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Chapter 1

Quan tum Computing

1.1 In tro duction

Today's computers|b oth in theory (Turing machines) and practice (PCs)|are
basedon classicalphysics. However, modern quantum physics tells us that the
world behavesquite di®erently. A quantum systemcan be in a superposition of
many di®erent statesat the sametime, and canexhibit interference e®ectsduring
the courseof its evolution. Moreover, spatially separatedquantum systemsmay
be entangled with each other and operationsmay have \non-local" e®ectsbecause
of this.

Quantum computation is the ¯eld that investigatesthe computational power
and other properties of computersbasedon quantum-mechanical principles. An
important objective is to ¯nd quantum algorithms that are signi¯cantly faster
than any classicalalgorithm solving the sameproblem. The ¯eld started in the
early 1980swith suggestionsfor analogquantum computersby Paul Benio®[22]
and Richard Feynman [74, 75], and reached more digital ground when in 1985
David Deutsch de¯ned the universalquantum Turing machine [61]. The following
years saw only sparseactivit y, notably the development of the ¯rst algorithms
by Deutsch and Jozsa[63] and by Simon [152], and the development of quantum
complexity theory by Bernstein and Vazirani [28]. However, interest in the ¯eld
increasedtremendously after Peter Shor's very surprising discovery of e±cient
quantum algorithms for the problemsof integer factorization and discrete loga-
rithms in 1994 [151]. Since most of current classicalcryptography is basedon
the assumptionthat thesetwo problemsare computationally hard, the abilit y to
actually build and usea quantum computerwould allow us to breakmost current
classicalcryptographic systems,notably the RSA system[140, 142]. (In contrast,
a quantumform of cryptography due to Bennett and Brassard[26] is unbreakable
even for quantum computers.)

This chapter is intendedto be an introduction to the model of quantum com-
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2 Chapter 1. Quantum Computing

putation and to the main quantum algorithms that have been found so far, all
of which are conveniently namedafter their inventors: Deutsch-Jozsa,Bernstein-
Vazirani, Simon, Shor, and Grover. Somefamiliarit y with computational com-
plexity theory will be useful,but is not necessaryfor understandingthe chapter.
We start with an abstract explanation of quantum mechanics in Section 1.2.
Section1.3 explainswhat quantum bits and quantum memory look like, and Sec-
tion 1.4 shows how we can compute with quantum memory. In the last three
sectionswe explain the above-mentioned quantum algorithms in detail.

Before limiting ourselvesto theory, let us say a few words about practice: to
what extentwil l quantumcomputerseverbe built? At this point in time, it is just
too early to tell. The ¯rst small 2-qubit quantum computerwasbuilt in 1997and
at the time of writing (early 2001), the largest implemented quantum algorithm
usesa mere 5 qubits [156]. The practical problems facing physical realizations
of quantum computersseemformidable. The problemsof noiseand decoherence
have to someextent been solved in theory by the discovery of quantum error-
correcting codes and fault-tolerant computing (seee.g. [130, Chapter 10]), but
theseproblemsare by no meanssolved in practice. On the other hand, we should
realize that the ¯eld of physical realization of quantum computing is still in its
infancy and that classical computing had to face and solve many formidable
technical problemsas well|in terestingly, often theseproblemswere even of the
samenature as those now faced by quantum computing (e.g., noise-reduction
and error-correction). Moreover, the di±culties facing the implementation of a
full quantum computer may seemdaunting, but more limited things involving
quantum communication have already beenimplemented with somesuccess,for
examplequantum cryptography and teleportation (which is the processof sending
qubits using entanglement and classical communication).

Even if the theory of quantum computing never materializesto a real physical
computer, quantum-mechanical computersare still an extremely interesting idea
which will bear fruit in other areasthan practical fast computing. On the physics
side, it may improve our understanding of quantum mechanics. The emerging
theory of entanglement has already done this to someextent. On the computer
scienceside,the theory of quantum computation generalizesand enrichesclassical
complexity theory and may help resolve someof its problems. This explains the
motto of the present thesis: senon µe vero, µe ben trovato, which roughly translates
as \even if it is not true, it's still a nice idea".

1.2 Quan tum Mec hanics

Herewe give a brief and abstract introduction to quantum mechanics. In short: a
quantum state is a superposition of classicalstates, to which we can apply either
a measurementor a unitary operation. For the required linear algebraand Dirac
notation we refer to Appendix A.
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1.2.1 Superp osition

Consider somephysical system that can be in N di®erent, mutually exclusive
classicalstates. Call thesestatesj1i ; j2i ; : : : ; jN i . Roughly, by a \classical" state
we mean a state in which the system can be found if we observe it. A pure
quantumstate (usually just called state) jÁi is a superposition of classicalstates,
written

jÁi = ®1j1i + ®2j2i + ¢¢¢+ ®N jN i :

Here®i is a complexnumber that is calledthe amplitudeof ji i in jÁi . Intuitiv ely, a
systemin quantum state jÁi is in all classicalstatesat the sametime! It is in state
j1i with amplitude ®1, in state j2i with amplitude ®2, and soon. Mathematically,
the states j1i ; : : : ; jN i form an orthonormal basis of an N -dimensional Hilbert
space (i.e., an N -dimensional vector spaceequipped with an inner product) of
dimensionN , and a quantum state jÁi is a vector in this space.

1.2.2 Measuremen t

There are two things we can do with a quantum state: measureit or let it evolve
unitarily without measuringit. We will deal with measurement ¯rst.

Measuremen t in the computational basis

Supposewe measurestate jÁi . We cannot \see" a superposition itself, but only
classicalstates. Accordingly, if we measurestate jÁi we will seeone and only
one classicalstate jj i . Which speci¯c jj i will we see?This is not determined in
advance;the only thing we can say is that we will seestate jj i with probability
j®j j2, which is the squarednorm of the corresponding amplitude ®j (ja + ibj =p

a2 + b2). Thus observinga quantum state inducesa probability distribution on
the classicalstates,given by the squarednorms of the amplitudes. This impliesP N

j =1 j®j j2 = 1, sothe vectorof amplitudeshas(Euclidean)norm 1. If wemeasure
jÁi and seeclassicalstate jj i as a result, then jÁi itself has \disappeared", and
all that is left is jj i . In other words, observing jÁi \collapses" the quantum
superposition jÁi to the classicalstate jj i that we saw, and all \information"
that might have beencontained in the amplitudes ®i is gone.

Orthogonal measuremen t

A somewhatmore generalkind of measurement than the above \measurement
in the computational (or standard) basis" is possible. This will be used only
sparselyin the thesis, and not not at all in this chapter, so it may be skipped
on a ¯rst reading. Such an orthogonal measurement is described by projectors
P1; : : : ; PM (M · N ) which sum to identit y. Theseprojectors are orthogonal,
meaningthat Pi Pj = 0 if i 6= j . The projector Pj projects on somesubspaceVj
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of the total Hilbert spaceV, and every state jÁi 2 V can be decomposedin a
unique way as jÁi =

P M
j =1 jÁj i , with jÁj i = Pj jÁi 2 Vj . Becausethe projectors

are orthogonal, the subspacesVj are orthogonal as well, as are the states jÁj i .
When we apply this measurement to the pure state jÁi , then we will get outcome
j with probability k jÁj i k2= Tr(Pj jÁihÁj) and the state will then \collapse" to
the new state jÁj i = k jÁj i k= Pj jÁi = kPj jÁi k.

For example,a measurement in the standard basis is the speci¯c orthogonal
measurement where M = N and Pj = jj ihj j. That is, Pj projects onto the
standard basisstate jj i and the corresponding subspaceVj is the spacespanned
by jj i . Considerthe state jÁi =

P N
j =1 ®j jj i . Note that Pj jÁi = ®j jj i , soapplying

our measurement to jÁi will give outcome j with probability k ®j jj i k2= j®j j2,
and in that casethe state collapsesto ®j jj i = k®j jj i k= ®j

j®j j jj i . The norm-1 factor
®j

j®j j may be disregardedbecauseit hasno physical signi¯cance,sowe endup with
the state jj i as we saw before.

As another example,a measurement that distinguishesbetweenjj i with j ·
N=2 and jj i with j > N=2 corresponds to the two projectors P1 =

P
j · N =2 jj ihj j

and P2 =
P

j >N =2 jj ihj j. Applying this measurement to the state jÁi = 1p
3
j1i +

q
2
3 jN i will give outcome1 with probability k P1jÁi k2= 1=3, in which casethe

state collapsesto j1i , and will give outcome2 with probability k P2jÁi k2= 2=3,
in which casethe state collapsesto jN i . We refer to the book of Nielsen and
Chuang [130] for the even more general but not really more powerful POVM-
formalism of measurement, which we will not needin this thesis.

1.2.3 Unitary evolution

Instead of measuringjÁi , we can alsoapply someoperation to it, i.e., changethe
state to some

jÃi = ¯ 1j1i + ¯ 2j2i + ¢¢¢+ ¯ N jN i :

Quantum mechanicsonly allowslinear operationsto beappliedto quantum states.
What this means is: if we view a state like jÁi as an N -dimensional vector
(®1; : : : ; ®N )T , then applying an operation that changesjÁi to jÃi correspondsto
multiplying jÁi with an N £ N complex-valued matrix U:

U

0

B
@

®1
...

®N

1

C
A =

0

B
@

¯ 1
...

¯ N

1

C
A :

Note that by linearity we have jÃi = UjÁi = U (
P

i ®i ji i ) =
P

i ®i Uji i .
BecausemeasuringjÃi should also give a probability distribution, we have

the constraint
P N

j =1 j¯ j j2 = 1. This implies that the operation U must preserve
the norm of vectors,and hencemust be a unitary transformation. A matrix U is
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unitary if its inverseU¡ 1 equalsits conjugatetransposeU¤. This is equivalent to
saying that U always mapsa vector of norm 1 to a vector of norm 1. Becausea
unitary transformation always hasan inverse,it follows that any (non-measuring)
operation on quantum statesmust be reversible: by applying U ¡ 1 we can always
\undo" the action of U, and nothing is lost in the process.On the other hand,
a measurement is clearly non-reversible,becausewe cannot reconstruct jÁi from
the observed classicalstate jj i .

1.3 Quan tum Memory

In classicalcomputation, the unit of information is a bit , which can be 0 or 1. In
quantumcomputation, this unit is a quantumbit (qubit), which is a superposition
of 0 and 1. Consider a system with 2 basis states, call them j0i and j1i . We

identify these basis states with the vectors
µ

1
0

¶
and

µ
0
1

¶
, respectively. A

singlequbit can be in any superposition

®0j0i + ®1j1i ; j®0j2 + j®1j2 = 1:

Accordingly, a singlequbit \liv es" in the vector spaceC2. Similarly we can think
of systemsof more than 1 qubit, which \liv e" in the tensor product spaceof
several qubit systems.For instance,a 2-qubit systemhas4 basisstates: j0i ­ j0i ,
j0i ­ j1i , j1i ­ j0i , j1i ­ j1i . Here for instancej1i ­ j0i meansthat the ¯rst qubit
is in its basisstate j1i and the secondqubit is in its basisstate j0i . We will often
abbreviate this to j1ij 0i , j1; 0i , or even j10i .

More generally, a register of n qubits has 2n basis states, each of the form
jb1i ­ jb2i ­ : : : ­ jbn i , with bi 2 f 0; 1g. We can abbreviate this to jb1b2 : : : bn i .
We will often abbreviate 0: : : 0 to ~0. Sincebitstrings of length n can be viewed
as numbers between0 and 2n ¡ 1, we can alsowrite the basisstatesas numbers
j0i ; j1i ; j2i ; : : : ; j2n ¡ 1i . A quantum register of n qubits can be in any superpo-
sition

®0j0i + ®1j1i + ¢¢¢+ ®2n ¡ 1j2n ¡ 1i ;
2n ¡ 1X

j =0

j®j j2 = 1:

If we measurethis in the standard basis,we obtain the n-bit state state jj i with
probability j®j j2.

Measuring just the ¯rst qubit of a state would correspond to the orthogonal
measurement that has the two projectors P0 = j0ih0j ­ I 2n ¡ 1 and P1 = j1ih1j ­

I 2n ¡ 1 . For example,applying this measurement to the state 1p
3
j0ij Ái +

q
2
3 j1ij Ãi

will give outcome0 with probability 1/3 (the state then becomesj0ij Ái ) and out-
come1 with probability 2/3 (the state then becomesj1ij Ãi ). Similarly, measuring
the ¯rst n qubits of an (n+ m)-qubit state in the standardbasiscorrespondsto the
orthogonal measurement that has2n projectors Pi = ji ihi j ­ I 2m for i 2 f 0; 1gn .
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An important property that deservesto be mentioned is entanglement, which
refersto quantum correlationsbetweendi®erent qubits. For instance,considera
2-qubit register that is in the state

1
p

2
j00i +

1
p

2
j11i :

Such 2-qubit statesare sometimescalled EPR-pairs in honor of Einstein, Podol-
sky, and Rosen[67], who ¯rst examinedsuch statesand their seeminglyparadox-
ical properties. Initially neither of the two qubits hasa classicalvalue j0i or j1i .
However, if we measurethe ¯rst qubit and observe, say, a j0i , then the whole
state collapsesto j00i . Thus observingonly the ¯rst qubit immediately ¯xes also
the second,unobserved qubit to a classicalvalue. Thereforethis systemis called
entangled. Sincethe two qubits that make up the register may be far apart, this
example illustrates someof the non-local e®ectsthat quantum systemscan ex-
hibit. In general,a bipartite state jÁi is called entangled if it cannot be written
as a tensor product jÁA i ­ jÁB i wherejÁA i livesin the ¯rst spaceand jÁB i lives
in the second.

At this point, a comparisonwith classicalprobability distributions may be
helpful. Suppose we have two probability spaces,A and B, the ¯rst with 2n

possibleoutcomes,the secondwith 2m possibleoutcomes.A distribution on the
¯rst spacecan be described by 2n numbers (non-negative reals summing to 1;
actually there are only 2n ¡ 1 degreesof freedomhere) and a distribution on the
secondby 2m numbers. Accordingly, a product distribution on the joint space
can be described by 2n + 2m numbers. However, an arbitrary (non-product)
distribution on the joint spacetakes 2n+ m real numbers, since there are 2n+ m

possibleoutcomesin total. Analogously, an n-qubit state jÁA i can be described
by 2n numbers (complex numbers whosesquaredmoduli sum to 1), an m-qubit
state jÁB i by 2m numbers, and their tensor product jÁA i ­ jÁB i by 2n + 2m

numbers. However, an arbitrary (possibly entangled) state in the joint space
takes2n+ m numbers, sinceit livesin a 2n+ m -dimensionalspace.We seethat the
number of parametersrequired to describe quantum states is the sameas the
number of parametersneededto describe probability distributions. Also note
the analogy betweenstatistical independenceof two random variablesA and B
and non-entanglement of the product state jÁA i ­ jÁB i . However, despite the
similarities betweenprobabilities and amplitudes,quantum statesare much more
powerful than distributions, becauseamplitudes may have negative parts which
can lead to interference e®ects.Amplitudes only becomeprobabilities when we
squarethem. The art of quantum computing is to usethesespecialproperties for
interesting computational purposes.
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1.4 Quan tum Computation

Below we explain how a quantum computer can apply computational stepsto its
registerof qubits. Two modelsexist for this: the quantum Turing machine [61, 28]
and the quantum circuit model [62, 165]. Thesemodelsareequivalent, in the sense
that they can simulate each other in polynomial time, assumingthe circuits are
appropriately \uniform". We only explain the circuit model here,which is more
popular amongresearchers.

1.4.1 Classical circuits

In classicalcomplexity theory, a Boolean circuit is a ¯nite directed acyclic graph
with AND, OR, and NOT gates. It has n input nodes, which contain the n
input bits (n ¸ 0). The internal nodesare AND, OR, and NOT gates,and there
are one or more designatedoutput nodes. The initial input bits are fed into
AND, OR, and NOT gatesaccording to the circuit, and eventually the output
nodesassumesomevalue. We say that a circuit computessomeBooleanfunction
f : f 0; 1gn ! f 0; 1gm if the output nodesget the right value f (x) for every input
x 2 f 0; 1gn .

A circuit family is a set C = f Cng of circuits, one for each input size n.
Each circuit has one output bit. Such a family recognizesor decidesa language
L µ f 0; 1g¤ if, for every n and every input x 2 f 0; 1gn , the circuit Cn outputs 1 if
x 2 L and outputs 0 otherwise. Such a circuit family is uniformly polynomial if
there is a deterministic Turing machine that outputs Cn given n as input, using
spacelogarithmic in n (this implies time polynomial in n, becausesuch a machine
will haveonly poly(n) di®erent internal states,soit either halts after poly(n) steps
or cyclesforever). Note that the size(number of gates)of the circuits Cn canthen
grow at most polynomially with n. It is known that uniformly polynomial circuit
families are equal in power to polynomial-time deterministic Turing machines: a
languageL canbedecidedby a uniformly polynomial circuit family i®L 2 P [135,
Theorem 11.5], where P is the classof languagesdecidableby polynomial-time
Turing machines.

Similarly we can considerrandomized circuits. Thesereceive, in addition to
the n input bits, also somerandom bits (\coin °ips") as input. A randomized
circuit computes a function f if it successfullyoutputs the right answer f (x)
with probability at least 2=3 for every x (probabilit y taken over the valuesof the
random bits; the 2=3 may be replacedby any 1=2 + "). Randomizedcircuits are
equal in power to randomized Turing machines: a languageL can be decided
by a uniformly polynomial randomizedcircuit family i® L 2 BPP , whereBPP
(\Bounded-error Probabilistic Polynomial time") is the classof languagesthat can
e±ciently be recognizedby randomizedTuring machineswith successprobability
at least 2=3. Clearly P µ BPP . It is unknown whether this inclusion is strict.
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1.4.2 Quan tum circuits

A quantumcircuit (alsocalledquantum network or quantum gatearray) general-
izesthe idea of classicalcircuit families, replacingthe AND, OR, and NOT gates
by elementary quantumgates. A quantum gate is a unitary transformation on a
small (usually 1, 2, or 3) number of qubits. Mathematically, thesegatescan be
composedby taking tensor products (if gatesare applied in parallel to di®erent
parts of the register) and ordinary products (if gatesare applied sequentially).
Simpleexamplesof such circuits of elementary gatesaregiven in the next section.

