W ′ has the
property that everyw′ ∈W ′ is reachable via a finite sequence ofR-transitions from somes ∈ S,
then we say thatM′ is the submodel ofM generated byS. If S is a singleton set{s}, then we
say thatM′ is the submodel ofM generated by the points.

A generated submodel is bisimilar to the model that gave rise to it: as with disjoint unions,
the identity relation relates the two models in the appropriate way. Incidentally, note that every
component model of a disjoint union is a generated submodel of the disjoint union.

Finally we turn to bounded morphisms (orp-morphisms as they are often called).

DEFINITION 8 (Bounded Morphisms).
A bounded morphism between modelsM = (W,R, V ) andM′ = (W ′, R′, V ′) is a function

f with domainW and rangeW ′ such that:

Atomic harmony: Points inW and theirf -images satisfy the same proposition symbols (that
is,w ∈ V (p) iff f(w) ∈ V ′(p), for all proposition symbolsp).

Morphism: if Rwv, thenR′f(u)f(v).

Zag: if R′w′v′, then there exists av (in M) such thatf(v) = v′ andRwv.

If f is a bounded morphism fromM to M′ andf is surjective, then we say thatM′ is a bounded
morphic image ofM.

Bounded morphisms are bisimulations: a bounded morphism is simply a bisimulation in
which the bisimulation relationE is anR-preserving morphismf (note that the only essen-
tial difference between the two definitions is that the morphism clause replaces the zig clause,
and clearly morphism implies zig). Historically, it was the definition of bounded morphisms that
inspired the definition of bisimulations.

As an example of a bounded morphism between models, consider Figure 13 (again we ignore
proposition symbols).

0 1 2 3 4
. . .

Figure 13. Bounded morphism collapsing the natural numbers to a reflexive point.

Here we have collapsed the natural numbers in their usual order to a single reflexive point. It
is clear that this map satisfies both the morphism and zig clauses, so it is indeed a bounded
morphism.
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3.3 Invariance and definability in first-order logic

Structural invariances preserve certain patterns definable in appropriate languages. Before pur-
suing the match between bisimulation and modal logic, let us examine the situation in first-order
logic. The archetypal structural invariance isisomorphismbetween models. As we saw ear-
lier (recall Proposition 2) modal formulas are invariant for isomorphism. More generally, it is
well known that iff is an isomorphism betweenM andN, then for each first-order formula
ϕ(x1, . . . , xk), and each matching tuple of objects〈d1, . . . , dk〉 in M, the following equivalence
holds:

M |= ϕ[d1, . . . , dk] iff N |= ϕ[f(d1), . . . , f(dk)],

or stated in words: first-order formulas are invariant for isomorphism.
On special models, the converse also holds. For example, it is a well-known fact that any

two finite models with the same first-order theory are isomorphic. But no general converse
holds, as there are many more isomorphism classes of models than complete first-order theories.
Invariance for isomorphism is even a defining condition for any logic in abstract model theory.
But no matter how strong the logic, the converse still fails whenever the formulas of a logic form
a set, as opposed to the proper class of isomorphism types.

Thus it makes sense to look at invariance conditions for weaker notions of structural equiva-
lence. For example, apotential isomorphismbetween two modelsM andN is a non-empty setI
of finite partial isomorphisms satisfying the back-and-forth extension conditions that, whenever
f ∈ I andd ∈ M, then there is ane ∈ N such thatf ∪ {(d, e)} ∈ I, and vice-versa. Note
that isomorphisms induce potential isomorphisms: simply takeI to be the family of all finite
restrictions. The converse is not true. Matching up all finite sequences of rational numbers with
equally long sequences of real numbers (in the same order) is a potential isomorphism between
Q andR, even though these two structures are not order-isomorphic for cardinality reasons.

It is easy to show that all first-order formulas are invariant for potential isomorphism, but the
real match is with a stronger language: two models are potentially isomorphic iff they have the
same complete theory in theinfinitary first-order logicL∞ω. This formalism also gives rise to
much stronger definability results. For example, for each modelM there is a sentenceδM of
L∞ω which holds only in those modelsN which have a potential isomorphism withM; that is,
models can be defined up to potential isomorphism. Moreover, countable models can even be
defined (modulo isomorphism) using only countable conjunctions and disjunctions. This is all
very nice of course, but infinitary logic is a bit outlandish from a practical viewpoint.

Better matches between structural invariance and first-order definability arise in the more
fine-grained setting of Ehrenfeucht-Fraı̈sśe comparison games between modelsM andN played
between a Spoiler (who looks for differences between the models) and a Duplicator (who looks
for analogies between them). ModelsM andN have the same first-order theory up to quantifier
depthk iff the Duplicator has a winning strategy in their comparison game overk rounds. We
forgo the details here, as we will define a modal comparison game of this sort at the end of the
section.

3.4 Invariance and definability in modal logic

With these analogies in mind, let us now investigate the modal situation. For a start, modal
formulas areinvariant for bisimulation:

LEMMA 9 (Bisimulation Invariance Lemma). If E is a bisimulation betweenM = (W,R, V )
andM′ = (W ′, R′, V ′), andwEw′, thenw andw′ satisfy the same basic modal formulas.
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Proof. By induction on the construction of modal formulas. The case for proposition symbols
is immediate by atomic harmony. The inductive steps for the boolean connectives are straight-
forward. And the inductive step for3 formulas shows exactly what the zigzag clauses were
designed for. For consider the left to right direction. GivenM, w |= 3ϕ andwEw′, we want to
show thatM′, w′ |= 3ϕ. Now, M, w |= 3ϕ means that there is somev in M such thatRwv
andM, v |= ϕ. But then (by zig) there must be a pointv′ in N′ such thatvEv′ andR′w′v′. By
the induction hypothesis,M′, v′ |= ϕ, henceM′, w′ |= 3ϕ as required. The argument for the
right to left direction is essentially the same, using zag in place of zig. a

The result allows us to show failures of bisimulation easily. For example, we have already
sketched an argument showing that the modelsN and K of Figure 10 have no bisimulation
between their designated points, but a quicker proof is now possible: these pointscannotbe
bisimilar because there are modal formulas (for example2(2⊥ ∨ 32⊥)) which are satisfied
at one point but not the other. On the other hand, the dotted lines in Figure 10 show thatM and
K are bisimilar; it follows that all points linked by a dotted line in these graphs make exactly the
same modal formulas true. Another typical application of this result is to show the undefinability
of certain structural notions. For example, we can show that irreflexivity is modally undefinable:
no modal formula holds in exactly those pointsw of models such that¬Rww. To prove this, it
suffices to find two bisimilar points in two models, one of which is reflexive, the other irreflex-
ive. One such example is the bisimulation between the designated points ofM andK shown in
Figure 10. Another is the bounded morphism of Figure 13 which collapses the natural numbers
to a single reflexive point.

Another consequence of this result is that the disjoint union, generated submodel, and bounded
morphism constructions are all satisfaction preserving. More precisely:

LEMMA 10. Modal satisfaction is invariant under the formation of disjoint unions, generated
submodels, and bounded morphisms. That is:

1. If M = (W,R, V ) is the disjoint union ofMi = (Wi, Ri, Vi), for i from some index setI,
then for allw ∈Wi and all i ∈ I we have thatM, w |= ϕ iff Mi, w |= ϕ.

2. If M′ = (W ′, R′, V ′) is a generated submodel ofM = (W,R, V ) , then for allw′ ∈ W ′
we have thatM, w′ |= ϕ iff M′, w′ |= ϕ.

3. If M′ = (W ′, R′, V ′) is a bounded morphic image ofM = (W,R, V ) under the bounded
morphismf , then for allw ∈W we have thatM, w |= ϕ iff M′, f(w) |= ϕ.

Proof. All three results could be proved by induction on the structure onϕ. But such proofs are
unnecessary: we know that disjoint unions, generated submodels, and bounded morphisms are
all examples of bisimulations, hence these results follow from Lemma 9. a

To sum up the discussion so far, bisimulation implies modal equivalence. But what about the
converse? For finite models, we have the following.

PROPOSITION 11.If pointsw andw′ from two finite modelsM andN satisfy the same modal
formulas, then there is a bisimulationE betweenM andN such thatwEw′.

Proof. Assume we are working with models containing only a single relationR. We will show
that the relation of modal equivalence is itself a bisimulation. That is, we will define the bisimu-
lation relationE bywEw′ iff w andw′ make the same modal formulas true. We now verify that
E so defined is indeed a bisimulation.
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It is immediate thatE satisfies atomic harmony. As for zig, assume thatwEw′ andRwv.
Assume for the sake of contradiction that there is nov′ in M′ such thatR′w′v′ andvEv′. Let
S′ = {u′ | R′w′u′}. Now, asw has anR-successorv, we haveM, w |= 3>. As wEw′, we
haveM′, w′ |= 3> too, henceS′ is non-empty. Furthermore, asM′ is finite,S′ must be finite
too, so we can write it as{u′1, . . . , u′n}. By assumption, for everyu′i ∈ S′ there exists a formula
ψi such thatM, v |= ψi butM′, u′i 6|= ψi. It follows that

M, w |= 3(ψ1 ∧ · · · ∧ ψn) and M′, w′ 6|= 3(ψ1 ∧ · · · ∧ ψn),

which contradicts our assumption thatwEw′. HenceE satisfies zig. A symmetric argument
shows thatE satisfies zag too, hence it is a bisimulation. a

Thus on finite models, the expressive power of modal languages matches up exactly with
bisimulation invariance. This result can be extended to broader model classes, such as models
with finite branching width for successors (note that the proof just given does not depend on
the models involved being finite: it would also work for infinite models in which each point has
only finitelyy manyR-successors) and suitably saturated models in a model-theoretic sense. But
no general converse can hold, for the reason mentioned earlier for first-order logic. Indeed, the
converse does not hold generally even for countable models: not all modally equivalent countable
models are bisimilar. The two models in Figure 14 satisfy the same modal formulas at their roots,
but if there were a bisimulation between them, the infinite chain on the right would also have to
occur on the left.

. . . . . .

.

.

..

.

.

Figure 14. Modally equivalent but not bisimilar.

This counterexample can be repaired by passing to aninfinitary modal languageL∞ω with ar-
bitrary (countable) conjunctions and disjunctions. Infinitary modal equivalence occurs between
countable models(M, s) and(N, t) whenever there is a bisimulation linkings to t. Furthermore,
every countable model(M, s) is defined up to bisimulation by someL∞ω formulaδM,s. Again,
such infinitary languages are somewhat impractical, but there are some useful bisimulation in-
variant formalisms which lie between the basic modal language and its infinitary extension. Two
example arepropositional dynamic logicand themodalµ-calculus, which are discussed in Sec-
tion 6.

Lemma 9 and its partial converses do not exhaust what needs to be said about the role played
by bisimulations in modal model theory. But to gain a deeper understanding, we need to bring in
a third component: the first-order correspondence language. Let’s do this right away,

3.5 Modal logic and first-order logic compared

The basic modal language can be viewed as a sort of miniature version of full first-order logic
over graph models. The standard translation defined in the previous section shows that each
modal formulaϕ corresponds to a first-order formulasSTx(ϕ) containing a free variablex. But
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the converse does not hold: some first-order formulas in the correspondence language are not
modally definable. We have already see an example. As the bisimulation between modelsM and
K shows (recall Figure 10) no modal formula defines¬Rxx. Thus, viewed as a tool for talking
about models, modal logic is strictly less expressive than the full first-order correspondence
language. And this prompts a further question: given that a modal language is essentially a
fragment of the corresponding first-order language, exactly which fragment is it? This question
has an elegant answer. First, a preliminary definition.

DEFINITION 12. A first-order formulaϕ(x) is invariant for bisimulation if for all modelsM
andM′, and all pointsw in M andw′ in M′, and all bisimulationsE betweenM andM′ such
thatwEw′, we have thatM |= ϕ[x← w] iff M′ |= ϕ[x← w′].

We can now state the main result: basic modal languages correspond to the fragment of their
first-order correspondence language that is invariant for bisimulation. More precisely:

THEOREM 13 (Modal Characterisation Theorem).The following are equivalent for all first-
order formulasϕ(x) in one free variablex:

1. ϕ(x) is invariant for bisimulation.

2. ϕ(x) is equivalent to the standard translation of a basic model formula.

Proof. That clause (ii) implies (i) is a more or less immediate consequence of Lemma 9. The
hard direction is showing that clause (i) implies (ii). The original proof can be found in van
Benthem [116, 119]. Two other proofs are given in Chapter 5 of this handbook. One is quite
close to van Benthem’s original approach, the other is based on games. a

Nowadays many different proofs are known for this result, and for various extensions and
variants. For example, Rosen [98] showed that the result holds over finite models; this is far
from obvious, as the restriction to finite models means that many standard results of first-order
model theory (such as the Compactness Theorem) cannot be applied. And Otto [89] showed that
the modal equivalent guaranteed to exist by clause (ii) of the previous theorem can be restricted
to a formula of modal operator depth2k, wherek is the quantifier depth ofϕ(x).

Basic modal logic and first-order logic are analogous in many ways. As we mentioned in
Section 2, via the standard translation modal logic immediately inherits basic meta-theoretic
properties of its more powerful neighbour, such as the Compactness and Löwenheim-Skolem
Theorems. But not all such transfer is automatic. Consider, for example, theCraig Interpolation
property:

If ϕ |= ψ then there exists a formulaθ whose vocabulary is included in that of both
ϕ andψ such thatϕ |= θ andθ |= ψ.

Does the same result hold for basic modal formulasϕ andψ such thatϕ |= ψ? Appealing to the
result for first-order logic gives us a first-order formulaθ such thatSTx(ϕ) |= θ andθ |= STx(ψ).
But what guarantees that this interpolant is modally definable? Interpolation does in fact hold
for the basic modal language, but additional work is needed to prove this. However interpolation
does mesh well with the above preservation results (for a detailed account, see Chapter 8). Here
is an improvement on the Modal Characterisation Theorem. We say that a first-order formulaϕ
impliesψ along bisimulationif the following implication holds: ifE is a bisimulation between
(M, s) and(N, t), andM, s |= ϕ, thenN, t |= ψ.

THEOREM 14 (Modal Characterisation-Interpolation Theorem).The following are equivalent
for all first-order formulasϕ(x):



22 Patrick Blackburn and Johan van Benthem

1. ϕ(x) impliesψ(x) along bisimulation.

2. There is a modally definableθ in the common vocabulary ofϕ andψ such thatϕ |= θ and
θ |= ψ.

Proof. The proof can be found in Barwise and van Benthem [11]. Note that the Modal Charac-
terisation Theorem follows by takingϕ(x) equal toψ(x). This result does not imply ordinary
modal interpolation as it stands: additional work is again needed. a

Behind the above observations is the fact that the cheaply transferred properties are universal
in some sense, whereas the universal-existential property of interpolation requires honest work.
Even so, there is an intuition (based on decades of positive experience with transferring results)
that modal logic and first-order logic share all general meta-properties except decidability. No
proofs of significant formulations of this idea have been found so far, but we can point to some
broad analogies regarding methods. Generally speaking, bisimulation plays the same role for
modal logic that potential isomorphism does for first-order logic. This can even be made precise
in the following sense. To each first-order modelM we can associate a modal model whose
points are the variable assignments intoM, and whose accessibility relations are changes from
one assignmentg to anotherg(x := d) that resets the value for the variablex to the objectd ∈M.
Then two modelsM andN have a potential isomorphism between them iff their associated modal
models are bisimilar; see van Benthem [124] for details.

We conclude this discussion with two general transfer results that allow us to switch between
modal and first-order relations between models. In essence, both results have the form of a
commutative diagram.

LEMMA 15 (First Lifting Lemma). The following are equivalent for all models(M, s) and
(N, t):

1. (M, s) and(N, t) are modally equivalent.

2. (M, s) and (N, t) have elementary extensions to models(M+, s) and (N+, t) which are
bisimilar.

LEMMA 16 (Second Lifting Lemma).The following are equivalent for all models(M, s) and
(N, t):

1. (M, s) and(N, t) are modally equivalent.

2. (M, s) and (N, t) are bisimilar to models(M+, s) and (N+, t) which are elementarily
equivalent.

Proof. The first lifting lemma was originally proved in van Benthem [116]. It is the key item in
(some proofs of) the Characterisation Theorem (the+-models are suitably saturated elementary
extensions which allow the Characterisation Theorem to be proved rather straightforwardly). The
second lifting lemma (see van Benthem [122] for the original result, and Andréka, van Benthem,
and Ńemeti [5] for full proof details) involves judicious tree unraveling of the two models, dupli-
cating sub-trees to create uniformity, coupled with an Ehrenfeucht-Fraı̈sśe argument to establish
elementary equivalence. a
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3.6 Bisimulation as a game

We have said that bisimulation is a sort of process equivalence. The dynamic character of the
notion can be brought out by viewing it as a game. Consider a game between Spoiler (the
difference player) and Duplicator (the analogy player) and comparing successive pairs in two
pointed model(M, w) and(N, w′):

If w andw′ do not agree on atomic information, Spoiler wins the game in zero
rounds. In subsequent rounds, Spoiler chooses a state in one model which is a suc-
cessor of the currentw orw′, and Duplicator responds with a matching successor in
the other model. If the chosen points differ in their atomic properties, Spoiler wins.
If one player cannot move, the other wins. Duplicator wins on infinite runs on which
Spoiler does not win.

This game captures the zigzag behaviour of bisimulations in an obvious sense. It is also
determined: one of the two players has a winning strategy. (This is because it is an open Gale-
Stewart game in the sense of game theory.) For example, returning yet again to the modelsM, N
andK considered at the start of this section, we see that Duplicator has a winning strategy in the
comparison game for the modelsM andK starting from their matched designated points, while
Spoiler has one forM andN. The following result clarifies the role of these games precisely:

LEMMA 17 (Adequacy of Modal Comparison Games).

1. There is an explicit correspondence between Spoiler’s winning strategies in ak-round
comparison game between(M, s) and(N, t) and modal formulas of modal operator depth
k on whichs andt disagree.

2. There is an explicit correspondence between Duplicator’s winning strategies over an infinite-
round comparison game between(M, s) and (N, t) and the set of all bisimulations be-
tweenM andN that link the pointss andt.

Proof. This result is essentially a fine-grained restatement of the Lemma 9 from a game-theoretic
perspective. See Chapter 5 of this handbook for more on game-based approaches to bisimulation.

a

For example, in the game between the modelsM andK given earlier, Duplicator wins by
choosing responses that stick to the bisimulation links. And in the game betweenM andN,
Spoiler can win in at most three rounds by using the earlier modal difference formula2(2 ⊥
∨ 32 ⊥) of modal operator depth three. In each round he can make sure that some modal
difference remains at the current match, with the modal operator depth descending each time.

4 COMPUTATION AND COMPLEXITY

We view modal logic as a tool for representing and reasoning about graphs. Our discussion of
expressivity has given us some insight into the representational capabilities of modal logic (at
least at the level of models) but what about reasoning?

In this section we discuss modal reasoning from a computational perspective. We concentrate
on themodel checking taskand thesatisfiability and validityproblems, but also make some
remarks about theglobal satisfiabilityand themodel comparisontasks. As we shall see, the
complexity of the modal version of these tasks is lower than that of their first-order counterparts.
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Before going further, two general remarks. First, although we are about to study reasoning,
we are not about to embark on the study of modal proof systems (apart from anything else, the
standard proof systems are only relevant to satisfiability and validity checking, and there is more
to modal reasoning than this). Secondly, although we are ostensibly moving on from expressivity
issues to computational issues, the two topics are intertwined. In essence, the positive computa-
tional results reported here arise from negative expressivity results (for example, the inability of
the basic modal language to force the existence of infinite models).

4.1 Model checking

The model checking task can be formulated locally:

Given a (finite) modelM, a pointw in M, and a basic modal formulaϕ, is ϕ
satisfied inM atw?

Or globally:

Given a (finite) modelM, and a basic modal formulaϕ, is ϕ satisfied at all points
in M?

Or in a form that subsumes both the local and global perspectives:

Given a (finite) modelM, and a basic modal formulaϕ, return the set of points in
M that satisfyϕ.

In what follows we shall work with the last formulation, which is probably the most common
way of thinking about model checking in practice.

Now, model checking is clearly a task with computational content — but is it really areason-
ing task? In our view, yes. In essence, a model is a ‘flat’ store of information: it consists of a
collection of entities, together with a specification of which entities have which properties, and
which entities are related by which atomic relations. A modal formula, on the other hand, is a
recursively constructed tree. The embedding of connectives and modalities within one another
permits relatively short formulas to make interesting assertions, assertions that go way beyond
the mere listing of atomic facts. If we add to these differences the practical observation that in
typical applications the formula will be much smaller than the model, we see that model checking
is about synchronising two very different forms of information: it tells us whether the abstract
information embodied in the formula is implicitly present in the model, and gives us set of points
where this implicit information emerges. Viewed this way, model checking is a quintessential
reasoning task.

Moreover, model checking has turned out to be of great practical importance — indeed, one
of the more salutary lessons computer science has taught logic is just how important this mod-
est looking form of reasoning actually is. Nowadays the practical importance of modal model
checking dwarfs that of determining modal satisfiability or validity (the tasks logicians have
traditionally viewed as paramount) as a wide range of practical tasks can be modeled in a com-
putationally natural manner, and efficiently solved, by thinking in terms of model checking. A
classic example is hardware verification. Even though a computer chip is a concrete object, it
gives rise to a natural abstract model, namely the set of all possible computational runs it can
make from its start state. If a chip is to work satisfactorily, the possible runs it gives rise to
should possess a number of high-level ‘emergent’ properties: for example, these runs should not
enter deadlock situations. If we have a modal language that can express the desired properties
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(for example, absence of deadlock) then by checking the formula in the model we can determine
whether the chip is well-designed or not.

