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Abstract

What is the mechanism that translates the individual properties of learners into the 
properties  of  the  language  they  speak?   This  paper  will  investigate  cultural 
transmission as this mechanism and will take up the Iterated Learning Model as a 
formal framework in which to address this claim.  This model describes language as a 
special learning problem, where the output of one generation is the input for the next. 
Previous research has  shown that  universal  properties  of  human language emerge 
from  the  process  of  cultural  transmission.    However,  particular  biases  are  also 
necessary to obtain these properties, and the exact interplay between individual biases 
and  cultural  transmission  is  still  an  open  question.   In  the  present  research,  a 
computational,  Bayesian  iterated  learning  model  is  constructed  to  analyze  the 
relationship  between  learning  biases  and  what  additional  structure  cultural 
transmission adds to language.  



1 Introduction

The language that you speak is not a product of your mind alone.  As language is 
transmitted from person to person and generation to generation, it adapts to the minds 
it propagates through, and they adapt to it.  This makes the evolution of language a 
special problem, because the output of one learner is the input for the next.

The  field  of  linguistics  has  made  great  advances  in  describing  human  language. 
Through the description of language universals and from animal comparative studies, 
we have a good picture of what human language is, and what it is not.  Influential 
paradigms in 20th century linguistics, such as the generative program, concentrate on 
in-depth studies of particular languages or the variations and constraints on variation 
found in the world’s languages, to infer what the innate biases of human learners must 
be.  Notwithstanding fundamental differences, most of these research programs have 
tended  to  ignore  the  socio-cultural  and  historical  dimensions  of  language. 
Additionally they fail to provide an account of  how the innate biases of individuals 
translate  to  the  universals  witnessed  in  the  world’s  languages.   This  problem of 
linkage can be overcome by identifying the mechanism which translates the properties 
of  individual learners into the properties of human language (Kirby,  1999).   This 
paper will argue in favor of claims that cultural transmission itself, may indeed be this 
mechanism.

The crucial next step, where linguistics has arguably made much less progress, is to 
provide a mechanistic explanation of why language is the way that it is, and not some 
other  way.   This  explanation necessitates  a  description at  a  level  below language 
itself:  What are the constraints that shape language?  Where do they come from and 
how do they interact?

The constraints of language arise from two systems: the embodied cognitive agent and 
the socio-cultural system in which these agents communicate with one another.  The 
first  is  the  domain  of  cognitive  science  and  psycholinguistics.   Here,  the  main 
constraints lie in perception, processing and representation, production.  How is the 
data constrained as it enters the cognitive system, how is it cognitively processed, and 
how is it constrained as utterances are produced?  Some examples of perceptual biases 
are purely physical and constrained by the human senses, such as the range of sounds 
one can perceive.  Others form with cognitive development, such as the phenomena of 
categorical perception (Lieberman et al., 1967; Kuhl, 2004).  Likewise, production 
biases are  constrained by the physical limitations of  human anatomy, such as the 
frequency range of vocalizations and the degree of motor control we have over our 
vocal tracts.  The processing which mediates what is perceived and what is ultimately 
produced includes high-level cognitive processes such as reasoning, induction, and 
learning, each of which come with their own biases.  These processes may also be 
subject to constraints on how linguistic knowledge is represented in the brain; what 
kind of representations are possible in a network of neurons, and what kinds are not? 
In short, the constraints which shape a cognitive agent’s production of language are 
both shaped by both biological evolution and individual development, which includes 
learning from one’s environment.
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The  second  system,  how  cognitive  agents  interact,  has  been  pioneered  by 
computational modeling and mathematics.  The social structure characterizes how the 
production and perception components of the cognitive agent link up.  Particular types 
of social structures involve different constraints on what kind of access the agents 
have to the external data that constitutes language.  For example, a population with no 
generational turnover (i.e. no agents are born or die) would conceivably have a very 
different language than language as we know it.  Or for a more intuitive example, if 
the  future  of  the  English  language  becomes  confined  to  nothing  but  email 
communication,  its  developmental  trajectory  would  be  very  different  than  if  it 
remained a spoken language.  Therefore, if we want to explain why this new “email 
English” is the way that it is, and not some other way (like the old spoken English), 
we  would  have  to  describe  the  constraints  of  email  English  –  in  terms  of  the 
constraints of its social system (the network of computers and how this shapes human 
interaction) and in terms of the cognitive constraints which the new system engages 
(such as production biases associated with typing).

In this light, language is a complex, dynamical system in its own right.  This means 
that the behavior of the system is a product of both its components (the embodied 
cognitive agents) and how they interact (their social system).  However, as stated in 
systems theory, no systems have true boundaries, and the borders we impose when we 
study them are purely artificial constructs (Weisbuch, 1991).  There are multiple ways 
to carve up the systems and their constraints in order to guide our search.  The most 
common delineation, among those who computationally model language evolution, is 
that language sits at the crux of 3 complex, dynamical systems: biological evolution, 
cultural  transmission, and individual learning. (Christiansen & Kirby, 2003).  This 
tripartite division of these separate, but interacting, systems is misleading because it 
implies that evolution acts directly on learning as an adaptive system.  This view 
essentially deletes cognition from the picture, because it is the embodied cognitive 
agent  that  ultimately roots  its  high-level  process of  language induction within the 
biologically evolved wet-ware that is the true processor of language.

By viewing language as a product of cognitive agents and the cultural transmission 
system which propagates it, we would expect the constraints of language to be rooted 
in these two aspects.  However, organizing the problem in this way has the side effect 
of  losing  any  direct  linguistic  consequences  of  biological  evolution  within  the 
embodied cognitive agent, and rightly so.  Undoubtedly, the biological endowment 
which makes  us human places  hard constraints  on the possibilities  of ontogenetic 
development.  But the structure of cultural transmission is in the position to place 
additional constraints on this biological potential,  father defining language into its 
ultimate  form,  as  we  witness  it  in  the  world.   The  fact  that  human  language  is 
culturally  transmitted is  just  as  universal  to  our language system as is  the shared 
genetics  which  makes  all  humans,  human.   Though logically,  this  places  both as 
candidates for the explanatory burden of language universals, the most informative 
explanation will be the one that cuts language the closest.

So how do the properties of cognitive agents determine the properties of the language 
they speak, and what does cultural transmission add to this explanation?  A good way 
to proceed with this question is to create a formal framework for testing hypotheses 
about how cultural transmission mechanistically translates the properties of cognitive 
agents into the properties of human language, and whether or not the dynamics of this 
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cultural transmission place additional constraints on the ultimate form of language. 
This paper will take up one such framework, the iterated learning model, in order to 
formally address the socio-cultural constraints on human language.

1.1   The Iterated Learning Model

The iterated learning model (ILM) was first  formalized for the study of language 
evolution  by  Kirby  (1998)  and  provides  a  framework  for  the  empirical  study  of 
cultural transmission and how it effects the information being transmitted.  ILMs can 
be  implemented  in  a  variety  of  ways,  but  they  all  contain  these  fundamental 
components:

1) A learning algorithm
2) Some form of information which is the input/output of the algorithm
3) Structured transmission of the information, where the output of one learner 

serves as the input for the next.
Some learning algorithms commonly used in ILMs are symbolic grammar induction 
algorithms (Brighton & Kirby, 2001), neural networks (Smith, 2002), Bayesian agents 
(Kalish et al., 2007), and human subjects (Cornish, 2006; Griffiths et al., 2006).  The 
data can be linguistic input or numerical values and the transmission format could be 
any conceivable social structure, but is commonly kept to a parent-child chain for 
analytical ease.

Possibly, the first study of this kind was Bartlett’s (1932) psychological experiment in 
“serial reproduction”.  A subject would be shown a picture, for example a nice sketch 
of an elk, and then be asked to re-draw it from memory.  Then, this copy would be 
given  to  another  subject  to  re-draw,  and  so  on.   Over  the  course  of  this  serial 
reproduction, the information present in the elk would change.  The shading would 
disappear, the complexity of the antlers would diminish, until all that was left was the 
outline of a cat.  Although this is a nice illustration that information can be shaped by 
the very process of its transmission, Bartlett’s stimuli, pictures and stories, were not 
controlled and therefore do not lend themselves well to empirical study.

The  first  computational  ILMs  were  developed  by  Hare  &  Elman  (1995),  Batali 
(1998), and Kirby (1998) as computer programs of agents in a simulated population. 
Here,  agents  were  simple  language-learning  algorithms that  paired  meanings  with 
strings of letters, and one agent would learn its language from another.  Their result is 
that the signal-meaning system became increasingly regular as it passed through more 
and more agents.  The regular structure which emerged was also compositional, where 
specific letters or letter combinations designated specific parts of the overall meaning, 
as words do in human language.  However, these effects only occurred when there 
was a transmission bottleneck.  This means that the agents cannot pass their language 
on in totality to the next generation.  Humans have an infinite capacity for linguistic 
expression, however, we can only express a finite amount of linguistic utterances. 
The transmission bottleneck mirrors this by limiting the number of signal productions 
to  below the  number  of  possible  meanings  in  the  meaning  space.   Only  under  a 
specific range of bottleneck size do regularity and compositionality emerge.  Many 
ILM studies  which  followed these,  each  using  a  different  learning  algorithm and 
different assumptions regarding the signal-meaning spaces, consistently reported the 
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same result;  the emergence of regularity  and compositionality  due to the learning 
bottleneck .

For a concrete example of regularity emerging from a bottleneck, we can look at the 
English past tense, which has both regular (verb+ed) and irregular (go – went) past 
tense rules.   A regular  rule  is  also a  general  rule,  which is  applied every time a 
language learner uses the past tense of a regular rule.  Irregular rules, on the other 
hand, have to be learned one by one, when the learner comes into contact with the 
irregular verb.  Looking at regular and irregular rules separately, regular rules have a 
much higher chance of being transmitted to the next generation when the bottleneck is 
small, because they apply to more verbs and therefore have a higher chance of being 
produced.  Irregular verbs, on the other hand, can only survive over the generations 
when the verbs they apply to are high frequency verbs (Kirby, 2001).  In fact, this is 
exactly the case with the English past tense; the top 10 most frequent verbs are all 
irregular.   Additionally,  it  is  well-documented  historically  that  low-frequency 
irregular verbs in English are gradually adopting the regular rule (Lieberman, et al., 
2007).

The ILM research demonstrates that, through cultural transmission and the constraint 
imposed  by  the  bottleneck,  the  information  in  language  compresses  in  a  self-
organizing way (Brighton et al., 2005).  Additionally, the language itself adapts to 
become learnable  by  the  agents  which  transmit  it,  and  not  the  other  way around 
(Zuidema, 2003).  Agents can only produce what they were able to learn, and when all 
agents in the population are similar, this makes the task easier for the next agent in the 
transmission  line.   Some of  the  hard  claims  of  ILM proponents  are  that  cultural 
transmission  inevitably  leads  to  regularization,  an  increase  in  learnability,  and 
compositionality.  In most ILM implementations, no biological criterion of fitness is 
imposed which selects agents according to the goodness of their language use.  Thus, 
regularization,  learnability,  and  compositionality  are  all  claimed  as  properties  of 
linguistic evolution, and not biological evolution.