A widely usedexampleof a 1-qubit gate is the Hadamard transform, speci¯ed
by:

H j0i =
1

p
2

j0i +
1

p
2

j1i

H j1i =
1

p
2

j0i ¡
1

p
2

j1i

As a unitary matrix, this is represented as

H =
1

p
2

µ
1 1
1 ¡ 1

¶
:

If we apply H to initial state j0i and then measure,we have equal probability
of observing j0i or j1i . Similarly, applying H to j1i and observinggives equal
probability of j0i or j1i . However, if weapply H to the superposition 1p

2
j0i + 1p

2
j1i

then we obtain j0i : the positive and negative amplitudes for j1i cancelout! This
e®ectis calledinterference, and is analogousto interferencepatterns betweenlight
or sound waves. Note that if we apply H to each bit in a register of n zeroes,
we obtain 1p

2n

P
j 2f 0;1gn jj i , which is a superposition of all n-bit strings. More

generally, if we apply H ­ n to an initial state ji i , with i 2 f 0; 1gn , we obtain

H ­ n ji i =
1

p
2n

X

j 2f 0;1gn

(¡ 1)i ¢j jj i ; (1.1)

wherei ¢j =
P n

k=1 i k j k denotesthe inner product of the n-bit strings i; j 2 f 0; 1gn .
For example:

H ­ 2j01i =
1

p
2

(j0i + j1i ) ­
1

p
2

(j0i ¡ j1i ) =
1
2

X

j 2f 0;1g2

(¡ 1)01¢j jj i :

The n-fold Hadamard transform will be very useful for the quantum algorithms
explainedin the next section.

Another important 1-qubit gate is the phasegate RÁ, which merely rotates
the phaseof the j1i -state by an angleÁ:

RÁj0i = j0i
RÁj1i = eiÁ j1i
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This corresponds to the unitary matrix

R =
µ

1 0
0 eiÁ

¶
:

An exampleof a 2-qubit gate is the controlled-not gate CNOT. It negatesthe
secondbit of its input if the ¯rst bit is 1, and doesnothing if the ¯rst bit is 0:

CNOTj0ij bi = j0ij bi
CNOTj1ij bi = j1ij 1 ¡ bi

In matrix form, this is

CNOT =

0

B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
A :

As in the classicalcase,a quantum circuit is a ¯nite directed acyclic graph
of input nodes, gates, and output nodes. There are n nodes that contain the
input (as classicalbits); in addition we may have somemore input nodes that
are initially j0i (\w orkspace"). The internal nodes of the quantum circuit are
quantum gatesthat each operate on at most 2 qubits of the state. The gatesin
the circuit transform the initial state vector into a ¯nal state, which will generally
be a superposition. We measuresomededicated output bits of this ¯nal state
to (probabilistically) obtain an answer. It is known that the set of all 1-qubit
operations together with the 2-qubit CNOT gate is universal,meaningthat any
other unitary transformation can be built from thesegates. Allowing all 1-qubit
gates is not very realistic from an implementational point of view, as there are
uncountably many of them. However, the model is usually restricted, only al-
lowing a small ¯nite set of 1-qubit gatesfrom which all other 1-qubit gatescan
be e±ciently approximated. For example, it is known that the set consistingof
CNOT, Hadamard,and the phase-gateR¼=4 is universal in the senseof approxi-
mation. In the main part of this thesiswe will not be much concernedwith the
actual gate-complexity of our unitary transformations,sowe refer to [16, 130] for
more details.

The classicalclassesP and BPP can now be generalizedas follows. EQP
(\Exact Quantum Polynomial time") is the classof languagesthat can be recog-
nizedwith successprobability 1 by uniformly polynomial quantum circuits. BQP
(\Bounded-error Quantum Polynomial time") is the classof languagesthat can
berecognizedwith successprobability at least2=3 by uniformly polynomial quan-
tum circuits. Sinceclassicalcomputationscanbe madereversibleat a small cost,
and every reversibleclassicalcomputation is a quantum computation, it follows
that P µ EQP and BPP µ BQP . One of the main open questionof quantum
complexity theory is whether theseinclusionsare strict, and moregenerallywhat
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is the power of BQP . The main candidate to separateBPP and BQP is the
factoring problem, to be explained below when we cometo Shor's factoring al-
gorithm. The inclusion BQP µ PSPA CE was proven in [28], wherePSPA CE
denotesthe classof all problemsthat can be solved by classicalTuring machines
using spacepolynomial in the input length. A stronger inclusion for BQP was
shown in [76].

Oneuniquely quantum-mechanicale®ectthat wecanusefor building quantum
algorithms is quantum parallelism. Supposewe have a classicalalgorithm that
computessomefunction f : f 0; 1gn ! f 0; 1gm . Then we can build a quantum
circuit U that maps jxij 0i ! jxij f (x)i for every x 2 f 0; 1gn . Now suppose
we apply U to a superposition of all inputs x (which is easy to build using n
Hadamard transforms):

U

0

@ 1
p

2n

X

x2f 0;1gn

jxij 0i

1

A =
1

p
2n

X

x2f 0;1gn

jxij f (x)i :

We applied U just once,but the ¯nal superposition contains f (x) for all 2n input
valuesx! However, by itself this is not very useful and doesnot give more than
classicalrandomization, sinceobservingthe ¯nal superposition will give just one
random jxij f (x)i and all other information will be lost. As we will seebelow,
quantum parallelism needsto be combined with the e®ectsof interferenceand
entanglement in order to get somethingthat is better than classical.

1.5 The Early Algorithms

The two main successesof quantum algorithm sofar areShor'sfactoring algorithm
from 1994 [151] and Grover's search algorithm from 1996 [83], which will be
discussedin the following sections. In this section we describe the sequenceof
earlier quantum algorithms that precededShor'sand Grover's.

Virtually all quantum algorithms work with queries in someform or other.
Wewill explain this model here. It may look contriv edat ¯rst, but eventually will
lead smoothly to Shor'sand Grover's algorithm. We should, however, emphasize
that the querycomplexity model di®ersfrom the standardmodel describedabove,
becausethe input is now givenasa \black-box". This meansthat the exponential
quantum-classical separationsthat we describe below (like Simon's) do not by
themselvesgive exponential quantum-classicalseparationsin the standardmodel.
In particular, they do not imply BPP 6= BQP .

To explain the query setting, consider an N -bit input x = (x1; : : : ; xN ) 2
f 0; 1gN . Usually we will have N = 2n , so that we can addressbit x i using an
n-bit index i . One can think of the input as an N -bit memory which we can
accessat any point of our choice(a RandomAccessMemory). A memory access
is via a so-called\black-box", which is equipped to output the bit x i on input i .
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As a quantum operation, this would be the following unitary mapping on n + 1
qubits:

O : ji; 0i ! ji; x i i :

The (n + 1)st qubit of the state is called the target bit. Sincethis operation must
be unitary, we alsohave to specify what happensif the initial value of the target
bit is 1. Thereforewe actually let O be the following unitary transformation:

O : ji; bi ! ji; b© x i i ;

here i 2 f 0; 1gn , b 2 f 0; 1g, and © denotesexclusive-or (addition modulo 2).
In matrix representation, O is now a permutation matrix and hence unitary.
Note alsothat a quantum computer can apply O on a superposition of various i ,
somethinga classicalcomputer cannot do. One application of this black-box is
called a query, and counting the required number of queriesto compute this or
that function of x is somethingwe will do a lot in the ¯rst half of this thesis.

Given the abilit y to make a query of the above type, we can also make a
query of the form ji i ! (¡ 1)x i ji i by setting the target bit to the state j¢ i =

1p
2
(j0i ¡ j1i ):

O (ji ij ¢ i ) = ji i
1

p
2

(jx i i ¡ j1 ¡ x i i ) = (¡ 1)x i ji ij ¢ i :

This § -kind of query puts the output variable in the phaseof the state: if x i is
1 then we get a ¡ 1 in the phase;if x i = 0 nothing happens. This is sometimes
more convenient than the standard type of query. We denotethe corresponding
n-qubit unitary transformation by O§ .

1.5.1 Deutsc h-Jozsa

Deutsc h-Jozsa problem [63]:
For N = 2n , we are given x 2 f 0; 1gN such that either
(1) all x i have the samevalue (\constant"), or
(2) N=2 of the x i are 0 and N=2 are 1 (\balanced").
The goal is to ¯nd out whether x is constant or balanced.

The algorithm of Deutsch and Jozsais as follows. We start in the n-qubit
zero state j~0i , apply a Hadamard transform to each qubit, apply a query (in
its § -form), apply another Hadamard to each qubit, and then measurethe ¯nal
state. As a unitary transformation, the algorithm would beH ­ nO§ H ­ n . Wehave
drawn the corresponding quantum circuit in Figure 1.1 (where time progresses
from left to right).

Let us follow the state through theseoperations. Initially we have the state
j0n i . By Equation 1.1 on page8, after the ¯rst Hadamard transforms we have
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j0i

j0i

j0i

measure

H

H

H

H

H

H

O§

Figure 1.1: The Deutsch-Jozsaalgorithm for n = 3

obtained the uniform superposition of all i :

1
p

2n

X

i 2f 0;1gn

ji i :

The O§ -query turns this into

1
p

2n

X

i 2f 0;1gn

(¡ 1)x i ji i :

Applying anotherHadamardgives(againby Equation 1.1) the ¯nal superposition

1
2n

X

i 2f 0;1gn

(¡ 1)x i
X

j 2f 0;1gn

(¡ 1)i ¢j jj i ;

where i ¢j =
P n

k=1 i k j k as before. Sincei ¢~0 = 0 for all i 2 f 0; 1gn , we seethat
the amplitude of the j~0i -state in the ¯nal superposition is

1
2n

X

i 2f 0;1gn

(¡ 1)x i =

8
<

:

1 if x i = 0 for all i ,
¡ 1 if x i = 1 for all i ,

0 if x is balanced.

Hencethe ¯nal observation will yield j~0i if x is constant and will yield someother
state if x is balanced.Accordingly, the Deutsch-Jozsaproblemcanbe solvedwith
certainty using only 1 quantum query and O(n) other operations (the original
solution of Deutsch and Jozsaused2 queries,the 1-query solution is from [55]).

In contrast, it is easyto seethat any classical deterministic algorithm needs
at least N=2 + 1 queries: if it has made only N=2 queriesand seenonly 0s, the
correct output is still undetermined. However, a classicalalgorithm can solve
this problem e±ciently if we allow a small error probability: just query x at two
random positions,output \constant" if thosebits are the sameand \balanced" if
they aredi®erent. This algorithm outputs the correctanswer with probability 1 if
x is constant and outputs the correct answer with probability 1/2 if x is balanced.
Thus the quantum-classicalseparationof this problem only holds if we consider
algorithms without error probability.
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1.5.2 Bernstein-V azirani

Bernstein-V azirani problem [28]:
For N = 2n , we are given x 2 f 0; 1gN with the property that there is some
unknown a 2 f 0; 1gn such that x i = (i ¢a) mod 2. The goal is to ¯nd a.

The Bernstein-Vazirani algorithm is exactly the sameas the Deutsch-Jozsa
algorithm, but now the ¯nal observation miraculously yields a. Since(¡ 1)x i =
(¡ 1)(i ¢a) mod 2 = (¡ 1)i ¢a, we can write the state obtained after the query as:

1
p

2n

X

i 2f 0;1gn

(¡ 1)x i ji i =
1

p
2n

X

i 2f 0;1gn

(¡ 1)i ¢aji i :

Applying a Hadamard to each qubit will turn this into the classicalstate jai and
hencesolves the problem with 1 query and O(n) other operations. In contrast,
any classicalalgorithm (evena randomizedonewith smallerror probability) needs
to ask n queriesfor information-theoretic reasons:the ¯nal answer consistsof n
bits and oneclassicalquery givesat most 1 bit of information.

Bernsteinand Vazirani alsode¯ned a recursive versionof this problem, which
canbe solved exactly by a quantum algorithm in poly(n) steps,but for which any
classicalrandomizedalgorithm needsn­(log n) steps.

1.5.3 Simon

Let N = 2n , and [N ] = f 1; : : : ; N g, which we can identify with f 0; 1gn . Let j © s
be the n-bit string obtained by bitwiseadding the n-bit strings j and s mod 2.

Simon's problem [152]:
For N = 2n , we are given x = (x1; : : : ; xN ), with x i 2 f 0; 1gn , with the property
that there is someunknown non-zeros 2 f 0; 1gn such that x i = x j i® i = j © s.
The goal is to ¯nd s.

Note that x, viewedasa function from [N ] to [N ] is a 2-to-1function, wherethe
2-to-1-nessis determinedby the unknown masks. The queriesto the input here
are slightly di®erent from before: the input x = (x1; : : : ; xN ) now has variables
x i that themselvesare n-bit strings, and onequery givessuch a string completely
(ji; ~0i ! ji; x i i ). However, we can also view this problem as having n2n binary
variables that we can query individually. Since we can simulate one x i -query
using only n binary queries(just query all n bits of x i ), this alternative view will
not a®ectthe number of queriesvery much.

Simon'salgorithm starts out very similar to Deutsch-Jozsa:start in a state of
2n zeroqubits j~0i and apply Hadamard transforms to the ¯rst n qubits, giving

1
p

2n

X

i 2f 0;1gn

ji ij ~0i :
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At this point, the secondn-qubit register still holds only zeroes. A query turns
this into

1
p

2n

X

i 2f 0;1gn

ji ij x i i :

Now the algorithm measuresthe secondn-bit register (this measurement is actu-
ally not necessary, but it facilitates analysis). The measurement outcomewill be
somevalue x i and the ¯rst register will collapseto the superposition of the two
indiceshaving that x i -value:

1
p

2
(ji i + ji © si )jx i i :

We will now ignore the secondregister and apply Hadamard transforms to the
¯rst n qubits. Using Equation 1.1 and the fact that (i © s) ¢j = (i ¢j ) © (s ¢j ),
we can write the resulting state as

1
p

2n+1

0

@
X

j 2f 0;1gn

(¡ 1)i ¢j jj i +
X

j 2f 0;1gn

(¡ 1)(i©s)¢j jj i

1

A =

1
p

2n+1

0

@
X

j 2f 0;1gn

(¡ 1)i ¢j
¡
1 + (¡ 1)s¢j

¢
jj i

1

A :

Note that jj i has non-zero amplitude i® s ¢j = 0 mod 2. Accordingly, if we
measurethe ¯nal state we get a linear equation that gives information about s.
Repeating this algorithm an expected number of O(n) times, we obtain n inde-
pendent linear equationsinvolving s, from which we can extract s e±ciently by
a classicalalgorithm (Gaussianelimination over GF (2)). Simon'salgorithm thus
¯nds s usingan expectednumber of O(n) x i -queriesand polynomially many other
operations. Later, Brassardand H¿yer [34] gave a variant of Simon's algorithm
that solves the problem using only polynomial (in n) quantum operations even
in the worst-case.

Simon [152] proved that any classicalrandomizedalgorithm that ¯nds s with
high probability needsto make ­(

p
2n ) queries.1 This was the ¯rst proven ex-

ponential separation between quantum algorithms and classicalbounded-error
algorithms (let us stressagain that this doesnot prove BPP 6= BQP , because
we arecounting queriesrather than ordinary operationshere). Simon'salgorithm
inspired Shor to his factoring algorithm, which we describe below.

1The essenceof the proof is as follows. There are N (i; i © s)-pairs (collisions) amongall
¡ N

2

¢

(i; j )-pairs, so a random set of o(N ) pairs probably does not contain any collision, and hence
gives no information about s. If the classicalalgorithm makes T queries, it \sees"

¡ T
2

¢
pairs;

this must be more than o(N ), henceT 2 ­(
p

N ).
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1.6 Shor's Factoring Algorithm

Probably the most important quantum algorithm so far is Shor's factoring algo-
rithm [151]. It can ¯nd a factor of a composite number N in roughly (log N )2

steps,which is polynomial in the length logN of the input. On the other hand,
there is no known classical(deterministic or randomized)algorithm that can fac-
tor N in polynomial time. The best known classicalrandomizedalgorithms run
in time roughly

2(log N )®
;

where® = 1=3 for a heuristic upper bound [110] and ® = 1=2 for a rigorousupper
bound [111]. In fact, much of modern cryptography is basedon the conjecture
that no fast classicalfactoring algorithm exists [142]. All this cryptography (for
exampleRSA) would be broken if Shor's algorithm could be physically realized.
In terms of complexity classes:factoring (rather, the decisionproblem equivalent
to it) is provably in BQP but is not known to be in BPP . If indeedfactoring is
not in BPP , then the quantum computer would be the ¯rst counterexample to
the \strong" Church-Turing thesis,which states that all \reasonable" models of
computation are polynomially equivalent (see[68] and [135, p.31,36]).

Shor alsogave a similar algorithm for solving the discretelogarithm problem.
His algorithm was subsequently generalizedto solve the so-calledAbelian hidden
subgroup problem and phase-estimationproblem [99, 55, 124]. We will not go
into those issueshere, and restrict to an explanation of the quantum factoring
algorithm.