So how should we perform model checking? The standard approach is to use a bottom-up
labeling algorithm. To model check a formulaϕ we label every point in the model with all the
subformulas ofϕ that are true at that point. We start with the proposition symbols: the valuation
tells us where these are true, so we label all the appropriate points. We then label with more
complex formulas. The booleans are handled in the obvious way: for example, we labelw with
ψ ∧ θ if w is labeled with bothψ andθ. As for the modalities, we labelw with 3ϕ if one of its
R-successors is labeled withϕ, and we label it with2ϕ if all of its R-successors are labeled with
ϕ. The beauty of this algorithm is that we never need to duplicate work: once a point is labeled
as makingϕ true, that’s it. This makes the algorithm run in time polynomial in the size of the
input formula and model: the algorithm takes time of the order of

con(ϕ)× nodes(M)× nodes(M),

wherecon(ϕ) is the number of connectives inϕ, andnodes(M) is the number of nodes inM.
Thus modal model checking is a computationally tractable task, but this is not the case for first-
order logic. In fact, model checking first-order formulas is a PSPACE-complete task (see Chan-
dra and Merlin [20]). That is, although it is possible to write an algorithm that solves the first-
order model checking task using an amount of computer memory that is only polynomial in the
size of the input model and formula, the algorithm may require running time that is exponential
in the size of the input. The problem, of course lies with the quantifiers. Given that the stan-
dard assumptions made in complexity theory are correct, there is no way of adapting the labeling
algorithm (or indeed, any other algorithm) to perform first-order model checking in polynomial
time.

However the labeling algorithm sketched above does adapt to more powerful modal languages,
and this is important. As we said above, when model checking we want to state interesting high-
level properties of the situation we are modeling, and often the ordinary2 and3 modalities
simply aren’t expressive enough. Far more useful is the binary Until modality:

M, s |= U(ψ, θ) iff there is at such thatsR∗t andM, t |= ψ,
and for allu such thatsR∗u anduR+t we haveM, u |= θ.

(HereR∗ is the reflexive transitive closure of an irreflexive accessibility relationR, andR+ is its
transitive closure.) The Until modality (which comes in several related forms) is a fundamental
component of some of the most important formalisms used in model checking, such as LTL
(Linear Time Temporal Logic) and CTL (Computational Tree Logic). For a introduction to these
logics from a model checking perspective, see Clarke, Grumberg and Peled [23].

Now, we shall discuss the Until operator, and why it is useful, in Section 6.3. Here we simply
want to address the following question: how do we extend the labeling algorithm to handle
formulas of the formU(ψ, θ)? Here’s the basic idea. First, if any pointw is labeled withψ, label
w with U(ψ, θ). Second, if any pointv is labeled withθ and at least oneR-successor ofv is
labeled withU(ψ, θ), then labelv with U(ψ, θ). It should be clear that these two steps correctly
reflects the semantics for Until just given. Moreover, it can be made algorithmically precise as
the pseudo-code given in Figure 15 shows.

Now for an important point. Throughout the previous discussion we have tacitly assumed
that we have some way of representing formulas and finite models that is suitable for compu-
tational implementation. It is probably not worth sketching details of how this might be done:



26 Patrick Blackburn and Johan van Benthem

procedureCheckU (ψ, θ)
T := {v | ψ ∈ label(v)} ;
for all w ∈ T do

label(w) = label(w) ∪ {U(ψ, θ)} ;
end for all ;
while T 6= ∅ do

choosew ∈ T ;
T := T \ {w} ;
for all v such thatRvw do

if U(ψ, θ) /∈ label(v) and θ ∈ label(v) then
label(v) := label(v) ∪ {U(ψ, θ} ;
T := T ∪ {v} ;

end if ;
end for all ;

end while ;
end procedure

Figure 15. Model checkingU(ϕ, θ)

nowadays it seems safe to assume that most readers of a technical book on logic have at least
a nodding acquaintance with programming (indeed, we suspect that most of our readers would
find it straightforward to devise a computational syntax for models and modal languages, and to
implement simple programs for working with them).

Nonetheless, such issues cannot be taken lightly. A major factor in the spectacular progress of
model checking has been the development ofBinary Decision Diagrams(BDDs) andOrdered
Binary Decision Diagrams(OBBDs). BDDs (which are compact representations of boolean
expressions) were introduced by Lee [80] and Akers [3], and OBBDs (a more sophisticated form
of BDD with fewer representational redundancies) were introduced by Bryant [16]. BDDs were
first proposed for model checking by Burch, Clarke, McMillan, Dill, and Hwang [17] and as
the title of this paper indicates (“Symbolic model checking:1020 states and beyond”) this lead
to a dramatic increase in the size of the models that could be handled. It is important not to
underestimate the gap between the labeling algorithm sketched above, and what it takes to make
a working model checker handle a large model. Crossing this gap requires a combination of
theoretical insight and computational expertise, and an entire research community is devoted to
exploring the issues involved.

For a good textbook level introduction to model checking, see Huth and Ryan [65]. This
book not only introduces the basic algorithms, it also shows how they can be implemented with
the aid of OBDDs. Moreover, it discusses modal checking for the modalµ-calculus (which we
introduce in Section 6.7). For a more advanced treatment, see Clarke, Grumberg and Peled [23].
Finally, for an account of model checking via automata-theoretic methods, see Chapter 17 of this
handbook.

4.2 Decidability

It is often said that modal logic is decidable. This can be read as shorthand for the following
claim: thevalidity problemfor the basic modal language (given a basic modal formulaϕ, is ϕ
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valid?) is decidable. That is, it is possible (ignoring constraints of time and space) to write a
computer program which takes a basic modal formula as input, and halts after a finite number of
steps and correctly tells us whether it is valid or not.

The decidability of model logic can also be viewed as a claim that thesatisfiability problem
for the basic modal language (given a basic modal formulaϕ, is ϕ satisfiable in some model?)
is decidable. That is, it is possible (again, ignoring constraints of time and space) to write a
computer program which takes a basic modal formula as input, and halts after a finite number
of steps and correctly tells us whether it is satisfiable in some model or not. The validity and
satisfiability problems aredual problems: a modal formulaϕ is valid iff ¬ϕ is not satisfiable,
hence if we have a method for solving one problem, we have a method for solving the other. In
what follows we show that both problems are decidable; we’ll talk in terms of satisfiability.

A lot is known about the decidability of satisfiability problems for various logics, so it is not
too difficult to establish modal decidability: we can do so by reducing the problem to known
results for other logics. Here’s an easy example. The satisfiability problem for thetwo variable
fragmentof first-order logic (that is, the fragment of first-order logic in which every formula
contains only two variables) is decidable. Now, every basic modal formula can be translated into
a formula in the two-variable fragment. To see this we need simply make a small adjustment to
the standard translationSTx. Whenever we translate a3 or a2, instead of choosing a completely
new variable to quantify over accessible points, we use a second fixed variable (sayy). If we later
encounter another3 or 2, we flip back to the original variablex, and so on. More precisely, we
redefineSTx so it always usesy to quantify over accessible points, and define a twin translation
STy which always quantifies usingx. Here are the key clauses:

STx(3ϕ) = ∃y (Rxy ∧ STy(ϕ)) STy(3ϕ) = ∃x (Ryx ∧ STx(ϕ))
STx(2ϕ) = ∀y (Rxy → STy(ϕ)) STy(2ϕ) = ∀x (Ryx→ STx(ϕ)).

The interleaving ofSTx and STy guarantees that for any basic modal formulaϕ, STx(ϕ) will
contain only the two variablesx andy, and it should be clear that the modified translation is
equivalent to the original one. It follows that the satisfiability problem for the basic modal lan-
guage must be decidable: to test a modal formula for satisfiability, simply translate it with this
new version of the standard translation, and then apply the satisfiability algorithm for the two-
variable fragment to the output.

It is pleasant that modal decidability can be established so easily, but the proof doesn’t tell
us very much aboutwhy modal logic is decidable. The following semantic argument is more
revealing. We shall show that the basic modal language has thefinite model property, or to put
it another way, that it does not have the expressive strength required to force the existence of
infinite models. Needless to say, this is in sharp contrast with first-order logic: even such a
simple first-order formula as

∀x¬Rxx ∧ ∀xyz(Rxy ∧Ryz → Rxz) ∧ ∀x∃yRxy

has only infinite models. In fact, the basic modal language has a rather strong form of the finite
model property. We shall show the following:

THEOREM 18 (Strong Finite Model Property). Let ϕ be a basic modal formula. Ifϕ is
satisfiable, then it is satisfiable on a finite model containing at most2s(ϕ) points, where s(ϕ) is
the number of subformulas ofϕ.

The decidability of the modal satisfiability problem follows immediately from this result. If a
modal formulaϕ is satisfiable at all, it is satisfiable on a model containing at most2s(ϕ) points.
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As there are (up to isomorphism) only finitely many such models, exhaustive (and exhausting!)
search through them all will settle the issue ofϕ’s satisfiability.

Just as important as the result is the method we shall use to prove it:filtrations. These are
a standard item in the modal logician’s toolkit, and have been used to prove completeness and
decidability results for many different modal systems. The basic idea underlying the method is
simplicity itself: given a modal formulaϕ and a modelM that satisfies it, we make a finite model
M by collapsing to a single point all the points withinM that satisfy the same subformulas of
ϕ. But there is a tricky issue: how should we define the relation on the collapsed points in such
a way thatϕ remains true in the finite model? Let’s work through the details and see.

We shall say that a set of basic modal formulasΣ is subformula closedif every subformula of
every formula inΣ is a member ofΣ (that is, ifϕ ∧ ψ ∈ Σ then so areϕ andψ, and if¬ϕ ∈ Σ
then so isϕ; and if2ϕ ∈ Σ, then so isϕ, and so on). We now define:

DEFINITION 19 (Filtrations). LetM = (W,R, V ) be a model, letΣ be a subformula closed
set of formulas, and let!Σ be the equivalence relation on the states ofM defined as follows:

w !Σ v iff for all ϕ in Σ: (M, w |= ϕ iff M, v |= ϕ).

The official notation for the equivalence class of a pointw of M with respect to!Σ is |w|Σ,
but in what follows we’ll usually assume thatΣ is clear from context and simply write|w|.

LetWΣ = {|w| | w ∈W}. SupposeMf
Σ is any model(W f , Rf , V f ) such that:

1. W f = WΣ.

2. If Rwv thenRf |w||v|.

3. If Rf |w||v| then for all3ϕ ∈ Σ, if M, v |= ϕ thenM, w |= 3ϕ.

4. V f (p) = {|w| |M, w |= p}, for all proposition symbolsp in Σ.

ThenMf
Σ is called afiltration of M throughΣ. In what follows we’ll drop the subscripts and

write Mf instead ofMf
Σ.

Two points should be made about this definition. First, observeMf is a filtration ofM through
a subformula closed set of formulasΣ, thenMf contains at most2|Σ| nodes, where|Σ| is the
cardinality ofΣ. This should be clear: after all, the points ofMf simply are the equivalence
classes inWΣ, and there cannot be more than2|Σ| of these. Second, the previous definition does
not specify an accessibility relation onWΣ — it only imposes constraints (namely clauses (ii)
and (iii)) on the properties a suitable accessibility relationRf should have. That the constraints
imposed are sensible is shown by the following result:

THEOREM 20 (Filtration Theorem). Let Mf (= (WΣ, R
f , V f )) be a filtration ofM through

a subformula closed set of basic modal formulasΣ. Then for all formulasσ ∈ Σ, and all nodes
w in M, we haveM, w |= σ iff Mf , |w| |= σ.

Proof. By induction on the structure of formulas. The case for proposition symbols is immediate
from the definition ofV f , and becauseΣ is closed under subformulas, the inductive step for the
boolean connectives is clear.

So suppose3σ ∈ Σ andM, w |= 3σ. Then there is av such thatRwv andM, v |= σ. As
Mf is a filtration, by the first constraint onRf (clause (ii) of the previous definition) we have that
Rf |w||v|. As Σ is subformula closed,σ ∈ Σ, hence by the inductive hypothesisMf , |v| |= σ.
HenceMf , |w| |= 3σ.
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Conversely, suppose3σ ∈ Σ andMf , |w| |= 3σ. Then there is a state|v| in Mf such that
Rf |w||v| andMf , |v| |= σ. Asσ ∈ Σ, by the inductive hypothesisM, v |= σ. Making use of the
second constraint onRf (clause (iii) of the previous definition) we conclude thatM, w |= 3σ.

a

It only remains to verify that relations satisfying the constraints demanded ofRf actually exist.
They do. Define:

1. Rs|w||v| iff ∃w′ ∈ |w| ∃v′ ∈ |v|Rw′v′.

2. Rl|w||v| iff for all formulas3ϕ in Σ: M, v |= ϕ impliesM, w |= 3ϕ.

It is straightforward to show that both relations satisfy the required constraints. Actually, you can
show a little more: ifRf is any relation satisfying the above constraints thenRs ⊆ Rf ⊆ Rl.
For this reason,Rs andRl are said to give rise to the smallest and largest filtrations respectively.

So we have proved Theorem 18: the basic modal language indeed has the strong finite model
property. As we argued above, this in turn establishes the decidability of the basic modal satis-
fiability problem. Now, as is well known, the satisfiability problem for full first-order logic is
undecidable. First-order logic is the classic example of a language where expressivity has been
purchased at the expense of decidability. The basic modal language reverses this trade-off.

4.3 Complexity

What do the decidability proofs just given tell us about the computational complexity of the
modal satisfiability problem? Only that it can be solved in NEXPTIME (that is, non-deterministic
exponential time). This is clear from the filtration proof: to see ifϕ is decidable, we can non-
deterministically choose a model containing at most2s(ϕ) points, and then check whether or
not it satisfiesϕ (which takes time exponential in the size ofϕ). The reduction to the satisfi-
ability problem for the two-variable fragment yields the same upper bound, as this problem is
NEXPTIME-complete.

But the satisfiability problem for basic modal logic is not NEXPTIME-complete, it is PSPACE-
complete. That is, given a modal formulaϕ, it is possible to write an algorithm to determine
whether or notϕ is satisfiable that uses an amount of computer memory that is only polyno-
mial in the size ofϕ. Now, most complexity theorists believe that PSPACE-complete problems
are harder than the satisfiability problem for propositional logic (the classic NP-complete prob-
lem) but easier than EXPTIME-complete problems, which in turn are believed to be easier than
NEXPTIME-complete problems. So the modal satisfiability problem is probably easier than our
earlier decidability proofs suggest.

How do we design a PSPACE algorithm for modal satisfiability? We cannot give a detailed
answer here, but we can point to an expressive weakness of modal logic which should make it
plausible that PSPACE algorithms for modal satisfiability exist.

LEMMA 21. Let M = (W,R, V ) be a model, letw ∈ W , let n be a natural number, letSn,w

be the subset ofW containingw and all points inW reachable fromw by making at mostn R-
transitions, and letN be the submodel(Sn,w, R|S , V |S), whereR|S andV |S are the restrictions
ofR andV respectively toSn,w. Then, for all basic modal formulasϕ such that md(ϕ) ≤ n, we
have thatM, w |= ϕ iff N, w |= ϕ.

That is, if we take a modelM, and extract a submodelN from it by throwing away all points
that are more thann steps away fromw, then no formula with modal operator depth of at most



30 Patrick Blackburn and Johan van Benthem

n can distinguish the two models atw. Modal formulas have shallow vision. And if we combine
this lemma with what we have already learned about finite models and bisimulations, we obtain
the following:

THEOREM 22. Every formulaϕ in the basic modal language is satisfiable in a model based on
a finite tree of depth at most md(ϕ).

Proof. As model logic has the finite model property, if a modal formula is satisfiable, it is satis-
fiable on a finite modelM at some pointw. As we remarked in the previous section, it is always
possible to unravel a model into an equivalent tree-based model. Now, if we unravelM aboutw,
we don’t necessarily obtain a finite model, but (asM is finite) we do obtain a model based on a
tree with a finite branch factor, and this model satisfiesϕ at its root. If we then chop off all points
more thanmd(ϕ) away from the root we obtain a finite model which (by the previous lemma)
satisfiesϕ at its root. a

So every modal formula is satisfiable on a shallow tree, and we are now in a position to
appreciate how PSPACE algorithms for modal satisfiability work. In essence, they construct
shallow trees branch by branch. If a branch is successfully constructed (something which takes
only space polynomial in the size of the input formula, as the length of the branch is bounded
by md(ϕ)) the branch is discarded (thus freeing up the memory) and the next branch is then
constructed. There may be many branches, so it may take exponential time to construct them
all, but as all branches are discarded once they constructed, such an algorithm runs in PSPACE.
This sketch has neglected some important issues (such algorithms require space for recording
book-keeping details, and we need to ensure that the space used for this is not excessive) but it
does describe, in broad terms, how many modal satisfiability algorithms (notably those based on
tableaux or games) work.

4.4 Other reasoning tasks

We have discussed the big three (model checking, and satisfiability and validity checking) but
this by no means exhausts the reasoning tasks of interest. To conclude this section, let’s briefly
consider some others.

Although we have stressed the locality of modal logic, some problems demand a global per-
spective. In particular, if we view a modal formula as a general backgroundconstraint, we will
typically want it to be globally satisfied: that is, we will be interested in modelsM such that
M |= ϕ. The importance of the global satisfiability problem has been strongly emphasised by
the description logic community. Indeed, description logic builds into its architecture the idea
of a TBox, a collection of formulas that encode background knowledge about some domain (for
example, that all men are mortal, that all Martians own flying saucers, or that each employee has
a social security number). Description logicians are interested in models in which the TBox is
globally satisfied, for these are the models that reflect all the background assumptions.

Once the importance of background constraints is realised, it becomes clear that it is not
the pure global satisfiability task itself that is of primary interest. Rather, it is thelocal-global
satisfiability task: given formulasϕ andψ, is there a model which locally satisfiesϕ and globally
satisfiesψ? That is, is it possible to satisfyϕ subject to the global constraintψ?

Here’s an example. Suppose we’re working in a zoological setting, and are interested in the
interaction of maternal love and professional responsibility on the feeding of our furry ursine
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bretheren. To put it another way, suppose we have the following TBox:

bear∨ human bear→ 〈MOTHER〉bear
bear→ ¬human bear→ [FEDBY](zoo-keeper∨mother)

Let’s call this TBoxBEAR-CARE. The sort of queries we might be interested in posing are: is
it possible to globally satisfyBEAR-CARE and, simultaneously, to locally satisfy

〈MOTHER〉(bear∧ human)?

(No, it’s not.) And is it possible to globally satisfyBEAR-CARE and simultaneously to locally
satisfy

〈FEDBY〉(¬human ∧ ¬mother)?

(Yes, it is: BEAR-CARE doesn’t rule out having bears as zoo-keepers. This may well be a bug in
the TBox.)

Local-global satisfiability problems are also natural in the setting of parsing problems. It is
possible to encode various kinds of grammars (such as regular grammars or context-free gram-
mars) as modal formulas (see Chapter 19 of this handbook for a discussion of such approaches).
Then, given a string of symbols, the parsing problem is to decide whether it is possible to find
a model which embodies all the constraints encoded in the grammar, and which simultaneously
satisfies the formula encoding the input string. That is, we would like to globally satisfy the
modal formulaGRAMMAR and simultaneously locally satisfyINPUT-STRING.

Unsurprisingly, both the global, and the local-global satisfiability tasks are tougher than the
ordinary satisfiability problem:

THEOREM 23. The global satisfiability and the local-global satisfiability tasks for basic modal
languages are both EXPTIME-complete.

Proof. The stated result is an immediate consequence of Hemaspaandra’s [107, 59] complexity
results for the universal modality (we introduce the universal modality in Section 6.1). But the
result holds for even stronger languages; see De Giacomo and Lenzerini [26] for related results
for more expressive description logics. a

EXPTIME-complete problems are decidable but provably intractable: they contain problem in-
stances that will require time exponential in the size of the input to solve (which can mean that
they require more time than the expected lifetime of the universe). This, however, is a worst-
case measure. One of the most important recent developments in computational logic has come
from the description logic community, who have shown it is possible to specify and implement
tableaux-based algorithms for such problems that are remarkably efficient in practice. Moreover,
interesting work exists on performing modal theorem proving via (non-standard) translations into
first-order logic, so that optimised first-order resolution provers can be applied to the task. For a
detailed discussion and comparison of these methods, see Chapter 4 of this handbook, and for a
deeper examination of the complexity of modal logic, see Chapter 3.

We conclude with a remark on themodel comparisontask. As bisimulation is the modally
fundamental notion of graph equivalence, it is natural to wonder how difficult it is to determine
when two models are bisimilar. The corresponding problems for first-order logic (namely, testing
for graph isomorphism) is thought to be difficult: there is no known polynomial algorithm for
testing for graph isomorphism, though the problem has not been shown to be NP-complete either.
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In fact, the problem of identifying isomorphic graphs is sometimes regarded as giving rise to a
special complexity class of its own.

Testing for bisimulation, however, turns out to be computationally tractable, and there are el-
egant polynomial algorithms which work by discarding pairs of point that cannot make it into
any bisimulation (see Dovier, Piazza and Policriti [30]). Again an expressivity result lies be-
hind this result: the maximal bisimulation between two modelsM andN is explicitly definable
in a first-order fixed-point language over the disjoint unionM ] N of the two models. Such
languages have been studied extensively in computer science, and they are known to have good
computational behaviour.

5 RICHER LOGICS

Until now, we have deliberately said rather little about modallogicsand what they are. Instead we
have acted as if there was only one modal logic of any interest, namely the set of valid formulas
(that is, the set of formulas satisfied at all points in all models) or, to put it syntactically, the set of
formulas generated by the minimal proof systemK (which we defined at the start of Section 2.2).
But traditional presentations of modal logic tend to emphasise themultiplicity of modal logics,
and devote a great deal of attention to logics richer thanK , logics with such names asT, K4, S4,
S5, GL , andGrz. Where do richer modal logics come from?