The fact that  diverse learning algorithms all produce similar results when iterated, 
shows that these results are most likely due to the properties of the iteration, and the 
bottleneck  effect,  rather  than  to  something  inherent  in  the  learning  algorithms. 
However, every learning algorithm has its bias and it is still possible that all of the 
learning  algorithms  that  were  used  do  share  some  bias  which  allows  for  the 
emergence  of  regularity  and  compositionality.   It  is  possible  that  some  learning 
algorithms  are  structured  in  such  a  way  that  they  cannot  support  compositional 
behavior.  In this sense, the bias of a learning algorithm defines what behaviors it can 
and cannot yield, as well as what behaviors its structure encourages.  Smith (2003) 
carried out a comparative study of the ILM algorithms and determined that they do 
share two basic biases: a bias toward one-to-one signal-meaning mappings and a bias 
toward exploiting regularities in the input data.  Therefore, these two biases can be 
seen as two components of the learning algorithm’s structure which are necessary for 
the algorithm to display compositionality.  And indeed, these are two biases which 
human learners likely bring to the task of language induction (Pinker, 1984).  

This  raises  the  question  of  how  much  the  of  outcome  of  iterated  learning  is 
determined by cultural transmission and how much is determined by the biases.  On 
the  one  hand,  if  the  process  of  cultural  transmission  completely  determines  the 
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outcome of iterated learning, we could expect to see the same results for learning 
algorithms which have nothing in common.  Additionally, we might even expect these 
properties  to  hold  for  data  compression  algorithms  which  have  no  plausibility 
whatsoever as a cognitive model of language learning.  Take, for example, this toy 
model of an interpolation algorithm which transmits data over a bottleneck of 5 data 
points  (Figure  2).   Even here,  the  function  which describes  the data  increases  in 
regularity and stability with more and more iterations.  However, compositionality 
was not obtained this model.  It is even hard to say what compositionality would look 
like in terms of this model’s capabilities.  Clearly, all ILMs do not universally yield 
compositionality.   Therefore,  we  still  must  need  a  certain  type  of  bias  to  obtain 
compositionally through iterated learning.

Figure 2
A toy  ILM we  constructed  with  a  linear  interpolation  learning  algorithm.   An initial  function  is 
randomly generated.  5 data points, randomly selected from the initial function, serve as input to the 
first generation.  The agent at generation 1 describes these data points with an interpolation function. 
Next, 5 data points are randomly selected from generation 1’s function to serve as input for the next 
generation, and so on.  The function used to describe 5 data points becomes less complex as it is 
iterated, and will probably stabilize as a linear function.

Unfortunately, in this interpolation model, as with many other learning algorithms, it 
is difficult to assess exactly what its biases are.  What is needed, then, is a model with 
an explicitly-coded learning bias, so that different outcomes of iterated learning can 
be attributed to specific manipulations of the bias.  Fortunately, Bayesian statistics 
provides this framework.
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1.2   Bayesian Iterated Learning Models

For the readers who are unfamiliar with Bayesian statistics, we will introduce this 
topic with a practical example:

Picture yourself walking down a street in Amsterdam.  Someone bikes past you and 
you catch a half-second clip of their voice.  What language were they speaking?  To 
come  to  a  conclusion,  a  Bayesian-rational  person  would  take  into  account  three 
things.  First, the candidate languages.  For simplicity’s sake let’s just say you have 
three hypotheses: Dutch, Arabic, and English.  Second, the data: a nice velar fricative. 
Third, the prior probability: what is the chance someone in that neighborhood would 
be speaking any of those three languages?  The likelihood that Dutch or Arabic would 
produce a velar fricative is astronomically higher than for English.  However, if you 
are anywhere near the tourist information center, you may just as well conclude than 
an English-speaker was clearing their throat.   Likewise, knowing if you were in a 
Dutch or a Moroccan neighborhood would break the tie in the data likelihood of the 
velar fricative.  Additionally, the prior knowledge each person brings to an inductive 
problem can be different.  If you happened to be one of those people still in line at the 
tourist information center, you might think that everyone in Amsterdam speaks Dutch, 
and therefore  you would probably classify  most  people as  Dutch-speakers  at  first 
sound-byte.

By combining your knowledge of the data’s likelihood with the prior probability of 
each  hypothesis,  you  will  come  to  a  solution.   This  solution  is  the  posterior 
probability of each hypothesis now, after you have finished reasoning.  Last, you will 
select your answer in light of these posterior probabilities, choosing the hypothesis 
with the highest posterior probability, if you’re smart.

Thus, the components of a Bayesian inference algorithm are:
1) The hypotheses and the data likelihoods which accompany them 
2) The prior probability of each hypothesis: the bias 
3) The posterior probability of each hypothesis

As  you can  see,  this  is  no  longer  a  problem specific  to  language  learning.   The 
investigation of iterated learning in terms of Bayesian agents brings the question of 
which adds more, biases or cultural transmission, to a new, abstract level.  Griffiths & 
Kalish (2005) were the first to use a Bayesian ILM to address this debate and they 
found that the outcome of iterated learning was  completely determined by the prior 
probability of each hypothesis.  Here, this outcome is represented by the proportion 
that each hypothesis was chosen over the course of the ILM when run to infinity. 
Clearly,  this  outcome of  iterated  learning  must  be  determined  analytically.   This 
resulting distribution of hypotheses choices constitutes a stationary distribution, which 
represents the outcome of iterated learning (Nowak et al., 2001).  

The Griffiths and Kalish result showed that the stationary distribution over hypotheses 
exactly mirrored the prior probabilities  of  those hypotheses,  regardless of  specific 
prior distributions or other parameter manipulations.  In particular, manipulating the 
bottleneck parameter had no effect whatsoever on the stationary distribution.  With 
this,  they  determined  that  cultural  transmission  does  not  make  an  independent 
contribution to  the outcome of  iterated learning and it  is  merely a  vehicle  which 
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reveals the inductive bias of the learners.  However, this result doesn’t make much 
sense given that the bottleneck effect is robust in the many previous ILM simulations. 

To counter this claim, Kirby et al. (2007) showed that this result was a consequence 
of  the particular  hypothesis  choice strategy that  was implemented;  sampling.   An 
agent  that  samples  randomly  chooses  a  hypothesis,  weighted  by  the  posterior 
probability  of  each  hypothesis.   This  is  known  as  probability  matching  in  the 
psychological literature.  Conversely, Kirby et al. showed that a Bayesian ILM does 
not  converge  to  the  prior  when  agents  are  maximizers,  who  always  choose  the 
hypothesis with the highest posterior probability.  Thus, the main question seemed to 
be whether humans are maximizers or samplers.  So, Smith & Kirby (2008) extended 
their model to include biological evolution and showed that the maximizing strategy 
is evolutionarily stable over sampling.  They concluded that natural selection favors 
agents  whose  behavior  can  be  affected  by  cultural  transmission,  so  that  cultural 
transmission is the primary determiner of linguistic structure.  They also asserted that 
real human behavior probably lies somewhere on a continuum between maximizing 
and sampling, and should be subject to a more fine-grained analysis.

At first glance, the initial Griffiths & Kalish results could be understood as confirming 
linguistic nativism; that the ultimate structure of language is determined by our innate 
biases and nothing else.  However, the prior probability in the Bayesian model does 
not  correspond  only to  the  learner’s  innate  bias.   In  this  simplistic  model  of  a 
cognitive agent, the prior represents all properties of the inductive task besides the 
data itself.  Therefore, the prior is everything the agent brings with it to the task; its 
innate biases, its learned biases, previous domain-specific experience, and even its 
affective state at the moment of induction.

In light of their own findings, Griffiths & Kalish also propose that ILMs using human 
subjects can serve as a tool for revealing inductive biases, especially in cases where 
researchers have little a priori knowledge about what these biases might be (2006). 
They support  their  claim in two different  experimental  tasks where the associated 
inductive biases are well-established by previous psychological experimentation.  In 
both of these experiments, one in category learning (2006) and another in function 
learning (2007),  the known inductive bias  was revealed through iterated learning. 
However, this method should not be understood as a way to reveal innate biases, for 
the same reason the prior, as characterized by Bayesian induction, should not be seen 
as representing only the innate bias.  The biases which are revealed by human ILMs 
are likely to be task-specific, variable with training, and could be subject to priming 
and context manipulation.

In  this  paper,  we  will  construct  a  new Bayesian  ILM in  order  to  investigate  the 
different claims about how biases determine the outcome of iterated learning and what 
cultural transmission adds to this outcome.  Section 2 presents our implementation of 
a Bayesian ILM.  This model will investigate the differential behaviors of maximizers 
and samplers under identical conditions, including how each responds to particular 
parameter  manipulations  regarding  biases,  data  likelihoods,  population  size,  and 
heterogeneity.  

Lastly,  we  would  like  to  add  a  note  about  the  methodology  used  in  the  model 
analyses.  We have chosen to approach this model with an empirical, rather than an 

8



analytical, stand point.  By empirically dissecting this model, we are able to provide 
some deeper insights into the inner dynamics of the Bayesian ILM than some earlier 
analytical dissects did.  Some of the dynamics we have chosen to explore are simply 
invisible to mathematical descriptions that focus on the limits of model behavior and 
the cumulative end states of iterated learning when extrapolated to infinity.  With this 
methodology, we will attempt to draw a more complete picture of the mechanisms 
which drive the model’s behavior.  Many aspects of the model we will describe in the 
following section certainly have straightforward analytical solutions which we have 
not  entertained,  however our  goal  here is  to set  forth  a  bridge between empirical 
research on iterated learning systems and their analytical description.  Hopefully, this 
paper will be equally informative for cognitive scientists and mathematicians alike, 
who may want to continue the work we set forth here.

2 A Bayesian Iterated Learning Model

2.1   Outline

In this section, we will describe the implementation and results of our own model of 
iterated learning with Bayesian agents.  Here, two models are constructed; one with 
agents who choose their hypothesis by sampling and one with agents who choose by 
maximizing.  Agents use Bayesian inference to produce and induce from data, which 
is passed between agents across discrete, serially-organized generations.  A variety of 
parameter settings and their effect on the model’s behavior will be investigated.  This 
investigation  both  replicates  recent  Bayesian  ILM  results  and  addresses  new 
hypotheses regarding population size and heterogeneity.

Section  2.2,  Model  Description,  will  outline  the  components  and  structure  of  the 
model and describe the parameters which will be manipulated.  Section 2.3, Model 
Analyses, will describe the analytical tools commonly used in the existing Bayesian 
ILM literature, to assess model behavior.  Here, we will also justify the use of several 
approximations for these solutions, which are obtained from the model simulations. 
These  experimentally-obtained  assessment  tools  will  serve  as  the  basis  for  this 
research’s model analyses.  Section 2.4, Model Results, will describe both the sampler 
and maximizer model’s behavior for a number of parameter manipulations regarding 
the prior and likelihoods, the bottleneck effect, population size, and heterogeneity of 
priors.  In conclusion, section 2.5 will provide a general discussion of the modeling 
results.

2.2   Model Description

We will first outline the components of a Bayesian ILM and describe how they are 
implemented in this model.  The implementation and simulations were all carried out 
in Matlab; the model’s code is in Appendix A.

