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Chapter 1

Quantum Computing

1.1 Intro duction

Today's computers|b oth in theory (Turing madines) and practice (PCs)|are
basedon classicalphysics. However, modern quantum physicstells us that the
world behares quite di®erenly. A quantum systemcan be in a superposition of
marny di®eren statesat the sametime, and canexhibit interferene e®ectgluring
the courseof its ewlution. Moreover, spatially separatedquantum systemsmay
be entanglel with eat other and operationsmay have \non-lo cal" e®ectdbecause
of this.

Quantum computation is the eld that investigatesthe computational power
and other properties of computersbasedon quantum-mecdhanical principles. An
important objective is to nd quartum algorithms that are signi cantly faster
than any classicalalgorithm solving the sameproblem. The eld started in the
early 1980swith suggestiondor analogquantum computersby Paul Benio®[22]
and Richard Feynman [74, 75|, and readed more digital ground when in 1985
David Deutsct de ned the universalquantum Turing machine [61]. The following
years sav only sparseactivity, notably the dewelopmen of the rst algorithms
by Deutsdh and Jozsa[63] and by Simon[152, and the dewelopmen of quantum
complexity theory by Bernstein and Vazirani [28]. Howewer, interest in the eld
increasedtremendously after Peter Shor's very surprising discovery of excient
guantum algorithms for the problems of integer factorization and discrete loga-
rithms in 1994 [15]]. Sincemost of current classicalcryptography is basedon
the assumptionthat thesetwo problemsare computationally hard, the ability to
actually build and usea quantum computerwould allow usto break most current
classicalcryptographic systems,notably the RSA system[14Q 142. (In cortrast,
a quantumform of cryptography dueto Bennett and Brassard[26] is unbreakable
even for quantum computers.)

This chapter is intendedto be an introduction to the model of quantum com-
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2 Chapter1. Quantum Computing

putation and to the main quantum algorithms that have beenfound so far, all
of which are conveniertly namedafter their inventors: Deutsdh-Jozsa,Bernstein-
Vazirani, Simon, Shor, and Grover. Somefamiliarity with computational com-
plexity theory will be useful, but is not necessaryfor understandingthe chapter.
We start with an abstract explanation of quartum medanics in Section 1.2.
Sectionl.3 explainswhat quantum bits and quantum memorylook like, and Sec-
tion 1.4 shavs how we can compute with quarntum memory In the last three
sectionswe explain the above-merioned quantum algorithms in detail.

Beforelimiting oursehesto theory, let us say a few words about practice: to
what extentwill quantumcomputerseverbe built? At this point in time, it is just
too early to tell. The rst small 2-qubit quantum computerwasbuilt in 1997and
at the time of writing (early 2001),the largestimplemerted quartum algorithm
usesa mere 5 qubits [156. The practical problemsfacing physical realizations
of quantum computersseemformidable. The problemsof noiseand decoherence
have to someexternt beensolved in theory by the discovery of quartum error-
correcting codes and fault-tolerant computing (seee.g. [13Q Chapter 10]), but
theseproblemsare by no meanssolvedin practice. On the other hand, we should
realizethat the eld of physical realization of quartum computing is still in its
infancy and that classical computing had to face and solve many formidable
technical problemsaswell|in terestingly, often these problemswere even of the
same nature as those now faced by quartum computing (e.g., noise-reduction
and error-correction). Moreover, the ditculties facing the implemertation of a
full quantum computer may seemdaurting, but more limited things involving
guantum communication have already beenimplemerted with somesuccessfor
examplequartum cryptography andteleportation (which is the processof sending
gubits using entanglemert and classi@l comnunication).

Evenif the theory of quantum computing never materializesto a real physical
computer, guantum-medanical computersare still an extremely interesting idea
which will bearfruit in other areasthan practical fast computing. On the physics
side, it may improve our understanding of quartum medanics. The emerging
theory of entanglemert has already done this to someextert. On the computer
scienceside, the theory of quantum computation generalizesand enrichesclassical
complexity theory and may help resolve someof its problems. This explainsthe
motto of the presen thesis: senon g vero, g ben trovato, which roughly translates
as\evenif it is not true, it's still a niceidea".

1.2 Quantum Mec hanics

Herewe give a brief and abstract introduction to quantum medanics. In short: a
guantum state is a superposition of classicalstates,to which we can apply either
a measurementor a unitary operation. For the required linear algebraand Dirac
notation we referto Appendix A.
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1.2.1 Superposition

Consider some physical systemthat can be in N di®eren, mutually exclusive
classicalstates. Call thesestatesjli;j2i;:::;jNi. Roughly, by a\classical" state
we mean a state in which the system can be found if we obsene it. A pure
quantum state (usually just called state) jAi is a sugerposition of classicalstates,
written

jA = ®jli + ®j2i + ¢¢¢+ ®jNi:

Here® is a complexnumber that is calledthe amplitudeofjii in jAi. Intuitiv ely, a
systemin quartum state jAi isin all classicalstatesat the sametime! It isin state
j1i with amplitude ®,, in state j2i with amplitude ®,, and soon. Mathematically,
the states|jli;:::;jNi form an orthonormal basis of an N -dimensional Hilbert
space (i.e., an N -dimensional vector spaceequipped with an inner product) of
dimensionN, and a quartum state jAi is a vector in this space.

1.2.2 Measuremen t

There are two things we can do with a quartum state: measureit or let it ewlve
unitarily without measuringit. We will deal with measuremen rst.

Measuremen t in the computational basis

Supposewe measurestate jAi. We cannot \see" a superposition itself, but only
classicalstates. Accordingly, if we measurestate jAi we will seeone and only
one classicalstate jji. Which speci ¢ jji will we see?This is not determinedin
advance;the only thing we can say is that we will seestate jji with probability

j?, which is the squarednorm of the correspnding amplitude ® (ja+ ibj =

a2 + ). Thusobservinga quantum state inducesa probability distribution on
g@e classicalstates, given by the squarednorms of the amplitudes. This implies

i=1 j®j% = 1,sothe vectorofamplltudeshas(Euclldean) norm 1. If we measure
jAi and seeclassicalstate jji asa result, then jAi itself has \disappeared”, and
all that is left is jji. In other words, observingjAi \collapses" the quartum
superposition jAi to the classicalstate jji that we sav, and all \information"
that might have beencortained in the amplitudes ® is gone.

Orthogonal measurement

A somewhatmore generalkind of measuremet than the above \measuremern
in the computational (or standard) basis" is possible. This will be used only
sparselyin the thesis, and not not at all in this chapter, soit may be skipped
on a rst reading. Sud an orthogonal measuremenh is described by projectors
Py;ii:;Pw (M - N) which sum to identity. These projectors are orthogonal,
meaningthat P;P; = Oif i 6 j. The projector P; projects on somesubspaceV;
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of the total Hilbert spacev and every state jAI 2 V can be decommsedin a
unique way asjAi = i= 1JA,l with jA,l = PJJAl 2 V,. Becausethe prOJectors
are orthogonal, the subspacesy; are orthogonal as weII as are the statesjAi.
When we apply this measuremento the pure state jAi, then we will get outcome
j with probability kjAi k2= Tr(P;jAihA)) and the state will then \collapse" to
the new state jA i=kjAik= P;jAi=kP;jAi k.

For example,a measuremenin the standard basisis the speci ¢ orthogonal
measuremenh whereM = N and P; = jjihjj. That is, P; projects onto the
standard basisstate jji and thelgorresp)ndlng subspace\/j is the spacespanned
by jji. Considerthe state jAi = i=1 ®]ji. Notethat P;jAl = ®jji, soapplying
our measuremento jAi will give outcomej with probablllty k®ijji k*= j§j>,
and in that casethe state collapsedo ® jji=k®jji k— ” i. The norm-1factor
J®J may be disregardedbecausdt hasno phy5|caIS|gn| cance sowe end up with
the state jji aswe saw before.

As another example,a measuremen that distinguishesbetweer?jji with j -
N=2 and jii with j > N=2 correspndsto the two projectorsP, =, \,,]jihj]
and P2 = .y =2liihij. Applying this measuremento the state jAi = p%jli +

ngi will give outcome 1 with probability k P1jAi k?= 1=3, in which casethe
state collapsesto j1i, and will give outcome?2 with probability k P,jAi k?= 2=3,
in which casethe state collapsesto jNi. We refer to the book of Nielsenand
Chuang [13Q for the even more generalbut not really more powerful POVM-
formalism of measuremety which we will not needin this thesis.

1.2.3 Unitary evolution

Instead of measuringjAi , we can also apply someoperation to it, i.e., changethe
state to some

jAI = T1jli + T,j2i + 60+ T jNi:
Quantum medanicsonly allowslinear operationsto be appliedto quantum states.
What this meansis: if we view a state like jAi as an N -dimensional vector
(®;:::;®)T, then applying an operation that changesjAi to jAi correspndsto
multlplylng jAil with an N £ N complex-alued matrix U:

0 1 0 1

® 1
UG K=8: k:
@\ N
. . . P .. P
Note that by linearity we have jAi = UjA = U( ; ®jii) = ; QUijii.
Becausemgasurlnngl should also give a probablllty dlstrlbutlon we have

the constrairt i=1] 7j? = 1. This implies that the operation U must presene
the norm of vectors,and hencemust be a unitary transformation. A matrix U is
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unitary if its inverseUi ! equalsits conjugatetransposeU®. This is equivalert to
saying that U always mapsa vector of norm 1 to a vector of norm 1. Becausea
unitary transformation always hasan inverse,it followsthat any (non-measuring)
operation on quantum statesmust be reversible: by applying Ui * we can always
\undo" the action of U, and nothing is lost in the process. On the other hand,
a measuremenis clearly non-rewersible, becausewe cannot reconstructjAi from
the obsened classicalstate jji.

1.3 Quantum Memory

In classicalcomputation, the unit of information is a bit, which canbeOor 1. In
guantumcomputation, this unit is a quantumbit (qubit), which is a superposition
of 0 and 1. Considera systemwith 2 basiﬁstatﬁes, callutherﬁ jOi and jli. We
identify these basis states with the vectors 0 and 1 respectively. A
single qubit can be in any superposition

®j0i + @jli; j@j* + &) = 1.

Accordingly, a singlequbit \liv es" in the vector spaceC?. Similarly we can think
of systemsof more than 1 qubit, which \live" in the tensor product spaceof
se\eral qubit systems.For instance,a 2-qubit systemhas4 basisstates: jOi - jOi,
jOi - jdi, jli - jOi, jli - jli. Herefor instancejli - jOi meansthat the rst qubit
isin its basisstate j1i and the secondqubit is in its basisstate jOi. We will often
abbreviate this to j1ij Oi, j1;0i, or evenj10i.

More generally a register of n qubits has 2" basis states, ead of the form
joui - jbpi - :ii- jbai, with i 2 £0;1g. We can abbreviate this to jiyb,:::hi.
We will often abbreviate 0:::0 to 0. Sincebitstrings of length n can be viewed
as numbersbetween0 and 2" | 1, we can alsowrite the basisstatesas numbers

sition
Xi1
®pjOi + ®jli + CCC+ @, 1j2" | 1i; j®p*= 1L
j=0
If we measurethis in the standard basis,we obtain the n-bit state state jji with
probability j® j2.
Measuringjust the rst qubit of a state would correspnd to the orthogonal
measurementhat hasthe two projectors Py = jOIhQj - I, : and Py :qjlihlj -

Ini 1. FOr example,applying this measuremento the state pl—gjOij A+ %j 1ij Ai
will give outcomeO with probability 1/3 (the state then becomeg0ij Ai) and out-

comel with probability 2/3 (the state then becomeg1ij Ai). Similarly, measuring
the rst n qubits of an (n+ m)-qubit statein the standardbasiscorrespndsto the
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An important property that desenesto be mertioned is entanglementwhich
refersto quantum correlationsbetweendi®erern qubits. For instance,considera
2-qubit registerthat is in the state

1. . 1. .
—j00 + p—jl1li:
p—ZJ 19—2]

Sud 2-qubit statesare sometimescalled EPR-pairs in honor of Einstein, Podol-
sky, and Rosen[67], who rst examinedsud statesand their seeminglyparadox-
ical properties. Initially neither of the two qubits hasa classicalvalue jOi or j1i.
Howewer, if we measurethe rst qubit and obsene, say, a jOi, then the whole
state collapsedo jOGi. Thusobservingonly the rst qubit immediately xes also
the second,unobsened qubit to a classicalvalue. Thereforethis systemis called
entanglel. Sincethe two qubits that make up the register may be far apart, this
exampleillustrates someof the non-local e®ectsthat quantum systemscan ex-
hibit. In general,a bipartite state jAi is called entangle if it cannot be written

asa tensor product jAsi - jAgi wherejAai livesin the st spaceand jAgi lives
in the second.

At this point, a comparisonwith classicalprobability distributions may be
helpful. Supposewe have two probability spaces,A and B, the rst with 2"
possibleoutcomes,the secondwith 2™ possibleoutcomes.A distribution on the
“rst spacecan be descriked by 2" numbers (non-negative reals summingto 1;
actually there areonly 2" j 1 degreesf freedomhere) and a distribution on the
secondby 2™ numbers. Accordingly, a product distribution on the joint space
can be descrited by 2" + 2™ numbers. Howewer, an arbitrary (non-product)
distribution on the joint spacetakes2"*™ real numbers, since there are 2"*™
possibleoutcomesin total. Analogously an n-qubit state jAxi can be descrited
by 2" numbers (complex numbers whosesquaredmoduli sumto 1), an m-qubit
state jAgi by 2™ numbers, and their tensor product jAai - jAgi by 2" + 2T
numbers. Howewer, an arbitrary (possibly entangled) state in the joint space
takes2""™ numbers, sinceit livesin a 2"*™-dimensionalspace.We seethat the
number of parametersrequired to descrike quantum states is the sameas the
number of parametersneededto descrike probability distributions. Also note
the analogy betweenstatistical independenceof two random variables A and B
and non-ertanglemen of the product state jAxi - jAgi. However, despite the
similarities betweenprobabilities and amplitudes, quartum statesare much more
powerful than distributions, becauseamplitudes may have negative parts which
can lead to interferene e®ects. Amplitudes only becomeprobabilities when we
squarethem. The art of quarntum computing is to usethesespecial propertiesfor
interesting computational purposes.
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1.4 Quantum Computation

Below we explain how a quantum computer can apply computational stepsto its

registerof qubits. Two modelsexist for this: the quantum Turing madine [61, 28]

andthe quantum circuit model [62, 165. Thesemodelsareequivalert, in the sense
that they can simulate ead other in polynomial time, assumingthe circuits are

appropriately \uniform”. We only explain the circuit model here, which is more
popular amongresearbers.

1.4.1 Classical circuits

In classicalcomplexity theory, a Boolean circuit is a nite directed acyclic graph
with AND, OR, and NOT gates. It has n input nodes, which cortain the n
input bits (n, 0). The internal nodesare AND, OR, and NOT gates,and there
are one or more designatedoutput nodes. The initial input bits are fed into
AND, OR, and NOT gatesaccordingto the circuit, and ewvertually the output
nodesassumesomevalue. We sgy that a circuit computessomeBooleanfunction
f :f0;1g" ! fO0;1g™ if the output nodesget the right valuef (x) for every input
x 2 10; 1g".

A circuit family is a set C = fC,g of circuits, one for ead input sizen.
Eadh circuit hasone output bit. Sud a family recognizesor decidesa language
L pu f0; 1g° if, for every n and every input x 2 f0; 19", the circuit C, outputs 1 if
x 2 L and outputs 0 otherwise. Sud a circuit family is uniformly polynomial if
there is a deterministic Turing macine that outputs C, given n asinput, using
spacelogarithmic in n (this impliestime polynomial in n, becausesud a madine
will have only poly(n) di®eren internal states,soit either halts after poly(n) steps
or cyclesforever). Note that the size(number of gates)of the circuits C, canthen
grow at most polynomially with n. It is known that uniformly polynomial circuit
families are equalin power to polynomial-time deterministic Turing madines: a
languagel. canbedecidedby a uniformly polynomial circuit family i®L 2 P [135
Theorem 11.5], where P is the classof languagesdecidableby polynomial-time
Turing madines.

Similarly we can considerrandomizel circuits. Thesereceiw, in addition to
the n input bits, also somerandom bits (\coin °ips") asinput. A randomized
circuit computesa function f if it successfullyoutputs the right answer f (x)
with probability at least 2=3 for every x (probability taken over the valuesof the
random bits; the 2=3 may be replacedby any 1=2+ "). Randomizedcircuits are
equal in power to randomized Turing machines: a languageL can be decided
by a uniformly polynomial randomizedcircuit family i® L 2 BPP , where BPP
(\Bounded-error Probabilistic Polynomial time") is the classof languageghat can
exciently berecognizedoy randomizedTuring madineswith succesgprobability
at least2=3. Clearly P p BPP . It is unknown whether this inclusionis strict.
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1.4.2 Quantum circuits

A quantumcircuit (also called quartum network or quartum gate array) general-
izesthe idea of classicalcircuit families, replacingthe AND, OR, and NOT gates
by elemernary quantumgates A quantum gateis a unitary transformation on a
small (usually 1, 2, or 3) number of qubits. Mathematically, these gatescan be
composedby taking tensor products (if gatesare applied in parallel to di®eren
parts of the register) and ordinary products (if gatesare applied sequemially).
Simple examplesof sud circuits of elemenary gatesare givenin the next section.
A widely usedexampleof a 1-qubit gate is the Hadamaud transform, speci ed

by:

1 1
HjOi = p—j0i + p—jli
SR
Hjli = p—=j0i ; p—jli
J p—zl i 9—21

As a unitary matrix, this is represened as
H=p=
72

If we apply H to initial state jOi and then measure,we have equal probability
of observingjOi or jli. Similarly, applying H to j1li and observinggives equal
probability of jOi orjli. Howewer, if weapply H to the superposition pl—szi + pl—éj 1i
then we obtain jOi: the positive and negative amplitudes for j1i cancelout! This
e®ecits calledinterference, and is analogoudo interferencepatterns betweenlight
or sound waves, Note that if we apply H to ead bit in a register of n zerces,
we obtain p2- 2t 0:1gn J1 1, Which is a superposition of all n-bit strings. More
generally if we apply H™ " to an initial state jii, with i 2 f0;1g", we obtain

1 X o
H™ "jii = P= (i % (1.1)
j 2f 0;1g"
P
wherei§ = [, ixjk denotesthe inner product of the n-bit stringsi; j 2 f0; 1g".
For example:
X .
(i D*jji:
j 2f 0;1g2

NI

H- 201 = pl—é(jOi +jli) - pl—é(jOi i jai) =

The n-fold Hadamard transform will be very useful for the quantum algorithms
explainedin the next section.

Another important 1-qubit gate is the phasegate R4, which merely rotates
the phaseof the j1i-state by an angle A:

RA0i = jOi
Rajli = €Ajli
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This correspndsto the unitary matrix

An exampleof a 2-qubit gateis the controlled-not gate CNOT. It negatesthe
secondbit of its input if the rst bit is 1, and doesnothing if the rst bit is O:

CNOT|0ij i = j0ij bi
CNOTjlijb = j1ij1; b

In matrix form, this is

As in the classicalcase,a quartum circuit is a nite directed acyclic graph
of input nodes, gates, and output nodes. There are n nodesthat cortain the
input (as classicalbits); in addition we may have somemore input nodes that
are initially jOi (\w orkspace"). The internal nodes of the quantum circuit are
guantum gatesthat ead operate on at most 2 qubits of the state. The gatesin
the circuit transform the initial state vectorinto a nal state, which will generally
be a superposition. We measuresomededicated output bits of this nal state
to (probabilistically) obtain an answer. It is known that the set of all 1-qubit
operationstogether with the 2-qubit CNOT gate is universal, meaningthat any
other unitary transformation can be built from thesegates. Allowing all 1-qubit
gatesis not very realistic from an implemertational point of view, as there are
uncourtably many of them. Howewer, the model is usually restricted, only al-
lowing a small nite set of 1-qubit gatesfrom which all other 1-qubit gatescan
be exciently appraximated. For example,it is known that the set consisting of
CNOT, Hadamard, and the phase-gateR. is universalin the senseof approxi-
mation. In the main part of this thesiswe will not be much concernedwith the
actual gate-complexiy of our unitary transformations, sowe referto [16, 13(Q for
more details.

The classicalclassesP and BPP can now be generalizedas follows. EQP
(\Exact Quantum Polynomial time") is the classof languageghat can be recog-
nizedwith succesgrobability 1 by uniformly polynomial quantum circuits. BQP
(\Bounded-error Quantum Polynomial time") is the classof languagesthat can
berecognizedwith succesgrobability at least2=3 by uniformly polynomial quan-
tum circuits. Sinceclassicalcomputationscanbe madereversibleat a small cost,
and ewery reversible classicalcomputation is a quantum computation, it follows
that P 4 EQP and BPP p BQP . One of the main open question of quantum
complexity theory is whether theseinclusionsare strict, and more generallywhat
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is the power of BQP . The main candidate to separateBPP and BQP is the
factoring problem, to be explained belovn when we cometo Shor's factoring al-
gorithm. The inclusion BQP p PSPACE was provenin [28], where PSPACE
denotesthe classof all problemsthat canbe solved by classicalTuring madines
using spacepolynomial in the input length. A stronger inclusion for BQP was
shown in [76].

Oneuniquely quartum-mecdhanical e®ecthat we canusefor building quarntum
algorithms is quantum parallelism. Supposewe have a classicalalgorithm that
computessomefunction f : f0;1g" ! f0;1g™. Then we can build a quantum
circuit U that maps jxijOi ! jxijf (x)i for every x 2 f0;1g". Now suppose
we apply U to a superposition of all inputs x (which is easyto build using n

Hadamard transforms):
0 1
1 X 1 X
U@p:n jxijoiA = P= ixij f (x)i:
x2f 0;1g" 2 x2f 0;1g"

We applied U just once,but the nal superposition cortains f (x) for all 2" input
valuesx! Howewer, by itself this is not very useful and doesnot give more than
classicalrandomization, sinceobservingthe nal superposition will give just one
random jxij f (x)i and all other information will be lost. As we will seebelow,
guantum parallelism needsto be combined with the e®ectsof interferenceand
entanglemert in order to get somethingthat is better than classical.

1.5 The Early Algorithms

The two main successesf quartum algorithm sofar are Shor'sfactoring algorithm
from 1994 [15]] and Grover's seard algorithm from 1996 [83], which will be
discussedin the following sections. In this section we describe the sequenceof
earlier guantum algorithms that precededShor'sand Grover's.

Virtually all quantum algorithms work with queriesin someform or other.
We will explain this model here. It may look cortrivedat rst, but evertually will
lead smoothly to Shor'sand Grover's algorithm. We should, however, emphasize
that the query complexity model di®ersfrom the standard model descriked above,
becausedhe input is now givenasa \black-box". This meansthat the exponertial
guantume-classical separationsthat we descrilke below (like Simon's) do not by
themsehesgive exponertial quantum-classicalseparationsin the standard model.
In particular, they do not imply BPP 6 BQP .

f0;1gN. Usually we will have N = 2", sothat we can addressbit x; using an
n-bit index i. One can think of the input as an N-bit memory which we can
accessat any point of our choice (a Random AccessMemory). A memory access
is via a so-called\black-box", which is equipped to output the bit x; oninput i.
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As a quantum operation, this would be the following unitary mappingonn + 1
qubits:

O:ji; 0t ji; xji:
The (n+ 1)st qubit of the state is called the targetbit. Sincethis operation must

be unitary, we alsohave to specify what happensif the initial value of the target
bit is 1. Thereforewe actually let O be the following unitary transformation:

O:ji;b ! ji; bO© xji;

herei 2 f0;1g", b 2 f0;1g, and © denotesexclusiwe-or (addition modulo 2).
In matrix represemation, O is now a permutation matrix and hence unitary.
Note alsothat a quantum computer canapply O on a superposition of variousi,
somethinga classicalcomputer cannot do. One application of this black-box is
called a query, and courting the required number of queriesto compute this or
that function of x is somethingwe will do a lot in the rst half of this thesis.
Given the ability to make a query of the above type, we can also make a

query of the form jii ! (j 1)*jii by setting the target bit to the state j¢i =
P50 i j2i):

O(jiijei) = J’iipl—i(jxii i J1i xii) = (i 1)9jiijei

This § -kind of query puts the output variable in the phaseof the state: if x; is
1thenwe geta 1in the phase;if x; = 0 nothing happens. This is sometimes
more corveniert than the standard type of query. We denotethe correspnding
n-qubit unitary transformation by Os .

1.5.1 Deutsc h-Jozsa

Deutsc h-Jozsa problem [63]:

For N = 2", we are givenx 2 f0; 1gN sud that either

(1) all x; have the samevalue (\constant"), or

(2) N=2 of the x; are 0 and N=2 are 1 (\balanced").

The goalis to nd out whether x is constart or balanced.

The algorithm of Deutsdh and Jozsais as follows. We start in the n-qubit
zero state jOi, apply a Hadamard transform to ead qubit, apply a query (in
its § -form), apply another Hadamardto ead qubit, and then measurethe nal
state. As aunitary transformation, the algorithm would beH-"OsH" ". We have
drawn the correspnding quartum circuit in Figure 1.1 (where time progresses
from left to right).

Let us follow the state through theseoperations. Initially we have the state
jO"i. By Equation 1.1 on page 8, after the rst Hadamard transforms we have
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jOi Os measure

Figure 1.1: The Deutsth-Jozsaalgorithm for n = 3

obtained the uniform superposition of all i:

1 X

p? jii:

i2f 0;1gn
The Og -query turns this into
1 X
p= (i 1)jii:
2n
i2f 0;1g"

Applying another Hadamardgives(again by Equation 1.1) the nal superposition
1 X K e
on (i 1" G D7ii;

i2f 0;1g" j 2f 0;1g"

P
wherei ¢j = |_, ixjx asbefore. Sincei ¢0 = 0 for all i 2 f0;1g", we seethat
the amplitude of the jOi-state in the nal superposition is

8

< 1 ifx;=0foralli,
(GLD=_ i1 ifxi=21foralli,
i2f 0;1g" ' 0 if x is balanced.

1 X
on

Hencethe nal obsenation will yield jOi if x is constart and will yield someother
stateif x is balanced. Accordingly, the Deutsh-Jozsaproblem can be solved with
certainty using only 1 quantum query and O(n) other operations (the original
solution of Deutsd and Jozsaused?2 queries,the 1-query solution is from [55]).

In cortrast, it is easyto seethat any classi@l deterministic algorithm needs
at least N=2+ 1 queries:if it has made only N=2 queriesand seenonly 0s, the
correct output is still undetermined. Howewer, a classicalalgorithm can solve
this problem exciently if we allow a small error probability: just query x at two
random positions, output \constant" if thosebits are the sameand \balanced" if
they aredi®eren. This algorithm outputs the correctanswer with probability 1 if
X is constart and outputs the correctanswer with probability 1/2 if x is balanced.
Thus the quartum-classicalseparationof this problem only holds if we consider
algorithms without error probability.
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1.5.2 Bernstein-V azirani

Bernstein-V azirani problem [2§]:
For N = 27, we are given x 2 f0;1g" with the property that there is some
unknown a 2 f0;1g" sud that x; = (i ¢a) mod 2. The goalisto nd a.

The Bernstein-Vazirani algorithm is exactly the sameas the Deutsh-Jozsa
algorithm, but now the nal obsenation miraculously yields a. Since(j 1) =
(; 1)@ mod 2= (; 1)@ \we canwrite the state obtained after the query as:

1 X 1 X ,
P= (i 1)jii = P= (i 1)'®jii:
i2f 0;1g" i2f 0;1g"

Applying a Hadamardto ead qubit will turn this into the classicalstate jai and
hencesolvesthe problem with 1 query and O(n) other operations. In cortrast,
any classicalalgorithm (evenarandomizedonewith smallerror probability) needs
to ask n queriesfor information-theoretic reasons:the nal answer consistsof n
bits and one classicalquery givesat most 1 bit of information.

Bernsteinand Vazirani alsode ned a recursiwe versionof this problem, which
canbe solved exactly by a quantum algorithm in poly(n) steps,but for which any
classicalrandomizedalgorithm needsn°9 ™ steps.

1.5.3 Simon

be the n-bit string obtained by bitwise adding the n-bit stringsj and s mod 2.

Simon's problem [152:

that there is someunknown non-zeros 2 f0; 19" sud that x; = X; i®i = | ©s.
The goalisto nd s.

Note that x, viewedasa function from [N ] to [N ] is a 2-to-1function, wherethe
2-to-1-nesds determinedby the unknown masks. The queriesto the input here

Xi that themsehesare n-bit strings, and one query givessud a string completely
(gi; 01 ! ji; xi1). Howewver, we can also view this problem as having n2" binary
variables that we can query individually. Since we can simulate one Xx;-query
usingonly n binary queries(just query all n bits of x;), this alternative view will
not a®ectthe number of queriesvery much.

Simon'salgorithm starts out very similar to Deutsd-Jozsa: start in a state of
2n zeroqubits jOi and apply Hadamard transformsto the rst n qubits, giving

1 X
p— Jijoi:
20
i2f 0;1g"
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At this point, the secondn-qubit register still holds only zerces. A query turns
this into
1 X
p? jij xi:
i2f 0;1g"

Now the algorithm measureghe secondn-bit register (this measuremenis actu-
ally not necessarybut it facilitates analysis). The measuremen outcomewill be
somevalue x; and the rst registerwill collapseto the superposition of the two
indiceshaving that x;-value:

p—é(jll + ji © si)jx;i:
We will now ignore the secondregister and apply Hadamard transforms to the

“rst n qubits. Using Equation 1.1 and the fact that (i ©s) ¢j = (i ¢j) © (s ¢j),
we can write the resulting state as

0 1
Pomr (i D%y + G D"0jjiA =
j 2f 0;1g" j 2f 0;1g"
0 1

1 X G ¢
p—@ (i '% 1+ (G 1% jjiA:

n+1
2 j 2f 0;1g"

Note that jji has non-zeroamplitude i® s ¢j = 0mod 2. Accordingly, if we
measurethe nal state we get a linear equation that givesinformation about s.
Repeating this algorithm an expected number of O(n) times, we obtain n inde-
pendern linear equationsinvolving s, from which we can extract s exciently by
a classicalalgorithm (Gaussianelimination over GF (2)). Simon'salgorithm thus
“nds s usingan expectednumber of O(n) x;-queriesand polynomially many other
operations. Later, Brassardand H¢ yer [34] gave a variant of Simon's algorithm
that solvesthe problem using only polynomial (in n) quarntum operations even
in the worst-case.

Simon[157 provedthat any claﬁsﬂzalrandomizedalgorithm that nds s with
high probability needsto make -( = 2") queries! This wasthe Tst proven ex-
ponertial separation between quantum algorithms and classicalbounded-error
algorithms (let us stressagain that this doesnot prove BPP 6 BQP , because
we are courting queriesrather than ordinary operationshere). Simon'salgorithm
inspired Shorto his factoring algorithm, which we describe below.

i€

1The essencef the proof is asfollows. There are N (i; i © s)-pairs (collisions) amongall 'g
(i; j )-pairs, so a random set of o(N) pairs probably doesnot contain any collision, aimté hence
gives no information about s. If the classi%;\lalgorithm makes T queries, it \sees" 2 pairs;

this must be more than o(N), henceT 2 -( N).
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1.6 Shor's Factoring Algorithm

Probably the most important quantum algorithm sofar is Shor's factoring algo-
rithm [151. It can nd a factor of a composite number N in roughly (logN)?
steps,which is polynomial in the length logN of the input. On the other hand,
there is no known classical(deterministic or randomized)algorithm that canfac-
tor N in polynomial time. The best known classicalrandomizedalgorithms run

in time roughly
2(Iog N)®.

where® = 1=3 for a heuristic upper bound [11(J and ® = 1=2 for a rigorousupper
bound [11]]. In fact, much of modern cryptography is basedon the conjecture
that no fast classicalfactoring algorithm exists[144. All this cryptography (for
exampleRSA) would be broken if Shor's algorithm could be physically realized.
In terms of complexity classesfactoring (rather, the decisionproblem equivalernt
to it) is provably in BQP but is not known to be in BPP . If indeedfactoring is
not in BPP , then the quantum computer would be the rst courterexampleto
the \strong" Church-Turing thesis, which statesthat all \reasonable” models of
computation are polynomially equivalert (see[68 and [135 p.31,36]).

Shor alsogave a similar algorithm for solving the discretelogarithm problem.
His algorithm was subsequetly generalizedto solwe the so-calledAbkelian hidden
sulgroup problem and phase-estimationproblem[99, 55, 124. We will not go
into those issueshere, and restrict to an explanation of the quantum factoring
algorithm.

1.6.1 Reduction from factoring to period- nding

The crucial obsenation of Shorwasthat there is an excient quartum algorithm
for the problem of period- nding and that factoring can be reducedto this. We
“rst explain the reduction. Supposewe want to nd factors of the composite
number N > 1. Randomly choose someinteger x 2 f2;:::;N j 1g which is
coprimeto N (if x is not coprimeto N, then the greatestcommondivisor of x
and N is afactor of N, sothen we are already done). Now considerthe sequence

1= x%mod N;x* mod N;x? mod N;:::
This sequencewill cycle after a while: there is aleastO < r - N sud that
x" = 1 mod N. This r is calledthe period of the sequencelt canbe shavn that
with probability | 1=4, r isevenand x'= + 1 and x"*? | 1 are not multiples of
N. In that casewe have:
x* 7 1modN ()
(x?2 ° 1modN ()
X2+ D(x™2ij 1) ° O0modN ()
(X + 1)(x"j 1) = kN for somek:
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Note that k > 0 becauseboth X+ 1> Oand x"j 1> 0 (x > 1). Hence
X'+ 1 or x"7; 1 will sharea factor with N. Becausex'?+ 1 andx"™?; 1 are
not multiples of N this factor will be < N, and in fact both these numbers will
sharea non-trivial factor with N. Accordingly, if we haver then we canezciently
(in roughly logN steps)compute the greatestcommondivisors gcd(x"? + 1;N)
and gcd(x"*? i 1;N), and both of thesetwo numbers will be non-trivial factors
of N. If we are unlucky we might have chosenan x that doesnot give a factor
(which we candetectexciently), but trying afew di®eren random x givesa high
probability of nding a factor.

Thus the problem of factoring reducesto nding the period r of the function
given by modular exponertiation f(a) = x* mod N. In general, the period-
‘nding problem can be stated as follows:

The period- nding problem :
We are given somefunction f : N ! [N] with the property that there is some
unknown r 2 [N] sud that f (a) = f (b) i®a= bmod r. The goalisto nd r.

We will shav belov how we can solwe this problem exciently, using O(loglogN)
ewvaluations of f and O(loglogN) quantum Fourier transforms An evaluation
of f can be viewed as analogousto the application of a query in the previous
algorithms. Even a somewhatmore generalkind of period- nding can be solved
by Shor'salgorithm with very few f -evaluations, whereasany classicalbounded-
error algorithm would needto ewaluate the function -( N'=="logN) times in
orderto nd the period [52].

How many steps(elemertary gates)will the algorithm take? For a = N©°®,
we can compute f (a) = x® mod N in O((log N)?loglogN logloglogN) steps:
compute x> mod N;x* mod N;x® mod N;::: by repeated squaring (using the
Sdédnhage-Strasseralgorithm for fast multiplication [106) and take an appro-
priate product of theseto get x® mod N. Moreover, as explained below, the
quartum Fourier transform can be implemerted using O((log N)?) steps. Ac-
cordingly, Shor's algorithm nds a factor of N using an expected number of
roughly (logN)?(loglogN)?logloglogN steps,which is only slightly worsethan
guadratic in the length of the input.

1.6.2 The quantum Fourier transform

A,:z,! Chy
Aub) = €75
The set of basisstatesfjai j a2 Z,g is called the standad basis An alternative
orthonormal basis, called the Fourier basis is the setfj AJ j a2 Z,9 de ned by
P N
jAdl = g Aa(D)jbi:

b2Z4
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The quantum Fourier transform (QFT) is the unitary transformation that maps
the standard basisto the Fourier basis:

QFT: jai ! jAi:

It is known that if g = 2™ for somem, then the QFT can be implemerted on
a quartum computer using O((log g)?) elemenary gates. We will here presen
the construction from [55); somewhatmore excient constructions can be found
in [57, 85, 56]. It may be veri ed (with somee®ort) that applying QFT to an
m-bit basisstate jai = ja; :::ani givesan unentangle state:

JAa| = p% IJOI + eZVJ(O:am)jli)(joi + e21/j(0:ami 1am)11|)¢¢¢(10| + eZVj(O:al:::am)jliq:;

with O:g :::any interpreted asa fraction in binary digits. This meansthat we can
just restrict attention to single-qubit operations cortrolled by the valuesof the
g;-bits, as follows. To the rightmost qubit of the initial state, which is initially

jami, we apply a Hadamard gate, obtaining #5(joOi + €©2n)j1i). This is the
leftmost qubit of jA,i. To the secondqubit from the right in the initial state,
which is initially jany; 11, we apply a Hadamard, and if a,, = 1 we alsoapply the
phasegate Rayi(1-4), Obtaining #%(j0i + €(@mi 12n)j1i). This is the secondqubit
from the left of jA;i. We also do this for jam, 2i, jam; i, \rotating in" smaller
and smalleranglesetc., and evertually generatingall qubits of jAqi in the wrong
order. Applying someswap gatesto changethe order, we have constructed jA,i

using O(m?) operations. But if we have a circuit that works for basisstatesjai,
then by linearity it also works on all superpositions of basis states, so we have
constructedthe full quarntum Fourier transform. Graphical represetations of this
circuit may be found in [55, 130Q.

1.6.3 Period- nding, easy case: r divides (

Now we will shav how we can nd the period of the function f, given a \black-
box" that mapsjaijOi ! jaijf (a)i. We can always e+ciently pick someq= 2™
such that N2 < g - 2N? and we canimplemert the Fourier transform over Z,
using O((log N)?) gates.

For didactical reasonswe will rst assumethat the unknown r divides g, in
which caseeverything works out smaothly. We now nd r asfollows. Start with
j0ij O, two registersof dogge and dogN e zeraes, respectively. Apply the QFT
to the rst registerto build the uniform superposition

1R
p—= jaij Oi:
q a=0
(Actually the m-qubit Hadamard transform would have the same e®ecthere.)
The secondregister still consistsof zerces. Now usethe \black-box" to compute
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f (a) in quantum parallel:
1 Xt
p— jajf(a)i:
q a=0
Observingthe secondregister givessomevaluef (s), with s < r. Becausd (a) =
f(s) i®a= smodr, andr dividesq, the aofthe forma= jr+ s((0- j < g=r)
are exactly the a for which f (a) = f(s). Thusthe rst register collapsesto a

to the classicalstate jf (s)i. We can now ignore the secondregister, and have in
the rst:

r o .
T 1jj F+sic
q ]=0
Applying the QFT again gives
r r 0 1
_qxilxl Cires _Xl . qxil .
r ez%%jh- _r 2T @ ezl/“JTbAjb':
9520 1o 90 j=0
; P nilgj — . ny—(1 : .
Usingthat ;& = (1j a")=1i a) for a6 1, we compute:
8 1/ b
o 1 a1 13 = if 9 =1
2lrb e B pTasr
€ a = € d =S U " L b o1 1
. = He =0 ifea 61
1=0 1=0 1 ezl/“'Tb 1 ezvde

Note that €”'P=9= 1 i® rb=qis an integeri® b is a multiple of g=r. Accordingly,

we are left with a superposition where only the multiples of g=r have non-zero
amplitude. Observingthis nal superposition gives somerandom multiple b =

CoFr, with c arandomnumber O - c< r. Thuswe get a b sud that

b

q

where b and g are known and ¢ and r are not. There are A(r) 2 -( r=loglogr)
numbers smaller than r that are coprimeto r [86, Theorem 328], so ¢ will be
coprimeto r with probability -(1 =loglogr). Accordingly, an expected number
of O(loglogN) repetitions of the procedure of this section suxces to obtain a
b = coer with ¢ coprimeto r. Oncewe have suth a b, we can obtain r asthe
denominator by writing b=qin lowest terms.

Before cortinuing with the harder case,notice the reseniblance of the basic
subroutine of Shor'salgorithm (Fourier, f -evaluation, Fourier) with the basicsub-
routine of Simon'salgorithm (Hadamard, query, Hadamard). The number of re-
quired f -evaluations for period- nding canactually be reducedfrom O(loglogN)
to O(1), seeShor'spaper [15]] for details.

ally
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1.6.4 Period- nding, hard case: r does not divide q

In caser doesnot divide q (which is actually very likely), it can be shown that
applying exactly the samealgorithm will still yield with high probability a b such
that -

1 B

2q’

with b;q known and c;r unknown. Two distinct fractions, eat with denomina-
tor - N, must be at least 1=N 2 > 1=qapart.? Thereforec=r is the only fraction
with denominator- N at distance- 1=2qfrom b=q Applying cortinued-fraction
expansion(see[86, Chapter X]) to b=qgezciently givesus the fraction with de-
nominator - N that is closestto b=q This fraction must be c=r. Again, with
good probability ¢ and r will be coprime, in which casewriting c=r in lowest
terms givesusr.

=10

old!

1.7 Grover's Search Algorithm

The search problem :
For N = 2", we are given an arbitrary x 2 f0; 1gV. The goalisto nd ani sudc
that x; = 1 (and to output "no solutions' if there are no sud i).

This problem may be viewed as a simpli cation of the problem of searding
an N -slot unordereddatabase. Classically a randomizedalgorithm would need
£(N) queriesto solve the seard problem. Grover's algorithm solvesit in O(' N)
gueries.

Let Oyjii = (j 1)¥jii denotethe §-type oracle for the input x and Og be
the unitary transformation that puts a j 1 in front of j0i and does nothing to
the other basisstates. The Groveriterateis G = | H" "OgH™ "O,. Note that 1
Grover iterate correspndsto 1 query.

Grover's algorithm starts in the n-bit state jOi, applieq-_gfl Hadamard transfor-
mation to ead qubit to get the uniform superposition 191W ;Jjit of all N indices,
appliesG to this state k times (for somek to be chosenlater), and then measures
the nal state. Intuitiv ely, what happensis that in ead iteration someampli-
tude is moved from the indices of the 0-bits to the indices of the 1-bits. The
algorithm stopswhen almost all of the amplitude is on the 1-bits, in which case
a measuremen of the nal state will probably give the index of a 1-bit.

More precisely supposethat t of the N input bits are 1. Let ax denote
the amplitude of the indices of the t 1-bits after k Grover iterates and by the
amplitude of the indicesof the 0-bits. Initially , for the uniform superposition we

2Considertwo fractions z = x=y and z°= x%=ywith y;y°- N. If z6 z%then jxy% x%j, 1,
and hencejz i z9 = j(xy°%i x%)=yyg, 1=N2.
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have ag = by = 1:p N. Usingthat H-"OgH " = | j [2=N], where[2=N] is the
matrix in which all ertries are 2=N, we nd the following recursion:

Nj 2t 2(Nj t)
+
R
i 2t N 2t
= +
Be+1 N Ak N b
The following formulas, due to Boyer et al. [30], provide a closedform for ax and

b¢ (which may be veri ed by Tling them into the recursion).

A+1 =

a pl—f sin((2k + 1))

P cos((x + L))
Nijt

wherep = arc:sineO t=N)

Accordingly, after k iterations the failure probability (the sum of squaresof the
amplitudes of the N j t 0-bits) is

Pe= (N i t) ¢ = (cos((Z+ 1)u)*

We want Py to be as closeto 0 as possible. Note that if we can chooseR =
YVedp 1=2, then (2R + 1)u = ¥#2 and henceP, = cos¢#2)? = 0. An example
wherethis works is if t = N=4, for then p= ¥#6 and K = 1.

Unfortunately, K will usually not be an integer. Howeer, if we choosek to
be the integer closestto K, then the failure probability will still be small (using
jki Kj - 1=2 and assumingt - N=2):

Pe - (cog¥m2+ W)? = (sin(W)? =

t
-
q

SincearcsinA , A, the number of queriesis k - Y&y - % . Thus we have

a bounded-errorquantum seard algorithm with O(IO N=t) queries,assumingwe
know t. If we do not know t, then we do not know which k to use,but a slightly
more complicated algorithm due to [30] (basically rurwiﬂthe above algorithm
with systematicdi®eren guessesor k) shovsthat O(' N=t) queriesstill sutce
to nd a solution with high probability. If there is no solution (t = 0) we can
easily detect that by cheding x; for the i that the algorithm outputs.

In Chapter 3 we will make a much more detailed analysisof upper and lower
boundson quantum searding. Beforewe cortin ue, we mertion two generalresults
that can be obtained by techniquessimilar to Grover's.

1.7.1. Theorem (Amplitude amplifica tion, BHMT [35]). There exists a
quantumalgorithm QSearch with the following property. Let A be any quantum



1.8. Summary 21

algorithm that usesno measurements,and let A : Z ! f0;1g be any Boolean
function. Let p denotethe initial suaessprohability of A of nding a solution
(i.e., the prokability that a measuement of the nal state of A givesa z such
that A(z) = 1). Algorithm QSearch nds a solution using an expected numker of
O(1="p) applications of A and Ai ! if p> 0, and otherwiseruns forever.

Very brie°y, QSearch works very much like Grover's algorithm: it iterates
the unitary transformation Q = jA SgA' 1S4 a number of times, starting with
initial state AjOi. Here Sajzi = (j 1)*®jzi, and Sgjoi = jj O and Sgjzi = jzi
for all z 6 0. The analysisof [35 shavsthat doing a measuremenafter O(1="p)
iterations of QSearch will yield a solution with probability closeto 1. The
algorithm QSearch doesnot needto know the value of p in advance,but if pis
known, then a slightly modi ed QSearch can nd a solution with certainty using
O(1=" p) applicationsof A and Ai 1,

Grover's algorithm is a special caseof amplitude ampli cation, whereA is the
Hadamard transform on eat qubit, which can be viewed as an algorithm with
succesprobability t=N. The exactcaseof amplitude ampli cation in fact implies
an exactquartum seart algorithm for the casgyheret is known. In this casewe
can nd a solution with probability 1 usingO(' N=t) steps.

Combining Grover's algorithm with the Fourier transform leadsto an algo-
rithm that can quickly count the number t = jxj of solutionsin the input [35,
Theorem 13].

1.7.2. Theorem (Quantum counting, BHMT [35]). There exists a quan-
tum algorithm QCount with the following property. For every N-bit input X
(with t = jxj) and numler of queriesT, and any integerk , 1, QCount usesT
queriesand outputs a numkber t suchthat

P ————
(N e N

jti e 2hk—— =

with prokability at least 8=%% if k = 1 and protability , 1j 1=2(kj 1)if k> 1.

Roughly speaking, with high probability we will get ap estimate t that is
closeto the real unknown t. For 5>§ample,if wesetT = 10 N, then with high
probability we will havejtij tj- = t.

1.8 Summary

Quantum computing starts from the obsenation that a computer is a physical
device and henceshould follow the laws of physics. As it is currently believed
that nature is quantum-medianical at the most fundamernal level, it makessense
to considercomputersbasedon the laws of quantum medanics. A state of sud
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a quartum computer is a superposition of classicalstates,to which we can apply
a measurementor someunitary operation. Quantum algorithms can solve certain
problemsmuch faster than classicalalgorithms. We sketched the early quantum
algorithms due to Deutsd & Jozsa,Bernstein & Vazirani, and Simon, aswell as
the two main quartum algorithms known today: Shor's algorithm for factoring
large integersin polyqpmial time and Grover's algorithm for searding a spaceof
N elemerts in about N steps.
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Chapter 2

Lower Bounds by Polynomials

This chapter is basedon the papers

2 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
Lower Bounds by Polynomials. In Proceadings of 39th IEEE FOCS pages
352{361,1998. Journal versionto appearin the Journal of the ACM.

2 H. Buhrman, R. Clewe, R. de Wolf, and Ch. Zalka. Boundsfor Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS
pages358{368,1999.

2 H. Buhrman and R. de Wolf. Complexity Measuresand Decision Tree
Complexity: A Survey. To appearin Theoretical Computer Sciene, 2001.