As a first approximation (we’ll shortly see why it’s only an approximation) we might say that
richer logics emerge at the level offrames, via the concept offrame validity. Letϕ(p1, . . . , pn) be
a basic modal formula built out of the proposition lettersp1, . . . , pn. We say thatϕ(p1, . . . , pn)
is valid on a frameF = (W,R) at a pointw if, for each valuationV for its proposition symbols
p1,. . . ,pn, we have thatϕ is satisfied in the resulting model atw; in such a case we writeF, w |=
ϕ. We sayϕ is valid onF if it is valid at each point inF, and we write this asF |= ϕ. Moreover,
we say that a modal formula isvalid on a class of framesF if it is valid on each frameF in F.
Note that a valid formula (as defined in Section 2.1) is simply a formula that is valid on the class
of all frames.

The starting point for this section is the observation that different applications of modal logic
typically validate different modal axioms, axioms over and above those to be found in the mini-
mal systemK . For example, if we view our models as flows of time, it is natural to assume that
the accessibility relation is transitive, and (as the reader should check) any instance of the schema
2ϕ → 22ϕ is valid on the class of transitive frames (for example, the formula2p → 22p is
valid on such frames, and2(p ∨ q) → 22(p ∨ q) is too). However no instance of this schema
(which for historical reasons is called 4) is provable inK , so if we want a logic for working with
temporal flows we should add all its instances as extra axioms, and doing so yields the logic
known asK4. Or suppose we are modeling situations where the frame relation has to be treated
as a partial function. As the reader should check, all instances of the schema3ϕ→ 2ϕ are valid
on the class of such frames, and none of them can be proved inK , so once again we should add
them as extra axioms. Doing so yields the logic calledKAlt 1.

We begin this section by briefly discussing such axiomatic extensions ofK a little further. But
our real interest is not the richer logics that arise by adding extra axioms (for an introduction to
this topic, see Chapter 2 of this handbook) rather it centres on the following semantic questions:
what can modal formulas say about frames, and how do they say it? As we shall see, there
is a fundamental expressivity distinction between the level of models and the level of frames:
whereas modal logic at the level of models is the bisimulation invariant fragment of first-order
logic, at the level of frames it is a fragment of second-order logic.
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5.1 Axioms and relational frame properties

One of the most attractive features of modal logic is the illumination provided by the fact that
modal axioms reflect properties of accessibility relations. A typical modal completeness theorem
reads like this:

THEOREM 24. A formula is provable inK4 iff it is true in all models based on frames whose
accessibility relation is transitive.

Proof. See Chapter 2 of this handbook (or indeed, virtually any introduction to modal logic).a

That is, the theorems ofK4 are true in all graphs with a transitive relation, while its non-
theorems have some transitive counter-example; the additional axioms reflect a simple visual-
isable geometric condition in the semantics. There are many techniques for proving such com-
pleteness results, ranging from simple inspection of the canonical model constructed from all
complete theories in the logic, to various types of model surgery (such as filtration, unraveling,
and taking bounded morphic images). Moreover, the motivations for proving modal complete-
ness theorems may differ. Sometimes we start with an independently interesting proof system
and try to find a useful corresponding class of frames. The classic example of this is the proof
systemGL , that isK enriched with all instances of the Löb axiom schema2(2ϕ→ ϕ)→ 2ϕ,
which arose via the study of arithmetical provability (see Chapter 16 of this handbook) and was
later proved complete with respect to the class of finite trees. Sometimes, however, we might start
with a natural model class — say an interesting space-time structure — and try to axiomatise its
modal validities. The literature is replete with both variants.

Nowadays a lot is known about axiomatic extensions ofK . For a start, it turns out that there
are uncountably many suchnormal modal logics, as they are often called. It is usual to identify
a normal modal logic with the set of formulas it generates, and this identification immediately
induces a lattice structure on the set of all such logics. The cartography of this landscape is an
object of study in its own right; here we shall only mention that, because of the following result,
it contains two major highways.

THEOREM 25. Let Id be the normal modal logic generated byK enriched with all instances of
the axiom schemaϕ↔ 2ϕ, and letUn be the normal modal logic generated byK enriched with
the axiom2⊥. Every normal modal logic is either a subsetId or Un.

Proof. See Makinson [83]. a

Now, as the reader should check, every instance ofϕ ↔ 2ϕ is valid on frames which consist
of a collection of isolated reflexive points, and2⊥ is valid on frames consisting of a collection
of isolated irreflexive points. Moreover, using standard techniques it is easy to show thatUn
is complete with respect to the first frame class, andId with respect to the second. Thus the
semantic content of Theorem 25 is that every normal modal logic is contained in the logic of one
of these frame classes; for example,K4 lies on the first road, andGL on the second.

But the most important fact to have emerged about normal modal logics is thatnot all of
them have frame-based characterisations. In fact, frame completeness results (such as the result
for K4 noted above) are the exception rather than the rule. Thus our earlier remark that richer
logics emerged at the level of frames via the concept of frame validity was very much a first
approximation: the notion of frame validity simply does not provide an adequate semantic basis
for studying all normal modal logics. Here is a concrete example of aframe incompleteness
result:
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THEOREM 26. Let TMEQ be the normal modal logic obtained by enrichingK with all in-
stances of the following schemas:ϕ → 3ϕ (T), 23ϕ → 32ϕ (M), 3(3ϕ ∧ 2ψ) →
2(3ϕ ∨ 2ϕ) (E), and (3ϕ ∧ 2(ϕ → 2ϕ)) → ϕ (Q). There is no class of frames that vali-
dates precisely the formulas inTMEQ.

Proof. See van Benthem [117]. a

Such incompleteness results (which were first proved in the early 1970s by Thomason [113] and
Fine [37]) were important in the development of modal logic. For a start, they forced modal
logicians to examine alternative ways of semantically characterising normal modal logics, and
this lead to a renaissance in algebraic semantics of modal logic (see Chapter 6 of this handbook
for more on this topic). But they also had another effect, one more relevant to the present chapter:
they stimulated a wave of semantic research at the level of frames. This new wave of research
was centred around the notion of frame definability, the topic to which we now turn.

5.2 Frame definability and undefinability

Before getting to work, a brief remark. There is another way of thinking about axiomatic exten-
sions ofK . Instead of viewing them as giving rise to brand new modal logics, we can simply view
them astheoriesconstructed over the minimal logicK in much the same way as a first-order the-
ory (of say, linear orders) is constructed over the set of first-order validities. Nothing of substance
hangs on this shift of perspective, but it fits more naturally with our focus on expressivity.

So, bearing this in mind, let’s pose the first question: what can modal formulas say about
frames? A natural way to approach this is to introduce the concept offrame definability. We
shall say that a modal formulaϕ defines a class of framesF iff it is valid on precisely the frames
in F. That is, not only mustϕ be valid on every frame inF, it must also be possible to falsifyϕ
on any frame that is not inF. So, what classes of frames can modal languages define? Here are
some simple examples:

PROPOSITION 27.

1. 2p → 22p defines the class of transitive frames; that is, frames such that∀xyz(Rxy ∧
Ryz → Rxz).

2. 3p→ 2p defines the class of frames where the frame relationR is a partial function; that
is, frames such that∀xyz(Rxy ∧Rxz → y = z).

3. p ↔ 2p defines the class of frames which consist of isolated reflexive points; that is,
frames such that∀xy(Rxx ∧ (Rxy ∧Ryx→ x = y)).

4. 2⊥ defines the class of frames which consist of isolated irreflexive points; that is, frames
such that∀xy¬Rxy.

Proof. We have already asked the reader to check that these formulas are valid on the class of
frames in question. So to complete the proofs of these definability claims we need merely check
that each formula can be falsified on any frame that does not belong to the relevant class.

Let’s deal with the second example. Suppose(W,R) is a frame whereR is not a partial
function. This means that there is a pointw ∈ W that has two distinctR-successors, sayu and
v. It follows that we can falsify3p→ 2p on (W,R) atw. For letV be the valuation that makes
p true atu and nowhere else. Then(W,R, V ), w |= 3p but (W,R, V ), w |= 2p, sincep is not
true atv. So we have falsified3p→ 2p on (W,R) as required. a
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A remark on terminology. Instead of saying, for example, that2p → 22p defines the class
of transitive frames, we often simply say that2p → 22p defines transitivity. It is also usual to
say that2p → 22p corresponds (at the level of frames) to∀xyz(Rxy ∧ Ryz → Rxz), or that
∀xyz(Rxy ∧Ryz → Rxz) is a frame correspondent for2p→ 22p.

Now for an important question: how do we go about showing that a class of framescannotbe
modally defined? Answering such questions is typically more demanding than proving the type
of result noted in Proposition 27, for instead of checking that a given formula defines a given
frame class, we now have to prove that no modal formula is capable of this. How can we prove
such general results? By finding ways of transforming frames that preserve frame validity. For if
we can show that a class of framesF is not closed under such a transformation, it follows thatF
is not modally definable. Let’s take a closer look.

The first step is to find transformations that preserve frame validity. Three lie close to hand: the
formation of disjoint unions, generated submodels, and bounded morphic images. In Section 3.2
we defined these constructions at the level of models, and they can be lifted to the level of
frames simply by ignoring the requirements imposed on the valuations. For example, a bounded
morphism between frames(W,R) and(W ′, R′) is a functionf from w toW ′ that satisfies the
morphism condition (ifRwv, thenR′f(u)f(v)) and the zag condition (ifR′w′v′, then there
exists av such thatf(v) = v′ andRwv), and we say that frame(W ′, R′) is a bounded morphic
image of frame(W,R) if there is a surjective bounded morphism from(W,R) to (W ′, R′).
Lifting these constructions to the level of frames immediately gives us three validity preservation
results:

THEOREM 28.
For all basic modal formulasϕ we have that:

1. Let{Fi | i ∈ I} be a family of frames. Then ifFi |= ϕ for everyi in I, we have that⊎
Fi |= ϕ too. That is, frame validity is preserved under the formation of disjoint unions.

2. LetF′ be a generated subframe ofF. Then ifF |= ϕ, we have thatF′ |= ϕ too. That is,
frame validity is preserved under the formation of generated subframes.

3. LetF andF′ be frames andf a surjective bounded morphism fromF to F′. Then ifF |= ϕ,
we have thatF′ |= ϕ too. That is, frame validity is preserved under the formation of
bounded morphic images.

Proof. We prove the result for bounded morphisms. LetF = (W,R) andF′ = (W ′, R′) be
frames, and suppose for the sake of a contradiction thatF |= ϕ but F′ 6|= ϕ. This means that
for some valuationV ′ on F′ and some pointw′ ∈ W ′ we have that(F′, V ′), w′ 6|= ϕ. Let V be
the valuation onF defined byV (p) = {u ∈ W | f(u) ∈ V ′(p)}, for all proposition lettersp.
Furthermore, letw be any point such thatf(w) = w′; there must be at least one such point as
f is surjective. Then the model(F′, V ′) is a bounded morphic image of the model(F, V ), and
hence(F, V ), w 6|= ϕ. But this contradicts our assumption thatF |= ϕ, hence we conclude that
F′ |= ϕ after all. a

Applying this theorem immediately gives rise to a crop of non-definability results. Here are
some simple ones. Basic modal languages cannot define the class of simply connected frames,
that is, the class of frames such that∀xy(Rxy ∨ Ryx). Why not? Because this class is not
closed under the formation of disjoint unions: taking the disjoint union of two frames with this
property clearly results in a frame without it. It also follows that basic modal languages cannot
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define the class of frames containing an isolated reflexive point. Why not? Because this class
is not closed under the formation of generated subframes. For consider a frame consisting of
two isolated points, one reflexive, the other irreflexive. This frame belongs to the required class,
however the subframe generated by the irreflexive point does not. Nor is the class of irreflexive
frames modally definable. Why not? Because it is not closed under the formation of bounded
morphic images (recall the bounded morphism of Figure 13 which collapses the natural numbers
to a single reflexive point). But frame validity is preserved under this transformation, hence
no modal formula can define irreflexivity. For more sophisticated applications of these validity
preservation results, see van Benthem [125].

As we shall soon see, the three frame transformations just introduced all play a role in the
Goldblatt-Thomason Theorem, a characterisation of modally definable classes of elementary
frames. But a fourth transformation, namely the formation ofultrafilter extensions, is also needed
to complete the statement of this celebrated result, so let’s take this opportunity to define this
(somewhat more complex) frame construction. First we recall a standard mathematical concept.
Given a non-empty setW , a filter F overW is any subset of2W (the power set ofW ) that
containsW and is closed under finite intersection (that is, ifX,Y ∈ F thenX ∩ Y ∈ F ) and
set-theoretic inclusion (that is, ifX ∈ F andX ⊆ Y ⊆W thenY ∈ F ). A filter is calledproper
if it is distinct from 2W . An ultrafilter is a proper filterU such that for allX ∈ 2W , X ∈ U iff
(W\X) 6∈ U . A standard result assures us that any proper filter can be extended to an ultrafilter.
Bearing this in mind, we make the following definition:

DEFINITION 29 (Ultrafilter Extensions of Frames). LetF = (W,R) be a frame. For any
X ⊆W we definel(X) to be{w ∈W | for all v ∈W , if Rwv thenv ∈ X}. Then the ultrafilter
extensionue(F) of F is defined to be the frame(uf(W ), Rue), whereuf(W ) is the set of all
ultrafilters onW andRue is the relation consisting of all pairs of ultrafiltersU,U ′ such that for
all X ⊆W , if l(X) ∈ U , thenX ∈ U ′.

We can now state the required theorem. Note that the direction of validity preservation is
the reverse of that found in Theorem 28. That is, here frame validity is preserved from the
transformed frame (here the ultrafilter extension) back to the original one:

THEOREM 30. For any basic modal formulaϕ, if ue(F) |= ϕ thenF |= ϕ does too. That is,
frame validity reflects ultrafilter extensions.

Proof. The use of ultrafilter extensions in modal logic traces back to Goldblatt [52, 53], van
Benthem [118], and Fine [38]. For a detailed proof of this theorem, see Proposition 2.59 and
Corollary 3.16 of Blackburn, de Rijke and Venema [13]. a

Although this transformation is harder to visualise than the previous three, it too gives rise to
some simple non-definability results. Here’s a nice example, taken from Goldblatt and Thoma-
son [54], showing that the class of frames satisfying∀x∃y(Rxy∧Ryy) is not modally definable.
We can see this as follows. The ultrafilter extension of(N, <), the natural numbers in their
usual order, looks a bit like a gigantic lolly-pop. It has an infinite handle, an isomorphic copy
of (N, <), consisting of all the principal ultrafilters (that is, those ultrafilters which contain a
singleton set{n}, wheren is a natural number). This is followed by the lolly: an uncountable
collection of non-principal ultrafilters which are all related to one another and reflexively related
to themselves. Henceue(N, <) has the property∀x∃y(Rxy ∧Ryy). Why? Because every point
in the frame is related to the reflexive points in the lolly. However this formula is clearly not
valid on the original frame(N, <). As frame validity reflects ultrafilter extensions, it follows that
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the class of frames satisfying∀x∃y(Rxy ∧ Ryy) is not modally definable. For further discus-
sion of ultrafilter extensions from a model-theoretic perspective, see Chapter 5 of this handbook.
There is also an important algebraic perspective on ultrafilter extensions, which is discussed in
Chapter 6.

5.3 Frame correspondence and second-order logic

Now that we have some idea of what basic modal languages can (and cannot) say about frames,
we turn to the second question: how do they say it? And here we encounter something interesting.
Note that all four classes of frames mentioned in Proposition 27 are definable by simple first-
order formulas — and this is actually rather puzzling. After all, if you think about what it
means for a basic modal formulaϕ(p1, . . . , pn) to be valid on a frame, we see that this concept
is essentiallysecond-order: we quantify across all possible valuations, and valuations assign
subsetsof frames to proposition symbols.

We can make this second-order perspective precise with the help of the standard translation.
Let F be a frame, letM = (F, V ) be any model overF, and letw be any point inF. By
Proposition 3 we have that

(F, V ), w |= ϕ(p1, . . . , pn) iff (F, V ) |= STx(ϕ)(P1, . . . , Pn)[x← w].

(HereP1, . . . , Pn are the monadic predicate symbols used to translate the propositional symbols
p1, . . . , pn.) How do we lift this equivalence (which lives at the level of models) to an equiv-
alence at the level of frames (the level where validity is the primary semantic concept)? Very
straightforwardly. A formula is valid on a frame iff it is satisfied at any point in the frame under
any assignment of subsets of the frame to the proposition symbols. So we only need to univer-
sal quantify over the points that can be assigned tox (a first-order quantification) and over the
assignments to the monadic symbolsP1, . . . , Pn (a second-order quantification). Doing so gives
us the fundamental correspondence between frame validity and second-order logic:

F |= ϕ(p1, . . . , pn) iff F |= ∀P1 · · ·Pn∀xSTx(ϕ).

In short, frame validity systematically treats modal formulasϕ as the universal monadic second-
order closure of their standard first-order translations on relational models. The second-order
upgrade of the first-order correspondence language is often called theframe correspondence
languageor thesecond-order correspondence language.

Let’s look at an example. Recall that in Section 2.2 we showed that the standard translation of
p→ 3p wasPx→ ∃y(Rxy∧Py). So if we ask whatp→ 3p defines at the level of frames we
can give an immediate answer: it defines the class of frames satisfying the following monadic
second-order formula:

∀P∀x(Px→ ∃y(Rxy ∧ Py)).

Now, it’s certainly pleasant to be able to systematically calculate frame correspondences for
modal formulas in this way — but the puzzle remains. Indeed, if anything it has become more
acute. For most of the modal formulas encountered in practice correspond to simple first-order
conditions on frames, yet these conditions are systematically expressed using rather complex
second-order expressions. The translation just considered is a good example. As the reader
should check,p → 3p corresponds to the first-order formula∀xRxx (that is, it defines reflex-
ivity). And if you think about it, you will see that∀P∀x(Px → ∃y(Rxy ∧ Py)) is indeed a
rather roundabout way of expressing reflexivity. For a start, it’s easy to see that this sentence
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is true on any reflexive frame. Conversely, if this sentence is true on a frame(W,R), then
Px→ ∃y(Rxy ∧Py)) must be true under any assignment to the free variablesx andP . Hence,
for anyw ∈ W , this formula is true if we assignw to x and{w} to P . This assignment makes
the antecedent true (indeed, it is theminimalvaluation required to make the antecedent true; the
significance of this remark will become clear when we discuss the Sahlqvist Correspondence
Theorem) so we must have that∃y(Rxy ∧ Py) is true too. But this is only possible ifRww.
Hence, asw was arbitrary, this means thatR must be reflexive, and thus the original second-
order sentence really does express reflexivity. As we said earlier, one of the key questions we are
interested in ishowmodal languages talk about frames. And now we have an answer. They do
so via a detour through second-order logic.

Moreover, this detour isnot eliminable. That is, while experience shows that most common
modal formulas correspond to first-order conditions on frames, some modal formulas define con-
ditions that arenotelementary. A famous case is Löb’s formula,2(2p→ p)→ 2p. This defines
the conjunction of the transitivity ofR with the converse well-foundedness ofR (that is, it for-
bids the existence of infinite chains of related pointsw1Rw2Rw3Rw4Rw5 . . .). This condition
is non-elementary, as an appeal to the Compactness Theorem for first-order logic shows. An-
other well-known modal axiom that defines a non-elementary class of frames is the McKinsey
formula23p→ 32p. This can be shown by appealing to the Löwenheim-Skolem Theorem for
first-order logic. For full proof details for both the Löb and McKinsey examples, see Blackburn,
de Rijke and Venema [13].

Summing up, we are confronted with an intriguing situation. At the level of frames, modal
formulas systematically correspond to second-order conditions on frames. Nonetheless, in many
common cases these second-order conditions turn out to be equivalent to first-order conditions.
This raises some interesting questions. Are there criteria that demarcate modal formulas that are
essentially first-order at the level of frames from the genuinely second-order ones? And can we
characterise the elementary frame classes that are modally definable?

5.4 First-order frame definability

As we have just learned, the link between first-order definable frame classes and modal logic is
not straightforward. Nonetheless, some elegant general results are known, and we shall briefly
discuss three of them here. We first note two results which bear upon the demarcation issue:
the Sahlqvist Correspondence Theorem (which isolates a large class of formulas all of which de-
fine elementary classes of frames) and a model-theoretic characterisation of the modal formulas
which define elementary frame classes. Following this we discuss the celebrated Goldblatt-
Thomason Theorem, a model-theoretic characterisation of the elementary frame classes that are
basic modal definable. All three results (and others bearing on the theme of elementary frame
definability) are discussed in greater detail in Chapter 5 of this handbook.

Let’s start with the Sahlqvist [100] result. Upon closer inspection, first-order frame conditions
often arise because of the syntactic shape of the defining modal formula — for example the
quantifier shape of the first-order formula for transitivity is matched by the sequence of boxes in
2p→ 22p. The following theorem gives us a natural account of such correspondences. It trades
systematically on the idea (noted when we discussed the second-order definition of reflexivity)
of substituting minimal verifying valuations in antecedents.

THEOREM 31 (Sahlqvist Correspondence Theorem).There is an effective method for comput-
ing first-order equivalents for Sahlqvist formulas, that is, formulas of the formϕ → ψ with an-
tecedentsϕ constructed from atoms (possibly prefixed by boxes) using conjunctions, disjunctions
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and diamonds, while consequentsψ can be any modal formula with only positive occurrences of
proposition symbols.

Proof. The effective method (in the form originally introduced by van Benthem [116, 119]) is
usually called the substitution algorithm. The following example will give an idea of how it
works. The formula2p→ 22p is a Sahlqvist formula and its second-order translation is

∀P∀x(∀y(Rxy → Py)→ ∀y(Rxy → ∀z(Ryz → Pz))).