2.2.1  The Hypotheses
In this simulation, agents are considered to have a small set of hypotheses about the 
state of the world, and each of these hypotheses assign different likelihoods to each of 
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a small set of observations that the agent can make about the state of the world.  These 
hypotheses could represent, for instance, different languages that generate a set  of 
utterances, or different functions that describe a set  of data points.  However, the 
exact  nature  of  the  hypotheses  is  left  under  specified,  in  order  to  investigate  the 
general dynamics inherent to Bayesian iterated learning.  Thus, the basic properties of 
the  model  might  be  generalizable  to  a  variety  of  systems  where  information  is 
culturally  transmitted,  such  as  language  and  function  learning,  where  Bayesian 
inference serves as a good approximation of the learning mechanism involved.  In this 
model, the hypotheses are set at the beginning of each simulation and all agents have 
this  set  of  specified  hypotheses.   For  simplicity  of  analysis,  each  hypothesis  is 
completely defined by the likelihoods it assigns to each observation.  Additionally, the 
number of hypotheses will be restricted to three, and each called H1, H2, and H3 
(Figure  2.1).   Also,  any particular  combination  of  these  three hypotheses  will  be 
referred to as the “hypotheses structure.”

2.2.2  The Data
The observations that the agent can make about the state of the world will be referred 
to as data points.  These will also be restricted to three and called d1, d2, and d3 
(Figure 2.1).  The information that the agents pass between each other is a vector of 
one or more of these three data points.  As will be described in section 2.2.4, the 
number of data points in this vector defines the “transmission bottleneck.”

Figure 2.1
Graph of hypotheses [.6 .3 .1; .2 .6 .2; .1 .3 .6] 1 and example prior vector [.7 .2 .1].  Each hypothesis’ 
shape is entirely determined by the likelihoods it assigns to each data point.

 
2.2.3  The Prior
The prior probability of each hypothesis is stored in a 3-unit vector, where each entry 
lists the prior of each hypothesis.  The shorthand for and example prior is [.7 .2 .1], 
showing  the  prior  of  H1,  H2,  and  H3  respectively.   The  difference  between  the 
highest and lowest  probability  create  the bias  strength.   In  this  example,  the bias 
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strongly favors H1.  These probabilities of the prior vector sum to one, indicating that 
these are the only three hypotheses which can generate or account for the data.  

2.2.4  The Social Structure
In this model, agents are defined by the process of Bayesian induction from data, 
hypothesis  choice,  and  data  generation.   Agents  are  organized  into  discrete 
generations of one or more.  When each generation consists of 1 agent, the simulation 
can be characterized as a Markov chain and is identical to previous ILMs where one 
adult transmits data to one child.  When each generation consists of x agents > 1, each 
agent will output an equal number of data points into the data vector, and this entire 
vector will serve as the input to each of the agents in the next generation.

2.2.5  Bayesian Inference
Agents both induce from data and produce data according to the likelihood values of 
their hypotheses.  The particular likelihood values of one hypothesis determines the 
composition of the data string it is likely to produce.  For example, H1 will produce 
d1 70% of the time, d2 20% of the time, and d3 10% of the time.  Therefore, a 
characteristic, 10-sample data string for each hypothesis in figure 2.1 might look like:
H1 → [1 1 1 2 1 2 2 1 3 1]
H2 → [1 2 2 3 2 1 2 2 2 3]
H3 → [3 3 1 2 2 3 3 3 3 2]

When faced with a data string, such as one above, agents use Bayesian inference to 
decide  which  hypothesis  was  most  likely  to  have  produced  it.   Thus,  agents  use 
Bayes’ Rule (eq. 2.1) to compute the probability that each hypothesis generated the 
data string:

Equation 2.1

Here, P(h|d) denotes the posterior probability that a hypotheses could have generated 
the data in question.  This is the outcome of Bayesian induction and is calculated for 
each hypothesis.  P(d|h) is the likelihood value of the data under the hypotheses in 
question.   The  data  likelihood  values  for  each  hypothesis  are  defined  by  the 
hypothesis structure (Figure 2.1).  P(h) is the prior probability of a hypothesis.  P(d) is 
the probability of the data averaged over all hypotheses.
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This  method  of  calculating  the  posterior  yields  the  normalized  product  of  the 
likelihood and prior and is equivalent to Bayes’ rule, above.

2.2.6  Data Production
The next step is for the agent to output a new data string.  First, a hypothesis is chosen 
according  to  the  posterior  probabilities.   Second,  the  data  are  generated  from the 
chosen hypothesis.

Hypothesis choice - Maximizing vs. Sampling:
There are a variety of ways in which the hypothesis could be chosen, however in this 
study  we  will  investigate  two  cognitively-grounded  strategies:  maximizing  and 
sampling.   Both of  these strategies  choose between hypotheses according to  their 
posterior  probabilities.   The  maximizer  simply  chooses  the  hypothesis  with  the 
highest posterior probability. But in the event there is a tie among hypotheses for the 
highest posterior value, the maximizer randomly chooses between them.  The sampler 
chooses one hypothesis randomly, but weighed by the posterior probabilities.

Example Posterior Vector
H1 H2 H3

0.12 0.27 0.61

Table 2.1

According to the posterior values in table 2.1, the maximizer will choose H3.  The 
sampler will have a 12% chance of choosing H1, a 27% chance of choosing H2, and a 
61% of choosing H3.  These different strategies are implemented separately, creating 
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Example calculation as implemented in the program:

hypotheses = [.6 .3 .1; .2 .6 .2; .1 .3 .6],   prior = [.7 .2 .1],   data string = [2 3 3]

1)  Calculate likelihood
For data point = 2, the corresponding likelihood values under each hypothesis H1, H2, 
H3  =  [.3  .6  .3].   For  data  point  =  3,  the  likelihoods  are  [.1  .2  .6].   Assuming 
independence, the likelihoods of each element in the data string can be multiplied, to 
yield the likelihood of the string.  Instead of multiplying the probabilities, the log of 
the likelihoods are added, to make it easier to deal with small numbers.  Therefore, the 
log likelihood of the data string [2 3 3], is calculated as:
log [.3 .6 .3] + log [.1 .2 .6] + log [.1 .2 .6] = [-5.8091   -3.7297   -2.2256].

2)  Calculate posterior
posterior = exp ( log prior + log likelihood )

First, the log of the prior vector is added to the log likelihood vector of the data string:
exp ( [-0.3567   -1.6094   -2.3026] + [-5.8091   -3.7297   -2.2256] ) = [0.0021    0.0048 
0.0108]  Last, the posterior vector is normalized, to obtain a probability of 1 that one 
of the three hypotheses generated the data.  This yields: [0.1186    0.2712    0.6102]. 
This posterior means that H3 is most likely (61%) to have generated the data string. 
The next likely is H2 at 27% and the least likely is H1 at 12%.



two Bayesian iterated learning models which differ only in the respect of hypothesis 
choice.  This leads to characteristic differences in the dynamics of each model, which 
will be addressed in the Analysis section.

Data choice:
Data is generated from the chosen hypothesis according to the likelihood values of 
that hypothesis.  Assuming the agent has chosen H3, each data point in the output 
string will be randomly generated, but weighted according to the likelihood of each 
data point under H3.  Therefore, given the likelihood values of H3 = [.1 .3 .6], data 
point 1 has a 10% chance of being generated, data point 2 a 30% chance, and data 
point 3 a 60% chance.  The next 3-value data string might look something like this: [3 
2 3].

2.2.7  Iteration
Cultural transmission is modeled by using each generation’s output data string as the 
next generation’s input data string.  All agents in one generation produce the same 
number of data samples, which are all concatenated into the output data string for that 
generation.  The likelihood of a data string is invariant to the order of the data samples 
it contains.  Each agent has no way of knowing the number of agents which produced 
the data string or which data came from which agent.  Additionally, each generation 
has an identical composition of agents as the generation before it.  

2.2.8  Model Parameters
A variety of parameters can be manipulated to investigate the dynamics of the system. 
These manipulations will be used to compare and contrast the dynamics specific to 
the Maximizer (MAP – maximum a posteriori) and Sampler models.  The following 
manipulations that will be investigated in the present research are as follows:

1)  The prior.
2)  Homogeneity  and  heterogeneity  of  the  agents’  priors.   Each  agent  in  a 
population greater than 1 can be assigned a different set of priors.  This is the only 
parameter  which  can  be  manipulated  heterogeneously  in  the  population.   The 
remaining manipulations below hold for all agents in the simulation.
3)  The hypotheses structure (the likelihood values of each hypothesis).
4)  The bottleneck.  How many data samples each generation produces.  
5)  Population size.  Usually kept to 1 in the homogenous simulations and 2 in the 
heterogeneous simulations.

2.3  Model Analyses

2.3.1  Overview of Assessment Methods
Each model  has a  unique dynamical  fingerprint.   Understanding why two models 
work  differently  is  understanding  how  their  dynamics  differ.   Each  parameter 
manipulation can potentially change the dynamics of the model, and depending on the 
properties of the model, certain manipulations can change the dynamics in a different, 
but  systematic  way.   Therefore,  in  order  to  characterize  each  model’s  dynamical 
fingerprint,  we  are  looking  for  features  that  are  invariant  to  specific  parameter 
manipulations as well as changes in the dynamics that can be causally attributed to 
specific changes in parameter settings.
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A  concrete  representation  of  a  “dynamical  fingerprint”  can  be  obtained  by 
constructing a transition matrix, or Q matrix (Nowak et al., 2001), for each model. 
This matrix gives the probabilities that each hypotheses will lead to itself or any other 
hypotheses in the next generation.  In essence, all probable trajectories that an ILM 
might take are wrapped up in this matrix.  From the Q matrix, we can also derive the 
stationary distribution, which is the stable outcome of iterated learning (Griffiths & 
Kalish, 2005; Kirby et al., 2007).  

In  the  following  sections,  both  the  Q  matrix  and  stationary  distribution  will  be 
explained in detail, for readers who may be unfamiliar with these terms.  Additionally, 
we will justify the use of certain experimental approximations of these two analytical 
tools.  These approximation heuristics are readily obtainable from iterated learning 
simulations and are especially valuable when the computational requirements of the 
analytical solutions is high or simply not feasible.

The next section will walk through the analytical calculation of a couple Q matrices, 
as applied to the iterated learning model.  Because the Q matrix defines the model’s 
dynamics,  it  is important to note,  during the calculation process,  how each model 
component  comes into play.   These seemingly minute details  will  have important 
consequences for understanding the mechanism behind the dynamics in later analyses.

2.3.2  Analytical and Experimental Q Matrix Calculations
If the agent in one generation has hypothesis 1, then what’s the probability that the 
agent in the next generation will have hypothesis 1, 2, or 3?  These probabilities are 
displayed in the transition matrix (or Q matrix).   In the example Q matrix below 
(Table 2.2), when an (parent) agent in one generation produces data from H1, then the 
probability that that data will lead the (child) agent of the next generation to choose 
H1 is 80%.  Since parent H1 can produce data that best supports H2 or H3, then 
“miscommunications” occur, leading the child to induce H2 or H3 each 10% of the 
time.