1.6.1 Reduction from factoring to perio d-¯nding

The crucial observation of Shor was that there is an e±cient quantum algorithm
for the problem of period-¯nding and that factoring can be reducedto this. We
¯rst explain the reduction. Supposewe want to ¯nd factors of the composite
number N > 1. Randomly choose someinteger x 2 f 2; : : : ; N ¡ 1g which is
coprime to N (if x is not coprime to N , then the greatestcommondivisor of x
and N is a factor of N , so then we are already done). Now considerthe sequence

1 = x0 mod N; x1 mod N; x2 mod N; : : :

This sequencewill cycle after a while: there is a least 0 < r · N such that
xr = 1 mod N . This r is called the period of the sequence.It can be shown that
with probability ¸ 1=4, r is even and x r =2 + 1 and xr =2 ¡ 1 are not multiples of
N . In that casewe have:

xr ´ 1 mod N ( )

(xr =2)2 ´ 1 mod N ( )

(xr =2 + 1)(xr =2 ¡ 1) ´ 0 mod N ( )

(xr =2 + 1)(xr =2 ¡ 1) = kN for somek:
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Note that k > 0 becauseboth xr =2 + 1 > 0 and xr =2 ¡ 1 > 0 (x > 1). Hence
xr =2 + 1 or xr =2 ¡ 1 will sharea factor with N . Becausex r =2 + 1 and xr =2 ¡ 1 are
not multiples of N this factor will be < N , and in fact both thesenumbers will
sharea non-trivial factor with N . Accordingly, if wehave r then wecane±ciently
(in roughly logN steps)compute the greatestcommondivisors gcd(x r =2 + 1; N )
and gcd(xr =2 ¡ 1; N ), and both of thesetwo numbers will be non-trivial factors
of N . If we are unlucky we might have chosenan x that doesnot give a factor
(which we candetect e±ciently), but trying a few di®erent random x givesa high
probability of ¯nding a factor.

Thus the problem of factoring reducesto ¯nding the period r of the function
given by modular exponentiation f (a) = xa mod N . In general, the period-
¯nding problem can be stated as follows:

The perio d-¯nding problem :
We are given somefunction f : N ! [N ] with the property that there is some
unknown r 2 [N ] such that f (a) = f (b) i® a = b mod r . The goal is to ¯nd r .

We will show below how we can solve this problem e±ciently, using O(log logN )
evaluations of f and O(log logN ) quantum Fourier transforms. An evaluation
of f can be viewed as analogousto the application of a query in the previous
algorithms. Even a somewhatmore generalkind of period-¯nding can be solved
by Shor'salgorithm with very few f -evaluations, whereasany classicalbounded-
error algorithm would need to evaluate the function ­( N 1=3=

p
logN ) times in

order to ¯nd the period [52].
How many steps(elementary gates)will the algorithm take? For a = N O(1) ,

we can compute f (a) = xa mod N in O((log N )2 loglogN logloglogN ) steps:
compute x2 mod N; x4 mod N; x8 mod N; : : : by repeated squaring (using the
SchÄonhage-Strassenalgorithm for fast multiplication [106]) and take an appro-
priate product of these to get xa mod N . Moreover, as explained below, the
quantum Fourier transform can be implemented using O((log N )2) steps. Ac-
cordingly, Shor's algorithm ¯nds a factor of N using an expected number of
roughly (log N )2(log logN )2 logloglogN steps,which is only slightly worsethan
quadratic in the length of the input.

1.6.2 The quan tum Fourier transform

For somenumber q, let Zq = f 0; : : : ; q ¡ 1g. For each a 2 Zq de¯ne a function
Âa : Zq ! C by

Âa(b) = e2¼i ab
q :

The set of basisstates fj ai j a 2 Zqg is called the standard basis. An alternative
orthonormal basis,called the Fourier basis, is the set fj Âai j a 2 Zqg de¯ned by

jÂai =
1

p
q

X

b2 Zq

Âa(b)jbi :
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The quantum Fourier transform (QFT) is the unitary transformation that maps
the standard basisto the Fourier basis:

QFT: jai ! jÂai :

It is known that if q = 2m for somem, then the QFT can be implemented on
a quantum computer using O((log q)2) elementary gates. We will here present
the construction from [55]; somewhatmore e±cient constructions can be found
in [57, 85, 56]. It may be veri¯ed (with somee®ort) that applying QFT to an
m-bit basisstate jai = ja1 : : : am i givesan unentangled state:

jÂai =
1

p
2m

¡
j0i + e2¼i (0:am ) j1i )( j0i + e2¼i (0:am ¡ 1am ) j1i ) ¢¢¢(j0i + e2¼i (0:a1 :::am ) j1i

¢
;

with 0:aj : : : am interpreted asa fraction in binary digits. This meansthat we can
just restrict attention to single-qubit operations controlled by the valuesof the
ai -bits, as follows. To the rightmost qubit of the initial state, which is initially
jam i , we apply a Hadamard gate, obtaining 1p

2
(j0i + e2¼i (0:am ) j1i ). This is the

leftmost qubit of jÂai . To the secondqubit from the right in the initial state,
which is initially jam¡ 1i , we apply a Hadamard, and if am = 1 we alsoapply the
phasegateR2¼i (1=4), obtaining 1p

2
(j0i + e2¼i (0:am ¡ 1am ) j1i ). This is the secondqubit

from the left of jÂai . We also do this for jam¡ 2i , jam¡ 3i , \rotating in" smaller
and smalleranglesetc., and eventually generatingall qubits of jÂai in the wrong
order. Applying someswap gatesto changethe order, we have constructed jÂai
using O(m2) operations. But if we have a circuit that works for basisstates jai ,
then by linearity it also works on all superpositions of basisstates, so we have
constructedthe full quantum Fourier transform. Graphical representations of this
circuit may be found in [55, 130].

1.6.3 Perio d-¯nding, easy case: r divides q

Now we will show how we can ¯nd the period of the function f , given a \black-
box" that maps jaij 0i ! jaij f (a)i . We can always e±ciently pick someq = 2m

such that N 2 < q · 2N 2 and we can implement the Fourier transform over Zq

using O((log N )2) gates.
For didactical reasons,we will ¯rst assumethat the unknown r divides q, in

which caseeverything works out smoothly. We now ¯nd r as follows. Start with
j0ij 0i , two registersof dlogqe and dlogN e zeroes, respectively. Apply the QFT
to the ¯rst register to build the uniform superposition

1
p

q

q¡ 1X

a=0

jaij ~0i :

(Actually the m-qubit Hadamard transform would have the samee®ecthere.)
The secondregister still consistsof zeroes. Now usethe \black-box" to compute
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f (a) in quantum parallel:

1
p

q

q¡ 1X

a=0

jaij f (a)i :

Observingthe secondregistergivessomevalue f (s), with s < r . Becausef (a) =
f (s) i® a = s mod r , and r divides q, the a of the form a = j r + s (0 · j < q=r)
are exactly the a for which f (a) = f (s). Thus the ¯rst register collapsesto a
superposition of jsi ; jr + si ; j2r + si ; : : : ; jq¡ r + si and the secondregistercollapses
to the classicalstate jf (s)i . We can now ignore the secondregister, and have in
the ¯rst:

r
r
q

q=r ¡ 1X

j =0

jj r + si :

Applying the QFT again gives

r
r
q

q=r ¡ 1X

j =0

q¡ 1X

b=0

e2¼i ( j r + s) b
q jbi =

r
r
q

q¡ 1X

b=0

e2¼i sb
q

0

@
q=r ¡ 1X

j =0

e2¼i j r b
q

1

A jbi :

Using that
P n¡ 1

j =0 aj = (1 ¡ an )=(1 ¡ a) for a 6= 1, we compute:

q=r ¡ 1X

j =0

e2¼i j r b
q =

q=r ¡ 1X

j =0

³
e2¼i r b

q

´ j
=

8
><

>:

q=r if e2¼i r b
q = 1

1¡
µ

e2¼i r b
q

¶ q=r

1¡ e2¼i r b
q

= 1¡ e2¼ib

1¡ e2¼i r b
q

= 0 if e2¼i r b
q 6= 1

Note that e2¼ir b=q = 1 i® rb=qis an integer i® b is a multiple of q=r. Accordingly,
we are left with a superposition where only the multiples of q=r have non-zero
amplitude. Observing this ¯nal superposition gives somerandom multiple b =
cq=r, with c a random number 0 · c < r . Thus we get a b such that

b
q

=
c
r

;

where b and q are known and c and r are not. There are Á(r ) 2 ­( r=loglogr )
numbers smaller than r that are coprime to r [86, Theorem 328], so c will be
coprime to r with probability ­(1 =loglogr ). Accordingly, an expected number
of O(log logN ) repetitions of the procedureof this section su±ces to obtain a
b = cq=r with c coprime to r . Once we have such a b, we can obtain r as the
denominator by writing b=qin lowest terms.

Before continuing with the harder case,notice the resemblance of the basic
subroutineof Shor'salgorithm (Fourier, f -evaluation, Fourier) with the basicsub-
routine of Simon'salgorithm (Hadamard, query, Hadamard). The number of re-
quired f -evaluations for period-¯nding canactually be reducedfrom O(log logN )
to O(1), seeShor'spaper [151] for details.
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1.6.4 Perio d-¯nding, hard case: r does not divide q

In caser doesnot divide q (which is actually very likely), it can be shown that
applying exactly the samealgorithm will still yield with high probability a b such
that ¯

¯
¯
¯
b
q

¡
c
r

¯
¯
¯
¯ ·

1
2q

;

with b;q known and c;r unknown. Two distinct fractions, each with denomina-
tor · N , must be at least 1=N 2 > 1=q apart.2 Thereforec=r is the only fraction
with denominator· N at distance· 1=2q from b=q. Applying continued-fraction
expansion(see[86, Chapter X]) to b=qe±ciently gives us the fraction with de-
nominator · N that is closestto b=q. This fraction must be c=r. Again, with
good probability c and r will be coprime, in which casewriting c=r in lowest
terms givesus r .

1.7 Gro ver's Search Algorithm

The search problem :
For N = 2n , we are given an arbitrary x 2 f 0; 1gN . The goal is to ¯nd an i such
that x i = 1 (and to output `no solutions' if there are no such i ).

This problem may be viewed as a simpli¯cation of the problem of searching
an N -slot unordereddatabase. Classically, a randomizedalgorithm would need
£( N ) queriesto solve the search problem. Grover's algorithm solvesit in O(

p
N )

queries.
Let Ox ji i = (¡ 1)x i ji i denote the § -type oracle for the input x and OG be

the unitary transformation that puts a ¡ 1 in front of j~0i and does nothing to
the other basisstates. The Grover iterate is G = ¡ H ­ nOGH ­ nOx . Note that 1
Grover iterate corresponds to 1 query.

Grover's algorithm starts in the n-bit state j~0i , appliesa Hadamard transfor-
mation to each qubit to get the uniform superposition 1p

N

P
i ji i of all N indices,

appliesG to this state k times (for somek to be chosenlater), and then measures
the ¯nal state. Intuitiv ely, what happens is that in each iteration someampli-
tude is moved from the indices of the 0-bits to the indices of the 1-bits. The
algorithm stopswhen almost all of the amplitude is on the 1-bits, in which case
a measurement of the ¯nal state will probably give the index of a 1-bit.

More precisely, suppose that t of the N input bits are 1. Let ak denote
the amplitude of the indices of the t 1-bits after k Grover iterates and bk the
amplitude of the indicesof the 0-bits. Initially , for the uniform superposition we

2Consider two fractions z = x=y and z0 = x0=y0 with y; y0 · N . If z 6= z0 then jxy0¡ x0yj ¸ 1,
and hencejz ¡ z0j = j(xy0 ¡ x0y)=yy0j ¸ 1=N 2.
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have a0 = b0 = 1=
p

N . Using that H ­ nOGH ­ n = I ¡ [2=N ], where [2=N ] is the
matrix in which all entries are 2=N , we ¯nd the following recursion:

ak+1 =
N ¡ 2t

N
ak +

2(N ¡ t)
N

bk

bk+1 =
¡ 2t
N

ak +
N ¡ 2t

N
bk

The following formulas, due to Boyer et al. [30], provide a closedform for ak and
bk (which may be veri¯ed by ¯lling them into the recursion).

ak =
1

p
t

sin((2k + 1)µ)

bk =
1

p
N ¡ t

cos((2k + 1)µ)

whereµ = arcsin(
p

t=N )

Accordingly, after k iterations the failure probability (the sum of squaresof the
amplitudes of the N ¡ t 0-bits) is

Pk = (N ¡ t) ¢b2
k = (cos((2k + 1)µ))2:

We want Pk to be as close to 0 as possible. Note that if we can choose ~k =
¼=4µ ¡ 1=2, then (2~k + 1)µ = ¼=2 and henceP~k = cos(¼=2)2 = 0. An example
wherethis works is if t = N=4, for then µ = ¼=6 and ~k = 1.

Unfortunately, ~k will usually not be an integer. However, if we choosek to
be the integer closestto ~k, then the failure probability will still be small (using
jk ¡ ~kj · 1=2 and assumingt · N=2):

Pk · (cos(¼=2 + µ))2 = (sin(µ))2 =
t
N

:

SincearcsinÁ ¸ Á, the number of queriesis k · ¼=4µ · ¼
4

q
N
t . Thus we have

a bounded-errorquantum search algorithm with O(
p

N=t) queries,assumingwe
know t. If we do not know t, then we do not know which k to use,but a slightly
more complicated algorithm due to [30] (basically running the above algorithm
with systematicdi®erent guessesfor k) shows that O(

p
N=t) queriesstill su±ce

to ¯nd a solution with high probability. If there is no solution (t = 0) we can
easily detect that by checking x i for the i that the algorithm outputs.

In Chapter 3 we will make a much more detailed analysisof upper and lower
boundson quantum searching. Beforewecontinue,wemention two generalresults
that can be obtained by techniquessimilar to Grover's.

1.7.1. Theorem (Amplitude amplifica tion, BHMT [35]). There exists a
quantumalgorithm QSearch with the following property. Let A be any quantum
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algorithm that usesno measurements, and let Â : Z ! f 0; 1g be any Boolean
function. Let p denote the initial successprobability of A of ¯nding a solution
(i.e., the probability that a measurement of the ¯nal state of A gives a z such
that Â(z) = 1). Algorithm QSearch ¯nds a solution using an expected number of
O(1=

p
p) applications of A and A ¡ 1 if p > 0, and otherwiseruns forever.

Very brie°y, QSearch works very much like Grover's algorithm: it iterates
the unitary transformation Q = ¡A SGA ¡ 1SÂ a number of times, starting with
initial state Aj~0i . Here SÂjzi = (¡ 1)Â(z) jzi , and SG j~0i = ¡j ~0i and SG jzi = jzi
for all z 6= ~0. The analysisof [35] shows that doing a measurement after O(1=

p
p)

iterations of QSearch will yield a solution with probability close to 1. The
algorithm QSearch doesnot needto know the value of p in advance,but if p is
known, then a slightly modi¯ed QSearch can ¯nd a solution with certainty using
O(1=

p
p) applications of A and A ¡ 1.

Grover's algorithm is a specialcaseof amplitude ampli¯cation, whereA is the
Hadamard transform on each qubit, which can be viewed as an algorithm with
successprobability t=N . The exactcaseof amplitude ampli¯cation in fact implies
an exactquantum search algorithm for the casewheret is known. In this casewe
can ¯nd a solution with probability 1 using O(

p
N=t) steps.

Combining Grover's algorithm with the Fourier transform leads to an algo-
rithm that can quickly count the number t = jxj of solutions in the input [35,
Theorem13].

1.7.2. Theorem (Quantum counting, BHMT [35]). There exists a quan-
tum algorithm QCoun t with the following property. For every N -bit input x
(with t = jxj) and number of queriesT, and any integer k ¸ 1, QCoun t usesT
queriesand outputs a number ~t suchthat

jt ¡ ~tj · 2¼k

p
t(N ¡ t)

T
+ ¼2k2 N

T2

with probability at least 8=¼2 if k = 1 and probability ¸ 1 ¡ 1=2(k ¡ 1) if k > 1.

Roughly speaking, with high probability we will get an estimate ~t that is
closeto the real unknown t. For example,if we set T = 10

p
N , then with high

probability we will have jt ¡ ~tj ·
p

t.

1.8 Summary

Quantum computing starts from the observation that a computer is a physical
device and henceshould follow the laws of physics. As it is currently believed
that nature is quantum-mechanical at the most fundamental level, it makessense
to considercomputersbasedon the laws of quantum mechanics. A state of such
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a quantum computer is a superposition of classicalstates, to which we can apply
a measurementor someunitary operation. Quantum algorithms can solve certain
problemsmuch faster than classicalalgorithms. We sketched the early quantum
algorithms due to Deutsch & Jozsa,Bernstein & Vazirani, and Simon, as well as
the two main quantum algorithms known today: Shor's algorithm for factoring
large integersin polynomial time and Grover's algorithm for searching a spaceof
N elements in about

p
N steps.
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Chapter 2

Lower Bounds by Polynomials

This chapter is basedon the papers

² R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
Lower Bounds by Polynomials. In Proceedings of 39th IEEE FOCS, pages
352{361,1998. Journal versionto appear in the Journal of the ACM.

² H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Boundsfor Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS,
pages358{368,1999.

² H. Buhrman and R. de Wolf. Complexity Measuresand Decision Tree
Complexity: A Survey. To appear in Theoretical Computer Science, 2001.

2.1 In tro duction

All quantum algorithms that we described in the previous chapter can be writ-
ten in the following form: they start in someclassicalinitial state, do a unitary
transformation U0 on that state, make a query to the input, do another uni-
tary transformation U1, make another query to the input, and so on. Here the
transformations Uj are independent of the input. At the end, the output of the
algorithm is obtained by applying an appropriate measurement to the ¯nal state.
Sometimes1 query su±ces, as in the Deutsch-Jozsacase,and sometimesmore
queriesare needed,as in the Simon,Shor, and Grover cases.The reasonthat the
quantum algorithms work fast is twofold: (1) few queriessu±ce for them and (2)
the intermediate unitary transformations Uj are e±ciently implementable. The
reasonthat classicalalgorithms are provablyworse than quantum algorithms is
that they need many queries to solve the problem. For example, Simon's al-
gorithm makes O(n) queriesto the input while any classicalalgorithm requires
­(

p
2n ) queries. Similarly, Grover's algorithm makes O(

p
N ) querieswhile any

classicalalgorithm for the sameproblem needs­( N ) queries.