Now, if we could eliminate all the occurrences ofP in this formula, we would render the second-
order quantification needed to express validity vacuous. But canP be eliminated in a semanti-
cally sensible way? Because of the syntactic restrictions that Sahlqvist formulas conform to, it
turns out that we can. We do so by replacingP by a first-order expression describing theminimal
valuation needed to make the antecedent of2p → 22p true. Now, the minimal way of making
2p true is to makep true at all successors of the point of evaluationx, so the required substitution
is Pu := Rxu. Performing this substitution yields the following first-order expression:

∀x(∀y(Rxy → Rxy)→ ∀y(Rxy → ∀z(Ryz → Rxz))).

The antecedent is now tautologically true, and dropping it leaves us with the expression

∀x∀y(Rxy → ∀z(Ryz → Rxz)).

But this is a first-order formula expressing transitivity. For a precise specification of the substitu-
tion algorithm, and a proof that it works as required, see Blackburn, de Rijke and Venema [13].
The heart of the proof is to show that a Sahlqvist antecedent is true under any value for its propo-
sition symbols iff it is true under itsminimalvalues. a

The Sahlqvist Correspondence Theorem and its proof method are very powerful and can be
extended to far stronger modal languages. Nevertheless there are also modal formulas which
express first-order conditions on frames that are not covered by the theorem. TheK4.1 axiom

(2p→ 22p) ∧ (23p→ 32p)

is a conjunction of the 4 axiom with the McKinsey axiom. It defines the class of frames with
a transitive and atomic relation, that is the class of transitive frames such that∀x∃y(Rxy ∧
∀z(Ryz → z = y)). But this first-order equivalence cannot be computed using the substitution
method. See van Benthem [125] or Blackburn, de Rijke and Venema [13] for further discussion.

So the Sahlqvist result doesn’t fully pin down the modal formulas that define elementary frame
classes. However model-theoretic characterisations exist. For example we have:

THEOREM 32. A modal formula defines a first-order frame property iff it is preserved under
taking ultrapowers of frames.

Proof. See van Benthem [119]. (For an introduction to ultrapowers, see Chang and Keisler [21].)
a

Closure under ultrapowers is a abstract feature, and it is not easy to use it to recognise whether
a given modal formula is first-order over frames. But then no simple method can be expected to
work: Chagrova [19] shows that the problem of determining whether a modal formula expresses
a first-order condition on frames is undecidable.
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But now for our other question: which elementary classes of frames are modally definable?
The classic result here is the Goldblatt-Thomason Theorem. This tells us that the four frame
preservation results noted earlier are not merely necessary, they are alsosufficientto characterise
first-order frame definability:

THEOREM 33 (Goldblatt-Thomason Theorem).A first-order frame property is modally defin-
able iff it is preserved under taking disjoint unions, generated subframes, p-morphic images, and
reflects ultrafilter extensions.

Proof. The left-to-right direction is just a restatement of the results noted in Theorems 28 and 30.
The real work lies in the converse. The original proof, due to Goldblatt and Thomason [54] was
algebraic; we briefly discuss this approach in Section 7.1, and an algebraic proof is given in
Chapter 6 of this handbook. Nowadays there are also purely model-theoretic proofs; see van
Benthem [121] for the earliest of these. a

5.5 Correspondence in richer languages

Throughout this section we have kept our eyes firmly on the goal of understanding modal ex-
pressivity with respect to elementary frame classes. This is an important topic (after all, we want
to understand as much as possible about the route modal logic over frames takes from monadic
second-order logic back to first-order logic) but it is also natural to wonder about the expressivity
of modal logic with respect to non-elementary frame classes. Unfortunately, it is harder to come
up with elegant answers here. In particular, we can’t expect sweeping model-theoretic character-
isations. Model-theoretic characterisations of elementary frame definability, such as Theorem 32
and the Goldblatt-Thomason Theorem, rest on the conceptual edifice of first-order model theory.
Second-order model theory is nowhere near as well developed.

Nonetheless, some interesting results are known. For example, it turns out that we can apply
the ideas underlying the proof of the Sahlqvist Correspondence Theorem beyond the confines of
first-order logic. Let’s briefly consider what is involved. The following discussion is based on
van Benthem [126]. Chapter 5 of this handbook contains a more detailed discussion of related
material.

The substitution algorithm for Sahlqvist formulas runs into difficulties with more complex
antecedents; a classic example is Löb’s formula2(2p → p) → 2p, which defines a non-
elementary class of frames. But let’s reflect onwhywe compute the minimal antecedent values
for Sahlqvist formulas. In fact there are two reasons. Firstly, because Sahlqvist antecedents
are true under any value for their proposition symbols iff they true under theirminimalvalues.
Secondly, because such minimal predicates are first-order definable. Now, as it happens the Löb
antecedent does not fulfil the first-order definability criterion, but this does not mean that all that
can be said is that the Löb’s formula is intrinsically second-order — for, as it turns out, there is
a smallest semantic value for the predicateP which will make the L̈ob antecedent true. This is
the set of points in the frame obtained by taking theintersectionof all predicatesP validating
2(2p → p) wherep is interpreted asP . Such a set must exist, because the standard translation
of the Löb antecedent has a special syntactic form. Call a first-order formulaϕ(P ) intersective
if it has one of the forms:

1. ∀x(ϕ(P,Q, x)→ Px), with P occurring only positively inϕ(P,Q, x).

2. ψ(P,Q), with P occurring only negatively inψ.
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It is easy to show that all formulasϕ(P ) of this form have the above-mentionedintersection
property: if ϕ(P ) holds for any predicateP it holds for the intersection of all predicatesP
satisfying it.

Thus it makes sense to talk aboutminP.ϕ(P ), theminimal satisfying predicate. Of course,
such predicates need not be first-order definable, but it is not hard to show that minimal predicates
for intersective first-order formulas are definable in a well-known extension of first-order logic,
namelyLFP(FO), first-order logic with monotonic fixed-points.LFP(FO) has many uses in
computer science; it lies between first-order and second-order logic, and retains many useful
model-theoretic properties such as invariance for potential isomorphism (see Ebbinghaus and
Flum [32] for an introduction toLFP(FO)).

Now, once we have such a minimal value for the antecedent predicates, it can be substituted
into the consequent to obtain a frame equivalent just as before — though now, of course, we
obtain an equivalent inLFP(FO). To return to our example, the standard translation of the Löb
antecedent∀y((Rxy ∧ ∀z(Ryz → Pz)) → Py) is indeed intersective in the above sense.
Therefore, the corresponding frame property of the Löb formula can be computed and (as we
would expect) the result is anLFP(FO) formula defining the property of transitivity plus converse
well-foundedness. As a second example, consider the axiom of cyclic return:

(3p ∧2(p→ 2p))→ p.

Again, this is not a Sahlqvist formula. But again, the antecedent is intersective, and gives rise to
a simple fixed-point computation for an equivalent frame property:

Every pointx with anR-successory can be reached fromy by a finite sequence of
successiveR-steps.

This is the beginning of a further layering of modal formulas with respect to semantic complexity.
For there are also modal formulas with frame equivalents which cannot be expressed inLFP(FO).
One example is the well known axiom in tense logic expressing Dedekind Completeness of linear
orders, which is not preserved under the potential isomorphism between the rationals and the
reals. More recently, van Benthem and Goranko have shown that the McKinsey formula, whose
antecedent is typically non-intersective, does not correspond to anyLFP(FO) formula.

5.6 Remarks on computability

In Section 4 we contrasted the PSPACE decidability of modal logic with the undecidability of
first-order logic. But these results concerned satisfiability and validity on the class of all frames.
Suppose we restrict attention to particular classes of frames defined by basic modal formulas.
There is no reason to suppose that modal satisfiability and validity problems over such frame
classes will always be in PSPACE, or even that they will be decidable. And indeed, in many
cases they are not not.

In some cases, restricting attention to a certain class of frames may lower the computational
complexity. For example, suppose we restrict attention to the frames defined by3p → 2p, that
is, the class of frames in whichR is a partial function. Then the task of testing basic modal
formulas for satisfiability becomes NP-complete, that is, no worse than the satisfiability problem
for propositional logic. This is because (as the reader can easily check) if a basic modal formula
ϕ has a model based on a frame in this class, then it has not only has a finite model in this class,
but a model containing at mostm + 1 points, wherem is the number of modalities inϕ. Thus
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a non-deterministic algorithm which guesses a model, checks that it belongs to the frame class,
and verifies that the formula is satisfied on it, runs in time polynomial in the size ofϕ.

But restricting attention to particular frame classes can easily results in undecidable problems.
Moreover, undecidable problems arise even when attention is restricted to finite frames; see, for
example, Urquhart [115]. And indeed, failures of decidability turn out to be the norm. It is not
difficult to show that there are non-denumerably many distinct frame satisfiability problems (a
particularly elegant demonstration of this, due to Spaan [107], is given as Exercise 6.2.4 of Black-
burn, de Rijke and Venema [13]). As there are only denumerably many computable functions,
undecidability is guaranteed in most cases.

So what about recursive enumerability? That is, if we restrict attention to a class of framesF
that is defined by a modal formula, is the theory of this frame class (that is, the set of formulasϕ
valid on all framesF) recursively enumerable? Well, ifF is elementary, the answer is yes:

PROPOSITION 34.Suppose thatF is an elementary class of frames defined by a basic modal
formulaϕ. Then the (basic modal) theory ofF is recursively enumerable.

Proof. As F is an elementary class thatϕ defines,ϕ corresponds to some first-order formula
α. Now a basic modal formulaψ is valid on frames forϕ iff its second-order translation
∀P1 · · ·Pn∀xSTx(ψ) is true in all models of the first-order formulaα, that is, iff

α |= ∀P1 · · ·Pn∀xSTx(ψ),

where|= is classical entailment. But asα is first-order, the predicatesP1 · · ·Pn do not occur in
α and hence this is equivalent to

α |= ∀xSTx(ψ).

But this is a first-order entailment, and as such entailments are recursively enumerable the result
follows. a

However once we move beyond the elementary frame classes, even recursive enumerability is
lost. A key result here is Thomason’s [114] reduction of the standard consequence relation for
the second-order correspondence language to theglobal frame consequencerelation for a basic
modal language with one modality. A basic modal formulaϕ is a global frame consequence of
Γ if for all framesF, if F |= Γ, thenF |= ϕ. It follows that global frame consequence is not
recursively enumerable. For further discussion of Thomasons’s work in this area, see Chapter 7
of this handbook.

6 RICHER LANGUAGES

The purpose of this section is to discuss a typical, but not yet widely appreciated, aspect of
contemporary modal logic: flexible language (re-)design. As we have seen, the basic modal
language has a number of attractive properties, and as the bisimulation invariant fragment of the
first-order correspondence language it is a special tool when it comes to talking about graphs.
Nonetheless, many of its design parameters were fixed by historical accident. Perhaps judicious
experimentation could lead to improvements, or at least to interesting variants? Modal logicians
have been carrying our such experiments for years, and in this section we survey some of their
work.

But what should count as a richer modal language? It’s easier to explain what shouldn’t.
Here’s an obvious example. It is straightforward to extend our basic definitions to coverpolyadic
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modalities(that is,n-place diamonds and boxes). Simply work with models in which there is
ann + 1-place relationRm for everyn-place diamond〈m〉. We interpret using the following
satisfaction clause:

M, w |= 〈m〉(ϕ1, . . . , ϕn) iff for somev1, . . . , vn ∈W such thatRmwvi . . . vn

we haveM, v1 |= ϕ1 and . . . andM, vn |= ϕn.

Now, suchn-place modalities are undeniably useful for certain purposes, but developing their
theory (standard translation, bisimulation, and so on) is essentially a matter of sprinkling our
earlier work with additional indices. These operators don’t give rise to richer languages in any
logically interesting sense.

As we shall see, the richer languages explored in this section offer more. Moreover, their
richness arises from different sources. Sometimes the enrichment consists of taking a standard
language and insisting that a modality be interpreted by some mathematically fundamental re-
lation (the universal modality is a good example). Sometimes the enrichment takes the form of
more complex satisfaction definitions (both temporal logic with Until and Since and conditional
logic are examples of this). In other cases, syntactic enhancements are introduced to support
novel semantic capabilities (hybrid logic, propositional dynamic logic, and the modalµ-calculus
all do this) and in one case (the guarded fragment) we enrich by abandoning modal syntax and
using first-order syntax instead. Moreover, it is also possible to enrich by combining logics. For
example, we might combine two propositional modal logics to enable some application domain
to be more accurately modeled, or we might combine modal logic with first-order logic, a move
which takes us to the historical heartland of philosophical applications of modal logic.

This variety raises a question of its own: what, if anything, do all these richer languages
have in common? That is, what makes them all modal? This is not an easy question to answer.
Nonetheless, as we work our way through this landscape a number of themes will recur: robust
decidability, the importance of bisimulations, and characterisations of fragments of first- and
second-order logic. As we shall see at the end of the section, the idea of restricted quantification
that underlies the guarded fragment goes a long way towards accounting for these properties, for
both first- and second-order enrichments. Moreover, it is possible to draw on ideas from abstract
model theory and prove Lindström-style characterisation results.

6.1 The universal modality

Time to feed the bears again. As we said in Section 4, some problems demand a global perspec-
tive. We sometimes want to view a modal formula as a general background constraint, something
that must be satisfied atall points in a model. Indeed, because of the importance of background
constraints, in many practical situations we are primarily interested in the local-global satisfia-
bility problem, which we formulated as follows: given basic modal formulasϕ andψ, is there
a model which locally satisfiesϕ and globally satisfiesψ? Now, description logic, with its two
level architecture of TBox (which impose general constraints) and ABox (which give informa-
tion about particular individuals), acknowledges the importance of this problem (the information
in TBoxes has to be globally satisfied, while the information in ABoxes only has to be locally
satisfied). But the ability to impose global constraints is not incorporated into description logic
concept languages (which are essentially notational variants of the basic modal languages we are
familiar with) and this raises an interesting question. Is it possible to internalise the notion of
global satisfiability in a modal language? And if so, what happens?
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Let’s introduce theuniversal modalityand find out. To keep things simple, suppose we are
working in a language with just one modality. We shall add a second modality, and will writeE
for its diamond form, andA for its box form. The interpretation ofE andA is fixed: in any model
M = (W,R, V ), both modalities must be interpreted using the universal relationW ×W . That
is, the satisfaction definition for these modalities is:

M, w |= Eϕ iff there is au ∈W such thatM, u |= ϕ
M, w |= Aϕ iff for all u ∈W we haveM, u |= ϕ.

ThusEϕ scans the entire model for a point that satisfiesϕ, while Aϕ asserts thatϕ holds ev-
erywhere. We have imported the meta-theoretic notion of global truth into our modal object
language, or to put it another way, we have internalised the TBox. Accordingly, we callE the
universal diamond, andA theuniversal box. If it is irrelevant whether we meanE or its dual, we
simply talk of theuniversal modality.

How can we be sure that adding the universal modality really increases the expressive power
at our disposal? That is, are we certain thatE and A are not already definable in the basic
modal language? We are. One way to see this is via a bisimulation argument (see Example 2.4
in Blackburn, de Rijke and Venema [13] for such a proof). But an easy complexity-theoretic
argument also establishes this. Letϕ andψ be basic modal formulas. Then the formulaAψ
expresses the global satisfiability problem (for the basic modal language) in our new language,
and the formulaϕ ∧ Aψ expresses the local-global satisfiability problem (for the basic modal
language) again in our new language. Now, we remarked in Section 4 that both these problems
are EXPTIME-complete. However the satisfiability problem for the basic modal language is
PSPACE-complete. Hence (assuming that PSPACE is strictly contained in EXPTIME , the stan-
dard assumption) our ability to express these problems in the enriched language shows that the
apparent increase in expressive power is genuine.

This in turn raises a new question. Because it can encode these problems, the satisfiability
problem for the enriched language is at least EXPTIME-hard. But are some problem-instances
even harder? No. Everything is solvable in EXPTIME.

THEOREM 35. The satisfiability problem for the basic modal language enriched with the uni-
versal modality is EXPTIME-complete.

Proof. See Hemaspaandra [59], or her earlier PhD thesis Spaan [107]. a

But the universal modality not only gives us extra expressivity at the level of models, it also in-
creases our ability to define new classes of frames. Moreover, an elegant variant of the Goldblatt-
Thomason Theorem holds for the enriched language. We’ll discuss this result shortly, but let’s
first consider two examples of newly definable frame classes.

The class of frames of cardinality less than or equal to some natural numbern (that is, frames
in which |W | ≤ n) is not definable in the basic modal language. Why not? Because basic
modal validity is closed under the formation of disjoint unions. Hence any basic modal formula
ϕ which allegedly defined this frame class could easily be shown to fail: simply by sticking
together enough frames we could validateϕ on frames of cardinality greater thann.

But this conditionis definable with the help of the universal modality:

n+1∧
i=1

Epi →
∨
i 6=j

E(pi ∧ pj).
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As the reader can easily check, this formula is valid on any frame where|W | ≤ n, and can be
falsified on any larger frame (in essence, the formula encodes the pigeonhole principle forn+ 1
pigeons andn holes). It follows that validity in the enriched language is not preserved under the
formation of disjoint unions. This, of course, is as it should be. We want a genuineuniversal
modality, not something that can be fooled by the addition of new components.

Here’s a second example. The condition∀x∃y Ryx (that is, every point has a predecessor)
is not definable in basic modal logic. Why not? Because modal validity is preserved under
the formation of generated subframes. Any basic modal formula which putatively defined this
class would have to be valid on the frame(N, R), whereRnm iff n > m, the natural numbers
under the reverse ordering. But (by preservation under generated subframes) it would then have
to be valid on the subframe generated by any numbern. But in any such subframe,n has no
predecessor, hence the condition is not basic modal definable.

But it is definable with the help of the universal modality:

p→ E3p.

It is easy to check that this formula defines the required condition, hence it follows that validity
in the enriched language is not preserved under generated subframes. Again, this is the way it
should be. A genuinely universal modality will not let us throw away points: its purpose is to
keep an eye on the entire frame. It should be intolerant of both additions (disjoint unions) and
deletions (generated submodels).

And now for the promised result: when it comes to defining elementary frame classes, in-
tolerance towards disjoint unions and generated submodels is precisely what distinguishes the
enriched language from the basic modal language. For the following result is the Goldblatt-
Thomason Theorem for the basic modal language, with closure under disjoint unions and gener-
ated subframes stripped away.

THEOREM 36. A first-order definable class of frames is definable in the basic modal language
enriched with the universal modality iff it is closed under taking bounded morphic images, and
reflects ultrafilter extensions.

Proof. See Goranko and Passy [55]. a

Three comments. First, adding the universal modality also increases our ability to define
non-elementary frame classes. For example, the class of frames where the converse of the acces-
sibility relationR is well-founded (that is, where it is impossible to form infiniteR-successorship
chains) is not definable in basic modal logic. Löb’s formula,2(2p → p) → 2p doesn’t quite
pin this condition down (recall that it defines the conjunction of transitivity and converse well
foundedness). But the following Löb-like formula in the enriched language does:

A(2p→ p)→ p.

(This example is from Goranko and Passy [55], the key reference on the universal modality.)
Second, it is straightforward to extend the definition of bisimulation so that it works for the basic
modal language enriched with the universal modality; all that needs to be done is to insist that the
bisimulation betotal, that is, that every element in each model is related to at least one point in
the other; see de Rijke [28] for a brief discussion. Third, the universal modality has a big brother,
thedifference operator. The diamond form of this operator is writtenD, andDϕ is satisfied at
a pointw in a model if and only ifϕ is satisfied at somedifferentpoint v (that is, the difference
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operator is interpreted using the6= relation onW ). The difference operator is strong enough to
define the universal modality (Eϕ is justϕ ∨ Dϕ) butD cannot be defined usingE (we leave
the proof as an exercise). The difference operator arises naturally in many setting and, like the
universal modality, has a smooth meta-theory; see de Rijke [27] for more information.

6.2 Hybrid logic

Basic modal languages have an obvious expressive weakness: they cannot name points. We
cannot say this happenedthen, or that someparticular individual has some property, or that two
distinct sequences of processes take us from the current state toidenticalstates. For example, in
Figure 4 we let the nodes represent particular individuals such as Terry and Judy — but the basic
modal language doesn’t let us pick out these individuals. First-order logic, of course, lets us do
this. We use constants to name individuals of interest, and the equality symbol for reasoning
about their identity. No analogous mechanisms exist in basic modal logic. Thebasic hybrid
languageis the result of adding them.

At the heart of hybrid logic lies a simple idea, first introduced by Arther Prior [94, 95] in
the 1960s: sort the propositional symbols, and useformulas as terms. Let’s do this right away.
Take a language of basic modal logic (with propositional symbolsp, q, r, and so on) and add
a second sort of propositional symbol. The new symbols are callednominals, and are typically
written i, j, k, andl. Both types of propositional symbol can be freely combined to form more
complex formulas in the usual way. And now for the key change:insist that each nominal be
true at exactly one point in any model. That is, insist (for any valuationV and nominali) that
V (i) be a singleton set. We call the unique point inV (i) thedenotationof i. A nominal ‘names’
its denotation by being true there and nowhere else.

This change is far from negligible: already we have a more expressive logic. Consider the
following basic modal formula:

3(r ∧ p) ∧3(r ∧ q)→ 3(p ∧ q).

This formula can be falsified, as thep-witnessing andq-witnessing points given by the antecedent
may be distinct. But now consider the following hybrid formula:

3(i ∧ p) ∧3(i ∧ q)→ 3(p ∧ q).

This is identical to the preceding formula, except that we have replaced the propositional symbol
r by the nominali. But the resulting formula is valid. For now we have extra information: the
p-witnessing andq-witnessing successors both makei true, so they are true at the same point,
namely the denotation ofi.