Example Q Matrix
Q matrix child

H1 H2 H3
H1 0.8 0.1 0.1

parent H2 0.1 0.8 0.1
H3 0.1 0.1 0.8

Table 2.2

Analytical Q matrix for Sampler with bottleneck of 1:
The following will  show the analytical  calculation of the Q matrix for a  Sampler 
model with a bottleneck of 1 data sample per generation.  All calculations in this 
section will use the following prior and data likelihood values:

Data Likelihoods
Priors data 1 data 2 data 3

hypothesis 1 0.7 hypothesis 1 0.8 0.1 0.1
hypothesis 2 0.2 hypothesis 2 0.1 0.8 0.1
hypothesis 3 0.1 hypothesis 3 0.1 0.1 0.8
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Table 2.3
Prior and data likelihood values used for all calculations in section 2.2.2

Beginning with cell (H1, H1), we want to know how often parent H1 will produce 
each possible data string, and how often each of those data strings will lead to the 
child choosing H1.  For a bottleneck of 1, there are just three possible data strings: [1] 
[2] and [3].  As defined by the data likelihood values of each hypothesis, a parent with 
H1 will produce d1 with p = 0.8, d2 with p = 0.1, and d3 with p = 0.1.  Next, the 
probability that the child will choose H1 from each of the three data points is defined 
by the child’s computed posteriors (table 2.4) and their hypothesis choice strategy, 
sampling.  All posterior probabilities are computed with Bayes’ rule as outlined in 
section 2.1.4.

Posterior Values
H1 H2 H3   

[1] 0.9492 0.0339 0.0169
[2] 0.2917 0.6667 0.0417
[3] 0.4118 0.1176 0.4706

Table 2.4

Therefore, when the sampler receives data string [1], it will choose H1 with p = .95, 
H2 with p = .03, and H3 with p = 0.02.  To find out how often parent H1 will lead to 
child H1, we must multiply the probability that each data string leads to child H1 by 
the likelihood of that data string being generated by parent H1.  Thus, the probability 
of parent H1 leading to child H1 is (0.9492*0.8) + (0.2917*0.1) + (0.4118*0.1) = 
0.8297

Q matrix child
H1 H2 H3

H1 0.8297 0.1056 0.0648
parent H2 0.3695 0.5485 0.0821

H3 0.4535 0.1641 0.3823

Table 2.5
Analytically-calculated Q-matrix for Sampler with bottleneck of 1

Q matrix child
H1 H2 H3

H1 0.8231 0.1102 0.0667
parent H2 0.3685 0.5422 0.0893

H3 0.4539 0.1665 0.3796

Table 2.6
Experimentally-calculated Q-matrix for Sampler with bottleneck of 1

Experimental Q matrix for Sampler with bottleneck of 1:
For comparison, table 2.6 shows an experimentally-calculated Q matrix for the same 
prior  and likelihood values.   The experimental  calculation was obtained from the 
model by setting the parent to one hypothesis, allowing it to generate a 1-sample data 
string, and simply tallying how many times the child arrived at each hypothesis over 
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10,000  runs.   As  evidenced  in  this  comparison,  and  other  trial  calculations,  this 
method  of  experimentally  calculating  the  Q  matrix  reliably  approximates  the 
analytical solution.

Analytical Q matrix for MAP with bottleneck of 1:
All the steps above for the Sampler are the same for the Maximizer (MAP) except for 
the way the posteriors enter the equation.  As opposed to the samplers, which choose 
their  hypotheses with the probability of each hypotheses posterior  probability,  the 
MAP simply chooses the hypothesis with the highest posterior probability.  Going 
back to the posteriors (Table 2.4), data string [1] will always lead to H1, [2] will 
always lead to H2, and [3] will always lead to H3.  So, multiplying the probability 
that the parent produces each data string times the probability it will be induced under 
each hypotheses,  simply yields the data likelihoods as defined by each hypothesis 
(Table 2.7).

Q matrix child
H1 H2 H3

H1 0.8 0.1 0.1
parent H2 0.1 0.8 0.1

H3 0.1 0.1 0.8

Table 2.7
Analytically-calculated Q-matrix for MAP with bottleneck of 1

Q matrix child
H1 H2 H3

H1 0.8062 0.0948 0.099
parent H2 0.1016 0.7983 0.1001

H3 0.1038 0.0954 0.8008

Table 2.8
Experimentally-calculated Q-matrix for MAP with bottleneck of 1

Experimental Q matrix for MAP with bottleneck of 1:
Again, for comparison, Table 2.8 shows that the experimentally-calculated Q matrix 
closely approximates the analytical Q matrix.

Q matrix calculations for Sampler with bottleneck of 2:
As more data samples are allowed, computing the analytical solution becomes quite 
cumbersome.  This is because the data likelihood and posteriors of all possible data 
strings must be calculated.  For a bottleneck of 2, there are 6 (order-independent) data 
strings.   Below are the  new data  likelihoods (Table 2.9)  and the  posterior  values 
(Table 2.10) for every possible data string.
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Data Likelihoods
H1 H2 H3

[1 1] 0.64 0.01 0.01
[2 2] 0.01 0.64 0.01
[3 3] 0.01 0.01 0.64

[1 2] or [2 1] 0.16 0.16 0.02
[1 3] or [3 1] 0.16 0.02 0.16
[2 3] or [3 2] 0.02 0.16 0.16

sum 1 1 1

Table 2.9

Posterior Values
H1 H2 H3

[1 1] 0.9933 0.0044 0.0022
[2 2] 0.0515 0.9412 0.0074
[3 3] 0.0959 0.0274 0.8767

[1 2] or [2 1] 0.7671 0.2192 0.0137
[1 3] or [3 1] 0.8485 0.0303 0.1212
[2 3] or [3 2] 0.2258 0.5161 0.2581

Table 2.10

These new likelihoods (Table 2.9) are obtained by multiplying the likelihood values 
of  the  data  points  in  question,  as  defined  by  each  hypothesis  (Table  2.3).   For 
example,  H1  produces  data  point  1  with  p=.8,  so  producing  it  twice  has  the 
probability of p=.64.  All probabilities in each column sum to one because they cover 
all possible data strings.

Again, the posterior values (Table 2.10) are computed with Bayes’ rule.  When the 
Sampler receives string [1 1], it will choose H1 with a 99% probability, and H2 and 
H3 with less than 0.5% probability each.  To get each entry of the Q-matrix, all the 
likelihoods of each string being induced under each hypothesis must be multiplied by 
the likelihoods that each string is produced at all and then these values are summed. 
So, for parent H1 going to child H1, this value is the sum of the likelihood that each 
string is produced by parent H1 times the probability it will be induced as child H1: 
(.64*.9933)+(.01*.0515)+(.01*.0959)+(.16*.7671)+(.16*.8485)+(.02*.2258)  =  .9002 
Table 2.11 shows the analytical Q matrix and Table 2.12 shows the experimental Q 
matrix for comparison.

Q matrix child
H1 H2 H3

H1 0.9002 0.0627 0.037
parent H2 0.2197 0.7209 0.0594

H3 0.2591 0.1188 0.6221

Table 2.11
Analytically-calculated Q-matrix for Sampler with bottleneck of 2
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Q matrix child
H1 H2 H3

H1 0.9004 0.0635 0.0361
parent H2 0.2218 0.7178 0.0604

H3 0.2588 0.1166 0.6246

Table 2.12
Experimentally-calculated Q-matrix for Sampler with bottleneck of 2

Q matrix calculations for MAP with bottleneck of 2:
Again,  calculations  for  the  MAP  differ  from the  sampler  in  terms  of  hypothesis 
choice.  To obtain the analytical Q matrix, only the likelihoods of strings with the 
maximum posterior will be summed under each hypothesis.  These are the values in 
bold in Table 2.10.  Here, strings [1 1], [1 2], [1 3] will always lead to H1.  Strings [2 
2], [2 3] will always lead to H2, and string [3 3] will always lead to H3.  Therefore, 
the probability that the data from H1 will lead to H1 in the next generation is .64 (for 
[1 1]) + .16 (for [1 2]) + .16 (for [1 3]) = .96.  Table 2.13 is the resulting analytical Q 
matrix and Table 2.14 is an experimentally-calculated Q matrix for comparison.

Q matrix child
H1 H2 H3

H1 0.96 0.03 0.01
parent H2 0.19 0.80 0.01

H3 0.19 0.17 0.64

Table 2.13
Analytically-calculated Q-matrix for MAP with bottleneck of 2

Q matrix child
H1 H2 H3

H1 0.9600 0.0289 0.0111
parent H2 0.1900 0.8018 0.0092

H3 0.1900 0.1674 0.6439

Table 2.14
Experimentally-calculated Q-matrix for MAP with bottleneck of 2

2.3.3 Analytical and Experimental Stationary Distribution Calculations
The Q matrix summarizes the potential for transition dynamics in the system which it 
describes.   But  what  can  this  dynamical  fingerprint  tell  us  about  the  outcome of 
iterated learning?  If an ILM simulation could be run for an infinite amount of time, 
the  relative  frequency  of  each  chosen  hypothesis  would  settle  into  a  particular 
distribution that is determined entirely by the Q matrix.  This distribution is known as 
the stationary distribution and serves as an idealized shorthand for the “outcome of 
iterated learning.”  As demonstrated by Griffiths & Kalish (2005) and Kirby et al. 
(2007),  the stationary distribution is proportional to the first  eigenvector of the Q 
matrix.  Therefore, the stationary distribution is easily determined for each model, by 
normalizing the first eigenvector of its analytically-calculated Q matrix.

In  an  experimental  run,  the  relative  frequency  of  all  chosen  hypotheses  are  also 
entirely determined by the Q matrix, but because a run contains a finite number of 
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transitions,  it  represents  one  actual  trajectory  of  transitions,  from a  larger  set  of 
probable  trajectories  under  that  Q  matrix.   However,  when  a  large  number  of 
transitions can be recorded in  a  simulation (by setting the number  of  generations 
sufficiently high), then a tally of the actual hypotheses chosen by the agents over the 
course of the simulation closely approximates the analytical stationary distribution. 
Below are the stationary distributions for each of the analytical Q matrices from the 
previous  section  (Table  2.15).   For  comparison,  next  to  each  is  the  normalized 
hypothesis  history of  a  corresponding simulation run of  10,000 generations.   The 
normalized  hypothesis  history  is  a  reliable,  experimental  approximation  of  the 
stationary distribution.

Stationary Distribution Approximations

Table 2.15
Normalized Hypothesis History approximates the analytical stationary distribution for both the Sampler 
and MAP model.  The posterior mean is only a reliable approximation for the Sampler model.  S1 = 
Sampler with bottleneck of 1, S2 = Sampler with bottleneck of 2, M1 = MAP with bottleneck of 1, M2 
= MAP with bottleneck of 2.

Additionally, for the Sampler only, the average of all agents’ posterior values serve as 
a good approximation for the stationary distribution.  This is because the hypotheses 
are chosen according to the exact proportions of the posterior vector.  For the MAP, 
posterior mean can not be used as an approximation heuristic.  MAP dynamics are not 
tied to the exact values of the posterior, because agents only respond to the maximum. 
Table 2.15 shows the posterior mean of the same simulation runs.