2.1 Intro duction

All quantum algorithms that we described in the previous chapter can be writ-
ten in the following form: they start in someclassicalinitial state, do a unitary
transformation Uy on that state, make a query to the input, do another uni-
tary transformation U;, make another query to the input, and soon. Herethe
transformations U; are independen of the input. At the end, the output of the
algorithm is obtained by applying an appropriate measuremento the nal state.
Sometimesl query suzces, as in the Deutsh-Jozsacase,and sometimesmore
gueriesare needed,asin the Simon, Shor, and Grover cases.The reasonthat the
guantum algorithms work fast is twofold: (1) few queriessuzxce for them and (2)
the intermediate unitary transformations U; are exciently implemertable. The
reasonthat classicalalgorithms are provablyworse than quantum algorithms is
that they need many queriesto solwe the problem. For example, Simon's al-
gogthm makes O(n) queriesto the input while any clasgicalalgorithm requires
-( 2") queries. Similarly, Grover's algorithm makesO(' N) querieswhile any
classicalalgorithm for the sameproblem needs-( N) queries.

25
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Sincevirtually all existing quantum algorithms work in this query model and
achieve a provable speed-upthere, it seemsthat the model of query complexity
capturesa signi cant part of the power of quartum computers,and it is worth
studying the requirednumber of queriesin isolation. In cortrast, analyzingreason
(2) above will befairly dixcult. Classi@l circuit complexity is already an exceed-
ingly hard eld having closeties to the main open problemsin complexity theory.
For example,superpolynomial circuit lower boundsfor an NP -completeproblem
would imply P 6 NP, but the bestboundsknown are only linear. Sincequantum
generalizesclassical,analyzing quantum circuit complexity (i.e., how many ele-
mertary quantum gatesare neededto implemert someunitary transformation?)
will be very hard aswell, at leastwith respect to lower bounds.

In this chapter we will analyze quantum query complexity in detail, con-
trasting it with classicalquery complexity, which is also known as decision tree
complexity. In order to capture the essetials and to facilitate analysis, we will
simplify the model to the following: the input consistsof N bits and the output
of only 1 bit. For example,Simon'ssetting ts in this model by setting N = n2",
rede ning the output to be 0if the input is 1-to-1and 1 if the input is 2-to-1 (with
an appropriate non-zeromasks), and queryingindividual bits of the input rather
than n bits at a time. This boosts the query complexity of Simon's algorithm
to O(n?) queries,but this is still exponertially smaller than the classicallower
bound. Somethingsimilar holds for Shor's period- nding (Cleve [52] proved an
exponertial classicallower bound on the query complexity of period- nding).

In our analysis,the distinction betweentotal problemsand promise problems
will be important. A total function or problem is de ned on all 2N N-bit in-
puts. A promiseproblemis restricted to inputs satisfying somespeci ¢ property,
called the \promise", and is unde ned on the inputs that do not satisfy the
promise. Looking at the main quantum algorithms, we can divide them in two
groups: quantum algorithms that adieve an exmpnential speed-up for promise
problems(Deutsch-Jozsa,Simon, Shor's period- nding) and quartum algorithms
that adieve a polynomial speed-up for total problems(Grover and its applica-
tions). An obvious questionis then: are there total problemsfor which a quan-
tum computer can achieve an exponertiallor at least superpolynomial|sp eed-
up over classicalalgorithms. The main result of this chapter is a negative answer
to this question: for all total functions, quantum query complexity is at most
polynomially better than classicaldeterministic query complexity.

Our main tool in proving this result (as well as many others) will be the
degrees of multivariate polynomials that represem or approximate the function
f at hand. Thesewe introduce in the next section. In Section 2.3 we de ne
deterministic, randomized,and quantum query complexity, and in Section2.4 we
shav how degreedower bound query complexity. In Section2.5we then usethose
lower boundsto prove the result that quantum and classicalquery complexity are
polynomially related. In the last sectionswe tighten the proven boundsfor the
special classef symmetric and monotonefunctions.
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2.2 Boolean Functions and Polynomials

2.2.1 Boolean functions

A Booleanfunction on N bits is a function f : D! f0;1g whereD p fO; 1gV.
If the domain D equalsf0; 1g" then f is called a total function, otherwiseit is a
promisefunction (wherethe promiseis that no N -bit strings outside of D will be
preserted asinput). In this chapter we will restrict attention to total functions.
For an mqyt x 2 f0;1gV, we usex; to denoteits ith bit, sox = X;: . We
usejxj = I, X; to denotethe Hamming weight of x (its number of 1s) and 0
for the all-zeroinput. If S is a set of (indices of) variables, then we use x® to
denotethe input obtained by complemeting (negating) in x the bit positionsin
S. We abbreviate x''9 to x'. For example,if x = 0011,then x/%% = 0101and
x4 = 0010. We call f symmetric if f (x) only dependson jxj. Somecommon
N -bit symmetric functions that we will referto are:

2 ORy(X) = 1i®jxj, 1
2 ANDN(X) = 1i®jx] =
2 PARITY y(X) = 1i®jx]j is odd
2 MAJN(X) = 1i®jxj > N=2
We call f monotone(increasing) if f (x) cannot decreasef we set more variables

of x to 1. The above ORy, ANDy, and MAJ are examplesof this.

2.2.2 Multilinear polynomials

If S is a set of (indices of) variables, then the monomial xs is de ned as the

product of the S-variables: xs = | i2sX;. The degree of this monomial is the
cardinality of S. A multilinear pg,lynomialon N variablesisafunctionp: RN ! C
that canbe written asp(x) =  g,yjasXs for somecomplexnumbersas. We

call as the coexcient of the monomialxs in p. The deggree deq(p) of p is the degree
of its largest monomial: degp) = maxfjSj ] as 6 Og. Note that if we restrict
attention to the Booleandomain f0; 1gV, then x; = xX for all k > 1, sowe can
changeall higher exponerts to 1 without a®ectingthe value of the polynomial on
Booleaninputs. This shows that consideringonly multilinear polynomialsis no
restriction when dealingwith Booleaninputs.

The next lemmaimplies that if multilinear polynomialsp and q are equalon
all Booleaninputs, then they are identical:

2.2.1. Lemma. Letp;g: RN ! R be multilinear polynomials of degree at most
d. If p(x) = q(x) for all x 2 f0;1gN with jxj - d, thenp= q.
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Proof. Dener(x) = p(x)i q(x). Supposer is not idertically zero. Let xs
be a minimal-degreemonomial in r with non-zerocoezcient as, and x be the
input wherex; = 1i® x; occursin S. Then jxj - d, and hencep(x) = q(x).
Howewer, since all monomialsin r except for xs ewaluate to 0 on x, we have
rx) = as 6 0 = p(x)i q(x), which is a cortradiction. It follows that r is
idertically zeroand p = q. 2

Belov we sketch the method of symmetrization due to Minsky and Pa-
pert [127 (seealso [19, Section4]). Let p: RN ! R be a polynomial. If ¥

be the setof all N! permutations. The symmetrizationpsY™ of p averagesover all
permutations of the input, and is de ned as:

P
ves, P(AX)) |
N! '

P (x) =

Note that p*¥™ is a polynomial of degreeat most the degreeof p. Symmetrizing
may actually lower the degree:if p(x) = X1j Xz, then p¥™(x) = 0. The following
lemma allows us to reducean N -variate polynomial to a single-\ariate one.

2.2.2. Lemma (Minsky & Papert [122]). If p : RN I R is a multilinear
polynomial, then there exists a single-variate polynomial g : R! R, of degree
at most the degree of p, suchthat p&¥™(x) = q(jxj) for all x 2 f0; 1gN .

Proof. Let dbe th(la degreeof p¥™, which is at most the degreeof p. Let V|
denotethe sumofall products of j di®eren variables,soV; = x; + ¢0¢+ Xy,
Vo = X1Xa+ X1X3+ CCG+ Xy, 1Xn, €tc. Sincep™®™ is symmetrical, it is easilyshovn
by induction that it can be written as

P¥M(X) = o+ biVi+ Vo + GCC+ Iy Vg;

i ¢
with b 2 R. Note that \j assumesvalue ™" = jxj(ixj i 1)(xji 2)¢¢&(ixj | j +
1)=j! on x, which is a polynomial of degreej of jxj. Thereforethe single-\ariate
polynomial q de ned by
VO | VO | [V
. X X X
q(jxj) = b+ by Jlj + b 121 + ¢eC+ by de

satis esthe lemma. 2

2.2.3 Representing and appro ximating functions

We can usemultilinear polynomialsto represemn Booleanfunctions:
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2.2.3. Definition. A polynomial p: RN ! R representsf if p(x) = f(x) for
all x 2 f0; 1gN .

Note that sincex? = x for x 2 f0;1g, we can restrict attention to multi-
linear polynomialsfor represeting f. In the remainder of this chapter, we will
usually omit the word \multilinear". It is easyto seethat eah f : f0; 1g" !
Ej); 1g carbbe represeted by a polynomial p. For z 2 f0;1gN, de ne p,(x) =

iz=1 Xi iz=0(1i Xi). The polynomial p,(xj is 1 for x = z and O for all other
x 2 f0;1gN. Hencethe polynomial p(x) = (2)=1 Pz(x) will equal f on all
inputs x. Lemma 2.2.1implies that this polynomial is actually the unique poly-
nomial that equalsf on all x. This allows us to idertify f with its represeting
polynomial and to de ne:

2.2.4. Definition.  The degree deqf ) of f is the degreeof the multilinear poly-
nomial that represens f .

For example,dedAND ) = N, becausethe represeting polynomial is the
monomial X1 ::: Xy.

Apart from represeting a function f exactly by meansof a polynomial, we
may also only approximate it with a polynomial, which can sometimesbe of a
smallerdegree:

2.2.5. Definition. A polynomialp: RN ! R approximatesf if jp(x)i f (x)j -
1=3 for all x 2 f0;1gN. The approximate degree 8egf) of f is the minimum
degreeamongall multilinear polynomialsthat approximate f .

As a simple example: 3x; + %x, approximates OR,, so 8egOR;) = 1. In
cortrast, OR,(X1;X2) = X1+ X2} X1X2 hencedeg OR;) = 2. Note that there may
be many di®eren minimal-degreepolynomialsthat approximatef , whereasthere
is only one polynomial that representsf .

A third, more elaborate polynomial is the \zero-error polynomial”. It is ac-
tually a pair of polynomials:

2.2.6. Definition. A pair of polynomials (po; p1) is called a zew-error polyno-
mial for f if both of the following conditions hold

2 if f (x) = 0then po(x) = 0 and p(x) 2 [1=2; 1],
2 jf £ (x) = 1then po(x) 2 [1=2;1] and py(x) = O.

The degyree of this zero-error polynomial is the largest of deqpg) and dedp.).
The zem-error dggree deg(f ) of f is the minimum degreeamong all zero-error
polynomialsfor f .



30 Chapter 2. Lower Bounds by Polynomials

On the hand, if p represets f, then (p;p) is a zero-error polynomial for f,
hencedegy(f) - dedf). On the other hand, if (po;p:) is a zero-errorpolynomial
for f , then po(X) + 1=6 and 5=6; p.(X) appraximate f, henceflef) - deg(f).

To endthis sectionwe prove that almostall functions have degreeN , meaning
that the fraction of functions with degf ) < N goesto O with N. De ne X {¥" =
fxjjxjis ewn and f (x) = 1g, and similarly for X999, Let X; = X$ven [ X"dOI
Let p(x) = gasxs be the unique polynomial represeting f . The Moeblus
inversion formula (see[19]) says:

X e
as= (i 1) Tf(T);
TUS

wheref (T) is the value of f on the input whereexactly the variablesin T are 1.
We learnedabout the next lemmavia personalcommunication with Yaoyun Shi:

2.2.7. Lemma (Shi & Yao). degf)= N i® jX$enj g jX 2ddj,
Pro of. Applying the Moebiusformulato S= [N]= f1;:::;Ng, we get
X

- X ' ¢
an = GOYVITEM=GOY GO GO X X
THN] X2X1
By this formula we now have dedf ) = N i® the monomialx; :::xy hasnon-zero
coexcient i® ap; 6 0i®jX £venj 6 jX 2ddj. 2

As a consequencewe can exactly court the number of functions that have
lessthan full degree:

i ¢
2.2.8. Theorem (Buhrman & de Wolf [49]). Therearelz,f'?l functionsf :
fO;1gN ! f0;1g with deg(f) < N.

Pro of. We court the number E of f for which jX £e"j = jX 949j; by Lemma2.2.7
theseare exactly the f satisfyingdedf) < N. Supposewe want to assq;nf -value

1to exactly i of the 2Vi ! inputs for which jxj is even. There are ' 2" way’s to

do this. If we want jX £e"j = jX 299j, then there are only ZNii ' ways to choose
the f -valuesof the odd x. Hence
&iluzNilﬂuzNilﬂ H N )l
E= . . = .
. i [ 2Ni 1
The secondequality is Vandermonde'scorvolution [80, p.174]. 2

i 2N ¢ 2N p p— —An
Note that ,\,. 2 £(2 2N) by Stirling's formula n! ¥4 = 2¥n(n=e)".
Sincethere are 22" Booleanfunctions on N variables,we seethat the fraction of
functions with degree< N is 0o(1). Thus almost all functions have deqf) = N

Ambainis shovedthat almostall functions even have high approximatedegree:
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2.2.9. Theorem (Ambainis [9]). fedf) . N7i O(pﬁlogN) for almostall f .
A much wealer (but essetially tight) result which holds for all functions is
the following:

2.2.10. Theorem (Nisan & Szegedy [133]). If f dependsonall N variables,
thendegf), logN j O(loglogN).

2.3 Query Complexit y

Below we de ne query complexity for three di®eren kinds of algorithms for com-
puting a function f: deterministic, randomized, and quartum algorithms. Of
the quantum query complexity, there are three °avors, depending on the error-
requiremerts of the algorithm: we have exact zer-error, and boundel-error quan-
tum algorithms. In the sectionafter that, we will relate thesethree complexities
to the three polynomial degreesdedf ), deg(f ), and 8eqf ) de ned above. But
“rst we start by de ning classicalquery complexity.

2.3.1 Deterministic

A deterministic decision tree is a rooted ordered binary tree T. Ead internal
node of T is labeledwith a variable x; and ead leafis labeledwith a value O or
1. Givenaninput x 2 f0; 1gV, the tree is evaluated asfollows. Start at the root.
If this is a leaf then stop. Otherwise, query the variable x; that labelsthe root.
If xi = 0, then recursiwely evaluate the left subtree, if x; = 1 then recursiwely
evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf
that is readhed evertually. Note that an input x deterministically determinesthe
leaf, and thus the output, that the procedureendsup in. We sa that the tree
acceptsinput x if it outputs 1 on that input.

We say that a decisiontree computesf if its output equalsf (x), for every
x 2 f0;1g". Clearly there are many di®eren decisiontreesthat compute the
samef . The complexity of suth a tree is its depth, i.e., the number of queries
made on the worst-caseinput. We de ne D (f), the decisiontree complexity of
f, asthe depth of an optimal (= minimal-depth) decisiontree that computesf .
Note that D(f) - N for ewery f, becausea decisiontree can be madeto have
suzcient information for computing f (x) if it hasqueriedall N input bits.

2.3.2 Randomized

As in many other modelsof computation, we canadd the power of randomization
to decisiontrees. There are two ways to randomize a decisiontree. Firstly, we
canadd (possiblybiased)coin °ips asinternal nodesto the tree. That is, the tree
may cortain internal nodeslabeled by a bias p 2 [0; 1], and when the evaluation
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procedurereadessud a node, it will °ip a coin with bias p and will go to the
left child on outcome "heads'and to the right child on “tails’. Now an input x
no longer determineswith certainty which leaf of the tree will be readed, but
instead induces a probability distribution over the set of all leaves. Thus the
tree outputs 0 or 1 with a certain probability. The probability of output 1 on
input X is called the acceptane@ prokability of x. The complexity of the tree is
the number of querieson the worst-caseinput and worst-caseoutcome of the
coin °ips. A secondway to de ne a randomizeddecisiontree is as a probability
distribution * over deterministic decisiontrees. The tree is evaluated by choosing
a deterministic decisiontree accordingto !, which is then evaluated as before.
The complexity of the randomizedtree in this secondde nition is the depth of
the deepesttree T that has! (T) > 0.

It is not hard to seethat thesetwo de nitions are equivalert. To turn a
tree of the rst type into one of the secondtype, we can make all coin °ips
precedeall queries,without increasingthe number of querieson the worst-case
path. Thesecoin °ips now clearly induce a probability distribution on the forest
of deterministic decisiontreesthat follow the coin °ips, which givesa tree of the
secondtype. To turn a tree of the secondtype into one of the rst type, obsene
that only nitely many deterministic treesT canhave ! (T) > 0, sincethere are
only nitely many T of a givendepth. Thereforewe canbuild a nite binary tree
of (biased) coin °ips, sud that for every T for which * (T) > 0, thereis a leafin
the coin-°ip-tree that is readhed with probability * (T). Attaching the treesT to
the correspnding leavesin the coin-°ip-tree givesa tree of the rst type.

We sa that a randomizeddecisiontree computesf with boundel-error if its
output equalsf (x) with probability at least 2/3, for every x 2 f0;1g". We
useR,(f ) to denotethe complexity of the optimal randomizeddecisiontree that
computesf with bounded error.! The speci ¢ error probability 1=3 adopted
hereis not essetial; it can be reducedto " by running an error-1=3 algorithm
O(log(1=")) times and outputting the majority answer of thoseruns.

We will sometimesconsidera third error model, which lies between deter-
ministic and bounded-errorcomplexity. We say that a randomizeddecisiontree
computesf with zero error if it never endsup in a leaf labeledwith the incorrect
output, but it may, with probability - 1=2 for every x, end up in a third kind of
leaf, labeled\don't know". In other words, zero-erroralgorithms newer give an
incorrect output, but they may sometimesgive no output at all. We use Ry(f)
for the optimal complexity of sudh algorithms.

Note that it immediately follows from thesede nitions that R,(f) - Ro(f) -
D(f)- N.

1The subscript "2'in Ry(f ) refersto the 2-sidederror of the algorithm: it may err on O-inputs
aswell ason 1-inputs.
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2.3.3 Quantum

In the quarntum case the querieshaveto correspndto unitary transformations,in
particular they haveto bereversible. Weformalizea queryto aninput x 2 f0; 1gM
asin Section1.5: asa unitary transformation O that mapsji; b;zi to ji; b©x;; zi.
Hereji; b;zi is somem-qubit basisstate, wherei takesdlogN e bits, bis onebit, z
denotesthe (mj dogNej 1)-bit \workspace"of the quartum computer, which is
not a®ectedoy the query, and © denotesexclusive-or. This clearly generalizeghe
classicalsetting wherea queryinputs ani into a\black-box", which returns the bit
xi: if weapply O to the basisstate ji; O; zi wegetji; X;; zi, from which the ith bit of
the input canberead. BecauseO hasto beunitary, we specify that it mapsji; 1; zi
to ji; 1j x;;zi. This ensureghat O is a permutation matrix, andthereforeunitary.
Note that a quantum gomputer can make qt,_teriesin superposition: applying O
onceto the state pi-" 1, ji; 0;zi gives el L ji; x;;zi, which in somesense
cortains all N bits of the input.

A quantum decision tree has the following form: we start with an m-qubit
state jOi whereewery bit is 0. Then we apply a unitary transformation U, to the
state, then we apply a query O, then another unitary transformation Uy, etc. A
T-query quarntum decisiontree thus correspndsto a big unitary transformation
A = UrOUr, ; ¢¢¢OU,0U,. Herethe U; are xed unitary transformations, inde-
pendert of the input x. The nal state AjOi dependson the input x only via the
T applications of O. The output is obtained by measuringthe nal state and
outputting the rightmost bit of the obsened basisstate.

Without loss of generality, we can assumethere are no intermediate mea-
suremerts, becausesudh measuremets can always be pushedto the end of the
computation at the cost of someextra workspacebut no extra queries,asfollows.
Referring to Section1.2.2, supposethe rst intermediate measuremen has pro-
jectors Py;:::; Py and correspnding orthogonal subspaces/y;:::;Vy . Instead
of actually measuringthe state, we can also add dogM e extra zero qubits, and
apply the transformation that mapsjAijOi ! jAjjii for jAi 2 V; (this is unitary
becausehe correspnding subspacesre orthogonal). In the rest of the algorithm
we do not touch theseextra dlogM e qubits anymore, which ensureghat they will
not give undesiredinterferencee®ects.It can be showvn that applying this idea
to all intermediate measuremets and measuringonly the output bit at the end
givesthe sameacceptanceprobability asthe original algorithm.

We say that a quartum decisiontree computesf exactlyif its output equals
f (x) with probability 1, for every x 2 £0; 1gN. The tree computesf with bounde-
error if the output equalsf (x) with probability at least2/3, for every x 2 f0; 1g" .
To de ne the zero-error setting, the output is obtained by observing the two
rightmost bits of the nal state. If the rst of these bits is 0, the quarntum
decisiontree claims ignorance (\don't know"), otherwisethe secondbit should
cortain f (x) with certainty. For every x, the probability of getting output \don't
know" should be lessthan 1=2. We let Qg (f) denote the number of queries



34 Chapter 2. Lower Bounds by Polynomials

of an optimal quantum decisiontree that computesf exactly, and Qq(f) and
Q2(f ) denotethe minimal complexity of zero-errorand bounded-errorquartum
algorithms for f, respectively. Note that we just court the number of queries,
not the complexity of the intermediate U;.

Unlike the classicaldeterministic or randomizeddecisiontrees, the quarntum
algorithms are not really trees anymore, and we will usually refer to them as
\quantum algorithms" or \quantum query algorithms". Sud quantum algo-
rithms generalizeclassicaltrees in the sensethat they can simulate them, as
sketched below. Considera T-query deterministic decisiontree. It rst deter-
mines which variable it will query initially; then it determinesthe next query
depending upon its history, and so on for T queries. Evertually it outputs an
output-bit depending on its total history. The basisstates of the correspnding
guartum algorithm have the form ji; b;h; ai, wherei; bis the query-part, h ranges
over all possiblehistories of the classicalcomputation (this history includesall
previousqueriesand their answers), and a is the rightmost qubit, which will even-
tually cortain the output. Let Uy map the initial state jO;0;0;0i to ji; 0;0;0i,
wherex; isthe rst variablethat the classicaltree would query. Now the quantum
algorithm applies O, which turns the state into ji; x;;0;0i. Then the algorithm
appliesa transformation U; that mapsiji; x;;0;0i to jj;0; h; 0i, whereh is the new
history (which includesi and x;) and X; is the variable that the classicaltree
would query given the outcome of the previous query. Then the quartum tree
applies O for the secondtime, it appliesa transformation U, that updatesthe
history and determinesthe next query, etc. Finally, after T queriesthe quartum
tree setsthe answer bit to 0 or 1 depending on its total history. All opera-
tions U; performedhere are injective mappingsfrom basisstatesto basisstates,
hencethey can be extendedto permutations of basis states, which are unitary
transformations. Thus a T-query deterministic decisiontree can be simulated
by an exact T-query quantum algorithm. Similarly a T-query randomizeddeci-
sion tree can be simulated by a T-query quantum decisiontree with the same
error probability (basically becausea superposition can\simulate" a probability
distribution). Accordingly, we have Qx(f) - Ra(f) - Ro(f) - D(f) - N and
Qa(f) - Qo(f) - Qe(f) - D(f)- N for everyf. The fact that quantum algo-
rithms can simulate classicalalgorithms will alsoallow usto be somewhatsloppy
in our descriptionof quantum algorithms: sincewe know that classicalalgorithms
can manipulate and compare numbers, conbine subroutines, sort lists, etc., we
canassumehat quartum algorithms can perform thesetaskstoo, without having
to spell out completelythe corresppnding quarntum circuit.

2.4 Degree Lower Bounds on Query Complexit y

In this sectionwe show that deqf), deg(f), and Eleqf) give lower bounds on
quarntum query complexity. The next lemma from [17] is also implicit in the
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combination of someproofs of Fortnow et al. in [72, 76].

2.4.1. Lemma. Let A be a quantumalgorithm that makesT queriesto its N -bit
input X. Then there exist complex-valud N -variate multilinear polynomials®, of
degree at most T, suchthat the nal stateof A is

X
® (x)jii;

i2f 0;1g™
for everyinput x 2 f0; 1gN.

Pro of. Let jAi be the state of quartum decisiontree (on input x) just before
the kth query. Note that jA..i = UgOjAd. The amplitudesin jAji dependon
the initial state and on Uy but not on x, sothey are polynomials of x of degree0.
A query mapsbasisstate ji; b;zi to ji; b© x;; zi, soif the amplitude of ji; 0; zi in
jAoi is ® and the amplitude of ji; 1;zi is —, then the amplitude of ji; 0; zi after the
querybecomeglj x;)®+ x; andthe amplitude of ji; 1; zi becomes;®+ (1j X;) ,
which are polynomials of degreel. Betweenthe rst and the secondquery lies
the unitary transformation U;. Howewer, the amplitudes after applying U, are
just linear conbinations of the amplitudes beforeapplying U;, sothe amplitudes
in jAji are polynomials of degreeat most 1. (In general,if the amplitudes before
a query are polynomialsof degree: |, then the amplitudes beforethe next query
will be polynomials of degree: j + 1.) Continuing inductively, the amplitudes
of the nal state are found to be polynomials of degreeat most T. We can make
these polynomials multilinear without a®ectingtheir valueson x 2 f0;1gN by
replacing all higher powers x¥ by x;. 2

Note that we have not usedthe assumptionthat the U; are unitary, but only
their linearity.

The main consequencef this lemma is that we can write the aceptane
prolability of a T-query algorithm as a multilinear polynomial of degreeat most
2T, since the acceptanceprobability is just the sum of squarednorms of the
‘nal amplitudes of the basis states whoserightmost bit is 1. This fact almost
immediately implies the following lower bounds,which arethe keyto most results
in this chapter and someof the following chapters:

2.4.2. Theorem (BBCMW [17]). If f is a total Boolean function, then

degf)
2

deg(f)
2

Hegf)
2

2 Qe(f),

2 Qo(f),

2 Qof ),
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Pro of. Consideran exact quantum algorithm for f with Qg (f) queries. Let
S be the set of basisgates correspnding to a 1-output. Then the acceptance
probability is P(x) = = ,,5j®(x)j?. By the previouslemma, the ®, are polyno-
mials of degree- Qg (f), soP(x) is a polynomial of degree- 2Qg(f). But P
represets f , soit hasdegreedeqf) and hencedeqf) - 2Qg(f).

Similarly, the acceptanceprobability and rejecting probability of a Q(f)-
query zero-erroralgorithm for f together form a zero-error polynomial for f of
degree- 2Qq(f ), giving the secondpart of the theorem. Finally, the acceptance
probability of a Q,(f )-query bounded-erroralgorithm for f is an appraximating
polynomial for f of degree- 2Q,(f), giving the third part of the theorem. 2

It canalsobe shavn that the three parts of Theorem 2.4.2 hold without the
factor of 2 for the classicalcomplexitiesD (f ), Ro(f ), and R,(f ), respectively.

Theorem?2.4.2istight forf = PARITY y, wherededf) = deg(f) = leqf) =
N and Qe (f) = Qo(f) = Qo(f) = dN=2e, aswewill seein Section2.6.3. Together
with the fact that almost all f have high degree(Theorems2.2.8 and 2.2.9), it
alsofollows that almost all functions have high quantum query complexity, even
in the bounded-errormodel. Apggneralupper bound for bounded-errorquarntum
algorithms is Q,(f) - N=2+ N for all f, which follows from a result of van
Dam [60]. Combining Theorem2.4.2with Theorem2.2.10givesthe lower bound
Qe(f), (logN)=2; O(loglogN) for all functions that dependon N variables

2.5 Polynomial Relation for All Total Functions

In this section we showv that the quantum query complexity of total functions
cannot be more than polynomially smallerthan their classicalquery complexity.
Apart from polynomial degrees,our main tools in proving this result are the
notions of certi ¢ ate complexity and black sensitivity.

2.5.1 Certicate complexit y and block sensitivit y

Certi cate complexity measureshow many of the N variableshave to be givena
value in orderto x the value of f .

2.5.1. Definition. Let C beanassignmeh C : S! f0;1g of valuesto some
subsetS of the N variables. We say that C is consistentwith x 2 f0;1gN if
xi = C(i) foralli 2 S.

For b 2 f0;1g, a b-certi c ate for f is an assignmeh C suc that f(x) = b
whene\er x is consistert with C. The sizeof C is |Sj, the cardinality of S.

The certi c ate complexity C,(f) of f on x is the size of a smallest f (x)-
certi cate that is consistenn with x. The certi c ate complexity of f is C(f) =
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maxy Cx(f). The 1-certic ate complexity of f is CO(f) = maxyjr xy=1 g Cx(f ),
and similarly we de'ne CO (f) = maXjs (x)=0 g Cx(f )

For example, C®(ORy) = 1 sinceit sutcesto set one variable x; = 1 to
force the OR-function to 1. On the other hand, C(ORy) = C®@(ORy) = N.

Sensitivity and block sensitivity measurehow sensitive the value of f is to
changesin the input.

2.5.2. Definition.  The sensitivity s,(f) of f on x is the number of variables
x; for which f (x) 6 f (x') (i.e., changingthe bit x; changesthe function value).
The sensitivity of f is s(f) = max s«(f ).

The black sensitivity bs(f) of f on x is the maximum number b sudh that

the Bj-variablesin x changesthe function value). We will call those sets the
sensitive blacks for x. The black sensitivity of f is bgf) = max, bs(f). (If f is
constart, we de ne s(f) = bqf) = 0.)

Note that sensitivity is the special caseof block sensitivity wherethe size of
the blocks B; is restricted to 1. Also note that s,(f) - bs/(f) - Cy(f) for all f
and x, hences(f) - bgf) - C(f).

We proceedto give Nisan's proof [13]] that C(f) is upper bounded by the
product of s(f ) and bgqf).

2.5.3. Lemma. If B is a minimal-size sensitiveblack for x, then jBj - s(f).

Pro of. If we complemen one of the B-variablesin x2, then the function value
must °ip from f (xB) to f (x) (otherwise B would not be minimal), soewery B-
variable is sensitive for f on input x&. HencejBj - s,s(f) - s(f). 2

2.5.4. Theorem (Nisan [131]). C(f) - s(f)bdf).

Pro of. Consideran input x 2 f0;1g" and let By;:::; By, be disjoint minimal
setsof variablesthat acieve the block sensitivity b = bs,(f) - bgf). We will
shaw that the function C : [ iB; ! fO0;1g that setsvariablesaccordingto x is a
suzciently small certi cate for f (x).

If C is not an f (x)-certi cate, then let x°be an input that is consisten with
C, such that f (x9 6 f (x). De ne By by xBr1 = x% Now f is sensitive to Bp:1

on x and By is disjoint from B;:::; By, which cortradicts b= bs(f ). HenceC
is an f (x)-certi cate. By the previouslemmawe have jB;j - s(f) for all i, hence
the sizeof this certi cate isj[; Bij - s(f )bqf). 2

Nisan and Szegedyrelated block sensitivity to the exact and approximate
degree,using the following theorem:
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2.5.5. Theorem (Ehlich & Zeller [66]; Rivlin & Cheney [144]). Letp:
R ! R be a polynomial suchthat by - p(i) - b, for everyintegerO- i - N,
nd its derivative has jp{x)j , c for somereal 0 - x - N. Then dedp) ,

cN=(c+ b by).

2.5.6. Theorem (Nisan & Szegedy [133]). If f is a total Boolean function,
then

r

: degr), S
r

2 deg(f), &?’f)
r

: gegr), %)

Pro of. We prove the rst part, the other parts are similar. Let polynomial p

ewery x; in p asfollows:

1.x;=y ifag =0andj 2 B,

2.XJ' 1 Vi ifai-:1andj28i

3. x; = g if ] 62B; for every i

We make the resulting polynomial multilinear by replacingany higher powers x¥
by x;, which will not changethe value of the polynomial on inputs x 2 f0; 1gN.
Now it is easyto seethat g hasthe following properties:

1. g is a multilinear polynomial of degree: d

2. gy) 2 f0;1g for all y 2 f0; 1g°

3.90)=p(x)=f(x)=0

4. g(e) = p(xB) = f (xB) = 1 for all unit vectorse, 2 f0; 1gP

Let r bethe single-\ariate polynomial of degree- d obtained from symmetrizing

q over f0;1g°. Note that 0 - r(i) - 1 for every integer0 - i - b and for
somex 2 [0;1] we have rng 1 becauser(0) = O and r(1) = 1. Applying
Theorem2.5.5wegetd,  b=2. 2

Sincethe acceptanceprobability of a T-query quartum algorithm can be writ-
ten asa degree-Z multiv ariate polynomial, we can also prove:
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2.5.7. Theorem (BBCMW [17]). If f is a total Boolean function, then
r

2 Qer), )
r—
2 Quy, )
r

f
2 Quf), )

Note that the constart 1=IO 16= 1=4in the above bound for Qy(f) is slightly
stronger than the constart 1= 24 that we would get from combining Theo-
rems2.4.2and 2.5.6. We get the better constart herebecausehe speci ¢ approx-
imating polynomial for f induced by a bounded-errorquartum algorithm repre-
serts a probability, and hencelies in the interval [0; 1] for all inputs x 2 f0; 1g" .
In cortrast, in generalan appraximating polynomial is only requiredto lie in the
interval [j 1=3;4=3] for all x 2 f0; 1gN .

The squareroot irbtﬂe above theoremis tight for Q,(f ), sincebdORy) = N,
while Q2(ORy) 2 O(' N) becauseof Grover's algorithm. The squareroot is not
neededin the correspnding classicallower bound of Nisan:

bs(f )
3

Pro of. Consideran algorithm with R,(f ) queries,and an input x that achieves
the block sensitivity. For every setS sud that f (x) 8 f (x), the probability that
the algorithm queriesavariablein S mustbe, 1=3, otherwisethe algorithm could
not \see" the di®erencebetweenx and x° with su+cient probability. Henceon
input x the algorithm hasto make an expected number of at least 1=3 queries
in ead of the bgf) sensitive blocks, sothe total expected number of querieson
input x must be at leastbqf )=3. Sincethe worst-casenumber of querieson input
X is at the leastthe expected number of querieson x, the theoremfollows. 2

2.5.8. Theorem (Nisan [131]). Rx(f),

2.5.2 Polynomial bound for Qg(f) and Qq(f)

The rst result in this sectionis due to Nisan and Smolensky and improves
the earlier result D(f) 2 O(deqf)®) of Nisan and Szegedy[133. Nisan and
Smolenskynewer publishedtheir proof (dated around 1995),but allowedit to be
includedin [49]. In the proof, amaxonomialoff isamonomialin f 's represeting
polynomial p that has maximal degree.

2.5.9. Lemma (Nisan & Smolensky [132]). For every maxonomialM of f,
there is a set B of variablesin M suchthat f (0%) 6 f (0).
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Pro of. Obtain a restricted function g from f by setting all variables outside
of M to 0. This g cannot be constart 0 or 1, becauseits unique polynomial
represemation (as obtained from p) cortains M. Thus there is somesubsetB of
the variablesin M that makesg(0®) 6 g(9) and hencef (0%) 6 f (0). 2

2.5.10. Lemma (Nisan & Smolensky [132]). There is a set of dedf )bqf)
variablesthat intersects each maxonomialof f .

Pro of.  Greedily take all variablesin maxonomialsof f, aslong as there is
a maxonomial that is still disjoint from those taken so far. Since eat sud
maxonomial will cortain a sensitive block for 0, and there can be at most byf )
disjoint sensitive blocks, this procedurecan go on for at most bgf ) maxonomials.
Sinceeadh maxonomial cortains dedf ) variables,the lemma follows. 2

2.5.11. Theorem (Nisan & Smolensky [132]).
D(f) - dedqf)?bgf) - 2deqf)*.

Pro of.  We construct a deterministic algorithm as follows. By the previous
lemma, there is a set of deqf )bgf ) variablesthat intersectseatcy maxonomial of
f. Query all thesevariables. This inducesa restriction g of f on the remaining
variables, sud that degg) < dedf) (becausethe degreeof eacy maxonomialin
the represemation of f drops at least one) and bgg) - bgqf). Repeating this
inductively for at most dedgf ) times, we read a constart function and learn the
value of f. This algorithm usesat most deqf )?bgf) queries,henceD(f) -

degf )2bgf). Theorem 2.5.6 givesthe secondinequality of the theorem. 2

In fact, almost the sameproof works to show a fourth-power relation between
D(f) and the degreeof a ze-error polynomial (po; p;) for f. The only change
in the proof is that now we have to reducethe degreesof both py and p,. This
costsa factor of 2, giving D(f) - 2 deg(f )2bg(f) - 6 deg(f ).

The main consequencef the proven bounds betweenD (f ) and the degrees
is a polynomial relation betweenthe classicalcomplexity D (f ) on the one hand
and the quantum complexitiesQg (f ) and Qq(f ) on the other:

2.5.12. Theorem (BBCMW [17]; BCWZ [43]). D(f)- 32Qg(f)* and
D(f) - 96 Qo(f)*.

It is quite likely that the fourth power in the above relations is not tight.
The biggest separationwe know betweenD (f ) and Qg (f ) is only a factor of 2
(for PARITY , seeSection2.6), while the biggestgap we know betweenD (f ) and
Qo(f) is near-quadratic (for AND-OR trees, seeSection2.7).
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A function which may throw somelight on the relations betweenD (f ), de(f ),
and Qg (f) is the following from [133. ConsiderE 1, de ned by E1o(X1;X2;X3) = 1
i®jxj 2 f1;29. This is represeted by the following degree-2polynomial:

E12(X1;X2;X3) = X1+ X2+ X3i X1X2| XiXz| XoX3!

De ne EX, asthe function onN = 3¥ variablesobtainedby building a completere-
cursiveternary tree of depth k, wherethe 3% leavesarethe variablesand eat node
is the Eq,-function of its three children. For k > 1, the represeting polynomial
for EX, is obtained by substituting independert copiesof the EX} *-polynomial in
the above polynomial for E1,. This showsthat degf) = 2¢ = N1leg3 1/, N 0631,
On the other hand, it is easyto seethat complemeiing any variable in the input
0 °ips the function value from 0 to 1, henceD(f) = s(f) = N = degf)"93.
The exact quantum complexity Qg (f) of this function is unknown; it must lie
betweenN 1=1°93=2 and N . Henceeither EX, satis'esQg(f) ¢ D(f) orit satis'es
degf) ¢ Qe(f). Both resultswould be interesting.

2.5.3 Polynomial bound for Qy(f)

SinceQ,(f ) canbe much lower than Q(f ), the results of the previoussectiondo
not yet imply that D(f ) and Q(f ) are polynomially close. This we prove here,
using the following theorem:

2.5.13. Theorem (BBCMW [17]). D(f) - CO(f)bg(f).

Pro of.  The following descrikes an algorithm to compute f (x), querying at
most CW (f )bgf) variablesof x (in the algorithm, by a \consisternt" certi cate
C or input y at somepoint we meana C or y that agreeswith the valuesof all
variablesqueriedup to that point).

1. Repeat the following at most bgf ) times:

Pick a consistenn 1-certi cate C and query those of its variables
whose x-values are still unknown (if there is no sud C, then
return 0 and stop); if the queriedvaluesagreewith C then return
1 and stop.

2. Pick a consistett y 2 f0; 1gN and return f (y).

The nondeterministic\pick a C" and\pick ay" caneasilybe madedeterministic
by choosingthe rst C andy in some xed order. Call this algorithm A. Since
A runs for at most bgf ) stagesand eat stagequeriesat most C (f ) variables,
A queriesat most C®) (f )bg(f ) variables.

It remainsto shav that A always returns the right answer. If it returns an
answver in step (1), this is either becausethere are no consistet 1-certi cates
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left (and hencef (x) must be 0) or becausex is found to agreewith a particular
1-certi cate C. In both casesA givesthe right answver.

Now considerthe casewhere A returns an answer in step (2). We will show
that all consistet y must have the samef -value. Supposenot. Then there are
consisten y; y°with f (y) = Oandf (y9 = 1. A hasqueriedb= bgf) 1-certi cates

derive from these C; disjoint sets B; sud that f is sensitive to eathy B; ony.
Forewry 1- i - b+ 1, de ne B; asthe set of variables on which y and C;
disagree.Clearly, ead B; is non-empty, for otherwisethe procedurewould have
returned 1 in step (1). Note that yBi agreeswith C;, sof (yBi) = 1, which shaws
that f is sensitive to ead B; ony. Supposethe kth variable occursin someB;
(- i- b),thenxy = yx 6 Ci(k). If j > i, then C; hasbeenchosenconsistern
with all variables queried up to that point (including xx), so we cannot have
Xk = Yk 6 Cj(k). This shaws that k 62B;, henceall B; and B; are disjoint.
But then f is sensitive to bgf ) + 1 disjoint setson y, which is a cortradiction.
Accordingly, all consistent y in step 2 must have the samef -value, and A returns
the right value f (y) = f (x) in step 2, becausex is one of thoseconsisteth y. 2

Combining with Theorem 2.5.4 we obtain:
2.5.14. Cor ollar y (BBCMW [17]). D(f) - s(f)bgf)? - bgf)3.

Combining Corollary 2.5.14with Theorem 2.5.7, we have proven the main
result of this section: for query complexity of total functions, bounded-error
quartum algorithms can be at most polynomially faster than exact classicalal-
gorithms.

2.5.15. Theorem (BBCMW [17]). D(f) - 4096Q.(f)®.

We do not know whether our generalboundsD (f ) 2 O(Qo(f )*) and D(f) 2
O(Qx(f)®) aretight, and suspect that they are not. In the following two sections
we will tighten theseboundsfor special classef functions.

Finally, combining Corollary 2.5.14and Theorem 2.5.6 we obtain the follow-
ing result, which improved the earlier D(f) 2 O(Bedf)?) result of Nisan and
Szegedy[133:

2.5.16. Theorem (BBCMW [17]). D(f) - 2168edf)®.

2.6 Symmetric Functions

Recall that a function f is symmetric if f (x) only depends on the Hamming
weight jxj of its input, sopermuting the input doesnot changethe value of the
function.
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2.6.1 Tight bounds

wheref is the value of f (x) for jxj = k. Becauseof this and Lemma2.2.2,there
is a closerelationship between polynomials that represem symmetric functions
and single-ariate polynomialsthat assumevaluesOor 1 onf0;1;:::;Ng. Using
this relationship, von zur Gathen and Roche [79] proved dedf) = (1 o(1))N
for all symmetricf :

2.6.1. Theorem (von zur Gathen & Roche [79]). If f isnon-constantand
symmetric, thendegf) = N j O(N%%8), If, furthermore, N + 1 is prime, then
dedf) = N.

In fact, von zur Gathen and Roche conjecturethat degf) = N j O(1) for
every symmetric f. The biggest gap they found is degf) = N j 3 for some
specic f andN. SinceD(f), dedf) and Qe(f), dedf)=2 (Theorem2.4.2),
the above degreelower boundsgive strong lower boundson D (f ) and Qg ().

For the caseof approximate degreesof symmetric f, Paturi [13§ gave the
following tight characterization. De ne j(f) = minfif2kj N + 1j : f, 6 fy.1 Q.
Informally, this quartity measuresthe length of the interval around Hamming
weight N=2 wheref is constart. The following theorem of Paturi [13€ implies
a strong lower bound on Qy(f ) for all symmetric functions.

2.6.2. Theorem (Paturi [136]). If f is non-constantand symmetric, then we
haveflegf) 2 £( N(Nj i(f))).

We can prove a matching upper bound usingthe result about quarntum cournt-
ing from Section1.7:

2.6.3. Theorem (BF;BCMW [17]). If f is non-constant and symmetric, then
wehaveQ,(f) 2 £( N(Nj i(f)).

Proof. We will sketch a strategy that computesf with bounded error prob-
ability - 1=3. Let fyx = f(x) for x with jxj = k. First note that sincej(f) =
minfj 2kj N+ 1j:f, 6 fy.; and0- k- Nj 1g, fx must beidentically O or 1 for
k2 f(Nj i(f)=2:::;(N+j(f)j 2)=2g. Considersomex with jxj = t. In order
to be ableto computef (x), it is sutcient to know t exactlyif t < (N j j(f))=2
ort>(N+ j(f)j 2)=2,orto knowthat (N j(f))=2- t- (N+i(f)j 2)=2
otherwise. D

Run the quantum courting algorithm for £(° (N j i( f))N) stepsto count
the number of 1sin x. If t is in one of the two tails (t < (N j j(f))=2 or
t> (N+j(f)i 2)=2), thenwith high probability the algorithm givesus an exact
court oft. If (Nj i(f))=2- t- (N+j(f)i 2)=2,thenwith high probability the
courting algorithm returns somet-which is in this interval. Thus with bounded
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error probabilgy we have obtained suzcient information to computef; = f (x),
usingonly O(C N(N j i(f))) queries. Repeating this proceduresomeconstart
number of times, we can limit the probability of error to at most 1=3. 2

In cortrast to Theorem 2.6.3, it can be showvn that a randomized classical
strategy needs£( N) queriesto compute any non-constam symmetric f with
bounded-error,the reasonbeing that we can reduceORy-, to f (which is easy
to see). Also, together with the bound Qo(ORy) = N that we prove belov
(Proposition 2.6.5), this reduction givesQg (f ); Qo(f ) 2 £( N). To summarize we
have the following tight characterizationsof the variousdecisiontree complexities
of all symmetricf :

2.6.4. Theorem. If f is non-constant and symmetric, then
2 D(f)=(@1i o1)N
2 Ro(f);R2(f) 2 £(N)
2 Qe(f);Qo(f) 2 £(N)

2 Quf) 2 &0 N(NT (1))

2.6.2 OR

Before cortinuing with monotone functions, we will take a closerlook at three
important symmetric functions: OR, PARITY, and MAJORITY.

First we will considerthe OR-function, which is related to databaseseard.
Grover's seart algorithm can nd an index i sud that x; = 1 with high prob-
ability of successn O(' N) queries(if there is such an i). This impliessthat
we can also compute the OR-function with high successprobability in O( N):
let Grover's algorithm generatean index i, and return x;. SincebJORy) = N,
Theorem2.5.7givesus a lower bound of % Wﬁ)n computing ORy with bounded
error probability,? sowe have Q,(ORy) 2 £( N), where classicallywe require
R>(ORy) 2 £( N) queries. Now supposewe wart to get rid of tfHe_probability of
error: canwe compute ORy exactly or with zero-errorusing O(" N) queries?If
not, can quantum computation give us at least someadvantage over the classical
deterministic case?Both questionshave a negative answer:

2.6.5. Pr oposition (BBCMW [17]). Qo(ORy) = N.

2This -( Y N) lower bound on ORy is well known [25, 83], and is given in a tighter form
in [30, 167, but the way we obtained it hereis rather di®erer from existing proofs. Many more
boundsfor OR and seart will be provenin Chapter 3.
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Pro of. Consideraquantum algorithm that computesORy with zero-errorusing
T = Qo(ORy) queries. By Lemma 2.4.1, there are complex-\alued polynomials
p; of degreeat most T, sud that the nal state of the algorithm on input x is

X
@ (x)jii:

i2f 0;1g™

Let B be the set of all basis states ending in 10 (i.e., where the output is the
answer 0). Then for every i 2 B we have pj(x) = 0if x 6 0, otherwise the
probability of getting the incorrect answer 0 on input x would be non-zero. On
the other hand, there must be at leastonej 2 B sud that p;(0) 6 0O, sincethe
probability of getting the correct output 0 on x = 0 must be non-zero. Let p(x)
be the real part of 1 p;(x)=p (0). This polynomial p hasdegreeat most T and
represems ORy . But then p hasdegreeat leastdeg ORy) = N,soT , N. 2

2.6.3 PARITY

Secondlywe considerPARITY . Using the Deutsd-Jozsaalgorithm for n = 1,
we can determine the parity of two variablesusing only 1 query. The parity of
an N-bit input x is the parity of N=2 sud pairs, so Qg (PARITY ) - dN=2e.
A matching lower bound for bounded-errorquantum algorithms follows from the
next lemma, which is essetially dueto Minsky and Papert:

2.6.6. Lemma (Minsky & Papert [122]). HegPARITY )= N.

Proof. Letf be PARITY on N variables. Let p be a polynomial of degree
Hegf) that approximates f. Sincep approximates f, its symmetrization p¥™
also approximates f . By Lemma 2.2.2, there is a polynomial g, of degreeat
most Bedf), sud that q(jxj) = p¥™(x) for all inputs. Thus we must have
if(x)i a(xj)j - 1=8,s0q(0) - 1=3,q(1), 2=3,...,q(Nj 1), 23, q(N) - 13
(assumingN ewen). We seethat the polynomial g(x) j 1=2 must have at leastN
zerces, henceq hasdegreeat leastN and Begf), N. 2

Thus we having the following optimal result for parity, which wasproveninde-
penderly at around the sametime asour result by Farhi, Goldstone, Gutmann,
and Sipser.