25
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Sincevirtually all existing quantum algorithms work in this query model and
achieve a provable speed-upthere, it seemsthat the model of query complexity
capturesa signi¯cant part of the power of quantum computers,and it is worth
studying the requirednumber of queriesin isolation. In contrast, analyzingreason
(2) above will be fairly di±cult. Classical circuit complexity is alreadyan exceed-
ingly hard ¯eld having closeties to the main open problemsin complexity theory.
For example,superpolynomial circuit lower boundsfor an NP -completeproblem
would imply P 6= NP , but the bestboundsknown areonly linear. Sincequantum
generalizesclassical,analyzing quantum circuit complexity (i.e., how many ele-
mentary quantum gatesare neededto implement someunitary transformation?)
will be very hard as well, at least with respect to lower bounds.

In this chapter we will analyze quantum query complexity in detail, con-
trasting it with classicalquery complexity, which is also known as decision tree
complexity. In order to capture the essentials and to facilitate analysis,we will
simplify the model to the following: the input consistsof N bits and the output
of only 1 bit. For example,Simon'ssetting ¯ts in this model by setting N = n2n ,
rede¯ning the output to be0 if the input is 1-to-1and 1 if the input is 2-to-1 (with
an appropriate non-zeromasks), and querying individual bits of the input rather
than n bits at a time. This boosts the query complexity of Simon's algorithm
to O(n2) queries,but this is still exponentially smaller than the classicallower
bound. Somethingsimilar holds for Shor's period-¯nding (Cleve [52] proved an
exponential classicallower bound on the query complexity of period-¯nding).

In our analysis,the distinction betweentotal problemsand promise problems
will be important. A total function or problem is de¯ned on all 2N N -bit in-
puts. A promiseproblem is restricted to inputs satisfying somespeci¯c property,
called the \promise", and is unde¯ned on the inputs that do not satisfy the
promise. Looking at the main quantum algorithms, we can divide them in two
groups: quantum algorithms that achieve an exponential speed-up for promise
problems(Deutsch-Jozsa,Simon,Shor'speriod-¯nding) and quantum algorithms
that achieve a polynomial speed-up for total problems(Grover and its applica-
tions). An obvious question is then: are there total problemsfor which a quan-
tum computer can achieve an exponential|or at least superpolynomial|sp eed-
up over classicalalgorithms. The main result of this chapter is a negative answer
to this question: for all total functions, quantum query complexity is at most
polynomially better than classicaldeterministic query complexity.

Our main tool in proving this result (as well as many others) will be the
degrees of multivariate polynomials that represent or approximate the function
f at hand. These we introduce in the next section. In Section 2.3 we de¯ne
deterministic, randomized,and quantum query complexity, and in Section2.4 we
show how degreeslower bound query complexity. In Section2.5we then usethose
lower boundsto prove the result that quantum and classicalquery complexity are
polynomially related. In the last sectionswe tighten the proven bounds for the
special classesof symmetric and monotonefunctions.
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2.2 Bo olean Functions and Polynomials

2.2.1 Bo olean functions

A Boolean function on N bits is a function f : D ! f 0; 1g where D µ f 0; 1gN .
If the domain D equalsf 0; 1gN then f is called a total function, otherwiseit is a
promisefunction (where the promiseis that no N -bit strings outsideof D will be
presented as input). In this chapter we will restrict attention to total functions.
For an input x 2 f 0; 1gN , we usex i to denote its i th bit, so x = x1 : : : xN . We
usejxj =

P N
i=1 x i to denote the Hamming weight of x (its number of 1s), and ~0

for the all-zero input. If S is a set of (indices of) variables, then we use xS to
denotethe input obtained by complementing (negating) in x the bit positions in
S. We abbreviate x f i g to x i . For example, if x = 0011, then x f 2;3g = 0101and
x4 = 0010. We call f symmetric if f (x) only depends on jxj. Somecommon
N -bit symmetric functions that we will refer to are:

² ORN (x) = 1 i® jxj ¸ 1

² ANDN (x) = 1 i® jxj = N

² PARITY N (x) = 1 i® jxj is odd

² MAJ N (x) = 1 i® jxj > N=2

We call f monotone(increasing) if f (x) cannot decreaseif we set more variables
of x to 1. The above ORN , ANDN , and MAJ N are examplesof this.

2.2.2 Multilinear polynomials

If S is a set of (indices of) variables, then the monomial xS is de¯ned as the
product of the S-variables: xS = ¦ i 2 Sx i . The degree of this monomial is the
cardinality of S. A multilinear polynomialon N variablesis a function p : RN ! C
that can be written as p(x) =

P
Sµ [N ] aSxS for somecomplex numbers aS. We

call aS the coe±cient of the monomialxS in p. The degree deg(p) of p is the degree
of its largest monomial: deg(p) = maxfj Sj j aS 6= 0g. Note that if we restrict
attention to the Boolean domain f 0; 1gN , then x i = xk

i for all k > 1, so we can
changeall higher exponents to 1 without a®ectingthe value of the polynomial on
Boolean inputs. This shows that consideringonly multilinear polynomials is no
restriction when dealing with Booleaninputs.

The next lemma implies that if multilinear polynomials p and q are equal on
all Booleaninputs, then they are identical:

2.2.1. Lemma. Let p;q : RN ! R be multilinear polynomials of degree at most
d. If p(x) = q(x) for all x 2 f 0; 1gN with jxj · d, then p = q.
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Pro of. De¯ne r (x) = p(x) ¡ q(x). Supposer is not identically zero. Let xS

be a minimal-degreemonomial in r with non-zerocoe±cient aS, and x be the
input where x j = 1 i® x j occurs in S. Then jxj · d, and hencep(x) = q(x).
However, since all monomials in r except for xS evaluate to 0 on x, we have
r (x) = aS 6= 0 = p(x) ¡ q(x), which is a contradiction. It follows that r is
identically zeroand p = q. 2

Below we sketch the method of symmetrization, due to Minsky and Pa-
pert [122] (seealso [19, Section 4]). Let p : RN ! R be a polynomial. If ¼
is somepermutation and x = x1 : : : xN , then ¼(x) = (x¼(1) ; : : : ; x¼(N )). Let § N

be the set of all N ! permutations. The symmetrizationpsym of p averagesover all
permutations of the input, and is de¯ned as:

psym (x) =

P
¼2 § N

p(¼(x))

N !
:

Note that psym is a polynomial of degreeat most the degreeof p. Symmetrizing
may actually lower the degree:if p(x) = x1 ¡ x2, then psym (x) = 0. The following
lemma allows us to reducean N -variate polynomial to a single-variate one.

2.2.2. Lemma (Minsky & Paper t [122]). If p : RN ! R is a multilinear
polynomial, then there exists a single-variate polynomial q : R ! R, of degree
at most the degree of p, suchthat psym (x) = q(jxj) for all x 2 f 0; 1gN .

Pro of. Let d be the degreeof psym , which is at most the degreeof p. Let Vj

denotethe sum of all
¡ N

j

¢
products of j di®erent variables,soV1 = x1 + ¢¢¢+ xN ,

V2 = x1x2 + x1x3 + ¢¢¢+ xN ¡ 1xN , etc. Sincepsym is symmetrical, it is easilyshown
by induction that it can be written as

psym (x) = b0 + b1V1 + b2V2 + ¢¢¢+ bdVd;

with bi 2 R. Note that Vj assumesvalue
¡ jx j

j

¢
= jxj(jxj ¡ 1)(jxj ¡ 2) ¢¢¢(jxj ¡ j +

1)=j ! on x, which is a polynomial of degreej of jxj. Thereforethe single-variate
polynomial q de¯ned by

q(jxj) = b0 + b1

µ
jxj
1

¶
+ b2

µ
jxj
2

¶
+ ¢¢¢+ bd

µ
jxj
d

¶

satis¯es the lemma. 2

2.2.3 Represen ting and appro ximating functions

We can usemultilinear polynomials to represent Booleanfunctions:
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2.2.3. Definition. A polynomial p : RN ! R representsf if p(x) = f (x) for
all x 2 f 0; 1gN .

Note that since x2 = x for x 2 f 0; 1g, we can restrict attention to multi-
linear polynomials for representing f . In the remainder of this chapter, we will
usually omit the word \m ultilinear". It is easyto seethat each f : f 0; 1gN !
f 0; 1g can be represented by a polynomial p. For z 2 f 0; 1gN , de¯ne pz(x) =Q

i :zi =1 x i
Q

i :zi =0 (1 ¡ x i ). The polynomial pz(x) is 1 for x = z and 0 for all other
x 2 f 0; 1gN . Hencethe polynomial p(x) =

P
z:f (z)=1 pz(x) will equal f on all

inputs x. Lemma 2.2.1 implies that this polynomial is actually the unique poly-
nomial that equalsf on all x. This allows us to identify f with its representing
polynomial and to de¯ne:

2.2.4. Definition. The degree deg(f ) of f is the degreeof the multilinear poly-
nomial that represents f .

For example, deg(AND N ) = N , becausethe representing polynomial is the
monomial x1 : : : xN .

Apart from representing a function f exactly by meansof a polynomial, we
may also only approximate it with a polynomial, which can sometimesbe of a
smaller degree:

2.2.5. Definition. A polynomial p : RN ! R approximatesf if jp(x) ¡ f (x)j ·
1=3 for all x 2 f 0; 1gN . The approximate degree gdeg(f ) of f is the minimum
degreeamongall multilinear polynomials that approximate f .

As a simple example: 2
3x1 + 2

3x2 approximates OR2, so gdeg(OR2) = 1. In
contrast, OR2(x1; x2) = x1 + x2 ¡ x1x2 hencedeg(OR2) = 2. Note that there may
be many di®erent minimal-degreepolynomialsthat approximatef , whereasthere
is only onepolynomial that representsf .

A third, more elaborate polynomial is the \zero-error polynomial". It is ac-
tually a pair of polynomials:

2.2.6. Definition. A pair of polynomials (p0; p1) is called a zero-error polyno-
mial for f if both of the following conditions hold

² if f (x) = 0 then p0(x) = 0 and p1(x) 2 [1=2; 1],

² if f (x) = 1 then p0(x) 2 [1=2; 1] and p1(x) = 0.

The degree of this zero-error polynomial is the largest of deg(p0) and deg(p1).
The zero-error degree deg0(f ) of f is the minimum degreeamong all zero-error
polynomials for f .
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On the hand, if p represents f , then (p;p) is a zero-errorpolynomial for f ,
hencedeg0(f ) · deg(f ). On the other hand, if (p0; p1) is a zero-errorpolynomial
for f , then p0(x) + 1=6 and 5=6 ¡ p1(x) approximate f , hencegdeg(f ) · deg0(f ).

To endthis sectionwe prove that almost all functions have degreeN , meaning
that the fraction of functions with deg(f ) < N goesto 0 with N . De¯ne X even

1 =
f x j jxj is even and f (x) = 1g, and similarly for X odd

1 . Let X 1 = X even
1 [ X odd

1 .
Let p(x) =

P
S aSxS be the unique polynomial representing f . The Moebius

inversion formula (see[19]) says:

aS =
X

T µ S

(¡ 1)jSj¡j T j f (T);

wheref (T) is the value of f on the input whereexactly the variablesin T are 1.
We learnedabout the next lemmavia personalcommunication with Yaoyun Shi:

2.2.7. Lemma (Shi & Yao). deg(f ) = N i® jX even
1 j 6= jX odd

1 j.

Pro of. Applying the Moebius formula to S = [N ] = f 1; : : : ; N g, we get

a[N ] =
X

T µ [N ]

(¡ 1)N ¡j T j f (T) = (¡ 1)N
X

x2 X 1

(¡ 1)jx j = (¡ 1)N
¡
jX even

1 j ¡ jX odd
1 j

¢
:

By this formula we now have deg(f ) = N i® the monomial x1 : : : xN hasnon-zero
coe±cient i® a[N ] 6= 0 i® jX even

1 j 6= jX odd
1 j. 2

As a consequence,we can exactly count the number of functions that have
lessthan full degree:

2.2.8. Theorem (Buhrman & de Wolf [49]). There are
¡ 2N

2N ¡ 1

¢
functions f :

f 0; 1gN ! f 0; 1g with deg(f ) < N .

Pro of. Wecount the number E of f for which jX even
1 j = jX odd

1 j; by Lemma2.2.7
theseareexactly the f satisfyingdeg(f ) < N . Supposewe want to assignf -value
1 to exactly i of the 2N ¡ 1 inputs for which jxj is even. There are

¡ 2N ¡ 1

i

¢
ways to

do this. If we want jX even
1 j = jX odd

1 j, then there are only
¡ 2N ¡ 1

i

¢
ways to choose

the f -valuesof the odd x. Hence

E =
2N ¡ 1X

i =0

µ
2N ¡ 1

i

¶µ
2N ¡ 1

i

¶
=

µ
2N

2N ¡ 1

¶
:

The secondequality is Vandermonde'sconvolution [80, p.174]. 2

Note that
¡ 2N

2N ¡ 1

¢
2 £(2 2N

=
p

2N ) by Stirling's formula n! ¼
p

2¼n(n=e)n .
Sincethere are 22N

Booleanfunctions on N variables,we seethat the fraction of
functions with degree< N is o(1). Thus almost all functions have deg(f ) = N .

Ambainisshowedthat almostall functionsevenhavehigh approximatedegree:
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2.2.9. Theorem (Ambainis [9]). gdeg(f ) ¸ N
2 ¡ O(

p
N logN ) for almostall f .

A much weaker (but essentially tight) result which holds for all functions is
the following:

2.2.10. Theorem (Nisan & Szegedy [133]). If f dependson all N variables,
then deg(f ) ¸ logN ¡ O(log logN ).

2.3 Query Complexit y

Below we de¯ne query complexity for three di®erent kinds of algorithms for com-
puting a function f : deterministic, randomized, and quantum algorithms. Of
the quantum query complexity, there are three °avors, depending on the error-
requirements of the algorithm: wehaveexact, zero-error, andbounded-error quan-
tum algorithms. In the sectionafter that, we will relate thesethree complexities
to the three polynomial degreesdeg(f ), deg0(f ), and gdeg(f ) de¯ned above. But
¯rst we start by de¯ning classicalquery complexity.

2.3.1 Deterministic

A deterministic decision tree is a rooted ordered binary tree T. Each internal
node of T is labeledwith a variable x i and each leaf is labeledwith a value 0 or
1. Given an input x 2 f 0; 1gN , the tree is evaluated as follows. Start at the root.
If this is a leaf then stop. Otherwise, query the variable x i that labels the root.
If x i = 0, then recursively evaluate the left subtree, if x i = 1 then recursively
evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf
that is reached eventually. Note that an input x deterministically determinesthe
leaf, and thus the output, that the procedureendsup in. We say that the tree
accepts input x if it outputs 1 on that input.

We say that a decisiontree computesf if its output equalsf (x), for every
x 2 f 0; 1gN . Clearly there are many di®erent decision trees that compute the
samef . The complexity of such a tree is its depth, i.e., the number of queries
made on the worst-caseinput. We de¯ne D(f ), the decisiontree complexity of
f , as the depth of an optimal (= minimal-depth) decisiontree that computesf .
Note that D(f ) · N for every f , becausea decisiontree can be made to have
su±cient information for computing f (x) if it hasqueriedall N input bits.

2.3.2 Randomized

As in many other modelsof computation, we canadd the power of randomization
to decisiontrees. There are two ways to randomizea decisiontree. Firstly, we
canadd (possiblybiased)coin °ips asinternal nodesto the tree. That is, the tree
may contain internal nodeslabeledby a bias p 2 [0; 1], and when the evaluation
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procedurereachessuch a node, it will °ip a coin with bias p and will go to the
left child on outcome `heads'and to the right child on `tails'. Now an input x
no longer determineswith certainty which leaf of the tree will be reached, but
instead induces a probability distribution over the set of all leaves. Thus the
tree outputs 0 or 1 with a certain probability. The probability of output 1 on
input x is called the acceptance probability of x. The complexity of the tree is
the number of querieson the worst-caseinput and worst-caseoutcome of the
coin °ips. A secondway to de¯ne a randomizeddecisiontree is as a probability
distribution ¹ over deterministic decisiontrees. The tree is evaluated by choosing
a deterministic decisiontree according to ¹ , which is then evaluated as before.
The complexity of the randomizedtree in this secondde¯nition is the depth of
the deepest tree T that has ¹ (T) > 0.

It is not hard to seethat these two de¯nitions are equivalent. To turn a
tree of the ¯rst type into one of the secondtype, we can make all coin °ips
precedeall queries,without increasingthe number of querieson the worst-case
path. Thesecoin °ips now clearly induce a probability distribution on the forest
of deterministic decisiontreesthat follow the coin °ips, which givesa tree of the
secondtype. To turn a tree of the secondtype into oneof the ¯rst type, observe
that only ¯nitely many deterministic treesT can have ¹ (T) > 0, sincethere are
only ¯nitely many T of a given depth. Thereforewe can build a ¯nite binary tree
of (biased) coin °ips, such that for every T for which ¹ (T) > 0, there is a leaf in
the coin-°ip-tree that is reached with probability ¹ (T). Attaching the treesT to
the corresponding leavesin the coin-°ip-tree givesa tree of the ¯rst type.

We say that a randomizeddecisiontree computesf with bounded-error if its
output equals f (x) with probability at least 2/3, for every x 2 f 0; 1gN . We
useR2(f ) to denotethe complexity of the optimal randomizeddecisiontree that
computes f with bounded error.1 The speci¯c error probability 1=3 adopted
here is not essential; it can be reducedto " by running an error-1=3 algorithm
O(log(1=")) times and outputting the majorit y answer of thoseruns.

We will sometimesconsider a third error model, which lies between deter-
ministic and bounded-errorcomplexity. We say that a randomizeddecisiontree
computesf with zero error if it never endsup in a leaf labeledwith the incorrect
output, but it may, with probability · 1=2 for every x, end up in a third kind of
leaf, labeled \don't know". In other words, zero-erroralgorithms never give an
incorrect output, but they may sometimesgive no output at all. We useR0(f )
for the optimal complexity of such algorithms.

Note that it immediately follows from thesede¯nitions that R2(f ) · R0(f ) ·
D(f ) · N .