2.3.4   Summary
The Bayesian ILM of the present research can be used to experimentally determine 
the internal dynamics and associated stationary distribution of both Sampler and MAP 
models,  and  over  a  wide  variety  of  parameter  combinations.   Determining  the  Q 
matrices and stationary distributions through experimental calculations and simulation 
heuristics  provide  a  good alternative  to  computing the  analytical  solutions,  which 
becomes increasingly cumbersome as the bottleneck or population size or increases. 
Additionally,  the  simulations  will  allow  the  investigation  of  certain  parameter 
combinations, such as multi-agent populations with heterogeneous biases, which do 
not have straightforward analytical solutions.

2.4   Model Results

This section will describe the differences between the MAP and Sampler given the 
parameter manipulations described earlier.  First it  will cover replicated aspects of 
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previous  Bayesian  ILMs.   Last,  it  will  address  new  findings  for  multi-agent 
populations with heterogeneous and homogeneous biases.

2.4.1 Basic Sampler Behavior of 1-agent, 1-sample simulations
Griffiths  & Kalish  (2005)  showed  that  the  stationary  distribution  of  the  Sampler 
always mirrors the prior.  This was confirmed in our model for a 1-agent population. 
Over all combinations of priors and hypotheses structures tested, the Sampler model’s 
stationary distribution mirrored the prior.  However, this was not the case for multi-
agent populations, and will be addressed in section 2.4.4.

2.4.2 Basic MAP Behavior of 1-agent, 1-sample simulations
Kalish et  al.  (2007) find that the MAP’s dynamics are effected by the prior,  data 
likelihoods  (aka:  hypothesis  structure),  and  noise.   However,  it  is  not  understood 
exactly  how  the  likelihoods  affect  the  dynamics.   Because  our  model  does  not 
investigate the effect of noise on the model’s behavior, it is more readily apparent 
which  aspects  of  the  dynamics  are  due  to  the  prior  and  which  are  due  to  the 
hypothesis  structure.   The  following  explanations  of  MAP  behavior  in  terms  of 
hypotheses structure and bias influence are novel and were informed by simulations 
with the present model.

From the Q matrix calculations in the previous section, it is clear that the Q matrix 
values of a 1-sample simulation  are the data likelihood values for each hypothesis. 
This leads to consistent patterns in the stationary distribution for particular types of 
hypotheses structures.  Overall, the hypotheses structures investigated in this model 
can  be  broken  down  into  two  main  categories;  canonical  and  asymmetrical. 
Canonical hypotheses structures are ones where each hypothesis is defined by the 
same set of data likelihood values, but shifted so that each hypothesis’ peak is over a 
different data point.  Examples of canonical hypotheses are in Table 2.16, a-e.  Within 
a  canonical  hypotheses  structure,  each  hypothesis  has  identical  probabilities  of 
transitioning to every other hypothesis and therefore, when there is no prior bias, each 
hypothesis is equally represented in the stationary distribution.

Asymmetrical  hypotheses  structure  occurs  when  each  of  the  hypotheses  are  not 
composed  of  the  same  values,  and  therefore  have  more  complex  transition 
probabilities among themselves.  Examples of asymmetrical hypotheses are in Table 
2.16,  f-j.   Figure 2.1 is also an asymmetrical hypotheses structure.  The stationary 
distributions of this category of hypotheses are difficult to predict, however we have 
identified some general trends in the dynamics.  Though, these trends may only hold 
for this particular model’s implementation, with an equal number of hypotheses as 
data points.  The first concerns their relative peak height .  The hypothesis with the 
highest peak likelihood value will be represented with the highest proportion in the 
stationary  distribution.   Likewise,  the  hypothesis  with  the  lowest  peak  will  be 
represented  the  least.   The  second  concerns  their  relative  overlap.   When  all 
hypotheses  have  peaks  with  equal  likelihood  values,  but  one  has  higher  extreme 
likelihoods than the two hypotheses, as does H2 in example f, it will be represented 
with  the  greatest  proportion  in  the  stationary  distribution.   These  relationships 
regarding  hypothesis  overlap  and  relative  likelihood  values  probably  have 
straightforward analytical solutions and are open points for further analyses.

Hypotheses Structure Effect on Stationary Distribution
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Table 2.16
Differences  in  normalized  hypothesis  history  for  the  two categories  of  hypotheses;  canonical  and 
asymmetrical.  All results above were calculated with an unbiased prior.

Because these relationships have to do with the entire hypotheses structure, the effect 
that one hypothesis’ likelihoods has on the stationary distribution always depends on 
its context, which is the other two hypotheses.  This makes for a difficult analysis. 
Figure 2.2 shows the manipulation of just one hypothesis, H2, in 4 different contexts, 
and with an unbiased prior.  Here, H2’s peak is slowly raised from likelihood value 
0.33 (flat/no peak) to 0.9, as shown on the x-axis. The context hypotheses structures 
are  displayed  in  the  columns  of  graphs  at  the  sides  (these  graphs  display  the 
hypotheses structure as introduced in Figure 2.1).  The left column shows a snapshot 
of the hypotheses structure in order for lines a-d at x = 0.3. The right column shows 
the structures at x = 0.9.  For  a, H1 and H3’s peaks = 0.33 (flat),  b peaks = 0.4,  c 
peaks  =  0.6,  and  d peaks  =  0.8.   The  y-axis  shows the  proportion  of  H2 in  the 
normalized hypothesis history.  It is clear to see that raising the peak of H2, raises its 
proportion in the hypothesis history.  However, the higher the context hypotheses, the 
lower the proportion of H2.  Additionally, the gray line at y = 1/3 marks the point 
where all hypotheses are level in the hypothesis history.  All hypotheses structures 
found at the intersection with this line are the canonical forms; where the H2 peak and 
context peaks are the same height.

21



Figure 2.2
Proportion  of  H2 in  the  MAP stationary  distribution  as  a  function  of  H2’s  hypothesis  peak  in  4 
different hypotheses structures.  Peaks of context hypotheses H1 & H3 in a = 0.33 (flat),  b = 0.4,  c = 
0.6,  d = 0.8.  Prior is unbiased.

The picture becomes even more complex when a bias is introduced.  Figure 2.3 shows 
the same center graph as above, but for 3 different prior biases in favor of H2.  The 
underlying  dynamics  remain  the  same,  but  the  bias  adds  an  additional  layer  of 
complexity.   When  the  maximum  prior  probability  is  higher  than  the  maximum 
likelihood value, the hypothesis which the bias favors becomes 100% represented in 
the stationary distribution, meaning this is the only hypothesis which an agent is able 
to choose.  This is because the posteriors of all data strings will be maximum under 
the hypothesis which the bias favors.  When the maximum prior probability is equal 
to the maximum likelihood value (indicated by the stars), the H2’s proportion in the 
stationary  distribution  is  raised  considerably.   But  when  the  maximum  prior 
probability  is  less  than  the  maximum likelihood value,  there  is  no  change  to  the 
stationary distribution.  Therefore, no manipulation to the bias, when in this range, 
will affect the stationary distribution.  To summarize Figure 2.3, the MAP hypothesis 
structure plays a considerable role in shaping the system’s dynamics, but when the 
prior is high enough, these dynamics are overridden by the bias and all agents choose 
the hypothesis that has the highest prior probability.  
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Figure 2.3
Hypotheses structure effect on the MAP stationary distribution, with added effects from prior biases.

Table 2.17 directly visualizes this threshold for line c (hypotheses = [.6 .2 .2; .2 .6 .2; 
.2 .2 .6] of the middle graph in Figure 2.3.  Here, the posterior values are given for all 
possible data strings [1], [2], and [3].  The location of the maximum posterior values 
(in bold) are what determine the MAP hypothesis choice.  Across this threshold, these 
posterior maxima make a shift, thus shifting the outcome of iterated learning for this 
model.  When the prior value is anywhere lower than the H2 peak, as in prior = [.205 
.59 .205], the dynamics remain completely determined by the hypotheses structure. 
However, nudging the prior up to [.2 .6 .2], which is the same level of the H2 peak, 
the posteriors move to favor H2 because the MAP is now faced with 2 maximum 
posterior values for 2 of the data strings and will choose them each 50% of the time. 
Finally, as soon as the prior bias for H2 exceeds the H2 likelihood peak, as in [.195 
.61 .195], all posterior maxima are located under H2.  At this point, all agents in the 
simulation will choose H2 for all possible data strings.

Posterior values under different priors
data Prior = [.205 .59 .205] Prior = [.2 .6 .2] Prior = [.195 .61 .195]
string H1 H2 H3 H1 H2 H3 H1 H2 H3

[1] 0.44 0.42 0.15 0.43 0.43 0.14 0.42 0.44 0.14
[2] 0.09 0.81 0.09 0.09 0.82 0.09 0.09 0.82 0.09
[3] 0.15 0.42 0.44 0.14 0.43 0.43 0.14 0.44 0.42

Table 2.17
Hypotheses = [.6 .2 .2; .2 .6 .2; .2 .2 .6]

Basic Sampler vs. Maximizer Conclusion:
For the Sampler model,  the most salient  determiner of  the dynamics is  the prior. 
Although the transitions in the Q matrix are not trivially determined, the stationary 
distribution derived from the Q matrix exactly mirrors the prior, despite manipulations 
to the hypotheses structure.  The MAP model’s dynamics, on the other hand, are most 
saliently determined by the data likelihood values.  For 1-agent, 1-sample simulations, 
the Q matrix exactly mirrors the data likelihood values as defined by each hypothesis, 
and standard calculus should be able to predict the stationary distribution.  When the 
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hypotheses structure is canonical, then the probability of an agent choosing any given 
hypothesis in the stationary distribution is equal.  When the hypotheses structure is of 
various, asymmetrical combinations, the stationary distribution reflects each of them 
differently.  A prior bias adds yet more to the MAP dynamics, but only when it is 
stronger than the likelihood values.

2.4.3 The Bottleneck Effect
The number of data points  that  are transmitted between generations constitute the 
learning  bottleneck.   The  bottleneck  size,  therefore,  equals  the  number  of  data 
samples  in  the  data  string.   Varying  the  bottleneck  size  directly  effects  the 
transmission  dynamics.   When  the  bottleneck  is  large,  there  is  a  much  higher 
probability that the proportion of data samples in the data string faithfully reflects the 
likelihoods of hypothesis  it  was  generated from.  This  leads to greater fidelity of 
transmission;  where  each  generation  usually  chooses  the  same  hypothesis  as  the 
generation  before  it.   When  very  little  data  is  transmitted  over  each  generation, 
transmission fidelity  is  much lower,  yielding many transitions  between hypothesis 
choices  within the simulation run.   Transmission fidelity is  directly  visible  in  the 
diagonal axis of the Q matrix.  A high probability of each hypothesis leading to itself 
equals high transmission fidelity and a lower number of transitions in the simulation 
run.  As the bottleneck increases, transmission fidelity increases until it reaches 100% 
and Q matrix diagonals are all equal to 1.  Depending on the strength of the bias and 
the distinctiveness of the hypothesis peaks, this increase occurs at different speeds 
(Figure 2.4).  However, this rate does not seem to be affected by hypothesis choice 
strategy.  All models will eventually reach 100% transmission fidelity at a certain 
bottleneck size.  