The addition of nominals is the crucial step towards the basic hybrid language, but we need a
second ingredient too:satisfaction operators. These are operators of the form@i, wherei is a
nominal. The formula@iϕ asserts thatϕ is satisfied at the (unique) point named by the nominal
i. That is:

M, w |= @iϕ iff M, u |= ϕ, whereu is the denotation ofi.

Syntactically, satisfaction operators are modalities. And they are semantically well behaved. For
a start, all instances of the modal distribution schema are valid:

@i(ϕ→ ψ)→ (@iϕ→ @iψ).
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Moreover, satisfaction operators also admit the modal generalisation law: ifϕ is valid, then so is
@iϕ (for any choice ofi). Hence satisfaction operators are normal modal operators. Moreover,
they are self-dual modalities, for all instances of@iϕ ↔ ¬@i¬ϕ are valid. So we are free to
regard satisfaction operators as either boxes or diamonds.

But for present purposes, the most important point about satisfaction operators is that they
give us a modal perspective on the equality relation. To see this, note that formulas like

@ij

are well formed. What does this formula assert? It says that “at the denotation ofi, the nominal
j is satisfied”, or to put it another way, “the point namedi is identical to the point namedj”.
Hence the following schemas are valid:@ii (reflexivity of equality),@ij → @ji (symmetry of
equality),@ij ∧ @jk → @ik (transitivity of equality), and@iϕ ∧ @ij → @jϕ (replacement).
As we hoped, a modal theory of equality is emerging.

We will shortly characterise this theory, but before doing so let’s glance at what is happening
at the level of frames. Here too there is an increase in expressivity. None of the four first-order
definable frame conditions listed below can be defined in basic modal logic. But it is easy to
check that each is defined by the hybrid formula written next to them:

∀x¬Rxx i→ ¬3i (irreflexivity)
∀xy(Rxy → ¬Ryx) i→ ¬33i (asymmetry)

∀xy(Rxy ∧Ryx→ x = y) i→ 2(3i→ i) (antisymmetry)
∀xy(Rxy ∨ x = y ∨Ryx) @j3i ∨@ji ∨@i3j (trichotomy).

And now for the main result. Hybridisation has given us some sort of modal theory of equal-
ity. But how much of the corresponding first-order theory have we captured? Of course, now
when we talk about “corresponding first-order theory” we mean: theory in the first-order corre-
spondence languageenriched with constants and the equality symbol.

The first step towards an answer is to extend the standard translation to cover nominals and
satisfaction operators. So enrich the first-order correspondence language with constants and
the equality symbol; to keep the notation uncluttered, we’ll re-use the nominals as first-order
constants. Then add the following clauses to the standard translation:

STx(i) = (x = i)
STx(@iϕ) = STi(ϕ).

That is, nominalsi are translated into first-order constantsi, and satisfaction operators are trans-
lated by substituting the relevant first-order constant for the free-variablex. Note that this transla-
tion returns first-order formulas with at most one free variablex, not exactly one. This is because
a constant may be substituted for the free occurrence ofx. For example, the hybrid formula@ii
translates into the first-ordersentencei = i.

The second step is to extend the notion of bisimulation given in Definition 5 to make it suitable
for the basic hybrid language and for the constant-enriched first-order correspondence language:

DEFINITION 37 (Bisimulation-with-names). A bisimulation-with-names between modelsM
= (W,R, V ) andM′ = (W ′, R′, V ′) is a non-empty binary relationE between their domains
(that is,E ⊆W ×W ′) such that wheneverwEw′ we have that:

Atomic harmony: w andw′ satisfy the same proposition symbols, and the same nominals.

Zig: if Rwv, then there exists a pointv′ (in M′) such thatvEv′ andR′w′v′, and
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Zag: if R′w′v′, then there exists a pointv (in M) such thatvEv′ andRwv.

Closure: All points named by nominals are related byZ.

LEMMA 38 (Bisimulation-with-names Invariance Lemma).
If E is a bisimulation-with-names betweenM = (W,R, V ) and M′ = (W ′, R′, V ′), and

wEw′, thenw andw′ satisfy the same basic hybrid formulas.

Proof. An easy extension of the inductive proof of Lemma 9. There are only two new cases to
check. a

And now for the key result:

THEOREM 39 (Hybrid Characterisation Theorem).The following are equivalent for all first-
order formulasϕ(x) in at most one free variablex:

1. ϕ(x) is invariant for bisimulation-with-names.

2. ϕ(x) is equivalent to the standard translation of a basic hybrid formula.

Proof. That clause (ii) implies (i) is a more or less immediate consequence of Lemma 38. The
hard direction is showing that clause (i) implies (ii). The original proof can be found in Areces,
Blackburn and Marx [6]. a

In short, basic hybrid logic is a simple notation for capturingexactlythe bisimulation-invariant
fragment of first-order logic with constants and equality, or to put it another way, basic hybridi-
sation is a mechanism for equality reasoning in propositional modal logic. And it comes cheap.
Up to a polynomial, the complexity of the resulting decision problem is no worse than for the
basic modal language we started with:

THEOREM 40. The satisfiability problem for the basic hybrid language over arbitrary models
is PSPACE-complete.

Proof. See Areces, Blackburn and Marx [6]. a

For a detailed overview of hybrid logic, see Chapter 14 of this handbook.

6.3 Temporal logic with Until and Since operators

We turn now to another historically early enrichment: the addition of the binaryU (Until) andS
(Since) operators. These were introduced in the late 1960s by Hans Kamp [69], who added them
to Arthur Prior’s basic (F andP based) tense logic, and proved an elegant result:U andS are
expressively complete with respect to Dedekind complete strict total orders (we discuss Kamp’s
result below). But, beautiful though this is, it is not what led to the present popularity of these
operators. Rather, around 1980, Gabbay, Pnueli, Shelah and Stavi [47] observed that Until offers
precisely what is required to stateguarantee properties, and this led to its widespread adoption
for reasoning about programs. Given the number of researchers currently active in temporal logic
for program verification, Until may well be the best known and most widely used modal operator
of all: it plays a key role in LTL (Linear Time Temporal Logic), CTL (Computational Tree
Logic), and CTL∗ (a highly expressive system that contains both LTL and CTL as sublogics).
For an introduction to these logics, see Clarke, Grumberg and Peled [23].
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Now, we briefly met the Until operator in Section 4 when we discussed model checking. There
we placed a restriction on the relations that could interpret it (we insisted on working with the
transitive closure of an irreflexive relation). Here we drop this requirement and define Until and
Since in their most general form:

M, w |= U(ϕ,ψ) iff there is av such thatRwv andM, v |= ϕ,
and for allu such thatRwu andRuv we haveM, u |= ψ.

M, w |= S(ϕ,ψ) iff there is av such thatRvw andM, v |= ϕ,
and for allu such thatRvu andRuw we haveM, u |= ψ.

Putting this in words, Until asserts that there issomepoint in the future whereϕ holds, and
that atall points between the point of evaluation and this futureϕ-witnessing point,ψ holds.
Since functions in the same way, but towards the past. Note the∃∀ pattern of quantification in
the satisfaction definitions. These operators are neither diamonds nor boxes; they are something
new and (as we shall see) more powerful.

What can we say with them? For a start, they have all the power of ordinary diamonds:
U(ϕ,>) has the same meaning as3ϕ. But now we can say more: these operators are tailor-
made for stating guarantee properties, requirements of the form “Some event will happen, and
until that event takes place, a certain condition will hold”. For if we represent the event byϕ
and the condition byψ, thenU(ϕ,ψ) clearly captures what is required.

But how can we be sure that we can’t state guarantee requirements in the basic modal lan-
guage? A simple bisimulation argument demonstrates this. Consider the two models shown in
Figure 16; we are interested in the transitive closure of the relation indicated by the arrows. These
models are bisimilar (linkw0 andw1 with w′, link t0 andt1 with t′, and so on). So suppose that
there is some formula in the basic modal language that captures the effect ofU(p, q). Any such
formula would be true in the left-hand model at pointsw0 andw1. For consider what happens at
w0 (the argument forw1 is analogous). There is a point to its future (namelyv1) that makesp true
and at all points lying in between (and there is only one, namelyu) we have thatq is satisfied.
However any such formula would befalsein the right-hand model atw′, for here there aretwo
points betweenw′ andv′ (namelyu′ andt′) andt′ does not satisfyq. Asw′ is bisimilar tow0

andw1, we conclude that no basic modal formula can capture the effect of Until. This result can
be strengthened. Even if we restrict ourselves to linear models, the basic modal language can’t
define Until (see Proposition 7.10 in Blackburn, de Rijke and Venema [13] for a proof that it
can’t even do so on the real numbers).

p

v1

q

t1
p

v0

q

ut0

w0 w1

p

v'

t'u'

w'

Figure 16. Until not definable in basic modal logic

So addingS andU to the basic modal language yields new expressivity — but how much?
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We shall state Kamp’s Theorem, which shows that on certain classes of structures (a class that
includes the real numbers) these operators capture the entire one free variable fragment of the
first-order correspondence language.

First, note that Until and Since correspond to fragments of the familiar first-order correspon-
dence language that we have been working with throughout the chapter. After all, we can trans-
late them as follows:

STx(U(ϕ,ψ)) = ∃z (Rxz ∧ STz(ϕ) ∧ ∀y (Rxy ∧Ryz → STy(ψ)))
STx(S(ϕ,ψ)) = ∃z (Rzx ∧ STz(ϕ) ∧ ∀y (Rzy ∧Ryx→ STy(ψ))).

(Incidentally, observe that we need three variables to specify this translation. Thus the trans-
lation doesn’t give us an easy decidability result for the enriched language, though in fact its
satisfiability problem is decidable over arbitrary models.)

So what does Kamp’s Theorem say? First some preliminary definitions. LetK be a class
of models. We say that a modal language isexpressively complete overK, if every formula (in
one free variable) from the first-order correspondence language is equivalent to a formula in the
modal language (when we restrict attention to models fromK). Which class of models is Kamp’s
Theorem about? Astrict total order is any frame (with one binary relationR) that is transitive,
irreflexive, and linear (that is,∀xy(Rxy ∨ x = y ∨ Ryx)). A strict total order isDedekind
completeif every subset with an upper bound has a least upper bound. Standard examples of
Dedekind complete strict total order are the real numbers(R, <) and the natural numbers(N, <)
under their usual orderings. And now we have:

THEOREM 41 (Kamp’s Theorem). The basic modal language enriched withU and S is
expressively complete with respect to models based on Dedekind complete strict total orders.

Proof. The original proof is in Kamp’s thesis [69]. Elegant modern proofs, and proofs of stronger
expressive completeness results, can be found in Gabbay, Hodkinson and Reynolds [46]. See also
Chapter 11 of this handbook. a

Much more could be said about the Until and Since operators, but we will confine ourselves to
the following remark. Because of their∃∀ pattern of quantification, for some time it was unclear
how best to define a suitable notion of bisimulation. However Kurtonina and de Rijke [79] and
Sturm [109] have given definitions which enable characterisation theorems to be proved.

6.4 Conditional logic

Although formulas of the formϕ → ψ are often glossed as “ifϕ thenψ”, the truth conditions
that classical logic gives to the→ symbol (and in particular, the fact thatϕ→ ψ is true whenϕ
is false) means that→ does not mirror the more interesting meanings that conditionals can have
in natural language. This has inspired numerous attempt to introduce conditional connectives
(say,>) that better mimic the logic(s) of natural language conditionals. Indeed, such aspirations
have given birth to an entire branch of logic, namely Relevance Logic, which nowadays is a
well-established branch of the study of substructural logics (see Restall [97]).

But there is a modal approach to conditionals too. Its motivation comes from the following
intuition: a conditionalϕ > ψ can (often) be read as aninvitation to assume the antecedent
(perhaps making some adjustments to accommodate its truth) and check if the consequent is true.
A characteristic inferential feature of this reading is the failure ofmonotonicityin the antecedent.
“If I catch the 6.22 train at Amsterdam Central (ϕ), I will be home on time (ψ)” is true on most
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readings of the conditional, but adding an unusual further condition may make it false, as the
sentence “If I catch the 6.22 train at Amsterdam Central (ϕ), and the dikes break (θ), I will be
home on time (ψ)” demonstrates.

Models for modal-style conditional reasoning are triplesM = (W,C, V ). HereW is a set of
worlds,V is a valuation, andC is a ternary relation ofrelative similarity, or (as it is sometimes
put in the literature) a relation of relative ‘comparison’ or ‘preference’ between worlds. It is
useful to writeCwuv asCwuv and to read this as saying that “worldu has more in common with
world w than worldv does”. It is standard to demand thatC satisfies∀uvz(Cwuv ∧ Cwvz →
Cwuz), w-centred transitivity, and∀uCwuu, w-centred reflexivity. Moreover, some authors,
most famously David Lewis, also demandw-centred comparability, that is,∀uv(Cwuv∨Cwvu).
A good way to visualise the relationCwuv is to think ofu andv as two concentric circles around
w. If u andv are distinct, thenu is a concentric circleclosertow thanv is.

The simplest truth condition for conditionals is the following, which come from David Lewis’s
groundbreaking book “Counterfactuals” [81]. It fits in well with our intuitions (at least on finite
models):

M, w |= ϕ > ψ iff all minimalϕ-worlds in thew-centred orderingCwuv areψ worlds.

Note thatϕ-minimal worlds aroundw are the only ones we consider. That is, this satisfaction
definition is not given purely in terms of simple frame conditions (such as the “inspect theR-
successor states” familiar from the basic language) it also takes into account which formulas are
true and where. As the minimal worlds satisfying the stronger conditionϕ ∧ θ need not be the
ones satisfyingϕ, in this way we get a semantic distinction which accounts for the failure of
left-monotonicity.

But what aboutinfinite models? Then there need not be any minimal worlds satisfying the
antecedent (we might have a chain ofϕ-satisfying concentric circles coming ever closer tow).
Here’s a way of handling this: switch to the following more complex truth condition (to keep
thing readable, we shall write useϕ(v) as shorthand forM, v |= ϕ, and similarly forψ):

M, w |= ϕ > ψ iff ∀u(ϕ(u)⇒ ∃v(Cwvu & ϕ(v) & ∀z((Cwvz & ϕ(v))⇒ ψ(z)).

This says that the conditionalϕ > ψ holds if, wheneverϕ holds at some circleu, then there
is some smaller circlev whereϕ holds such that all circlesz within v satisfyϕ. This is rather
awkward to process in first-order logic, but it can be clearly expressed in modal logic if we make
use of a unary modality〈c〉 (which looks inwards for a circle closer to the centre) together with
the universal modalityA. For then we can simply say:

ϕ > ψ =def A(ϕ→ 〈c〉(ϕ ∧ [c](ϕ→ ψ)).

This more complex truth-condition validates a minimal logic which includes such principles
as upward monotonicity in the consequent:ϕ > ψ impliesϕ > (ψ ∨ θ). Further properties of
the similarity ordering enforce special axioms via standard frame correspondences. Assuming
just reflexivity and transitivity yields the minimal conditional logic originally axiomatised by
Burgess [18] and Veltman [131], while assuming also comparability of the ordering gives rise to
the logics obtained by Davis Lewis.

What about complexity? A number of interesting results are known:

THEOREM 42. The satisfiability problem for the minimal conditional logic (that is, where
Cwuv is transitive and reflexive) is PSPACE-complete when formulas with arbitrary nestings
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of conditionals are allowed, and NP-complete (that is, no worse than propositional logic) for
formulas with bounded nesting of conditionals. If uniformity is assumed (that is, if we assume
that all worlds agree on what worlds are possible) the complexity rises to EXPTIME-complete,
even for formulas with bounded nesting. If absoluteness is assumed (that is, if we assume that all
worlds agree on all conditional statements) the decision problem is NP-complete for formulas
with arbitrary nesting.

Proof. See Friedman and Halpern [44]. a

In general, conditional logic has not been studied semantically in the same style as most
modal languages, though there is no reason why it cannot be. For example, bisimulations could
be defined for> is much the same spirit as they are defined for temporal logics with Until and
Since. Likewise, issues of frame definability beyond the minimal setting can be explored; for
example, van Benthem’s [125] survey of correspondence theory notes correspondences between
conditional axioms and triangle inequalities concerning concrete geometrical relations of relative
nearness in space. Many recent technical developments in conditional logic, however, have to do
with its connection withbelief revision theory(see G̈ardenfors and Rott [49]). In that setting, a
conditionalϕ > ψ means “if I revise my current beliefs with the information thatϕ, thenψ will
be among my new beliefs”; see, for example, Ryan and Schobbens [99].

6.5 The guarded fragment

The richer modal languages so far examined have clearly been modal in a syntactic sense; all
use the typical “apply operator to formula” syntax. The guarded fragment, however, arises as an
attempt to isolate fragments of first-order logic that can plausibly be called modal. So the modal
languages we shall consider here are syntactically first-order.

The clue leading to the guarded fragment is the standard translation of the modalities. This
treats modalities as macros embodyingrestrictedforms of first-order quantification, in particular,
quantification restricted to successor states:

STx(3ϕ) = ∃y(Rxy ∧ STy(ϕ))
STx(2ϕ) = ∀y(Rxy → STy(ϕ)).

As we saw earlier, it is this restricted form of quantification that lets bisimulation emerge as the
key model-theoretic notion. And bisimulation, via the tree model property, leads to decidability.
Thus at least one pleasant property of modal logic can plausibly be traced back to its use of
a restricted form of quantification. So it is natural to ask whether other first-order fragments
defined by restricted quantification have such properties. This line of enquiry leads to the guarded
fragment and its relatives.

The first step takes us to the guarded fragment, which was introduced by Andréka, van Ben-
them, and Ńemeti [5]. Guarded formulasϕ are built up as follows:

ϕ ::= Qx | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ∃y(G(x, y) ∧ ϕ(x, y)) | ∀y(G(x, y)→ ϕ(x, y)).

Herex and y are finite tuples of variables,Q is a predicate symbol (of appropriate arity for
the tuplex), andG, the guard, is a predicate symbol too. The key point to observe is that the
free variables ofϕ appear in the guard. The set of all guarded first-order formulas is called the
guarded fragment.
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THEOREM 43. The guarded fragment is decidable. Its satisfiability problem is 2EXPTIME-
complete, and EXPTIME-complete if we have a fixed upper bound on the arity of predicates.
Moreover, the guarded fragment has the finite model property.

Proof. See Gr̈adel [56] for the complexity results and a direct proof of the finite model property.
An earlier (algebraic) proof of the finite model property can be found in Andréka, Hodkinson,
and Ńemeti [4]. a

The guarded fragment is a natural generalisation of the first-order formulas obtainable under
the standard translation, but does it go far enough? For example, adding Until to a basic modal
language yields a decidable logic, but the standard translation ofU(p, q), namely

∃y (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy)→ Qz)),

does not belong to the guarded fragment, and it can be shown that it is not equivalent to a formula
in the guarded fragment either. This suggests that it may be possible to pin down richer restricted-
quantification first-order fragments that retain decidability, and several closely related extensions
of the guarded fragment, such as the loosely guarded fragment (see van Benthem [123]) and the
packed fragment (see Marx [84]) have been proposed which do precisely this. Let’s take a quick
look at the packed fragment.

The packed fragment allows us to usecomposite guardsγ instead of merely atomic guardsG:
guards are now conjunctions of the following kinds of formulas:xi = xj orR(xi1 , . . . , xin

) or
∃xj1 . . .∃xjm R(xi1 , · · · , xin) or ∀xj1 . . .∀xjm R(xi1 , · · · , xin). The crucial point, however, is
to state some restriction on the way we quantify variables to ensure that decidability is retained.
In the packed fragment we do this as follows. We say that a guardϕ is a packed guardif for
every pair of distinct free variablesxi andxj it contains, there is a conjunct inϕ in whichxi and
xj both occur free. Then packed formulas are built up as follows:

ϕ ::= Qx | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ∃y(γ ∧ ϕ). | ∀y(γ → ϕ),

whereγ is a packed guard,ϕ is a packed formula, and (as with the guarded fragment) all variables
free inϕ are free inγ. The set of all packed first-order formulas is called the packed fragment.

As an example, consider again the standard translation ofU(p, q), namely

∃y (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy)→ Qz)).

This is not packed as the guard of the subformula∀z ((Rxz ∧ Rzy) → Qz)) has no conjunct
in which x andy occur together. But this is easy to fix. The following (logically equivalent)
formula is packed:

∃x (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy ∧Rxy)→ Qz)).

And indeed, the packed fragment turns out to be computationally well behaved:

THEOREM 44. The packed fragment is decidable. Its satisfiability problem is 2EXPTIME-
complete. Moreover, it has the finite model property.

Proof. The complexity result follows from results in Grädel [56]. The original proof of the finite
model property for the packed fragment (and the loosely guarded fragment) can be found in
Hodkinson [61]; a more elegant proof can be found in Hodkinson and Otto [62]. a
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In short, we have isolated two decidable fragments of first-order logic which are expressive
enough to generalise many common modal languages. Moreover, these fragments have attractive
properties besides decidability. Basic modal logic resembles first-order logic in most of its meta-
properties, even ‘existential’ ones (such as Craig Interpolation, Beth definability, and the standard
model-theoretic preservation theorems) that do not follow straightforwardly from the fact that
it is a first-order fragment. The guarded fragment shares this good behaviour to some extent,
witness the Łos-style preservation theorem for submodels given in Andréka, van Benthem, and
Németi [5]. But subsequent work has shown that the picture is somewhat mixed. There is indeed
a natural notion of guarded bisimulation (see Andréka, van Benthem, and Németi [5]) which
characterises the guarded fragment as fragment of first-order logic. Moreover, Beth definability
holds (see Hoogland, Marx and Otto [64]). However Craig interpolation fails in its strong form,
though it holds when we view guard predicates as part of the logical vocabulary (see Hoogland
and Marx [63]).