2.6.7. Cor ollar y (BBCMW [17]; FGGS [71)).
Qe (PARITY n) = Qo(PARITY ) = Q2(PARITY y) = dN=2e.
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2.6.4 MAJORITY

Thirdly we considerMAJORITY. Sincethe OR of N variables can be reduced
to MAJORITY on 2N j 1 variables (if we setthe rst N j 1 variablesto 1,
then the MAJORITY of all variables equalsthe OR of the last N variables)
and ORy requiresN queriesto be computed exactly or with zero-error,we have
Qe(MAJ ), Qo(MAJy), (N + 1)=2. It isknown that Qe (MAJy) - N + 1
w(N), wherew(N) is the number of 1sin the binary expansionof N. This was
“rst noted by Hayes, Kutin and Van Melkebeek[87]. It alsofollows immediately
from classicalresults [146 5] that show that an item with the majority value can
be identi ed classically deterministically with N j w(N) comparisons between
bits (a comparisonbetweentwo input bits is the parity of the two bits, which can
be computed with 1 quantum query). One further query to this item suzces
to determine the majority value. For N satisfying w(N) , 2 we thus have
Qe(MAJy) - Nj w(N)+ 1< N = D(MAJy).

For the zero-errorcase,Van Melkebeek, Hayes and Kutin give an algorithm
that worksin roughly %N queries,which is still slightly worsethan the bestknown
lower bound Qo(MAJ ), (N + 1)=2. For the bounded-errorcase,we can apply
Theorem2.6.3: j(MAJ \) = 1, sowedwgesz(MAJ n) 2 £(N) queries. The best
upper bound we have hereis N=2+ N, which follows from [60].

2.7 Monotone Functions

Recall that a function f is monotoneif f (x) cannot decreasgchangefrom 1 to
0) if we changesomeof the 0-bits in x to 1.

2.7.1 Impro vements of the general bounds

One nice property of monotonefunctions was shovn by Nisan:

2.7.1. Theorem (Nisan [131]). If f is monotone,then C(f) = s(f) = bgqf).
Pro of. Sinces(f) - bgqf) - C(f) forall f, weonly haveto prove C(f) - s(f).
LetC:S! fO0;1gbea minimal certi cate for somex with jSj = C(f). Without
loss of generality we assumef (x) = 0. Foreahhi 2 S we have x; = 0 and

f(x') = 1, for otherwisei could be dropped from the certi cate, cortradicting
minimality. Thus ead S-variable is sensitiein x and C(f ) - sy(f) - s(f). 2

Theorem 2.5.13now implies:

2.7.2. Cor ollar y. If f is monotone,thenD(f) - s(f)2.
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This 60£)Ilary is athEally tight, sincethe uniform 2-lewel AND-OFﬁ tree (the
AND of N ORsof N variablesead) hasD(f) = N ands(f) = N andis
monotone.

Also, the rst part of Theorem 2.5.6 can now be improved to

2.7.3. Pr oposition (Buhrman & de Wolf [49]). If f is monotone,thenwe
haves(f) - dedf).

Pro of. Let x beaninput on which the sensitivity of f is s(f ). Assumewithout
lossof generality that f (x) = 0. All sensitive variablesmust be 0 in x, and setting
one or more of them to 1 changesthe value of f from 0to 1. Henceby xing all
variablesin x exceptfor the s(f ) sensitive variables, we obtain the OR function
on s(f ) variables,which hasdegrees(f ). Thereforede(f) is at leasts(f). 2

The above two results, combined with Theorems2.4.2and 2.5.7, strengthen
someof the previousboundsfor monotonefunctions:

2.7.4. Cor ollar y (BBCMW [17]). If f is monotone,then we haveD(f) 2
O(Qe(f)?), and D(f) 2 O(Qa(f )*).

2.7.2 Tight bounds for zero-error

In this sectionwe shav for monotonefunctions that the di®erencebetweenQo(f)
and D (f ) can be near-quadratic,but not more.

2.7.5. Theorem (BCWZ [43]). For everytotal monotoneBoolean function f
we haveD (f) - Qq(f )2.

Pro of. Let x be an input on which the sensitivity of f equalss(f). Assume
without lossof generality that f (x) = 0. All sensitive variablesmust be 0 in X,
and setting one or more of them to 1 changesthe value of f from O to 1. Hence
by xing all variablesin x exceptfor the s(f) sensitive variables, we obtain the
OR function on s(f ) variables. SinceOR on s(f ) variableshas Qo(ORy) = s(f)
(Proposition 2.6.5), it follows that s(f) - Qo(f). We have D(f) - s(f)? by
Corollary 2.7.2,hencethe theorem follows. 2

Important examplesof monotonefunctions are AND-OR trees Thesecan be
represeted as trees of depth d wherethe N leavesare the variables, and the d
levels of internal nodesare alternatingly labeledwith ANDs and ORs. It is easy
to seethat all sudh functions f have degreedegf) = N, henceQg(f) , N=2
and D(f) = N. Howewer, we now show that in the zero-errorsetting quarntum
computers can adieve signi cant speed-upsfor such functions. These are in
fact the rst total functions with proven superlinear gap betweenquantum and
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classicalzero-errorcomplexity. Interestingly, the quantum algorithms for these
functions are not just zero-error: if they output an answer b 2 f0; 1g then they
also output a b-certi ¢ ate for this answer (= a set of indices of variables whose
valuesforce the function to the value b).

We prove that for suxciently large d, quarntum computerscan obtain near-
quadratic speed-upson d-level AND-OR treesthat are uniform, i.e., have branch-
ing factor N 79 at ead level. Using the next lemmawe prove that Theorem2.7.5
is almost tight: for every " > 0 there exists a total monotonef with Qu(f) 2
O(N¥*"yandD(f) = N.

2.7.6. Lemma (BCWZ [43]). Letd, 1 andlet f denotethe uniform d-level
AND-OR tree on N variablesthat hasan OR as root. There existsa quantum
algorithm A; that nds a 1-certi ¢ ate in expected number of queriesO(N 172+172d)
if f(x) = 1anddoesnot terminate if f (x) = 0. Similarly, there existsa quantum
algorithm A, that nds a 0-certi ¢ ate in expected numker of queriesO(N 172+179)
if f(x) = 0 and dcesnot terminate if f (x) = 1.

Pro of. By induction on d.

Base step. For d = 1 the boundsare trivial.

Induction step (assume the lemma for dj 1). Let f be the uniform
d-level AND-OR tree on N variables. The root is an OR of N ¥ subtrees,eadh
of which has N (4 D=d variables.

We construct A; asfollows. We canuseGrover's algorithm recursively to nd
asubtreeof the root whosevalueis 1, if thereis one. This takesO(N ¥(log N )% 1)
gueriesand works with bounded-error. For the technical details of this multi-level
quartum seard we referto [42, Theorem1.15]. By the induction hypothesisthere
is an algorithm AJ that 'nds a 1-certi cate for this subtree using an expected
number of O((N (@i D=d)1=2+1=(di 1)) = Q(N 172*1=2d) queries(note that the subtree
hasan AND asroot, sothe rolesof 0 and 1 arereversed). If A$ hasnot terminated
after, say, 10times its expectednumber of queries,then terminate it and start all
over with the multi-level Grover searti. The expected number of queriesfor one
sud run is O(N*?(logN)% 1) + 10¢O(N ¥2*172d) = Q(N 721224y |f f (x) = 1,
then the expected number of runs before successs O(1) and A; will nd a 1-
certi cate after a total expected number of O(N ¥72*1=29) queries. If f (x) = 0,
then the subtreefound by the multi-level Grover-seart will have value 0, sothen
AS will never terminate by itself and A; will start over againand again but never
terminates.

We construct Ay as follows. By the induction hypothesisthere exists an al-
gorithm A? with expectednumber of O((N (@i D=d)1=2+1=2(di 1)) = Q(N 1*2) queries
that nds a O-certi cate for a subtree whosevalue is 0, and that runs forever
if the subtree hasvalue 1. A, rst runs A? on the st subtree until it termi-
nates, then on the secondsubtree, etc. If f (x) = 0, then ead run of A9 will
ewerntually terminate with a O-certi cate for a subtree, and the O-certi cates of
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the N9 subtreestogether form a O-certi cate for f. The total expected num-
ber of queriesis the sum of the expectations over all N subtrees, which is
N4 ¢O(N¥2) = O(N¥2*1=d)_|f f (x) = 1, then one of the subtreeshas value 1
and the run of A9 on that subtreewill not terminate, sothen Ay will not termi-
nate. 2

2.7.7. Theorem (BCWZ [43]). Letd, landletf denotethe uniform d-level
AND-OR tree on N variablesthat hasan OR asroot. Then Qq(f) 2 O(N ¥72*1=)
and Ry(f ) 2 -( N).

Pro of. Run the algorithms A; and A, of Lemma 2.7.6 side-hy-side until one
of them terminates with a certi cate. This givesa certi cate- nding quantum
algorithm for f with expected number of queries O(N *72*179), Run this algo-
rithm for twice its expected number of queriesand answer \don't know" if it
has not terminated after that time. By Markov's inequality, the probability of
non-termination is - 1=2, so we obtain an algorithm for our zero-error setting
with Qo(f) 2 O(N ¥2*1=9) queries.

The classicallower bound follows from combining two known results. First,
an AND-OR tree of depth d on N variableshasRo(f) , N=29 [88 Theorem2.1]
(seealso[145). Second,for sud treeswe have R,(f) 2 -( Ro(f)) [147. Hence
Ra(f) 2 -( N). 2

This analysisis not quite optimal. It givesonly trivial boundsfor d = 2, but a
more re ned analysisshaws that we can also get speed-upsfor such 2-lewel trees:

2.7.8. Theorem (BCWZ [43]). Letf bethe AND of N ORs of N%= vari-
ableseach. Then Qo(f) 2 £(N%2) and Ry(f) 2 -( N).

Pro of. A similar analysisasbeforeshowns Qq(f ) 2 O(N22) and R,(f) 2 -( N).

For the quantum lower bound: note that if we setall variablesto 1 exceptfor
the N 2= variablesin the st subtree,then f becomeghe OR of N 2= variables.
This has zero-errorcomplexity N 23 (Proposition 2.6.5), hencewe have Qq(f ) 2
-( NZ3), 2

If we considera tree with g N subtreesof P N variables eah, we would get
Qo(f) 2 O(Blf“) and R,(f) 2 -( N). The bestlower bound we can prove hereis

Qo(f) 2-C N).

2.7.3 Monotone graph prop erties

An interesting and well studied subclassof the monotonefunctions are the mono-
tone graph properties. We will shaw in this sectionthat quantum algorithms can
compute somegraph properties much faster than classicalalgorithms.
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Consideran undirectedgraphon n vertices. ThereareN = ' possibleedges,
ead of which may be preser or absen, sowe canpair up the setof all graphswith

where the bit e; indicates whether there is an edge between verticesi and j .
A graph property P is a set of graphsthat is closedunder permutation of the n
vertices,soisomorphicgraphshave the sameproperties. In other words, if graphs
X = (e2;:::) and x° = (€2,;:::) are sudch that there is permutation Ywith the
property that g; = e&(i)%) for every i; j, then either both graphshave property
P, or neither of them has property P.

We are now interestedin the question: At how many edgesmust we look in
order to determineif a graph hasthe property P? This is just the decision-tree
complexity D(P) of P if we view P as a total Booleanfunction on N bits. The
complexity of graph properties has been well-studied classically especially for
monotone graph properties. A property P is monotoneif adding edgescannot
destroy the property, whichgmeansthat such a P is a speci ¢ monotone total
Booleanfunction onN = "7 bits.

In the sequel,let P stand for a (non-constar) monotonegraph property. It
is called evasiveif D(P) = N, i.e., if any deterministic algorithm hasto look at
all edgeson someinputs. Much researt revolved around the so-calledAanderaa-
Karp-Roserberg conjecture or evasivenessonjecture, which statesthat every P
is evasive. This conjectureis still open; see[117 for an overview. It has been
provedfor n equalsa prime power [95 and for bipartite graphs[164, but the best
known bound that holdsfor all P isD(P) 2 -( N) [14], 95, 97]. This bound also
follows from a degree-lound by Dodis and Khanna [64, Theorem 2]:

2.7.9. Theorem (Dodis & Khanna [64]). If P is a non-constant monotone
graph property, then degP) 2 -( N).

Sincededf )=2 lower bounds Qg (f ), we can prove that exact quartum eva-
sivenesqg Qe (P) = N) doesnot hold for all P, but near-ewasivenessdoes:

2.7.10. Theorem (BCWZ [43]). For all non-constant monotone graph prop-
erties P wehaveQg(P) 2 -( N). Thereis a P suchthat Qg (P) < N for every
n> 2

Pro of.  The generallower bound follows immediately from conbining Theo-
rems2.4.2and 2.7.9. Letting P be the majority function (\are more than half
of the edgespresen?"), the results of Hayeset al. from Section2.6.4 show that
there is a monotoneP with Qg (P) < N for every n > 2. 2

For the classical zero-error complexity, the best known result is Ro(P) 2
-( NZ3) for all P [84], but it has beenconjecturedthat Ro(P) 2 £(N). To the
best of our knowledge,no P is known to have R,(P) 2 o(N). For the quantum
casewe can prove:
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2.7.11. Theorem (BCWZ I{’Aé])' For all non-constant monotone graph prop-
erties P wehaveQy(P) 2 -( N). Thereis a P suchthat Qu(P) 2 O(N **) and
R2(P) 2 -(N).

Proof. The quantum lower bound follows immediately from D(P) - Qu(P)?
(Theorem 2.7.5) and D(P) 2 -( N). Now considerthe property \the graph
corntains a star", where a star is a node that has edgesto all other nodes. This
property correspndsto a 2-lewel tree, wherethe rst levelis an OR of n subtrees,
and ead subtreeis an AND of nj 1 variables. The nj 1 variablesin the ith

subtreecorresppnd to the nj 1 edges(i;j) forj 6 i. The ith subtreeis 1 i® the
ith node is the certer of a star, sothe root of the tree is 1 i® the graph cortains
a star. Now we can shov Qo(P) 2 O(N**) and R,(P) 2 -( N) analogouslyto
Theorem2.7.8. 2

Finally, for the bounded-error casewe have quadratic gaps between quan-
tur’B and classical: the property \the graph hasat least one edge” has Q»(P) 2
O( N) = O(n) by Grover's quartum seard algorithm. Combining the results
that D(P) 2 -( N) for all P and D(f) 2 O(Q,(f)#) for all monotonef (Theo-
rem 2.5.12),we also obtain a (probably non-optimal) lower bound for this case:

2.7.12. Theorem (BCWZ [43]). For all monotoneg,ra_ph properties P we have
Q2(P) 2 -( N¥). Thereis a P suchthat Qx(P) 2 O( N) andR,(P) 2 -( N) .

2.8 Summary

In this chapter we analyzedthe quantum query complexity of total Booleanfunc-
tions. Query complexity measureshe number of queriesto inputs bits that an
algorithm needs. This model is interesting becausemost existing quantum algo-
rithms depend on queriesin someform or other. We used Qe (f), Qo(f ), and
Qq(f) for the optimal query complexity of exact, zero-error,and bounded-error
quartum algorithms for f , respectively. We shoved how degreesof polynomials
for f give strong lower boundson quartum query complexity:

2 Qe(r), 3V
2 Qury, 229
2 Quf), 2od)

The main consequencés that for all total functions, quartum query complexity
can be at most polynomially lower than classicaldeterministic query complexity:
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2 D(f) 2 O(Qu(f)*
2 D(f) 2 O(Q(f)°)

This contrasts sharply with the caseof promise functions (e.g., Deutsd-Jozsa,
Simon, Shor's period- nding), where quartum computerssometimesrequire ex-
ponertially fewer queriesthan classicalones. We conjecture that our general
bounds are not tight. The largest gapsknown betweenD (f ) on the one hand
and Qo(f) and Q,(f) are both only quadratic. We sharpened the bounds for
various special classesof functions.



Chapter 3

Bounds for Quantum Search

This chapter is basedon the papers

2 H. Buhrman, R. Clewe, R. de Wolf, and Ch. Zalka. Boundsfor Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS
pages358{368,1999.

2 H. Buhrman and R. de Wolf. A Lower Bound for Quantum Seart of an
OrderedList. Information ProcessingLetters, 70(5):205{209,1999.

3.1 Intro duction

Searding is something which computers have to do a lot and it is clearly of
great interest to know how fast a quartum computer can sear& under various
circumstances.Foremostamongthose circumstancesis the issueof whether the
sear® space(sometimescalled the \database") is orderedor unordered. In this
chapter we will considerthe quantum complexity of both kinds of seard, starting
with the unorderedcase.

Three di®eren parametersare of interest when sear@iing some unordered
space:

2 N: the sizeof the seart space
2 t: the number of solutionsin the seart space
2 ": the allowed probability of error

The algorithm may or may not know the number of solutionst. Given these
parameters,we want to know how fast a quarntum computer can seard the N -
elemen spaceand nd oneof the solutionswith failure probability at most". As
in the previous chapters, we will abstract \time complexity” to \query complex-
ity" (in the caseof seard thesewill usually cometo the sameanyway). A query

53
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is basically a \lo ok-up" in the seart space,the examination of an elemen of the
space| with the crucial property that a quantum look-up can examinese\eral
di®eren elemers in superposition.

We will useT = T(N;t;") to denotethe minimal number of queriesneeded
for the parametersN;t; " in the casewherethe quantum seart algorithm does
not know t. We will add superscript k' for the casewhere the exact number
of solutionst is known to the algorithm. The main result about the complexity
of unordered seard ispofi)urseGrover's algorithm (Section 1.7), which shows
that T(N;t; 1=2) 2 O( N=t). Moreover, if the algorithm knows the number t of
solbltio_ns, then the exact versionof Grover's algorithm implies even T¥(N; t; 0) 2
O( N=t). Both boundswereprovento be optimal by variouspeople[25, 30, 167).
Furthermore, our Proposition 2.6.5in Chapter 2 implies that if t is unknown
and we do not want any error (" = 0), then the algorithm needsN queries:
T(N;t;0) = N. Henceallowing no error probability whatsoever wipes out all
potertial speed-upa®ordedby quantum computing.

But what about the casein between" = 1=2 and " = 0?7 Prior to the
work preserted here,no good lower boundswere known on quartum seart with
very small but non-zeroerror probability ". By standard techniques, we can
repeat Grover's algorithm O(Iog(&z")) marny times and reduce the error to ",
which shavs that T(N;t;") 2 O( N=tlog(1=")). Howeer, there is no a priori
reasonto believe that this method of error-reductionis optimal, and there might
well be a quantum method that tremendously boosts the succesgprobability in
quartum seart at a very small cost. In Section 3.2 we will prove tight bounds
onT(N;t; "), shownving, roughly speaking,that the error in quantum seart canbe
reducedslightly better than by the classicalrepetition technique, but not much
better.

Our lower boundson error-reductionin quarntum seard algorithms alsoimply
lower bounds on generalerror-reduction: any generalqguantum method to boost
the succesprobability of a given bounded-erroralgorithm (quantum or classical)
to 1i " needs-(log (1=")) repetitions of the algorithm in the worst caseto reduce
the error to ". This is at most a constart factor better than classicalsuccess
ampli cation, which shavsthat there are no generalGrover-type quartum speed-
ups for reducingthe error probability of a given algorithm.

Finally, in Section3.4 we examinethe caseof seardiing an N -elemen list that
is ordered accordingto somekey- eld of the elemens. Classically we can seart
sud alist with only logN queriesusingbinary seard (ead query can e®ectiely
halve the relevant part of the list: looking at the key of the middle elemen of the
list tells you whether the item you are searting for is in the rst or the second
half of the list); logN is also the classicallower bound, even in the bounded-
error case.How much better can we do on a quantum computer? We show that
a quantum computer cannot improve on classicalbinary se%rdn algorithms by
much more than a square-ret: we prove a lower bound of -( ~ logN =loglogN)
queriesfor bounded-errorquantum seart in this setting. Our lower bound was
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the rst signi cant lower bound for quartum orderedseard that appeared(it rst
appearedon the quant-ph archive in November 1998in [46]). It hassubsequetly
beenimproved by meansof di®eren proof techniquesto (logN)=2loglogN [69],
thento (logN)=12; O(1) [8], and then to (logN)=(*4doge) i O(1) [93]. Thus at
mosta linear speed-upis possibleover classicalcomputers. Sud alinear quantum
speed-upis indeed possible: an upper bound of 0:53logN can be achieved [7(]
(see[93 for a slightly worsebut more intuitiv e algorithm).

3.2 Tight Bounds for Unordered Search

To restatethe unorderedseart problem: we have an N -elemen seart spacex =

to the unitary transformation that mapsji; b ! ji; b© x;i. The aimisto nd
ani sud that x; = 1. Sud ani is a called a solution. We assumethe space
contains (at least) t solutions,and useT(N;t;") to denotethe minimal numbers
of queriesthat a quantum algorithm needsin orderto nd a solution in this space
with probability at least1; ".

In this sectionwe prove tight boundson T(N;t;"). We rst considerlower
boundson T(N;t;"). The main ideais the following. It will be conveniert for us
to analyzethe quantum complexity of the ORy -function under the promisethat
the number of solutionsis either O or at leastt. Clearly, searting for a solution
is at leastas hard asthe ORy -function, soa lower bound for ORy givesa lower
bound for searti. By Lemma 2.4.1, the acceptanceprobability of a quantum
computer with T queriesthat computesthe ORy with error probability - "
(under the promisethat there are either O or at leastt solutions) can be written
as an N -variate multilinear polynomial P(x) of degree- 2T. This polynomial
hasthe properties that

P@® =0
1; "+ P(x):- 1lwhenewerjxj2 [t;N]

Sincewe can always test whether we actually found a solution at the expenseof
one more query, we can assumethe algorithm always givesthe right answer ‘'no
solutions' if the input cortains only Os, hencethe property P(0) = 0. However,
our results remain una®ectedup to constan factorsif we alsoallow a small error
here(i.e.,0- P(0) - ").

By symmetrizing (Lemma 2.2.2), P can be reducedto a single-\ariate poly-
nomial s of degreed - 2T with the following properties:

s(0)=0
1j " s(z) - 1forall integersz 2 [t; N]
We will prove alower boundon" in termsofd, N, andt. Sinced - 2T, this will

imply a lower bound on" in terms of T; N;t. Equivalertly, it will imply a lower
boundon T in terms of N;t; ".
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Our proof usesthree results about polynomials. The rst is by Coppersmith
and Rivlin [58, p. 980]and givesa generalboundfor polynomialsthat arebounded
by 1 at integer points:

3.2.1. Theorem (Coppersmith & Rivlin [58]). Every polynomial p of de-
gree d that has absolutevalue

ip(z)j - 1 for all integersz 2 [O; n];

satis es
ip(2)j < ae®=" for all real z 2 [O; n];

where a;b> 0 are universal constants. (No explicit valuesfor a and b are given
in [58].)

The secondtwo tools concernthe Chebyshev polynomials Ty, de ned as
in [143: s . , .

1 P d P d
Td(Z)zé z+ 2271 + zi Z22i1

T4 hasdegreed and its absolutevalue jT4(z)j is boundedby 1if z 2 [j 1;1]. On
the interval [1;1 ), T4 exceedsall others polynomials with those two properties
([143 p.108]and [136 Fact 2]):

3.2.2. Theorem. If qis a polynomial of dggree d suchthat jg(z)j - 1 for all
z2 [j 1;1] thenjg(z)j - jTq(2)j for all z, 1.

Paturi ([136, beforeFact 2] and personalcommnunication) proved

Pp—
3.2.3. Lemma (Paturi [136]). Tq(1+ 1) - € Z***foralll O

P _
Proofp Forz = 1+21: T4(2) - (z+p22i 1)d:(1+1+ 21+12)d_
(1+2 20 +12)d. 4 242 (ygingthat 1+ x - € for all real x). 2

Now we can prove our lower bound on " in terms of d (and N and t):

3.2.4. Theorem (BCWZ [43]). Let1 - t < N be an integer. Every polyno-
mial sof dggreed - N j t suchthat s(0) = Oand1j " - s(z) - 1for all integers
z 2 [t; N] has
1. N e e
o gl (bP=(Ni )i 40 INS(Ni 2.
*a
whee a;b are asin Theorem 3.2.1.
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Pro of.  Every polynomial s satisfying s(0) = 0 and s(z) = 1 for all integers
z 2 [t; N] must have degree> N j t, becauses(z) i 1 hasatleastN j t+ 1
zerces. Sincethe s in this theoremhasdegreed - N j t, we have" > 0 (and
hencewe candivide by " later on). Considerthe polynomial p(z) = 1j s(Nj 2z).
It hasdegreed and

0- p(z) - " for all integersz 2 [O;N j t]
p(N) =1
Applying Theorem 3.2.1to p=" (which is bounded by 1 at integer points z 2
[O;N j t]) with n= N j t we obtain:
ip(2)j < "ae®=MNi " for all realz 2 [O;N j t]:

Now we rescalep to g(z) = p((z+ 1)(N j t)=2) (i.e., the domain [O;N | t] is
transformedto [j 1;1]), which hasthe following properties:

ja(2)j < "ae"™®=Ni Y for all realz 2 [ 1;1]
gl+t)=p(N)=121fort = 2t=(N j t).

Thusqgis\small" onall z2 [j 1;1]and\large" at z= 1+ . Linking this with
Theorem3.2.2and Lemma 3.2.3we obtain

1= q+1)
"ae" NI DjTy(1 + 1)]
IlaebdZ:(Nl ’[)e2d 21412

— uaeon=(Ni t)+2d  4t=(Nj t)+4 t2=(N t)2

— --aebch(Ni t)+4d  tN=(Nj t)2:

Rearranginggivesthe bound. 2

Notethat if T > N j t then wecanachieve" = 0 by just chedking an arbitrary
setof T elemerts. Sincethere aret solutions, this set must cortain at least one
solution. Cornversely it follows from Proposition 2.6.5that if T - N j t, then we
must have " > 0. Sincea T-query quantum seard algorithm inducesa degreed
polynomial s with the properties mertioned in Theorem3.2.4and d - 2T, we
obtain the following bound for quantum seard under the promise:

3.2.5. Theorem (BCWZ [43]). Under the promise that the numker of solu-
tions is at least t, every quantum search algorithm that usesT - N j t queries

haserror protability
3 Y
"o g (4bT2=(Nj t))i 8T IN=(Nj t)2
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This theorem implies a lower bound on T in terms of N, t, and ". To give
a tight characterization of the relations between T, N, t and ", we needthe
following upper bound on T for the caset = 1:

3.2.6. Theorem (BCWZ [43]). For evegy" > 0 there existsa quantumsearch
algorithm with error prokability - " and O N log(1=") queries.

Pro of. Setty = dog(1=")e. Considerthe following algorithm:

1. Apply the exactquanum ﬁea_rdn algorithm for the valuest = 1;:::;to. One
sud application takesO(" N=t) queries.

2. If no sobltion hasbeenfound, then apply to ordinary Grover seartes,eah
with O( N=ty) queries.

3. Output a solution if one has beenfound, otherwiseoutput "no solutions'.

The query complexity of this algorithm is boundedby

3

Xo N ’
% =0 P N log(1=")

t=1

with certainty in step 1. If the real number of solutionswas > tg, then eat of
the seardesin step 2 can be madeto have error probability - 1=2, sowe have
total error probability at most (1=2)t - ", 2

The main theorem of this sectiontightly characterizesthe various trade-o®s
betweenthe size of the seart spaceN, the promiset, the error probability ",
and the required number of queries(we needsomemild conditionsont and " to
make it all work):

3.2.7. Theorem (BCWZ [43]). LetN > 0, 1 - t - OON, ", 2iN,  Let

5

T = T(N;t;") be the optimal numker of queriesa quantum computer needs to
sarch with error - " through an unordered N -element space that contains at
least t solutions. Then
A r !
T2 t
logl="Y2 £ —+T —
9(1=") N N

3 ,
Proof. From Theorem 3.2.5we obtain log(1=") 2 O T2=N + TIO t=N : To
prove a lower bound on log(1=") we distinguish two cases.
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Casg, 1. T ., pW. By Theorem 3.2.6, we can achieve error - " using
Ty 2 O(C N log(1=")) queries.Now (leaving out someconstart factors):

A !

H 1 r—

2 T2 _ 1772 1 T2 t

:u _U == - + o - o + e

°001=). N N T2 T > NN
Case 2. T < P tN. We can achieve error - 1=2 by using ordinary Grover

seart with O(' N=t) queriesand then classmaﬂjyampllfylng this to error - "

using O(log(1=")) repetitions. This takesT, 2 O( N=tlog(1=")) queriesin total.
Now:

r r A r r A ]

t
=T T —+T +T
Nh

log(1=") , Ty

z| 3

t
N

NI =

tolp ot b
N 2 N N

Ignoring constart factors, the theorem can be written as

r—
T? t
log(1=") = N + T N

Viewing this as a quadratic equationin T, we can solwe for T and obtain (still
ignoring constart factors)

p__
IO t + 4log(1=") i
2
We note someinteresting consequencesf this generaltheorem:

2 T(N;t;1=2) 2 £(p N=t)
This was rst provenin [30].

T(N;t;") =

2 T(N;1) 2 £(° Nlogd=")
This is slightly better than classicalampli cation of Grover's algorithm
(which would take Wloig(iz") gueries). It alsoimplies that no quartum
seart algorithm with O(" N) queriescan achieve " 2 o(1).

2 T(N:t;") 2 £( P N=tlog(1=")) if t A log(1=")
This shavsthat if t is largerelative to log(1="), then classi@al ampli cation
is optimal. We will elaborate further on this in the next section.

2 T(N;t;20N) 2 £(N)
If we want exponertially small error probability " = 2i N, then we might as
well run a classicalalgorithm that queriesall N elemens. This alsojusti es
the restriction " , 21 N of Theorem3.2.7:if wewant " - 2/ N then quartum
seart is not signi cantly faster than classicalseard.
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3.3 Application to Success Ampli cation

Our lower bounds on error-reduction in quantum seart algorithms have some
negative consequences$or error-reduction in general. Consider the caseof an
algorithm that has somesmall one-sidedsuccesgrobability p that we want to
improve. We assumewe are giventhe initial algorithm asa \black-box", which we
cannot look into. We have to do this to make the boosting problem interesting,
otherwiseit would be conceiable that a successfuboosting method \op ensup"
the algorithm, nds out which problemit solves,and comesup with a completely
di®eren but error-freealgorithm for the sameproblem.

Classically we needto repeat the bladk-box algorithm about 1=p times to
boost the succesgrobability to, say, 1/2. In the quantum case,amplitude am-
pli cation achievesthe samegoal quadratically faster: a quantum booster needs
only about 1=P p \quantum repetitions" of the algorithm to boost the success
probability to 1/2. Now supposewe want to go from successprobability 1/2
to 1j ". Classicallythis would require about log(1=") repetitions of the error-
1/2 algorithm, which is the best one can do in general. The classicalbooster is
basically seardiing for a successfukun of the algorithm (which will occur with
probability 1 " if we run the algorithm O(log(1=")) times independerily, i.e.,
if we searth among O(log(1=")) di®eren runs). Accordingly, an analogy with
Grover's,seart algorithm suggeststhat maybe a quantum booster would need
only O( log(1=")) repetitions of the algorithm. A quantum booster would be
given sud an algorithm asa unitary transformation A that it can apply asoften
asit wants. If the booster would need T repetitions of the algorithm, it would
look like B = Ut AU+, 1A ::: AUy, wherethe U; are unitary transformations that
do not depend on A. An appropriate measuremen of the nal state Bj0i would
then give the output of the booster. A quartum booster could indeedapply some
Grover-type amplitude ampli cation to A, but this would introduce an error of
its own, which may outweigh the improvemen of succesprobability achieved by
amplitude ampli cation.

Somewhatdisappointingly, we prove that no quarntum booster can work sig-
ni cantly better than a classicalbooster: like the classicalbooster, a quantum
booster needsabout log(1=") repetitions of the algorithm in the worst caseto
reducethe error to ".

3.3.1. Theorem (BCWZ [43]). A geneal quantummethal that boostsany al-
gorithm of suaessprolability 1=2 to suaessprokability 1 ", neadsto run the
algorithm -(log (1=")) times in the worst case.

Pro of. Considerthe unorderedseart problemwith parametersN andt = N=2,
chosensud that t A log(1="). Grover's algorithrﬂ (not knowing t) can sole
this problem with error probability - 1=2 usingO( N=t) = O(1) queries. Now
supposewe have a generalquarntum booster,which boostsany 1/2-error algorithm
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to succesprobability 1j " usingat most T repetitions of the algorithm. Applying
this to Grover's algorithm givesa solution to the seart problem with T ¢O(1)
gueriesand error probability - ". Howewer, we know from the previous section
that T(N;N=2;") 2 -(log (1=")), henceT 2 -(log (1=")). 2

We focusedon one-sidederror algorithms here, but similar negative results
hold for boosting a given zero-erroror bounded-erroralgorithm: there is no gen-
eral quantum way to boost succesgrobability that is signi cantly (= morethan
a constart factor) better than classical.

3.4 Lower Bound for Ordered Searching

In this sectionwe prove a lower bound on seardiing a spacethat is ordered accord-

which we canqueryin the usualway. Welet O, denotethe unitary transformation
correspnding to a query:

Oy :jj;b;zi ! jj;bO©x;;zi:

Here z indicates the workspaceof the algorithm, which is not a®ectedby the
query, and x; is the result of a comparison,indicating whether the j th item in
the spacehas a key-value smaller or equal to the value we are looking for. We
assumethe underlying sear® spaceis orderedin increasingorder, meaningthat
x consistsof a sequenceof i 1sfollowed by Os:

= Qi)

The goalis to nd the number i, which we will call the step of x, using as few
queriesaspossible. This i isthe point in the list wherethe looked-foritem resides
(i may be 0, in which caseall itemsin the list happento be larger than the item
we are looking for).

3.4.1 Intuition

Before plunging into the technicalities of the proof let us brie°y sketch the main
idea, ignoring the error probabilities for now.

Supposewe have a quantum algorithm S that usesT queriesto determinethe
stepi of any orderedinput x. We canusesS to retrieve the completecortents of
a given arbitrary (non-ordered)input y 2 f0; 1g°9N | asfollows. The sequencef
bits in y is the binary represemation of somenumberi 2 [O;N j 1]. De ne x as
the orderedinput of sizeN wherethe step occursat positioni: x; = 1forj - i
and x; = Oforj > i. Running S on x would give us i, and hencethe complete
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y. Unfortunately we do not have the possibility to query x; we canonly queryy.
Howewer, we can simulate an x-query using y-queries. An x-query is basically a
mapping from a given number j to the bit x;, wherex; = 1i®j - i. Both j and
i are logN -bit numbers, and the leftmost (= most signi cant) bit where their
binary represemations di®erdeterrBineswhetherj - i. Using Grover's algorithm
we can nd this bit using rougmy@ queriesto y and hencelearn x;. Thus
we can simulate an x-query by = logN y-queries.

Now if we replaceead ofrghe T x-queriesin S by sud a simulation, we obtain
a network with roughly T ¢ logN y-queriesthat computesi (and hencelearn
the wholey). Knowing y would for instance enableus to compute PARITY( y)
(i.e., whether the number of 1sin y is odd), for which Corollary 2.6.7 gives a
lower bound of (log N)=2 y-queries. Hencewe must have

T¢ TogN | '°g“;

and the lower bound on T follows. The following technical sectionsmake this
idea precise.

3.4.2 Simulating queries to an ordered input

Our lower bound proof usesthree technical lemmas, which together shav that
we can appro%nately simulate a query to an ordered input x with step at i,
using roughly * logN queriesto an input y of logN bits that form the binary
represemation of i. We prove thesethree lemmas rst.

Sincex; = 1i®j - i, we cansimulate an x-query if we are able to determine
whetherj - i for givenj. By aresult of DNt and H¢ yer [65], there is a bounded-
error quanum I[§1Igorithm that can nd the minimum elemen of a list of logN
items using O(" logN) queries. We can usethis to nd the leftmost bit where
the binary represemations of i andj di®er,asfollows: construct a logN -elemer
list z, de ning z, = k if i andj di®erin their kth bit and z, = logN + 1 if those
kth bits are the same. Now the index k for which z, is minimal, is the index of
the leftmost bit wherei andj di®er. Thuswe candeterminewhetherj - i, using
O( logN) y-queries. By standard technigueswe canreducethe error probability
to " = 1=logN by repeatingthe algorithm O(log(1=")) = O(loglogN) times. We
may assumewithout lossof generalily that this computation doesnot a®ectthe
input j and doesnot useintermediate measuremets. Thus we obtain:

3.4.1. Lemma. Thereis a quantumalgorithm A that makesO(Io logN loglogN)

1g, thenfor everyj 2 [O;N | 1], A maps

300 @iV i+ T XV
whee x; = 1if j - iandx; = 0if j > i, j*- " = 1=logN, and V; and V;?
are unit-length vectors that degendon i andj.
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Cleaning up by reversing the computation

If wewant to simulate an x-query, we must make surethat the simulation doesnot
leave behind usednon-zeroworkspace,sincethis may destroy interferencelater
on. Thus we must somehav \clean up" the vectorsjV; i and j\/ijoi introducedby
the previouslemma. We canin fact do this at a small overhead(a factor of 2 in
the time and number of queries). The idea of the proof is familiar from classical
reversible computing:

1. do the original computation A
2. copy the answer bit to a safeplace (a fresh new qubit)

3. reversethe computation (i.e., apply Ai 1) to return to the cleaninitial state
plus the copy of the answer bit

If the computation is exact, then the answer bit isin fact a classicalbit (jOi orjli)
and this schemeworks perfectly. If the computation hasa small error probability,
then part of the state after step (1) will have answer bit jOi and part will have
answer bit jli. Thus in this casestep (2) will introduce some entanglemen
betweenthe new copy of the answer bit and the rest of the state, and we cannot
reverseit exactly. Howewer, if most of the amplitude is concettrated on oneof the
two answers, then the answer bit is approximately classical,and step (3) will still
return the state to approximatelythe cleaninitial state. This techniqueis by now
standard in quantum computing, and can be found for instancein [25, 54, 42].

Lemma3.4.2 rst shows that the above technique works when applying A to
basisstates, Lemma 3.4.3then extendsthis by shawing that it alsoworks when
applying A to sugerpositions of basisstates.

3.4.2. Lemma. SupmseA is a quantumalgorithm that usesT y-queriesand for
everyj 2 [O;N j 1] maps

i @i Vi i+ T X VI

whee | j>- " andV; and V,’ haveunit length.
Then there existsa quantumalgorithm A° that uses2T y-queriesand maps

;501 1 jjibO© X500 + jij Wil ;
whee kjWi pi k- P 2", for everyi;j, and b2 f0; 1g.

Pro of.  For easeof notation we assumeb follows the workspace® instead of
precedingit. Thus we can write

Al OB = @i Vi i b+ X7 V% b
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Applying a cortrolled-not operation that XORs the answer bit into b, we get
®j; x;ij Vi i bO© x;i + 7jj; X7ij Vi bO X7 =
N o o :
®j;x;ij Vi i + Ti X VO b xgi + T xqij Vi bO Xpi i T X Vi b© ;i

Applying Ai 1- | gives
. . : i o o ¢
ji;0ibOx;i + (A= 1) T X7 VP bO Xi i T X Vi b© X

BecauseA and hencealsoAi ! do not changej, this superposition can be written
as

10, bO Xji + jjij Wi pl;

for somevector jW;; ,i. Now

KjWijpl kK = KjjijWjpi k. ¢ G
= k(AT*- |)I_J'J'iﬁij ViliibO xji i Tij; X VPijbO xji k (3.2)

= kTiisxi Vi b© Xii i T X7 ViR b© i k (3.3)

= b JrEH )R (3.4)

2" (3.5)

Here (3.1) holds becausgji hasnorm 1. Equality between(3.2) and (3.3) holds
becauseAi ! - | is unitary and hencepresenesnorm. Equality between (3.3)
and (3.4) holds becausethe two vectorsjj; Xjij Viij b© Xji and jj ; Xjij ViLij b© x; i
in (3.3) have norm 1 and are orthogonal (they di®erin the last bit).

Accordingly, the quartum algorithm A°that rst appliesA, then XORs the
answer-bit into b, and then appliesAi ! satis esthe lemma. 2

We have now shavn that we can\cleanly" simulate O, on a basisstate jj; b;0i.
It remainsto shaw that the simulation alsoworks well on superpositions of basis
states. The next lemma provesthis, using an idea from [54)].

3.4.3. Lemma. Let O, and bx be unitary transformationssuchthat
Oy :jj; b8 ! jj;bO©X;;0i
Oc i 00 1 jj;bOx;; 00 + jjij Wy ol
i P
If KjWio k- " forpeveryi;j;b and JAl =, ®yjj;b;0i has norm 1, then
kO, jAi | O,jAik " 2.
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Pro of.
. K. . K. X . oww -
KOJAI j bXJAl k = k @®yjijWjpik (3.6)
G S
= k  ®jjijWjol +  ®qjjijWjiik (3.7)
X X
kK ®ojjij Wijol k+ k  ®qjjij Wy 1i k (3.8)
j j
S X . - s wa . S X - . e oww -
= J®0j2 Kij i Wi o k2 + J®1j2 Kjj i W 11 k2 (3.9)
j j
S - - S . -
"¢ j®oj2+ "¢ [GHE (3.10)
] j
P 2: (3.11)

The stepfrom (3.7) to (3.8) is the tria@gle inequality. The stepfrom (3.8) to (3.9)
holds becausethe statesjj ij Wyl in ®F"ﬂj i Wjj »i form an orthogé)nal set. The
last inequality holds because | j®j*+ ;j®1j* = 1 and Pa+ 1i a- 2
for all a2 [0;1]. 2

3.4.3 Lower bound for ordered search

Using the above technicalities, we can now formalize the intuitiv e proof:

3.4.4. Theorem (Buhrman & de Wolf [47]). A boundel-error quantumal-
gorithm for searching an ordered input of N elementsnesds-( ~ logN =loglogN)
queries.

Proof.  Supposewe have a bounded-erroralgorithm S for seard that uses
T queriesto nd the stepi hidden in an orderedinput x. SincelogN queries
are suzcient for this (classicalbinary seard), we can assumeT - logN. We
will shov how we can get from S to a network $§ that determinesthe whole
corteBts of an arbitrary input y of logN bits with high probability, using only
T®O( logN loglogN) queriesto y. This would allow usto compute PARITY( y)
with small error probability. Sincewe have a (log N )=2 lower bound for the latter
(Corollary 2.6.7), we obtain

p
T ¢O( logN loglogN) , IogZN ;

from which the theorem follows.
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Let X = (X1;:::;Xn) bethe orderedinput with stepat i, sox; = 1i®] - i. The
algorithm S, when allowed to make queriesto Oy, outputs the number i with
high probability. O, maps

ji;b0i ! jj;b©x;;0i:
Sincex; = 1i®] - i, Lemmas3.4.1and 3.4.2imply that there is a quartum
algorithm O, that usesO(" logN loglogN) y-queriesand maps
j1;00i 1 jj;bO© X0 + jjij Wi i ;
where k jWjjpi k- “=logN for all i;j;b, for somesmall xed “~ of our choice
(" = 0:1 suzxces).

Let § be obtained from S by replacingall T Oy-queriesby bx-queries. Note
that § cortains T ¢O(" TogN loglogN) queriesto y. Considerthe way $ actson
initial statej0i, comparedto S. Ea(igl replacemen of O by O, introducesan error,
but ead of theseerrorsisat most” 2=logN in Euclideannorm by Lemma3.4.3.
Using the triangle inequality and the unitarit y of the transformationsin S and S,
it is easyto show that theseT errors add at most linearly (seefor instance[25,
p.1515]). Hencethe "nal statesafter S and $ will be closetogether:

kSjoi | $joi k- T'p§:|ogN- 'pé:

Since observingthe nal state SjOi yields the number i with high probability,

observing$joi will alsoyield i with high probability. Thus the network § allows
usto learni and hencethe wholeinput y. 2

3.5 Summary

In this chapter we examinedthe quantum complexity of searting a spaceof N

elemens. This spacemay be either ordered or unordered. For the unordered
casewe derived tight bounds on the number of queriesrequired to seart the
spacedepending on its number t of solutionsand the allowed error probability .

Theseboundsbasically shav that the error probability of quartum seart can be
reducedslightly better than the naive classicalmethod that just repeats Grover's
algorithm many times. Secondly our lower boundsfor quartum seard imply that

any quantum method that reducesthe error of arbitrary algorithmsto - " needs
to repeat the algorithm about log(1=") many times, which is the samebound as
for the classicalrepetition-method up to constart factors. Thirdly, we proved a
lower bound of roughly = logN querieson the quartum complexity of searding
an ordered N -elemen space. This lower bound has subsequetly beenimproved
by othersto nearly logN queries,which shows that quantum computersare not
signi cantly better for this problem than classicalbinary seard.



Chapter 4

Element Distinctness and Related
Problems

This chapter is basedon the paper

2 H. Buhrman, Ch. Dir, M. Heiligman, P. H¢yer, F. Magniez, M. Sartha,
and R. deWolf. Quantum Algorithms for Elemert Distinctness. In Procead-
ings of 16th IEEE Annual Conferene on Computational Complexity (CCC
2001), pages131{137,2001.

4.1 Intro duction

As we saw in Chapter 1, only a few good quarntum algorithms are known to
date, the two main examplesbeing Shor'sfactoring algorithm and Grover's seard
algorithm. Whereasthe rst sofar hasremaineda seminalbut somewhatisolated
result, the secondhas been applied as a building block in quite a few other
quantum algorithms.

One of the earliest applications of Grover's algorithm was the algorithm of
Brassard,H¢ yer, and Tapp [36] for nding a collision in a 2-to-1 function f .2 A
function f is 2-to-1if every elemen in the rangeof f hasexactly 2 pre-images.A
collisionis a pair of distinct elemerts x; y sud that f (x) = f (y). Supposethe size
of f,'s domainis N. For a classicalrandomizedalgorithm, it can be shavn that
£( N) ewaluations of the function are necessanand sucient to nd a collision.
The quantum algorithm of [36] nds a collision using O(N *=3) evaluations of f
(and canbe madeto do this with certainty). No non-trivial quantum lower bound
is known for this problem. A notion related to collisionsis that of a claw. A claw
in functions f and g is a pair (x;y) sud that f(x) = g(y). If f and g are

INote that we are using f here not as a Boolean function that we want to compute (in
contrast to previous chapters wheref was usually something like OR or PARITY), but asthe
name of the input of the problem that we want solve.
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permutations on [N] = f1;:::;Ng, then we can reduce the problem of claw-
‘nding to collision- nding for 2-to-1 functions: the function h on [2N] de ned
by h(i) = f(i) and h(i + N) = g(i) fori 2 [N], is a 2-to-1 function. Thus the
algorithm of Brassard,H¢,yer, and Tapp [36] canalso nd aclaw in such f andg
using O(N *®) ewvaluations of f and g.

In this paper we considerthe quartum complexity of collision- nding and
claw- nding with and without restrictions onthe functionsf andg. In Section4.2
we considerthe situation wheref :[N]! Z andg:[M]! Z arearbitrary. Our
aimisto nd aclaw betweenf and g, if oneexists. For now, let usassumeN = M
(in the body of the chapter we treat the generalcase). The complexity measure
we useis the number of comparisons between elements. That is, we assumea
total order on Z and our only way to accesd and g is by comparingf (x) with
f (y), 9(x) with g(y), or f (x) with g(y), accordingto this total order. The ability
to make sudh comparisonsis weaker than the ability to evaluate and actually
obtain the function valuesf (x) and g(y), becauseif we can obtain the values
f (x) and g(y), we can of coursealso comparethosetwo values. Accordingly, the
existenceof a quartum algorithm that nds a claw using T comparisonsimplies
the existenceof a quartum algorithm that nds a claw using O(T) function-
ewaluations. Howevwer, also the lower bounds on the complexity of claw- nding
presened here remain essetially the sameif we were to court the number of
function-evaluations instead of comparisons.This shows that it doesnot matter
much for our results whether we court comparisonsor function-evaluations.

A simple yet essetially optimal classi@l algorithm for this general claw-
‘nding problem s the following. Viewing the valuesof f asa list of N items, we
can sort it using N logN + O(N) comparisons. Oncef is sorted, we can for a
giveny 2 [N] nd an x sud that f (x) = g(y) provided suc an x exists, using
logN comparisons(by utilizing binary seart on f). Thus exhaustive seart on
all y yields an O(N logN) algorithm for nding a claw with certainty, provided
one exists. This N logN is optimal up to constant factors even for bounded-
error classicalalgorithms, asfollows from the classical-( N logN ) boundsfor the
elementdistinctnessproblem, explained below. In this chapter we show that a
qguantum computer can do better: we exhibit a quartum algorithm that nds a
claw with high probability using O(N**logN) comparisons. We also prove a
lower bound for this problem of -( N ¥*2) comparisonsfor bounded-errorquanum
algorithms and -( N) for exact quantum algorithms.