In Figure 2.4, the transmission fidelity index used here is the average of the values on 
the diagonal of the Q matrix.  This indicates the probability, for any randomly-chosen 
hypothesis, that the child will choose the same hypothesis.  When the index reaches 1, 
this  means  that  all  diagonal  values  in  the  Q  matrix  are  1.   In  this  case, 
miscommunication is impossible and every generation will have the hypothesis of the 
previous generation.  Here, the outcome of iterated learning will be solely determined 
by the initial data.  Therefore, the hypothesis which the initial data best supports will 
be the hypothesis that all generations will choose.
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Figure 2.4
Increase in transmission fidelity is slower for models with weak biases and likelihoods.
Behavior is more determined more by these factors than by hypothesis choice strategy.

Strong: prior = [.7 .2 .1] and hypotheses = [.8 .1 .1; .1 .8 .1; .1 .1 .8]
Weak: prior = unbiased and hypothesis = [.4 .3 .3; .3 .4 .3; .3 .3 .4]

For a finite number of generations, all simulations will appear to display complete 
transmission fidelity when the bottleneck is wide enough.  This will occur when the 
probability of miscommunications (non-diagonal cell  values) make it  unlikely that 
they  will  appear  within  the  given  number  of  generations.   For  example,  if  one 
particular miscommunication has a probability of 0.01, it will usually not occur in a 
simulation of with less than 100 generations, but it likely to occur several times in a 
simulation of 10,000 generations.

For infinite generations, on the other hand, complete transmission will never occur as 
long as the hypotheses overlap and there exists some probability of transitioning from 
one hypothesis to another.  But for finite runs, the practical appearance of complete 
transmission fidelity is determined by the combination of the prior and hypotheses 
structure.  When hypotheses have small overlap and a strongly-biased prior, less data 
samples are needed to unequivocally indicate which hypothesis distribution they were 
generated  from.  In  this  case,  complete  transmission  fidelity  will  occur  at  smaller 
bottleneck sizes (Figure 2.4, “MAP strong” and “Sampler strong”).  However, for 
hypotheses with more overlap and weaker biases, complete transmission fidelity will 
occur at larger bottleneck sizes (Figure 2.4, “MAP weak” and “Sampler weak”).
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Bottleneck effect differences between MAP and Sampler:
For  both  the  MAP and Sampler,  transmission  fidelity  increases  as  the  bottleneck 
widens. The Sampler’s stationary distribution continues to mirror the prior, over all 
bottleneck sizes and priors tested.  This confirms that the bottleneck has no effect on 
the outcome of iterated learning for the Sampler model.  However, it does effect the 
internal dynamics of transmission and may well have an effect on the outcome of 
iterated learning over finite time spans.  The MAP’s stationary distribution, on the 
other hand, continues to be affected both by the likelihoods and priors, but changes 
non-monotonically as the bottleneck widens.  Though the MAP’s transmission fidelity 
steadily  increases,  the  dynamics  reflected  by  the  stationary  distribution  are 
surprisingly  unstable  (Figure  2.5).   Interestingly,  this  instability  only  occurs  with 
asymmetrical  hypotheses structures, where the slightest asymmetry leads to wildly 
different stationary distributions for each bottleneck size.  For canonical hypotheses 
structures,  all  hypotheses  continue  to  be  equally  represented  in  the  stationary 
distribution.  Unfortunately, the cause of this strange behavior has not been obtained.

Figure 2.5
MAP posteriors non-monotonically vary as bottleneck widens.  The y-axis shows the proportion of H2 
in  the  experimentally-calculated  stationary  distribution  (normalized  hypothesis  history).   Prior  = 
unbiased, Canonical Hypotheses = [.6 .2 .2; .2 .6 .2; .2 .2 .6], Asymmetrical Hypotheses = [.6 .3 .1; .2 
.6 .2; .1 .3 .6]

Bottleneck and data variance issues:
Because  these  simulations  are  confined  to  a  finite  number  of  generations,  the 
experimentally-derived  stationary  distributions  are  less  reliable  under  larger 
bottlenecks.  This is directly due to the increase in transmission fidelity.  Under small 
bottlenecks, the high number of transitions in the simulation ensure that the resulting 
distribution  in  the  normalized  hypothesis  history  reflects  the  true  stationary 
distribution.  When transmission fidelity increases, the variation between simulation 
runs also increases, and thus more generations (or multiple runs) are needed to obtain 
a reliable approximation of the stationary distribution.  If the simulation could be run 
an infinite number of generations, then the normalized hypothesis history would  be 
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the stationary distribution, and transmission fidelity would have no effect.  However 
this is impossible.  For all of the data in the present report, all simulations were run 
for 10,000 generations.  At this setting, variance begins to become a problem with Q 
matrix and stationary distribution approximation around a bottleneck of 6-10.  Above 
this level,  multiple runs must be averaged to gain a more complete picture of the 
model’s dynamics.

2.4.4 Population Size
When the population consists of multiple agents, which dynamics found in the single-
agent models hold, and which do not?  And what is the outcome of iterated learning 
when this population has heterogeneous biases?  The remaining sections will answer, 
in  terms  of  this  model,  these  new  questions  regarding  population  size  and 
heterogeneity.

In  this  model,  each  agent  in  a  multi-agent  population  sees  the  same  data  string, 
separately  calculates  their  posterior  values,  chooses  their  own  hypothesis,  and 
generates their own data.  The data from each agent of the same generation are then 
concatenated into one unified data string, which is given to the next generation as 
their input.  When the population parameter is set to any number  x, all generations 
have x population members.  When the number of data samples is set to y, each agent 
in the population produces  y number of data samples, yielding a bottleneck size of 
x*y.

The multi-agent and single-agent configurations differ in one respect:  the data string 
that is passed between generations is not stochastically generated from one unified 
agent, but from many.  This has different consequences for the MAP and the Sampler 
models.  For a homogeneous, multi-agent MAP model, the behavior of all agents in 
the population is identical.  Because all agents receive the same data string and have 
identical priors and hypotheses, the posterior of all agents will be the same (and this is 
also the case for the Samplers).  However, all the MAP agents will choose the same 
hypothesis (Table 2.18), because this choice is based on the maximum value of their 
identical  posteriors.   The  only  exception  to  two  MAP  agents  choosing  different 
hypotheses based on the same data string is when there are multiple maximum values 
in  their  posterior.   In  this  case,  they  each  choose  one  of  the  maximum  value 
hypotheses randomly, with equal weight.  This situation generally only arises when 
there is no bias in the prior values (to help diversify the posterior values).  Aside from 
this exception, multiple MAP agents producing y samples, is equivalent to one MAP 
agent  producing  x*y samples  (Table  2.18).   Therefore,  MAP  dynamics  due  to 
population size are identical to the dynamics due to the bottleneck (see section 2.4.3). 
However,  due  to  the  implementation  of  the  multi-agent  model,  where  all  agents 
produce equal an equal number of data samples, only even-numbered bottleneck sizes 
can be investigated for population sizes greater than 1.  Therefore, the non-monotonic 
variance in the MAP model (referring back to figure 2.5) is less apparent in these 
cases.
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Normalized Hypothesis History
MAP

H1 H2 H3
samples = 4 0.6352 0.2488 0.1160

population = 4 0.6304 0.2561 0.1135

Sampler
H1 H2 H3

samples = 4 0.6977 0.1918 0.1105
population = 4 0.8104 0.1254 0.0642

Table 2.18
Population  size  does  not  add  new dynamics  for  MAP,  but  for  Samplers  it  does  –  the  stationary 
distribution no longer mirrors the prior.  Prior [.7 .2 .1], hypotheses [.8 .1 .1; .1 .8 .1; .1 .1 .8], 10,000 
generations.

Hypotheses Choice of Multi-agent Sampler vs. MAP
 Sampler   MAP  

H1 H2 H3 H1 H2 H3
Hypotheses agent 1 7609 1579 812 8234 1496 270

Chosen agent 2 7674 1570 756 8234 1496 270

Table 2.19
MAP agents choose the same hypothesis, whereas Samplers do not.  

Prior [.7 .2 .1], hypotheses [.8 .1 .1; .1 .8 .1; .1 .1 .8], 10,000 generations.

For a homogeneous, multi-agent Sampler model, the dynamics are markedly different. 
Because  samplers  choose  their  hypotheses  weighted  by  their  posteriors,  a 
homogenous population will not choose the same hypotheses each generation (Table 
2.19).   Therefore,  the data  samples do not  come from the same set  of  likelihood 
values.  This has interesting implications concerning the perfect Bayesian rationality 
of  the  agents.   In  the  case  of  the  MAP,  the  agents  have  all  the  possible  sets  of 
likelihoods that  the data  could be generated from, already given to  them as their 
hypotheses.  When a string of data is generated from a set of likelihoods which the 
agents are not explicitly given, then they are not longer perfect Bayesian reasoners. 
This is exactly the case with a multi-population of Samplers.  When a data string in 
generated  from 2  different  hypotheses,  these  probabilities  do  not  conform to  the 
likelihoods as defined by any of their hypotheses.  The result is, for a multi-population 
of Samplers, the stationary distribution no longer mirrors the prior (Figure 2.6).

Kalish  et  al.  (2007)  mathematically  show  that  their  single-agent  results  can  be 
generalized to multi-agent populations, where the stationary distribution will continue 
to  mirror  the  prior.   However,  this  proof  would  require,  in  practice,  that  each 
Sampling agent is given a new set of hypotheses, for each corresponding population 
size, where each hypothesis represents the combined likelihood set for each possible 
combination  of  hypotheses  that  the  agents  of  the  population  may  have  when 
outputting into the data  string.   Although perfect  Bayesian rationality  is  a  simple 
assumption for mathematical analyses of ILMs, the practicality of maintaining this 
assumption is dubious for actual model implementations, let alone for actual humans.
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Figure 2.6
The MAP model’s stationary distribution is invariant to population size.  For Samplers, population size 
does  affect  the  dynamics  and  the  stationary  distribution  no  longer  mirrors  the  prior.   Stationary 
distributions for populations 1 and 2, for MAP and Sampler models with: prior [.7 .2 .1], hypotheses [.8 
.1 .1; .1 .8 .1; .1 .1 .8], 10,000 generations.

Additionally,  some systematic  variance was observed for  the  multi-agent  Sampler 
model in regard to manipulations of the likelihood structure.  Figure 2.7 shows that 
the stationary distribution mirrors the prior less and less as the hypotheses structure 
becomes strongly peaked and the prior more biased.  However, for a combination of 
relatively flat  hypotheses and weakly biased priors, the stationary distribution still 
mirrors  the  prior.   Additionally,  increasing  the  population  size  systematically 
amplifies the effect of the likelihoods on the Sampler’s stationary distribution (Figure 
2.8).

Figure 2.8 shows that the stationary distribution reflects hypotheses structure in the 
absence of  a  prior  bias.   For  the  canonical  hypotheses  structure  a,  the  stationary 
distribution remains flat despite changes in population size.  This is similar to the 
MAP behavior given canonical hypotheses under different bottleneck sizes.  Also like 
the MAP model, the Sampler is differentially sensitive to asymmetrical hypotheses 
structures, however the relationships are in the opposite direction.  Here, the highest 
peaked hypothesis is the lowest in proportion in the Sampler’s stationary distribution 
and the lowest peaked hypothesis is the most represented.
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Figure 2.7
Strong biases and peaked hypotheses lead the sampler away from converging to the prior..  a = prior [.3 
.3 .3]  b = prior [.6 .2 .2]  c = prior [.7 .2 .1]  d = prior [.8 .1 .1], Population = 2.