6.6 Propositional Dynamic Logic

The richer modal languages so far discussed extend the first-order expressive power available
for talking about models: the universal modality adds quantification overW ×W , hybridisation
gives access to constants and equality, Until and Since and conditional logic add richer∃∀ quan-
tificational patterns, and the guarded-fragment cheerfully replaces modal syntax with first-order
syntax. But the next two languages we shall discuss take us in a different direction: both add
second-orderexpressive power. Now, in Section 5 we saw that modal languages have second-
order expressive power (via the concept of validity) at the level offrames. But in the languages
we now consider, second-order expressivity arises directly: it is hardwired into the satisfaction
definitions, and hence is available at the level ofmodels. In particular, Propositional Dynamic
Logic (henceforth PDL) offers us an (infinite collection of) transitive closure operators, and the
modalµ-calculus offers us a general mechanism for forming fixed-points. Significantly, both
PDL and the modalµ-calculus were born in theoretical computer science. Finite structures are
crucial to the theory and practice of computation, and basic results of finite model theory (see
Ebbinghaus and Flum [32]) show that first-order logic is badly behaved when interpreted over
such structures. Nowadays it is standard practice to extend first-order languages with second-
order constructs (such as the ability to take transitive closure or form fix-points) when working
with finite models, and in the languages we now consider, such ideas are put to work in modal
logic.

Let’s start by looking at the weaker of the two languages, namely PDL. The underlying idea
(to extend modal logic with a modality for every program) is due to Vaughan Pratt [92], and the
language now called PDL was first investigated by Fisher and Ladner [41, 42]. PDL contains
an infinite collection of diamonds. Each has the form〈π〉, whereπ denotes a non-deterministic
program. The intended interpretation of〈π〉ϕ is that “some terminating execution ofπ from
the current state leads to a state with the informationϕ”. The dual assertion[π]ϕ states that
“every terminating execution ofπ from the current state leads to a state with the information
ϕ”. Crucially, the inductive structure of programs is made explicit in PDL’s syntax, as complex
programs are built out of basic programs using four program constructors. Suppose we have
fixed a set of basic programsa, b, c, and so on. We are allowed to define complex programsπ
over this base as follows:

Choice: if π1 andπ2 are programs, then so isπ1 ∪ π2. It non-deterministically
executes eitherπ1 or π2.
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Composition: if π1 andπ2 are programs, then so isπ1 ; π2. It first executesπ1 and
then executesπ2.

Iteration: If π is a program, then so isπ∗. It executesπ a finite (possibly zero)
number of times.

Test: if ϕ is a formula, thenϕ? is a program. It tests whetherϕ holds, and if so,
continues; if not, it fails.

Hence PDL makes available the following (inductively defined) algebra of diamonds. First
we have diamonds〈a〉, 〈b〉, 〈c〉, and so on, for working with the basic programs. Then, if〈π1〉
and〈π2〉 are diamonds andϕ is a formulas,〈π1∪π2〉, 〈π1 ;π2〉, 〈π∗1〉 and〈ϕ?〉 are diamonds too.
Note the unusual syntax of the test constructor diamond: it makes a modality out of a formula.
This means that the sets of PDL formulas and modalities are defined by mutual induction.

How do we interpret PDL? Syntactically we’re simply dealing with a basic modal language in
which the modalities are indexed by a structured set. So a model for PDL will have the form we
are used to, namely

(W, {Rπ | π is a program}, V ),

a suitably indexed collection of relations together with a valuation. Moreover, the usual satisfac-
tion definition is all that is required: diamonds existentially quantify over the relevant transitions,
and boxes universally quantify. Nonetheless, something more needs to be said. Given the in-
tended interpretation of PDL, most of these models are uninteresting. We want models built over
frames which do justice to the intended meaning of our program constructors. Which models are
these?

Nothing much needs to be said about the interpretation of the basic programs: any binary
relation can be regarded as a transition relation for a non-deterministic program (though if we
were interested indeterministicprograms, we would insist on working with frames in which
each basic program was interpreted by a partial function). Nor need much be said about the test
operator. Unusual though its syntax is, its intended interpretation in any modelM is simply

Rϕ? = {(w, v) | w = v andM, w |= ϕ}.

This makes sense in any model; no additional frame conditions need to be imposed here. But
the three remaining constructors certainlydo demand additional frame structure. Here’s what is
required:

Rπ1∪π2 = Rπ1 ∪Rπ2 ,
Rπ1;π2 = Rπ1 ◦Rπ2 (= {(x, y) | ∃z (Rπ1xz ∧Rπ2zy)}),
Rπ∗1 = (Rπ1)∗, the reflexive transitive closure ofRπ1 .

These restriction are the natural set-theoretic ways of capturing the “either-or” nature of non-
deterministic choices (forRπ1∪π2), the idea of executing two programs in a sequence (forRπ1;π2)
and the idea of iterating the execution of a program finitely many times (forRπ∗1 ). Accordingly,
we make the following definition. LetΠ be the smallest set of programs containing the basic
programs and the programs constructed over them using the constructors∪, ;, and∗. Then a
regular frameoverΠ is a frame(W, {Rπ | π ∈ Π}) whereRa is a binary relation for each basic
programa, and for all complex programsπ, Rπ is the binary relation constructed inductively
using the above clauses. Aregular modelover Π is a model built over a regular frame (that
is, regular models are regular frames together with a valuation). When working with PDL over
the programs inΠ, we will be interested in regular models forΠ, for these are the models that
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capture the intended interpretation. All very simple and natural — but by insisting thatRπ∗1

be interpreted by the reflexive transitive closure ofRπ1 , we have given PDL genuinelysecond-
order expressive power. A straightforward application of the Compactness Theorem shows that
first-order logic cannot define the transitive closures of arbitrary binary relations, so with this
definition we’ve moved beyond the confines of first-order logic.

What can we say with PDL? At the level of models we can express some familiar constructs
as programs of PDL:

(p? ; a) ∪ (¬p? ; b) if p then a else b.
a; (¬p?; a)∗ repeat a until p.

(p?; a)∗;¬p? while p do a.

Note the crucial role played by∗ in capturing the effect of the two loop constructors.
Moreover, the second-order expressivity built in at the level of models spills over into the level

of frames. Here’s a nice illustration. Via the concept of validity, PDL itself is strong enough to
define the class of regular frames (something which cannot be done in a first-order language).
Now, it is not hard to give conditions that capture choice and composition. For example the
formula

〈π1;π2〉p↔ 〈π1〉〈π2〉p

is valid on precisely those frames satisfyingRπ1;π2 = Rπ1 ◦ Rπ2 . But these are first-order
conditions. What about iteration? We demanded that the relationRπ∗ used for the program
π∗ be the reflexive, transitive closure of the relationRπ used forπ. This constraint cannot be
expressed in first-order logic; how can we impose it via PDL validity?

As follows. First we demand that

〈π∗〉ϕ↔ ϕ ∨ 〈π ; π∗〉ϕ

be valid. This says that a state satisfyingϕ can be reached by executingπ a finite number of
times if and only if weϕ is satisfied in the current state, or we can executeπ once and then find
a state satisfyingϕ after finitely many more iterations ofπ. Second, we demand that

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ)

be valid too. This is calledSegerberg’s axiom. Work through what it says: as you will see,
in essence it is an induction schema. A frame validates all instances of the four schemas just
introduced if and only if it is a regular frame.

Summing up, at both the level of models and frames, PDL has a great deal of expressive
power. Hence the following result is all the more surprising:

THEOREM 45. PDL has the finite model property and is decidable. Its satisfiability problem is
EXPTIME-complete.

Proof. The finite model property, decidability, and EXPTIME-hardness results for PDL were
proved in Fisher and Ladner [41, 42]. The existence of an EXPTIME algorithm for PDL satisfi-
ability was proved in Pratt [93]. a

But we are only half-way through our story. With the modalµ-calculus we will climb even
higher in second-order expressivity hierarchy, and we will do so without leaving EXPTIME.
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6.7 The modalµ-calculus

The modalµ-calculus is the basic modal language extended with a mechanism for forming least
(and greatest) fixed-points. It is highly expressive (as we shall see, it is stronger than PDL) and
computationally well behaved. Moreover it has an beautiful bisimulation-based characterisation.
All in all, it is one of the most significant languages on the modal landscape. It was introduced
in its present form by Dexter Kozen [73].

The idea underlying the modalµ-calculus is to view modal formulas asset-theoretic opera-
tors, and to add mechanisms for specifying their fixed-points. Now, a set-theoretic operator on a
setW is simply a functionF : 2W 7→ 2W . But how can we view modal formulas as set-theoretic
operators? Consider a formulaϕ containing some propositional variable (sayp). In any model,
ϕ will be satisfied at some set of points. If we systematically vary the set of points that the
valuation assigns top, the set of points whereϕ is satisfied will typically vary too. So we can
viewϕ as inducing an operator over the points of some model, namely the operator that takes as
argument the subset ofW that is assigned top, and returns the set of points whereϕ is satisfied
with respect to this assignment.

Let’s make this precise. We will work in a language with a collection of diamonds〈π〉,
so models have the formM = (W, {Rπ}π∈MOD, V ). For any propositional symbolp, V (p)
is the set of points inM wherep is satisfied. Let’s extendV to a function that returns, for
arbitrary formulasϕ, the set of points inM that satisfyϕ (we won’t invent a new name for this
extended valuation, we’ll simply call itV ). The required definition is a simple reformulation of
the satisfaction definition for the basic modal language:

V (p) = V (p) for all proposition symbolsp
V (¬ϕ) = W\V (ϕ)

V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ)
V (〈π〉ϕ) = {w | for somev ∈W ,Rπwv andv ∈ V (ϕ)}.

Furthermore, for any propositional symbolp and anyU ⊆ W we shall writeV[p←U ] for the
(extended) valuation that differs from the (extended) valuationV , if at all, only in that it assigns
U to p. That is,V[p←U ](p) = U , and for anyq 6= p, V[p←U ](q) = V (q). Then the operator
induced by a formulaϕ (relative to a propositional variablep) is the function that maps any
U ⊆W to V[p←U ](ϕ).

Now to bring fixed-points into the picture. A subsetX of W is a fixed-point of a set-theoretic
operatorF onW if F (X) = X. This is clearly a special property: which set-theoretic operators
have fixed-points, and how do we calculate them? The Knaster-Tarski Theorem gives important
answers. Firstly, this theorem tells us that fixed-points exist when we work withmonotoneset-
theoretic operators (an operatorF is monotone ifX ⊆ Y implies thatF (X) ⊆ F (Y )). Secondly,
this theorem tells us that ifF is a monotone operator on a setW , thenF has a least fixed-point
µF , which is equal to ⋂

{U ⊆W | F (U) ⊆ U},

and also a greatest fixed-pointνF , which is equal to⋃
{U ⊆W | U ⊆ F (U)}.

That is, bothµF andνF are solutions to the equationF (X) = X, and furthermore, for any
other solutionZ, we have thatµF ⊆ Z ⊆ νF . The least and greatest fixed-points given by the
Knaster-Tarski Theorem are the fixed-points the modalµ-calculus works with.
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But how can we specify these fixed-points using modal formulas? By enriching the syntax
with an operatorµ that binds occurrences of propositional variables. That is, we shall write
expressions likeµp.ϕ, in which all free occurrence of the propositional variablep in ϕ are bound
by theµ. The intended interpretation ofµp.ϕ is that it denotes the subset ofW that is the least
fixed-point of the set-theoretic operator induced byϕ with respect top. Fine — but how do we
know that this fixed-point exists? Ifϕ is arbitrary, we don’t. However if all free occurrences of
p in ϕ occur positively (that is, if they all occur under the scope of an even number of negations)
then a simple inductive argument shows that the set-theoretic operator induced byϕ is monotone,
and hence (by the Knaster-Tarski Theorem) has least (and greatest) fixed-points. Accordingly
we impose the syntactic restriction that theµ operator can only be used to bind a propositional
variable when all free occurrences of the variable occur positively. With this restriction in mind
we define:

V (µp.ϕ) =
⋂
{U ⊆W | V[p←U ](ϕ) ⊆ U}.

That is, the set assigned toµp.ϕ is the least fixed-point of the operator induced byϕ.
What can we say with the modalµ-calculus? Consider the expression

µp.(ϕ ∨ 〈π〉p).

Read this as defining “the least property (subset)p such that eitherϕ is in p or 〈π〉p is in p”.
What is this set? A little experiment will convince you that it must be

{w ∈W |M, w |= ϕ or there is a finiteRπ-sequence fromw to v such thatM, v |= ϕ}.

(The reader should check that this set really is the one given to us by the Knaster-Tarski Theo-
rem.) Note that this is exactly the set of points that make the PDL formula〈π∗〉ϕ true.

How do we specify greatest fixed-points? With the help of theν operator. This is defined as
follows:

νp.ϕ =def ¬µp.¬ϕ(¬p/p),

whereϕ(¬p/p) is the result of replacing occurrences ofp by ¬p is ϕ. This expression is well-
formed: ifϕ is a formula that we could legitimately apply theµ operator to (that is, if all occur-
rences ofp occur under the scope of an even number of negations), then so is¬ϕ(¬p/p). The
reader should check that this operator picks out the following set:

V (νp.ϕ) =
⋃
{U ⊆W | U ⊆ V[p←U ](ϕ)}.

That is (in accordance with the Knaster-Tarski Theorem) it picks out the greatest fixed-point of
the operator induced byϕ. As a further exercise, the reader should check that

νp.(ϕ ∧ [π]p)

denotes the following set:

{w ∈W |M, w |= ϕ and at everyv reachable fromw by a finiteRπ-sequence,M, v |= ϕ}.

Note that this is exactly the set of pointsw that make the PDL formula[π∗]ϕ true.
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In view of these examples, it should not come as a surprise that PDL can be translated into the
modalµ-calculus. We do so as follows:

(p)mu = p
(¬ϕ)mu = ¬(ϕ)mu

(ϕ ∨ ψ)mu = (ϕ)mu∨ (ψ)mu

(〈π?〉ϕ)mu = 〈π?〉(ϕ)mu

(〈π1;π2〉ϕ)mu = 〈π1〉〈π2〉(ϕ)mu

(〈π1 ∪ π2〉ϕ)mu = 〈π1〉(ϕ)mu∨ 〈π2〉(ϕ)mu

(〈π∗〉ϕ)mu = µp.((ϕ)mu∨ (〈π〉p)mu), wherep does not occur inϕ.

In fact the modalµ-calculus is strictly more expressive than PDL. The simplest example of
a construct that PDL cannot model but that the modalµ-calculus can is therepeatoperator.
The expressionrepeat(π) is true at a statew if and only if there is an infinite sequence ofRπ

transitions leading fromw. Proving that this is not expressible in PDL is tricky, but it can be
expressed in the modalµ-calculus: the formulaνp.〈π〉p does so. Moreover, the temporal logics
standardly used in computer science, such as LTL, CTL, and CTL∗, can also be embedded in the
modalµ-calculus. For remarks and references on this topic, see Chapter 12 of this handbook.

All in all, the modalµ-calculus is a highly expressive language. In spite of this, it is extremely
well behaved, both computationally and in other respects. For a start we have that:

THEOREM 46. The modalµ-calculus has the finite model property and is decidable. Its satis-
fiability problem is EXPTIME-complete.

Proof. The original decidability proof was given in Kozen and Parikh [72]. The finite model
property was first established in Street and Emerson [108]. The complexity result is from Emer-
son and Jutla [33]. a

Furthermore, experience shows that the modalµ-calculus is also well behaved when it comes to
model checking — indeed it is widely believed that its model checking task can be performed
in polynomial time. However, at the time of writing, this conjecture has resisted all attempts to
prove it.

Moreover, the modalµ-calculus has a elegant semantic characterisation. Suppose we add the
following clause to the standard translation for basic modal logic:

STx(µp.ϕ) = ∀P (∀y((STx(ϕ)→ Py)→ Py)).

Note that by adding this clause we are viewing the standard translation as taking us to monadic
second-order logic, for here we bind the unary predicate symbolP (so we’re working with a
fragment of the frame correspondence language introduced from Section 5). Thus the modal
µ-calculus is a fragment of monadic second-order logic. Which fragment? This one:

THEOREM 47. The modalµ-calculus is the bisimulation invariant fragment of monadic second-
order logic.

Proof. See Janin and Walukiewicz [66]. a

For more on the modalµ-calculus, see Chapter 12 of this handbook. As well as giving a
detailed technical overview, the chapter also gives an informal introduction to thinking in terms
of fixed-points, which is often a stumbling block when the modalµ-calculus is encountered for
the first time.
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6.8 Combined logics

We now turn to what is (at first glance) one of the simplest methods of obtaining a richer modal
language: combine two pre-existing ones. But for all its apparent simplicity, this method of
enrichment swiftly leads to difficult territory.

Many applications lead naturally to the idea of combined logics. A good example is planning.
Planning involves a collection of agents who must reason about what they are going to do given
that they know the effects of actions, and where getting more information may be important for
solving the problem at hand. Hence Robert Moore [88] proposed a combined language for this
task. His language offered both epistemic and action modalities, making it possible to say things
like

Ki[a]ϕ “agenti knows that doinga has the effectϕ”

and
[a]Kiϕ “doing a makes agenti know thatϕ” .

Actually, Moore also considered combinations of PDL with epistemic operators, as plans are
usually complex actions with program structure.

The fun starts when we ask how the two logics live together. For example, should they sim-
ply live side by side, the simple fusion of the two component logics? Or are there interactions
between them? Obviously this depends on what we are modeling. For example, shouldKi[a]ϕ
imply [a]Kiϕ? In general, no. After all, I may know that after drinking I am boring, but unfortu-
nately after drinking I no longer know that I am boring (that is, drinking is not an epistemically
transparent action). Nor need the converse implication hold for actions that deliver genuinely
new information. After consulting my account manager, I know I am broke, but I do not know
now that after the consultation I am broke.

If our application does not require the modeling of such interactions, then we are dealing
with the simplest possible combination of two decidable modal logics, and the result is again
decidable. But for some applications we might want to enforce these interactions. LetRa be the
accessibility relation for actiona, and let∼i be the epistemic relation for agenti. The following
frame correspondences tell us what these interactions give rise to:

F |= Ki[a]p→ [a]Kip iff ∀xyz((Raxy ∧ y ∼i z)→ ∃u(x ∼i u ∧Rauz))
F |= [a]Kip→ Ki[a]p iff ∀xyz((x ∼i y ∧Rayz)→ ∃u(Raxu ∧ u ∼i z)).

The first principle says that new uncertainty links between the results of an action are inherited
from existing ones; this is a version of the game-theoretic principle ofperfect recall. The other
direction is calledno learning. These are powerful interaction principles. In particular, they
impose a grid-like structure on our models, hence the possibility arises of dramatic increases in
computational complexity, or even of showing undecidability by encoding thetiling problem(see
Berger [12] for an account of the tiling problem, and Blackburn, de Rijke and Venema [13] for
examples of how to use it to prove modal undecidability results). Indeed, Halpern and Vardi [58]
show that the combined modal epistemic logic of agents with perfect recall is non-elementary
complete. Moreover, if a common knowledge operator (that is, using PDL notation, a box of the
form [(∼1 ∪ · · · ∼n)∗]) is added, the problem becomes undecidable. This is a natural example of
the bad computational behaviour that combinations of relatively simple decidable modal logics
can give rise to. Moreover the air of mystery (“How can a description of well behaved agents get
so complex?”) quickly gets dispelled once we realise that the behaviour of special agents may
have a rich mathematical structure that makes their logic tough.
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In recent years there has been intensive theoretical work on combinations of modal logic.
The goal has been to provide generaltransfer results: given two (or more) modal logics, and a
method of combining them, when do properties such as decidability, finite model property, and
finite axiomatisability transfer from the component logics to the combined logic? The simplest
way of combining two modal logics is to take their fusion. Given two modal logicsL1 andL2 (in
languages with disjoint sets of modal operators) then their fusionL1⊗L2 is the smallest logicL
in their joint language that contains them both. Fusions of modal logic have been investigated in
detail (key papers include Kracht and Wolter [74], Fine and Schurz [40], and Wolter [132]), and
have some pleasant transfer properties. For example, to axiomatise the fusion logicL, it suffices
to take the axioms for each of the components (that is, no interaction axioms involving modalities
from both language are required). Moreover, both the finite model property and decidability
transfer from the component logics to the fusion.

But this good behaviour reflects the fact that fusion is a combination method designed to
minimise the interaction between the component modalities. What of combination methods
which allow strong interaction between the modalities? The best studied combination tech-
nique here is the formation ofproductsof modal logics. Given two framesF1 = (W1, R1)
andF2 = (W2, R2), their productF1 × F2 is the frame(W1 ×W2, Rh, Rv). HereRh is the
binary relation onW1 ×W2 defined by(u1, v1)Rh(u2, v2) iff u1R1u2 andv1 = v2; andRv is
the relation defined by(u1, v1)Rv(u2, v2) iff v1R2v2 andu1 = u2. The idea of taking prod-
ucts of modal logics is an old one (dating back to at least Segerberg [103]) and is a widely used
combination method in many applications of modal logic. But the product construction creates
frames which allow for very strong interactions between the modalities, and there are far fewer
transfer results for this method of combination. Indeed, there are many negative results showing
failure of transfer of decidability.

Work on combination of logics, from both applied and theoretical perspectives, is one of
the liveliest areas of research in contemporary modal logic. For a detailed survey of fusions,
products, and methods of combinations between these extremes, see Chapter 15 of this handbook.

6.9 First-order modal logic

We turn now to what is arguably one of the least well behaved modal languages ever proposed:
first-order modal logic. However, in one of those twists that make intellectual history so fasci-
nating, first-order modal logic has come to be accepted (at least in philosophical quarters) as the
most important modal logic of all. For many philosophers, modal logicis first-order modal logic.