Our algorithm for claw- nding also yields an O(N**logN) bounded-error
guartum algorithm for nding a collision for arbitrary functions. Note that de-
ciding if a collision occursin f is equivalert to deciding whether f maps all x
to distinct elemerts. This is known asthe elementdistinctness problem and has
beenwell studied classically seefor instance[166 118 81, 18]. Elemernt distinct-
nessis particularly interesting becausets classicalcomplexity is related to that
of sorting, which is well known to requireN logN + £( N) comparisonsclassically
If we sort f, we can decideelemen distinctnessby going through the sorted list
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once,which givesa classicalupper bound of N logN + O(N) comparisons.Con-
versely elemen distinctnessrequires-( N logN) comparisonsin caseof classical
bounded-erroralgorithms (even in a much stronger model, see[81]), so sorting
and elemen distinctnessare equally hard for classicalcomputers. On a quantum
computer, the best known upper bound for sorting is roughly 0:53 N logN com-
parisons[70] and it was recerly showvn that sud a linear speed-upis the best
possible:quartum sorting requires-( N logN) comparisons.even if oneallows a
small probability of error [93]. Accordingly, our O(N3*logN) quartum upper
bound shaws that elemen distinctnessis signi cantly easierthan sorting for a
quartum computer, in cortrast to the classicalcase.

In Section 4.3, we consider the casewhere f is ordered (monotone non-
decreasing):f (1) - f(2) - ¢¢¢- f(N). In this case,the quartum complexity
of claw-nding and collision nding drops from O(N3*logN) to O(N **?logN).
In Section4.4 we shov how to remove the logN factor (replacingit by a near-
constart function) if both f and g areordered. The lower bound for this restricted
caseremains-( N'%). We then, in Section4.5, give bounds for the number of
edgesa quartum computer needsto query in orderto nd a triangle in a given
graph (which, informally, can be viewed as a collision betweenthree nodes).

4.2 Finding Claws if f and g Are not Ordered
We considerthe following problems:

Claw- nding problem
Giventwo functionsf : X ! Zandg:Y! Z, nd apair (x;y)2 X £Y
sud that f (x) = g(y).

Collision- nding  problem
Givenafunctionf : X ! Z, nd two distinct elemerts x;y 2 X sud that

f(x) = 1(y).

We assumethat X = [N] = f1;:::;NgandY = [M] = f1;:::;Mg with
N - M. We are interested in the number of comparisonsrequired for claw-
‘nding and collision- nding. A comparisonbetweenf (x) and f (y) is formalized
as an application of the following unitary transformation:

X;y;h by, bO[f (x) - (Wi

whereb 2 f0;1g and [f (x) - f(y)] denotesthe truth-value of the statemert
\f (x) - f(y)". Weformalize comparisonsbetweenf (x) and g(y) similarly.

First we considerthe most generalcase,wheref and g are arbitrary func-
tions. Our claw- nding algorithms are instancesof thepf(ﬂowing genericalgo-
rithm, which is parameterizedby an integer” - minfN; Mag:
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Algorithm  Generic claw- nder
Apply amplitude ampli cation on steps1{4:
1. Selecta random subsetA p [N] of size®
2. Selecta random subsetB p [M] of size?
3. Sort the elemens in A accordingto their f -value

4. For aspecic b2 B, we canched if thereisana 2 A sud that (a;b) is a
claw using classicalbinary seard on the sorted versionof A. Combine this
with quantum seart on the B-elemetts to seart for aclaw in A £ B.

We analyzethe comparison-complexiy of this algorithm. Steps1 and 2 do
not useany queries. Step 3 jyst employs classicalsorting and takes ™ log™ + O(")
comparisons.Step4takesO(' jBjlogjAj) = O( log") comparisonssincetesting
if there is an A-elemen colliding with a givenb2 B takesO(logA) comparisons
(via binary seart on the sorted A) and the quartum seart needsO(" jBj) suc
teststo nd a B-elemen that collideswith an elemen occurring in A, if there is
suc a B-elemen. In total, steps1{4 take O(" log") comparisons.

If no claws betweenf and g exist, then this algorithm does not terminate.
Now supposethereisaclaw (x;y) 2 X £ Y. Then (x;y) 2 A£ B with probability
("=N) ¢("?=M), and if indeed(x;y) 2 A £ B, then step 4 will 'nd this (or some
other) collision with probability at least 1=2 in at most O(" log") comparisons.
Hencethe overall succesgrobability of steps1{4 is at leastp = “3=2NM, and
the overall amplitude ampli cation requiresan expectednumber of O(" NM="3)
iterations of steas% Accordingly, the total expectednumber of comparisonso

nd aclawisO( MM |og"), provided thereis one. In orderto minimize the num-

ber of comparisonswe maximize °, subject to the constrairt ~ - minfN; P Mag.
This gives upper bounds of O(N M ¥ logN) comparisonsif N - M - N2,
and O(M 2logN) if M > N2,

What about lower boundsfor the claw- nding problem? We can reducethe
ORy -problem to claw- nding as follows. Given an input x 2 f0;1g", we set
N = 1anddenef(l) = 1andg(i) = x;. Then there is a claw between f
and g i® ORy, (x) = 1. Thus, if we can nd a claw using ¢ comparisons,we can
decide ORy using 2c queriesto X, sincetwo x-queriessuzxce to implemﬁrt_a
comparison. Using the lower bounds Qe (ORy ) = M and Q2(ORy) 2 £( M)
from Chapter 2, this givesan -( M) bound for exactquartum claw- nding (nearly
matching the classicaldeterministic O(M logN) upper bound tBat_comesfrom
sorting the rst list and then searting the second),and an -( M) bound for
bounded-error quartum claw- nding. We thus have establishedthe following
theorem:
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4.2.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of

the claw- nding problemis
1

* O(N=2M1ogN) i N - M - N2

2 ((M¥2). Q,(Claw) - O(M 22 logN) if M > N?2

2 .(M)- Qe(Claw) - O(M logN).

The boundsfor the caseM > N2 and the caseof exact computation are tight
up to the logN term, but the caseM - N2 is nowhereneartight. In particular,
for N = M the complexity lies somewherebetweenN 2 and N3 logN .

Now consider the problem of nding a collision for an arbitrary function
f :[N]! Z,ie.,to nd distinct x;y 2 [N] suc that f(x) = f(y). A sim-
ple modi cation of the above algorithm for claw- nding works ne to nd sud
(x; y)-pairs if they exist (put g = f and avoid claws of the form (x; x)), and gives
a bounded-erroralgorithm that "nds a collisionusing O(N 3*logN ) comparisons.
This algorithrﬁ may be viewed as a modi cation of the Genericclaw nder with
jAj= "2 O( N) andB = [N]nA. Note that now the choice of A determines
B, soour algorithm only hasto store A ancbsgrt it, which meansthat the space
requiremens of steps 1{4 are now only O(' N logN) qubits. The overall am-
plitude ampli cation requiresnot more spacethan the algorjthm that is being
amplied, sothe total spacecomplexity of our algorithm is O(" N logN) aswell.
The bestknown lower boundsfollow againvia reductionsfrom the ORy -problem:
givenx 2 fO;1gN, wedenef : [N + 1]! f0;:::;Ngasf(i) =i(1j x;) and
f(N+ 1)= 0. Now ORy(X) = 1i®f cortains a collision.

As mentioned in the introduction, the problemof decidingif there is a collision
is equivalert to the elemen distinctness(ED) problem, sowe have obtained the
following bounds:

4.2.2. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the elementdistinctnessproblemis

2 -(N*?) - Qa(ED) - O(N°*logN)
2 -(N) - Qe(ED) - O(N logN).

In cortrast, for classicallexact or bounded-error)algorithms, elemen distinct-
nessis as hard as sorting and requires £( N logN) comparisons. The -( N ¥)
lower bound on bounded-errorquantum algorithms for elemen distinctnesswas
improved recertly to -( N*2logN) in [93].

Collision- nding requiresfewer comparisonsf we know that somevaluez 2 Z
occurs at least k times. If we pick a random subsetS of cN=k elemens of
the domain, for ¢ a small constart like 10, then with high probability (at least
1j 20°(9), S will cortain at least two pre-imagesof z. Thus running our al-
gorithm on S will nd a collision with high probability, resulting in complex-
ity O((N=K)**log(N=k)). Also, if f is a 2-to-1 function, we can rederive the
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O(N 2 logN) bound of Brassard,H¢ yer, and Tapp [36] by taking * = N 3. This
yields constart succesgrobability after steps1{4 in the genericalgorithm, and
henceonly O(1) rounds of amplitude ampli cation are required. As in the case
of [36)], this algorithm can be made exact by using the exact form of amplitude
ampli cation (the successrobability can be exactly computed in this case,so
exact amplitude ampli cation is applicable).

4.3 Finding Claws if f is Ordered

Now supposethat function f is ordered: f(1) - f(2) - ¢¢¢c- f(N), and that
function g : [M] ! Z is arbitrary. In this case,given somey 2 [M], we can
'nd an x 2 [N] sudh that (x;y) is a claw using binary sear® on f. Thus,
corrbi‘gm_g this with a quantum seart onall y 2 [M ], we obtain the upper bound
of O(' M logN) for nding aclaw in f and g. The lower boundsvia the OR-
reduction still apply (seealso the next section), hencewe obtain the following
theorem:

4.3.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the claw- nding problemwith ordered f is

2 (M¥?). Qy(Claw) - O(M*¥logN)
2 .(M)- Qg(Claw) - O(M logN).

Note that collision- nding for an orderedf : [N]! Z is equivalert to seard-
ing a spaceof N j 1elemergs (namelyall N j 1 consecutie pairs in the domain
of f) and hencerequires£( N) comparisons.

4.4 Finding Claws if both f and g Are Ordered

Now considerthe casewherebBth_f and g areordered. Assumefor simplicity that
N = M. Again we getan-( N) lower bound via a reduction from the ORy -
problem, asfollows. Givenan ORy -instancex 2 f0;1gN, wede nef;g:[N]! Z
by f(i)=2 +1andg(i) = 2i + x; foralli 2 [N]. Thenf and g are ordered,
and ORy (x) = p’Ll_f and only if thereis a claw betweenf and g. The lower bound
Q2(Claw) 2 -(~ N) follows. P
We give a quartum algorithm that solvesthe problem using O(" N ¢°9" ()
comparisonsfor someconstart ¢ > 0. The function log’(N) is de'ned as the
minimum number of iterated applications of the logarithm function necessaryto
obtain a number lessthan or equalto 1: log’(N) = minfi , 0j log"’(N) - 1g,
wherelog® = log+log(i ¥ denotesthe i-fold application of log, and log® is the
identit y function. Even though ¢°9’(™) is exponertial in log’(N), it is still very
smallin N, in particular ¢°9°™) 2 o(log®”’(N)) for any constart i | 1. Thuswe
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replacethe logN in the upper bound of the previous sectionby a near-constan
function.

Our algorithm de nes a set of subproblemssud that the original problem
(f;g) cortains a claw if and only if at least one of the subproblemscortains a
claw. We then solwe the original problem by running the subproblemsin quantum
parallel and applying amplitude ampli cagtion.

Let r > 0 be an integer. We de ne 2 % subproblemsas follows.

4.4.1. Definition. Letr > Obeanintegerandf;g:[N]! Z.

Foreah O- i - dN=rej 1, we dene the subproblem(f;;g" by letting f;
denotethe restriction of f to subdomain [ir + 1;(i + 1)r], and g° the restriction
ofgto[j;j + ri 1] wherej isthe minimum j°2 [N]sud that g(j9 , f(ir + 1).

Similarly, for eah 0 - j - dN=rej 1, we de ne the subproblem(f?’g) by
letting g, denotethe restriction ofgto [jr + 1;(j + 1)r], and fj0 the restriction of
f to[i;i+ri 1] wherei isthe minimum i®2 [N] sud that f (i9 ., g(jr + 1).

It is not hard to ched that thesesubproblemsall together provide a solution
to the original problem.

4.42. Lemma. Letr > Obeanintegerandf;g:[N]! Z. Then (f;g) contains
a claw if and only if for somei or j in [0;dN=rej 1] the subpoblem(f;;g" or
(f%g) contains a claw.

8, . . .
Ead of these2 % subproblemsis itself an instanceof the claw- nding prob-
lem of sizer. By running them all togetherin quantum parallel and then applying
amplitude ampli cation, we obtain our main result.

4.4.3. Theorem (BDHHMSW [45]). There exists a quantum algorithm that
outputs a claw between ordered f and ordered g with prokability at least 2=3 pro-
vided one exists, using O(" N ¢°¢ (N)) comparisons, for someconstant c.

Proof. Let T(N) denotethe worst-casenumber of comparisonsrequired if f
and g have domain of sizeN. We show that

r_ 5 .
N

TN) - & - dog(N + L)e+ T(r) ; (4.1)

for some(small) constart ¢ Let 0- i - dN=rej 1 and considerthe subproblem

(fi;g%). Using at most dog(N + 1)e+ T(r) comparisons,we can nd a claw in
(fi; g% with probability at least 2=3, provided there is one. We do that by using
binary seart to nd the minimum j for which g(j) , f(ir + 1), at the cost of
dog(N + 1)e comparisons,and then recursiwely determining if the subproblem
(fi; g% contains a claw at the costof at most T(r) additional comparisons.There
are2 ’f— subproblems,soby applying amplitude ampli cation we can nd aclaw
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among any one of them with probability at least 2=3, provided there is one, in
the number of comparisonsgiven in equ%tion (4.1).
Taker = dog?(N)e. SinceT(r), -(' r)= -(log N), Equation 4.1 implies
r__

T(N) - c® ?T(r); (4.2)

for someconstart ¢® Furthermore, our choice of r implies that the depth of the
recursionde ned by equation (4.2) is on the order of log’(N), so unfolding the
recursiongivesthe theorem. 2

4.5 Finding a Triangle in a Graph

Finally we considera related seart problem, which is to nd a triangle in a
labeled graph, provided one exists. Consider again the setting for computing
graph properties of Section2.7.3. There is an undirgcted graph G = (V;E) on
jVj = n nodeswith JEj = m edges.ThereareN = 7 edgeslotsfor the elemers
of E, which we can query asin Section2.7.3. The triangle- nding problemis the

following:

Triangle- nding  problem
Givenundirectedlabeledgraph G = (V;E), nd distinct verticesa;b;c2 V
sud that (a;b); (a;c); (b;c) 2 E.
Sincetherearelg < n3triples a;b;c, and we candecidewhethera giventriple
is a triangle using 3 queries,we can use Grover's algorithm to nd a triangle in
O(n®*?) queries. Below we give an algorithm that works more exciently for sparse
graphs.

Algorithm  Triangle- nder
Apply amplitude ampli cation on steps1{2:
i ¢
1. Quantum seart for an edge(a;b) 2 E amongall 'g potential edges.

2. Quantum seart for anode c2 V sud that a;b;c is a triangle.

Step 1 takes O(IO n2=m) queriesand step 2 takes O(p n) queries. If there is
a triangle in the graph, then the probability that step 1 nds an edgebelonging
to this speci c triangle is £(1=m). If step 1 indeed nds an edgeof a triangle,
then with probability at least 1/2, step 2 nds a c that completesthe triangle.
Thus the succesgrobabiljty of steps1{2 is £(1 =m) and the overall amplitude
ampli cation requiresO(" m) iterations of steps 1{2. The total complexity is
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thus O((p n=m+ P ﬁ)p m) = O(n + P nm). If G is sparsein the sensethat
m = jEj 2 o(n?), then o(n%%?) queriessuxce. Of coursefor densegraphs our
algorithm will still require £( n2) queries.

We again obtain lower boundsby a reduction from the ORy -problem. Con-

sider an ORy -input x 2 f0; lg(g) as a graph on n nodes. Let G be the graph
obtained from this by adding an (n+ 1)st node and connectingthis to all other n
nodes. Now G hasjxj + n edgesand ORy (x) = 1 i® G cortains a triangle. This
gives -( n?) bounds for exact quarntum algorithms and bounded-error classical
algorithms, and an -( n) bound for bounded-errorquantum algorithms. We have
shown:

i ¢
4.5.1. Theorem (BDHHMSW [45]). If -(n) - JEj - lg , then the quantum
query complexity of triangle- nding is

2 -(n)- QxTriangle)- O(n+ pﬁ)
2 Qg (Triangle) 2 £(n?)
whee n = jVj and m = JE]j for the input graph G = (V;E).

Note that for graphs with £( n) edges,the bounded-error quartum bound
become<£( n) queries,whereasthe classicalbound remains£( n?). Thus we have
a quadratic gap for suc very sparsegraphs.

4.6 Summary

The claw- nding problemis: given functionsf and g, nd x;y sud that f (x) =
g(y). We gave a quartum algorithm that nds a collision between arbitrary
functions f and g having a domain of sizeN. The algorithm usesabout N 3
comparisons. This implies an N 3 algorithm for both the problem of nding a
collision in a single function and for the elemen distinctnessproblem (which is:
areall elemerts on a list of N numbersdistinct?). This shovsthat for a quantum
computer, elemen distinctnessis signi cantly easierthan sorting (which takes
-( N logN) comparisonsclassically as well as quartumly) and cortrasts with
the classical case, where both sorting and elemen distinctness require about
N logN comparisons.The main problem left open by this chapter is to closethe
gap between upper and lower bounds for elemen distinctness. An interesting
direction could be to take into accoun simultaneouslytime complexity and space
complexity, as hasbeendonefor classicalalgorithmsin e.g.[166 2, 1§].






Chapter 5

Av erage-Case and Non-Deterministic
Query Complexit y

This chapter is basedon the papers

2 A. Ambainisand R. de Wolf. Average-Cas&uantum Query Complexity. In
Proceadings of 17th Annual Sympsium on Theoretical Aspects of Computer
Sciene (STACS 2000),LNCS 1770,pagesl33{144,Springer,2000. Journal
versionto appear in the Journal of PhysicsA, 2001.

2 R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conferene on Computational Complexity (CCC 2000),pages271{278,
2000.

5.1 Intro duction

The interest in quantum computers mainly derivesfrom the fact that they are
much faster (or in someother way better) than classicalcomputersfor someinter-
esting problems|sometimes even exponertially faster. As we saw in Chapter 1,
virtually all existing quantum algorithms work in the query complexity model. In
Chapter 2 we proved the somewhatdisappointing result that the maximal possi-
ble quantum speed-upin this model is only polynomial, for all total functions. In
other words, in the standard model of query complexity, exponertial speed-ups
can only be attained for speci ¢ promise-problemslike Simon's and Shor's. In
this chapter we analyzetwo other commoncomputational models| average-@ase
complexity and non-deterministic complexityland prove that in both of these
models there are total functions for which quartum algorithms require at least
exponertially fewer queriesthan classicalalgorithms.

In our query complexity setting, average-casecomplexity concernsthe ex-
pected number of queriesneededto compute somefunction f when the input is

77
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distributed accordingto somegiven probability distribution *. If the hard inputs
(i.e., thoserequiring many queries)receiwe little ! -probability, then average-case
complexity can be signi cantly smaller than worst-casecomplexity. Let D' (f),
R,(f), and Q,(f) denotethe average-cas@naloguesof the worst-casecomplex-
ities D(f), Rx(f), and Qy(f), respectively, to be de ned more preciselyin the
next section. By de nition we have le(f) . Rlz(f) . D" (f); the objective of the
following sectionsis to comparethese measuresand to investigate the possible
gapsbetweenthem. Our main results for average-caseomplexity are:

2 Under the uniform distribution 1, thereis atotal function f sud that Q;(f)
is exponertially lessthan R, (f). Thus the polynomial relation that holds
betweenquantum and classicalquery complexitiesin the caseof worst-case
complexity (Theorem2.5.15)doesnot carry over to the average-cassetting.

2 Under non-uniform * the gap can be ewven larger: we givg distributions *
WhereQ;(ORN) IS constart, whereasR;(ORN) isalmost N.

2 Fop, the MAJORITY-function under uBif_orm 1, we have Q;(MAJN) 2
O( N(logN)?) and Q,(MAJy) 2 -( N). In cortrast, R,(MAJy) 2
-( N).

In the secondpart of the chapter we deal with non-deterministic complexity.
We de ne a non-deterministicalgorithm for a Booleanfunction f asan algorithm
that haspositive acceptanceprobability if f (x) = 1 andthat hasacceptancegrob-
ability Oif f (x) = O (other de nitions of non-deterministiccomplexity are possible
and will be discussedbelow). We useN (f ) and N Q(f ) for the non-deterministic
guery complexity of f on classicaland quartum computers,respectively. While
the classicalcomplexity N (f ) equalsthe certi cate complexity CY (f ), we prove
that the quantum complexity N Q(f) equalsthe minimal degreeof a so-called
non-deterministic polynomial for f, up to a factor of 2. This cortrasts with the
standard model of computation, wherethe quantum complexitiesare polynomi-
ally related to the respective degreeqSection 2.5)

deqgf) Begf)
2 2

but wherea linear relation is not known to hold (nor not to hold). We alsoexhibit
a total function f on N variableswith a very large gap betweenquartum and
classicalnon-deterministic complexity: NQ(f) = 1 and N(f) = N. This is the
largest possiblegap allowed by the query complexity model.

-+ Qe(f) - 2degf)* and . Qu(f) - 5128edf)S;

5.2 Average-Case Complexit y: De nitions

We start by discussingse\eral issuegertaining to the proper de nition of average-
casequery complexity. As descriked in Section2.3.3,a quantum algorithm A =
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Ur OUr, 10 ¢¢¢OU, will make exactly T querieson everyinput x. Sincewe are
interestedin average-caseumber of queriesand the required number of queries
will depend on the input x, we needto allow the algorithm to sometimesgive an
output after fewer than T queries. We will do that by measuring,after ead U;,

a dedicated°ag-qubit of the intermediate state at that point. This bit indicates
whether the algorithm is already preparedto stop and output a value. If this bit

is 1, then we measurethe output bit, output its value A(x) 2 f0; 1g and stop; if

the °ag-bit is O we let the algorithm cortinue with the next query O and U;,; .

Note that the number of queriesthat the algorithm makeson input x is now a
random variable, sinceit dependson the probabilistic outcomeof measuringthe
°ag-qubit after eat step. We useTx (X) to denotethe expected number of queries
that A makesoninput x. The Booleanoutput A(x) of the algorithm is a random
variable as well.

We mainly focuson three kinds of algorithms for computingf : classicaldeter-
ministic, classicalrandomizel bounded-error,and quantum bounded-erroralgo-
rithms. Let D(f ) denotethe setof classicaldeterministic algorithmsthat compute
f. Let R(f) = fclassicalA j 8x 2 f0; 1gN : Pr[A(x) = f (x)] , 2=3g be the set of
classicalrandomizel algorithms that computef with boundederror probability.
Similarly we let Q(f) = fquantum A j 8x 2 f0;1g" : Pr[A(x) = f(x)] , 2=3g be
the set of bounded-errorquantumalgorithms for f .

The following are our familiar worst-casecomplexitiest?

D(f) = min max Ta(X
( ) A2D (f) x2f 0;1gN A( )

R,(f) = i T
2(f) AEE'E})XZ'E”O%N A(X)
Qx(f) = min max Ta(X)

A2Q (f) x2f 0;1gN

Let® :f0;1gN ! [0; 1] be a probability distribution. We de ne the average-@ase
complexity of an algorithm A with respect to a distribution 1 as:

1

X
Ty = L (X)Ta(Xx):
x2f 0;1gN

The average-caseleterministic, randomized,and quarntum complexitiesof f with
respectto ! arede ned as

D (f) = A%IE)TA
R,(f) = Arzrgz ) Ty
Qy(f) = Agg[}) Ta

1Actually, they areslightly di®erert from the de nitions of Chapter 2 becausewe are courting
expected number of querieson the worst-caseinput here, instead of worst-casenumber of queries
on the worst-caseinput. However, this change of de nition can changethe complexities by at
most a small constart factor, and we will henceforth ignore the di®erence.
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Note that the algorithms still have to satisfy the appropriate output requiremeris
(such asoutputting f (x) with probability , 2=3in caseof R, or Q,) on all inputs
X, evenon x that have* (x) = 0. Clearly Q,(f) - R,(f) - D'(f) - N for all
1 andf. Our goalis to examinehow large the gapsbetweenthesemeasuresan
be, in particular for the uniform distribution, which hasunif (x) = 2i N,

The above treatment of average-caseomplexity is the standard one usedin
average-casanalysis of algorithms [157. One courter-intuitiv e consequencef
thesede nitions, howewer, is that the average-caseerformanceof polynomially
related algorithms can be superpolynomially apart (we will seethis happen in
Section5.5.1). This seeminglyparadacical e®ectmakesthesede nitions unsuit-
able for dealingwith polynomial-time reducibilities and average-caseomplexity
classedn structural complexity theory, which is what led Levin to his alterna-
tive de nition of \p olynomial time on average"[113. Newertheless,we feel the
above de nitions are the appropriate onesfor our query complexity setting: they
just are the averagenumbers of queriesthat one needswhen the input is drawn
accordingto distribution 1.

5.3 Average-Case: Deterministic vs. Bounded-
Error

Here we shaw that DU (f ) can be much larger then Ra™ (f ) and Q3™ (f ):

5.3.1. Theorem. De ne f on N variablessuchthat f (x) = 1i® jxj , N=10.
Then Q3™ (f) and RY™ (f) are O(1) and DU (f) 2 -( N).

Pro of. Supposewe randomly samplek bits of the input. Let a = jxj=N denote
the fraction of 1sin the input and a the fraction of 1sin the sample. The Cherno®
bound (seee.qg.[4]) implies that there is a constart ¢ > 0 sud that

Prla< 2=10j a, 3=10]- 2 °:
Now considerthe following randomizedalgorithm for f :
1. Let i = 100.

2. Samplek; = i=c bits. If the fraction & of 1sis, 2=10, then output 1 and
stop.

3. If i < logN, then increasei by 1 and repeat step 2.

4. 1f i | logN, then count jxj exactly using N queriesand output the correct
answver.
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It is easily seenthat this is a bounded-erroralgorithm for f. Let us bound its
average-caseomplexity under the uniform distribution.
If a, 3=10, the expectednumber of queriesfor step 2 is

I%N I
Prla; - 2=1G:::;&;, 1 - 2=10j a, 3=10]¢(—: :

=100

en iRy
Prlg, 1 - 2=10ja, 3=10]¢- - 20 (11 ¢— 2 O(1):
i=100 i=100 ¢

The probability that step 4 is needed(givena , 3=10) is at most 2i (¢logN)=c =
1=N. This adds NlN = 1 to the expected number of queries.

Under the uniform distribution, the probability of the evert a < 3=10 is
at most 21 °N for someconstart ¢®. This casecortributes at most 2i “N (N +
(logN)?) 2 o(1) to the expected number of queries. Thus in total the algorithm
usesO(1) querieson average,henceRy™ (f) 2 O(1). SinceQy™ (f) - Ry™(f),
we also have Qu™ (f) 2 O(1).

Sincea deterministic classicalalgorithm for f must be correct on every input
X, it is easyto seethat it must make at least N=10 querieson ewvery input, hence
DUt (f) . N=10. 2

Accordingly, we can have huge gapsbetweenD " (f ) and Q5™ (f ). However,
this example tells us nothing about the gaps between quantum and classical
bounded-erroralgorithms. In the next sectionwe exhibit an f where Q3™ (f) is
exponertially smallerthan the classicalbounded-errorcomplexity R3™ (f ).

5.4 Average-Case: Randomized vs. Quantum

5.4.1 The function

We usethe following modi cation of Simon's problem from Section1.5?

Mo di ed Simon's problem:

function de ned by: f (x) = 1 i® there is a non-zerok 2 f0; 1g" such that for all
i 2 f0; 1g" we have Xjex = X;.

Herewe treat i 2 f0;1g" both asan n-bit string and asa number betweenl1
and 2", and © denoteshitwise XOR (addition modulo 2). Note that this function
is total, unlike Simon's original promise function. Formally, f is not a Boolean
function becausethe variables x; are f0; 1g"-valued. Howewer, we can replace

2The preprint [90] proves a related but incomparable result about another modi cation of
Simon's problem.
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every variable x; by n Booleanvariablesand then f becomesa Booleanfunction
of N = n2" variables. The number of queriesneededto compute the Boolean
function is at least the number of queriesneededto compute the function with
f0; 1g"-valued variables (becausewe can simulate a query to the Booleaninput-
variablesby meansof a query to the f 0; 1g"-valued input-variables, just ignoring
the nj 1 bits we are not interestedin) and at most n times the number of queries
to the f0;1g"-valued input variables (becauseone f 0; 19" -valued query can be
simulated using n Boolean queries). As the numbers of queriesare so closely
related, it doesnot make a big di®erencevhether we usethe f 0; 1g"-valuedinput
variablesor the Booleaninput variables. For simplicity we court queriesto the
f0; 1g"-valued input variables.

We are interestedin the average-caseomplexity of this function. The main
result is the following exponertial gap,to be provenin the next sections:

5.4.1. Theorem (Ambainis & de Wolf [13]). For f asalove, we havethat
QY™ (f) - 22n+ 1and RY™ (f) 2 -(2 ™2).

5.4.2 Quantum upp er bound

Our quartuiy algorithm for f is similar to Simon's. Start with the 2-registersu-
perposition 5 o440 Jiij O (for corveniencewe ignorenormalizing factors). Apply
a query to obtain X
Jij xii:
i2f 0;1g"
Measuringthe secondregister givessomej and collapsesthe rst registerto
X
jii:
iXi=j
Applying a Hadamard transform to ead qubit of the rst registergives
X iy
G 1)9i9: (5.1)
i:xi=] i%f 0;1gn

Here (a;b) denotesinner product modulo 2; if (a;b) = 0 we say a and b are

orthogonal
If f(x) = 1, then there is a non-zerok sud that x; = Xjex for all i. In
particular, x; = j i® Xjex = j. Then the nal state (5.1) canbe rewritten as
A !
X X N X X g I
(i )Y = 2D+ 1)) i
i02f 0;1gn 11X =] i°2;(0;19n Ai;::i , !
. 1\(ii _
(i 1 1+ (; D&Y i
J

2
i02f 0;1g"  iXj=]
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Notice that ji% hasnon-zeroamplitude only if (k;i% = 0. Henceif f (x) = 1, then
measuringthe nal state givessomei® orthogonalto the unknown K.

To decideif f(x) = 1, we repeat the above processm = 22n times. Let

If S = f0;1g", then the only k that is orthogonalto all i, is k = 0" (clearly
i ¢0" = O for all i;), sothen we know that f (x) = 0. If S 6 f0;1g9", we just

from f0; 1gN . Then, with prokability at least1j 2i ", f (x) = 0 and the measured
i1;:::;1m genente fO; 1g".

Pro of. It canbe shavn by a small modi cation of [4, Theorem5.1, p.91] that
with probability at least1j 2 " (c> 0), there are at least 2"=8 valuesj sud
that x; = j for exactly onei 2 f0;1g" (and hencef (x) = 0). We assumethat
this is the casein the following.

k 2 £0;1g" that is orthogonalto this subspace.We estimate the probability that
this happens. Considersome xed non-zerovector k 2 f0; 1g". The probability
that i; and k are orthogonal is at most }—2 asfollows. With probability at least
1/8, the measuremenh of the secondregister givesj sud that f (i) = j for a
uniguei. In this case,the measuremen of the nal superposition (5.1) givesa
uniformly randomi® The probability that a uniformly randomi®has(k;i% 6 0

is 1/2. Therefore, the probability that (k;i;) = Oisat most1j g¢3= 2.

that k is orthogonalto ead of them is at most(%)m = (%’)22n < 212" Thereare
2" i 1 possiblenon-zerok, sothe probability that there is a k that is orthogonal
to ead of iq;:::im,iS- (2" 1)22" < 2N, 2

Note that this algorithm is actually a zemw-error algorithm: it always outputs
the correct answer. Its expected number of querieson a uniformly random input

completesthe proof of the rst part of Theorem5.4.1. In cortrast, in Section5.4.4
we show that the worst-casezero-errorquantum complexity of f is -( N), which
is near-maximal.
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5.4.3 Classical lower bound

Let D; be the uniform distribution over all inputs x 2 f0;1gN and D, be the
uniform distribution over all x for which there is a unique k 6 0 sud that
Xi = Xjok (and hencef (x) = 1). We s& that an algorithm A distinguishes
betweenD; and D, if the averageprobability that A outputs 0 is, 2=3 under
D, and the averageprobability that A outputs 1is, 2=3 underD,.

5.4.3. Lemma. If thereis a boundel-error algorithm A that computesf with m =
T"" querieson average, then there is an algorithm that distinguishesbetween D,
and D, and usesO(m) querieson all inputs.

Pro of. Without lossof generality we assumeA has error probability - 1=10.
Under D,, the probability that A outputs 1 is at most 1=10+ o(1) (1=10 is
the maximum probability of error on an input with f(x) = 0 and o(1) is the
probability of getting an input with f (x) = 1), sothe probability that A outputs
Oisatleast9=10; o(1). Werun A until it stopsor makes10m queries. The average
probability (under D,) that A doesnot stop before10m queriesis at most 1=10,
for otherwisethe averagenumber of querieswould be more than %(10m) = m.

Thereforethe probability under D; that A outputs O after at most 10m queries,
is at least(9=10j o(1))j 1=10= 4=5; o(1). In corirast, the D ,-probability that

A outputs O is - 1=10 becausef (x) = 1 for any input x from D,. We can use
this to distinguish D; from D,. 2

5.4.4. Lemma. A classi@l randomizel algorithm A that makesm 2 0o(2"?)
gueriescannot distinguish between D, and D .

Pro of. Supposem 2 0(2""?). For arandominput from D, the probability that
all answersto m queriesare di®eren is
M 1 T u

1¢ 1 — ¢¢¢c 1

mi ' X mmi1_
2n :

2I"I

For arandominput from D, the probability that ghereis ani suc that A queries
both x; and xiex (K is the hiddenvector)is - 7 =(2"j 1) 2 o(1), because:

1. for ewery pair of distinct i; j, the probability that i = ] © k is 1=2" j 1)

i ¢
2. sinceA gqueriesonly m of the x;, it queriesonly '”2“ distinct pairsi; |

If no pair Xi, Xjek IS queried,the probability that all answersare di®eret is
H 1 T u

1
. o (mij 1)
1¢ 1 i1 ¢ee 1

2ni 1

=1 ofd):
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It is easyto seethat all sequencef m di®eren answers are equally likely.
Therefore,for both distributions D; and D, we get a uniformly random sequence
of m di®eren valueswith probability 1j o(1) and somethingelsewith probability
o(1). Thus A cannot \see" the di®erencebetweenD; and D, with suzcient
probability to distinguish betweenthem. 2

The secondpart of Theorem 5.4.1 now follows: a classicalalgorithm that
computesf with an average number of m queriescan be usedto distinguish
betweenD; and D, with O(m) queries(Lemma 5.4.3), but then O(m) 2 -(2 "=?)
(Lemma 5.4.4).

5.4.4 \Worst-case quantum complexit y of f

For the sake of completenessye will hereshaw a lower bound of -( N) queriesfor
the zero-errorworst-casecomplexity Qq(f ) of the function f on N = n2" binary
variablesde ned in Section5.4. (We court binary queriesthis time.) Considera
quartum algorithm that makesat most T queriesand that, for every x, outputs
either the correct output f (x) or, with probability - 1=2, outputs \don't know".
Considerthe polynomial P which is the acceptanceprobability of our T-query
algorithm for f . It hasthe following properties:

1. P hasdegreed - 2T
2. iff(x)=0thenP(x) =0
3. if f(x) = 1then P(x) 2 [1=2;1]

We rst shaw that only very fewinputs x 2 f0; 1gN makef (x) = 1. The number
of such 1-inputs for f is the number of ways to choosek 2 f0;1g" j fQO"g, times
the number of ways to choose2"=2 independert x; 2 f0;1g". Thisis (2" 1)¢
(2M)2"'72 < 2n@"=2+1) - Accordingly, the fraction of 1-inputs amongall 2N inputs x
is < 2n@"=2+1) pn2" = 2i n"=2i 1) Thesex are exactly the x that make P(x) 6 0.
Howe\er, the following result is known [148 133:

5.4.5. Lemma (Schw ar tz). If P is a non-constant N -variate multilinear poly-
nomial of degree d, then

jfx 2 £0;1gN j P(x) & Ogj

> L 214

This impliesd , n(2"=2j 1) and henceT , d=2, n(2"=4j 2) ¥ N=4.
Thus we have proved that the worst-casezero-errorquartum complexity of f is
near-maximal:

5.4.6. Theorem (Ambainis & de Wolf [13]). Qo(f) 2 -( N).
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5.5 Further Av erage-Case Results

5.5.1 Super-exp onential gap for non-uniform 1

The last sectiongave an exponertial gap betweean2 (f) and Rlz(f ) under uniform
1. Herewe show that the gap canbe evenlargerfor non-uniform?* . Considerthe
average-caseomplexity of the OR-function. It is easyto seethat D" (ORy),
Ry (ORy), and QU™ (ORy) areall O(1), sincethe averageinput under the uni-
form distribution will have many 1s. Now we give someexamplesof non-uniform
distributions * where Q,(ORy) is super-exponertially smallerthan R, (ORy):

5.5.1. Theorem (Ambgjnis & de Wolf [13]). For ® 2 (0;1=2), de ne the
distribution 1 (x) = c= jﬁj (ixj+ D®N + 1)4 ® (where c¥% 1 ®is a normalizing

constant). Then we haveR,(ORy) 2 £(N®) and Q,(ORy) 2 £(1).

Pro of.  Any classicalalgorithm for ORy requires£( N=(jxj + 1)) querieson
input x. The upper bound follows from random sampling, the lower bound from
a block sensitivity argumen (Theorem 2.5.8). Hence,omitting the intermediate
£s, we obtain:

R,(OR )—X L) X _ONT S E(Ny:
S T R (T D i !

where the last step can be showvn by approximating the sum qyer t with an
integral. Similarly, by the quarntum sear® bounds(Chapter 3), £( N=(jxj + 1))
gueriesare necessaryand suzcient for a quartum computer on input X, so

N X enei
= 2 £(1):
xj+1 o (t+ 1)e=

) X
Q:(ORn) = *(X)

In particular, for ® = 1=2; " we havethe very large gap of O(1) quantum ver-
sus-( N2 ") classical.Note that we obtain this super-exponertial gap by weigh-
ing the complexity of two algorithms (classicaland quartum OR-algorithms) that
are only quadratically apart on ead input x. This is the phenomenonwe referred
to at the end of Section5.2.

5.5.2 General bounds

In this sectionwe prove somegeneralboundsfor average-caseomplexity. First
we make precisethe intuitiv ely obvious fact that if an algorithm A is faster on
ewvery input than another algorithm B, then it is alsofaster on averageunder any
distribution:
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5.5.2. Theorem (Ambainis & de Wolf [13]). If A: R! R is a concave
function and Ta(x) - A(Tg(x)) for all x, then T, - A(Tg) for every?.

Pro of. Jensen'sinequality [59 says that E.[A(T)] - A(E.[T]) for concare A,

hence
X X

Ta = L)Ta(x) - L (x)A(Ts (x))
XZbO;lgN fo 0;1gN

X
AQ@ L(x)Te(X)A = A(Tg):
x2f 0;1gN

In words: taking the averagecannot m%ke the complexity-gap betweentwo

algorithms smaller. For instance,if Ta(X) - Tgs (X) (s&y, A is Grover'salgorithm
and B is a classicalalgorithm for OR), then T, - = T5. On the other hand,

taking the averagecan make the gap much larger, as we sawv in Theorem5.5.1:
the quartum algorithm for OR runs only quadratically faster than any classical
algorithm on ead input, but the avelage-@asegap betweenquantum and classical
can be much bigger than quadratic.

Usingthgt Ta(x) 2 -( bs(f)) for classicalalgorithms A (Theorem 2.5.8) and
Ta(X) 2 -( bs(f)) for quantum algorithms A (Theorem 2.5.7), we obtain a
simple lower bound in terms of the * -expectedblock sensitivity:

5.15.3. Theorem (Ambainis 1& de Wolf
R2(f) 2 -( E:[bsc(f)]) and Q,(f) 2 -( E: [

[13]). For all f and?! we havethat

P Bs. ().

5.5.3 MAJORITY

Here we examinethe average-caseomplexity of the MAJORITY-function. The
hard inputs for majority occur whent = jxj ¥a N=2. Any quartum algorithm
needs-( N) queriesfor sud inputs (Section2.6.4). Sincethe uniform distribution
puts most probability on the set of x with jxj closeto N=2, we might expect an
-( N) average-caseomplexity aswell. Howewver, we will provethat the complexity
isnearly N, usingthe result about quartum courting mertioned in Section1.7.

5.5.4. Theorem (Ambainis & de Wolf [13]). Q¥""(MAJy) 2 0(p N (logN)?).

Proof. Foralli2 f1;:::;logNg, dene A; = fx j N=2*1 < jjxjj N=2j -
N=2'g. The pﬁogability under the uniform distribution of getting ap input X Bﬁi
ist(Aj) 2 O( N=2), sincethe numberofinputs X with k 1sis ﬁ 2 02N= N)
for all k. The ideaof our algorithm is to havelogN runs of the quartum courting
algorithm, with increasingnumbers of queries,sud that the majority value of
inputs from A; is probably detectedaround the ith courting stage. We will use

T, = 1002 logN queriesin the ith courting stage. Our algorithm is the following:
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Fori = 1to logN do:

guantum count jxj using T; queries(call the estimate t)
if j§ | N=2j > N=2', then output whether € > N=2 and stop.
Classicallycourt jxj using N queriesand output its majority.

Let us analyzethe behavior of the algorithm on an input x 2 A;. Fort = jxj,
we have jt j N=2j 2«(N=2"1;N=2']. By Theorem 1.7.2, with probability > 1
1=10logN we have €4 t — N=2, sowith probability (1 1=10logN)"9N 1,
e 710> 09wehave €ij t - N=2 forall1- i- N. This ensuresthat the
algorithm outputs the correct value with high probability.

Considerthe (i + 2)nd courting stage. With probability 1 1=10logN we
will havejti., | tj - N=2*2. In this casethe algorithm will terminate, because

jtez i N=2j, jti N=2jj jtiea i tj> N=2"1j N=2*2 = N=2'*2:

Thuswith high probability the algorithm needsno morethan i+ 2 courting stages
on x. Later courting stagestake exponertially more queries(Tis2+j = 2 Tisz2),
but are neededonly with exponertially decreasingorobability O(1=2 logN): the
probability that jti..; i tj > N=2"*2 goesdown exponertially with j precisely
becausethe number of queriesgoesup exponertially. Similarly, the last step of
the algorithm (classicalcourting) is neededonly with negligible probability.

Now the expected number of querieson input x can be upper boundedby

32 Ing N H 1 | IsgN

i+3 i3 . .
; Ti + - Tko m < 10m2l |Og N + - 100[2' 2 O(ZI |Og N )
i=1 k=i+3 k=i+3

Thereforeunder the uniforgy distribution the averageexBeﬁted number of queries
can be upper boundedby = 129" 1 (A;)O(2' logN) 2 O(' N (logN)?): 2

The nearly matching lower bound is:
5.5.5. Theorem (Ambainis & de Wolf [13]). Q3" (MAJy) 2 ~( pﬁ).

Pro of. Let A be a bounded-error quantum algorithm for MAJORITY. It
follows from the worst-caseresults of Section 2.6.4 that A uses-( N) queries
on the hardest inputs, yvhich are the x with jxj = N=28§ 1. Sincethe uniform
distribution puts -(1 = N) proga_bility on the p'se_t of sudh x, the average-case
complexity of A is at least-(1 = N)-( N) = -(  N). 2

What about the classi@l average-casecomplexity of MAJORIT{;? Alonso,
Reingold, and Sdott [6] prove the bound DU""(MAJy) = 2N=3| = 8N=9Vi+
O(logN) for deterministic classicalcomputers. We can also prove a linear lower
bound for the boundel-error classicalcomplexity, using the following lemma:
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that computesMAJORITY on inputs x with jxj 2 fN=2;N=2+ ¢ g must make
-( N) querieson all suchinputs.

Pro of. We will prove the lemmafor ¢ = pﬁ, which is the hardest case.
We assumewithout loss of generality that the algorithm queriesits input x at
T(x) random positions, and OH'[EJ'[S 1 if the fraction of 1sin its sampleis at
least(N=2+ ¢) =N = 1=2+ 1= N. We do not care what the algorithm outputs
otherwise. Consideran input x with jxj = N=2. The algorithm usesT = T(x)
queriesand should output 0 with probability at least 2=3. Thus the probability
of output 1 on x must be at most 1=3, in particular

Pr[ at least T (1=2+ 1=p N) 1sin T-sample]- 1=3:

Sincethe T queriesof the algorithm can be viewed as sampling without replace-
mert from a set cortaining N=2 1sand N=2 0Os, this error probability is given by
the hypergeometricdistribution

X M T M 1

N=2 N=2
. ¢ )
P_— i=T(1=2+41=" N) ! Til
Pr[ at leastT(1=2+ 1= N) 1sin T-sample]Jz ————— AV
T

We can appraximate the hypergeomegic_distribution using the normal distribu-
tion, seee.q.[129. Let z, = (2kj T)= T and©(z) = > »i-e “dt, thenthe
above probability approades

©(z7) i O(Z7 (141" 1))

Note that ©(zr) = ©(ID T) ! 1andthat ©(Z; P ry) = ©(2IO TN)! 1=2
if T2 o(N). Accordingly, we can only avoid having an error probability closeto
1/2 by usingT 2 -( N) querieson x with jxj = N=2. A similar argumert shavs
that we must alsouse-( N) queriesif jxj = N=2+ ¢. 2

It now follows that:

5.5.7. Theorem (Ambainis & de Wolf [13]). Ry™(MAJyN) 2 -( N).

Pro of. The previouslemma shows that any alq)or_ithm for MAJORITY needs
-( N) querieson inputs x with jxj 2 [N=2;N=2+ N]. Sincethe uniform distri-
bution puts -(1) probability on the set of sud x, the theorem follows. 2

Accordingly, on averagea quartum computer can compute MAJORITY al-
most quadratically faster than a classicalcomputer, whereasfor the worst-case
input quantum and classicalcomputersare about equally fast (or slow).
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5.5.4 PARITY

Finally we prove someresultsfor the average-caseomplexity of PARITY. This is
in many ways the hardest Booleanfunction. Firstly, bs,(f) = N for all x, hence
by Theorem5.5.3:

5.5.8. Cor ollar y (Ambainis & de Wolf [1%1)._For every! we havethat
R,(PARITY y) 2 -( N) and Q,(PARITY ) 2 -( N).

With high probability we canget an exactcourt of jxj, using O(p (xj+ 1N)
guantum gueries(Theorem 1.7.2). Combining this with a distribution 1 that
puts O(1= N) probability on the set of all x with jxj > 1 and distributes the
remaining propability arbitrarily gver the x with jxj - 1, we obtain a distribution
1 sudh that Q,(PARITY ) 2 O( N).

More than a linear speed-upon averageis not possibleif * is uniform:

5.5.9. Theorem (Ambainis & de Wolf [13]). Q3" (PARITY y) 2 -( N).

Pro of. Let A be a bounded-errorquartum algorithm for PARITY . Let B be
an algorithm that °ips ead bit of its input x with probability 1=2, recordsthe
number b of actual bit°ips, runs A on the changedinput y, and outputs A(y) ©
b mod 2. It is easyto seethat B is a bounded-erroralgorithm for PARITY y and
that it usesan expected number of T;\ guerieson every input. By breaking o®
the computation if it hasnot nished after se\eral times its expected number of
queries,we canturn this into an algorithm for PARITY y with worst-caseO(T,:)
queries. Sincethe worst-caselower bound for PARITY  is N=2 (Corollary 2.6.7),
the theorem follows. 2

5.6 Non-Deterministic  Complexit y: De nitions

Now we turn our attention from average-casdo non-deterministic complexity.
There are two ways to view a classical non-deterministic algorithm for some
Boolean function f. First, we may think of it as a deterministic algorithm A
that receivesthe input x and a \certi cate" y. For all inputs x, if f (x) = 1 then
there is a certi cate y sudch that A(x;y) = 1;if f (x) = 0then A(x;y) = 0 for all
certi cates y. Secondly we may view A asa randomizel algorithm whoseaccep-
tance probability P (x) is positiveif f (x) = LandP(x) = 0if f (x) = 0. It is easy
to seethat thesetwo views are equivalert in the caseof classicalcomputation:
there is a view 1 algorithm for f i® there is a view 2 algorithm for f of roughly
the samecomplexity.