Figure 2.8
Population size amplifies Sampler sensitivity to hypotheses structure.  a = hypotheses [.8 .1 .1; .1 .8 .1; 
.1 .1 .8]  b = hypotheses [.4 .3 .3; .1 .8 .1; .3 .3 .4]  c = hypotheses [.8 .1 .1; .3 .4 .3; .1 .1 .8].  Prior = 
unbiased.  Population sizes 1 to 5.
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2.4.5   Heterogeneity
A heterogeneous ILM was implemented by taking a multi-agent model and assigning 
different  prior  vectors  to  each  of  the  agents.   This  model,  therefore,  is  the  most 
complex  of  all  models  constructed.   For  this  reason,  only  2-agent  heterogeneous 
populations will be used as examples in this section.

The main result is that heterogeneous agents’ hypotheses choices converge as they are 
allowed to share more and more data, despite having fixed and different priors from 
each other (Figure 2.10 and 2.12).  This conforms to the general tradeoff between the 
likelihoods and prior in Bayesian induction; the more data that is seen, the less the 
effect of the prior on the posterior distribution over hypotheses.  Because the behavior 
of both models is based on the posterior values, increasing the amount of data which 
the agents share produces increasingly similar posterior values, despite differences in 
agents’ priors.  In the following analyses, convergence is measured by the Euclidean 
distance between each agent’s normalized hypotheses history vector.

Since agents’ behavior is converging, the natural question is, to what?  To structure 
this question more, we decided to investigate whether or not the converged behavior 
of a heterogeneous ILM (where agent x and agent y each differ in their prior bias) is 
just an average of the behavior of one homogeneous run with agent  x and one with 
agent y.  It turns out, this is not a simple question.  First, it is difficult to determine 
exactly what the true average of agent x and agent y’s behavior is, due to the variation 
among runs inherent in the simulation.  Additionally,  as discussed previously,  the 
stationary distribution of a particular model changes as a function of bottleneck or 
population size.  Therefore, we cannot just average the stationary distribution of agent 
x and agent y for comparison to a 2-agent simulation composed of agent x and agent y. 
Instead,  we should match for  the  number  of  samples  in  the  data  string.   For  the 
Sampler,  it  is  established  that  manipulating  bottleneck  size  does  not  effect  the 
stationary distribution: it will continue to mirror the prior.  However, manipulating the 
population size slightly effects the stationary distribution away from mirroring the 
prior.  Although, this effect isn’t noticeable at a population of 2 for relatively flat 
hypotheses and a mildly biased prior.  Therefore, the average behavior for Sampler 
agent x and Sampler agent  y can be done with some confidence – by just averaging 
the priors of the two agents – but only when hypotheses are relatively flat and the bias 
is weak.  

Heterogeneous Sampler behavior:
So,  the  question  for  the  heterogeneous  Sampler  model  is:   Does  the  converged 
behavior of a 2-agent  heterogeneous Sampler model come to the average of their 
priors?  The answer appears to be yes.  Figure 2.9 shows the convergence of a 2-
agent, heterogeneous Sampler ILM and Figure 2.10 shows the difference (measured 
in Euclidean distance) between each agent’s hypothesis history, for the data in Figure 
2.9.  For clarity, Figure 2.9 does not plot the entire stationary distribution, but only 
H1’s proportion in the stationary distribution.  The gray line indicates what H1 should 
be if the convergence reflects a trivial  average of individual agent behavior.  The 
heterogeneous behavior seems to converge to this trivial average.  But this is difficult 
to tell with certainty because, by the time the agents’ behavior converges completely, 
the variance between runs (due to the increasing bottleneck size, see section 2.4.3) is 
too high to determine what the true convergence values are.
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Looking at  the last  reliable run from Figure 2.9,  at  bottleneck 16,  the normalized 
hypotheses history of each agent are displayed in Table 2.20.   Here, it is clear that the 
convergence behavior is settling around the average of both agent’s priors.

Average of Converging 
Behavior

H1 H2 H3
agent 1 0.43 0.21 0.36
agent 2 0.37 0.21 0.42 Average of both Priors
average 0.40 0.21 0.39 0.4 0.2 0.4

Table 2.20
Hypotheses History of each agent at bottleneck = 16, from Figure 2.9, and the average of their priors.

Figure 2.9
The behavior of agents with different priors converges when they are allowed to share more and more 
data.  Variation of individual runs is still a problem over large bottleneck sizes.  Population = 2,  Prior 
agent 1 = [.6 .2 .2], Prior agent 2 = [.2 .2 .6], Hypotheses = [.6 .2 .2; .2 .6 .2; .2 .2 .6].
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Figure 2.10
Euclidean distance between the agents’ hypotheses histories, of which H1 is graphed 
in Figure 2.9.

In  section  2.4.4  we  discussed  some  parameter  combinations,  for  the  multi-agent 
Sampler,  which  did  not  result  in  a  stationary  distribution  that  mirrored  the  prior. 
Namely,  strongly-peaked hypotheses structures plus strong biases.   Some of these 
combinations were also analyzed in the heterogeneous model, however, the normal 
variance of each run subsumed the difference between the averaged priors and the 
average outcome of the multi-agent runs which did not mirror the prior.  Therefore, it 
is impossible to determine a difference in convergence when comparing these two 
conditions.

Heterogeneous MAP behavior:
As we’ve demonstrated in previous sections, the dynamics of the MAP model are 
more  complex  than  that  of  the  Sampler,  and  the  heterogeneous  models  are  no 
exception.  The MAP model behaves very differently over an increasing bottleneck 
depending on whether the hypotheses structure is canonical or asymmetrical (refer 
back to Figure 2.5).  Due to the unexplained, non-monotonic variance over bottleneck 
size of MAP models with asymmetrical hypotheses, we will restrict the heterogeneous 
MAP analyses to canonical hypotheses structures.

To determine whether the MAP model convergence of agent x and agent y is a trivial 
average of each of agent x’s and agent y’s normal stationary distribution, we need to 
know what  agent  x and agent  y’s  normal behavior is.   For  the MAP, there is  no 
difference  in  dynamics  whether  the  models  are  matched  for  population  size  or 
bottleneck.   Therefore,  the  stationary  distribution  of  a  1-agent  x,  bottleneck  =  2 
simulation and the stationary distribution of a 1-agent y, bottleneck = 2 simulation can 
be averaged to represent a trivial convergence state.  For all the MAP models tested 
here, their convergence state does not conform to this average exactly.  Figure 2.11 
shows  convergence  in  MAP  hypotheses  choice  behavior,  again  just  for  H1’s 
proportion  in  the  stationary  distribution.   The  analytically-determined  stationary 
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distribution for single-agent, bottleneck = 2 model for agent 1 is [.83 .15 .03] and 
agent 2 is [.03 .15 .83].  The average of these vectors is [.43 .15 .43].  However, the 
hypothesis history of the heterogeneous model does not settle upon this average.  Due 
to the variation over runs, it is difficult to determine what the actual convergence state 
is.  However, it seems that the heterogeneous model is converging somewhere off of 
this average, rather then homing in on it as the Sampler model did.

Figure 2.12 shows some additional simulations, where each graph shows a simulation 
with a different set of agent priors.  These also seems to converge somewhere off of 
the  trivial  average.   Recall  that  MAP  stationary  distributions  are  differentially 
sensitive to whether the maximum prior value is higher or lower than the maximum 
hypotheses peak value (refer back to Figure 2.3).  This differential sensitivity is also 
confirmed in the heterogeneous MAP model.  In figure 2.12 and 2.13, models (a) and 
(b)  have  a  bias  which  exceeds  the  maximum likelihood values  of  the  hypothesis 
structure, whereas the bias in models (c) and (d) do not.  The convergence behavior 
for these two sets of models are qualitatively different.

Figure 2.11
MAP model shows signs of converging to something other than the average behavior of appropriately 
matched single-agent, homogeneous models (represented by the horizontal line).  Hypotheses = [.8 .1 
.1; .1 .8 .1; .1 .1 .8], prior agent 1 = [.7 .2 .1] and prior agent 2 = [.1 .2 .7]
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Figure 2.12
MAP convergence for 4 simulations, each where agents have a different set of priors.  a-d: Hypotheses 
= [.6 .2 .2; .2 .6 .2; .2 .2 .6],  a: prior agent 1 = [.4 .3 .3] and prior agent 2 = [.3 .3 .4],  b: prior agent 1 = 
[.59 .205 .205] and prior agent 2 = [.205 .205 .59], c: prior agent 1 = [.6 .2 .2] and prior agent 2 = [.2 .2 
.6],  d: prior agent 1 = [.8 .1 .1] and prior agent 2 = [.1 .1 .8]

Figure 2.13
Euclidean distance between the agents’ hypotheses histories, of which H1 is graphed in Figure 2.12.
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Summary Heterogeneous ILM:
For both the MAP and Sampler models, the behavior of 2 agents with heterogeneous 
biases converges as a function of the bottleneck size.  The more agent’s share each 
other’s data, the more they choose the same hypotheses as each other.  At very large 
bottlenecks,  agents  choose  the  exact  same  hypothesis  throughout  the  simulation, 
showing  that  a  sufficiently  strong  data  likelihood  value  can  override  agent’s 
differences in prior biases.  However, the inherent variance of a finite simulation over 
high bottlenecks, makes it impossible to obtain an exact distribution of hypotheses 
that  is  being  converged  to.   It  appears  that  the  Sampler  model  tends  toward 
convergence to a trivial  average of the agents’ priors.  The MAP model seems to 
converge slightly below this level.  However, overall the behavior of the Sampler and 
the MAP in the heterogeneous model are qualitatively very similar.  we’ve probably 
shied away from addressing the true complexity of convergence by limiting myself to 
2-agent, bottleneck = 2 simulations, canonical hypotheses structures, and symmetrical 
prior  sets.   Undoubtedly,  such  simulations  will  yield  more  variance  in  behavior 
according  to  more  fine-grained  categories  of  parameter  settings.   However,  these 
simulations are only a first step in addressing bias heterogeneity in a Bayesian ILM.

2.5  Model Discussion

This  Bayesian  ILM  both  replicated  the  general  properties  of  previous  existing 
Bayesian ILMs and provided new results regarding multi-agent populations and bias 
heterogeneity.  The replications are that a single-agent Sampler model’s stationary 
distribution always mirrors the prior bias of the agent (Griffiths & Kalish, 2005), and 
a MAP model’s stationary distribution is determined both by the prior and the data 
likelihood values (Kalish et al., 2007).  Also, for a range of parameters, the prior has 
no effect on the MAP stationary distribution (Smith & Kirby, 2008?), but above this 
threshold, iterated learning amplifies this bias (Kirby et al., 2007).  Additionally, a 
strong  bottleneck  effect  was  observed,  with  the  general  effect  of  increasing 
transmission fidelity of both the Sampler and MAP models (Kalish et al., 2007).  Last 
to  note,  the  normalized  history  of  all  hypotheses  choices  over  the  course  of  the 
simulation yielded the same solution as analytically calculating the Q matrix, as in 
Nowak et al. 2001.  All of these replications attest to this particular implementation as 
a valid Bayesian iterated learning model.