This is not to say that first-order modal logic is philosophically uncontroversial. Indeed, as is
discussed in Chapter 21 of this handbook, one of the liveliest debates in 20th century analytic
philosophy was ignited when Quine [96] questioned the coherence of the enterprise. But two
advances lead to its acceptance. The first was the development of the relational semantics of
first-order modal logic (Kripke [75, 77] are key papers here) and the second was the publication
of “Naming and Necessity” (Kripke [78]) which presented what is probably the most widely
accepted philosophical interpretation of the technical machinery. While these developments did
not dispel all the controversy, nowadays first-order modal logic together with (some form of)
relational semantics, is generally regarded as a well understood (perhaps even boringly familiar)
tool of philosophical analysis.

Viewed from a mathematical perspective, however, things look rather different. Had first-
order modal logic never existed, a logician who proposed its (now standard) syntax and relational
semantics might have been regarded as audacious, perhaps downright careless. Why? Because,
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in essence, first-order modal logic is a combined logic. As we have just seen, combining two
modal logics while retaining interesting properties is no easy matter. So it should not come as
too much of a surprise that combining propositional modal logic with first-order logic is unlikely
to be plain sailing. In what follows we shall sketch the standard syntax and semantics, and
mention some of its problematic features.

First the syntax (we omit some of the clauses for the booleans):

ϕ ::= P (x1, . . . , xn) | x = y | ¬ϕ | ϕ→ ψ | 3ϕ | 2ϕ | ∃xϕ | ∀xϕ.

HereP is ann-place predicate symbol and thexi are individual variables. So (given the clauses
for the quantifiers and booleans) it is clear that we have a full first-order language at our disposal,
and hence (because of the presence of the modalities) we can now search for first-order informa-
tion at accessible states in the familiar way. But we can do more. The clauses for the quantifiers
hide a subtlety: if a formulaϕ contains free first-order variables within the scope of a modality,
then formulas of the form∀xϕ and∃xϕ bind variables within the scope of the modality. This
possibility is what lead to Quine’s philosophical objections (“no binding into intensional con-
texts”). And from a technical perspective it means we are combining two very different styles of
logic in a way that allows a strong form of interaction.

The standard semantics for first-order modal logic comes in a number of variant forms. One
basic choice concerns the domain of quantification: should the quantifiers range over some fixed
domain of quantification (theconstant domainsemantics), or should each point should associated
with its own domain (the varying domain semantics)? Here we shall present the varying domain
semantics; for a discussion of the constant domain approaches, and of equivalences between
the constant domain, varying domain, and other approaches, see Chapter 9 of this handbook, or
Fitting and Mendelsohn [43].

DEFINITION 48. A varying domain model is a tuple(W,R,D, {δw}w∈W , {Vw}w∈W ). Here
W is a non-empty set;R is a binary relation onW ; D (the domain of quantification) is a non-
empty set; for allw ∈ W , δw ⊆ D; and for allw ∈ W , Vw is a function that assigns to each
n-place predicate symbol a subset ofDn.

That is, we have the familiar modal machinery from the propositional case (note that(W,R)
is just a frame, and theVw are essentially our familiar valuations upgraded to interpret first-order
n-place predicate symbolsP rather than propositional symbolsp) augmented by a specification
(the δw) of the individuals the quantifiers at each statew range over. We interpret first-order
modal logic by taking such a model, together with an assignment of values to variables (that
is, a functiong that maps the individual variables to elements ofD), and using the following
satisfaction definition:

M, g, w |= P (x1, . . . , xn) iff (g(x1), . . . g(xn)) ∈ Vw(P ),
M, g, w |= x = y iff g(x) = g(y),

M, g, w |= ¬ϕ iff not M, g, w |= ϕ,

M, g, w |= ϕ→ ψ iff M, g, w 6|= ϕ or M, g, w |= ψ,

M, g, w |= 3ϕ iff for somev ∈W such thatRwv we haveM, g, v |= ϕ,

M, g, w |= 2ϕ iff for all v ∈W such thatRwv we haveM, g, v |= ϕ,

M, g, w |= ∃ϕ iff for someg′ ∼x g whereg′(x) ∈ δw we haveM, g′, v |= ϕ,

M, g, w |= ∀ϕ iff for all g′ ∼x g such thatg′(x) ∈ δw we haveM, g′, v |= ϕ.
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(Hereg′ ∼x g means that the assignmentsg andg′ are identical save possibly in the value they
assign to the variablex.)

This language is capable of expressing some important distinctions. Consider, for example,
the formulas∀x2ϕ and2∀xϕ. The first asserts, of each existing entity, that it has the property
ϕ at all accessible states. The second asserts that, at each accessible state, each entity that exists
at that particular state has propertyϕ. Should either of these formulas imply the other? That is,
should we accept as valid either of the following two principles?

∀x2ϕ→ 2∀xϕ Barcan formula
2∀xϕ→ ∀x2ϕ Converse Barcan formula

Instead of trying to answer such tricky philosophical questions (which bear on thede dicto/de re
distinction, discussed in Chapter 9 of this handbook) let us consider what they say in the light of
the relational interpretation just given. It is not difficult to see that the Barcan formula is valid in
a varying domain model iff that model hasdecreasing domains, that is, if for allw, v ∈W ,Rwv
implies δv ⊆ δw. And the Converse Barcan formula is valid on preciselyincreasing domain
models, that is, models with the property thatRwv impliesδw ⊆ δv. So to insist on the validity
of both principles is to force an even stronger interaction between the quantifiers and modalities:
it takes us to a locally constant domain semantics in whichRwv impliesδw = δv. This is a good
example of the clarity that relational semantics can bring to difficult conceptual issues, and shows
why first-order modal logic can be useful in philosophical logic and natural language semantics.

So what’s the problem? Simply this: for all its analytical utility, first-order modal logic under
its standard semantics is not well behaved mathematically. Early signs of trouble appeared in
Fine [39], which showed that interpolation and the Beth property fail for first-orderS5 under
the varying domain semantics, and for any first-order modal logic betweenK andS5under the
constant domain semantics. AsS5 is both philosophically central (it is often taken as to be
embody the logic of “necessarily” and “possibly”) and semantically extremely straightforward
(it is the logic of frames in whichR is an equivalence relation) these are strong negative results
indeed. Worse was to come. It turns out that it is possible to take a propositional modal logic that
is complete with respect to some class of frames, axiomatically extend it in the manner naturally
suggested by the standard semantics, and yet to wind up with an incomplete first-order modal
logic (see Ghilardi [50], Shehtman and Skvortsov [104], Corsi and Ghilardi [24], Cresswell [25]).

Now, the issue here is not so much the incompleteness in itself (as we have already discussed,
even in the propositional modal logic, frame incompleteness results are the norm) rather it is the
lossof completeness in the transition from the propositional case to the first-order case that is
worrying. To use the terminology introduced when we discussed combinations of logics: the
standard relational semantics for first-order logic is a method of combination for which transfer
of completeness fails.

Such results have led to renewed technical interest in first-order modal logic. The semantics
of first-order modal logic has come under intense scrutiny, and a number of alternative seman-
tics have been proposed which enable completeness results to be transferred. Some of this work
has been model-theoretic (see, in particular, van Benthem’s [120] use of functional frames) but
most of it has been highly abstract, employing the language of category theory; for a detailed
account of such work, see Chapter 9 of this handbook. More recently, the hybrid logic com-
munity has pointed out that upgrading the underlying propositional modal language to a hybrid
language is another way to repair the situation: interpolation is regained (see Areces, Blackburn
and Marx [7]), indeed, regained constructively (see Blackburn and Marx [7]) and general pos-
itive results on transfer of completeness can be proved (see Blackburn and Marx [14]). All in
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all, first-order modal logic is one of the most intriguing areas of modal logic: the most venerable
system of all poses some of the deepest question about what it is to be truly modal.

6.10 General perspectives

Moving to richer languages better fitted for particular applications is a standard feature of current
research. It is true that in some quarters sticking to the poorest modal base language of the found-
ing fathers (despite its evident handicaps in expressive power and mathematical convenience) is
still something of a religion. But the idea of designing extensions is not some new-fangled no-
tion; its roots stretch back to the work of von Wright [133] and Prior [94, 95], and the idea was
central to the work of the Sofia School (see, for example, Passy and Tinchev [91] for insightful
comments on what modal logic is and why one might want to enrich it). Still, pointing to a
noble heritage is not enough. We need to address a tricky question: what makes these languages
modal? Being precise here is difficult. As we have seen, there is a wide range of extensions.
Moreover, each application imposes its own concerns and peculiarities. Nevertheless, there is a
guiding idea that lies behind most examples of this form of language design: obtaining a rea-
sonable balance between expressive power and computational complexity. So the question we
should focus on is: what makes such natural balances arise?

As we have seen, many richer modal languages are fragments of the full language of first-
order logic over some appropriate similarity type of relations and properties. We can see this by
translation, just as we did with the basic modal language (we saw that the complex truth condi-
tions for the Until and Since are definable by first-order formulas, and the same is true for the
conditional connective, the universal modality, and the apparatus of hybrid logic). Now, there
have been various attempts to find general patterns explaining which parts of first-order logic are
involved in modal languages. Gabbay [45] observed that modal languages tend to translate into
so-calledfinite variable fragmentsof first-order logics, that is, fragments using only some finite
number of variables, fixed or bound. For example, we have seen that the basic modal language
can make do with only two variables, and temporal logic with Until and Since, and conditional
logic, only require three. Finite variable fragments have some pleasant computational behaviour;
for example, their uniform model checking complexity is in PTIME (see Vardi [129]) as opposed
to PSPACE for the full first-order language. On the other hand, satisfiability is already unde-
cidable for first-order fragments with three variables, so the real reason for the low complexity
of modal languages lies elsewhere. A different type of analysis for the latter phenomenon was
given in the paper “Why is modal logic so robustly decidable?” (Vardi [130]). This emphasises
the semantic adequacy of the tree-like models obtainable via bisimulation unraveling of arbitrary
graph models. This type of explanation is important as it transcends first-order logic; on the other
it does not provide much in the way of concrete syntactic insight. For the latter, the current best
explanation is the one provided by the guarded fragment and its relatives (which are, arguably,
the strongest known modal languages).

As we saw, guarded fragments locate the essence of modal logic in therestriction on the
quantification performed by the modalities. One attractive property of this analysis is its logical
resilience: it turns out that it extends beyond the setting of first-order enrichments to second-
order enrichment too, something that was not forseen when the guarded fragment was first iso-
lated. A striking example is the result in Grädel and Walukiewicz [57] that the extension of the
guarded fragment with the fixed-point operatorsµ andν remains decidable. By way of contrast,
validity for full first-order logic extended with these operators in non-axiomatisable, indeed, non-
arithmetical. This observation shows that the modal philosophy embodied in the idea of guarded
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fragments is not restricted to first-order extensions: often modal fragments can bear the weight
of additional higher-order apparatus (such as fixed-point operators) which would send the full
first-order correspondence languages into a tailspin complexity wise. Our discussion of PDL and
the modalµ-calculus has shown that this is the case for the basic modal language. Grädel and
Walukiewicz’s result for the guarded fragment shows that this type of behaviour persists higher
up: guarded quantification can support higher-order constructions too.

Perhaps guarding can be a fruitful strategy in even more exotic modal settings? One setting
worth exploring isinfinitary modal logic. This logic (which was used extensively in Barwise
and Moss [10] and Baltag [8] for investigating non-well founded set theory) provides a perfect
match with bisimulation: two pointed models are bisimilar if and only if they satisfy the same
formulas in a modal language that allows arbitrary infinite conjunctions and disjunctions. More-
over a modal characterisation theorem holds. Now, decidability is a non-issue in this setting,
but what about existential semantic properties such as interpolation and Beth Definability? It is
known that interpolation holds for infinitary modal logic (see Barwise and van Benthem [11]),
but can such results be lifted to infinitary guarded fragments? Another setting worth exploring in
this way issecond-order propositional modal logic, in which we can quantify over proposition
symbols (see Fine [36] for some early results, ten Cate [112] for a more recent discussion, and
Chapter 10 of this handbook for a brief overview). The equation “modality = guarding” should
be simultaneously regarded as a hypothesis to be tested in richer settings, and as a useful heuristic
for isolating further logics worth calling modal.

Not that we should put all our eggs in one basket. Perhaps the notion of modality is too
diffuse for any single approach to exhaust, and in any case it is worth looking for alternatives.
Another approach is to apply ideas from abstract model theory (see Barwise and Feferman [9]).
This was first done in de Rijke [28], who proved a modal analog of Lindström’s [82] celebrated
characterisation of first-order logic. The original form of Lindström’s theorem says that an ab-
stract logicL extending first-order logic coincides with first-order logic iff it has the compactness
and L̈owenheim-Skolem properties. Another way of stating the theorem is that an abstract logic
L extending first-order logic coincides with first-order logic iff it has the compactness and Karp
properties. (The Karp property is that all formulas are invariant for potential isomorphism, where
a potential isomorphism is a non-empty family of finite partial isomorphisms closed under the
usual back and forth extension properties; recall our discussion of partial isomorphisms in Sec-
tion 3.3). We shall discuss a (slightly reformulated) version of de Rijkes’s result and a more
recent characterisation due to van Benthem.

What is an abstract modal logic? Here’s the conception that underlies our reformulation of de
Rijke’s result. We give it in terms of pointed models(M, w), that is, a model together with a
point of evaluation.

DEFINITION 49 (Very abstract modal logics).
LetL be a set of formulas, and|=L its satisfaction relation, that is, a relation between pointed

models andL-formulas. A very abstract modal logic is a pair(L, |=L) with the following prop-
erties:

1. Occurrence property. For eachϕ in L there is an associated finite languageL(λϕ). The re-
lation(M, w) |=L ϕ is a relation betweenL-formulasϕ and models(M, w) for languages
L containingL(λϕ). That is, ifϕ is in L, andM is anL-model, then(M, w) |=L ϕ is
either true or false ifL containsL(λϕ), and undefined otherwise.

2. Expansion property. The relation(M, w) |=L ϕ depends only on the reduct ofM to
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L(λϕ). That is, if (M, w) |=L ϕ and(N, w) is an expansion of(M, w) to a larger lan-
guage, then(N, v) |=L ϕ.

A very abstract modal logic(L, |=L) extends basic modal logic if for every basic modal for-
mula there exists an equivalentL-formula (that is, if for each basic modal formulaϕ there exists
anL-formulaψ such that for any model(M, w) we have(M, w) |= ϕ iff (M, w) |=L ψ).

De Rijke’s characterisation centres on the familiar bisimulation invariance property and the
finite depth property. A very abstract modal languageL has thefinite depth propertyiff for any
L-formulaϕ there is some natural numberk such that for all modelsM,

M, w |= ϕ iff M|k,w |= ϕ,

whereM|k is the modelM restricted to just those points that can be reached fromw in k or
fewerR-steps. De Rijke builds invariance for bisimulation into the notion of abstract modal
logic, so his statement of his Lindström-style result has the form: any abstract model language
with the finite depth property that extends the basic modal language is the basic modal language.
Reformulating his result in terms of very abstract modal logic, thereby making the bisimulation
invariance condition explicit, results in:

THEOREM 50. SupposeL is a very abstract modal logic extending the basic modal language.
ThenL coincides with the basic modal language iffL has the finite depth and invariance for
bisimulation properties.

Proof. See de Rijke [28, 29]. For a textbook-level exposition of the proof, see Theorem 7.60 of
Blackburn, de Rijke and Venema [13]. a

This is an informative result. Nonetheless, the finite depth property seems somewhat engi-
neered to capture the basic modal language, and it is natural to look for generalisations. However,
because of the expressive limitations of modal languages, this is not straightforward. The proof
of the Lindstr̈om Theorem for first-order logic typically proceeds by contradiction: to show that
an abstract first-order formula has a first-order equivalent, one typically build a model whereϕ
is true in one part,¬ϕ in another, and uses the expressive power of first-order logic to link the
two parts of the model by a chain of partial isomorphisms, thereby reaping the contradiction.
This style of argument does not lift easily to modal languages: the basic modal language is too
impoverished to encode the chains of bisimulations linking the two parts of the model that would
be required to mimic this proof technique directly. However, as van Benthem [127] observed,
there is a way around this. The key idea is to strengthen the definition of a very abstract modal
language by demanding it fulfils therelativisationcondition:

DEFINITION 51 (Abstract modal logics). An abstract modal logicL is a very abstract modal
logic that has therelativisation property: for anyL-formulaϕ and new unary proposition letter
p, there is a formulaRel(ϕ, p) which is true at a model(M, w) iff ϕ is true at(M|p, w), which
is the submodel ofM consisting of just those points that satisfyp.

Relativisation is a natural property (most logics satisfy it) but the key point is to observe is
how it is used in the proof of the following theorem: in essence, it provides a model-theoretic tool
which enables us to mimic the first-order Lindström proof without resorting to explicit codings of
bisimulations. This leads to van Benthem’s version of the Lindström Theorem for modal logic:

THEOREM 52. SupposeL is an abstract modal logic extending the basic modal language.
ThenL coincides with the basic modal language iffL satisfies compactness and invariance for
bisimulation.
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Proof. We know that the basic modal language satisfies compactness (Proposition 4) and invari-
ance for bisimulation (Lemma 9) so the left to right direction is clear. For the reverse direction,
assume thatL has these properties and letϕ be a formula inL. We claim that the following
holds: in an compact abstract modal logicL which is invariant for bisimulations, every formula
has the finite depth property.If we can show this, the result follows from Theorem 50.

We prove the claim as follows. Letϕ be any formula inL. Suppose for the sake of a contra-
diction thatϕ lacks the finite depth property. Then for any natural numberk there exists a model
(Mk, w) and a cut-off version(Mk|k,w) which disagree on the truth value ofϕ. Without loss
of generality, assume that the following happens for arbitrarily largek: (Mk|k,w) |= ϕ, and
(Mk, w) |= ¬ϕ (here we use the fact that abstract modal logics are closed under negation). Now
take a new proposition letterp, and consider the following setΣ of L-formulas:

{¬ϕ,Rel(ϕ, p)} ∪ {2np | for all natural numbersn}.

(By 2np we meanp prefixed by a sequence ofn boxes.) Given our assumptions, this set is
finitely satisfiable: we choosek sufficiently large, and makep true in thek reachable part of one
of the above sequences of models. But then, by compactness for our abstract modal logicL,
there must be a model(N, v) for the whole setΣ at once.

But this leads to a contradiction as follows. We focus on the generated submodel(Nv, v)
consisting ofv and all points finitely reachable from it. Now, the identity relation is a bisimu-
lation between any pointed model and its unique generated submodel. Hence, by the assumed
invariance for bisimulation, formulas ofL have the same truth value in any pointed model and its
generated submodel. Now, given the first formula inΣ, ¬ϕ holds in(Nv, v), and hence also in
(Nv, v). On the other hand, since(N, v) |= Rel(ϕ, p), we have(N|p, v) |= ϕ. But by the truth of
all the formulas of the form2np, p holds in the whole generated submodel(Nv, v). Therefore it
is easy to see that out generated submodel(N|p, v) is also just(Nv, v), so we have thatϕ holds
in (Nv, v). Contradiction. Hence the claim is established and the theorem follows. a

It remains to be seen how widely applicable this technique is. For example, it is not straight-
forwardly applicable to languages with the universal modality, as these lack the finite depth
property. However itcan be lifted to the guarded fragment. As we mentioned in Section 6.5,
there is a notion of guarded bisimulation. And using this notion, together with the relativisation
technique leads to:

THEOREM 53. SupposeL is an abstract modal logic extending the guarded fragment. Then
L coincides with the guarded fragment iffL satisfies compactness and invariance for guarded
bisimulation.

Proof. See van Benthem [127]. a

7 ALTERNATIVE SEMANTICS

As we said at the start of this chapter, one of the most instructive ways of thinking about modal
logic is to view it as a tool for talking about graphs. But to view modal logic exclusively through
the lens of relational semantics would be a mistake; interesting alternatives exist, and in this
section we introduce three of them: algebraic semantics, neighbourhood semantics, and topo-
logical semantics. As we shall see, each of these semantics has something new to offer. But we
shall come across much that is familiar, for all three are linked in various ways with relational
semantics.
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7.1 Algebraic semantics

The basic idea of algebraic semantics is simple: view modal formulas as terms (or polynomials)
and evaluate them in the appropriate type of algebra. So the key question is: what kinds of
algebra are appropriate for modal logic? The answer is:boolean algebras with operators, or
BAOs.

A boolean algebrais a tripleA = (A,+,×,−, 1, 0) such that both+ (join) and× (meet)
are commutative and associative binary operations, each of which distributes over the other. The
unary operation− (complement) must satisfy the equationsx + (−x) = 1 andx × (−x) = 0.
The nullary operations (orconstants) 1 and0 must satisfy the equationsx×1 = 1 andx+0 = x.
Even if you have never encountered boolean algebras before, a moments reflection should make
it clear that they are an algebraic mirror of propositional logic. To see this, read+ as∨,× as∧,
− as¬, 1 as>, 0 as⊥, and= as↔. So it only remains to provide algebraic structure suitable
that mirrors the diamonds. This motivates the following definition.

DEFINITION 54 (Boolean Algebras with Operators). Aboolean algebra with operators, or
BAO, is a pairB = (A,m), whereA is a boolean algebra andm is a unary operator onA that
satisfies the equationsm(x+ y) = m(x) +m(y), andm(0) = 0.

Note that the logical analogs of these two equations are3(ϕ∨ψ)↔ (3ϕ∨ψ), and3 ⊥↔⊥,
both of which are valid in relational semantics. Thus we now have an algebraic mirror for all
components of the basic modal language.