Both views may be generalizedto the quarntum case,yielding three possibly
non-equialert de nitions of non-deterministic quartum algorithms. The quan-
tum algorithm may be required to output the right answer f (x) when given an
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appropriate certi cate (which may be quartum or classical);or the quartum al-
gorithm may be requiredto have positive acceptanceprobability i®f (x) = 1. An
exampleis given by two alternative de nitions of \quantum-NP ". Kitaev [10(0
(seealso [9§)) de nes this classas the set of languagesthat are acceptedby
polynomial-time quartum algorithms that are given a polynomial-sizequartum
certi cate. On the other hand, Adleman et al. [1] and Fenneret al. [73] de ne
guantum-NP asthe setof languaged. for which thereis a polynomial-time quan-
tum algorithm whoseacceptanceprobability is positive i® x 2 L. This quantum
classwas shavn equalto the classicalcourting classco-C- P in [73], usingtools
from [76].

We will here adopt the latter view: a non-deterministic algorithm for f is
an algorithm that has positive acceptanceprobability on input x i® f (x) = 1.
Let N(f) and N Q(f ) denotethe query complexitiesof optimal non-deterministic
classicaland quartum algorithms for f , respectively. Before characterizing these
complexitiesin the next section, let us cortrast our de nition of NQ(f) to the
other possiblede nitions. We may considerthe complexity of quartum algorithms
that either:

1. output 1i® given an appropriate classi@l certi cate (such certi cates must
existi®f (x) = 1)

2. output 1i® givenan appropriate quantumcerti cate (sud certi cates must
existi®f (x) = 1)

3. output 1 with positive probability i®f (x) = 1

The third de nition is the one we adopted. Clearly the secondde nition is at
leastasstrong asthe rst, in the sensehat an optimal algorithm accordingto the
secondde nition requiresno more queriesthan an optimal algorithm according
to the rst de nition. Here we will shav that the third de nition is at least as
strong asthe second.Thusour N Q(f ) givesin fact the smallestnon-deterministic
complexity among the three alternative de nitions. (We give the proof for the
query complexity setting, but the sameproof worksfor communication complexity
and other non-uniform settings as well.)

We formalize the secondde nition asfollows: a T-query quantumveri er for
f is a T-query quantum algorithm V together with a set C of m-qubit states,
sud that for all x 2 f0; 1gN we have: (1) if f (x) = 1 then thereis ajAi 2 C
sud that VjAi has acceptanceprobability 1 on input x, and (2) if f(x) = 0
then VjAi hasacceptanceprobability 0 oninput x, for every jAi 2 C. Informally:
the set C cortains all possiblecerti cates, and (1) for every 1-input there is a
veri able 1-certi cate in C, and (2) for O-inputs there aren't any. We do not put
any constrairts on C. Howewer, note that the de nition implies that if f (x) = 0
for somex, then C cannot cortain all m-qubit states: otherwisethe state V,| 1j10i
would be a 1-certi cate in C evenfor x with f (x) = 0.
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We now prove that a T-query quartum veri er canbe turned into a T-query
non-deterministic quartum algorithm according to our third de nition. This
shaws that the third de nition is at least as powerful asthe second(in fact, this
even holdsif we replacethe acceptanceprobability 1 in clause(1) of the de nition
of a quartum veri er by just positive acceptanceprobability | in this caseboth
de nitions are equivalert).

5.6.1. Theorem (de Wolf [160]). Supmsethere is a T-query quantum veri-
er Vforf. ThenNQ(f) - T.

Pro of. The veri er V and the asseiated set C satisfy:

1. if f (x) = 1then thereis ajAi 2 Csud that VjAi hasacceptanceproba-
bility 1 on input x

2. if f (xX) = 0then VjAi hasacceptanceprobability 0 oninput x, for all jAi 2 C

Let X, = fz j f(z) = 1g. For eah z 2 X, chooseone speci ¢ 1-certi cate
jA;i 2 C. Now let us considersomeinput x and seewhat happensif werun V - |
(wherel isthe 2V £ 2\ idertity operation) on the m + n-qubit state

1 X

A = p— 1A 21

1X4) 22X

V only actsonthe rst m qubits of jAi, the jzi-part remainsuna®ected.Therefore
running V - | on jAi givesthe sameacceptanceprobabilities as when we st
randomly choosesomez 2 X, and then apply V to jA,i. In casef (x) = 0,
this VjA,i will have acceptanceprobability 0, so(V - 1)jAi will have acceptance
probability 0 as well. In casethe input x is suc that f (x) = 1, the speci c
certi cate jA,i that we chosefor this x will satisfy that VjAsi has acceptance
probability 1. But then (V - 1)jAi has acceptanceprobability at least 15X 4j.
Accordingly, (V - 1)jAi has positive acceptanceprobability i® f (x) = 1. By

pre xing V - | with a unitary transformation that mapsthe n + m-qubit state
jOi to jAi, we have constructeda non-deterministic quantum algorithm for f with
T queries. 2

5.7 Non-Deterministic  Complexit y: Character-
ization and Separation

In this sectionwe will characterizeN (f ) and N Q(f ) and exhibit alarge separation
betweenthem. Our main tools will be \non-deterministic polynomials".
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5.7.1 Non-deterministic  polynomials

Recall from Chapter 2 that an N -variate multilinear polynomial is a function

p:RN ! R that canbe written as
X
p(x) = asXs;
SHIN]

where S rangesover all sets of indices of variables, as is a real number, and

Xs = | i2sXi. The degree degp) of p is the degreeof a I@[gest monomial with
non-zero coexcient. Every multilinear polynomial p =  gasXs can also be
written out uniquely in the so-calledFourier basis
X
p(x) = os(i 1Y%

S

Again S rangesover all setsof indicesof variables(we often idertify asetS p [N]
with its characteristic N -bit vector), cs is a real number, and x ¢S dqutesthe
inner product of the N -bit stringsx and S, equivalertly x¢S = jx* Sj =, X;.
It is easyto seethat degp) = maxfjSj j cs 6 0Og. For example, OR,(X1;X,) =
Si 3G 1ty 2G5 1y2i (i 1)**2 in the Fourier basis.

We introducethe notion of a non-deterministic polynomial for f :

5.7.1. Definition. A multilinear N -variate polynomial p is a non-deterministic
polynomial for a Booleanfunction f : f0;1gN ! f0; 1g, if it holdsthat p(x) 6 O
iI®f (x) = 1. The non-deterministic degree of f , denotednded(f ), is the minimum
degreeamongall non-deterministic polynomialsp for f .

Without loss of generality we can assumep(x) 2 [i 1;1] for all x 2 f0; 1gN (if
not, just divide by max, jp(x)j).

We mertion someupper and lower boundsfor ndeg(f ). For example,p(x) =

i Xi=N isanon-deterministicpolynomial for ORy , hencendeg(ORy) = 1. More
generally let f be a non-constar 1gymmetricfunction, which is 0 on z Hamming
weights, Ki;:::;K.. Sincejxj = X, it is easyto seethat (jxj i ki)(jX] i
k,) ¢¢e(jxj i k;) is a non-deterministic polynomial for f , hencendeq(f) - z. This
upper bound is tight for AND (seebelow) but not for PARITY. For example,
p(X1;X2) = X1 X2 is a degree-1non-deterministic polynomial for PARITY ,: it
assumesalue 0 on x-weights 0 and 2, and 8 1 on weight 1. Using symmetrization
techniquesasin Chapter 2, we can alsoshawv the generallower bound nded(f ) ,
z=2 for symmetric f . Furthermore, it is easyto shav that ndegf) - C®(f) for
ewery f (just take a polynomial that is the \sum" over all 1-certi cates for f ).

Finally, we mertion a generallower bound on ndeq(f ). Letting Pr[p 6 0] =
jfx 2 £0;1gN j p(x) 6 0gj=2" be the probability that a random Boolean input
X makesa function p non-zero,it follows from Scdwartz's Lemma (Lemma5.4.5)
that

ndeqf) , log(1=Pr[f 6 0O]) = log(1=Pr[f = 1]):
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Accordingly, functions with a very small fraction of 1-inputs will have high non-
deterministic degree.For instance,Pr[ANDy = 1]= 21 N, sondeg/AND ) = N.

5.7.2 Characterization of N(f) and NQ(f)

It is easyto seethat the 1-certi cate complexity characterizesthe classicalnon-
deterministic complexity of f :

5.7.2. Proposition. N(f) = CO(f).

Pro of.

N(f) - CO(f): a classicalalgorithm that guesses 1-certi cate, queriesits
variables,and outputs 1 i® the certi cate holds, is a non-deterministic algorithm
for f.

N(f), C®(f): anon-deterministic algorithm for f canonly output 1 if the
outcomesof the queriesthat it hasmadeforce the function to 1. Henceif x is an
input where all 1-certi cates have sizeat least C®)(f), then the algorithm will
have to query at least CY (f ) variablesbeforeit can output 1 (which it must do
on someruns). 2

Next, we shawv atight relation betweennon-deterministicquantum query com-
plexity NQ(f ) and non-deterministic degreendegf ). The upper bound usesa
trick similar to the oneusedin [73] to shav co-C-P p quantum-NP .

ndeqf) _

5.7.3. Theorem (de Wolf [160]). NQ(f) - ndeqf).

Pro of. Supposewe have an N Q(f )-query non-deterministicquantum algorithm
A for f. By LemmaZ2.4.1,its acceptanceprobability can be written asa polyno-
mial P(x) of degree- 2N Q(f). BecauseA is a non-deterministic algorithm for
f, P(x) is a non-deterministic polynomial for f . Hencendeqf) - 2N Q(f).

For the upper bound: let p(x) be a non-deterministic polynomial for f of

degreed = ndeqgf ). We write p in the Fourier basis:
X
p(x) = os(i 1Y%
S
Sincededgp) = maxfj Sj j cs 6 Og, we have that cs 6 0 only if |S] - d.

We can make a unitary transformation F that usesd queries and maps
jSi ' (i 1)*%jSi whenewer jSj - d. Informally, this transformation does a
cortrolled parity-computation: it computesx ¢S mod 2 using jSj=2 queries(see
Corollary 2.6.7), copiesthe answer to a safeplace, and then reversesthe com-
putation to cleanup the workspaceat the cost of another jSj=2 queries. By the
standard trick explainedin Section 1.5.1, the answer x ¢S mod 2 can then be
turned into a phasefactor (j 1)*® Mod 2 = (; 1S

Now considerthe following quartum algorithm:
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, P . , PR .
1. Start with ¢ ¢ csjSi (an N-qubit state, wherec = 1= 5 C3 is a nor-
malizing constart)

2. Apply F to the state
3. Apply a Hadamardtransform H to ead qubit

4. Measurethe nal state and output 1 if the outcomeis the all-zero state jOi
and output O otherwise.

The acceptanceprobability (i.e., the probability of observingjOi at the end) is
X
jljH "Fc  csjSij?
S
(:2 . x X qu. e 2
ool B os(i 1S
SO S

e X . Ep(x)?
N os(i 1)*®j% = F;\JX) :

P(x)

S

Sincep(x) is non-zeroi® f (x) = 1, P(x) will be positive i® f (x) = 1. Hencewe
have a non-deterministic quartum algorithm for f with d = ndeg(f ) queries. 2

The upper bound in this theorem is tight: by a proof similar to Proposi-
tion 2.6.5we can shaov NQ(ANDy) = ndegANDy) = N. We do not know if
the factor of 2 in the lower bound can be dispensedwith. If we wereto change
the output requiremen of the quarntum algorithm a little bit, by saying that the
algorithm acceptsi® measuringthe nal superposition givesbasisstate j0i, then
the required number of queriesis exactly ndedf ): the upper bound of ndedf )
gueriesin this changed model is the sameas above, while the lower bound of
ndedf ) queriesholds becausehe amplitude of the basisstate jOi in the nal su-
perposition must now be non-zeroi®f (x) = 1, and this amplitude is a polynomial
of degreeat most the number of queries(Lemma 2.4.1).

5.7.3 Separations

What is the biggestpossiblegap betweenquantum and classicalnon-deterministic
guery complexity? Considerthe Booleanfunction f de ned by

f(x)= 1i®@jxj 6 1.

It is easyto seethat N(f) = CO(f) = CO(f) = N. On the other hand, the
following is a degree-1non-deterministic polynomial for f :
Xii 1

PO =~ T
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Thus ndegf) = 1 and by Theorem5.7.3we have NQ(f ) = 1. For the comple-
mert of f , we caneasilyshav NQ(f ) | N=2, sincethe acceptanceprobability of
a non-deterministic algorithm for f is a polynomial of degree- 2N Q(f) that is
0 on N Hamming weighs and hencehas degreeat leastN (this NQ(f) , N=2
is tight for N = 2, witnessp(x) = X1 i Xz). In sum:

5.7.4. Theorem (de Wolf [160]). For the alovef wehavethat NQ(f) = 1,
NQ(f), N=2andN(f)= N(f) = N.

A slightly smaller gap holds for the function de ned by DeJaox) = 1i® x| &
N=2. This is atotal versionofthe Deutsh-Jozsapromiseproblemof Section1.5.1.
The Deutsdh-Jozsaalgorithm turns out to be a non-deterministic quartum algo-
rithm for DeJo,soN Q(DeJo) = 1. In cortrast, N (DeJo) = C®(DeJo) = N=2+1.

5.7.4 Relation of NQ(f) to other complexities

In Chapter 2 we saw that the classicaldeterministic query complexity D (f ) and
the quantum bounded-error complexity Q,(f) are polynomially related. This
relation was proved using notions like certi cate complexity and block sensitivity.
In this subsectionwe will similarly embed N Q(f) in this web of relations, and
give upper boundson D(f) in terms of NQ(f ), C(f), and bqf). Theseresults
are new and have not (yet) beenpublished anywhere.

5.7.5. Lemma (de Wolf). If f(x) = 0 and B is a minimal sensitive black for
X, thenjBj - ndeqf).

Pro of. Assumewithout lossof generality that x = 0. BecauseB is minimal,
for every proper subsetB® of B we have f (x) = f (xB%) = 0, but on the other
hand f (xB) = 1. Accordingly, if we x all variables outside of B to zero, then
we obtain the AND-function of jBj variables, which requires non-deterministic
degreejBj. HencejBj - ndedf). 2

5.7.6. Cor ollar y (de Wolf). CO(f) - bgf)ndeqf).

Pro of. Considerany input x sud that f (x) = 0. In the proof of Theorem2.5.4
we shovedthat the union of the setof minimal sensitive blocksin x is a certi cate
for x. Sincethere are at most byf ) sut blocks and ead block cortains at most
ndeq(f ) variablesby the above lemma, the corollary follows. 2

5.7.7. Theorem (de Wolf). D(f)- CO(f)ndeqf).
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Pro of. Let p be a non-deterministic polynomial for f of degreendeqf ). Note
that if we take a O-certicate C : S! f0;1g and x the S-variablesaccordingly
then p must reduceto the constart-O polynomial. This implies that S intersects
all maxonomialsof p (because non-intersectedmaxonomialwould still be presen

in the reducedpolynomial, which would then not be constart-0). Thus, taking a
minimal O-certi cate and queryingits variablesreducesthe degreeof p by at least
1. Repeating this at most nded(f ) times, we reducep to a constart polynomial
and know f (x). This algorithm takesat most C© (f )ndeg(f ) queries. 2

Combining with Theorems2.5.7and 5.7.3we obtain:
5.7.8. Cor ollar y (de Wolf). D(f) - bqf)ndeqgf)?- 24 Q,(f)2NQ(f )2.

This corollary has the somewhat paradaxical consequencehat if the non-
deterministic complexity NQ(f) is small, then the bounded-error complexity
Q2(f ) must Ige large (i.e., closeto D(f)). For instance,if NQ(f) 2 O(1) then
Qa(f) 2 -( D(f)). We hope that this result will help tighten the relations
D(f) 2 O(Q.(f)® and D(f) 2 O(Qq(f)*) that we provedin Chapter 2.

5.8 Summary

In Chapter 2 we saw that the bounded-errorquantum query complexity of ev-
ery total function is at most polynomially smallerthan its classicaldeterministic
complexity. In this chapter we consideredtwo other models of query complexity,
for which the quantum-classicalgap can be much larger. First, for the model of
averge-asecomplexity we constructedatotal function basedon Simon'sproblem
where the averagequantum complexity under the uniform distribution is expo-
nertially smallerthan the classicalaverage-caseomplexity. We also obtained a
super-exponertial gap for the OR-function under a non-uniform distribution and
a near-quadratic gap for the MAJORITY-function under the uniform distribu-
tion. Second,we de ned the non-deterministic quantum complexity N Q(f ) of
f asthe minimal number of queriesrequired for an algorithm that has positive
acceptanceprobability oninput x i®f (x) = 1. Weshonved N Q(f ) to beequal(up
to a factor of 2) to the non-deterministic polynomial degreeof f and exhibited a
function whereN Q(f ) = 1 but wherethe classicalnon-deterministic complexity
isN.
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Chapter 6
Quantum Comm unication Complexit y

This chapter is basedon the paper

2 R. de Wolf. Quantum Communication and Complexity. Invited paper for
Theoretical Computer Sciene.

6.1 Intro duction

The areaof communiation complexity dealswith the following type of problem.
There are two separatedparties, called Alice and Bob. Alice receivessomeinput
X 2 X, Bob receivessomey 2 Y, and together they want to compute some
function f (x;y). Sincethe valuef (x;y) will generallydepend on both x andy,
neither Alice nor Bob will have sutcient information to do the computation by
themsehes,sothey will haveto communiatein orderto achievetheir goal. In this
model, individual computation is free, but communication is expensive and has
to be minimized. How many bits do they needto exchangebetweenthem in order
to computef (x;y)? Clearly, Alice can just sendher completeinput to Bob, but
sometimesmore excient schemesare possible. The minimum number of bits that
Alice and Bob needto comnunicate is called the communication complexity of f .
This model wasintroducedby Yao[163, inspired by the older\crossing sequence”
argumerts used for obtaining lower bounds on Turing madine computations.
Communication complexity hasbeenstudied extensiwely, both for its applications
(likelower boundson VLSI and circuit complexity) and for its own sake. A wealth
of results may be found in the book of Kushilevitz and Nisan [109.

In the quantum setting, the communication resourcesare quantumbits rather
than classicabits, soan interestingvariant of classicalcommnunication complexity
is quantum commnunication complexity: supposethat Alice and Bob eat have
a quantum computer at their disposal and are allowed to exdange quantum
bits (qubits) and/or to make use of the quantum correlations given by shared
EPR-pairs (2-qubit systemsin the entangled state pl—é(jOO' + j11i)). Can Alice

101
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and Bob now computef using lessof the new communication resourceshan in
the classicalcase? Quantum comnunication complexity was rst consideredby
Yao [169 for the model with qubit commnunication and no prior EPR-pairs, and
it wasshawn later that for someproblemsthe amourt of comnunication required
in the quantum world is indeed considerablylessthan the amourt of classical
communication.

In this chapter we give an introduction to quantum comrmunication complex-
ity. We rst give brief explanationsof quantum comnunication, and then cover
the main known upper bounds of quartum communication complexity in Sec-
tion 6.4. We include proofs of someof the certral results and referencego oth-
ers. In Section 6.5 we mertion some applications of quantum communication
complexity. In the next chapter we will descrite somenew lower bound results
for quantum commnunication complexity and in Chapter 8 we will give a new ex-
ample of a strong quartum-classical separationfor a variant of comnunication
complexity. Someother recent surveys of quantum commnunication complexity
are [154 39,102 32|, and a more popular accoun can be found in [153.

6.2 Quantum Comm unication

Before going into quantum communication complexity, we will rst look brie°y
at quartum communiction in general. The areaof quantuminformation theory
dealswith the propertiesof quarntum information and its communication between
di®eren parties. We refer to [27, 130 for generalsurveys, and will hererestrict
oursehesto explaining two important phenomena:teleportation [23] and super-
densecoding [24]. Thesepre-date quantum communication complexity and show
someof the power of quantum commnunication.

Here we explain how teleporting a qubit works. Alice has a qubit ®j0i +
®j1i that shewants to sendto Bob via a classi@l channel. Without further
resourcesthis would be impossible, sinceit may take in nitely many classical
bits to descrike and transmit the exact amplitudes ® and ®,. Howeer, if Alice
alsosharesan EPR-pair pl—i(jOO' + j11i) with Bob then it can be done,asfollows.
Initially , their joint state is

(®yjOi + ®yjli) - p—é(Joo + j11):

The rst two qubits belongto Alice, the third to Bob. Alice performsa cortrolled-
not on her two qubits and then a Hadamard transform on her rst qubit. Their
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joint state can now be written as
200 - (®j0i + ®yjli) +
%jOJj - (®pjli + ®&jOi) +
{110 - (@001 @1 +
- (e iy,

Al ice Bob

Alice then measuresher two qubits and sendsthe result (2 random classical
bits) to Bob, who now knows which transformation he must do on his qubit in
order to regain the qubit ®j0i + ®,jli. For instance,if Alice sert 11 then Bob
knows that his qubit is ®)j1i | ®j0i. A bit-°ip (jb ! j1j h) followed by a
phase-°ip(jbi ! (i 1)%hki) will give him Alice's original qubit ®j0i + ®jli. This
technique can easilybe generalizedo many-qubit systems,and canalsobe shavn
to presene ertanglemert: if Alice teleports part of her state to Bob, then Bob's
new state will be entangled with the part of the state that Alice kept to herself.

Note that the qubit on Alice's side has beendestroyed: teleporting movesa
gubit from Alice to Bob, rather than copying it. In fact, copying an unknown
qubit is impossible[167, which can be seenasfollows. SupposeC werea 1-qubit
copier, i.e., CjAij0i = jAijA for every qubit jAi. In particular CjOijOi = jOij Oi
and Cj1ijOi = jlijli. But then C would not copy jAi = pl—i(jOi + j1i) correctly,
sinceby linearity CjAij 0i = pl—é(CjOij 0 + Cjlij0i) = pl—é(jOij Oi +jl1ij1i) 6 jAjA.

In teleportation, Alice uses2 classicalbits and 1 EPR-pair to send1 qubit to
Bob. Superdensecoding achievesthe opposite: using 1 qubit of communication
and 1 EPR-pair, Alice can send 2 classicalbits b, and b, to Bob. It works as
follows. Initially they sharean EPR-pair pl—i(jOO' + j11i). First, if by = 1 then
Alice appliesthe phasegate Ry, to her half of the pair (this mapsjbi ! (i 1)%hi).
Second,if b, = 1 then she applies a bit-°ip. Third, she sendsher half of the
EPR-pair to Bob, who now hasone of 4 statesjA, p,i:

JAvi = #5(j00 + j11i)
jAoii = #5(j10 + jOli)
jAwl = p%(jOO' i j11)
jAui = P50 | o)

Sincethesestatesform an orthogonalset, Bob canapply a unitary transformation
that mapsjAblbzi I jbybi and thuslearn b, and b.

SupposeAlice wants to sendn classicalbits of information to Bob and they
do not shareany prior ertanglemert. Alice can just sendher n bits to Bob, but,
alternatively, Bob can also rst sendn=2 halvesof EPR-pairs to Alice and then
Alice can sendn bits in n=2 qubits using superdensecoding. In either case,n
qubits are exdhangedbetweenthem. If Alice and Bob already share n=2 prior
EPR-pairs, then n=2 qubits of communication sutce by superdensecoding. The
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following result shovsthat this is optimal. We will referto it asHolevo'stheorem,
becausehe rst part is an immediate consequencef a result of [9]] (the second
part wasderived in [54]).

6.2.1. Theorem (Holev 0). If Alice wantsto sendn bits of information to Bob
via a qubit channel, and they do not shae prior entanglement,then they haveto
exchangeat least n qubits. If they do share unlimited prior entanglement,then
Alice hasto send at least n=2 qubits to Bob, no matter how many qubits Bob
sendsto Alice.

A somewhatstrongerand more subtle variant of this lower bound wasderived
by Nayak [129, improving upon [11]. Supposethat Alice doesn't want to send
Bob all of her n bits, but just wants to senda messagehat allows Bob to learn
one of her bits x;, where Bob can choosei after the messagehas been sen
(such a messagas called a random accesscode). Even for this wealer form of
communication, Alice hasto sendan -( n)-qubit message.

6.3 The Mo del of Comm unication Complexit y

6.3.1 Classical

First we sketch the setting for classical communication complexity, referring
to [109 for more details. Alice and Bob want to compute some function f :
D! f0;1g, whereD p X £ Y. Usually X = Y = f0;19". If the domain D
equalsX £ Y thenf is calleda total function, otherwiseit is a promisefunction.
Alice receiwesinput x, Bob receiwvesinput y, with (x;y) 2 D. As the valuef (X;y)
will generallydepend on both x and y, somecommnunication betweenAlice and
Bob is required in order for them to be able to computef (x;y). At the end of
the protocol, Alice and Bob should have the sameoutput. We are interestedin
the minimal amourt of commnunication they needfor this.

A comnunication protocol is a distributed algorithm where rst Alice does
someindividual computation, then sendsa messag€of one or more bits) to Bob,
then Bob doessomecomputation and sendsa messagéo Alice, etc. Each message
is calleda round. After oneor more roundsthe protocol terminates and outputs
some value, which must be known to both players. We sketch the form of a
3-round communication protocol in Figure 6.1.

The conversation of somerun of the protocol on someinput is the concate-
nation of all messagesern during that run. The cost of a protocol is the total
number of bits communicated on the worst-caseinput, i.e., the length of the
longestconversation.

We considerthe samethree error-models asin the caseof query complexity
(Chapter 2). A deterministic protocol for f always hasto output the right value
f(x;y) for all (x;y) 2 D. In a boundel-error protocol, Alice and Bob may °ip
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round 1

Alice: x |% round 2 Bob: y

round 3

Figure 6.1: A 3-round commnunication protocol

coinsandthe protocol hasto output the right valuef (x; y) with probability , 2=3
for all (x;y) 2 D. In a zem-error protocol, Alice and Bob may claim ignorance
(\don't know") with probability - 1=2 onewery input (x;y) 2 D, but if they give
an output, then this must be the correctvaluef (x; y). The aaeptane prokability
of a protocol on input (x;y) is its probability to output the value 1 on that input.
We useDcc(f ), Reco(f ), and Rec,(f ) to denotethe minimal costof deterministic,
zero-error, and (2-sided) bounded-error protocols for f, respectively. The “cc'
in these namesstands for \communication complexity”; this is not usedin the
standard referenceg[109, but we add it hereto avoid confusionwith the notation
for query complexitiesusedin the previous part of this thesis. We will add the
superscript\1 round" whenwe restrict attention to protocolswith only oneround
of communication: Alice sendsa messageo Bob, who then computesthe output.

In caseof the randomizedversionsof communication complexity, Roco(f ) and
Rce,(f ), we can either allow Alice and Bob to toss coins individually (private
coin) or jointly (public coin). We will add superscript "pub’ if we speak about
the latter model. The di®erencebetweenthe two is not large: Newman [126
(seealso[50]) proved that a public coin can save at most about O(logn) bits of
communication, comparedto a protocol with a private coin.

Someoften studied total functions whereX =Y = f0;1g" are:

2 Equality: EQ,(x;y) = 1i®x =y

P
2 Inner product: IP,(X;y) = PARITY (x*y) = . Xyi (mod 2)
(for x;y 2 0; 19", Xx; is the ith bit of x andx~ y 2 f0; 1g" is the bit-wise
AND of x and y)

2 Disjointness: DISJ,(X;y) = NOR,(x ™ y). This function is 1 i® there is no
i wherex; = y; = 1 (viewing x and y as characteristic vectors of sets, the
setsare disjoint)

Note that there alwaysis atrivial protocolwith n+ 1 bits of communication: Alice
sendsx to Bob, then Bob computesf (x;y) and sendsbad the 1-bit answer. It
is known that this trivial protocol is often optimal, for example Dcc(EQ,) =
Dcc(IP) = Dee(DISJ,) = n+ 1, and Recy(IP); Rec,(DISJ,) 2 -( n). Howewer,
sometimesthere are much more e+cient protocols. For instance, Recb®(EQ,,) is
only O(1), asfollows. Alice and Bob jointly tossa random string r 2 f0; 1g".
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Alice sendsthe bit a = x ¢r mod 2 = P i”:l Xiri mod 2 to Bob. Bob computes
b=y ¢r mod 2 and comparesthis with a. If x = y thena= b, but if x 6 y then
a 6 b with probability 1/2. Thus Alice and Bob can decideequality with small
error using O(n) public coin °ips and O(1) comnunication. Since public coin
and private coin protocols are closeby Newman'sresult, this also implies that
Recz(EQ,) 2 O(logn) with a private coin. More about excient communication
protocolsfor equality may be found in Chapter 8.

6.3.2 Quantum

Now what happensif we give Alice and Bob a quantum computerand allow them

to sendead other qubits and/or to make useof EPR-pairsthat they shareat the

start of the protocol? Formally speaking, we can model a quartum protocol as
follows. The total state consistsof 3 parts: Alice's private spacethe comnunica-
tion channel, and Bob's private space. The starting state is jx; 0ij 0ij y; 0i: Alice

getsinput x, and someadditional initially-zero qubits asworkspace;the channel
is initially empty (zero); and Bob gets input y and someworkspace. (We will

usually not specify the precisenumber of workspace-qubitsused,and sometimes
omit them from the presenation altogether.) Now Alice appliesa xed unitary

transformation U;* to her spaceand the channel. This correspndsto her private
computation aswell asto putting a messageon the channel. The length of this

“rst messagés the number of channel-qubitsa®ectedby Alice's operation. Since
nothing happensto Bob's spaceduring the rst round, the overall unitary trans-
formation is Uf* - 18, wherel B is the identit y operation on Bob's space.For the
secondround, Bob appliesa xed unitary transformation U2 to his spaceand
the channel, then Alice appliesU4, etc. The nal state of a k-round protocol on
input (Xx;y) is

(UA - 1B)(17 - UB ;) do6(1* - UP)(UL - 1®)jx; Bij Oijy; Oi:

For technical reasonsit will be corveniert to assumethat at the end of the
protocol, the rst qubit of the channel cortains the answer. A measuremen of
this qubit then determinesthe output of the protocol. This is similar to assuming
that both partiesknow the output bit at the endof the protocol (roughly speaking,
the party who sert the output qubit must know the output in orderto be ableto
put it on the channel, and the party who receivesthis qubit then also knows it).
Note that, despitethe fact that the operation U7 is independert of x and the st
m j 1 messagesthe mth messagestill dependson x and the earlier messages.
The reasonis that U2 acts on Alice's workspaceaswell ason the channel, sothe
new messagevill depend on what Alice hasin her part of the spaceat that point
(i.e., x and what shehas stored of earlier messages).

A second,equivalert, way to view these protocols is to assumethat they
start in state j0ij0ijOi (Alice's workspace;channel; Bob's workspace)and that
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the unitary transformations that Alice and Bob apply are functions of their in-
put. In other words, for a k-round protocol there are unitary transformations

of the spaceand the channel. The nal state of the protocol on input (X;y) is
(UA(X) - 1B)(1A - U2 1(y)) 600(1* - US (y))(UP(x) - | ®)j0ij 0jj 0i:

Again, at the end of the protocol a measuremen of the rst channel-qubit de-
termines the output. It is not hard to show that both kinds of protocols are
equivalert.?!

We can considerthree di®eren kinds of quartum communication complexity,
depending on whether we allow qubit communication and/or the use of shared
EPR-pairs. WeuseQoc (f ) to denotethe minimal commnunication costof a quan-
tum protocol that is allowed qubit comnunication but no prior erntanglemert and
that computesf (x;y) exactly (= with error probability O, the "E' standsfor "ex-
act’). This model wasintroducedby Yao [165. In the secondmodel, introduced
by Cleve and Buhrman [53], Alice and Bob sharean unlimited number of EPR-
pairs p%(jOOi + j11i) at the start of the protocol, but now they comnunicate via
a classi@l channel: the channelhasto be in a classicalstate throughout the pro-
tocol. (Actually, Cleve and Buhrman introduceda 3-party versionof this, where
Alice, Bob, and Charley sharethe 3-qubit \GHZ-state" pl—é(jOOO +j111)). We
useCccg (f ) for the minimal complexity of an exact protocol for f in this model.
Note that we only court the communication, not the number of EPR-pairs used,;
this is similar to classicalcommunication complexity with a public coin, where
one usually doesnot court the number of coin °ips used. Only commnunication
is consideredan expensiwe resourcein this model. The third variant conbines
the strengths of the other two: here Alice and Bob start out with an unlimited
number of shared EPR-pairs and they are allowed to comnunicate qubits. We
useQcct (f) to denotethe comnunication complexity in this third model.

Clearly, quartum protocolsare at leastas powerful asthe correspnding clas-
sical protocols. Also, by teleportation, 1 EPR-pair and 2 classicalbits can re-
place 1 qubit of communication, sowe have Qocg (f) - Cocg(f) - 2Qocg (f) -
2Qcce (f ). Similarly we de ne Qccy(f ), Cocy(f ), and Qocy(f ) for zer-error quan-
tum protocolsof the three °avors, and Qac,(f ), Cecy(f ), and Qocs(f ) for bounded-
error quartum protocols? Note that a shared EPR-pair can simulate a public

1We can assumethat protocols of the st kind do not changethe input-parts cortaining x
and y during the cgmputation. To get a protocol of the “rst kind from one of the secondkind,
just de'ne U = jzihzj - Uf(z), and similarly de’ne UP, etc. To get a protocol of the
secondkind from one of the rst kind, de'ne Uf*(x) to be the unitary transformation that U2
appliesto Alice's workspaceand channel if x is xed, and similarly de'ne U2 (y), etc.

2A commert on the pronunciation of this: Qcc(f) is \b ounded-error quantum communica-
tion complexity of f with sharedentanglemert”, Ccc (f) is \exact communication complexity
of f with classicalbits and shared entanglemert”, etc. We sometimesrefer to protocols that
start with prior entanglemert as entanglement-enhaned quantum protocols.
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coin toss: if Alice and Bob ead measuretheir half of the pair, they get the same
random bit. This implies for instancethat Qacy(f) - Rcc@“b(f ). In particular we
have Qoci(EQ,,) 2 O(1) using the classicalpublic-coin protocol for equality from
the previoussection.

Before cortinuing to study this model, we rst have to face an important
question: is there anything to be gained here? At rst sigh, the following argu-
mernt seemsto rule out any signi cant gain. By de nition, in the classicalworld
Dcc(f) bits have to be communicated in order to compute f. Since Holew's
theoremsays that k qubits cannot cortain moreinformation than k classicalbits,
it seemghat the quartum communication complexity should be roughly Dcc(f )
qubits aswell (maybe Dcc(f )=2 to accoun for superdensecoding, but not less).
Fortunately and surprisingly, this argumernt is false, and quantum communica-
tion can sometimesbe much lessthan classicalcommnunication complexity. The
information-theoretic argumert via Holew's theoremdoesnot apply, becauseAl-
ice and Bob do not needto communicate the information in the Dcc(f ) bits of
the classicalprotocol; they are only interestedin the value f (x;y), which is just
1 bit. Below we survey the main examplesthat have so far beenfound of gaps
betweenquartum and classicalcomnunication complexity.

6.4 Quantum Upp er Bounds

6.4.1 Initial steps

Quantum communication complexity was introduced by Yao [169 and studied
by Kremer [10§, but neither shaved any advantagesof quantum over classical
commnunication. Cleve and Buhrman [53] introduced the variant with classical
commnunication and sharedEPR-pairs, and exhibited the rst quartum protocol
provably better than any classicalprotocol. It usesEPR-pairs and 2 classicalbits
of comnunication to solve somespeci ¢ 3-party commnunication problem exactly,
which would require 3 bits of communication without prior entanglemen. This
gapwaslater extendedby Buhrman, Cleve, and van Dam [40] and Buhrman, van
Dam, H¢ yer, and Tapp [44].

6.4.2 Buhrman, Cleve, and Wigderson

The rst impressiwely large gaps between quantum and classical communica-
tion complexity were exhibited by Buhrman, Cleve, and Wigderson[42]. Their
protocols are distributed versionsof known quartum query algorithms, like the
Deutsth-Jozsaand Grover algorithms from Chapter 1. The following lemma
shaws how a query algorithm inducesa comnunication protocol:
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6.4.1. Lemma (BCW [42]). Letg: f0;1g" ! f0;1g and f(x;y) = g(x ?y),
wheee ? is any binary connective (for instance © or 7). If thereis a T-queryquan-
tum algorithm for g, thenthere is a protocol for f that communicatesT (2logn+ 4)
qubits (and usesno prior entanglement)and that hasthe sameerror prokability
as the query algorithm.

Pro of. The quantum protocol consistsof Alice's simulating the quartum query
algorithm A on input x ?y. Every query in A will correspnd to 2 rounds of
communication. Namely; supposg,AIice at somepoint wants to apply a query to
the (logn + 1)-qubit state JAl = 5 1....ngor 0:1g ®ji; B (for simplicity we omit
Alice's workspace). Then she adds a jOi-qubit to the state, appliesthe unitary
mappingji; b;0i ! ji; b;x;i, and sendsthe resulting (log n+ 2)-qubit state to Bob.
Bob now appliesthe unitary mappingji; b;xii ! ji; b© (x; ?y;); x;i and sendsthe
resulting (logn + 2)-qubit state badk to Alice. Alicrg appliesji; b;x;i I ji; b;0i,
takeso®the last qubit, and endsup with the state ;) ®ji; b© (x; ?y;)i, which
is exactly the result of applying an x ?y-query to jAi. Thus every query to x ?y
can be simulated using 2logn + 4 qubits of communication. The nal quartum
protocol will have T(2logn + 4) qubits of communication and computesf (X; y)
with the sameerror probability as A hason input x ?y. 2

Now considerthe disjointnessfunction: DISJ,(x;y) = NOR,(x " y), which is
1i®x; =y = 1for at leastonei 2 f1;:::;ng. SinceGrover's algorithm can
compute the NOR, of n variables with O(" n) queriesand small error prob-
ability, H1e previous lemma implies a bounded-error protocol for disjointness
with O(" nlogn) qubits of comnunication. On the other hand, the linear lower
bound for disjointnessis a well-known result of classicalcomnunication complex-
ity [96, 139. Thus we obtain the following near-quadratic separation:

6.4.2. Theorem (BCW [42]). Qcc,(DISJ,) 2 O(p nlogn) and Rec,(DISJ,) 2
-(n).

The disjointnessproblem is very similar to the appintment scheluling prob-
lem, which is: Alice and Bob ead have an n-slot agenda,and they want to nd
a slot on which they are both free. Viewing their input as n-bit strings, with
a 1 indicating a free day, Alice and Bob needto nd a slot i suc that they
both have a 1 on that slotjand this is exactly what the distributed version of
Grover's algorithm does, using near-quadratically lesscommnunication than the
best classicalprotocols.

Another separationis given by a distributed version of the Deutsd-Jozsa
problem of Section1.5. Let n be divisible by 4 and DeJo, be the Deutsth-Jozsa
promise function on n-bit input z, which is de ned to be 1 if jzj = 0, to be 0
if jzj = n=2, and which is unde ned if jzj 62f 0;n=2g. De ne a commnunication
complexity problem as EQ%(x;y) = DeJa,(x © y). This is a promise version of
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equality, wherethe promiseis that x and y are either equal or are at Hamming
distance ¢( x; y) = n=2 (EQ?(x; y) is unde ned for other x;y). Sincethere is an
exact 1-query quartum algorithm for DeJa,, Lemma 6.4.1implies Qcce (EQ?) 2
O(logn). In cortrast, Buhrman, Cleve, and Wigdersonusea conbinatorial result
of Frankl and R&dl [77] to prove the classicallower bound Dcc(EQ?) 2 -( n),
giving the following exponertial separationfor exact protocols:

6.4.3. Theorem (BCW [42]). Qcc:(EQ?) 2 O(logn) and Dec(EQY) 2 -( n).

Pro of.  The quantum upper bound follows immediately from combining the
Deutsd-Jozsaalgorithm with Lemma6.4.1.

Any classicalprotocolwill require-( n) classicabits of communication to solve
EQ? with certainty, as follows. Supposethere is a c-bit deterministic classical
protocol for EQC. It is easyto prove that ewvery corversation corresmpndsto a
rectangleR = S£ T, with S;T p f0;1g", sud that the protocol hasthe same
conversation and output i® (x;y) 2 R (seee.g.[109 Section1.2]). Sincethere
are at most 2° possiblecornversations,the protocol partitions f0; 1g" £ f0; 19" in
at most 2° di®eren sut rectanglgs.Now considerall n-bit strings x of Hamming
weight n=2, there are roughly 2"=" n of those. Sinceewery (x; X)-pair must occur
in somerectangleand thers areonly 2° rectanglesthereis arectangleR = SE T
that cortains at least 2"=" n2° di®eren sud (x; x)-pairs. Let A = fx j jxj =
n=2; (x;X) 2 Rg be the set of such x. SinceR cortains some(x; X)-pairs (on
which the protocol outputs 1) and the protocol hasthe sameoutput for all inputs
in R, R cortains no O-inputs. This implies that the Hamming distance of every
pair x;y 2 A is di®eren from n=2, for otherwise(x;y) would be a O-input in R.
Viewing the x in A ascharacteristic vectorsof sets, it is easyto seethat the size
of the in?}arseotion of x;y 2 A is never n=4. Thus we have a set systemA of at
least2"=" n2° sets,sud that the sizeof the intersection of any two setsin A is
not n=4. Howewer, by Corollary 1.2 of [77], suth a set systemcan have at most
1:99" elemernts, sowe have

n
pﬁ- jA] - 199"
This implies c , |og(2”=p n1l:99") . 0:007n. 2

6.4.3 Raz

Notice the cortrast betweenthe two separationsof the previous section. For
the distributed Deutsd-Jozsaproblem we get an exponertial quarntum-classical
separation,but the separationonly holds if we force the classicalprotocol to be
exact; it is easyto seethat O(logn) bits of communication sutce for classical
protocolsif we allow a small probability of error (the classicalprotocol can just
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try a fewrandom positionsi and ched if X; = y; or not). On the other hand, the
gap for the disjointnessfunction is only quadratic, but it holds even if we allow
classicalprotocolsto have someerror probability. Ran Raz [13§ has exhibited a
function wherethe quantum-classicalseparationhasboth features: the quarntum
protocol is exponertially better than the classicalprotocol, even if the latter is
allowed someerror probability. Considerthe following promise problem P

Alice receivesa unit vectorv 2 R™ and a decompsition of the cor-
responding spacein two orthogonal subspacesH @ and H®. Bob
receivesan m £ m unitary transformation U.

Promise: Uv is either \close" to H® orto H®,

Question: which of the two?

Formally, Uv being \close" to subspaceH () meansthat kP;Uv k2, 2=3, where
P; is the projector on subspaceH (. As stated, this is a problemwith cortinuous
input, but it can be discretizedby approximating ead real number by O(logm)
bits. Alice and Bob's input is now n 2 O(m?logm) bits long. There is a simple
yet excient 2-round quantum protocol for this problem: Alice viewsv asa logm-
gubit state and sendsthis to Bob. Bob applies U and sendsbad the result.
Alice then measuresin which subspaceH () the vector Uv lies and outputs the
resulting i. This takesonly 2logm 2 O(logn) qubits of comnunication and has
small probability of error.

The ezxciency of this protocol comesfrom the fact that an m-dimensional
vector can be \compressed" or \represerted" as a logm-qubit state. Similar
compressionis not possiblewith classicalbits, which suggestghat any classical
protocolfor P will haveto sendthe vectorv moreor lessliterally and hencerequire
much communication. This turns out to be true but the proof is surprisingly
hard [13§. The result is the rst exponertial gap betweenQcc, and Rcc;:

H n1=4 ﬂ
6.4.4. Theorem (Raz [138]). Qcc,(P) 2 O(logn) and Rcc,(P) 2 -

6.5 Some Applications

The main applications of classi@l comnunication complexity have beenin prov-
ing lower bounds for various models like VLSI, Boolean circuits, formula size,
Turing macdine complexity, data structures, automata sizeetc. We referto [109
for many examples. Typically, one proceedsby showing that a communication
complexity problemf is \embedded" in the computational problem P of inter-
est, and then usescommnunication complexity lower bounds on f to establish
lower boundson P. Similarly, quantum comnunication complexity can be used
to establish lower bounds in various models of quantum computation, though
sud applications have receiwed relatively little attention sofar. We will brie®y
mertion some.
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Yao [169 initially introduced quartum communication complexity as a tool
for proving a superlinearlower bound on the quarntum formula sizeof the majority
function (a \formula" is a circuit of restricted form). More recerily, Klauck [10]]
usedone-roundquantum commnunication complexity lower boundsto prove lower
boundson the sizeof quartum formulae.

Sinceupper boundson query complexity give upper boundson communication
complexity (Lemma6.4.1),lower boundson communication complexity give lower
boundson query complexity. For instance,IP,(x;y) = PARITY ,(x " y), sothe
-( n) boundwhich wasprovenfor IP,, in [54](seealsoSection7.4below) impliesan
-( n=logn) lower bound for the quantum query complexity of the parity function,
asobsened by Buhrman, Cleve, and Wigderson[42]. This lower bound was later
strengthenedto n=2, asexplainedin Section2.6.3of this thesis.

Furthermore, as in the classicalcase,lower bounds on (one-way) comrmuni-
cation complexity imply lower bounds on the sizeof nite automata. This was
usedby Klauck [10]] to shaw that zero-errorquartum nite automata cannotbe
much smallerthan classicaldeterministic nite automata.

Finally, Ben-Or [21] hasrecerily applied the lower boundsfor IP,, in a new
proof of the security of quantum key distribution.

6.6 Other Developments

At the endof this introductory chapter, we mertion someother resultsin quarntum
communication complexity or related models:

2 Zero-error proto cols. We have seenquantum-classicalseparationsin the
exact and the bounded-errorsettings. What about the zero-errorsetting?
It wasobsenedin [43] that we cancombine Lemma6.4.1with our zero-error
quartum algorithms for AND-OR trees(Section2.7.2)to get quantum zero-
error protocolsfor the total function which is the dth-level AND-OR tree of
x N y. Theseprotocols use O(n*?*1=dlogn) qubits of comnunication. We
conjecturethat classicalzero-errorprotocols need-( n) comnunication for
thesefunctions (for xed d), but were unfortunately unable to prove this.
Klauck [107]] later constructeda similar function f for which he could prove
agood lower bound on Rcgy(f ), thusestablishingthe rst quantum-classical
separationbetweenQcg(f ) and Rcg(f ) for a total function.

2 One-way communication. Supposethe communication is one-round: Al-
ice just sendsqubits to Bob. Klauck [10]] shavedfor all total functions that
guartum commnunication is not signi cantly better than classicalcommnuni-
cation for one-way commnunication in the exact or zero-errorsettings.

2 Rounds. It is well known in classicalcomnunication complexity that al-
lowing Alice and Bob k + 1 rounds of communication instead of k reduces
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the required comnmunication exponertially for somefunctions. An analo-
gousresult hasrecerly beenshown for quantum comnunication [104.

2 Quantum sampling. For the sampling problem, Alice and Bob do not
want to compute somef (x;y), but instead want to samplean (x; y)-pair
accordingto someknown joint probability distribution, usingaslittle com-
munication as possible. Ambainis et al. [12] give a tight algebraiccharac-
terization of quartum samplingcomplexity, and exhibit an exponertial gap
betweenthe quartum and classicalcommunication required for a sampling
problem related to disjointness.

2 Spooky communication. Brassard, Cleve, and Tapp [33 exhibit tasks
that can be achieved in the quantum world with entanglemert and no
communication, but which would require communication in the classical
world. They call sudh quantum protocols \spooky" in referenceto Ein-
stein's description of certain quantum e®ectsas \sp ooky actions at a dis-
tance" (\spukhafte Fernwirkungen"). Brassard,Cleve, and Tapp also give
upper and lower boundson the amourt of classicalcomnmunication needed
to \simulate" EPR-pairs. Their results may be viewed as quartitativ e ex-
tensionsof the famousBell inequalities [2(].

6.7 Summary

The basic problem of communication complexity is the following: Alice receives
an input x and Bob receives an input y (usually of n bits ead), and together
they want to compute somefunction f (x;y) using as little communication be-
tweenthem as possible. This model of distributed computation hasfound many
applications in classicalcomputing. Quantum communication complexity asks
whether the amourt of comnunication of sud a problem can be reduced sig-
ni cantly if Alice and Bob can comnunicate qubits and/or make use of shared
entanglemen. The answer is “yes' (sometimes).In this chapter we descriked the
main examplesknown wherequantum commnunication complexity is signi cantly
lessthan classicalcommunication complexity, as well as someapplications.