1The subscript `2' in R2(f ) refersto the 2-sidederror of the algorithm: it may err on 0-inputs
as well as on 1-inputs.
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2.3.3 Quan tum

In the quantum case,the querieshaveto correspond to unitary transformations,in
particular they haveto bereversible. Weformalizea queryto an input x 2 f 0; 1gN

asin Section1.5: asa unitary transformation O that mapsji; b;zi to ji; b© x i ; zi .
Hereji; b;zi is somem-qubit basisstate, wherei takesdlogN e bits, b is onebit, z
denotesthe (m¡ dlogN e¡ 1)-bit \w orkspace"of the quantum computer,which is
not a®ectedby the query, and © denotesexclusive-or. This clearly generalizesthe
classicalsetting wherea query inputs an i into a \black-box", which returns the bit
x i : if weapply O to the basisstate ji; 0; zi weget ji; x i ; zi , from which the i th bit of
the input canberead. BecauseO hasto beunitary, wespecify that it mapsji; 1; zi
to ji; 1¡ x i ; zi . This ensuresthat O is a permutation matrix, and thereforeunitary.
Note that a quantum computer can make queriesin superposition: applying O
once to the state 1p

N

P N
i=1 ji; 0; zi gives 1p

N

P N
i=1 ji; x i ; zi , which in somesense

contains all N bits of the input.
A quantum decision tree has the following form: we start with an m-qubit

state j~0i whereevery bit is 0. Then we apply a unitary transformation U0 to the
state, then we apply a query O, then another unitary transformation U1, etc. A
T-query quantum decisiontree thus correspondsto a big unitary transformation
A = UT OUT ¡ 1 ¢¢¢OU1OU0. Here the Ui are ¯xed unitary transformations, inde-
pendent of the input x. The ¯nal state Aj~0i dependson the input x only via the
T applications of O. The output is obtained by measuringthe ¯nal state and
outputting the rightmost bit of the observed basisstate.

Without loss of generality, we can assumethere are no intermediate mea-
surements, becausesuch measurements can always be pushedto the end of the
computation at the costof someextra workspacebut no extra queries,asfollows.
Referring to Section1.2.2, supposethe ¯rst intermediate measurement has pro-
jectors P1; : : : ; PM and corresponding orthogonal subspacesV1; : : : ; VM . Instead
of actually measuringthe state, we can also add dlogM e extra zero qubits, and
apply the transformation that maps jÁij 0i ! jÁij i i for jÁi 2 Vi (this is unitary
becausethe correspondingsubspacesareorthogonal). In the rest of the algorithm
we do not touch theseextra dlogM e qubits anymore,which ensuresthat they will
not give undesiredinterferencee®ects.It can be shown that applying this idea
to all intermediate measurements and measuringonly the output bit at the end
givesthe sameacceptanceprobability as the original algorithm.

We say that a quantum decisiontree computesf exactly if its output equals
f (x) with probability 1, for every x 2 f 0; 1gN . The tree computesf with bounded-
error if the output equalsf (x) with probability at least2/3, for every x 2 f 0; 1gN .
To de¯ne the zero-error setting, the output is obtained by observing the two
rightmost bits of the ¯nal state. If the ¯rst of these bits is 0, the quantum
decisiontree claims ignorance(\don't know"), otherwise the secondbit should
contain f (x) with certainty. For every x, the probability of getting output \don't
know" should be less than 1=2. We let QE (f ) denote the number of queries
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of an optimal quantum decision tree that computes f exactly, and Q0(f ) and
Q2(f ) denote the minimal complexity of zero-errorand bounded-errorquantum
algorithms for f , respectively. Note that we just count the number of queries,
not the complexity of the intermediate Ui .

Unlike the classicaldeterministic or randomizeddecisiontrees, the quantum
algorithms are not really trees anymore, and we will usually refer to them as
\quantum algorithms" or \quantum query algorithms". Such quantum algo-
rithms generalizeclassical trees in the sensethat they can simulate them, as
sketched below. Consider a T-query deterministic decision tree. It ¯rst deter-
mines which variable it will query initially; then it determinesthe next query
depending upon its history, and so on for T queries. Eventually it outputs an
output-bit depending on its total history. The basisstates of the corresponding
quantum algorithm have the form ji; b;h; ai , wherei; b is the query-part, h ranges
over all possiblehistories of the classicalcomputation (this history includes all
previousqueriesand their answers),and a is the rightmost qubit, which will even-
tually contain the output. Let U0 map the initial state j~0; 0;~0; 0i to ji; 0;~0; 0i ,
wherex i is the ¯rst variable that the classicaltree would query. Now the quantum
algorithm applies O, which turns the state into ji; x i ;~0; 0i . Then the algorithm
appliesa transformation U1 that mapsji; x i ;~0; 0i to jj ; 0; h; 0i , whereh is the new
history (which includes i and x i ) and x j is the variable that the classicaltree
would query given the outcome of the previous query. Then the quantum tree
applies O for the secondtime, it applies a transformation U2 that updates the
history and determinesthe next query, etc. Finally, after T queriesthe quantum
tree sets the answer bit to 0 or 1 depending on its total history. All opera-
tions Ui performedhereare injective mappingsfrom basisstates to basisstates,
hencethey can be extendedto permutations of basis states, which are unitary
transformations. Thus a T-query deterministic decision tree can be simulated
by an exact T-query quantum algorithm. Similarly a T-query randomizeddeci-
sion tree can be simulated by a T-query quantum decision tree with the same
error probability (basically becausea superposition can \simulate" a probability
distribution). Accordingly, we have Q2(f ) · R2(f ) · R0(f ) · D(f ) · N and
Q2(f ) · Q0(f ) · QE (f ) · D(f ) · N for every f . The fact that quantum algo-
rithms can simulate classicalalgorithms will alsoallow us to be somewhatsloppy
in our descriptionof quantum algorithms: sinceweknow that classicalalgorithms
can manipulate and comparenumbers, combine subroutines,sort lists, etc., we
canassumethat quantum algorithms canperform thesetaskstoo, without having
to spell out completely the corresponding quantum circuit.

2.4 Degree Lower Bounds on Query Complexit y

In this section we show that deg(f ), deg0(f ), and gdeg(f ) give lower bounds on
quantum query complexity. The next lemma from [17] is also implicit in the
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combination of someproofs of Fortnow et al. in [72, 76].

2.4.1. Lemma. Let A be a quantumalgorithm that makesT queriesto its N -bit
input x. Then there exist complex-valued N -variate multilinear polynomials®i of
degree at most T, suchthat the ¯nal state of A is

X

i 2f 0;1gm

®i (x)ji i ;

for every input x 2 f 0; 1gN .

Pro of. Let jÁk i be the state of quantum decisiontree (on input x) just before
the kth query. Note that jÁk+1 i = UkOjÁk i . The amplitudes in jÁ0i depend on
the initial state and on U0 but not on x, sothey are polynomialsof x of degree0.
A query mapsbasisstate ji; b;zi to ji; b© x i ; zi , so if the amplitude of ji; 0; zi in
jÁ0i is ® and the amplitude of ji; 1; zi is ¯ , then the amplitude of ji; 0; zi after the
querybecomes(1¡ x i )®+ x i ¯ and the amplitude of ji; 1; zi becomesx i ®+ (1¡ x i )¯ ,
which are polynomials of degree1. Betweenthe ¯rst and the secondquery lies
the unitary transformation U1. However, the amplitudes after applying U1 are
just linear combinations of the amplitudes beforeapplying U1, so the amplitudes
in jÁ1i are polynomialsof degreeat most 1. (In general,if the amplitudes before
a query arepolynomialsof degree· j , then the amplitudesbeforethe next query
will be polynomials of degree· j + 1.) Continuing inductively, the amplitudes
of the ¯nal state are found to be polynomialsof degreeat most T. We can make
these polynomials multilinear without a®ectingtheir values on x 2 f 0; 1gN by
replacingall higher powersxk

i by x i . 2

Note that we have not usedthe assumptionthat the Uj are unitary, but only
their linearity.

The main consequenceof this lemma is that we can write the acceptance
probability of a T-query algorithm as a multilinear polynomial of degreeat most
2T, since the acceptanceprobability is just the sum of squared norms of the
¯nal amplitudes of the basis states whoserightmost bit is 1. This fact almost
immediately implies the following lower bounds,which are the key to most results
in this chapter and someof the following chapters:

2.4.2. Theorem (BBCMW [17]). If f is a total Boolean function, then

² QE (f ) ¸
deg(f )

2

² Q0(f ) ¸
deg0(f )

2

² Q2(f ) ¸
gdeg(f )

2
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Pro of. Consideran exact quantum algorithm for f with QE (f ) queries. Let
S be the set of basisstates corresponding to a 1-output. Then the acceptance
probability is P(x) =

P
k2 S j®k(x)j2. By the previous lemma, the ®k are polyno-

mials of degree· QE (f ), so P(x) is a polynomial of degree· 2QE (f ). But P
represents f , so it hasdegreedeg(f ) and hencedeg(f ) · 2QE (f ).

Similarly, the acceptanceprobability and rejecting probability of a Q0(f )-
query zero-erroralgorithm for f together form a zero-errorpolynomial for f of
degree· 2Q0(f ), giving the secondpart of the theorem. Finally, the acceptance
probability of a Q2(f )-query bounded-erroralgorithm for f is an approximating
polynomial for f of degree· 2Q2(f ), giving the third part of the theorem. 2

It can also be shown that the three parts of Theorem 2.4.2hold without the
factor of 2 for the classicalcomplexitiesD(f ), R0(f ), and R2(f ), respectively.

Theorem2.4.2is tight for f = PARITY N , wheredeg(f ) = deg0(f ) = gdeg(f ) =
N and QE (f ) = Q0(f ) = Q2(f ) = dN=2e, aswewill seein Section2.6.3. Together
with the fact that almost all f have high degree(Theorems2.2.8 and 2.2.9), it
also follows that almost all functions have high quantum query complexity, even
in the bounded-errormodel. A generalupper bound for bounded-errorquantum
algorithms is Q2(f ) · N=2 +

p
N for all f , which follows from a result of van

Dam [60]. Combining Theorem2.4.2with Theorem2.2.10givesthe lower bound
QE (f ) ¸ (log N )=2 ¡ O(log logN ) for all functions that depend on N variables

2.5 Polynomial Relation for All Total Functions

In this section we show that the quantum query complexity of total functions
cannot be more than polynomially smaller than their classicalquery complexity.
Apart from polynomial degrees,our main tools in proving this result are the
notions of certi¯c ate complexity and block sensitivity.

2.5.1 Certi¯cate complexit y and blo ck sensitivit y

Certi¯cate complexity measureshow many of the N variableshave to be given a
value in order to ¯x the value of f .

2.5.1. Definition. Let C be an assignment C : S ! f 0; 1g of valuesto some
subset S of the N variables. We say that C is consistent with x 2 f 0; 1gN if
x i = C(i ) for all i 2 S.

For b 2 f 0; 1g, a b-certi¯c ate for f is an assignment C such that f (x) = b
whenever x is consistent with C. The sizeof C is jSj, the cardinality of S.

The certi¯c ate complexity Cx (f ) of f on x is the size of a smallest f (x)-
certi¯cate that is consistent with x. The certi¯c ate complexity of f is C(f ) =
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maxx Cx (f ). The 1-certi¯c ate complexity of f is C(1) (f ) = maxf x jf (x)=1 g Cx (f ),
and similarly we de¯ne C(0) (f ) = maxf x jf (x)=0 g Cx (f ).

For example, C(1) (ORN ) = 1 since it su±ces to set one variable x i = 1 to
force the OR-function to 1. On the other hand, C(ORN ) = C(0) (ORN ) = N .

Sensitivity and block sensitivity measurehow sensitive the value of f is to
changesin the input.

2.5.2. Definition. The sensitivity sx (f ) of f on x is the number of variables
x i for which f (x) 6= f (x i ) (i.e., changing the bit x i changesthe function value).
The sensitivity of f is s(f ) = maxx sx (f ).

The block sensitivity bsx (f ) of f on x is the maximum number b such that
there are disjoint sets B1; : : : ; Bb for which f (x) 6= f (xB i ) (i.e., complementing
the B i -variables in x changesthe function value). We will call those sets the
sensitiveblocks for x. The block sensitivity of f is bs(f ) = maxx bsx (f ). (If f is
constant, we de¯ne s(f ) = bs(f ) = 0.)

Note that sensitivity is the special caseof block sensitivity where the sizeof
the blocks B i is restricted to 1. Also note that sx (f ) · bsx (f ) · Cx (f ) for all f
and x, hences(f ) · bs(f ) · C(f ).

We proceedto give Nisan's proof [131] that C(f ) is upper bounded by the
product of s(f ) and bs(f ).

2.5.3. Lemma. If B is a minimal-size sensitiveblock for x, then jB j · s(f ).

Pro of. If we complement oneof the B-variablesin xB , then the function value
must °ip from f (xB ) to f (x) (otherwise B would not be minimal), so every B-
variable is sensitive for f on input xB . HencejB j · sxB (f ) · s(f ). 2

2.5.4. Theorem (Nisan [131]). C(f ) · s(f )bs(f ).

Pro of. Consideran input x 2 f 0; 1gN and let B1; : : : ; Bb be disjoint minimal
setsof variables that achieve the block sensitivity b = bsx (f ) · bs(f ). We will
show that the function C : [ i B i ! f 0; 1g that setsvariablesaccordingto x is a
su±ciently small certi¯cate for f (x).

If C is not an f (x)-certi¯cate, then let x0 be an input that is consistent with
C, such that f (x0) 6= f (x). De¯ne Bb+1 by xB b+1 = x0. Now f is sensitive to Bb+1

on x and Bb+1 is disjoint from B1; : : : ; Bb, which contradicts b= bsx (f ). HenceC
is an f (x)-certi¯cate. By the previouslemmawe have jB i j · s(f ) for all i , hence
the sizeof this certi¯cate is j [ i B i j · s(f )bs(f ). 2

Nisan and Szegedyrelated block sensitivity to the exact and approximate
degree,using the following theorem:
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2.5.5. Theorem (Ehlich & Zeller [66]; Rivlin & Cheney [144]). Let p :
R ! R be a polynomial such that b1 · p(i ) · b2 for every integer 0 · i · N ,
and its derivative has jp0(x)j ¸ c for some real 0 · x · N . Then deg(p) ¸p

cN=(c + b2 ¡ b1).

2.5.6. Theorem (Nisan & Szegedy [133]). If f is a total Boolean function,
then

² deg(f ) ¸

r
bs(f )

2

² deg0(f ) ¸

r
bs(f )

3

² gdeg(f ) ¸

r
bs(f )

6

Pro of. We prove the ¯rst part, the other parts are similar. Let polynomial p
of degreed represent f . Let b = bs(f ), and a and B1; : : : ; Bb be the input and
setsthat achieve the block sensitivity. We assumewithout lossof generality that
f (a) = 0. Wetransform p(x1; : : : ; xN ) into a polynomial q(y1; : : : ; yb) by replacing
every x j in p as follows:

1. x j = yi if aj = 0 and j 2 B i

2. x j = 1 ¡ yi if aj = 1 and j 2 B i

3. x j = aj if j 62B i for every i

We make the resulting polynomial multilinear by replacingany higher powersxk
i

by x i , which will not changethe value of the polynomial on inputs x 2 f 0; 1gN .
Now it is easyto seethat q has the following properties:

1. q is a multilinear polynomial of degree· d

2. q(y) 2 f 0; 1g for all y 2 f 0; 1gb

3. q(~0) = p(x) = f (x) = 0

4. q(ei ) = p(xB i ) = f (xB i ) = 1 for all unit vectorsei 2 f 0; 1gb

Let r be the single-variate polynomial of degree· d obtained from symmetrizing
q over f 0; 1gb. Note that 0 · r (i ) · 1 for every integer 0 · i · b, and for
somex 2 [0; 1] we have r 0(x) ¸ 1 becauser (0) = 0 and r (1) = 1. Applying
Theorem2.5.5we get d ¸

p
b=2. 2

Sincethe acceptanceprobability of a T-query quantum algorithm canbe writ-
ten as a degree-2T multiv ariate polynomial, we can alsoprove:
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2.5.7. Theorem (BBCMW [17]). If f is a total Boolean function, then

² QE (f ) ¸

r
bs(f )

8

² Q0(f ) ¸

r
bs(f )

12

² Q2(f ) ¸

r
bs(f )

16

Note that the constant 1=
p

16 = 1=4 in the above bound for Q2(f ) is slightly
stronger than the constant 1=

p
24 that we would get from combining Theo-

rems2.4.2and 2.5.6. Weget the better constant herebecausethe speci¯c approx-
imating polynomial for f induced by a bounded-errorquantum algorithm repre-
sents a probability, and hencelies in the interval [0; 1] for all inputs x 2 f 0; 1gN .
In contrast, in generalan approximating polynomial is only required to lie in the
interval [¡ 1=3; 4=3] for all x 2 f 0; 1gN .

The squareroot in the above theoremis tight for Q2(f ), sincebs(ORN ) = N ,
while Q2(ORN ) 2 O(

p
N ) becauseof Grover's algorithm. The squareroot is not

neededin the corresponding classicallower bound of Nisan:

2.5.8. Theorem (Nisan [131]). R2(f ) ¸
bs(f )

3
.

Pro of. Consideran algorithm with R2(f ) queries,and an input x that achieves
the block sensitivity. For every setS such that f (x) 6= f (xS), the probability that
the algorithm queriesa variable in S must be¸ 1=3, otherwisethe algorithm could
not \see" the di®erencebetweenx and xS with su±cient probability. Henceon
input x the algorithm has to make an expected number of at least 1=3 queries
in each of the bs(f ) sensitive blocks, so the total expectednumber of querieson
input x must be at leastbs(f )=3. Sincethe worst-casenumber of querieson input
x is at the least the expectednumber of querieson x, the theoremfollows. 2

2.5.2 Polynomial bound for QE (f ) and Q0(f )

The ¯rst result in this section is due to Nisan and Smolensky, and improves
the earlier result D(f ) 2 O(deg(f )8) of Nisan and Szegedy[133]. Nisan and
Smolenskynever publishedtheir proof (dated around 1995),but allowed it to be
includedin [49]. In the proof, a maxonomialof f is a monomial in f 's representing
polynomial p that hasmaximal degree.