We interpret the basic modal language in a BAO in the usual algebraic fashion. That is, given
a BAO, we view the proposition symbols as variables ranging across the elements of the algebra,
and interpret each logical operator by its corresponding algebraic operation. More precisely, let
B be a BAO, andV be a function mapping proposition symbols to the elements ofB; we call
such a functionV a valuation. We extendV to a function that gives the result of evaluating
arbitrary basic modal formulas inB via the following recursive clauses:

V (ϕ ∨ ψ) = V (ϕ) + V (ψ)
V (ϕ ∧ ψ) = V (ϕ)× V (ψ)
V (¬ϕ) = −V (ϕ)
V (3ϕ) = mV (ϕ)

It is now possible to prove the following algebraic completeness result:

THEOREM 55. A basic modal formula belongs to the minimal modal logicK iff it evaluates to
the value1 in all modal algebras under all valuations.

Proof. Straightforward. The key point is to use a technique standard in algebraic logic, namely
to create theLindenbaum-Tarski Algebrafor K . The elements of the Lindenbaum-Tarski Algebra
are equivalence classes ofK -provably equivalent formulas, with operations defined with the aid
of the connectives. All and only theK -provable formulas evaluate to 1 in this algebra, and hence
the result follows. For a more detailed discussion, see Chapter 6 of this handbook. a

In fact, a far stronger result can be proved:anyaxiomatic extension ofK (that is,anynormal
modal) is complete with respect with some class of algebras. And the proof is not difficult. In
essence, one replicates the proof forK , but works with the Lindenbaum-Tarski Algebra which
satisfies the additional axiomatic constraints. As we saw earlier (recall Theorem 26) there is no
general completeness result for normal modal logics with respect to frames. This is an important
difference between algebraic and relational semantics.
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Nonetheless, it is likely that some readers will feel a little cheated. Isn’t the whole approach
really just syntax in disguise? After all, algebraic semantics matches the modal language with
algebraic operations that transparently mirror fundamental validities of the original logic. This
does not seem like genuine semantic analysis: it has more the flavour of linking two distinct, but
closely related, syntactic realms.

If this was all that algebraic semantics had to offer, there would be some force in this objection.
But it’s not. In fact, in spite of the general completeness result just noted, it seems fair to say that
we have not yet entered the heartland of algebraic semantics. For what algebraic semantics really
provides is a doorway to a larger mathematical universe. The power of algebraic semantics comes
from the wealth of ideas and techniques it enables us to bring to bear on problems in modal logic.
Some of these techniques take us back, via a novel path, to the heart of relational semantics, but
others take us to new territory. Let’s look a little deeper.

An important theme in algebra is therepresentationof abstract mathematical structures by
concrete set-theoretic structures. The point of a representation theorem is to show that some ab-
stractly specified class of algebras really does pick out an intended class of concrete structures.
So representation theorems are rather like completeness theorems: they show that the abstract
(often equational) specification is strong enough to ensure that every abstract algebra is isomor-
phic to a concrete algebra. Two classic examples are Cayley’s Theorem, which shows that every
finite group is isomorphic to a collection of permutations, and the Stone Representation Theo-
rem, which shows that every abstract boolean algebra is isomorphic to a field of sets (that is, a
boolean closed collection of subsets of someW that containsW ) with × viewed as intersec-
tion, + viewed as union, and− viewed as and set-theoretic complement. Now, in 1952, several
years before relational semantics was officially invented, Jónsson and Tarski [67, 68] proved a
remarkable representation theorem for BAOs: they showed that every abstract BAO could be
represented as a relational structure. Inexplicably, their paper made no mention of modal logic.
This was unfortunate as their paper contained all the technical machinery needed to definerela-
tional semantics and proverelational completeness results for most commonly occurring modal
logics. In essence, their result allows relational completeness proofs to be factored into an al-
gebraic completeness step (which makes use of the Lindenbaum-Tarski Algebra) followed by a
representation step (which turns this algebra into a relational structure. Nowadays, the Jónsson-
Tarski Theorem is rightly considered a cornerstone of modal logic; for a detailed proof of the
theorem, and examples of how to put it to work, see Chapter 6 of this handbook.

Another important theme goes under the name ofduality theory. As we saw in Section 5,
there are four key transformations on frames (disjoint unions, generated submodels, bounded
morphisms, and ultrafilter extensions) and, as the Goldblatt-Thomason Theorem tells us, closure
of a frame class of under these model-theoretic constructions is necessary and sufficient to ensure
its basic modal definability. But as we have already remarked (see Theorem 33) the original
proof of the Theorem wasalgebraic. What’s the algebraic connection? This: each of these four
operations on frames corresponds to an operation on classes of algebras. Viewed this way, the
Goldblatt-Thomason Theorem can be seen as a modal version of Birkhoff’s Theorem, which
identifies equationally definable classes of algebras with classes of algebras closed under certain
class operations. For a detailed exposition, we again refer the reader to Chapter 6.

But important as these two examples are, they merely hint at the wealth of techniques made
available by the algebraic connection. Algebraic semantics has repeatedly proved itself a pow-
erful analytical tool. To give another classic example, Blok [15] was able to give a detailed
analysis of frame incompleteness by drawing on algebraic methods. In particular, he did so by
investigatingsplittings(a concept from lattice theory) of the lattice of normal modal logics; for
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a discussion of Blok’s work, see Chapter 7 of this handbook. Moreover, in many cases cases
algebraic methods have been adapted to richer modal languages. A nice example is provided by
the universal modality. In the algebraic setting, the universal modality allows us to define adis-
criminator terms, that is, a term denoting an operator that maps0 to 0 and all other elements to1.
Algebras with discriminator terms are particularly straightforward to work with (see Chapter 6))
thus here algebraic semantics sheds interesting light on a relationally-natural extension of the
basic modal language. But algebraic semantics also illuminates areas where relational semantics
has little to say. For example, it turns out that the boolean structure of the underlying algebras
is not particularly significant. That is, it is possible to analyse modalities algebraically even if
we don’t have full classical propositional logic at our disposal. Such logics can be important
in various settings, and relational semantics at present offers little in the way of insight. For
further remarks and references on this application of algebraic semantics, see Chapter 6 of this
handbook.

7.2 Neighbourhood semantics

For some applications, relational semantics is too strong. For example,3(ϕ∨ψ)→ (3ϕ∨3ψ)
is valid under relational semantics. But if we read3ϕ as making the game-theoretic assertion
that the player has a strategy forcing the outcome to satisfyϕ, we might be inclined to reject it:
why should possession of a strategy for a disjunction imply possession of a strategy for one of
the disjuncts? And if we interpret2ϕ epistemically we have further grounds for objection. For
a start, relational semantics validates the following principle:

2(ϕ→ ψ)→ (2ϕ→ 2ψ).

Moreover, it validates the following pattern of inference: if|= ϕ then |= 2ϕ. These work
together to enforce a strong form of logical omniscience: if an agent knowsϕ, then she knows
all its logical consequences.

Such considerations have lead to a search for weaker semantics. Perhaps the best known of
these is neighbourhood semantics (introduced in Montague [86, 87] and Scott [101] and explored
in Segerberg [102]). The key idea of neighbourhood semantics has a topological flavour: each
pointw in a model is associated with a collection of subsets of the domain (the neighbourhood
of w) and a formula of the form2ϕ is true atw iff the set of points in a model satisfyingϕ
belongs to the neighbourhood ofw. Let’s make this precise. A neighbourhood model is a triple
(W,R, V ) whereW is a set of states,V is a valuation, andR relates pointsw ∈ W to subsets
of W (that is,R ⊆ W × 2W ). For anyw ∈ W , letNw be{V ⊆ W | wRV }; we callNw the
neighbourhood ofw. We interpret boxed formulas as follows:

M, w |= 2ϕ iff {v ∈W |M, v |= ϕ} ∈ Nw,

and use the dual definition for diamonds:

M, w |= 3ϕ iff {v ∈W |M, v 6|= ϕ} 6∈ Nw.

Neighbourhood semantics is a generalisation of relational semantics. To see this, note that
given any relational modelM = (W,R, V ) we can form a neighbourhood modelMn =
(W,Rn, V ) by stipulating, for eachw ∈ W andV ⊆ W , thatRnwV iff V = {v ∈ W | Rwv}.
That is, for eachw ∈ W , Nw is the singleton set containing the set of points that areR-
accessible fromw. Hence, for allw ∈ W and all basic modal formulasϕ, we have that
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M, w |= ϕ iff Mn, w |= ϕ. In short, we can turn any relational model into an equivalent
neighbourhood model.

But we cannot do the reverse. Consider a modelM = (W,R, V ) such thatW = {t, u, v, w},
V (p) = {t, u} andV (q) = {u, v}, andNu = {V (p),PIMQ}, wherePIMQ = {u, v, w}. Such
a model is shown in Figure 18; note thatPIMQ is the set of points wherep → q is true. Hence

p

t

p,q

u

q

v w

V(p) PIMQ

Figure 17. Neighbourhood model that falsifies2(ϕ→ ψ)→ (2ϕ→ 2ψ) atu.

M, u |= 2(p → q), asPIMQ ∈ Nu. Furthermore,M, u |= 2p, asV (p) ∈ Nu. However
M, u 6|= 2q, for V (q) 6∈ Nu. SoM, u 6|= 2(ϕ → ψ) → (2ϕ → 2ψ). As this formula is valid
under relational semantics, no relational model equivalent toM exists.

Moreover, the inferential principle characteristic of relational semantics (if|= ϕ then|= 2ϕ)
no longer holds. To see this, it suffices to consider a modelM consisting of a single pointw such
thatNw = ∅. ThenM, w |= >, but M, w 6|= 2>. In fact, all that remains in neighbourhood
semantics is the weaker principle: if|= ϕ ↔ ψ then |= 2(ϕ ↔ ψ). Thus neighbourhood
semantics does not enforce logical omniscience.

Neighbourhood semantics has been criticised as under-motivated. It may banish the spectre
of logical omniscience, but does it do so in a principled way? After all, isn’t there something
stipulative, indeed ad-hoc, about simply asserting that certain subsets and not others are in the
neighbourhood of a given point? There is a grain of truth in such criticisms, nonetheless we
should not be too quick to dismiss the approach. For some applications, asserting that certain
neighbouring regions are important is probably the best we can do in the way of semantic analy-
sis. Furthermore, like relational semantics, neighbourhood semantics offers an entireframework
for semantics. Imposing further restrictions on neighbourhoods (for example, demanding that
neighbourhoods be superset closed) is a mechanism which permits finer-grained semantic anal-
yses to be attempted. See Chellas [22] for an introduction to some of the options here.

Neighbourhood semantics has some pleasant properties. For a start, it is better behaved com-
putationally that relational semantics:

THEOREM 56. The satisfiability problem for relational semantics is NP-complete.

Proof. See Vardi [128]. The key observation is that if a formulaϕ is satisfiable in neighbourhood
model, then it is satisfied in a model with at most|ϕ|2 states, where|ϕ| is the number of symbols
in ϕ. a

Moreover, neighbourhood semantics meshes well with the algebraic perspective; see Chapter 6
of this handbook for further discussion.
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7.3 Topological semantics

Topological semantics is one of the oldest modal semantics, and the first in which deep technical
results were proved. In 1938, Tarski [85] showed thatS4(the logic which in relational semantics
is complete with respect to transitive and reflexive frames) is complete with respect to topological
spaces. Then, in 1944, McKinsey and Tarski [85] showed thatS4 is the modal logic of the real
numbers, and indeed of any metric separable space without isolated points. Since this pioneering
work, topological semantics has been deeply (if somewhat sporadically) studied, and many inter-
esting results have been proved (see for example Esakia [34] and Shehtman [105]) but for many
years it was rather isolated from the modal mainstream. More recently, however, partly because
of the growing interest in logics of space, there has been a revival of interest. For an overview of
developments in topological semantics since the time of Tarski, see Chapter 18 of this handbook;
here we will introduce its basic ideas in a way that emphasises connections with our account of
relational semantics. Our discussion is based on Aiello, van Benthem, and Bezhanishvili [2].

A topological spaceis a pair(W, τ), whereW (the domain) is a non-empty set andτ (the
topology) is a collection of subsets ofW that contains both∅ andW , is closed under finite
intersections (that is, ifO,O′ ∈ τ then so isO ∩ O′ ∈ τ ) and closed under arbitrary unions (if
{Oi}i∈I ∈ τ then so is

⋃
i∈I Oi ∈ τ ). A topologyτ such thatτ = 2W is calleddiscrete, and a

topology such thatτ = {∅,W} is calledtrivial . If (W, τ) is a topological space andO ∈ τ then
O is called anopen set. If w is a point in an open setO, thenO is called anopen neighbourhood
of w. A closed setis the complement of an open set.

A topological modelis a tripleM = (W, τ, V ) where(W, τ) is a topological space andV is
a valuation (in the sense familiar from relational semantics). We interpret propositional symbols
and booleans in the usual way, but what about the modalities? Boxed formulas are handled as
follows:

M, w |= 2ϕ iff (∃O ∈ τ)(w ∈ O and(∀u ∈ O)(M, u |= ϕ)).

That is,2ϕ is true atw iff it is true at all the points of some open neighbourhood ofw. Diamonds
are handled dually:

M, w |= 3ϕ iff (∀O ∈ τ)(w ∈ O implies(∃u ∈ O)(M, u |= ϕ)).

That is,3ϕ is true atw iff it is true at some point in each open neighbourhood ofw.
At first blush this looks very different from relational semantics. And thereare some obvi-

ous semantic differences. For example, the characteristic axioms ofS4, namely2p → p and
2p → 22p, are valid on all topological models, so the minimal logic is stronger than in rela-
tional semantics. But a closer look reveals the similarities. For a start, like relational semantics,
topological semantics is local: the truth value of a formula at a point only depends on what hap-
pens inside the open neighbourhoods of that point. More precisely, suppose thatw is a point
in a topological modelM, and thatO is an open neighbourhood ofw. Let M|O be the model
with domainO whose open sets are all the open subsets ofO in M, and whose valuation is the
restriction of the valuationV of M toO (that isV |O(p) = V (p) ∩O). Then a simple induction
shows that for all basic modal formulaϕ, and all pointsw ∈ O, M, w |= ϕ iff M|O,w |= ϕ.
Nor is it hard to find other similarities. For example, the fact thatS4has the finite model property
with respect to relational semantics is neatly matched by the fact that the basic modal language
has the finite model property with respect to topological semantics.

But the similarities run deeper than these examples might suggest. In particular, topological
semantics gives rise to a natural notion of bisimulation:
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DEFINITION 57 (Topo-bisimulation). A topo-bisimulation between two topological models
M = (W, τ, V ) andM′ = (W ′, τ ′, V ′) is a non-empty binary relationE between their do-
mains (that is,E ⊆W ×W ′) such that wheneverwEw′ we have that:

Atomic harmony: w andw′ satisfy the same proposition symbols,

Zig: if w ∈ O ∈ τ , then there is an open setO′ ∈ τ ′ such thatw′ ∈ O′ and(∀u′ ∈ O′)(∃u ∈
O)(uEu′), and

Zag: if w′ ∈ O′ ∈ τ ′, then there is an open setO ∈ τ such thatw ∈ O and(∀u ∈ O)(∃u′ ∈
O′)(uEu′).

If there is a topo-bisimulation between two topological modelsM andN, then we say thatM
andN are topo-bisimilar. Moreover, we say that two states are topo-bisimilar if they are related
by some topo-bisimulation.

Let’s put the zig clause in words. It says that for two pointsw andw′ to be topo-bisimilar,
then for any open neighbourhoodO of w it must be possible to find an open neighbourhoodO′

of w′ such that every pointu′ in O′ is topo-bisimilar to someu in O. Figure 18 illustrates this
idea (the dotted line connectingu andu′ needs to be interpreted universally:everyu is linked to
someu′).

w w'

u u'

O O'

Figure 18. Zig (and zag) for topo-bisimulations.

Such bisimulations are topologically natural. Two basic concepts of topology areopen maps
andcontinuous maps. A function f between topological spaces(W, τ) and(W ′, τ ′) is called
open if for allO ∈ τ we have thatf(O) ∈ τ ′, and it is called continuous if for allτ ′ ∈ W ′

we have thatf−1(O′) ∈ τ . It is easy to see every open and continuous map induces topo-
bisimulations: given a valuation on one space, take its image in the other, and the resulting
models are topo-bisimilar. But topo-bisimulations are also modally natural. For a start, we have
the following analog of Lemma 9:

LEMMA 58 (Topo-bisimulation Invariance Lemma).If E is a topo-bisimulation betweenM =
(W, τ, V ) and M′ = (W ′, τ ′, V ′), andwEw′, thenw andw′ satisfy the same basic modal
formulas.
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Proof. A routine induction. a

As a simple illustration, we noted above thatM andM|O (the localisation ofM to some open
setO) were equivalent. But this is unsurprising. The identity relation between the domains of
the two models is a topo-bisimulation, hence the result is a special case of this lemma.

What about the converse? Characterisation results for the general case are tricky to state (we
would need to discuss what a suitable correspondence language for topological semantics is, and
this would take us too far afield). But wedohave an analog of Proposition 11:

PROPOSITION 59.If pointsw andw′ from two finite topological modelsM andN satisfy the
same modal formulas, then there is a topo-bisimulationE betweenM andN such thatwEw′.

So far so good. But just how expressive is the basic modal language in the new setting? To
pose the question a little more forcefully: what (interesting) topological conditions can basic
modal language enforce via the concept of validity? Here’s one example. The formula

p↔ 2p

is valid on a topological model iff that model bears the discrete topology (that is, iff every subset
of the domain is open). This is a pleasant, but many fundamental properties lie beyond the reach
of the basic language. For example, a topological space(W, τ) is connectediff the only elements
of τ that are both open and closed areW and∅. But this condition is not basic modal definable.
For suppose for the sake of a contradiction that some formulaϕ does define connectedness.
Consider the topological space with domain{1, 2} under the discrete topology; this space isnot
connected as{1} and{2} are both open and closed. Hence we can define a modelM on this
space that will falsifyϕ at some point, say1. But thenM|{1} will falsify ϕ at 1 too, asM and
M|{1} are topo-bisimilar. ButM|{1} bears the trivial topology, hence it is a connected space,
so it should validateϕ. We conclude that connectedness is undefinable.

All in all, the basic modal language turns out to be disappointingly weak when it comes to
standard topological conditions. But then why stick with the basic modal language? As readers
of this chapter are well aware, there are interesting ways of augmenting modal expressivity, and
recently these have begun to be explored in the topological setting. For example, Shehtman [106]
and Aiello and van Benthem [1] observe that connectivity becomes definable when the universal
modality is added to the language:

A(3p→ 2p)→ (Ap ∨A¬p).

And Gabelaia notes that theT0 condition (for any two pointsx andy there exist either an open
neighbourhoodOx of x such thaty /∈ Ox or an open neighbourhoodOy of y such thatx /∈ Oy)
is definable in the basic hybrid language:

@i¬j → (@j2¬i ∨@i2¬j).

Moreover, Sustretov observes that theT1 condition (every singleton set is closed) is basic hybrid
definable

i↔ 3i,

though he also shows that theT2 condition (every distinct pair of points is contained in disjoint
open neighbourhoods) is not. These observations are made in the context of general characteri-
sations of definability: Gabelaia [48] proves an analog of the Goldblatt-Thomason for the basic
modal language with respect to topological semantics, and Sustretov [110, 111] proves a similar
result for the basic hybrid language.



Modal Logic: A Semantic Perspective 75

8 MODAL LOGIC AND ITS CHANGING ENVIRONMENT

Traditional motivations for and applications of modal logic came from philosophy, and dealt with
such topics as modality, knowledge, conditionals, and obligations. Other strands dealt with more
mathematical topics, leading to modal logics of time, space, or provability. As time went by,
additional influences made modal logic even more diverse. Sources included computer science
(for modal logics of computation and general processes), Artificial Intelligence (for modal log-
ics for knowledge representation, non-monotonic reasoning, and belief revision), linguistics (for
modal logics of grammatical structure), and the internet (for modal logics of trees). This web of
new interfaces is still growing. Modern computer science, with its emphasis on new information
carriers and networks of intelligent computing agents, also brings in modal logics of image pro-
cessing, agency and security. And the empirical social sciences are joining in too, witness current
applications of modal logic in economic game theory, or powers of agents in social choice theory.

In the face of this diversity, the resilience of relational semantics is quite remarkable. Although
nearly half a century old, its central ideas remain applicable, and applicable even when we enrich
our conception of what a modal logic actually is. But whatare the central ideas of relational
semantics? In essence, this chapter has tried to make the following point clear: during the 50
or so years that relational semantics has existed, our understanding of what it is, and what it is
good for, has become deeper. Originally conceived as a way of distinguishing and charactersing
logics (via soundness and completeness theorems) modal logicians have gradually unearthed the
deeper mathematical themes that lie behind the seemingly modest facade of relational semantics,
themes such as the expressivity at the level of models versus the level of frames, the importance of
bisimulation and other game-like constructions, the systematic links between the modal universe
and many varieties of classical logic, ranging from first-order logic, through second-order logic,
to the farther reaches of infinitary logic. Turning this perceived semantic unity into theorems is
not always easy; work on combined modal logic still tends to be heavy on negative results, and
first-order modal logic remains difficult territory. But unifying themes, such as guarding, and the
possibility of applying ideas from abstract model theory, have emerged.

Indeed, we are tempted to conclude by playing devil’s advocate. Even the alternative se-
mantics we have encountered indicate that something semantically central lies at the heart of
relational semantics. For example, the Jónsson-Tarski Theorem reveals that relational semantics
has a important algebraic core, and our excursion to the land of topological semantics revealed
the centrality of the concept of bisimulation. Prediction is always a dangerous game (especially
when it is about the future) but we believe that the interplay between theory and practice that has
characterised research on modal logic throughout it history will continue to deepen our under-
standing of its semantic core. And, forced to to place our bets, we would probably say: modal
logics of games will be a deep source of further insight, as will the co-algebraic semantics dis-
cussed in Chapter 6 of this handbook.
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[4] H. Andréka, I.M. Hodkinson, and I. Ńemeti. Finite algebras of relations are representable on finite sets.Journal of

Symbolic Logic, 64:243–267, 1999.
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