Chapter 7

Lower Bounds for Quantum
Comm unication Complexit vy

This chapter is basedon the papers

2 H. Buhrman and R. de Wolf. Communication Complexity Lower Bounds
by Polynomials. In Proceedings of 16th IEEE Annual Conferene on Com-
putational Complexity (CCC 2001), pages120{130,2001.

2 R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conferene on Computational Complexity (CCC 2000),pages271{278,
2000.

7.1 Intro duction

To repeat the previouschapter, the eld of communication complexity dealswith

the following kind of problem: Alice receives someinput x 2 X, Bob receies
somey 2 Y, and together they want to compute some(usually Boolean) func-
tion f (x;y) which dependson both x and y. At the end of the protocol they
should both have the sameoutput. We are interestedin the minimum amourt of
communication that Alice and Bob need. The commnunication may be classical
or quantum, and the protocols may be exact, zero-error,or bounded-error.

In Section 6.4, we sav someexampleswhere quartum commnunication com-
plexity was exponertially smallerthan classicalcommunication complexity. The
questionariseshow big the gapsbetweenquantum and classicalcan be for vari-
ous (classesof) functions. In order to answer this, we needto exhibit limits on
the power of quartum communication complexity, i.e., establishlower boundson
guantum communication complexity. Few sud lower bound techniquesare cur-
rently known. Somelower bound methods are available for Qocg (f ) [165 108 54,
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12], but the only lower bound known for the entanglemen-enhancedcomplexity
Qoct (f) is for the inner product function [54.1 For the caseof lower bounds
on bounded-errorprotocols, our current techniquesare even more limited. The
main purposeof this chapter is to dewelop newtools for proving lower boundson
quantum comrmunication protocols.

The tools we will dewelop are quite successfufor proving lower bounds on
exactquantum protocols. A strong and well known lower bound for the classial
deterministic complexity Dcc(f ) is given by the logarithm of the rank (over the
“eld of real numbers) of the communication matrix for f [121. As rst noted
in [42), techniquesof Yao [165 and Kremer [10§ imply that an -(log rank(f))-
bound also holds for Qocg (f). Our rst result in this chapter is to extend this
bound to the ertanglemert-enhancedcomplexity Qccg (f ) and to derive the op-
timal constar:?
log(rank(f) i 1)

> ;

This implies n=2 lower bounds for the Qocg -complexity of the equality and dis-
jointness problems, for which no good bounds were known prior to this work.
This n=2 is tight up to 1 bit, sinceAlice can sendher n-bit input to Bob with
n=2 qubits and n=2 EPR-pairs using superdensecoding [24]; Bob can then com-
pute f (x; y) and sendbadk the 1-bit answer. Our n=2 lower bound also provides
a new proof of optimality of superdensecoding: if we were able to send more
than 2 classicalbits via 1 qubit of communication, then we would violate our
communication complexity lower bounds. The samen=2 bound can be shown to
hold for almostall functions (which, howewer, doesnot precludethe existenceof
interesting problemswith large quantum-classicalgaps).

In another direction, proof of the well known \log-rank conjecture" (Dcc(f ) -
(logrank(f ))k for somek) would now imply polynomial equivalence between
Dcc(f ) and Qocg (f) (as already noted for Dec(f ) and Qoce (f) in [12]). How-
ewer, this conjectureis a long standing open question which is probably hard
to solwe in full generality. In order to get a better handle on rank(f ), we re-
late it to a property of polynomials. If our communication problem is of the
form f (x;y) = g(x * y) for someBoolean function g (where x ~ y is the n-bit
string obtained by bitwise ANDing x andy), then we prove that rank(f ) equals
the number of monomialsmon(g) in the unique represeting polynomial for g.
Sincemon(g) is often easyto court, this relation allows us to prove polynomial
equivalenceof Dcc(f ) and Qccg (f ) for the special caseswhere g is monotoneor

Qece(f) ,

'Recall from the previous chapter that for the Q and C® complexities we only court the
number of communicated qubits, not the number of prior EPR-pairs consumedby the protocol.

2During discussionswe had with Michael Nielsenin Cambridge (UK) in the summerof 1999,
it appearedthat an equivalent result canbe derived from results about Schmidt numbersin [129,
Section 6.4.2].

Actually, in the conferenceversion of this work [48], the lower bound was stated without the
i 1', but that proof contained a bug.
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symmetric.

For the caseof boundal-error quantum protocols, very few lower bounds are
currently known (exceptions are inner product [54] and the general\discrep-
ancy" bound [108). In particular, no good lower bounds arepknown for the
disjointnessproblem. The bestknown upper bound for this is O(" nlogn) qubits
(Section6.4.2),contrasting with linear classicarandomizedcomplexity. Sincedis-
jointnessis a\co-NP -complete" communication problem[14], a good lower bound
for this problem would imply lower bounds for all \ NP -hard” communication
problems. In order to attack this problem, we make an e®ortto extendthe above
polynomial-basedapproad to bounded-errorprotocols. We considerthe approxi-
mate rank, denotedﬂank(f )), and show the bound Qoc,(f) , (log ﬂank(f ))=2 for
2-sidedbounded-errorqubit protocols (again using techniquesfrom [165 10§).

Unfortunately, lower bounds on fank(f) are much harder to obtain than for

rank(f ). If we could prove for the casef (x;y) = g(x ~ y) that dank(f ) roughly
equalsthe Bumber of monomialsmgon(g) of an approximating polynomial for g,
then an-( "~ n) lower bound would follow for disjointness,becausewe show that
disjointnessrequiresat least2 " monomialsto approximate. Sincewe prove that
the quartities rank(f ) and mon(g) arein fact equalin the exact case,this gives

somehope for a similar result dank(f ) ¥: mon(g) in the appraximating case,and
hencefor resolvingthe complexity of disjointness. Newerthelessthe boundsthat
we actually are able to prove for disjointnessare disappointingly weak. We end
the chapter with a discussionof someof the main open problemsfor quartum
communication complexity.

7.2 Lower Bounds for Exact Proto cols

Consider a total function f : f0;1g" £ f0;1g" ! f0;1g. The communiction
matrix M¢ correspnding to this f is the 2" £ 2" Boolean matrix whose(X; y)-
ertry is f (X;y). We userank(f) to denote the rank of M (over the reals).
One of the most powerful techniquesfor lower bounds on classicaldeterministic
communication complexity is the well known log-rank lower bound: Dcc(f) |,

logrank(f ). This was rst proven by Mehlhorn and Schmidt [121].

As notedin [42, 12],techniquesfrom [165 10§ imply a similar lower bound for
quartum protocolswith prior entanglemen: Qoce(f) 2 -(log rank(f)). Herewe
will “rst provethe logrank(f ) bound for clean quantum protocolsand afterwards
extend it to generalentanglemert-enhancedprotocols. A clean qubit protocol is
a protocol, of the secondkind consideredin Section 6.3.2, that leaves a clean
workspacebehind at the end of the protocol: it starts in the state jOij OijOi (no
prior ertanglemert) and endswith jOij f (x; y)ijOi We useQcc,(f ) for the minimal
cost of sudh clean protocols for f. For simplicity, our proof assumesthat the
channelis a 1-qubit space. The sameproof works if the channel can hold more
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qubits. We usethe following lemma:

7.2.1. Lemma (Y ao [165]; Kremer [108]). The nal state of an "-qubit pro-
tocol (without prior entanglement)on input (x; y) can be written as

& () i (MIAIT] i+ Bi(y)i;

i2f 0;1g

whee the ®(x); i(y) are complex numkbers of magnitude - 1, the A;(x);Bi(y)
are unit vectors, and i- denotesthe last bit of the "-bit string i.

Pro of. The proof is by induction on ":

Base step. For ~ = 0 the lemmais obvious.

Induction step. Supposeafter = qubits of comnunication the state can be
written as

& (X) i(WIAIX)iji-ij Bi(y)i: (7.1)
i2f 0;1g

We assumewithout lossof generality that it is Alice's turn: sheappliesU%, (x)
to her part and the 1-qubit channel. Note that there exist complex numbers
®o(X); ®1(x) and unit vectorsAjp(x); Ai1(x) sud that

(U5 00 - DJAIX)iji-ij Bi(y)i =
®o(X)jAio(X)ij 0] Bi(y)i + &1(X)jAiL(x)i] 1ij Bi(y)i:
Thusewery elemen of the superposition (7.1) \splits in two" whenwe apply U4, .

Accordingly, we canwrite the state after U-,; in the form required by the lemma,
which concludesthe proof. 2

7.2.2. Theorem (Buhrman & de Wolf [48]). Qoc.(f), logrank(f)+ 1.

Pro of. Considera clean -qubit protocol for f . By Lemma7.2.1, we can write
its nal state as X
& (X) i(WIAIX)iji-ijBi(y)i:
i2f 0;1g’

The protocol is clean, so the nal state is jOijf (x;y)ij0i. Henceall parts of
jAi(x)i and jBi(y)i other than jOi will cancelout, and we can assumewithout
lossof generality that jA;(x)i = jBi(y)i = jOi for all i. Now the amplitude of the
j0ij 1ij Oi -state is simply the sum of the amplitudes ® (x) i(y) of the i for which
i~ = 1. This sumis either O or 1, and equalsthe acceptanceprobability P (x;y)
of the protocol. Letting ®x) (resp.  (y)) be the dimension-2i * vector whose
ertries are ® (x) (resp. i(y)) for the i with i- = 1, we obtain:

X
P(xy) = | (x)7i(y) = ®x)" ¢ (y):

ini-=1
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Sincethe protocol is exact, we must have P(x;y) = f (x;y). Henceif we de ne
A asthe jXj £ d matrix having the ®&x) asrows and B asthe d£ jY] matrix
having the ~(y) ascolumns,then M = AB. But now

rank(M;) = rank(AB) - rank(A) - d- 2%

and the theorem follows. 2

We now extend this to the casewhereAlice and Bob sharean unlimited (but
“nite) number of EPR-pairs at the start of the protocol:

log(rank(f) i 1)
> .

Proof. Let M? bethe matrix whose(x; y)-ertry is (j 1)'*); this is the matrix
we getif wereplacef 0; 1g by f+1; 1gin the ordinary commnunication matrix My .
Letting J denotethe all-1 matrix (which hasrank 1), we haver§ =Ji 2M;, so
the ranks of M; and M2 di®erby at most1. For m > O, let f©™ : XM £ Y™ |
f0; 1g denote the Boolean function that is the XOR of m independen copies

7.2.3. Theorem (Buhrman & de Wolf [48]). Qocg(f),

M. = (M&) ™, becausethe XOR of m Boolean variablesin § -notation is
just their product. This implies that rank(Mf§©m) = rank(M )™ and hencealso
rank(f°™) . (rank(f)j 1)™; 1.

Now supposewe have someexact protocol for f that uses™ qubits of com-
munication and k prior EPR-pairs. We will build a cleanqubit protocol without
prior ertanglemernt for f ®™, and then invoke Theorem7.2.2to get a lower bound
on . The ideais to establishthe prior ertanglemert once,then to reuseit to
cleanly computef m times, and nally to \uncompute" the entanglemen.

First Alice makesk EPR-pairs and sendsone half of ead pair to Bob (at a
cost of k qubits of comnunication). Now they run the protocol to compute the
‘rst instance of f (* qubits of communication). Alice and Bob eat copy the
answer to a safeplace, which we will call their respective “ansver bits', and they
reversethe protocol (again = qubits of communication). This givesthem bad
the k EPR-pairs and an otherwise cleanworkspace,which they can reuse. Now
they compute the secondinstance of f, they eady XOR the answer into their
answer bit (which can be donecleanly), and they reversethe protocol, etc. After
all m instancesof f have beencomputed, Alice and Bob both have the answer
f ©M(x; y) left and the k EPR-pairs, which they uncomputeusinganotherk qubits
of comnunication (Bob sendshis halves of the k EPR-pairs to Alice, who sets
them badk to jOO).

This givesa clean protocol for f ©™ that uses2m” + 2k qubits and no prior
ertanglemen. By Theorem7.2.2we obtain:

2m + 2k |, Qoc,(f°™) , logrank(f®™)+ 1
log((rank(f)j 1)™j 1)+ 1 , mlog(rank(f) 1);
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hence
log(rank(f)j 1) 5
. > b
Sincethis must hold for every m > 0, the theorem follows. 2

We can derive a stronger bound for the Cccg (f )-complexity, which conbines
classi@l communication with unlimited prior entanglemert:

7.2.4. Theorem (Buhrman & de Wolf [48]). Cccg(f), log(rank(f)i 1).

Proof. Letf ~f :X2£ Y?! f{0;1g denotethe Boolean function that is
the AND of two independent copiesof f. Note that M~y = M; - M; and
hencerank(f ~ f) = rank(f)?. Sincea qubit and an EPR-pair can be used
to send 2 classicalbits via superdensecoding (Section 6.2), we can devise a
qubit protocol for f ~ f using Cccg (f) qubits (compute the two copiesof f in
parallel usingthe classicalbit protocol). Henceby the previoustheoremwe obtain
Coca(f), Qocg(f ~f), (log(rank(f ~ f)j 1))=2, log(rank(f)i 1). 2

Below we draw someconsequenceBom theselog-rank lower bounds. Firstly,
the comnunication matrix Mgg, of the equality-problem is the 2" £ 2" iden-
tity matrix, sorank(EQ,) = 2". This implies Qocg (EQ,) , n=2, which is
tight up to 1 bit becauseof superdensecoding, and Cccz (EQ,) , n (in con-
trast, Qcc,(EQ,) 2 £(log n) and Cccy(EQ,) 2 O(1)). The disjointness func-
tion on n bits is the AND of n disjointnesseson 1 bit (which have rank 2
ead), sorank(DISJ,) = 2". The complemen of the inner product function
hasrank(IP,) = 2". Thus we have the following strong lower bounds, all tight
up to 1 bit:3

7.2.5. Cor ollar y (Buhrman & de Wolf [48]).

2 Qoce (EQ,); Qacg (DISJy), Qocg (IPy) , n=2
2 Coc (EQ,); Cacl (DISJy); Cec2 (IP,) . n

Koml$s[107 hasshown that the fraction of m£ m Booleanmatricesthat have
determinart 0 goesto O asm ! 1 . Hencealmostall 2" £ 2" Booleanmatrices
have full rank 2", which implies that almost all functions have maximal quartum
communication complexity:

7.2.6. Cor ollar y (Buhrman & de Wolf [48]). For almost all total f we
haveQocg (f) , n=2and Cocg (f), n.

3The samebounds for IP,, are alsogiven in [54]. The boundsfor EQ, and DISJ, are new,
and can also be shown to hold for zer-error quantum protocols.
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In classicalcommunication complexity, much researt wert into variouskinds
of direct sum properties (see[109 Section4.1]). We say f satis esthe quantum
direct sum property if computing m independen copiesof f (without prior en-
tanglemert) takesmQace (f ) qubits of communication in the worst case.We do
not know an exampleof anf without this property. Usingthe sametechnique as
before,we can prove an equivalencebetweenthe qubit modelswith and without
prior entanglemert for f that satisfy this property:

7.2.7. Cor ollar y (Buhrman & de Wolf [48]). If f satis es the quantum
direct sum property, then Qccg (f) - Qoce (f) - 2Qoct (f).

Proof. Qccg(f) - Qcce(f) is obvious. Using the techniquesof Theorem7.2.3
we havemQoce (f) - 2mQack (f )+ k, for all m and some xed k, henceQocg (f ) -
2Qcck (f). 2

Finally, becauseof Theorem7.2.3,the well known \log-rank conjecture"” now
implies the polynomial equivalenceof deterministic classicalcomnunication com-
plexity and exact quantum communication complexity (with or without prior
ertanglemen) for all total f:

7.2.8. Cor ollar y (Buhrman & de Wolf [48]). If for somefunction f we
have that Dcc(f) 2 O((log rank(f))¥), then Qocg (f) - Qoce(f) - Dec(f) 2
O(Qocz (F)).

7.3 A Lower Bound Technique via Polynomials

7.3.1 Decomp ositions and polynomials

The previous sectionshaved that lower boundson rank(f ) imply lower bounds
on Qccg (f ). In this sectionwe relate rank(f ) to the number of monomialsof a
polynomial for f and usethis to prove lower boundson Qccg (f ) for someclasses
of functions.

We de ne the decomposition numker m(f ) of somefunction f : f0;1g" £
f0;1g" ! R asthe minimum m suc that there exist funqgons a;(x); i am(x)
and by(y);:::;bm(y) (from R" to R) for which f (x;y) = ., a(x)h(y) for all
X;y. We sgy that f canbe decomposal into the m functions a;h. Without lossof
generality, the functions a;;j may be assumedto be multilinear polynomials. It
is easyto seethat the decompmsition number equalsthe rank:*

4The Trst part of the proof employs a technique of Nisan and Wigderson [134. They used
this to prove logrank(f) 2 O(n'°9s2) for a specic f. Our Corollary 7.3.4, together with an
easylower bound on the number of monomialsin the polynomial for their function, implies that
this is tight: logrank(f) 2 £( n'°9:2) for their f .
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7.3.1. Lemma (Buhrman & de Wolf [48]). rank(f) = m(f).

Pro of. P

rank (f) - m(f): Letf(x;y) = 7 a(x)h(y), M; bethe matrix dened by
Mi(x;y) = a(x)b(y), ri be the row vector whoseyth entry is b(y). Note that
the xth row of M; is a(x) times r;. Thus all rows of M; are scalar multiples of
eadh o[:ber, henceM; hasrank 1. Sincerank(A + E) - rank(A) + rank(B) and
M¢ = MM, wehaverank(f) = rank(M¢) -~ ™" rank(M;) = m(f).

m(f) - rank (f): Supposerank(f) = r. Then there arer columnscy;:::;

in M; which spanthe column spaceof M;. Let A bethe 2" £ r matrix that has
thesec ascolumns. Let B bethe r £ 2" matrix whoseith columnis formedby the
r coexcients of the ith column of My when written out aga linear conbination
of ci;:::;¢. Then My = AB, hencef (x;y) = M¢(X;y) = i':l A,iBjy: De ning
functions a;; b by a;(x) = Ay andh(y) = By, we havem(f) - rank(f). 2

Combined with Theorems7.2.3and 7.2.4we obtain

log(m(f)i 1)

7.3.2. Cor ollar y (Buhrman & de Wolf [48]). Qccg(f) >

and Cocg (f) , log(m(f) 1).

Accordingly, for lower bounds on quantum communication complexity it is
important to be able to determine the decompsition number m(f ). Often this
is hard. It is much easierto determine the number of monomialsmon(f ) of the
represeting polynomial for f. Clearly m(f) - mon(f). Below we shaw that in
the special casewheref (x;y) = g(x * y), thesetwo numbers are the same?

Below, a monomialis called evenif it cortains x; i®it cortains y;, for example
2X1X3Y1Ys is evenand x1X3y; is not. A polynomial is evenif ead of its monomials
is even.

7.3.3. Lemma (Buhrman & de Wolf [48]). If p: f0O;1g" £ f0;19" ! R is
an evenpolynomial with k monomials, then m(p) = k.

Pro of. Clearly m(p) - k. To prove the cornverse, consider DISJ,(X;y) =
| it (1§ Xjyi), the unique polynomial for the disjointness function. Note that
this polynomial contains all and only even monomials (with coexcients §1).
Since DISJ,, hasrank 2", it follows from Lemma 7.3.1 that DISJ, cannot be
decompsedin fewer then 2" terms. We will shov how a decompsition of p with
m(p) < k would give rise to a decomposition of DISJ,, with fewer than 2" terms.
Supposewe can write

(P

pxy) = a(x)b(y):
i=1
SAfter learning about this result, Mario Szegedy(personal communication) came up with

an alternativ e proof of this, using Fourier transforms.
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Let axsys be someeven monomialin p and supposethe monomial xsys in DISJ,
hascoexcient c= 8§ 1. Now whene\er bxs occursin somea;, replacethat bxs by
(cb=3xs. Using the fact that p contains only even monomials,it is not hard to
seethat the new polynomial obtained in this way is the sameas p, exceptthat
the monomial axsXs is replacedby cxsXs.

Doing this sequetially for all monomialsin p, we end up with a polynomial p°
(with k monomialsand m(p® - m(p)) which is a subpolynomial of DISJ,, in the
sensethat ead monomial in p° also occurs with the samecoezcient in DISJ,.
Notice that by adding all 2" j k missing DISJ,-monomialsto p° we obtain a
decompsition of DISJ, with m(p% + 2" k terms. But any sud decompsition
needsat least 2" terms, hencem(p® + 2" ; k, 2", which impliesk - m(p9 -

m(p). 2

If f(x;y) = g(x” y) for someBooleanfunction g, then the polynomial that
represems f is just the polynomial of g with the ith variable replacedby x;y;.
Hencesud a polynomial is even, and we obtain:

7.3.4. Cor ollar y (Buhrman & de Wolf [48]). If g:f0;1g" ! fO0;1g and
f(x;y) = g(x " y), thenmon(g) = mon(f) = m(f) = rank(f ).

This givesa tool for lower bounding (quantum and classical)comnunication
complexity wheneer f is of the form f(x;y) = g(x * y): log(mon(g) j 1) -
Cocg (f) - Dec(f ). Below we give someapplications.

7.3.2 Symmetric functions

As a rst application we shav that Dcc(f ) and Qocg (f) are linearly related if
f(x;y) = g(x” y) and g is symmetric (this follows from Corollary 7.3.8 be-
low). Furthermore, we show that the classicalrandomizedpublic-coin complexity
REU(f ) canbeat mosta logn-factor lessthan Dec(f ) for such f (Theorem7.3.10).
We will assumewithout lossof generality that g(0) = 0, sothe polynomial rep-
reserning g doesnot have the constart-1 monomial.

7.3.5. Lemma (Buhrman & de Wolf [48]). If gisasymmetricfunction such
that its Iowest-weightl-iﬂput hla%Har@ming weightt > 0, and f (x;y) = g(x y),
then Dec'™™™(f)=log’ [, | +1 + 1.

Pro of. It is known (and easyto see)that Dcc ™" (f ) = logr + 1, wherer is the
number of di®erern rows of M (this equalsthe number of di®erert columnsin our
casebecausd (x;y) = f (y;x)). Wecourt r. Firstly, if jxj < tthenjx?yj < t, so
then the x-row of M; cortains only zeraesby de nition of f. Secondlyif x 6 x°
and both jxj , t and jxY , t thenit is easyto seethat there existsay sud
that jx * yj = t and jx°”~ yj < t (or vice versa), hencef (x;y) 6 f (x%y) sothe
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x-row and x%row are di®eren. Accordingly, r equalsthe number of di®eren x
with jxj , t, +1 for the O-row, which givesthe lemma. 2

7.3.6. Lemma (Buhrman & de Wolf [48]). If gisasymmetricfunction such
that its lowest-weightl-input hasweightt > 0, then

A)@ Unﬂ! A)@ Hnﬂ!
(1 o(1)) log i - logmon(g) - log :

: _ [
i=t i=t

Pro of.  The upper bound follows immediately from the fact that g can only
contain monomialsof degree, t. For the lower bound we distinguish two cases.

Case 1: t - n=2. It hasbeenproven by von zur Gathen and Roche that
every symmetric g has degreedegg) = nj O(n%®) (Theorem 2.6.1). This
implies that g must cortain a monomial of degreed for somed 2 [n=2;n=2+ b
with b2 O(n%5%®), for otherwisewe could setn=2; bvariablesto zeroand obtain
a non-constart symmetric function on m = n=2+ bvariableswith ngfee< n=2 -
mj O(m®*%). But becauseg is symmetric, it mustthen cortgin all '} monomials
of degreed. Using Stirling's approximation (n! = (1+ o(1)) 2¥n(n=") we now
get (suppressingconstart factorsin the derivation):

R
n

d

TR

n=2+b>b

mon(g)

nn+1=2

(n=2j bn=2 b+1 =2(n=2+ bn=2+ b+1=2
nn+1=2

((n=2)2 | b2)n:2i b+l 22(n=2+ b)Zb
nn+1=2
> (n2=4)n:21 b+1 :2n2b
nn+1=2
(n:2)ni 2b+1 n2b
2ni2m{
= _pﬁ—:

: iP . cC
Hencelogmon(g) , nj O(n®*) = (1j o1))n, (1i ol)log L, T i ¢
Case 2: t > n=2. It is easyto seeby symmetry that g cortains all ’t‘
monomialsof degreet. Now
Hn‘ﬂ
(ni t+mon(g), (ni t+1) .,

<

o
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iP, i,¢¢ iP, i,6¢
Hencelogmon(g), log ., % i log(nj t+1)=(1j o1))log .., " .2

i=t i =t i
P, i,¢ _

The number mon(g) may be lessthen -, ' . For example, considerthe
func'gon ggxcs X2;X3) = X1+ Xo+ X3j X1Xai X1X3i XoX3 [133. Heremon(g) = 6
but ., f’ = 7. Hencethe 1 o(1) of Lemma 7.3.6 cannot be improved to 1
in general(it canif g is a threshold function).

Combining the previousresults:

7.3.7. Cor ollar y (Buhrman & de Wolf [48]). If g is a symmetric func-
tion whoselowest-weightl-input hasweightt > 0 and f (x;y) = g(x * y), then
(1i o(1))log . Coce(f)
i=t .
Doc(f) - Dect™(f) = log S o+t1lo+L

i=t

>

Accordingly, for symmetric g the commnunication complexity (quantum and
classical,with or without prior ertanglemen, 1-round and multi-round) asymp-
totically equalslogrank(f) up to small constart factors. In particular:

7.3.8. Cor ollar y (Buhrman & de Wolf [48]). If g is a symmetric func-
tion and f (x;y) = g(x " y), then (1 o(1))Dec(f) - Cocg(f) - Doc(f).

We have shavn that Cocg (f) and Dec(f ) are asymptotically equal whenewer
f(x;y) = g(x”"y) and g is symmetric. For such f, Dce(f) is alsonearly equalto
the classicalbounded-errorcommnunication complexity Rocp”b(f ), wherewe allow
Alice and Bob to share public coin °ips. In order to prove this, we introduce
the notion of O-black sensitivity in analogy to the notion of block sensitivity of
Nisan (Section2.5.1). For input x 2 f0; 1g", let b0,(g) be the maximal number
of disjoint setsS;;:::; Sy of indicesof variables,sud that for every i we have (1)
all S;-variableshave value 0 in x and (2) g(x) 6 g(x5), wherexSi is the string
obtained from x by setting all S;-variablesto 1. Let b0(g) = max, b0, (g). We
now have:

7.3.9. Lemma (Buhrman & de Wolf [48]). If gisasymmetricfunction, then
mon(g) - N9,

Pro of. Denotegc = g(x) for jxj = k, and let t be the smallestnumber sut
that g 6 g+1. ThenbD(g) , nj t, becausecomplemening any oneofthenj t
O-variablesin a weight-t input x, will changethe function value from g; to g .

If t - n=2then bs(g) , n=2, somon(g) - 2p- wa(%g If t > n=2then g has

no monomialsof degree- t, hencemon(g) - L., ! - n#9: 2

Now it follows that Roch™(f ) cannot be much lessthan Dec(f ):
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7.3.10. Theorem (Buhrman & de Wolf [48]). If gis asymmetricfunction
and f (x;y) = g(x ~ y), then Dec(f ) 2 O(Rech™®(f ) logn).

Pro of. By Corollaries7.3.6and 7.3.7we have Dcc(f) - (1 + o(1)) logmon(g).
Lemma7.3.9impliesDcc(f ) 2 O(bg(g) logn). Finally we canfairly easilymodify
Razborov's lower bound proof for disjointness[139 (seealso [109 Section 4.6])
to shov Roch™®(f ) 2 -( b0(f)) (we omit the technical details). This implies the
theorem. 2

This theorem is tight for the function de ned by g(x) = 1i®jxj , nj 1.
We have mon(g) = n+ 1, sologn - Dcc(f) - (1 + o(1)) logn. On the other
hand, an O(1) bounded-errorpublic coin protocol can easily be derived from the
O(1)-protocol for equality (Section6.3.1): Alice testsif jxj < nj 1, sendsa 0 if
soand a 1 if not. In the rst caseAlice and Bob know that f (x;y) = 0. In the
secondcase,we have f (x;y) = 1i®x = y or y = 1, which can be tested with 2
applications of the equality-protocol. HenceRoch™(f ) 2 O(1).

The above results shawv that deterministic complexity, classicalbounded-error
complexity, and exactquarntum complexity areall nearly equalif f (x; y) = g(x"y)
and g is symmetric. What about the quantum bounded-errorcompigexity? Recall
that Theorem 6.4.2 gave the near-quadraticgap Qcc,(DISJ,) 2 O(" nlogn) and
Reccy(DISJ,) 2 -( n) for the disjointness function DISJ,(x;y) = NOR(X ).
Unfortunately, no good lower boundson Qcc,(DISJ,,) are known (seebelow), so
we do not know whether this is the largestgap possible.

7.3.3 Monotone functions

A secondapplication concernsmonotone problems. Lovszand Saks[11§ (see
also[119) provethe log-rank conjecturefor (amongothers)the following problem,
which they call the union problemfor C. Here C is a monotone set system
(e,  A2C~AunB)) B 2 C) over somesizen universe. Alice and Bob
receive setsx andy, respectively, from this universe,and their taskis to determine
whetherx [ y 2 C. Identifying setswith their represetation as n-bit strings,
this problem can equivalertly be viewed as a function f (x;y) = g(x _y), where
g is a monotoneincreasingBooleanfunction. Note that it doesn't really matter
whether we take g increasingor decreasingnor whetherwe usex _y or x* vy, as
theseproblemscan all be corverted into ead other via De Morgan's laws.

7.3.11. Theorem (Lov@8sz & Saks [116]). If g is a monotone function and
f(x;y) = g(x " y), then Doc(f ) 2 O((log rank(f ))?).

7.3.12. Cor ollar y (Buhrman & de Wolf [48]). If g is a monotone func-
tion and f (x;y) = g(x * y), then Dcc(f ) 2 O(Qocg (f)?).
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This result can be tightened for the special caseof d-level AND-OIB-trees.
For example,let g be a 2-level AND-of-ORs on n variableswith fan-out ™ n and
f(x;y) = g(x"y). Thenghas(2 "j 1) " monomialsand henceQccg (f), n=2.
In cortrast, the zero-errorquartum complexity of f is Qocy(f) 2 O(n3*logn),
which follows from combining Lemma 6.4.1with our zero-erroralgorithms from
Section2.7.2.

7.4 Lower Bounds for Bounded-Error Proto cols

In the previoussectionswe saw that the logrank(f ) lower bound on exact quan-
tum commnunication complexity Qccg (f ) is a strong tool, which often givesgood
lower bounds. The situation is much worsewhen it comesto lower bounds on
bounded-errorquartum communication complexity. Kremer [109 shawved that
the so-called\discrepancy” lower bound alsoholdsfor Qcc,(f ). This givesa lower
bound Qcc,(IP ) 2 -( n) for inner product but doesnot provide good boundsfor
functions like disjointness. Cleve, van Dam, Nielsen,and Tapp [54] later indepen-
dertly proved the lower bound for Qoc5(1P ). We will sketch their very elegan
proof herefor the caseof exact protocols;for bounded-errorprotocolsit is similar
but more technical. The proof usesthe IP-protocol to commnunicate Alice's n-bit
input to Bob, and then invokes Holew's theoremto concludethat many qubits
must have beencomrmunicated in order to achieve this. SupposeAlice and Bob
have someprotocol for IP,,. They canusethis to computethe following mapping:

xijyi !jxi(i 1)%jyi:

Now supposeAlice starts with BN arbitrary n-bit state jxi and Bob starts with
the uniform superposition p% y2roagn 1Yl If they apply the above mapping,
the nal state becomes

o1 X .

ixi p— (i 1*¥jyi:

y2f 0;1g"
If Bob now appliesa Hadamardtransform to ead of his n qubits, then he obtains
the basis state jxi, so Alice's n classicalbits have been commnunicated to Bob.
Theorem6.2.1now implies that the IP,-protocol must comnunicate -( n) qubits,
evenif Alice and Bob shareunlimited prior entanglemen. The above proof works
for IP,, but unfortunately doesnot easilyyield good boundsin general.
A generallyapplicable but usually weak lower bound is due to Kremer [109:

7.4.1. Theorem (Kremer [108]). For everyf (total or partial) we have

Dcclround(f) . (4Q(I:2(f ) + 2)22QCCZ(f)i 2:
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Proof. Let = Qcc,(f). By Lemma7.2.1we can write the nal state of an
“-gqubit bounded-errorprotocol for f as

&(x) i(MIAIji-ij Bi(y)i:

i2f 0;1g

] P _ _
Let ACX;Y) = o gagi 2 ®1(X) i1(Y)JAi(X)ij 1ij Bia(y)i be the part of the nal
state that correspndsto a 1-output of the protocol. Fori;j 2 f0;1g' %, de ne
functions a; ; by by

aj (X) = ®1(X)® 1(x)PA;1(X)jA; 1(X)i

b (y) = i1(y) j2(Y)Bir(¥)iBj(y)i

Note that ja; (x)j - 1 andjh;(y)j - 1for all x andy, and that the acceptance
probability can now be written as
4 . 5 . x
P(x;y) = PAX; V)JA(X; y)i = aj (X)by (y):

ij 2f 0;1g'i 1

The classicall-round protocol is asfollows. Alice approximates the numbers
a; (x) by numbersea; (x) of 4" + 2 bits ead (2" + 1 bits for the real part of a; (x)
and 2" + 1 bits for its imaginary part). Shesendstheseappraximations to Bob,
hich takes (4™ + 2)22i 2 bits of communication. Bob then computes®(x;y) =
i; & (X)bj (y), and outputs 1 if this value is above 1/2, and O otherwise. Since
jfxy)i P(x;y)j- 1=3and

X

IPOGY) i B y)i (@ (x) i & (x)b;(y)

J2f01git
X - -
jaj (X) i & (X)]
i 21}8;19\i !
< 2{ (2°+1)
ijj2f0;1gi t

— 22\i 22i (2°+1) —

(o)l )

Bob is guararteed to output the right value f (x;y). 2

' ¢ ¢
7.4.2. Cor ollar y (Kremer [108]). Qcc,(f), I%i o(1) Iog'Dcc“C’“”d(f) :

This says that bounded-error quartum commnunication complexity without
prior entanglemert is at most exponertially lessthan 1-round deterministic com-
munication complexity. There are few caseswherethis corollary is more or less
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tight. One exampleis the distributed Deutsd-Jozsaproblem (Theorem 6.4.3),
where Qac,(f) 2 O(logn) and Dcc(f) 2 -( n). Note that Corollary 7.4.2 does
not hold for the models with prior entanglemen: Qoc;(EQ,) 2 O(1) while
Dcc(EQ,) = n+ 1.

Now we generalizethe lower bound approad of the previous sectionsto
bounded-errorquantum protocols. We say that a matrix M approximatesthe
commnunication matrix My if M (X;y) i f(x;y)] - 1=3for all x;y (equivalertly,
kM i Mk, - 1=8). The approximate rank lank(f ) of f is the minimum rank
amongall matricesM that approximate M; . Let the approximate decomposition
numler m(f ) be the minimum m sud thag, there exist functions a;(x); :::; am(x)
and by(y);:::;bn(y) for which jf (x;y) i Toai(x)h(y)j - 1=3for all x;y. By
the sameproof asfor Lemma7.3.1we obtain:

7.4.3. Lemma (Buhrman & de Wolf [48]). lank(f) = m(f).

By a proof similar to Theorem 7.2.2we can show

7.4.4. Theorem (Buhrman & de Wolf [48]). Qcc,(f), Iogrzl(f)'
Proof. As in Theorem 7.4.1, we can write the acceptanceprobability of an

*-qubit protocol for f as

X
P(x;y) = PAKX; )JA(X; y)i = ay (x)by (y):

ijj2f0;1gi L

We have now decommsedP (x;y) into 22 2 functions. Howewer, we must have
iP(x;y)i f(x;y)j - 1=3for all x;y, hence2?i?  m(f). It follows that * |
(logma(f))=2+ 1. 2

Unfortunately, it is much harder to prove boundson m(f ) than on m(f).% In
the exact casewe have m(f ) = mon(g) wheneer f (x;y) = g(x” y), and mon(g)
is often easyto determine. If somethingsimilar is true in the approximate case,
then we obtain strong lower boundson Qcc,(f ), becauseour next theorem gives
a bound on mon(g) in terms of the 0-block sensitivity de ned in the previous
section.

The theorem usesthe notion of a hypergraph Let [n] = f1;:::;ng and 2["]
be the power set of [n] (i.e., the set of all subsetsof [n]). A hypergraphis a set
systemH p 2", The setsE 2 H are called the edgesof H; the sizeof H is its
number of edges.We call H an s-hypergraphif all E 2 H satisfy JEj , s. A set

81t is interesting to note that IP,, (the negation of IP,,) haslessthan maximal approximate
decomposition number. For examplefor n = 2, m(f) = 4 but m(f) = 3.
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7.4.5. Lemma (Buhrman & de Wolf [48]). Letg : f0;1g" ! f0;1g be a

Boolean function for whichg(0) = 0 and g(e) = 1, p be a multilinear polynomial

which approximatesg (i.e., jg(x) i p(x)j - 1=3 for all x 2 f0;1g"), and H be

th% n=12-hypergraph formed by the set of all monomials of p that have degree
n=12 Then H hasno blacking set of n=2 elements.

Proof.  Assume,by way of contradiction, that there exists a blocking set S
of H with jSj - n=2. Obtain restrictions h and q of g and p, respectively, on
ni jSj, n=2variablesby xing all %—\@blesto 0. Then g approximates h
and all monomialsof g have degree< = n=12 (all p-monomialsof higher degree
have beenset to 0 becauseS is a blocking set for H). Since q appraximates
h we have q(0) 2 [j 1=3;1=3], q(e) 2 [2=3;4=3], and g(x) 2 [j 1=3;4=3] for all
other x 2 f0;1g". By the symmetrization techniques from,Section 2.2.2, we
can turn g into a single-ariate polynomial r of degree< = n=12 sudc that
r(0) 2 [j 1=3;1=3],r(1) 2 [2=3;4=3],and r (i) 2 [j 1=3;4=3]fori 2 f2;:::;n=2g.
Sincer(0) - 1=3 angr(l) . 2=3,wemust have p{x) , E):3 for somerealx 2 [0; 1].
But thendeqr), (1=3)(n=2)=(1=3+ 4=3+ 1=3) = n=12 by Theorem2.5.5,
cortradiction. Hencethere is no blocking set S with jSj - n=2. 2

The next lemmashaovsthat H is largeif it hasno blocking set of size: n=2:

7.4.6. Lemma (Buhrman & de Wolf [48]). If H p 2" is an s-hypergraph
of sizem < 25, then H hasa blacking set of n=2 elements.

Pro of. We usethe probabilistic method to shav the existenceof a blocking set
S. Randomly choosea set S of n=2 elemens. The probability that S doesnot
hit somespecic E 2 H is

i nii E.¢ o

n2e _ 330 DG BT ey
' n nini 1):::(nj JEj+ 1) '

n=2

Then the probability that there is someedgeE 2 H which is not hit by S is

X X
Pr[~ Sdoesnot hit E] - Pr[S doesnot hit E] - 20El . m¢2is< 1
E2H E2H E2H

Thus with positive probability, S hits all E 2 H, which provesthe existenceof a
blocking set. 2

The above lemmasallow usto prove:

7.4.7. Thegqtem (Buhrman & de Wolf [48]). If gisaBoolean function, then
rgon(g) , 2 "9
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Pro of. Let p be a polynomial which approximates g with rgon(g) monomials.

follows: if j 2 S; then we replacex; in g by y;, and if j 62S; for any i, then we
X Xj in g to the value z;. Note that h satis es

1. h(®)=9g(z) =0
2. h(e) = g(z5) = 1 for all unit ¢ 2 f0;1g°

3. mon(h) - mon(g), becausewe can easily derive an appraximating polyno-
mial for h from p, without increasingthe number of monomialsin p.

It now follows from conbining tBe_previousIemmasthat any appraximating poly-
nomial for h requiresat least2 °%2 monomials. 2

In particular, for DISJrrng: NOR;(x"y) it is easyto seethat bsO(NOFBn) =n,
sologmon(NOR,)) , n=12 (the uppelg bound logrgon(NOR,,) 2 O(" nlogn)
followsfrom the construction of adegree- n polynomial for OR,, in [133). Conse-
quertly, a proof that the approximate %ecomp)sition number m(f) rBugth equals
rgon(g) would give Qcc,(DISJ,) 2 -( n), nearly matching the O(" nlogn) up-
per bound of Section6.4.2. Sincem(f ) = mon(g) holdsin the exactcase,a result
like m(f ) ¥ gon(g) might be doable, but we have not beenable to prove this
(yet).

We end this section by proving somewealer lower bo%ndsfor disjointness.
Firﬁtly, disjointness has a bounded-errorprotocol with O(" nlogn) qubits and
O(" n) rounds (Section 6.4.2), but if we restrict to 1-round protocols then a
linear lower bound follows from a result of Nayak [125.

7.4.8. Proposition (Buhrman & de Wolf [48]). Qoci™"(DISJ,) 2 -( n).

Pro of.  Supposethere exists a 1-round qubit protocol with m qubits: Alice
sendsa messageM (x) of m qubits to Bob, and Bob then has suzcient infor-
mation to establishwhether Alice's x and Bob's y are disjoint. Note that M (x)
is independent of y. If Bob's input isy = g (the string with a 1 only on posi-
tion i), then DISJ,(X;y) is the negation of Alice's ith bit. But then the message
is an (n; m; 2=3) quantum random accesscode: by choosinginput y = ¢ and
continuing the protocol, Bob can extract from M (x) the ith bit of Alice (with
probability , 2=3), forany 1 - i - n of his choice. For this the lower bound
m, (1j H(2=3))n > 0:08 n is known [1253, where H (¢ is the binary ertropy
function. 2
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Independerily from our work, Klauck et al. [104 recerly proved the stronger
result that k-round protocols for disjointnessrequire -( n*™*=k3) qubits of com-
munication, evenin the presenceof prior entanglemert.

For unlimited-rounds bounded-errorquarntum protocolsfor disjointnesswe can
only prove a logarithmic lower bound, using the information-theoretic technique
from [54] (the bound Qcc,(DISJ,) 2 -(log n) wasalready shown in [12] and also
follows from Corollary 7.4.2).

7.4.9. Proposition (Buhrman & de Wolf [48]). Qoc5(DISJ,) 2 -(log n).

Pro of. We sketch the proof for a protocol mappingjxijyi ! (i 1)P'S?nC¥jxijyi.
Alice choosessomei 2 f1;:::;ng and starts with jqd the classicalstate which
hasa 1 only at the ith bit, and Bob starts with 97 yat o1gn JY1- After running
the protocol, Bob has state

. X (j 1)PISIntew) X (v
JAL = —pilyl = —PZTJ)":
y y
Note that Y
hAi".i—iX (j 1 = 1=
‘Ai‘zny' = 0 ifi6]

Hencethe jAi form an orthogonal set, and Bob can determine exactly which jAji
he hasandthuslearni. Alice now hastransmitted logn bits to Bob and Holewo's
theorem (Theorem 6.2.1) implies that at least (logn)=2 qubits must have been
commnmunicated to achieve this. A similar but more technical analysisworks for
the bounded-errorcase(as in [54]). 2

Finally, for the casewhere we want to compute disjointnesswith very small
error probability ", we canprove an-(log (n=")) bound. Herewe usethe subscript
\"" to indicate qubit protocolswithout prior erntanglemert whoseerror probability
is< ". We rst give a bound for equality:

7.4.10. Pr oposition (Buhrman & de Wolf [48]). If ", 2i " thenwehave
Qcc.(EQ,) 2 ~(log (n=")).

Pro of.  For simplicity we assumel="is an integer. Supposethat matrix M

approximates Mgg, = | ertry-wise up to “. Consider the 1=" £ 1=" matrix
M © that is the upper left blo|§k of M. This M 9is strictly diagonally dominart:
MO > 1 "= (t) 1) > i1 IMP. A strictly diagonally dominart matrix

hasfull rank [92, Theorem6.1.10.a],henceM itself hasrank at least 1=". Using
Lemma7.4.3and Theorem7.4.4,we now have Q-(EQ,,) 2 -(log (1=")).
SinceQcc.(EQ,) 2 -(log n) for all " - 1=3 (from Corollary 7.4.2), we have

Qcc. (EQ,) 2 -(max (log(1=");logn)) = -(log (n=")): 2
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We now reduce equality to disjointness. Let x;y 2 f0;1g"?. De ne x° 2
f0; 19" by replacingx; by x;X; in x, and y°2 f0;1g" by replacingy; by yiy; in y.
It is easyto seethat EQ,_,(x;y) = DISJ,(x%y9 sofrom the previousproposition
we obtain:

7.4.11. Cor ollar y (Buhrman & de Wolf [48]). If ", 2 "2 thenwehave
Qcc.(DISJy) 2 -(log (n=")).

In particular, both equality and disjointnessrequire -( n) qubits of commnuni-
cation if we want the error probability to be exponertially small.

7.5 Non-Deterministic  Complexit vy

Above we shoved a lower bound on Qccg (f ) in terms of logrank(f ), but werenot

ableto provethe desiredgeneralupper bound on Qccg (f ) in terms of logrank(f ).

In this sectionwe will prove that sud a result holds for the non-deterministic
case:the non-deterministic quartum commnunication complexity NQcc(f ) equals
lognrank(f ) up to afactor of 2, wherenr ank(f ) is the non-deterministicanalogue
of rank(f ), to be de ned below.

7.5.1 Some de nitions

Considersomecommunication complexity problemf :f0;1g" £ f0;1g" ! f0; 1g.
A non-deterministic protocol for f is a protocol whoseacceptanceprobability (=
the probability of outputting 1) on an input (x;y) is positive i® f (x;y) = 1. For
a discussionof this choice of de nition and a comparisonwith other potertial
de nitions, we refer to Section5.6. We use Ncc(f ) and NQoc(f ) for the cost of
optimal classicaland quantum non-deterministic protocolsfor f , respectively.

It is well known that the classical non-deterministic complexity Ncc(f) is
closely related to the minimal size of a 1-cover for f, de ned as follows. A
rectangleis a subsetR = SE£ T u X £ Y. Sud an R is a 1-rectangle (for
f)yif f(x;y) = 1for all (x;y) 2 R. A l-cover for f is a set of 1-rectangles
whoseunion cortains all (x;y) 2 f0;1g" £ f0;1g" for which f(x;y) = 1. We
use Covi(f) to denotethe minimal size (i.e., minimal number of rectangles)of
a 1-cover for f. Similarly we de ne 0-rectangles,0-covers, and Cov(f ). Now it
is easyto prove that Ncc(f ) = dogCoVvi(f )e (seee.g.[109 Section2.1]), sothe
classicalnon-deterministic communication complexity is completely determined
by the combinatorial notion of 1-covers.

Below we shaw that the quantumnon-deterministic communication complex-
ity is almost completely determinedby the algebraicnotion of non-deterministic
rank, de ned as follows. Recall that the comnmunication matrix M; of f is the
2" £ 2" Booleanmatrix whosex;y enry is f (x;y) and that rank(f ) denotesthe
rank of M; over the reals. A real 2" £ 2" matrix M is called a non-deterministic
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communiation matrix for f if it hasthe property that M (x;y) 6 0i®f (x;y) = 1.
Thus M is any matrix obtainable by replacing 1-ertries in M; by non-zeroreals.
Let the non-deterministic rank of f , denoted nrank(f ), be the minimum rank
over all non-deterministic matrices M for f. Without loss of generality we can
assumeall M -ertries are in [j 1;1], becausewe can divide by max,, jM [X; y]]
without changingthe rank of M.

7.5.2 Equalit y to non-deterministic rank

Here we characterizethe non-deterministic quantum commnunication complexity
NQcc(f ) in terms of the non-deterministic rank nrank(f ):

lognrank(f ) _

7.5.1. Theorem (de Wolf [160]). >

NQoc(f) - dognrank(f)e.

Pro of. Consideran NQcc(f )-qubit non-deterministic quantum protocol for f .
UsingLemma7.2.1in the sameway asin Theorems7.2.2and 7.4.4,its acceptance
probabilities P (x; y) form a matrix of rank - 22NQcc(f) |t is easyto seethat this
is a non-deterministic matrix for f, hencenrank(f) - 22NQcc() and the Trst
inequality follows.