Throughout the replication work, new insights into the role of data likelihoods for 
both the MAP and Sampler were obtained.  The focus of all previous research with 
Bayesian  ILMs  is  the  on  prior  and  how  its  manipulations  affect  the  stationary 
distribution.  Kalish et al. (2007) manipulated the degree of hypotheses overlap, as 
well as noise level, but it appears their hypotheses correspond to what we call the 
canonical  form  in  our  analyses.   Otherwise,  the  rest  of  the  literature  does  not 
manipulate the data likelihoods of their model.  My analyses of both canonical and 
asymmetrical hypotheses structure, and in the absence of noise, sheds new light on 
how the  likelihoods  effect  the  stationary  distribution,  by  way  of  determining  the 
posterior values, which determine the transition probabilities of the Q matrix, which 
yields a particular stationary distribution.  There is a great deal of complexity inherent 
in the nature of the hypotheses overlap, where different hypotheses structures can be 
shown to determine the outcome of iterated learning just as much as the prior bias 
does.  These complexities are also strongly influenced by the bottleneck, showing that 
hypotheses overlap is responsive to the pressures of cultural transmission.  However, 
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in  the  case  of  asymmetrical  hypotheses,  this  sensitivity  to  the  bottleneck  is 
surprisingly unstable.  

The results of Smith & Kirby (2008) demonstrate that the MAP strategy of hypothesis 
choice is evolutionarily stable over that of samplers.  However, the MAP parameters 
for which this result was proven, it seems, were derived from a canonical hypotheses 
structure and for the range of priors which are unaffected by bias strength (refer back 
to Figure 2.3).  The result is consistent behavior of the Smith & Kirby’s MAP model 
over the bias values they selected.  My results show that this is a subset of MAP 
behavior  and  that  unstable  behavior  is  easily  obtained  for  the  right  relationship 
between hypotheses and priors.   So,  perhaps MAP would not  be the evolutionary 
stable strategy in all cases.  Or additionally, perhaps it can be shown that a certain 
range  of  MAP parameters  is  evolutionary  stable  over  other  MAP parameter  sets. 
Knowledge of this kind would help guide the right choice of MAP parameter sets to 
use for iterated learning simulations, rather than convention (i.e. assuming one un-
manipulated set of canonical hypotheses).

Another novel result was obtained from a manipulation in population size.  By just 
increasing the population size to 2, the Sampler model’s stationary distribution does 
not strictly mirror the prior.  The result is that the hypothesis with the highest prior 
becomes amplified in the stationary distribution, and some sensitivity to the likelihood 
structure emerges.   This result  is  due to the fact  that  Samplers,  according to  this 
model’s multi-agent implementation, can no longer be classified as perfect Bayesian 
reasoners (refer back to section 2.4.4).

The population manipulation was also informative in terms of this paper’ ultimate 
question; what does cultural transmission add?  Since population size, in part, defines 
the  social  structure  and  transmission  dynamics  of  an  ILM,  any  manipulation  to 
population size that affects the stationary distribution can be taken as evidence for 
cultural transmission “adding” something.  Referring back to Figure 2.6, it is clear 
that cultural transmission adds additional dynamics in the case of the Sampler, but not 
in the MAP.  Interestingly enough, the existing literature claims the reverse: cultural 
transmission adds nothing to the Sampler model, but does to the MAP model.

In  summary,  this  section  has  shown  that  the  particular  dynamics  which  were 
previously thought to differentiate the Sampler and MAP models, may not be as clear 
cut  as  they  previously  seemed.   It  is  clear  that  the  parameters  which  encode 
manipulations to the cultural  transmission system (bottleneck and population size) 
affect both the Sampler and MAP models.  It is also clear that non-convergence to the 
prior cannot be taken as evidence against the Sampling strategy or support for MAP 
strategy.
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One suggestion for future Bayesian ILM research would be to investigate models 
where agents are no longer perfect Bayesian reasoners, by giving agents 
heterogeneous hypotheses structures.  If each generation of agents do not have the 
exact same hypotheses structures as the previous generation, then agents will not be 
able to calculate the optimal posterior probabilities over hypotheses.  It is certainly the 
case that humans are not perfect Bayesian reasoners, because we do not have 
complete knowledge of the exact likelihoods involved in the processes of our 
environment, but rather we learn these probabilities and construct our own 
hypotheses, imperfectly, through experience.  Another suggestion would be to explore 
hypothesis choice strategies that are a mix between Sampling and MAP behavior.  It 
is more likely that human behavior can be better approximated by a strategy that lies 
on the continuum between sampling and maximizing, rather than one at either of these 
extremes.  Both of these suggestions should yield results which further inform us 
about the outcome of iterated learning in human populations.

3. Conclusions

Overall, the present research has demonstrated a wider variety of behavior than has 
been previously obtained in iterated learning models, yielding new insights into the 
complex interplay between individual biases and the cultural transmission of 
language.

The debate over how much innate biases vs. cultural transmission determine the 
outcome of iterated learning, seems to be somewhat reconciled.  The present 
modeling results demonstrated that Samplers in a population larger than 1 do not 
converge to the prior and are sensitive to manipulations in the data likelihoods.  Thus, 
when an ILM does not converge to the prior, this can neither be taken as evidence 
against the sampling strategy, nor for the MAP strategy.  Additionally, both models 
are sensitive to dynamics imposed by cultural transmission; the MAP model is 
sensitive to bottleneck size, and the Sampler model to population size.  Thus, we 
cannot expect that either of these models will simply converge to the prior within 
ILMs that more realistically approximate human social systems.

The last important points regard the use of Bayesian inference as a model of human 
cognition.  First, it may not be the case that the prior fully specifies the bias for the 
Bayesian inference algorithm once its adapted into an agent within a cultural 
transmission system.  Additions to the Bayesian inference algorithm, such as a 
hypothesis choice strategy, must be implemented so that this algorithm can output 
data for other agents in the simulation.  These additions are probably building in 
additional biases to the agents behavior, as is apparent in the behavioral differences 
between Samplers and Maximizers.  This raises doubt to the claim that Bayesian 
ILMs are the solution to previous ILM confounds, where the learning algorithms had 
implicit and incomparable biases.

Second, we would certainly want to know how much the behavior of the models 
change when agents are no longer perfect Bayesian reasoners.  Relaxing this 
assumption could give a better account of human behavior in iterated learning.  It 
could be quite interesting, for researchers in cognitive science, to investigate 
computational ILMs where agents are heterogeneous in respect to their hypotheses 
structures, because an in-depth study of the hypotheses component of Bayesian 
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inference could provide a formal framework to investigate the representational 
constraints of individual cognitive agents, and how they affect the transmission of 
language.

The work presented in this paper has attempted to synthesize the findings of a 
computational ILM and an iterated learning experiment with human subjects.  As 
hopefully demonstrated in the present research, this combination of methodologies 
can provide us with deeper insights into explaining the structure of human language, 
as rooted both in the biases of individual cognitive agents, and the system of cultural 
transmission in which the interact.
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Appendix A

Bayesian ILM code for the MAP agent
Matlab

%% Parameters:
N_gen = 10000; % number of generations
N_pop = 2; % must enter same number of rows in prior matrix as N_pop
N_hyp = 3;   % number of hypotheses
N_sam = 1; % number of samples
N_sampop = N_sam*N_pop; % number of samples, totaled over agents
N_dat = 3;   % number of data-values (assuming data-values range from 1 to N_dat)
 
%% Main program loop
 
%% initialize
posteriorhistory = zeros(N_gen,N_pop,N_hyp);
hypotheseshistory = zeros(N_gen,N_pop);
hyphist = zeros(N_pop,N_hyp);
hyphistnorm = zeros(N_pop,N_hyp);
posterior = zeros(N_pop,N_hyp);
agents_posterior = zeros(N_pop,N_hyp);
agents_hypothesis = zeros(N_pop,1);
data_each_agent = zeros(1,N_sam);
posteriormean = zeros(N_pop,N_hyp);
summary = zeros(N_pop,N_hyp);
likelihood = zeros(1,N_hyp);
prior = zeros(N_pop,N_hyp);
prior = log ([.8 .1 .1; .1 .1 .8]); % must enter #rows=N_pop
hypotheses = log ([.6 .2 .2; .2 .6 .2; .2 .2 .6]);
data = zeros(1,N_sampop); % data is a vector. each agent's output follows in chunks
data = random('unid',N_dat,[1,N_sampop]),
 
%% iterate
for generation=1:N_gen,
    
    %calculate posterior
    for a=1:N_pop,
    likelihood = [0.0 0.0 0.0]; %resets likelihood to zeros, each loop
        for i=1:N_sampop, likelihood = likelihood +  

transpose(hypotheses(:,data(1,i))); end;
        agents_posterior(a,:) = logBayesRule(prior(a,:),likelihood);
    end;
    agents_posterior; %matrix of all agents posteriors for this generation
 
    posteriorhistory(generation,:,:) = agents_posterior;
    for a=1:N_pop,
    posteriormean(a,:) = sum(posteriorhistory(:,a,:)) ./ N_gen;
    end;
 
%Maximizer
 
    %choose hypothesis
    for a=1:N_pop, 
        %randomize order hypotheses are evaluated to be max or not, because
        %if there are multiple identical max values, max() always returns the first 
one, biasing towards h1, then h2.
        maxtest = transpose(randsample(3,3));
        [value,position] = max(agents_posterior(a,:));
        if agents_posterior(a,maxtest(:,1)) == max(agents_posterior(a,:));
           hstar = maxtest(:,1);
        elseif agents_posterior(a,maxtest(:,2)) == max(agents_posterior(a,:));
           hstar = maxtest(:,2);
        elseif agents_posterior(a,maxtest(:,3)) == max(agents_posterior(a,:));
           hstar = maxtest(:,3);
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        else 'I cant program';
        end;
        agents_hypothesis(a,:) = hstar;
        hypotheseshistory(generation,a) = hstar;
    end;
    agents_hypothesis; %matrix of all agents' chosen hypothesis for this generation
 
    %generate data
    data = [];
    for a=1:N_pop, data_each_agent = 

randsample(1:N_dat,N_sam,true,exp(hypotheses(agents_hypothesis(a),:)));
    data = [data data_each_agent];
    end;
 
end;
 
%create hyphist
for a=1:N_pop,
    for h=1:N_hyp,
        for g=1:N_gen,
            if hypotheseshistory(g,a) == h;
                hyphist(a,h) = (hyphist(a,h))+1;
            else hyphist(a,h) = hyphist(a,h);
            end;
        end;
    end;
end;
 
for a=1:N_pop,
    hyphistnorm(a,:) = hyphist(a,:) ./ sum(hyphist(a,:));
end;

Bayesian ILM code for the Sampler agent hypothesis choice
Matlab

%choose hypothesis
    agents_hypothesis = [];
    for a=1:N_pop, 
        agents_hypothesis(a) = randsample(1:N_hyp,1,true,agents_posterior(a,:));
        hypotheseshistory(generation,a) = agents_hypothesis(a);
    end;
    agents_hypothesis; %matrix of all agents' chosen hypothesis for this generation
 
    %generate data
    data = [];
    for a=1:N_pop, data_each_agent = 

randsample(1:N_dat,N_sam,true,exp(hypotheses(agents_hypothesis(a),:)));
    data = [data data_each_agent];
    end;
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