2.5.9. Lemma (Nisan & Smolensky [132]). For every maxonomial M of f ,
there is a set B of variablesin M suchthat f (~0B ) 6= f (~0).
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Pro of. Obtain a restricted function g from f by setting all variables outside
of M to 0. This g cannot be constant 0 or 1, becauseits unique polynomial
representation (as obtained from p) contains M . Thus there is somesubsetB of
the variablesin M that makesg(~0B ) 6= g(~0) and hencef (~0B ) 6= f (~0). 2

2.5.10. Lemma (Nisan & Smolensky [132]). There is a set of deg(f )bs(f )
variablesthat intersects each maxonomialof f .

Pro of. Greedily take all variables in maxonomialsof f , as long as there is
a maxonomial that is still disjoint from those taken so far. Since each such
maxonomial will contain a sensitive block for ~0, and there can be at most bs(f )
disjoint sensitive blocks, this procedurecangoon for at most bs(f ) maxonomials.
Sinceeach maxonomialcontains deg(f ) variables,the lemma follows. 2

2.5.11. Theorem (Nisan & Smolensky [132]).
D(f ) · deg(f )2bs(f ) · 2deg(f )4.

Pro of. We construct a deterministic algorithm as follows. By the previous
lemma, there is a set of deg(f )bs(f ) variablesthat intersectseach maxonomialof
f . Query all thesevariables. This inducesa restriction g of f on the remaining
variables,such that deg(g) < deg(f ) (becausethe degreeof each maxonomial in
the representation of f drops at least one) and bs(g) · bs(f ). Repeating this
inductively for at most deg(f ) times, we reach a constant function and learn the
value of f . This algorithm usesat most deg(f )2bs(f ) queries, henceD(f ) ·
deg(f )2bs(f ). Theorem2.5.6givesthe secondinequality of the theorem. 2

In fact, almost the sameproof works to show a fourth-power relation between
D(f ) and the degreeof a zero-error polynomial (p0; p1) for f . The only change
in the proof is that now we have to reducethe degreesof both p0 and p1. This
costsa factor of 2, giving D(f ) · 2 deg0(f )2bs(f ) · 6 deg0(f )4.

The main consequenceof the proven bounds betweenD(f ) and the degrees
is a polynomial relation betweenthe classicalcomplexity D(f ) on the one hand
and the quantum complexitiesQE (f ) and Q0(f ) on the other:

2.5.12. Theorem (BBCMW [17]; BCWZ [43]). D(f ) · 32 QE (f )4 and
D(f ) · 96 Q0(f )4.

It is quite likely that the fourth power in the above relations is not tight.
The biggest separationwe know betweenD(f ) and QE (f ) is only a factor of 2
(for PARITY , seeSection2.6), while the biggestgap we know betweenD(f ) and
Q0(f ) is near-quadratic(for AND-OR trees,seeSection2.7).
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A function which may throw somelight on the relationsbetweenD(f ), deg(f ),
and QE (f ) is the following from [133]. ConsiderE12 de¯ned by E12(x1; x2; x3) = 1
i® jxj 2 f 1; 2g. This is represented by the following degree-2polynomial:

E12(x1; x2; x3) = x1 + x2 + x3 ¡ x1x2 ¡ x1x3 ¡ x2x3:

De¯ne E k
12 asthe function on N = 3k variablesobtainedby building a completere-

cursiveternary tree of depth k, wherethe 3k leavesarethe variablesand each node
is the E12-function of its three children. For k > 1, the representing polynomial
for E k

12 is obtained by substituting independent copiesof the E k¡ 1
12 -polynomial in

the above polynomial for E12. This shows that deg(f ) = 2k = N 1= log 3 ¼ N 0:63:::.
On the other hand, it is easyto seethat complementing any variable in the input
~0 °ips the function value from 0 to 1, henceD(f ) = s(f ) = N = deg(f ) log 3.
The exact quantum complexity QE (f ) of this function is unknown; it must lie
betweenN 1= log 3=2 and N . Henceeither E k

12 satis¯esQE (f ) ¿ D(f ) or it satis¯es
deg(f ) ¿ QE (f ). Both results would be interesting.

2.5.3 Polynomial bound for Q2(f )

SinceQ2(f ) can be much lower than Q0(f ), the resultsof the previoussectiondo
not yet imply that D(f ) and Q2(f ) are polynomially close. This we prove here,
using the following theorem:

2.5.13. Theorem (BBCMW [17]). D(f ) · C (1) (f )bs(f ).

Pro of. The following describes an algorithm to compute f (x), querying at
most C(1) (f )bs(f ) variablesof x (in the algorithm, by a \consistent" certi¯cate
C or input y at somepoint we meana C or y that agreeswith the valuesof all
variablesqueriedup to that point).

1. Repeat the following at most bs(f ) times:

Pick a consistent 1-certi¯cate C and query those of its variables
whose x-values are still unknown (if there is no such C, then
return 0 and stop); if the queriedvaluesagreewith C then return
1 and stop.

2. Pick a consistent y 2 f 0; 1gN and return f (y).

The nondeterministic \pic k a C" and \pic k a y" caneasilybe madedeterministic
by choosing the ¯rst C and y in some¯xed order. Call this algorithm A. Since
A runs for at most bs(f ) stagesand each stagequeriesat most C (1) (f ) variables,
A queriesat most C(1) (f )bs(f ) variables.

It remains to show that A always returns the right answer. If it returns an
answer in step (1), this is either becausethere are no consistent 1-certi¯cates
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left (and hencef (x) must be 0) or becausex is found to agreewith a particular
1-certi¯cate C. In both casesA givesthe right answer.

Now considerthe casewhereA returns an answer in step (2). We will show
that all consistent y must have the samef -value. Supposenot. Then there are
consistent y; y0with f (y) = 0 and f (y0) = 1. A hasqueriedb= bs(f ) 1-certi¯cates
C1; C2; : : : ; Cb. Furthermore, y0 contains a consistent 1-certi¯cate Cb+1 . We will
derive from these Ci disjoint sets B i such that f is sensitive to each B i on y.
For every 1 · i · b + 1, de¯ne B i as the set of variables on which y and Ci

disagree.Clearly, each B i is non-empty, for otherwisethe procedurewould have
returned 1 in step (1). Note that yB i agreeswith Ci , so f (yB i ) = 1, which shows
that f is sensitive to each B i on y. Supposethe kth variable occurs in someB i

(1 · i · b), then xk = yk 6= Ci (k). If j > i , then Cj has beenchosenconsistent
with all variables queried up to that point (including xk), so we cannot have
xk = yk 6= Cj (k). This shows that k 62B j , henceall B i and B j are disjoint.
But then f is sensitive to bs(f ) + 1 disjoint setson y, which is a contradiction.
Accordingly, all consistent y in step 2 must have the samef -value,and A returns
the right value f (y) = f (x) in step 2, becausex is oneof thoseconsistent y. 2

Combining with Theorem2.5.4we obtain:

2.5.14. Cor ollar y (BBCMW [17]). D(f ) · s(f )bs(f )2 · bs(f )3.

Combining Corollary 2.5.14 with Theorem 2.5.7, we have proven the main
result of this section: for query complexity of total functions, bounded-error
quantum algorithms can be at most polynomially faster than exact classicalal-
gorithms.

2.5.15. Theorem (BBCMW [17]). D(f ) · 4096Q2(f )6.

We do not know whether our generalboundsD(f ) 2 O(Q0(f )4) and D(f ) 2
O(Q2(f )6) are tight, and suspect that they are not. In the following two sections
we will tighten theseboundsfor special classesof functions.

Finally, combining Corollary 2.5.14and Theorem 2.5.6we obtain the follow-
ing result, which improved the earlier D(f ) 2 O(gdeg(f )8) result of Nisan and
Szegedy[133]:

2.5.16. Theorem (BBCMW [17]). D(f ) · 216 gdeg(f )6.

2.6 Symmetric Functions

Recall that a function f is symmetric if f (x) only depends on the Hamming
weight jxj of its input, so permuting the input doesnot changethe value of the
function.
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2.6.1 Tigh t bounds

A symmetric f is fully described by giving a vector (f 0; f 1; : : : ; f N ) 2 f 0; 1gN +1 ,
wheref k is the value of f (x) for jxj = k. Becauseof this and Lemma2.2.2,there
is a closerelationship between polynomials that represent symmetric functions
and single-variate polynomials that assumevalues0 or 1 on f 0; 1; : : : ; N g. Using
this relationship, von zur Gathen and Roche [79] proved deg(f ) = (1 ¡ o(1))N
for all symmetric f :

2.6.1. Theorem (v on zur Gathen & Roche [79]). If f is non-constantand
symmetric, then deg(f ) = N ¡ O(N 0:548). If, furthermore, N + 1 is prime, then
deg(f ) = N .

In fact, von zur Gathen and Roche conjecture that deg(f ) = N ¡ O(1) for
every symmetric f . The biggest gap they found is deg(f ) = N ¡ 3 for some
speci¯c f and N . SinceD(f ) ¸ deg(f ) and QE (f ) ¸ deg(f )=2 (Theorem 2.4.2),
the above degreelower boundsgive strong lower boundson D(f ) and QE (f ).

For the caseof approximate degreesof symmetric f , Paturi [136] gave the
following tight characterization. De¯ne ¡( f ) = minfj 2k ¡ N + 1j : f k 6= f k+1 g.
Informally, this quantit y measuresthe length of the interval around Hamming
weight N=2 where f k is constant. The following theorem of Paturi [136] implies
a strong lower bound on Q2(f ) for all symmetric functions.

2.6.2. Theorem (Paturi [136]). If f is non-constant and symmetric, then we
havegdeg(f ) 2 £(

p
N (N ¡ ¡( f ))).

We canprove a matching upper bound usingthe result about quantum count-
ing from Section1.7:

2.6.3. Theorem (BBCMW [17]). If f is non-constant and symmetric, then
we haveQ2(f ) 2 £(

p
N (N ¡ ¡( f ))) .

Pro of. We will sketch a strategy that computesf with bounded error prob-
abilit y · 1=3. Let f k = f (x) for x with jxj = k. First note that since¡( f ) =
minfj 2k ¡ N + 1j : f k 6= f k+1 and 0 · k · N ¡ 1g, f k must be identically 0 or 1 for
k 2 f (N ¡ ¡( f ))=2; : : : ; (N + ¡( f ) ¡ 2)=2g. Considersomex with jxj = t. In order
to be able to compute f (x), it is su±cient to know t exactly if t < (N ¡ ¡( f ))=2
or t > (N + ¡( f ) ¡ 2)=2, or to know that (N ¡ ¡( f ))=2 · t · (N + ¡( f ) ¡ 2)=2
otherwise.

Run the quantum counting algorithm for £(
p

(N ¡ ¡( f ))N ) stepsto count
the number of 1s in x. If t is in one of the two tails (t < (N ¡ ¡( f ))=2 or
t > (N + ¡( f ) ¡ 2)=2), then with high probability the algorithm givesus an exact
count of t. If (N ¡ ¡( f ))=2 · t · (N + ¡( f ) ¡ 2)=2, then with high probability the
counting algorithm returns some~t which is in this interval. Thus with bounded
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error probability we have obtained su±cient information to compute f t = f (x),
using only O(

p
N (N ¡ ¡( f ))) queries. Repeating this proceduresomeconstant

number of times, we can limit the probability of error to at most 1=3. 2

In contrast to Theorem 2.6.3, it can be shown that a randomized classical
strategy needs£( N ) queries to compute any non-constant symmetric f with
bounded-error, the reasonbeing that we can reduceORN =2 to f (which is easy
to see). Also, together with the bound Q0(ORN ) = N that we prove below
(Proposition 2.6.5),this reduction givesQE (f ); Q0(f ) 2 £( N ). To summarize,we
have the following tight characterizationsof the variousdecisiontree complexities
of all symmetric f :

2.6.4. Theorem. If f is non-constant and symmetric, then

² D(f ) = (1 ¡ o(1))N

² R0(f ); R2(f ) 2 £( N )

² QE (f ); Q0(f ) 2 £( N )

² Q2(f ) 2 £(
p

N (N ¡ ¡( f )))

2.6.2 OR

Before continuing with monotone functions, we will take a closer look at three
important symmetric functions: OR, PARITY, and MAJORITY.

First we will considerthe OR-function, which is related to databasesearch.
Grover's search algorithm can ¯nd an index i such that x i = 1 with high prob-
abilit y of successin O(

p
N ) queries (if there is such an i ). This implies that

we can also compute the OR-function with high successprobability in O(
p

N ):
let Grover's algorithm generatean index i , and return x i . Sincebs(ORN ) = N ,
Theorem2.5.7givesus a lower bound of 1

4

p
N on computing ORN with bounded

error probability,2 so we have Q2(ORN ) 2 £(
p

N ), where classicallywe require
R2(ORN ) 2 £( N ) queries.Now supposewe want to get rid of the probability of
error: can we computeORN exactly or with zero-errorusing O(

p
N ) queries?If

not, can quantum computation give us at least someadvantage over the classical
deterministic case?Both questionshave a negative answer:

2.6.5. Pr oposition (BBCMW [17]). Q0(ORN ) = N .

2This ­(
p

N ) lower bound on ORN is well known [25, 83], and is given in a tighter form
in [30, 167], but the way we obtained it here is rather di®erent from existing proofs. Many more
bounds for OR and search will be proven in Chapter 3.
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Pro of. Considera quantum algorithm that computesORN with zero-errorusing
T = Q0(ORN ) queries. By Lemma 2.4.1, there are complex-valued polynomials
pi of degreeat most T, such that the ¯nal state of the algorithm on input x is

X

i 2f 0;1gm

®i (x)ji i :

Let B be the set of all basis states ending in 10 (i.e., where the output is the
answer 0). Then for every i 2 B we have pi (x) = 0 if x 6= ~0, otherwise the
probability of getting the incorrect answer 0 on input x would be non-zero. On
the other hand, there must be at least one j 2 B such that pj (~0) 6= 0, sincethe
probability of getting the correct output 0 on x = ~0 must be non-zero. Let p(x)
be the real part of 1 ¡ pj (x)=pj (~0). This polynomial p hasdegreeat most T and
represents ORN . But then p hasdegreeat least deg(ORN ) = N , so T ¸ N . 2

2.6.3 PARITY

Secondlywe considerPARITY . Using the Deutsch-Jozsaalgorithm for n = 1,
we can determine the parity of two variables using only 1 query. The parity of
an N -bit input x is the parity of N=2 such pairs, so QE (PARITY N ) · dN=2e.
A matching lower bound for bounded-errorquantum algorithms follows from the
next lemma, which is essentially due to Minsky and Papert:

2.6.6. Lemma (Minsky & Paper t [122]). gdeg(PARITY N ) = N .

Pro of. Let f be PARITY on N variables. Let p be a polynomial of degree
gdeg(f ) that approximates f . Since p approximates f , its symmetrization psym

also approximates f . By Lemma 2.2.2, there is a polynomial q, of degreeat
most gdeg(f ), such that q(jxj) = psym (x) for all inputs. Thus we must have
jf (x) ¡ q(jxj)j · 1=3, soq(0) · 1=3, q(1) ¸ 2=3, . . . , q(N ¡ 1) ¸ 2=3, q(N ) · 1=3
(assumingN even). We seethat the polynomial q(x) ¡ 1=2 must have at least N
zeroes,henceq hasdegreeat least N and gdeg(f ) ¸ N . 2

Thuswehaving the following optimal result for parity, which wasproven inde-
pendently at around the sametime asour result by Farhi, Goldstone,Gutmann,
and Sipser.

2.6.7. Cor ollar y (BBCMW [17]; FGGS [71]).
QE (PARITY N ) = Q0(PARITY N ) = Q2(PARITY N ) = dN=2e.
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2.6.4 MAJORITY

Thirdly we considerMAJORITY. Sincethe OR of N variables can be reduced
to MAJORITY on 2N ¡ 1 variables (if we set the ¯rst N ¡ 1 variables to 1,
then the MAJORITY of all variables equals the OR of the last N variables)
and ORN requiresN queriesto be computedexactly or with zero-error,we have
QE (MAJ N ) ¸ Q0(MAJ N ) ¸ (N + 1)=2. It is known that QE (MAJ N ) · N + 1 ¡
w(N ), wherew(N ) is the number of 1s in the binary expansionof N . This was
¯rst noted by Hayes,Kutin and Van Melkebeek[87]. It also follows immediately
from classicalresults [146, 5] that show that an item with the majorit y value can
be identi¯ed classically deterministically with N ¡ w(N ) comparisons between
bits (a comparisonbetweentwo input bits is the parity of the two bits, which can
be computed with 1 quantum query). One further query to this item su±ces
to determine the majorit y value. For N satisfying w(N ) ¸ 2 we thus have
QE (MAJ N ) · N ¡ w(N ) + 1 < N = D(MAJ N ).

For the zero-errorcase,Van Melkebeek, Hayes and Kutin give an algorithm
that works in roughly 2

3N queries,which is still slightly worsethan the bestknown
lower bound Q0(MAJ N ) ¸ (N + 1)=2. For the bounded-errorcase,we can apply
Theorem2.6.3: ¡(MAJ N ) = 1, sowe needQ2(MAJ N ) 2 £( N ) queries.The best
upper bound we have here is N=2 +

p
N , which follows from [60].

2.7 Monotone Functions

Recall that a function f is monotoneif f (x) cannot decrease(changefrom 1 to
0) if we changesomeof the 0-bits in x to 1.