For the upper bound, let r = nrank(f ) and M be a rank-r non-deterministic
matrix for f. Let MT = U8V be the singular value decompmsition of M T (see
Appendix A.3), soU and V are unitary, and § is a diagonal matrix whose rst r
diagonalertries are positive real numbersand whoseother diagonalertries are 0.
Below we descrite a 1-round non-deterministic protocol for f , usingdogr e qubits.
First Alice preparesthe vector jAi = ¢, §Vjxi, wherec, > 0 is a normalizing
real number that dependson x. Becauseonly the rst r diagonal ertries of
§ are non-zero,only the rst r amplitudes of jA;i are non-zero,sojA.i can be
compressednto dogre qubits. Alice sendsthesequbits to Bob. Bob then applies
U to jAi and measureshe resulting state. If he obsenesjyi then he outputs 1
and otherwisehe outputs 0. The acceptanceprobability of this protocol is

P(x;y) = jhyjUjAdij?
= cihyjusVijxij *
= M T(y;x)j
= M (xy)j*
SinceM (x;y) is non-zeroi® f (x;y) = 1, P(x;y) will be positive i® f (x;y) = 1.
Thus we have a non-deterministic protocol for f with dogre qubits. 2

In sum: classicallywe have Ncc(f ) = diogCoV!(f )e and quantumly we have
NQcc(f ) Yalognrank(f).
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7.5.3 Exp onential quantum-classical separation

We now give an f with an exponertial gap between the classical complexity
Ncc(f ) and the quantum complexity NQoc(f ). Forn > 1,de nef by

f(xy)=1i®jx"yj 6 1.
We rst shaw that the quantum complexity NQoc(f ) is low:

7.5.2. Theorem (de Wolf [160]). NQcc(f) - dog(n + 1)e for the alovef .

Pro of. By Theorem7.5.1,it sutcesto provenrank(f) - n+ 1. Let M; bethe
Boolean matrix whose(x; y)-entry is 1 if x; = y; = 1, and whose(x; y)-entry is O
otherwise. Notice that M; hasrank 1. Now de ne a 2" £ 2" matrix M by

P
i Mi(X;y) 1

M(x;y) = ni 1

Note that M (x;y) is non-zeroi® the Hamming weight of x ~ y is di®eren from
1, henceM is a non-deterministic matrix for f . BecauseM is the sumofn+ 1
rank-1 matrices, it hasrank at mostn + 1. 2

Now we shaw that the classicalNcc(f ) is high (both for f andits complemetn):

7.5.3. Theorem (de Wolf [160]). Nocc(f) 2 -( n) andNcc(f) . nj 1 for the
alovef .

Pro of. Let Ry;:::;Rx be a minimal 1l-cover for f. We use the following
result from [109 Example 3.22 and Section 4.6], which is essetially due to
Razborov [139.

ThereexistsetsA; B u f0;1g"£ f0; 1g" and a probability distribution
1:f0; 19" £ 0;1g" ! [0; 1] such that all (x;y) 2 A havejx " yj = 0,
all (x;y) 2 B havejx”™vyj=1,1(A) = 344, and there are constarts
®,+£> 0 (independen of n) suc that for all rectanglesk, * (R\ B) ,

®C¢L(R\ A)j 20

Sincethe R; are 1-rectanglesthey cannot cortain elemens from B. Hence! (R;\
B)=0and!(R;\ A) - 2 *=@® But sinceall elemeis of A are coveredby the
R; we have
A !
[ X
1(A)=1 (Ri\ A) - LR\ A)- k¢

i=1 i=1

2i n
®

MW
1

ThereforeNcc(f ) = dogke, #n + log(3®@=4).
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For the lower bound on Ncc(f), considerthe setS = f(x;y) j X1 = y1 =
1L;x; = yi fori > 1g. This S cortains 2" ! elemerts, all of which are 1-inputs
for . Note that if (x;y) and (x®y9 are two elemerts from S then jx » y§ > 1
or jx°~ yj > 1, soa 1-rectanglefor f can cortain at most one elemen of S.
This shaws that a minimal 1-cover for f requiresat least 2"i ! rectanglesand
Nee(f), nij 1. 2

Another quantum-classicalseparationwas obtained earlier by Massaret al. [120:

7.5.4. Theorem (MBCC [120]). For the non-gquality problemon n bits, we
haveNQoc(NE,) = 1 versusNcc(NE,) = logn.

Proof. Ncc(NE,) = logn is well known (see[109 Example 2.5]). Below we
give the [120-protocol for NE,.

Viewing her input x asa number 2 [0;2" j 1], Alice rotates a jOi -qubit over
an anglex¥#2", obtaining a qubit cos¥#2")j0i + sin(x¥#2")j1li which shesends
to Bob. Bob rotates the qubit badk over an angle y¥#2", obtaining cos({ i
y)v&2")j0i + sin((x j y)¥#2")j1li. Bob now measureghe qubit and outputs the
obsened bit. If x = y then sin((x j y)¥#2") = 0, so Bob always outputs 0. If
x 6 y thensin((x j y)¥#2") 6 0, soBob will output 1 with probability > 0. 2

Note that nrank(EQ,) = 2", sinceewery non-deterministic matrix for equal-
ity will be a diagonal 2" £ 2" matrix with non-zero diagonal ertries. Thus
NQo(EQ,) . (lognrank(EQ,))=2= n=2, which cortrasts sharply with the non-
deterministic quartum complexity NQoc(NE, ) = 1 of its complemen.

7.6 Open Problems

To end this chapter, we identify three important open questionsin quantum
communication complexity. First, are Qocg (f) and Dcc(f) polynomially re-
lated for all total f? For the caseof query complexity we proved in Chapter 2
that D(f) 2 O(Q.(f)®) for all total f, so deterministic classicalquery com-
plexity and boundel-error quartum query complexity are polynomially related.
Sud a strong result cannot hold for commnunication complexity, becausehere
we have exponertial gapseven in the classicalworld: Dcc(EQ,) = n + 1 versus
RcG(EQ,) 2 O(logn). Howevwer, we conjecturethat a polynomial relation holds
for the caseof exactprotocols: Doc(f ) 2 O(Qacz (f )¥) for somek. This conjec-
ture is implied by the classicallog-rank conjecture(seeCorollary 7.2.8), but that
has beena long-standing open problem in its own right, and is quite possibly a
stronger statemert.

Secondly how do we prove good lower bounds on boundel-error quartum
protocols? Theorems7.4.4 and 7.4.7 of the previous section shawv that Qaoc,(f)
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is lower bounded by the approximate rank, but this approximate rank is often
hard to determine. One way to go would be to showv that m(f) % rgon(Qg)
wheneer f (x;y) = 9(X ™ y). As explainedin the previous sectbon,this would
imply Qoc,(f) 2 -(~ bs0(g)) and in particular Qcc,(DISJ,) 2 -(  n). Recerly,
Klauck [103 deweloped somenew lower bound methods for Qac,(f ), but unfor-
tunately thesedo not give good boundsfor disjointnesseither.

Finally, doesprior ertanglemert add much power to qubit communication, or
are Qoce (f) and Qccg (f) equal up to small additive or multiplicativ e factors?
Similarly, are Qcc,(f ) and Qccy(f ) roughly equal? The largestgap that we know
is Qoc,(EQ,) 2 £(log n) versusQccy(EQ,) 2 O(1).

7.7 Summary

In this chapter we consideredlower bounds on quartum communication com-
plexity. We proved log-rank lower bounds for entanglemeri-enhancedquartum
protocolsthat communicate qubits and classicalbits, respectively:

Qoci () 'og(rankz(f)i Y and Coc? () . log(rank(f) i 1)

Relating rank(f ) to the number of monomials of certain polynomials, we were
able to prove strong lower bounds on exact quantum comrmunication protocols
for speci ¢ classesof functions. Much lessis known about lower bounds on
guartum comrmunication protocols which are allowed to have somesmall error
probability. We proved an approximate-rank lower bound for this case,but were
unable to prove strong boundson the approximate rank of interesting functions
like disjointness. Finally, we proved that the rank essetially determinesthe
guantum communication complexity in the caseof non-deterministic protocols:
NQcc(f ) equalslognrank(f) up to a factor of 2. We also exhibited a function
where the quantum non-deterministic complexity is exponertially smaller than
the classicalnon-deterministic complexity.






Chapter 8

Quantum Fingerprin ting

This chapter is basedon the paper

2 H. Buhrman, R. Clewe, J. Watrous, and R. de Wolf. Quantum Finger-
printing. Submitted to Physial Review Letters. quarnt-ph/0102001. (Not
all results belov were included in this paper, but | have cited those as
\BCWW" nonetheless.)

8.1 Intro duction

In classicalcomputing, ngerprinting canbe a usefulmedanism for determining
if two strings are the same: ead string is assa@iated with a much shorter n-
gerprint and comparisonsbetweenstrings are madein terms of their ngerprints
alone. This canleadto savingsin the commnunication and storageof information.

The notion of ngerprinting arisesnaturally in the setting of comnunication
complexity. The particular model of communication complexity that we consider
is called the simultaneous messagepassing model (also known as oblivious com-
munication complexity). It is a variant of 1-round communication complexity,
“rst introducedby Yao [163 in his original paper on communication complexity.
In this model, the two parties|Alice and Bob|receiv e inputs x andy, respec-
tively, and are not permitted to communicate with one another directly. Rather
they eat senda messagdo a third party, calledthe referee, who determinesthe
output of the protocol basedsolely on the messagesen by Alice and Bob. We
illustrate this in Figure 8.1. The collective goal of the three partiesis to causethe
protocol to output the correct value of somefunction f (x;y) while minimizing
the amourt of communication that Alice and Bob sendto the referee.

For the equality problem on n bits, the function to be determinedis

R
mTXxX=Y,
EQuSY) = 5 it xe z
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Alice: x Bob: y

Referee

-

f(x;y)

Figure 8.1: The model of simultaneousmessageassing

This problem can of coursebe trivially solved if Alice sendsx and Bob sendsy
to the referee,who can then simply compute EQ, (X; y). Howewer, the cost of
this protocol is high: if x and y are n-bit strings, then a total of 2n bits are
comnunicated. If Alice and Bob instead send ngerprints of x and y, which
may ead be considerablyshorter than x and y themseles,then the cost can be
reducedsigni cantly. The questionwe are interestedin is how much the size of
the ngerprints can be reduced.

If Alice and Bob sharea random O(log n)-bit key then the ngerprints need
only be of constant length if we allow a small probability of error. This works
asfollows. A binary error-correcting code is used,which can be represeted asa
function E : f0;1g" ! f0;1g™, whereE(x) is the codeword asseiated with x 2
f0; 1g". Thereexisterror-correctingcodes(Justesencodes,for instance)with m =
cn sud that the Hamming distancebetweenany two distinct codewordsE (x) and
E(y) isat least(1j ¥)m, wherec and * are constarts. For the particular caseof
Justesencodes, we may chooseany ¢ > 2 and we will have + < 9=10+ 1=(15c)
(assumingn is suzciently large). For further information on Justesencodes, see
Justesen94] and MacWilliams and Sloane[119 Chapter 10]. Now, for x 2 f0; 19"
andi 2 f1;2;:::;mg, let Ej(x) denotethe ith bit of E(x). The sharedkey is a
randomi 2 f1;2;:::; mg (which consistsof logm = logn + O(1) bits). Alice and
Bob respectively sendthe bits Ej(x) and E;(y) to the referee,who then outputs
1if andonly if E;(x) = Eij(y). If x = y then E;(x) = Ej(y), sothen the outcome
is correct. If x 6 y then the probability that Ej(x) = E;(y) is at most +, sothe
outcomeis correct with probability 1 + The error probability can be reduced
from £ to any " > 0 by having Alice and Bob send O(log(1=")) independert
random bits of the codewords E(x) and E(y) to the referee(where the O(9
notation hidesthe dependenceon ). In this case,the length of ead ngerprint
is O(log(1=")) bits and the length of the required random key is O(log(1=") logn)
bits.

One disadvantage of the above sthemeis that it requiresoverheadin creating
and maintaining a sharedkey. Moreover, oncethe key is distributed, it must be
stored securelyuntil the inputs are obtained. This is becausean adversary who
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knows the value of the key can easily chooseinputs x and y sud that x 6 y but
for which the output of the protocol always indicatesthat x = vy.

Yao [163 Section4.D] posedasan open problem what happensin this model
if Alice and Bob do not have a sharedkey. Note that in this setting Alice and
Bob still have accesso random bits, but their random bits are not correlated.
Ambainis [7] proved that ngerprints of O(" n) bits suzce if we allow a small
error probability, awd subsequetly, Newmanand Szegedy127 proveda matching
lower bound of -( * n) bits.

We shall considerthe problem wherethere is no sharedkey (or erntanglemert)
betweenAlice and Bob, but the ngerprints can consistof quantuminformation.
In Section8.2, we shav that O(log n)-qubit ngerprints are suxcient t(bsolve the
equality problemin this settinglan exponertial improvemert overthe = n-bound
for the comparableclassicalcase. This result seemsto be the rst exponertial
guartum-classicalseparationfor a total function in any variant of comnunication
complexity. Our method is to setthe 2" ngerprints to quartum states whose
pairwise inner-products are boundedbelow 1 in absolutevalue and to usea test
that identi es identical ngerprints and distinguishesdistinct ngerprints with
good probability. This givesa simultaneousmessaggassingprotocol for equality
in the obviousway: Alice and Bob sendthe ngerprints of their respective inputs
to the referee,who then executesthe test to ched if the ngerprints are equal
or distinct. In Section8.2, we also show that the ngerprints must consistof at
least-(log n) qubits if the error is boundedbelow 1.

In Sections8.3 and 8.4, we considerpossibleimprovemerts to the exciency of
the ngerprinting methods of Section8.2. In Section8.5we analyzethe conditions
underwhich quantum ngerprints canbe madeexactly orthogonal. In Section8.6
we considerexact classi@l ngerprints in the presenceof a sharedquantumkey
of EPR-pairs. Finally, in Section 8.7 we shawv that the quartum ngerprints
can be usedin a speci ¢ cortext to represem sparsesets much more exciently
than is possibleclassically A word of warning: Sections8.5{8.7 descrike some
preliminary results rather than a complete picture, and will require more study
in the future.

8.2 Simultaneous Message Passing

The simultaneousmessaggassingmodel of communication complexity is asfol-
lows: Alice, Bob, and a refereewant to computesomef : D ! f0;1g. We will
here only considertotal functions whereD = f0;1g" £ f0; 1g". Alice receiwes
input x, Bob receiwesy, they eath passa messageto the referee,who should
then announcef (x;y). A protocol that satis es this is called a simultaneous
messageprotocol for f. Its costis the sum of the lengths of the two messages
that are passedto the referee. We use Dcc*(f) for the minimal cost of classi-

cal deterministic simultaneousmessageprotocolsfor f, and Rcc'g(f ) for classical
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bounded-error simultaneous messageprotocols. For the latter we assumeAlice
and Bob have private coin °ips but no public coin °ips. Similarly we de ne
ro'g (f) and rog(f) for exact and bounded-errorquantum simultaneous mes-
sageprotocols,respectively. Note that the simultaneousmessaggassingmodel is
wealer than the 1-round versionof commnunication complexity, sincein the latter
model Bob can play the role of Bob and the refereeat the sametime. Thus we
have Dcc! ™M (f) - Deck(f), Reci ™ (f) - Rech(f ), and similarly for the two
guantum complexities.

Recall that the comnunication matrix M¢ is the 2" £ 2" matrix that has
f (x;y) asits (x;y)-entry. Let nrow(f ) be the number of distinct rows of M; and
ncol(f ) the number of distinct columns. For the exactcaseit is easyto seethat
Dec(f) = lognrow(f ) + logncol(f ). The sameholds for the quartum case:

8.2.1. Theorem (BCWW). ro'é(f) = dognrow(f )e+ dogncol(f )e.

Pro of.  For the upper bound, Alice numbers the distinct rows, with two rows
receiving the same number i® they are equal, and Bob numbers the distinct
columns. On input (x;y) Alice sendsthe number of the x-row to the referee(at
a costof dognrow(f )e classicalbits) and Bob sendsthe number of the y-column
(dogncol(f )e bits). The refereenow can determinef (x;y).

For the lower bound, X a protocol and let jvsi and jw,i be the quantum
messagesert by Alice and Bob on input (X;y), respectively. Supposex and x°
correspnd to distinct rows, then there is a y sud that f (x;y) 6 f (x%y). On
input (x; y) the refereereceivesmessagepui; jwyi and oninput (x%y) hereceiwes
jvxol s jwyi. Sincethe refereemust be able to distinguish betweenthesetwo cases
with certainty, jvxi and jvyi must be orthogonal (seee.g. [13Q p.87]). Thus
there is a setof nrow(f ) vectorsjvii (corresponding to distinct rows) that are all
pairwise orthogonal. Thesevectors must then have dimensionat least nrow(f ),
and thus have at leastdognr ow(f )e qubits. Similarly somejwyi must be at least
dogncol(f )e qubits. 2

In particular this showsthat for the equality function wherex andy are n-bit
strings, we have Dcc“(EQ,) = Qock (EQ,,) = 2n.

For the boundeal-error case,Babai and Kimmel have shown that the gap be-
tweenDccX(f ) and Rccg(f) is at most quadratic. This was showvn independerily
at around the sametime by Bourgain and Wigderson(unpublished, but sketched

in [15]).
8.2.2. Theorﬁ:m (Babah & Kimmel [15]; Bour gain & Wigderson [15]).
q

Recs(f)2 - Doc(f) .

The following corollary was independerily and somewhatearlier obtained by
Newmanand Szegedy:
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8.2.3. Cor ollar y (Newman & Szegedy [127]). Rccg(EQn) 2 -( pm.

Togetherwith Ambainis' [7] matching upper bound (seealso[19), it follows
that Recs(EQ,) 2 £(° n).

We now show that the analogueof Theorem8.2.2doesnot hold in the quan-
tum world, and in fact ro'g(f) can be exponertially smallerthan both ro'é (f)
and Roc'g(f) for f = EQ,. Our method usesquartum ngerprints basedon clas-
sical error-correcting codes, though in a di®eren manner than discussedn the
introduction, sinceno sharedkey is available.

Assumethat for xed ¢ > 1 and £ < 1 we have an error correcting code
E :f0;1g" ! f0;1g™ for eadh n, wherem = cn and sud that the distance
betweendistinct codewords E(x) and E(y) is at least (1j ¥)m. As mertioned
in the introduction, a reasonable rst choice of suc codes are Justesencodes,
which give £ < 9=10+ 1=(15c) for any chosenc > 2. Now, for any choiceof n and
x 2 f0;1g", we de ne the (logm + 1)-qubit state jhyi as

xXn
jhyi = p—=  JiljEi(X)i:
i=1
Sincetwo distinct codewords can be equalin at most £m positions, for any x 6 y
we have hhyjhyi - #m=m = + Thus we have 2" di®eren (logn + O(1))-qubit
states,and eadt pair of them hasinner product at most +.

The simultaneousmessageassingprotocol for the equality problem works as
follows. When givenn-bit inputs x andy, respectively, Alice and Bob send nger-
prints jhyi andjhyi to the referee. Then the refereemust distinguish betweenthe
casewherethe two statesreceived|call them jAi and jAi|are idertical or have
inner product at most +. This is accomplishedwith one-sidederror probability
by the procedurethat measuresand outputs the rst qubit of the state

(H - 1)(c-SWAP)(H - 1)j0ij Ajj Ai:

HereH is the Hadamardtransform, which mapsijhi ! pl—é(jOi + (i 1)%1i), SWAP
is the operation jAjj Ai ! jAij Ai and c-SWAP is the cortrolled-SWAP (cortrolled
by the rst qubit). The circuit for this procedureis illustrated in Figure 8.2.

By tracing through the executionof this circuit, one can determinethat the
‘nal state beforethe measuremenhis

Lioi A Ai + jAj A + 12 GAj A i A A):

Measuringthe rst qubit of this state producesoutcome 1 with probability % i

1jhAjAij 2. This probability is0if x = y andis at least1(1j #?) > 0if x 6 y. Thus,
the test determineswhich caseholds with one-sidederror probability at most
%(1+ +%). The error probability of the test canbe reducedto any " > 0 by setting
the "ngerprint of x 2 f0;1g" to jh.i~ ¥ for a suitable k 2 O(log(1=")). From
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jOi H t H measure
jAi

SWAP
jAi

Figure 8.2: Circuit to test whether jAi = jAi or jhAjAjj - +

sudh ngerprints, the refereecan independerily perform the test in Figure 8.2 k
times, resulting in an error probability belov ". In this case,the length of eadh
“ngerprint is O((log n)(log(1=")).

As the above test shows that the refereecan test whether the ngerprints he
received from Alice and Bob are the same,we have proved:

8.2.4. Theorem (BCWW [41]). Qcci(EQ,) 2 O(logn).

It is worth consideringwhat goeswrong if one tries to simulate the above
quartum protocol using classicalprobability distributions in place of quantum
superpositions. In suc a protocol, Alice and Bob send (i; Ei(x)) and (j; E; (y))
respectively to the refereefor independent random uniformly distributed i; ] 2
f1;2;:::;mg. If it shouldhappenthat i = | then the refereecan make a statistical
inferenceabout whether or not x = y. But i = j occurswith probability only
O(1=n)|land the ability of the refereeto make an inferencewheni 6 | seems
dixcult. For many error-correctingcodes,no inferencewhatsoever about x = y is
possiblewheni 6 j and the lower boundin [127 implies that no error-correcting
code enablesinferencesto be madewheni 6 j with error probability bounded
belov 1. The distinguishing test in Figure 8.2 can be viewed as a quartum
operation which has no analogousclassicalprobabilistic courterpart.

Our guantum protocol for equality in the simultaneous messagemodel uses
O(logn)-qubit ngerprints for any constart error probability. Is it possibleto
use fewer qubits? In fact, without a sharedkey, -(log n)-qubit ngerprints are
necessary This is becauseany k-qubit quartum state can be speci ed within
exponertial precision with O(k2*) classicalbits. Therefore the existenceof a
k-qubit quartum protocol implies the existenceof an O(k2¥)-bit deterministic
classicalprotocol. From the fact that Dcc*(EQ,,) = 2n we can now infer that
k, (2i o(1))logn.
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8.3 Short Near-Orthogonal Quantum States

In Section 8.2, we employed a particular classicalerror-correcting code to con-
struct a setof 2" quartum stateswith pairwiseinner products below + in absolute
value. Here, we considerthe questionof how few qubits are suzcient for this to
be accomplishedfor somesmall £ > 0.

An alternative construction wherewe canezxciently achieve avery smallinner
product is asfollows. Let n and+> 0 be givenandlet F bea eld of sizen=+(we
ignore the fact that n=x should be rounded to the nearestprime power in order
for Fto bea eld). Forx = x;:::x, 2 f0; 19", de ne the polynomial py(z) over
F as

P (2) = X1+ X2z + X322 + ¢0¢+ x,z" 1

For eath x 2 f0; 1g", de ne the 2log(n=1)-qubit state jhyi as

X
jhyi = {91]—?J izij p(2)i:
z2F
Two distinct polynomialsof degree- d canbe equalon at mostd elemens of F,
sofor any x 6 y we have hh,jhyi - (nj 1)¥=n< + Thus we have 2" di®erern
2log(n=1)-qubit states,and ead pair of them is almost orthogonal.

In fact, even logn + O(log(1=1%) qubits are suzcient, as follows. Using a
probabilistic argumen (seee.g.[4]), it canbe showvn that, for an arbitrarily small
+> 0, there existsan error-correctingcode E : f0;1g" ! f0;1g™ with m - n=4#°
(for someconstart ¢) sud that the Hamming distance betweenany two distinct
codewords E (x) and E(y) is between(1j £fm=2 and (1 + )m=2. (If a setS of
2" m-bit strings is chosenat random then the probability that there is a pair of
strings in S whoseHamming distance deviatesfrom m=2 by more than tm, is
lessthan 1. This shavs that there existsa set S with the right properties.) Note
that this existenceproof doesnot yet yield an explicit construction of the code;
howewer, VenkatesanGuruswami and Adam Smith (personalcommunication via
Richard Cleve) recenly pointed out to us that explicit constructions of sud
codescan be obtained from resultsin [3, 29]. Given sud a code, the logm-qubit
“ngerprint of x 2 f0; 1g" can be setto

1 X
jhd = p= (i DEDjii
m
i=1
to yield the following theorem:

8.3.1. Theorem (BCWW [41]; Gur uswami & Smith). For everyn and+>
0 one can construct a setfj hyi j x 2 f0;1g"g of statesof logn + O(log(1=3))
qubits, suchthat jhh,jhyij - +wheneverx 6 .

Theseconstructionsare optimal in the following sense:
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8.3.2. Theorem (BCWW [41]). Let+, 2 ". Then an assignmentof b-qubit
statesto all n-bit strings suchthat the absolutevalue of the inner product between
any two “ngerprints is at most +, requiresb2 -(log (n=#%)) qubits.

Pro of. Let fihsi j x 2 f0;19"g be the b-qubit states. We will use these
statesto get a 1-round protocol for the equality function. Suppose Alice has
input x and Bob hasinput y. Then Alice sendsBob the state jhyi and Bob
performsa 2-outcomeorthogonal measuremengiven by projectors P; = jhyihhyj
and Po = | | P;. Bob outputs 1 with probability Tr(Pijhyihhyj) = jhhyjhyij 2.
If x = y then this is 1, and if x 6 y then this is - #*>. Thus we have a b-qubit
protocol for EQ,, with error probability - +2. Proposition 7.4.10 now implies
b2 -(log (n=2)). 2

It should be noted that having small inner product * is desirable but not
all-important. For instance, there is a trade-o® between + and the number of
copiesof eat state sert by Alice and Bob in the simultaneous messagepassing
protocol for equality from the previous sectionin terms of the total number of
gubits comnunicated and the resulting error bound.

8.4 The State Distinguishing Problem

Motivated by the referee'stest of Section8.2, we de ne the state distinguishing
problemasfollows. The input consistsof k copiesof eat of two quartum states
jAi and jAi, with a promisethat jAi and jAi are either idertical or have inner
product boundedin absolutevalueby somegiven+ < 1. The goalis to distinguish
betweenthe two caseswith as high a probability as possible.

One method for solving this problem is to use the method in Section 8.2,
independerly performing the test in Figure 8.2 k times, resulting in an error

1++

probability of O in the identical caseand Tz)k otherwise. e will descrilke an
improved method, whoseerror probability is approximately W(%)Zk, which
is almost quadratically better when £ is small. We also show that this is nearly
optimal by proving a lower bound of 1(13*)% on the error probability.

The improved method for the state distinguishing problem usesregisters

It alsousesa register P whoseclassicalstatesinclude encalings of all the (2k)!
permutations on 2k elemets, i.e., all %22 §,. Let O denotethe idertity permu-
tation and let P be initialized to 0. Let F be any transformation satisfying
X
F:joi ! pli_ %
(2K)! 556,

For example,F could be the quantum Fourier transform on (2k)! elemens. Since
all prime factors of (2k)! are O(k), this QFT can be computed exciently, using
poly(k) many gates(see,e.g.,[5]] or the conferenceversionof [151]).
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The distinguishing procedureoperatesas follows:

1. Apply F to registerP.

2. Apply a conditional permutation on the contents of registersRy;:::; Ry,
conditioned on the permutation speci ed in P.

3. Apply F® = Filto P and measurethe nal state. If P cortains O then
answer equal otherwiseanswer not equal

We now analyzethis procedure. The state after step 2 is
p—— JAYA CCejAij Al CCEjAI)
(2K)! 46,
(where ¥jAi ¢¢gjAij Ai ¢¢¢jAi) meanswe permute the cortents of the 2k registers
accordingto %j.

Case 1: jAi = jAi. In this casethe permutation of the registersdoesabsolutely
nothing, sothe procedureanswers equal with certainty.

Case 2: AssumejhAjAij < + The probability of answering equal is the squared
norm of the vector obtained by applying the projection jOihQj - | to the nal
state, which is
02

1 X O
pP—— HOjF "j3A ¥%(jAi ¢CejAij Ai CCajAi)?2
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0 0O0O0O
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Sincekj ik?= N j"i for any j"i we may simplify this probability as follows:
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Y Y28k
X
= ﬁ hAj ¢eehAJhA] ¢eehAj¥4 Lo (AT ¢edjAij Ai ¢edjAi)
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The sum of binomial coexcients arisesby grouping the permutations %according

From Stirling's appraximation we therefore obtain:

8.4.1. Theorem. The alove procedure, on input jAi- ¥ and jAi- ¥ suchthat ei-
theF; jAil = ¢iAi or jhAjAij - 4 decides which of the two is the case with error
- .

We now show that the error probability cannot be lessthan 7(£*)% for the
state distinguishing problem?! Consideran optimal state distinguisher that acts
on k copiesof jAi and k copiesof jAi whereeither jAi = jAi or jhAjAij - + Let
jAd = jAd = jOi, and let jAji = cog4)j0i + sin(4)jli and jAxi = cos)j0i |
sin(5)jli, where u = arccost. Clearly, jAji = jAji and PAjAxi = + A state
distinguisher must distinguish betweenthe state jai = jA;i- ¥ - jA;i ¥ and the
state joi = jAi % - jAsi- k. We considerthe probability with which a state
distinguisher can distinguish betweenthesetwo states. SincehA;jAsi = hA;jAsi =
cos(), it follows that hejbi = cos(¥) = (&<st)k = (Z2)k Now, it is known
that the optimal proceduredistinguishing betweentwo stateswith inner product
cos® has error probability 1-5"® = 1(cos®)?. (This follows from an early result
of Helstrom [89], which waslater strengthenedby Fuchs[78, Section3.2]. A clean
and self-cornained derivation of this result may alsobe foundin [137.) Therefore,

the state distinguisher must have error probability at least % %)2".

8.5 Exactly Orthogonal Quantum States

As constructed above, di®erert quartum ngerprints are nearly orthogonal but
not completely In general,quartum medanicsallows no short ngerprints that
are exactly orthogonal, becausef the 2" vectorsare all pairwise orthogonal then
they must have dimensionat least 2" and hencerequire at leastn qubits. How-
ewer, if we are promisedthat not all pairs of ngerprints will be compared,then
short but exactly orthogonal quartum ngerprints are sometimespossible. Let
G = (V;E) be somegraph with V = f0;1g". We considerexactly orthogo-
nal ngerprints under the promisethat the ngerprints for x and y will only be
comparedif x = y orif (x;y) 2 E.

We want to assaiate ngerprints with the nodes sud that adjacern nodes
receiwe orthogonal ngerprints. In the classicalcasethese ngerprints correspnd
to classicalbitstrings, which when represeted as a state in Hilbert spaceare
vectorswith a 1 at a speci ¢ position and zerceselsewhere.In this caseit is easy
to seethat the length (in bits) of the ngerprints is characterizedby the length (in

INote that this lower bound concernsa problem that is slightly more general than the
problem of distinguishing "ngerprints, becausethe ngerprints used in Section 8.2 are not
arbitrary but comefrom a known set of only 2" states.
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bits) of the chromatic number A(G) of the graph G (A(G) is the minimal number
of colorsrequiredto assigna color to ead node of the graph in sud a way that
two adjacent nodesget di®eren colors.) On the one hand, if we have a coloring
of the graph, then those colorscan sere as classical ngerprints of log A(G) bits.
Conversely if we have assignecclassical ngerprints hy to the nodesx, then these
form a proper coloring of the graph.

It is alsoeasyto prove a 1-1 correspndencebetweencoloringsof G and de-
terministic 1-round communication protocols for the commnunication complexity
problem problem EQ, which is the promiseversionof EQ,, speci ed by G. The
color for node x in G would correspnd to the messagehat Alice sendswhen
shereceivesinput x. In particular, we have an equivalencebetweenthe optimal
1-round comnunication complexity and the chromatic number A(G):

8.5.1. Theorem (BCWW). Dcc!™"(EQ;) = logA(G).

In the quantum world, an exact ngerprinting scheme would assign states
jh«i 2 CY to the nodesof G sud that hh,jhyi = 0if (x;y) 2 E. We call sudh
an assignmen an orthogonal representationof G (see[114 82, 105 for related
notions). The orthogonaldimensiondim(G) of G is the minimal d for which suc
arepresemation exists. Sincean orthogonalrepresemation and an exactquartum
“ngerprinting scheme are just the samething, logdim(G) qubits are necessary
and suzcient for exact quartum ngerprints. The orthogonal dimension also
characterizesthe 1-round quantum communication complexity of equality with
the G-promise:

8.5.2. Theorem (BCWW). Qoct'™"(EQ) = logdim(G).

Proof. Let fjhyi j x 2 f0;19"g be an orthonormal represemation of G. A
1-round quartum protocol is the following: Alice sendsjh,i to Bob in logdim (G)
qubits and Bob measuresit accordingto the 2-outcomemeasuremeh speci ed
by the projectors P; = jhyihhyj and Po = | | P;. Sincethe vectors comefrom
an orthonormal represemation of G, we have that hhyjhyi = 0 whenewer x 6 y
and (x;y) 2 E. Accordingly, the protocol will output 1 i® x = y and we have
Q're(EQg) - logdim(G).

Conversely considersomeoptimal 1-round quantum protocol for EQg. We
canassumewithout lossof generalily that Alice's messageare pure states,which
are not entangled with her workspace.Let jhsi be the messagdhat Alice sends
to Bob if herinput is x. Suppose(x;y) 2 E and Bob getsinput y. If he receives
messaggh,i then he should output 0 and if he receives jhyi then he should
output 1. But this meansthat Bob must be able to distinguish the vectorsjhyi
and jhyi with certainty, which is possibleonly if jhyi and jhyi are orthogonal
[13Q p.87]. Thus the vectorsjhsi form an orthonormal represemation of G of
dimension 29 ™™ (EQq) 2



150 Chapter 8. Quantum Fingerprinting

We have shavn that the minimal length of classical ngerprints is log A(G) bits
and the minimal length of quartum ngerprints is logdim(G) qubits. Sometimes
the latter is much smallerthan the former. Oneinteresting exampleof this canbe
derived from the distributed Deutsh-Jozsaproblem of Section6.4.2. It concerns
the graph G = (V;E) with V = f0;1g", E = f(x;y) ] ¢( x;y) = n=2g, where
¢ denotesHamming distance, and n is divisib|§ by 4. A simple orthonormal
represemation of G of dimensionn is jhyi = pl—ﬁ (i 1)%jii, sincehhyjhyi = 0
i® ¢( x;y) = n=2. On the other hand, note that the EQg problem for this G is
just the distributed Deutsd-Jozsaproblem, for which we proved a lower bound
of Dcc(EQg) , 0:007n in Theorem 6.4.3. Combined with Theorem 8.5.1, this
implies that G has high chromatic number:

8.5.3. Theorem (BCWW). The aloveG hasdim(G) - n and A(G) , 20:00™
S0 exact quantum ngerprints are exmpnentially shorter than exact classi@al n-
gerprints for this graph.

It would be interesting to characterizethe graphsfor which exact quantum
‘ngerprints are much shorter than the classicalones,i.e., for which dim(G) is
much smallerthan A(G). It is easyto seethat dim(G) is lower boundedby the
sizeof the largestcliquein G, sosud graphsshould have only small cliques.

8.6 Exact Fingerprin ting with a Quantum Key

Here we brie®y considerthe caseof ngerprinting where Alice and Bob have a
sharedquantumkey, consistingof O(logn) EPR-pairs, but arerequiredto output
classi@al strings as ngerprints. Is there any sensein which a quartum key can
result in improved performanceover the caseof a classicalkey?

Consideragain a Deutsth-Jozsatype of promise (with n a power of 2): either
X = y or the Hamming distance betweenx and y is n=2. Under this restriction,
any exactclassicalschemewith a sharedclassicakey would require ngerprints of
length -( n). This follows immediately from the -( n) lower bound for Dcc(DeJo)
(Theorem 6.4.3): Alice can sendher ngerprint to Bob to get an exact 1-round
classicalprotocol for the distributed Deutsch-Jozsaproblem.

On the other hand, there is a shemedue to Brassard, Cleve, and Tapp [33]
with a sharedquartum key of logn EPR-pairs that outputs classical ngerprints
of length only logn bits, sud that x = y i® the ngerprints are equal. It works
asfollows. Initially the logn EPR-pairs are in the following state:

1 X
pP— jiijii:
n i 2f 0;1glog n
This is a 2logn-qubit state, where the rst logn qubits belongto Alice and
the last logn qubits belongto Bob. Alice appliesthe unitary transformation
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jit I (i 1)%jii to her part and Bob appliesjii ! (j 1)¥jii, giving

1 X
P= G 1yjii G 1 jii:
i2f 0;1glog n
They now eat apply Hadamard transformsto their qubits, giving
0 10 1
1 X . X . - X €
= @G 1) (i 1)'%jkiA @ 1)" (i DA
i 2f 0;1glog n k2f 0;1glog n *2f 0;1glog n

Note that the total amplitude of the state jkij ki is now

1 X . Xi f - ik, Vi (- i & 1 X ) Xj ©y; .
=) GD'GDTGED)GD" = 5 (j 1)
i2f 0;1glo9 n i2f 0;1glog n

This amplitude will be 1:p nif x = y and it will be 0 if ¢( x;y) = n=2. Thus
if Alice and Bob ead measuretheir part of the state and output the resulting
logn-bit strings a and b, then a= bi® x = y and they have achieved their goal.

8.7 Quantum Data Structures

Finally, we give an application of quarntum ngerprints to data structures. Con-
sideran N = 2"-elemen universeU, which we canidentify with f0;1g". Suppose
we want to store a set S of at most k elemerts from U asa data structure ds, in
suc a way that we cananswer a membership question'x 2 S?' by looking at ds.
We want the data structure ds to be as small as possible. It may consistof bits
or qubits. We will rst analyzethe qubit case,and then cortrast this to what is
and is not possibleclassically

8.7.1 The quantum case

First considerthe casek = 1,soS = fxg for somex 2 f0;1g". We canrepresen
S by a ngerprint of x. We will use the polynomial-basedconstruction from
Section8.3. Let F bea eld of sizen=" and de ne

1 X
ihi=p= jziip(2)i:
JFJ z2F
A query of the form 'y 2 S?' is now simply the question 'x = y?' and can be
answeredwith bounded-error,for instance by applying the test of Figure 8.2. A
better test in this caseis to apply the following exciently computable unitary
transformation on the ngerprint with an auxiliary j0i-qubit:

jzijpijOi ! jzij pij [py(2) = pli;
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and measuringthe last bit (here [py(z) = p] is the truth-v alue of the statemert
By(z) = p). If x =y then this measuremenwill give a 1 with certainty; if x 6 y
then it will give a 0 with probability > 1j ". We will call suc atest for x = y?'
a queryto the data structure.

A seere disadvantage is that the quantum structure can be usedonly once,
sinceanswering a menbership query will involve a measuremenand will disturb
the state. Howewer, we can make the data structure sud that with high proba-
bility it can be usedm times by setting " - 1=4m, i.e., by choosingour eld F
to be of sizen=" = 4mn. This we prove as follows. Considerthe data structure

test described in the previous paragraph. First considery;. If x = y; then the
test will work with probability 1 and will not disturb the ngerprint at all. If
X 6 y; then with probability , 1 " the test will give the right answer. In this
casethe measuremen will eliminate from the superposition all basis states jzi
for which p,(z) = py,(2); there areat mostni 1 sud jzi. Beforethe secondtest
(x = y,?") thereareat least4mni (nj 1)jzi left in the superposition. If x = y,
then with probability 1 the secondtest givesthe correct answer and the state
will not be a®ected. If x 6 y, then we get the correct answer with probability

. 1 W‘ﬁ and the measuremenwill againdeleteat mostnj 1 basisstates

jzi from the superposition. In general,assumingall previoustests gave the cor-
rect answer, the probability that the testy; = x givesthe right answer is at least

.1i Wi)(n.l) Thus the probability that all m tests give the correct answer
is at least
w H ni 1 T u 1 T

2
— — ,forallm_  1:
3m >3 ’

1j 1j

- domi (ii )(ni 1) °

Choosing jFj ¥ 4mn gives ngerprints of about 2log(4mn) qubits. What this
shaws is that we can cheaply make our data structure reusable.In particular, at
the costof only a constart factor c for the number of qubits of the data structure,
we can make the structure m = n°® times reusablebeforeit is disturbedtoo much.

A ngerprint jhyi storesjust one elemen x. Setsof k > 1 elemerts can be

“ngerprint reducedto, say, " = 0:01=k. The question’y 2 S?' reducesto the k
questions’y = x;?', which canall be answeredwith high succesgrobability using
the ngerprints.

We summarizethe above discussionin the following theorem:

8.7.1. Theorem (BCWW [41]). Let n;k;m be positive integers. There exists
a schemethat can store any setS p f0; 19" of size|Sj - k in a quantum data
structure of O(k log(nmk)) qubits, in sucha way that with prokability , 2=3, m
conseutive memlership queries(each of the form "x 2 S?') to the data structure
will all be answeed correctly.
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What about lower boundson the sizeof sud a quantum data structure? If we
are ableto represem any - k-elemen subsetof our universe,then we can enmbed
a k-bit guantumrandomaacesscodein the data structure: the ability to represen

the ability to represem any k-bit string sud that any onebit-probein this string

can be answered. Nayak [129 proved that sud a quantum data structure needs
(2i H())k qubits, whereH (") is the binary ertropy function applied to the

error probability of the queries. Thus the size of quantum data structures lies
roughly betweenk and k log(kn).

8.7.2 Comparison with the classical case

What about classicaldata structures for the set menbership problem, how many
bits arerequiredto represem asetS p f0; 19" of at mostk elemerns? The answer
dependson what we expect from the data structure. Most reasonableseemsto
requirethe data structure to be a classicalstring (possiblygeneratedaccordingto
somedistribution dependingon S) which we can store somewhereand afterwards
useto determinewhethery 2 S for any y:olgour (_:h%ice. With this constrairt, the

. . | . .
classicaldata structure requiresabout log ik:o 'f Y kn bits (the logarithm of

the number of setsthat we want to represem). Accordingly, in this case,quanum
medanics allows exponertial spacesavings for small k: if k 2 polylog(n) then
the quantum data structure for S requiresabout k log(kn) 2 polylog(n) qubits,
which is exponertially lessthan the classicalspaceof about kn bits.

There is, howewer, another way to view the classicaldata structure, a way
which usesclassical ngerprinting and requiresonly O(k log(kn)) bits to represen
S. Supposewe choosea eld F of, say, 10(kn elemers. For eat x 2 S we choose
arandomz, 2 F and we represen S by giving the pairs (z4; px(z«)) for all x 2 S.
This takesk ¢21log(100kn) bits. If we now want to test whether somey is in S,
then we can comparep, (z.) with py(zy) for all k pairs. If y 2 S then oneof these
k comparisonswill give equality, and if y 62S then probably all comparisonsgive
inequality, where the probability is taken over the random choicesof z,. If this
probabilistic result satis esus, then we have a classicaldata structure which is as
excient asthe quartum onegivenabove. The problemwith this approad is that
oncethe randomnesg(the choicesof z,) hasbeen xed, an adversarycan nd a
y sud that with certainty the data structure will give the wrong answer for the
query 'y 2 S?'. The quartum data structure doesnot su®erfrom this drawbad.
In the quartum casethere is no randomnessthat needsto be xed, and every
query is answeredwith high probability no matter which y the adversarychooses.
One way to expressthis is to say that the quantum superposition \p ostpones"
the randomnesdo the actual time at which the query is made.

The di®erencebetweenthe quarntum and the classicalcasealso shavs up in
the simultaneousmessaggassingmodel mertioned in the rst part of this paper.
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SupposeAlice receivesS p f0; 19" of sizejSj - k, Bob receivessomey 2 f0; 19",
and they ead want to sendonemessagéo the refereeto enablehim to determine
whethery 2 S. In the quantumcase,Alice can sendthe quartum data structure
for S to the referee(O(k log(kn)) qubits), Bob can senda ngerprint of y to
the refereewith error reducedto ¥4 1=k (O(log(kn)) qubits), and the refereecan
determinewhethery 2 S with small error probability. Note that the refereehas
to apply the test of Figure 8.2, he cannotapply the simpler test from this section,
since he does not have the completey. In the classi@al case,Alice and/or Bob
needto sendexponertially more bits to the referee(in particularg, for k = 1 this
is just the equality problem, for which the classicalboundis £( = n)).

8.8 Summary

In many cornexts, testing the equality of n-bit strings x and y can be done by
taking short ngerprints of x andy and comparingonly those. If the two parties
making the respective ngerprints share O(logn) bits of randomness,then the
classical ngerprints needonly be O(1) bits long. Howewer, if the parties do not
share randomness,then the ngerprints need£(  n) bits. We gave a quantum
“ngerprinting schemein which the ngerprints canbe O(log n) qubits evenif the
parties shareno randomnesswhatsoever. This implies an exponertial quartum-
classicalgapfor the equality problemin the simultaneousmessagassingvariant
of communication complexity: Alice and Bob are uncorrelated, they get inputs
x andy, respectively, and should eat senda messapgeto a refereeto enablehim
to decidewhether x = y. Classically this takes£( " n) bits of commnunication,
quartumly it takesonly O(logn) qubits. We analyzedthe required size of the
quantum ngerprints and the error probability of the referee'sequality test in
detail, and also gave someother applications of quartum ngerprinting.



Chapter 9

Priv ate Quantum Channels

This chapter is basedon the paper

2 A. Ambainis, M. Mosca,A. Tapp, and R. de Wolf. Private Quantum Chan-
nels. In Proceadings of 41th IEEE FOCS pages,547{553,2000.

9.1 Intro duction

In the previous chapters we have discussedbounds on the amount of quantum
communication that is neededfor solving various tasks. Whenewer two people
commnunicate over somechannel, they run the risk of being spiedon: someeaves-
dropper Eve may tap the channel and learn things about the corversation that
Alice and Bob would rather shedidn't know. In this chapter we will investigate
what resourcesare neededfor Alice and Bob to make their quantum commnuni-
cation secure, in the sensethat Eve will get no information about the messages
when shetaps the channel.

Securetransmissionof classi@l information is a well studied topic. Suppose
Alice wants to sendan n-bit messageM to Bob over an insecure(i.e., spied-on)
channel,in sud a way that the eavesdropger Eve cannot obtain any information
about M from tapping the channel. If Alice and Bob share some secretn-bit
key K, then hereis a simple way for them to achieve their goal: Alice exclusie-
ors M with K and sendsthe result M°= M © K over the channel, Bob then
xors M ? again with K and obtains the original messageM°© K = M. Eve
may seethe encaled messageM © but if she does not know K then this will
give her no information about the real messageM, since for any M there is
a key K ° giving rise to the sameencaling M°% This scdhemeis known as the
Vernam cipher or one-time pad (\one-time" becauseK can be usedonly once
if we want information-theoretic security). It shows that n bits of sharedsecret
key are suxcient to securelytransmit n bits of information. Shannon[149 15Q

155
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has shavn that this schemeis optimal: n bits of sharedkey are also necessaryin
order to transmit an n-bit messagen an information-theoretically secureway.

Now let us considerthe analogoussituation in the quantum world. Alice and
Bob are connectedby a one-way quartum channel,to which an eavesdropper Eve
has completeaccess.Alice warnts to transmit to Bob somen-qubit state Y2taken
from someset S, without allowing Eve to obtain any information about %2 (Here
%is a mixed quantum state, a probability distribution on pure quartum states,
to be de ned in more detail in the next section.) Alice and Bob could easily
achieve such security if they sharen EPR-pairs or if they were able to establish
EPR-pairs over a securequarntum channel, for then they can apply teleportation
(Section6.2) and transmit every qubit via 2 random classicalbits, which will give
Eve no information whatsoever. But now supposeAlice and Bob do not share
EPR-pairs, but instead they only have the resourceof sharedrandomnesswhich
is wealker but easierto maintain.

A rst questionis: is it at all possibleto send quartum information fully
securelyusing only a nite amourt of randomness?At rst sight this may seem
hard: Alice and Bob have to \hide" the amplitudes of a quantum state, which
are in nitely precisecomplexnumbers. Newerthelessthe questionhasa positive
answer. More precisely to privately sendn qubits, a shared2n-bit classicalkeyis
suzcient. The encryption technique is fairly natural. Alice appliesto the state %2
that shewants to transmit a reversiblequantum operation speci ed by the shared
key K (basically, sheappliesa random Pauli matrix to ead qubit), and shesends
the result Y4to Bob. In the most generalsetting this reversible operation can be
represerted asdoing a unitary operation on the state Y2augmered with a known
‘xed ancilla state 3. Knowing the key K that Alice used, Bob knows which
operation Alice applied and he can reversethis, remove the ancilla, and retrieve
% In order for this schemeto be information-theoretically secureagainst the
eavesdropper, we have to require that Eve always \sees" the samedensity matrix
4 on the channel, no matter what Y2was. BecauseEve doesnot know K, this
condition canindeedbe satis ed. Accordingly, an insecurequartum channelcan
be made secure(private) by meansof sharedclassicalrandomness.