2.7.1 Impro vements of the general bounds

One nice property of monotonefunctions was shown by Nisan:

2.7.1. Theorem (Nisan [131]). If f is monotone,then C(f ) = s(f ) = bs(f ).

Pro of. Sinces(f ) · bs(f ) · C(f ) for all f , we only have to prove C(f ) · s(f ).
Let C : S ! f 0; 1g be a minimal certi¯cate for somex with jSj = C(f ). Without
loss of generality we assumef (x) = 0. For each i 2 S we have x i = 0 and
f (x i ) = 1, for otherwise i could be dropped from the certi¯cate, contradicting
minimalit y. Thus each S-variable is sensitive in x and C(f ) · sx (f ) · s(f ). 2

Theorem2.5.13now implies:

2.7.2. Cor ollar y. If f is monotone,then D(f ) · s(f )2.
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This corollary is actually tight, sincethe uniform 2-level AND-OR tree (the
AND of

p
N ORs of

p
N variableseach) has D(f ) = N and s(f ) =

p
N and is

monotone.
Also, the ¯rst part of Theorem2.5.6can now be improved to

2.7.3. Pr oposition (Buhrman & de Wolf [49]). If f is monotone,then we
haves(f ) · deg(f ).

Pro of. Let x be an input on which the sensitivity of f is s(f ). Assumewithout
lossof generality that f (x) = 0. All sensitive variablesmust be 0 in x, and setting
oneor more of them to 1 changesthe value of f from 0 to 1. Henceby ¯xing all
variables in x except for the s(f ) sensitive variables,we obtain the OR function
on s(f ) variables,which hasdegrees(f ). Thereforedeg(f ) is at least s(f ). 2

The above two results, combined with Theorems2.4.2 and 2.5.7, strengthen
someof the previousboundsfor monotonefunctions:

2.7.4. Cor ollar y (BBCMW [17]). If f is monotone, then we have D(f ) 2
O(QE (f )2), and D(f ) 2 O(Q2(f )4).

2.7.2 Tigh t bounds for zero-error

In this sectionwe show for monotonefunctions that the di®erencebetweenQ0(f )
and D(f ) can be near-quadratic,but not more.

2.7.5. Theorem (BCWZ [43]). For every total monotoneBoolean function f
we haveD(f ) · Q0(f )2.

Pro of. Let x be an input on which the sensitivity of f equalss(f ). Assume
without lossof generality that f (x) = 0. All sensitive variablesmust be 0 in x,
and setting one or more of them to 1 changesthe value of f from 0 to 1. Hence
by ¯xing all variables in x except for the s(f ) sensitive variables,we obtain the
OR function on s(f ) variables. SinceOR on s(f ) variableshasQ0(ORN ) = s(f )
(Proposition 2.6.5), it follows that s(f ) · Q0(f ). We have D(f ) · s(f )2 by
Corollary 2.7.2,hencethe theoremfollows. 2

Important examplesof monotonefunctions are AND-OR trees. Thesecan be
represented as trees of depth d where the N leavesare the variables, and the d
levels of internal nodesare alternatingly labeledwith ANDs and ORs. It is easy
to seethat all such functions f have degreedeg(f ) = N , henceQE (f ) ¸ N=2
and D(f ) = N . However, we now show that in the zero-errorsetting quantum
computers can achieve signi¯cant speed-upsfor such functions. These are in
fact the ¯rst total functions with proven superlinear gap betweenquantum and
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classicalzero-errorcomplexity. Interestingly, the quantum algorithms for these
functions are not just zero-error: if they output an answer b 2 f 0; 1g then they
also output a b-certi¯c ate for this answer (= a set of indices of variables whose
valuesforce the function to the value b).

We prove that for su±ciently large d, quantum computerscan obtain near-
quadratic speed-upson d-level AND-OR treesthat areuniform, i.e., have branch-
ing factor N 1=d at each level. Using the next lemmawe prove that Theorem2.7.5
is almost tight: for every " > 0 there exists a total monotone f with Q0(f ) 2
O(N 1=2+ " ) and D(f ) = N .

2.7.6. Lemma (BCWZ [43]). Let d ¸ 1 and let f denote the uniform d-level
AND-OR tree on N variablesthat has an OR as root. There exists a quantum
algorithm A1 that ¯nds a 1-certi¯c ate in expected number of queriesO(N 1=2+1 =2d)
if f (x) = 1 and doesnot terminate if f (x) = 0. Similarly, there existsa quantum
algorithm A0 that ¯nds a 0-certi¯c ate in expected number of queriesO(N 1=2+1 =d)
if f (x) = 0 and does not terminate if f (x) = 1.

Pro of. By induction on d.
Base step. For d = 1 the boundsare trivial.
Induction step (assume the lemma for d ¡ 1). Let f be the uniform

d-level AND-OR tree on N variables. The root is an OR of N 1=d subtrees,each
of which hasN (d¡ 1)=d variables.

We construct A1 asfollows. We canuseGrover's algorithm recursively to ¯nd
a subtreeof the root whosevalueis 1, if there is one. This takesO(N 1=2(log N )d¡ 1)
queriesand works with bounded-error.For the technical details of this multi-level
quantum search werefer to [42, Theorem1.15]. By the induction hypothesisthere
is an algorithm A0

0 that ¯nds a 1-certi¯cate for this subtree using an expected
number of O((N (d¡ 1)=d)1=2+1 =(d¡ 1)) = O(N 1=2+1 =2d) queries(note that the subtree
hasan AND asroot, sothe rolesof 0 and 1 arereversed). If A0

0 hasnot terminated
after, say, 10 times its expectednumber of queries,then terminate it and start all
over with the multi-level Grover search. The expectednumber of queriesfor one
such run is O(N 1=2(log N )d¡ 1) + 10¢O(N 1=2+1 =2d) = O(N 1=2+1 =2d). If f (x) = 1,
then the expected number of runs before successis O(1) and A1 will ¯nd a 1-
certi¯cate after a total expected number of O(N 1=2+1 =2d) queries. If f (x) = 0,
then the subtreefound by the multi-level Grover-search will have value0, sothen
A0

0 will never terminate by itself and A1 will start over againand againbut never
terminates.

We construct A0 as follows. By the induction hypothesisthere exists an al-
gorithm A0

1 with expectednumber of O((N (d¡ 1)=d)1=2+1 =2(d¡ 1)) = O(N 1=2) queries
that ¯nds a 0-certi¯cate for a subtree whosevalue is 0, and that runs forever
if the subtree has value 1. A0 ¯rst runs A0

1 on the ¯rst subtree until it termi-
nates, then on the secondsubtree, etc. If f (x) = 0, then each run of A0

1 will
eventually terminate with a 0-certi¯cate for a subtree, and the 0-certi¯cates of
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the N 1=d subtreestogether form a 0-certi¯cate for f . The total expected num-
ber of queries is the sum of the expectations over all N 1=d subtrees,which is
N 1=d ¢O(N 1=2) = O(N 1=2+1 =d). If f (x) = 1, then one of the subtreeshas value 1
and the run of A0

1 on that subtreewill not terminate, so then A0 will not termi-
nate. 2

2.7.7. Theorem (BCWZ [43]). Let d ¸ 1 and let f denotethe uniform d-level
AND-OR tree on N variablesthat hasan OR as root. Then Q0(f ) 2 O(N 1=2+1 =d)
and R2(f ) 2 ­( N ).

Pro of. Run the algorithms A1 and A0 of Lemma 2.7.6 side-by-side until one
of them terminates with a certi¯cate. This gives a certi¯cate-¯nding quantum
algorithm for f with expected number of queriesO(N 1=2+1 =d). Run this algo-
rithm for twice its expected number of queriesand answer \don't know" if it
has not terminated after that time. By Markov's inequality, the probability of
non-termination is · 1=2, so we obtain an algorithm for our zero-error setting
with Q0(f ) 2 O(N 1=2+1 =d) queries.

The classicallower bound follows from combining two known results. First,
an AND-OR tree of depth d on N variableshasR0(f ) ¸ N=2d [88, Theorem2.1]
(seealso [145]). Second,for such trees we have R2(f ) 2 ­( R0(f )) [147]. Hence
R2(f ) 2 ­( N ). 2

This analysisis not quite optimal. It givesonly trivial boundsfor d = 2, but a
more re¯ned analysisshows that we can alsoget speed-upsfor such 2-level trees:

2.7.8. Theorem (BCWZ [43]). Let f be the AND of N 1=3 ORs of N 2=3 vari-
ableseach. Then Q0(f ) 2 £( N 2=3) and R2(f ) 2 ­( N ).

Pro of. A similar analysisasbeforeshows Q0(f ) 2 O(N 2=3) and R2(f ) 2 ­( N ).
For the quantum lower bound: note that if we set all variablesto 1 exceptfor

the N 2=3 variablesin the ¯rst subtree,then f becomesthe OR of N 2=3 variables.
This has zero-errorcomplexity N 2=3 (Proposition 2.6.5), hencewe have Q0(f ) 2
­( N 2=3). 2

If we considera tree with
p

N subtreesof
p

N variableseach, we would get
Q0(f ) 2 O(N 3=4) and R2(f ) 2 ­( N ). The best lower bound we can prove hereis
Q0(f ) 2 ­(

p
N ).

2.7.3 Monotone graph prop erties

An interestingand well studied subclassof the monotonefunctions are the mono-
tone graph properties. We will show in this sectionthat quantum algorithms can
computesomegraph properties much faster than classicalalgorithms.
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Consideran undirectedgraphon n vertices. ThereareN =
¡ n

2

¢
possibleedges,

each of which may bepresent or absent, sowecanpair up the setof all graphswith
the setof all N -bit strings. In other words, labelling the vertices1; : : : ; n, an input
graph is represented by an N -bit string x = (e1;2; e1;3; : : : ; e1;n ; e2;3; : : : ; en¡ 1;n )
where the bit eij indicates whether there is an edgebetween vertices i and j .
A graph property P is a set of graphs that is closedunder permutation of the n
vertices,soisomorphicgraphshave the sameproperties. In other words, if graphs
x = (e12; : : :) and x0 = (e0

12; : : :) are such that there is permutation ¼ with the
property that eij = e0

¼(i );¼(j ) for every i; j , then either both graphshave property
P, or neither of them hasproperty P.

We are now interested in the question: At how many edgesmust we look in
order to determine if a graph has the property P? This is just the decision-tree
complexity D(P) of P if we view P as a total Boolean function on N bits. The
complexity of graph properties has been well-studied classically, especially for
monotonegraph properties. A property P is monotone if adding edgescannot
destroy the property, which meansthat such a P is a speci¯c monotone total
Booleanfunction on N =

¡ n
2

¢
bits.

In the sequel,let P stand for a (non-constant) monotonegraph property. It
is called evasiveif D(P) = N , i.e., if any deterministic algorithm has to look at
all edgeson someinputs. Much research revolved around the so-calledAanderaa-
Karp-Rosenberg conjectureor evasivenessconjecture, which states that every P
is evasive. This conjecture is still open; see[117] for an overview. It has been
proved for n equalsa prime power [95] and for bipartite graphs[164], but the best
known bound that holds for all P is D(P) 2 ­( N ) [141, 95, 97]. This bound also
follows from a degree-bound by Dodis and Khanna [64, Theorem2]:

2.7.9. Theorem (Dodis & Khanna [64]). If P is a non-constant monotone
graph property, then deg(P) 2 ­( N ).

Sincedeg(f )=2 lower bounds QE (f ), we can prove that exact quantum eva-
siveness(QE (P) = N ) doesnot hold for all P, but near-evasivenessdoes:

2.7.10. Theorem (BCWZ [43]). For all non-constant monotone graph prop-
erties P we haveQE (P) 2 ­( N ). There is a P such that QE (P) < N for every
n > 2.

Pro of. The general lower bound follows immediately from combining Theo-
rems 2.4.2 and 2.7.9. Letting P be the majorit y function (\are more than half
of the edgespresent?"), the results of Hayeset al. from Section2.6.4 show that
there is a monotoneP with QE (P) < N for every n > 2. 2

For the classical zero-error complexity, the best known result is R0(P) 2
­( N 2=3) for all P [84], but it has beenconjecturedthat R0(P) 2 £( N ). To the
best of our knowledge,no P is known to have R2(P) 2 o(N ). For the quantum
casewe can prove:
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2.7.11. Theorem (BCWZ [43]). For all non-constant monotone graph prop-
erties P we haveQ0(P) 2 ­(

p
N ). There is a P suchthat Q0(P) 2 O(N 3=4) and

R2(P) 2 ­( N ).

Pro of. The quantum lower bound follows immediately from D(P) · Q0(P)2

(Theorem 2.7.5) and D(P) 2 ­( N ). Now consider the property \the graph
contains a star", wherea star is a node that has edgesto all other nodes. This
property correspondsto a 2-level tree, wherethe ¯rst level is an OR of n subtrees,
and each subtree is an AND of n ¡ 1 variables. The n ¡ 1 variables in the i th
subtreecorrespond to the n ¡ 1 edges(i; j ) for j 6= i . The i th subtreeis 1 i® the
i th node is the center of a star, so the root of the tree is 1 i® the graph contains
a star. Now we can show Q0(P) 2 O(N 3=4) and R2(P) 2 ­( N ) analogouslyto
Theorem2.7.8. 2

Finally, for the bounded-error casewe have quadratic gaps between quan-
tum and classical: the property \the graph has at least one edge" has Q2(P) 2
O(

p
N ) = O(n) by Grover's quantum search algorithm. Combining the results

that D(P) 2 ­( N ) for all P and D(f ) 2 O(Q2(f )4) for all monotonef (Theo-
rem 2.5.12),we alsoobtain a (probably non-optimal) lower bound for this case:

2.7.12. Theorem (BCWZ [43]). For all monotonegraphproperties P wehave
Q2(P) 2 ­( N 1=4). There is a P suchthat Q2(P) 2 O(

p
N ) and R2(P) 2 ­( N ) .

2.8 Summary

In this chapter we analyzedthe quantum query complexity of total Booleanfunc-
tions. Query complexity measuresthe number of queriesto inputs bits that an
algorithm needs.This model is interesting becausemost existing quantum algo-
rithms depend on queriesin someform or other. We used QE (f ), Q0(f ), and
Q2(f ) for the optimal query complexity of exact, zero-error,and bounded-error
quantum algorithms for f , respectively. We showed how degreesof polynomials
for f give strong lower boundson quantum query complexity:

² QE (f ) ¸
deg(f )

2

² Q0(f ) ¸
deg0(f )

2

² Q2(f ) ¸
gdeg(f )

2

The main consequenceis that for all total functions, quantum query complexity
can be at most polynomially lower than classicaldeterministic query complexity:
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² D(f ) 2 O(Q0(f )4)

² D(f ) 2 O(Q2(f )6)

This contrasts sharply with the caseof promise functions (e.g., Deutsch-Jozsa,
Simon, Shor's period-¯nding), wherequantum computerssometimesrequire ex-
ponentially fewer queries than classicalones. We conjecture that our general
bounds are not tight. The largest gaps known between D(f ) on the one hand
and Q0(f ) and Q2(f ) are both only quadratic. We sharpened the bounds for
various special classesof functions.



Chapter 3

Bounds for Quan tum Search

This chapter is basedon the papers

² H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Boundsfor Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS,
pages358{368,1999.

² H. Buhrman and R. de Wolf. A Lower Bound for Quantum Search of an
OrderedList. Information ProcessingLetters, 70(5):205{209,1999.

3.1 In tro duction

Searching is something which computers have to do a lot and it is clearly of
great interest to know how fast a quantum computer can search under various
circumstances.Foremostamongthosecircumstancesis the issueof whether the
search space(sometimescalled the \database") is orderedor unordered. In this
chapter we will considerthe quantum complexity of both kinds of search, starting
with the unorderedcase.

Three di®erent parameters are of interest when searching some unordered
space:

² N : the sizeof the search space

² t: the number of solutions in the search space

² " : the allowed probability of error

The algorithm may or may not know the number of solutions t. Given these
parameters,we want to know how fast a quantum computer can search the N -
element spaceand ¯nd oneof the solutionswith failure probability at most " . As
in the previouschapters, we will abstract \time complexity" to \query complex-
it y" (in the caseof search thesewill usually cometo the sameanyway). A query

53
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is basicallya \lo ok-up" in the search space,the examination of an element of the
space| with the crucial property that a quantum look-up can examineseveral
di®erent elements in superposition.

We will useT = T(N; t; " ) to denote the minimal number of queriesneeded
for the parametersN; t; " in the casewhere the quantum search algorithm does
not know t. We will add superscript `k' for the casewhere the exact number
of solutions t is known to the algorithm. The main result about the complexity
of unordered search is of courseGrover's algorithm (Section 1.7), which shows
that T(N; t; 1=2) 2 O(

p
N=t). Moreover, if the algorithm knows the number t of

solutions, then the exact versionof Grover's algorithm implies even T k(N; t; 0) 2
O(

p
N=t). Both boundswereprovento beoptimal by variouspeople[25, 30, 167].

Furthermore, our Proposition 2.6.5 in Chapter 2 implies that if t is unknown
and we do not want any error (" = 0), then the algorithm needsN queries:
T(N; t; 0) = N . Henceallowing no error probability whatsoever wipes out all
potential speed-upa®ordedby quantum computing.

But what about the case in between " = 1=2 and " = 0? Prior to the
work presented here,no good lower boundswereknown on quantum search with
very small but non-zero error probability " . By standard techniques, we can
repeat Grover's algorithm O(log(1=")) many times and reduce the error to " ,
which shows that T(N; t; " ) 2 O(

p
N=t log(1=")). However, there is no a priori

reasonto believe that this method of error-reduction is optimal, and there might
well be a quantum method that tremendouslyboosts the successprobability in
quantum search at a very small cost. In Section3.2 we will prove tight bounds
on T(N; t; " ), showing, roughly speaking,that the error in quantum search canbe
reducedslightly better than by the classicalrepetition technique, but not much
better.

Our lower boundson error-reduction in quantum search algorithms alsoimply
lower boundson generalerror-reduction: any generalquantum method to boost
the successprobability of a given bounded-erroralgorithm (quantum or classical)
to 1¡ " needs­(log (1=")) repetitions of the algorithm in the worst caseto reduce
the error to " . This is at most a constant factor better than classicalsuccess
ampli¯cation, which shows that there areno generalGrover-type quantum speed-
ups for reducing the error probability of a given algorithm.