A secondquestionis, then, howmuchkey Alice and Bob needto sharein order
to be able to privately transmit any n-qubit state. A good way to measurekey
sizeis by the amourt of entropy requiredto createit, that is, by the entropy of
the probability distribution accordingto which Alice and Bob selecttheir secret
key. In the caseof a uniform distribution, this is just the number of bits of the
key. As onemight imagine, showving that 2n bits of key are not only sutcient but
also necessary is the most intricate part of this chapter.! We prove this 2n-bit
lower bound in Section9.5, and show that it even holds for the simpler task of

INote that if Alice and Bob share an insecuretwo-way channel, then they can do quantum
key exchange[26] in order to establish a sharedrandom key, soin this caseno prior sharedkey
(or only a very small one) is required.
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privately transmitting n unentanglel qubits. Accordingly, in analogy with the
classicalone-time pad, we have an optimal quantum one-time pad that uses2n
classicalbits to completely \hide" n qubits from Eve. In particular, hiding a
qubit is only twice as hard as hiding a classicalbit, despitethe fact that in the
qubit we now have to hide amplitudes coming from a cortinuous set.

The chapter is organizedas follows. Section 9.2 introduces some notation
and someproperties of Von Neumannentropy. In Section9.3 we give a formal
de nition of a private quantum channel (PQC). In Section 9.4 we give some
examplesof PQCs. In particular we show that there is a PQC that privately
sendsany n-qubit state using2n bits of randomnesgsharedkey). We alsoexhibit
a non-trivial set of n-qubit states for which there is PQC requiring only n bits
of randomnessnamely the tensor products of qubits with real amplitudes. The
latter result includesthe classicalone-time pad. In Section 9.5 we show that 2n
bits of randomnessare necessaryf we warnt to be ableto sendany n-qubit mixed
state privately.

Remark about related work. Seweral recert papersindependerily discussed
issuessimilar to the work presened in this chapter. In a related but slightly

di®eren setting, Braunstein, Lo, and Spiller [38, 113 have shown that 2 bits

of entropy are necessaryand suxcient to \randomize" a qubit. At around the

sametime as this work was done, Boykin and Roychowdhury [31] exhibited the

2n-bit Pauli-matrix one-time pad. They also gave a general characterization
of all possibleencryption sthemeswithout ancilla, a characterization which can
also be derived from the simultaneous and independert work of Werner [159.

Furthermore, Boykin and Roychowdhury proved a 2n-bit lower bound for the

casewherethe encryption schemedoesnot allow the useof an ancilla state. In

Section9.5we start with a simpli ed proof of their lower bound for the no-ancilla
caseand give a di®ere and more complicated proof for the lower bound in the

casewherewe do allow an ancilla.

9.2 Preliminaries

9.2.1 Mixed states and superop erators

In this chapter we needto go a little bit beyond the usual pure state formalism
that we introducedin Section1.2. A mixed quantum state or density matrix Yzis
a non-negative Hermitian matrix that hastrace Tr(¥2 = 1. The density matrix
correspnding to a pure state jAi is the outer productjAihAj. Becausea density
matrix Yzis Hermitian, it has a diagonalization¥s= = [_, pjAihAj, wherer is
the rank of ¥ the p; are its eigervalues, and the jAi form an orthor|9rmal set.
Because'zis non-negative and hastrace 1, we alsohavep; , Oand . p = 1.
Thus Y2can be viewed as describinga probability distribution or \mixture" over
pure states. A density matrix givesa completedescription of the quartum state,
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sothereis noway in which two quantum stgeswith identical density matricescan
be distinguished. Weusely = X1y = 2 M jiihij

state in an M -dimensionalspace which represeis the uniform distribution on all
basisstates. It should be noted that the samedensity matrix canbe represered

by di®eren distributions. For example,the 2-dimensionaltotally mixed state is
H 1
["2 =

NI O

+ .1 1 1
= = + = = Jj+ih+j + Jjjihjj
joihQj 2jllhlj 5 ih+] 2j|lh|j ;

(@M

wherewe de ned j+i = pl—z(jOi +jli) andjji = pl—i(jOi i jl).

If two systemsare in pure statesjAi and jAi, respectively, then their joint
state is the tensor product pure state jAi - jAi = jAjAi. If two systemsare in
mixed states ¥4 and Y2, respectively, then their joint state is the tensor product
Y4 - Y. Wereferto [130Q Chapter 2] for more about density matrices.

Applying a unitary transformation U to a pure state jAi givespure state UjAi
and applying U to a mixed state Ygives mixed state U%U, whereU® = Uil s
the conjugate transposeof U. We will useE=f"pU;j1- i - Ngto denote
gge superoperator that applielgui with probability p; to its argumert (we assume

i =1). ThusE(*} = ,pU%. Quantum medanics allows for more
general superoperators, but this type sutces for our purposes. A very useful
result is that two identical superoperatorsare unitarily related[129 Section3.2]:

9p2.1. Theorem (Nielsen [129]). If E = fpﬁui j1- i- NgandE°=
f pu%j 1. i- N areidentical (E(*2 = EY¥ for all ¥}, then they are
unitarily related in the following way (where we assumeN | N%andif N > N°
we pad E° with zeo operators to make E and E° of equal size): there exists a
unitary N £ N matrix A suchthat for all i
P X 95 0
pUi= Ay pU-
j=1

9.2.2 Von Neumann entropy

Let density matrix “2have the diagonalization P iNzl pijAihAj. The Von Neu-
mann entropy S(¥% of Yis the ctgtssicaIShannon ertropy H of the eigervalues
of 2 S(A = H(py;:::;pn) = i iNzl pilogpi. This S(*} can be interpreted as
the minimal Shannonenropy of the measuremet outcome, minimized over all
possiblecompletemeasuremets. Note that S(*} only dependson the eigervalues
of ¥2 The following properties of Von Neumannentropy will be useful later (for
proofs seefor instance[158 13Q).

1. S(jAihA)) = 0 for every pure state jAi .
2. S(a- Y2) = S(¥) + S(%).
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3. S(UY®) = S(¥).

4. S,y + 2%+ CCC+  \Ya), ,1S(Ya) +,2S(%) + ¢+  \S(YA)if i, O
and . ;= 1.

| »

P P .
5. If Y= iN:l pi jJAhA;j with the jAi not necessarilyorthogonal,then S(%} -

9.3 De nition of Private Quantum Channel

Let us sketch the scenariofor a private quartum channel. There are N possible

random variable. The private quantum channelspeci esunitary transformations
U; correspnding to the keysi. SupposeAlice wants to sendan n-qubit pure
state jAi from someset S to Bob. Sheappendsm i n xed ancilla qubits in
state ¥4 to jAihAj and then appliesU; to the m-qubit state jAihAj - Y&, wherei
is her key. Shesendsthe resulting m-qubit state U; (jAIhAj - ¥3)U" to Bob. Bob,
who sharesthe key i with Alice, appliesU; * to obtain jAihAj - Y4, removesthe
ancilla ¥4, and is left with Alice's messaggAihAj. One can verify that this is the
most generalsetting allowed by quantum medanicsif we want Bob to be able to
recover the state perfectly.

We will allow the eavesdropper Eve complete knowledge of the schemeused
(including all the U;'s). Of course,if shealsoknows the speci ¢ keyi used,then
shecanjust intercept the messagen the channeland decale it using Ui *. How-
ever, i is supposedto be a secretkey known only to Alice and Bob. Accordingly,
in order for our sthemeto be secureagainst the eavesdropger, we have to re-
quire that if Eve doesnot know i, then the density matrix % that shegetsfrom
monitoring the channel is independen of jAi. This implies that shegetsno in-
formation at all about jAi. Of course,Eve's measuringthe channelmight destroy
the encaded messagebut this is like classicallyjamming the channeland cannot
be avoided. The point is that if Eve measuresthen shereceivesno information
about jAi. We formalize this scenarioas follows.

9.3.1. Definition. Let n; m be natural numberswith m , n. Let Hx bethe set
of all pure n-qubit states,S u Hx be somesubsetthereof, E = f ﬁ-‘yi jl-i-
N g be a superoperator whereead U; is a unitary mappingon H ,m, iNzl pi =1,
Y be an (mj n)-qubit density matrix, and ¥, be an m-qubit density matrix.
Then [S; E; ¥%; %] is called a Private Quantum Channel (PQC) if for all jAi 2 S
we have

- s >(\I e .
EGANA - Y3) = pU; (AhA - Y3) U7 = Y%:
i=1
If n=m (i.e., no ancilla), then we omit 5.
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Note that by linearity, if the PQC works for all pure statesin S, then it
alsoworks for density matricesover S: applying the PQC to a mixture of states
from S givesthe same¥ as when we apply it to a pure state. Accordingly, if

[S;fpﬁui j1- i- NgYa %] is aPQC, then H(py;:::;pn) bits of shared
randomnessare suzcient for Alice to sendany mixture “2of S-statesto Bob in a
secureway.

To sumup: Alice encales; togetherwith a xed ancilla state %4, in a unitary
way depending on her key i and Bob can decale becausehe knows the samei
and hencecan reverseAlice's unitary operation U;. On the other hand, Eve has
no information about the key i apart from the distribution p;, sofrom her point
of view the channelis in state “&,e = Y. This is independen of the Ysthat Alice
wants to send,and hencegivesEve no information about %2

9.4 Examples and Prop erties of PQCs

In this sectionwe exhibit someprivate quartum channels. The rst uses2n bits
of key to privately sendany n-qubit state. The ideais simply to apply a random
Pauli matrix to ead qubit individually. The 4 Pauli matrices are:

Hy ol g, T uoiiﬂ%:u o7

1

= g1 AT 1 g 2T 0 01
Note that these matrices are unitary as well as Hermitian, so % = 3% = % 1
Selectinga random Pauli matrix takes2 random bits per qubit and the resulting
qubit is in the totally mixed state. That is, for all qubits jAi = ®j0i + ~j1i we
have

1X _

2 Y AhAYE = I

i=0

Similarly, it is easily veri ed that applying n random Pauli matricesto n qubits,
respectively, givesthe totally mixed n-qubit state Hn (irrespective of any en-
tanglemen that may hold betweenthe n qubits; this fact also follows from the
1-qubit casecombined with Theorem9.4.5below). For notational conveniencewe

we usex; 2 f0;1;2; 3g for its ith entry, and we use¥; to denotethe n-qubit uni-
tary transformation %, - ¢¢¢- % . This allows usto state our main exampleof
a private quartum channel:

9.4.1. Theorem (AMTW [10]). If E = fs2% j x 2 0,1,2,3g"g, then we
havethat [Hx; E; 0] is a PQC.

Sincethe above E cortains 22" operations which have uniform probability, it
follows that 2n bits of private key suxce to privately sendany state from H .
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The next theoremshowsthat there is somenontrivial subspacef H,» wheren
bits of private key sutce, namely the set of all tensor products of real-amplitude
gubits.

9.4.2. Theorem (AMTW [10]). If B = fcoqWwj0i + sin(W)jli jO- p< 2%,
S=B",andE= fpl-¥%jx 210,29"g, then[S;E; ] is a PQC.

Pro of. This is easily veri ed: applying % and ¥, eat with probability 1/2,
puts any qubit from B in the totally mixed state. Operator E doesthis to eath
of the n qubits individually. 2

Note that if we restrict B to classicalbits (i.e., u 2 f0;%¥&2g) then the above
PQC reducesto the classicalone-timepad: °ipping ead bit with probability 1/2
givesinformation-theoretical security when the messagesre classical. Note also
that this PQC doesnot work for arbitrary erntangled real-amplitude states; for
instancethe ertangled state pl—i(jOO' + j11i) is not mapped to the totally mixed
state. For n = 1;2; 3 there exist PQCs that require exactly n bits of ertropy
and can privately transmit any entangled real-amplitude n-qubit state. Howeer,
for n , 4 we canshow that sud a PQC requiresertropy strictly greaterthan n
bits. This marks a di®erencebetween sendingenangled and unertangled real-
amplitude states. We omit the technical and not very intuitiv e proofs.

In the previousPQCs, Y3 wasthe totally mixed state . This is no acciden,
and holdswhenewr n = m and I is one of the statesthat the PQC can send:

9.4.3. Theorem (AMTW [10]). If [S;E;¥%] is a PQC without ancilla and %n
can be written as a mixture of S-states,then Y3 = In.

Pro of. If I canbe written asa mixture of S-states,then
>(\| o X\I pi
Yo = E(I») = piUiMn Uy = o

i=1 i=

U° = —I n = Ion: 2
> Uu > 2 2

In generalY¥s need nﬁ)t be r}{“. For instance, let S = fij Oi;p%(jOi +jli)g, E=

3 1
f3l;;3Hg, and% = 4 4 . Thenit iseasilyveried that [S;E; %] is a PQC.

Finally we prove thafl a?DQC for n-qubit statesand a PQC for m-qubit states
caneasilybe combinedto a PQC for (n+ m)-qubit states: entanglemert between
the n-Bubit and m-qubit parts is dealt with automatically. If E=f" pUig and
E°= f p’Ug are superoperators, then we useE- E°= f* ppPU; - USg for their
tensorproduct. We will needthe following technical lemma, which we prove rst:

9.4.4. Lemma (AMTW [10]). Supmsethat E(jAIhAj - Y4) = Y% wheneverjA
is a tensor product of n qubits. Then E(jxihyj - %) = 0 wheneverx andy are
di®erent n-bit strings.
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Pro of.  For notational conveniencewe assumewithout loss of generality that
Y = 0, so E usesno ancilla and ¥, is an n-qubit state (this doesnot a®ectthe
proof in any way). The proofis by induction on the Hamming distanced between
x andy.

Base case. If d = 1, then x and y di®eronly in 1 bit, which implies that
pL(jxi + jyi) and s&(jxi + ijyi) are tensor products of n qubits (the st of these
states has pl—z(jOi + j1i) at the bit position wherex and y di®er, the secondhas
pl—é(jOi + ij1i)). Hencewe canwrite % in three ways:

My l
E - S(ixihxj + jyihy))

1y

- %(E(jxihxj) + E(jyihyj)) :
H

% = E (pl—z(jxi+jyi»(pl—§(mj+m»

= %(E(J'Xihxj) + E(jyihyj) + E(ixihyj) +ﬂ E(yihxj)) :
u
E (iE’l—i(J'Xi + ijyi))(Pl—é(WJ' i ihyj))

Yy
= E(E(JXIhXJ)Jf E(jyihyj) i 1E(jxihyj) + iE(jyihxj))

The rst and secondequality together imply E(jxihyj) + E(jyihxj) = 0, the rst
and third equality together imply E(jxihyj) i E(jyihxj) = 0. HenceE(jxihyj) =
E(jyihxj) = 0.

Induction step. Let x;y 2 f0;1g" have Hamming distanced > 1. Without
loss of generality we assumex = 09z and y = 19z for somez 2 f0;1g"i 9. We
have to show E(jxihyj) = 0.

Let v 2 f0; 1g%. We considerthe pure n-qubit state

AL = pﬁ(JOI + Y1) - ¢e¢- (jOi + iVejli) - jzi:

P
Let u¢v = . u;v; denotethe inner product of bitstrings u and v, and let U
denotethe negationof u (all bits °ipp ed). SincejA,i is atensorproduct, we have

% = E(AINA)) = 5 i4Y(i )" VE(juihug - jzihz)):
u;u%2f 0;1gd
Note that the 2¢ terms with u = u®in the right-hand sidesumto Y. Subtracting

this from both sidesof the equationreducesthe left-hand sideto 0. Furthermore,
by the induction hypothesiswe have E(juihuy- jzihzj) = 0 wheneerthe Hamming
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distance betweenu and u® lies betweenl1 and dj 1. Thus the only terms which

are left in the right-hand side of the above equation are the oneswhereu and u®

have Hamming distanced (i.e., u®= ©). Now, usingi'¥(j i)™ = (j i)Vi(; 1)¥,

the equation reducesto:

Gy X
2d

0= (i D'YE(juihyj - jzihzj):

u2f 0;1gd
Bemoving the constarnt factor (j i)™, summingover all v, and usingthe fact that
Li D)UY = 29 for u= 0% and O for u & 09, we obtain:
X X
0= 2—1d (i 1)"YE(juihtj - jzihzj) = E(jO:::0ih1:::1j - jzihz)):
v2f 0;1g9 u2f 0;1gd
Sincej0:::0ih1:::1j - jzihzj = jxihyj, this concludesthe proof. 2

9.4.5. Theorem (AMTW [10]). If [Hax;E;%4; %] and [Hom; E® %4% %9 are
PQCs, then[Hx+m;E- E%la- 14%1% - %9 is a PQC.

Pro of.  For notational corveniengewe will assume’ = ¥29= 0. Considerany

n+ m-qubit pure state jAi = ®yjxij yi. Usingthat jxij yihxghyg =
x2f 0;1g";y2f 0;1g™
jxihx9 - jyihyY, we have: A '
o X - .. '
(E- E)(jAhA) = (E- EY @y ®foyoixix] - jyihyS
x;y Oy
= ®y ®foE (jxihx9) - E°(jyihyq)
xiy xOy0
© X o
= ®yy ®)y E (jxihxj) - E°(jyihyj)
)é;y
= I®y- %= Y- %"
Xy
In the (v)-step we usedthat E(jxihx9) = 0 unlessx = x° (Lemma 9.4.4). 2

The above proof alsoshavsthat aPQC for S = H, " (the setofall unertangled
n-qubit states) is automatically alsoa PQC for S = H, (the set of all n-qubit
states).

Finally, a similar derivation can be usedto show that Alice canusean n-qubit
PQC to privately sendBob n qubits from a larger entangled state in a way that
presenesthe entanglemen. The PQC puts the n qubits in the Y,-state, so Eve
can obtain no information from the channel. When Bob reconstructsthe original
n-qubit state, this will still be erntangled with the part of the state that Alice kept
to herself.
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9.5 Lower Bound on the Entrop y of PQCs

Above we shovedthat 2n bits of entropy suzce for a PQC that cansendarbitrary
n-qubit states. In this sectionwe will shav that 2n bits are alsonecessaryfor this.
Independertly of our work, this 2n-bit lower bound was also proven by Boykin
and Roychowdhury [31] for the special casewherethe PQC is not allowed to use
any ancilla qubits. We will rst give a shorter version of their proof, basically
by observingthat a large part of it can be replacedby a referenceto the unitary
equivalenceof identical superoperators stated at the end of Section9.2.1.

9.5.1. Theorem (Boykin & Roycho wdhur y [31]; AMTW [10]).
If [Hzn;fpﬁui J1- i+ Ng»]isaPQC, thenH(py;::i;pn), 2n.

Pro of. Let E = fpﬁuig, and let E° = fp%%zj x 2 f0;1;2;39"g be the
superoperator of Theorem9.4.1,and let K = max(22";N). SinceE(}) = E{¥) =
. for all n-qubit states¥; we have that E and E°are unitarily related in the way
mertioned in Theorem 9.2.1: there exists a unitary K £ K matrix A sud that
forall1- i- N wehave

p_ X 1
pU = Aix =%
22n
x2f 0;1;2;3g"

We view the set of all 2" £ 2" matricesas a 22”-dimensionalvect8r spacewith
inner product M ;M4 = Tr(M °M 9=2" and inducednorm kM k= = hM;Mi (as
donein [3]]). Note that kM k= 1if M is unitary. It is easyto seethat the set
of all ¥ forms an orthonormal basisfor this vector space,so:

p_.. ., X 1 , 1 X
=k pUk=k Aixpﬁ%?k: >2n JAX]® -

X X

>

Howewer, even granted this result it is still conceiable that a PQC might
require fewer than 2n bits of randomnessf it can\spread out" its encaling over
many ancilla qubits | it is even conceiable that those ancilla qubits can be
usedto establishprivately shared randomnessusing some variant of quarntum
key distribution. The general casewith ancilla is not addressedin [31], and
proving that the 2n-bit lower bound extendsto this caserequires more work.
The next few theoremswill do this. They will in fact shav something slightly
stronger, namely that a PQC that can transmit any unentangle n-qubit state
already requires 2n bits of randomness,no matter how many ancilla qubits it
uses.Thus Theorem9.4.1 exhibits an optimal quartum one-time pad, analogous
to the optimal classicalone-time pad mertioned in the introduction.
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We use the notation G, = fjii j 0 - i - kj 1g for the set of the rst k
classicalstates. The next theorem implies that a PQC that privately conveys
n unerntangled qubits using m bits of key, can be transformed into a PQC that
privately conveysany jii 2 Gen, still using only m bits of key.

9.5.2. Theorem (AMTW [10]). If thereexistsaPQCI[H;";E= £P pUj1-
i - Ng;%,; %), thenthereis a PQC [Gan; E°= fpﬁuioj 1- i- Ng¥,; - %)

Pro of. For easeof notation we again assumeE usesno ancilla. First note
that it follows easily from Lemma9.4.4that the PQC E not only works for H,"
(the setof all unertangled n-qubit states) but alsofor H,n (the setof all n-qubit
states). We will “rst de'ne E°and then shaw that it is a PQC.

Intuitiv ely, E°mapsevery state from Gn to atensorproduct of n Bell stateshy
mapping pairs of bits to one of the four Bell states(which are pl—é(jOO' §j11) and
p%(jOJj 8 j10i)). The secondbits of the pairs are then moved to the secondhalf
of the state and encrypted by applying E to them. Becauseof the erntanglemen
betweenthe two halvesof ead Bell state, the resulting 2n-qubit density matrix
will be I - %. More speci cally, for x 2 f0;1;2;3g" and ¥ = %, - ¢¢¢- ¥,
asin Theorem9.4.1,de ne the following unitary transformation U:

1 X
Ujxi = (% - 12) P jiijii:
2 i2f 0;1g"
Also dene U%= (I» - Uj)U. It remainsto show that EYjxihxj) = I - % for
all jxi 2 Gpn:

Eqjxihxj) =
2 0 1
1 X
= pi(lx - U)4 (% - |2n)@p? jyijyiA
i=1 0 y2f 0;1g" 1 3
1 X L o o
¢@p? hejhzjA (F5- 120)°2 (I - Uy)
2 0 z2f 0;1g" 1 3
1 X X . .
G ENED A (U U@ jyihzj - jyihzjA(l: - U)™S(F - I)
i=1 y;z2f 0;1g"
2 A 1 3
1 X .
= (- 1) jyihzj - pUijyihzju® S (% - 1a)
2 y;z2f 0;1g" i=1 3

1 X o .
(Y% - |2n)42—n jyihzj - E(jyihzj)® (% - 1)
y;z2f 0;1g"
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2 3
() 4 1 X o Y o
= (F&- 1) on Jyihyj - E(jyihyj)° (% - 12n)
h y2f O;Jig”
= (%' Izn) Bn' 1/@ (%' |2n)u
= rén - ]/@:
In the (0)-step we usedthat E(jyihzj) = O unlessy = z (Lemma 9.4.4). 2

Privately sendingany state from Gnm correspndsto privately sendingany
classicalm-bit string. If communication takes place through classi@l channels,
then Shannon'stheoremimplies that m bits of sharedkey are requiredto achieve
sudh security. Shannon'sclassicallower bound doesnot translate automatically
to the quantum world (it isin fact violated if a two-way quantum channelis avail-
able, seeFootnote 1 on page 156). Newertheless,if Alice and Bob communicate
via a one-way quartum channel, then Shannon'stheorem doesgeneralizeto the
quantum world:

9.5.3. Theorem (AMTW [10]). If [sz;fpﬁui j 1 i - NgY¥ %] is a

P .
Pro of. Diagonalizethe ancilla: ¥ = jr:l gjAIhAjj, soS(¥a) = H(th;:::; q).
Note that the 5th property of Von Neumannertropy (Section9.2) implies:

AX" I
S(%s) = S piUi(jOIhG) - Y4)U?
A=t !
XX L
= S pig Ui(jOING - jAIhA U
i=1 j=1

= H(py::ipe) + H(os i 9):
Also, using properties 2, 3, and 4 of Von Neumannertropy:
A !

S piUi (om - %)V

i=1
X\] 3

pS Hm- Y
i=1

S(%)

= pi(m+ S(%a))

i=1

= m+ S(Ya):
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Combining thesetwo inequalities givesthe theorem. 2

In particular, for sendingarbitrary statesfrom G we neederntropy at least
2n. Combining Theorems9.5.2 and 9.5.3we thus obtain the main lower bound:
any private quantum channelthat can sendewery n-qubit state in a secureway,
needsat least 2n bits of secretkey. This shaws that Theorem9.4.1is optimal.

9.5.4. Cor ollar y (AMTW [10]). If [H'Z”;fpﬁui j1- i- NgYa%]isa

SinceH," p Hax, we have also proved the optimality of the PQC of Theo-
rem9.4.1:

9.5.5. Cor ollar y (AMTW [10]). If [Hzn;fpﬁUi Jj1- i NgY ]isa

In relation to Theorem 9.4.2, note that G» p B~ ". Henceanother corollary
of Theorem 9.5.3is the optimality of the PQC of Theorem9.4.2:

9.5.6. Cor ollar y (AMTW [10]). If [B- ”;fpﬁui j1- i NgY¥;%]isa

9.6 Summary

The main result of this chapter is an optimal quartum version of the classical
one-timepad. On the onehand, if Alice and Bob share2n bits of secretkey, then
Alice cansendBob any n-qubit state %2 encadedin another n-qubit state in a way
that conveysno information about %4to the eavesdropger. This is a simplesdheme
which works locally (i.e., dealswith ead qubit separately)and usesno ancillary
qubits. On the other hand, we showved that even if Alice and Bob are allowed
to useand sendany number of ancilla qubits, then they still require 2n bits of
ertropy. Thus 2n bits of sharedrandomnessare necessaryaswell assuzcient for
private communication of n qubits.






App endix A

Some Useful Linear Algebra

In this appendix we sketch someuseful parts of linear algebra, most of which will
be usedsomewhereor other in the thesis.

A.1 Some Terminology and Notation

We useV = CU to denotethe d-dimensionalcomplexvector space,which is the
set of all column vectorsof d complexnumbers. We assumefamiliarity with the
basicrules of matrix addition and multiplicatign. A setof vectorsvy;:::;vm 2 V
is linearly independentif the only way to get ", aVv; equalto the zero-\ector 0

every, vector v 2 V canbe written asa linear combination of those basisvectors
V= id=1 a;vi. One canshow that a basisis linearly independert.

We useAj; for the (i; j )-entry of a matrix A and AT for its transmse which
hasA{ = Aji. |4 denotesthe d£ d identity matrix, which has1son its diagonal
and Os elsewhere.We usually omit the subscript d when the dimensionis clear
from context. If A is squareand there is a matrix B sud that AB = BA = 1,
then we useAi ! to denotethis B, which is calledthe inverseof A (and is uniqueif
it exists). Note that (AB)i 1 = Bi *Ai L, If A isamatrix (not necessarilysquare),
then A® denotesits conjugate transmpse the matrix obtained by transposing A
and taking the complex conjugatesof all ertries. Note that (AB)" = B"A".
Physicists often write AY instead of A®.

For vectorsv;w, we usehvjwi = v®'w =, vi'w; for their inner product The
combination of the vector spaceV with this inner product is called a Hilbert
spe. Two vectorsvwﬂortwmjwi = 0. The inner product induces
a vector norm kvk= " hvjvi = . Jvij2. The Cauchy-Schwarznequality gives
jhviwij -k vk ¢kwk. A setfv;g of vectorsis called an orthogonalsetif all vectors
are pairwise orthogonal: hvijv;i = 0if i 6 j. If additionally the vectorsall have
norm 1, then the setis called orthonormal. The outer product of v and w is the

169
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matrix vw". Below we will restrict attention to squarematrices, unlessexplicitly
mertioned otherwise. The complex number , is an eigenvalueof squarematrix
A is there is someeigenvetor v sud that Av = v.

A.2 Unitary Matrices

A matrix A is unitary if Ai t = A®. The following conditions are equivalert:
1. A is unitary
2. A presenesinner product: hPAvjAwi = hvjwi for all v;w
3. A presenesnorm: kAv k=kvk for all v
4. kAvk= 1if kvk= 1

(1) implies (2) becauseif A is unitary then A"A = |, and hencebAvjAwi =
(VCA®)Aw = hvjwi. (2) implies (1) asfollows: if A is not unitary then AA 6 1,
so then there is a w sud that A°Aw 6 w and, hence,a v sud that hvjwi 6
hvjA"Awi = bAvjAwi, contradicting (2). Clearly (2) implies (3). Moreover, it is
easyto show that (3) implies (2) using the following identit y:

kv + wk*=kvk? + kwk? + hvjwi + hwjvi:

The equivalenceof (3) and (4) is obvious. Note that by (4), the eigervaluesof a
unitary matrix have absolutevalue 1.

A.3 Diagonalization and Singular Values

Matrices A and B are similar if there is an invertible matrix S sud that A =
SBSi . Notethat if Av = v, then BSi v = Silv, sosimilar matrices have
the sameeigervalues. Schur's lemmastatesthat every matrix A is similar to an
upper triangular matrix: A = Ui 'TU for someunitary U and upper triangular
T. Sincesimilar matrices have the sameeigervaluesand the eigervaluesof an
upper triangular matrix are exactly its diagonalertries, the eigervaluesof A form
the diagonalof T.

A matrix D is diagonalif D; = O wheneweri 6 j. Let S be somematrix
satisfying AS = SD for somediagonalmatrix D. Let v; be the ith column of S
and , ; be the ith entry on the diagonal of D, then

0 1 0 1

B Avs 0¢ Avg X = B .avi 00 ovg X

— 7} | {2}
AS SD
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and we seethat v; is an eigervector of A assaiatedwith eigervalue, ;. Conversely

SD, where S has the v; as columnsand D is the diagonal matrix of ;. We
call a squarematrix A diagonalizableif it is similar to somediagonal matrix D:
A = SDSi 1. This D then hasA's eigervalues, ; on its diagonal, someof which
may be zero. Note that A is diagonalizablei®it hasa linearly independen setofd
eigervectors. Theseeigervectorswill form the columnsof S, giving AS = SD, and
linear independenceensureghat S hasan inverse,giving A = SDSi 1. A matrix
A is unitarily diagonalizablei® it can be diagonalizedvia a unitary matrix U:
A = UDUI 1. By the sameargumert asbefore,A will be unitarily diagonalizable
i® it hasan orthonormal set of d eigervectors.

A matrix A is normal if it commutes with its conjugate transpose (A°A =
AA"). For example,unitary matricesare normal. If A isnormalandA = Ui 1TU
for someupper triangular T (which must exist becauseof Schur's lemma), then
T=UAU 'and T® = UA"Ui! soTT® = UAA®UI 1 = UAAUI! = T°T.
HenceT is normal and upper triangular, which implies (with a little work) that
T isdiagonal. This shovsthat normal matricesare unitarily diagonalizable.Con-
versely if A is diagonalizableasUi DU, then AA® = Ui 1DD"U = U/ 'D"DU =
A"A, sothen A is normal. Thus a matrix is normal i® it is unitarily diagonaliz-
able. If A is not normal, it may still be diagonalizablevia a non-unitary S, for
example:

oy 1ﬂ_ul 1ﬂ¢u1 oﬂ¢“1 11“_
02 ~ 01 0_2 0o _ 1 -

| —{z—} | —z—} |z—} [—{z—}
A S D Sil

If A= UDUI!then A" = UD"U' !, sothe eigervaluesof A" are the complex
conjugatesof the eigervaluesof A.

An important classof normal (and henceunitarily diagonalizable)matrices
are the Hermitian matrices, which are the onessatisfying A = A”. Note that the
previous paragraph implies that the eigervaluesof Hermitian matrices are real.
A Hermitian matrix is called positive (resp. non-neggative) if all its eigervalues
are positive (resp. non-negatiwe). If all eigervaluesare O or 1, then A is called a
projection or projection matrix. This is equivalert to requiri@g A? :ﬂA.
01
00
every matrix A has a singular value decomposition, as follows. It is easyto see
that the matrix A"A hasthe sameeigervectorsas A and that its eigervaluesare
the squaredabsolutevaluesof the eigervaluesof A. SinceA"A is Hermitian and
hencenormal, we have A°A = UDU/ ! for someU and somenon-negatiwe real

Not all matrices are diagonalizable,for instance A = Howewer,

diagonal matrix D. The ertries of § = = D are called the singular valuesof A.
Every A hasa singularvaluedecommgtionA = U8V, with U;V unitary. This
impliesthat A canbewritten asA =, ;u;v{, with u; the columnsof U and v,

the columnsof V.
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A.4 Trace

P
The trace of a matrix A is the sumof its diagonalertries: Tr(A) = ; A;. Some
important and easily veri ed properties of Tr(A) are:

2 Tr(A+ B) = Tr(A) + Tr(B)
2 Tr(AB) = Tr(BA)
2 Tr(A) is the sum of the eigervaluesof A
(This follows from deq;; and the previousitem: Tr(A) = Tr(UTU! 1) =
Tr(UIUT) = Tr(T) = ,,9)
A.5 Tensor Pro ducts

If A= (Aj)isanm£ n matrix and B an m°£ n® matrix, then their tensor or
Kronecker product is the mm°£ nn® matrix

1
A;B ¢¢¢ A;nB

A, B ¢t¢ A,,B
A- B = 21 2n

AmniB ¢¢¢ A, B

The following properties of the tensor product are easily veri ed:

2 ¢(A- B)=(cA)- B = A- (cB) for all scalarsc

2 (A- B)"= A"- B" (and similarly for inverseand transpose)

2 A- B+C)=(A- B)+(A- C)

2 A- (B- C)=(A- B)- C

2 (A- B)(C- D)= (AC)- (BD)
Di®eren vector spacescan also be conbined using tensor products. If V and V°
respectively, then their tensor product spaceis the d ¢d>dimensionalspaceW =
V- VPspannedby fvi- v’j1- i- d;1- j- d¥. Applying alinear operation

A to V and B to V° correspndsto applying the tensor product A - B to the
tensor product spaceWw.
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A.6 Rank

The rank of a matrix A (over a eld F) is the size of the largest linearly inde-
penden set of rows of A (linear independencetaken over F). Unlessmertioned
otherwise,we take F to be the eld of real numbers. We say that A hasfull rank
if its rank equalsits dimension. The following properties are all easyto show:

2 rank(A) = rank(A®)

2 rank(A) equalsthe number of non-zeroeigervaluesof A (courting multi-
plicity)

2 rank(A + B) - rank(A) + rank(B)
2 rank(AB) - minfrank(A);rank(B)g
2 rank(A - B) = rank(A) ¢rank(B)

2 A hasan inversei® A hasfull rank

A.7 Dirac Notation

Physicists often write their linear algebrain Dirac notation, and we will follow
that customfor denoting quantum states. In this notation we write jvi = v and
hvj = v°. The rst is called a ket, the seconda bra. Note that

2 hwjwi = hvjjwi

F)
2 If Alisunitarily diagonalizablethenA = . | ijviihv;j for someorthonormal
set of eigervectorsfvig

2 jvihvj - jwihwj = (jvi - jwi)(hvj - hwj)
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Samenvatting

Computerszijn fysiste objecten en dus onderhevigaan de wetten van de natuur-

kunde. Het is daarom enigszinsverrassenddat de computersvan tegerwoordig
(zowel theoretisthe Turing madhinesals huis-tuin-en-keuken PCs) ontwikkeld zijn

op basisvan de klassiekenatuurkunde, en niet op basisvan de 20eeewseopvol-

ger daarvan, de quantum mechania. Het nieuwe vakgebiedquantum computing
herstelt deze omissie door de eigensbappen te bestuderenvan computers die
zich gedragenvolgensde wetten van de quartum medianica. Een van de meest
opvallende eigensbappen van de quantum computer is dat dezein eensugerpo-

sitie van allerlei klassiele toestandentegelijk kan zijn, die interferentiepatronen
kunnen vertonen.

E®n van de belangrijkste doelenvan quantum computing is om quantum al-
goritmes (berekeningstiema’s)te vinden die bepaaldecomputationeleproblemen
veel sneller kunnen oplossendan de besteklassiele algoritmes. De twee succes-
volste quarntum algoritmestot nu toe zijn Shor's algoritme uit 1994 dat snelde
priemfactorenvan grote getallen kan vinden (waarmeede meestemoderne cryp-
togra sche systemengekraakt zoudenkunnen wordea) en Grover's algoritme uit
1996dat eenzoekruimte van n elemernen in ongeweer n stappenkan doorzoeken.

Deel I Query Complexiteit

Het beginpurt van deell van dit proefsdrift is de obsenatie dat vrijw el alle be-
staandequantum algoritmes (inclusief die van Shor en Grover) bestreven kun-
nenwordenin termenvan query complexiteit: de quartum algoritmeshoeven veel
minder vaak naar bits van deinput te \kijk en" dan klassiele algoritmes. Het lijkt

er op dat dit model van query complexititeit eensigni cant deel van de kracht
van quantum computersbevat. Daarom maken we in deell van het proefsdrift

een algemeneen gedetailleerdevergelijking tussen quantum query complexiteit
en klassiele query complexiteit voor allerlei computationeleproblemen.
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Ons belangrijkste instrument in dezevergelijking is algebrast: we bewijzen
dat de graad van eenpolynoom dat het computationele probleemrepreseteert,
eenondergrensgeeft op quartum query complexiteit. Dit betekent dat we on-
dergrenzenop quartum complexiteit kunnen bewijzendoor polynomenvoor die
problemente analyseren. E§n van de belangrijkste gewlgenis een bewijs dat
quartum query complexiteit hoogstenspolynomiaal kleiner kan zijn dan klassiele
guery complexiteit wanneerwe te maken hebben met eentotaal computationeel
probleem (dat wil zeggen,een probleemdat gede nieerdis voor alle mogelijke
inputs). Met anderewoorden, een quantum computer kan alleen exponertieel
snellerzijn dan eenklassiele computerin dit model wanneerwe weten dat de in-
put eenbepaaldespeci eke eigensbap zal hebben. Bijvoorbeeldin het gewal van
Shorsalgoritme weten we dat eenbepaaldefunctie waarnaar het factoriserings-
probleemgereduceerdvordt, periodiek is.

Afgezienvan dezealgemeneresultaten die voor alle totale problemengelden,
houden we ons ook in detail bezig met versdillende speci eke computationele
problemen. We bewijzenbijv oorbeelddat de kansop eenfout antwoord in Grovers
algoritme wat beter gereduceerdkan wordenwanneerwe dezefout-reductie op een
guarntum manier doen dan wanneerwe het op de normaleklassiele manier zouden
doen (die het algoritme gewoon eenpaar keerzou herhalen). We ontwikkelenook
eenquantum algoritme voor het elementdistinctness probleem (dit is: zijn de
getallenop eengegeen lijst met n getallen allemaal versaillend?) dat ongeeer
n®* stappen nodig heeft. Dit laat zien dat voor een quartum computer het
probleemvan elemen distinctnessveel eervoudigeris dan het sorteer-probleem.
Dit cortrasteert met de klassiele wereld, waarin beideproblemenongeeern logn
stappen nodig hebben.

Tot slot laten we zien dat het negatiewe resultaat voor standaard query com-
plexiteit (quantum geeft hoogstenseen polynomiale verbetering voor alle totale
problemen)niet geldt in tweeandereversiesvan query complexiteit: average-ase
complexiteit en non-deterministischecomplexiteit. Voor beide modellenlaten we
totale computationeleproblemenzienwaarvoor quantum computersexponertieel
minder queriesnodig hebben dan de besteklassiele algoritmes.

Deel 1I: Comm unicatie en Complexiteit

Sindsdejaren '70 is het bekend dat quantum communicatie niet exci@rter is dan
klassiele communicatie voor informatieoverdradit: als Alice k bits aan informa-
tie wil sturen naar Bob dan zal ze hem minstensk quantum bits moeten sturen.
Echter, Cleve en Buhrman hebben ontdekt dat wanneerAlice en Bob niet zozeer
informatie willen oversturen, maar eenof ander computationeelprobleemwillen
oplossen(Alice krijgt x, Bob krijgt y, ensamenwillen ze eenfunctie f (Xx;y) bere-
kenenmet minimale onderlingecommunicatie), dan kan de benadigde hoeveelheid
commnmunicatie somsdrastisch gereduceerdvorden als we quartum comrmunicatie
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toestaan. Bijvoorbeeld, eenresultaat van Buhrman, Cleve, en Wigderson laat
zien dat als Alice en Bob ieder eenagendahebben met n dagenwaarin ze een
dag vlgillen vinden waarop ze allebei vrij zijn, dan kunnen ze zo'n dag vinden met
zo'n  n quantum bits aan commnunicatie. Klassiekzijn hier ongeeern bits voor
nodig.

In deelll van dit proefsdirift bekijken we dit model van comnunicatie com-
plexiteit van versaillende kanten. We besprelen eerstde belangrijkste voorbeel-
denwaar quartum comnmnunicatie complexiteit signi cant minder is dan klassiele
communicatie complexiteit. Daarna bestuderenwe de anderekant, en ontwikke-
len we technieken om ondelgrenzente bewijzen op quantum communicatie com-
plexiteit. Deze technieken laten bijvoorbeeld zien dat quantum comrmunicatie
nawvelijks beter is dan klassiele comnunicatie voor bijna alle gedistribueerde
problemen. We laten ethter ook eennieuw ge\al zien waar de quantum comiu-
nicatie complexiteit welveellageris dan de klassiele complexiteit: in eenbepaald
3-partijen model (Alice en Bob sturen allebei eenboodsdap naar eenarbiter, die
daarmeef (Xx; y) moet berekenen), kunnen Alice en Bob testen of hun inputs x
eny gelijk zijn met exponertieel veel minder communicatie wanneerwe quan-
tum communicatie toestaan. Dit voorbeeld gebruikt eennieuwe techniek die we
guantum ngerprinting noemen.

In het laatste hoofdstuk bekijken we tenslotte eenbeveiligingsaspect. Stel dat
Alice en Bob hun onderlingecomnunicatie niet alleenwillen minimaliseren,maar
dezecommunicatie ook geheimwillen houden: als eenderde perswmn, Eve, het
commnunicatiekanaal aftapt, dan mag ze hiervan niets leren over de boodstappen
die Alice en Bob uitwisselen.Het is bekend dat eengedeeldegeheimesleutel van
n bits noodzakelijk en voldoendeis om eenklassiele n-bit boodsdap van Alice
naar Bob te sturen op eenmanier die geeninformatie geeftaan Eve (Shannons
stelling). We bewijzenhet quantum analogonhiervan: eengedeelde2n-bit sleutel
is noodzakelijk en voldoende om veilig een boodsdap van n quantum bits te
kunnen sturen.






Abstract

Computersare physical objectsand henceshouldfollow the laws of physics. Some-
what surprisingly, today's computers(theoretical Turing madinesaswell asdesk-
top PCs) are deweloped on the model of classi@l physicsrather than on the model
of its 20th certury successoguantummechanics The new eld of quantumcom-
puting tries to make up for this de cit by studying the properties of computers
that follow the laws of quantum medanics. One of the striking properties of a
guantum computeris that it canbe in a superposition of many classicalstatesat
the sametime, which can exhibit interference patterns.

One of the main goalsof the eld of quartum computing is to nd quantum
algorithms that solve certain problems much faster than the best classicalalgo-
rithms. Its two main successesofar are Shor's 1994ezxcient quantum algorithm
for nding the prime factors of large integers(which can break most of modern
cryptograrphy) and Grover's 1996 algorithm that can seart an n-elemern space
in about  n steps.

Part I: Query Complexit y

The starting point of part | of this thesisis the obsenation that virtually all known
guartum algorithms (including Shor's and Grover's) can be descriked in terms
of query complexity. they require far fewer queriesto input bits than classical
algorithms do. It thus appearsthat the model of query complexity capturesa lot
of the power of quartum computing. Accordingly, in part | of the thesiswe make
a detailed and generalcomparisonof quantum query complexity versusclassical
query complexity for various kinds of computational problems.

Our main tool in this comparisonis algebraic: we prove that the quantum
guery complexity of a computational problem is lower boundedby the degreeof
a certain polynomial that in somesenserepreseis that problem. This means
that we can prove lower bounds on the quantum query complexity of various
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problems by analyzing polynomials for those problems. One of the main con-
sequence®f this technique is the result that quarntum query complexity can be
at most polynomially smaller than classicalquery complexity when we consider
total computational problems(which are de ned on all possibleinputs). In other
words, any exponertial quartum speed-upin this model will have to be basedon
somepromise on the input, someproperty that the input is known in advance
to have. For example,for Shor's algorithm this promiseis the periodicity of a
certain function to which the factoring problem can be reduced.

Apart from thesegeneralresultsthat hold for all total problems,we alsocon-
sider in more detail the quarntum complexities of various speci ¢ computational
problems. For example, we prove that the error probability in Grover's seart
algorithm can be reducedslightly better if we do this in a quantum way than if
we do it in the usual classicalway (which would just repeat Grover's algorithm
many times). We also derive an algorithm for the elementdistinctnessproblem
(which is: arethe numberson a list of n elemens all distinct?) that takesabout
n®*4 steps. This shows that for a quartum computer the problem of elemen
distinctnessis signi cantly easierthan the problem of sorting, in cortrast to the
classicalworld, where both problemsrequire about nlogn steps.

Finally, we show that the negative result for standard query complexity (at
most a polynomial quarntum speed-upfor all total problems)doesnot hold in two
other versionsof query complexity: average-asecomplexity and non-deterministic
complexity. For both modelswe exhibit total problemsand quartum algorithms
for solving those problemsthat are exponertially better than the best classical
algorithms.

Part I1l: Comm unication and Complexit y

It has beenknown sincethe early 1970sthat quartum commnunication cannot
improve upon classicalcommunication whenit comeso information transmission:
if Alice wants to sendBob k bits of information, then shehasto sendhim at leastk
guantum bits (Holevo's theorem). Howewer, Cleve and Buhrman discoveredthat
if the goal of Alice and Bob is not to comnunicate information but to solve some
distributed computational problem (Alice getsx, Bob getsy, and together they
want to compute somefunction f (x;y) with minimal comnunication between
them), then sometimesthe amourt of communication can be reduceddrastically
by allowing quarntum communication. For example,a result of Buhrman, Clewe,
and Wigdersonsays that if Alice and Bob ead have an n-slot agendaand they
B/ant to nd a slot wherethey are both free, then they can do this with roughly
n quartum bits of comrunication, whereasin the classicalworld about n bits
of communication would be needed.
In part 11 of the thesiswe look at this model of quartum commnunication com-
plexity from various angles. We rst discussthe main examplesknown where



Abstract 195

guantum communication complexity is signi cantly lessthan classicalcommuni-
cation complexity. Then we considerthe other side and dewelop techniquesto
shav lower boundson quantum commnunication complexity, againusingalgebraic
techniques. Thesetechniquesimply, for example,that quantum comrmunication
cannotimprove signi cantly upon classicalcomnunication complexity for almost
all distributed problems. Howewer, we alsoexhibit a newexamplewherequanum
comnunication complexity doesimprove upon classicalcomplexity: in a speci ¢
3-party model (Alice and Bob eat senda messagdo a referee,who shouldthen
computef (x;y)), the problem of testing equality betweenAlice and Bob's input
can be solved with exponertially lesscommunication when we allow quantum
comnunication, using a new technique called quantum ngerprinting .

In the nal chapter we addressan issueof security. SupposeAlice and Bob
care not only about minimizing the amourt of their commnunication, but also
about keepingit secret: if somethird party Eve is tapping the commnunication
channel, then she should learn nothing about the actual messages.Classically
it is known that a sharedsecretn-bit key is necessaryand suzcient to senda
classicaln-bit messagdrom Alice to Bob in a way that givesno information to
Eve (Shannon'stheorem). We prove the quantum analogueof this: 2n bits of
shared secretkey are necessaryand suzcient to securelysenda messageof n
quartum bits.
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List of symbols

deterministic classicalquery complexity (p.31)
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zero-errorquartum query complexity (p.34)
bounded-errorquantum query complexity (p.34)
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non-deterministic classicalquery complexity (p.91)
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non-deterministic degree(p.93)

certi cate complexity (p.36)
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bounded-errorclassicalcommunication complexity (p.105)
exact quantum communication complexity (p.107)
zero-errorquantum communication complexity (p.107)
bounded-errorquartum communication complexity (p.107)
superscript @' indicatesthe useof prior EPR-pairs (p.107)

superscript k' indicates the simultaneousmessageassingmodel (p.141)
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