Finally, in Section3.4we examinethe caseof searching an N -element list that
is ordered accordingto somekey-¯eld of the elements. Classically, we can search
such a list with only logN queriesusingbinary search (each query can e®ectively
halve the relevant part of the list: looking at the key of the middle element of the
list tells you whether the item you are searching for is in the ¯rst or the second
half of the list); logN is also the classicallower bound, even in the bounded-
error case.How much better can we do on a quantum computer? We show that
a quantum computer cannot improve on classicalbinary search algorithms by
much more than a square-root: we prove a lower bound of ­(

p
logN =loglogN )

queriesfor bounded-errorquantum search in this setting. Our lower bound was
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the ¯rst signi¯cant lower bound for quantum orderedsearch that appeared(it ¯rst
appearedon the quant-ph archive in November 1998in [46]). It hassubsequently
beenimproved by meansof di®erent proof techniquesto (log N )=2loglogN [69],
then to (log N )=12¡ O(1) [8], and then to (log N )=(¼loge) ¡ O(1) [93]. Thus at
most a linear speed-upis possibleover classicalcomputers. Such a linear quantum
speed-upis indeed possible: an upper bound of 0:53logN can be achieved [70]
(see[93] for a slightly worsebut more intuitiv e algorithm).

3.2 Tigh t Bounds for Unordered Search

To restatethe unorderedsearch problem: wehavean N -element search spacex =
(x1; : : : ; xN ) that we can only accessby meansof queries. A query corresponds
to the unitary transformation that maps ji; bi ! ji; b© x i i . The aim is to ¯nd
an i such that x i = 1. Such an i is a called a solution. We assumethe space
contains (at least) t solutions,and useT(N; t; " ) to denotethe minimal numbers
of queriesthat a quantum algorithm needsin order to ¯nd a solution in this space
with probability at least 1 ¡ " .

In this section we prove tight bounds on T(N; t; " ). We ¯rst considerlower
boundson T(N; t; " ). The main idea is the following. It will be convenient for us
to analyzethe quantum complexity of the ORN -function under the promisethat
the number of solutions is either 0 or at least t. Clearly, searching for a solution
is at least as hard as the ORN -function, so a lower bound for ORN givesa lower
bound for search. By Lemma 2.4.1, the acceptanceprobability of a quantum
computer with T queries that computes the ORN with error probability · "
(under the promisethat there are either 0 or at least t solutions) can be written
as an N -variate multilinear polynomial P(x) of degree· 2T. This polynomial
has the properties that

P(~0) = 0
1 ¡ " · P(x) · 1 whenever jxj 2 [t; N ]

Sincewe can always test whether we actually found a solution at the expenseof
one more query, we can assumethe algorithm always gives the right answer `no
solutions' if the input contains only 0s, hencethe property P(0) = 0. However,
our results remain una®ectedup to constant factors if we alsoallow a small error
here(i.e., 0 · P(0) · " ).

By symmetrizing (Lemma 2.2.2), P can be reducedto a single-variate poly-
nomial s of degreed · 2T with the following properties:

s(0) = 0
1 ¡ " · s(z) · 1 for all integersz 2 [t; N ]

We will prove a lower bound on " in terms of d, N , and t. Sinced · 2T, this will
imply a lower bound on " in terms of T; N; t. Equivalently, it will imply a lower
bound on T in terms of N; t; " .
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Our proof usesthree results about polynomials. The ¯rst is by Coppersmith
andRivlin [58, p. 980]andgivesa generalbound for polynomialsthat arebounded
by 1 at integer points:

3.2.1. Theorem (Coppersmith & Rivlin [58]). Every polynomial p of de-
gree d that hasabsolutevalue

jp(z)j · 1 for all integersz 2 [0; n];

satis¯es
jp(z)j < aebd2=n for all real z 2 [0; n];

where a;b > 0 are universal constants. (No explicit valuesfor a and b are given
in [58].)

The second two tools concern the Chebyshev polynomials Td, de¯ned as
in [143]:

Td(z) =
1
2

µ ³
z +

p
z2 ¡ 1

´ d
+

³
z ¡

p
z2 ¡ 1

´ d
¶

:

Td has degreed and its absolutevalue jTd(z)j is boundedby 1 if z 2 [¡ 1; 1]. On
the interval [1; 1 ), Td exceedsall others polynomials with those two properties
([143, p.108]and [136, Fact 2]):

3.2.2. Theorem. If q is a polynomial of degree d such that jq(z)j · 1 for all
z 2 [¡ 1; 1] then jq(z)j · jTd(z)j for all z ¸ 1.

Paturi ([136, beforeFact 2] and personalcommunication) proved

3.2.3. Lemma (Paturi [136]). Td(1 + ¹ ) · e2d
p

2¹ + ¹ 2 for all ¹ ¸ 0.

Pro of. For z = 1 + ¹ : Td(z) · (z +
p

z2 ¡ 1)d = (1 + ¹ +
p

2¹ + ¹ 2)d ·

(1 + 2
p

2¹ + ¹ 2)d · e2d
p

2¹ + ¹ 2
(using that 1 + x · ex for all real x). 2

Now we can prove our lower bound on " in terms of d (and N and t):

3.2.4. Theorem (BCWZ [43]). Let 1 · t < N be an integer. Every polyno-
mial s of degree d · N ¡ t suchthat s(0) = 0 and 1¡ " · s(z) · 1 for all integers
z 2 [t; N ] has

" ¸
1
a

e¡ (bd2=(N ¡ t)) ¡ 4d
p

tN =(N ¡ t)2
;

where a;b are as in Theorem 3.2.1.
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Pro of. Every polynomial s satisfying s(0) = 0 and s(z) = 1 for all integers
z 2 [t; N ] must have degree> N ¡ t, becauses(z) ¡ 1 has at least N ¡ t + 1
zeroes. Sincethe s in this theorem has degreed · N ¡ t, we have " > 0 (and
hencewe can divide by " later on). Considerthe polynomial p(z) = 1¡ s(N ¡ z).
It hasdegreed and

0 · p(z) · " for all integersz 2 [0; N ¡ t]
p(N ) = 1

Applying Theorem 3.2.1 to p=" (which is bounded by 1 at integer points z 2
[0; N ¡ t]) with n = N ¡ t we obtain:

jp(z)j < "aebd2=(N ¡ t) for all real z 2 [0; N ¡ t]:

Now we rescalep to q(z) = p((z + 1)(N ¡ t)=2) (i.e., the domain [0; N ¡ t] is
transformed to [¡ 1; 1]), which has the following properties:

jq(z)j < "aebd2=(N ¡ t) for all real z 2 [¡ 1; 1]
q(1 + ¹ ) = p(N ) = 1 for ¹ = 2t=(N ¡ t).

Thus q is \small" on all z 2 [¡ 1; 1] and \large" at z = 1 + ¹ . Linking this with
Theorem3.2.2and Lemma 3.2.3we obtain

1 = q(1 + ¹ )

· "aebd2=(N ¡ t) jTd(1 + ¹ )j

· "aebd2=(N ¡ t)e2d
p

2¹ + ¹ 2

= "aebd2=(N ¡ t)+2 d
p

4t=(N ¡ t )+4 t2=(N ¡ t)2

= "aebd2=(N ¡ t)+4 d
p

tN =(N ¡ t)2
:

Rearranginggivesthe bound. 2

Note that if T > N ¡ t then wecanachieve " = 0 by just checking an arbitrary
set of T elements. Sincethere are t solutions, this set must contain at least one
solution. Conversely, it follows from Proposition 2.6.5that if T · N ¡ t, then we
must have " > 0. Sincea T-query quantum search algorithm inducesa degree-d
polynomial s with the properties mentioned in Theorem 3.2.4 and d · 2T, we
obtain the following bound for quantum search under the promise:

3.2.5. Theorem (BCWZ [43]). Under the promise that the number of solu-
tions is at least t, every quantum search algorithm that usesT · N ¡ t queries
haserror probability

" 2 ­
³

e¡ (4bT2=(N ¡ t)) ¡ 8T
p

tN =(N ¡ t)2
´

:
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This theorem implies a lower bound on T in terms of N , t, and ". To give
a tight characterization of the relations between T, N , t and ", we need the
following upper bound on T for the caset = 1:

3.2.6. Theorem (BCWZ [43]). For every" > 0 there existsa quantumsearch

algorithm with error probability · " and O
³ p

N log(1=")
´

queries.

Pro of. Set t0 = dlog(1=")e. Considerthe following algorithm:

1. Apply the exact quantum search algorithm for the valuest = 1; : : : ; t0. One
such application takesO(

p
N=t) queries.

2. If no solution hasbeenfound, then apply t0 ordinary Grover searches,each
with O(

p
N=t0) queries.

3. Output a solution if onehasbeenfound, otherwiseoutput `no solutions'.

The query complexity of this algorithm is boundedby

t0X

t=1

O

Ãr
N
t

!

+ t0O

Ãr
N
t0

!

= O
³ p

N log(1=")
´

:

If the real number of solutions was in f 1; : : : ; t0g, then a solution will be found
with certainty in step 1. If the real number of solutions was > t0, then each of
the searches in step 2 can be made to have error probability · 1=2, so we have
total error probability at most (1=2)t0 · " . 2

The main theorem of this section tightly characterizesthe various trade-o®s
between the size of the search spaceN , the promise t, the error probability " ,
and the required number of queries(we needsomemild conditions on t and " to
make it all work):

3.2.7. Theorem (BCWZ [43]). Let N > 0, 1 · t · 0:9N , " ¸ 2¡ N . Let
T = T(N; t; " ) be the optimal number of queriesa quantum computer needs to
search with error · " through an unordered N -element space that contains at
least t solutions. Then

log(1=") 2 £

Ã
T2

N
+ T

r
t
N

!

:

Pro of. From Theorem 3.2.5 we obtain log(1=") 2 O
³

T2=N + T
p

t=N
´

: To

prove a lower bound on log(1=") we distinguish two cases.
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Case 1: T ¸
p

tN . By Theorem 3.2.6, we can achieve error · " using
Tu 2 O(

p
N log(1=")) queries.Now (leaving out someconstant factors):

log(1=") ¸
T2

u

N
¸

T2

N
=

1
2

µ
T2

N
+ T

T
N

¶
¸

1
2

Ã
T2

N
+ T

r
t
N

!

:

Case 2: T <
p

tN . We can achieve error · 1=2 by using ordinary Grover
search with O(

p
N=t) queriesand then classicallyamplifying this to error · "

usingO(log(1=")) repetitions. This takesTu 2 O(
p

N=t log(1=")) queriesin total.
Now:

log(1=") ¸ Tu

r
t
N

¸ T

r
t
N

=
1
2

Ã

T

r
t
N

+ T

r
t
N

!

¸
1
2

Ã
T2

N
+ T

r
t
N

!

:

2

Ignoring constant factors, the theoremcan be written as

log(1=") =
T2

N
+ T

r
t
N

:

Viewing this as a quadratic equation in T, we can solve for T and obtain (still
ignoring constant factors)

T(N; t; " ) =
p

N

p
t + 4log(1=") ¡

p
t

2
:

We note someinteresting consequencesof this generaltheorem:

² T(N; t; 1=2) 2 £(
p

N=t)
This was ¯rst proven in [30].

² T(N; 1; ") 2 £(
p

N log(1="))
This is slightly better than classicalampli¯cation of Grover's algorithm
(which would take

p
N log(1=") queries). It also implies that no quantum

search algorithm with O(
p

N ) queriescan achieve " 2 o(1).

² T(N; t; " ) 2 £(
p

N=t log(1=")) if t À log(1=")
This shows that if t is large relative to log(1="), then classical ampli¯cation
is optimal. We will elaborate further on this in the next section.

² T(N; t; 2¡ N ) 2 £( N )
If we want exponentially small error probability " = 2¡ N , then we might as
well run a classicalalgorithm that queriesall N elements. This alsojusti¯es
the restriction " ¸ 2¡ N of Theorem3.2.7: if wewant " · 2¡ N then quantum
search is not signi¯cantly faster than classicalsearch.
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3.3 Application to Success Ampli¯cation

Our lower bounds on error-reduction in quantum search algorithms have some
negative consequencesfor error-reduction in general. Consider the caseof an
algorithm that has somesmall one-sidedsuccessprobability p that we want to
improve. Weassumewearegiventhe initial algorithm asa \black-box", which we
cannot look into. We have to do this to make the boosting problem interesting,
otherwiseit would be conceivable that a successfulboosting method \op ensup"
the algorithm, ¯nds out which problem it solves,and comesup with a completely
di®erent but error-freealgorithm for the sameproblem.

Classically, we need to repeat the black-box algorithm about 1=p times to
boost the successprobability to, say, 1/2. In the quantum case,amplitude am-
pli¯cation achievesthe samegoal quadratically faster: a quantum booster needs
only about 1=

p
p \quantum repetitions" of the algorithm to boost the success

probability to 1/2. Now suppose we want to go from successprobability 1/2
to 1 ¡ " . Classically this would require about log(1=") repetitions of the error-
1/2 algorithm, which is the best one can do in general. The classicalbooster is
basically searching for a successfulrun of the algorithm (which will occur with
probability 1 ¡ " if we run the algorithm O(log(1=")) times independently, i.e.,
if we search among O(log(1=")) di®erent runs). Accordingly, an analogy with
Grover's search algorithm suggeststhat maybe a quantum booster would need
only O(

p
log(1=")) repetitions of the algorithm. A quantum booster would be

given such an algorithm asa unitary transformation A that it can apply asoften
as it wants. If the booster would needT repetitions of the algorithm, it would
look like B = UT AUT ¡ 1A : : : AU0, wherethe Uj are unitary transformations that
do not depend on A. An appropriate measurement of the ¯nal state B j~0i would
then give the output of the booster. A quantum boostercould indeedapply some
Grover-type amplitude ampli¯cation to A, but this would introduce an error of
its own, which may outweigh the improvement of successprobability achieved by
amplitude ampli¯cation.

Somewhatdisappointingly, we prove that no quantum booster can work sig-
ni¯cantly better than a classicalbooster: like the classicalbooster, a quantum
booster needsabout log(1=") repetitions of the algorithm in the worst caseto
reducethe error to " .

3.3.1. Theorem (BCWZ [43]). A general quantummethod that boostsany al-
gorithm of successprobability 1=2 to successprobability 1 ¡ " , needs to run the
algorithm ­(log (1=")) times in the worst case.

Pro of. Considerthe unorderedsearch problemwith parametersN and t = N=2,
chosensuch that t À log(1="). Grover's algorithm (not knowing t) can solve
this problem with error probability · 1=2 using O(

p
N=t) = O(1) queries. Now

supposewehavea generalquantum booster,which boostsany 1/2-error algorithm
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to successprobability 1¡ " usingat most T repetitions of the algorithm. Applying
this to Grover's algorithm gives a solution to the search problem with T ¢O(1)
queriesand error probability · " . However, we know from the previous section
that T(N; N=2; ") 2 ­(log (1=")), henceT 2 ­(log (1=")). 2

We focusedon one-sidederror algorithms here, but similar negative results
hold for boosting a given zero-erroror bounded-erroralgorithm: there is no gen-
eral quantum way to boost successprobability that is signi¯cantly (= more than
a constant factor) better than classical.

3.4 Lower Bound for Ordered Searching

In this sectionweprovea lower bound on searching a spacethat is ordered accord-
ing to somekey value. We model the search spaceas an input x = (x1; : : : ; xN ),
which wecanquery in the usualway. Welet Ox denotethe unitary transformation
corresponding to a query:

Ox : jj ; b;zi ! jj ; b© x j ; zi :

Here z indicates the workspaceof the algorithm, which is not a®ectedby the
query, and x j is the result of a comparison,indicating whether the j th item in
the spacehas a key-value smaller or equal to the value we are looking for. We
assumethe underlying search spaceis orderedin increasingorder, meaningthat
x consistsof a sequenceof i 1s followed by 0s:

x = (1; : : : ; 1| {z }
i

; 0; : : : ; 0| {z }
N ¡ i

):

The goal is to ¯nd the number i , which we will call the step of x, using as few
queriesaspossible.This i is the point in the list wherethe looked-for item resides
(i may be 0, in which caseall items in the list happen to be larger than the item
we are looking for).

3.4.1 In tuition

Beforeplunging into the technicalities of the proof let us brie°y sketch the main
idea, ignoring the error probabilities for now.

Supposewe have a quantum algorithm S that usesT queriesto determinethe
step i of any orderedinput x. We can useS to retrieve the completecontents of
a given arbitrary (non-ordered)input y 2 f 0; 1glog N , as follows. The sequenceof
bits in y is the binary representation of somenumber i 2 [0; N ¡ 1]. De¯ne x as
the orderedinput of sizeN wherethe step occursat position i : x j = 1 for j · i
and x j = 0 for j > i . Running S on x would give us i , and hencethe complete
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y. Unfortunately we do not have the possibility to query x; we can only query y.
However, we can simulate an x-query using y-queries. An x-query is basically a
mapping from a given number j to the bit x j , wherex j = 1 i® j · i . Both j and
i are logN -bit numbers, and the leftmost (= most signi¯cant) bit where their
binary representations di®erdetermineswhether j · i . Using Grover's algorithm
we can ¯nd this bit using roughly

p
logN queriesto y and hencelearn x j . Thus

we can simulate an x-query by
p

logN y-queries.
Now if we replaceeach of the T x-queriesin S by such a simulation, we obtain

a network with roughly T ¢
p

logN y-queriesthat computesi (and hencelearn
the whole y). Knowing y would for instanceenableus to compute PARITY( y)
(i.e., whether the number of 1s in y is odd), for which Corollary 2.6.7 gives a
lower bound of (log N )=2 y-queries.Hencewe must have

T ¢
p

logN ¸
logN

2
;

and the lower bound on T follows. The following technical sectionsmake this
idea precise.

3.4.2 Simulating queries to an ordered input

Our lower bound proof usesthree technical lemmas,which together show that
we can approximately simulate a query to an ordered input x with step at i ,
using roughly

p
logN queriesto an input y of logN bits that form the binary

representation of i . We prove thesethree lemmas¯rst.
Sincex j = 1 i® j · i , we can simulate an x-query if we are able to determine

whether j · i for given j . By a result of DÄurr and H¿yer [65], there is a bounded-
error quantum algorithm that can ¯nd the minimum element of a list of logN
items using O(

p
logN ) queries. We can use this to ¯nd the leftmost bit where

the binary representations of i and j di®er,as follows: construct a logN -element
list z, de¯ning zk = k if i and j di®er in their kth bit and zk = logN + 1 if those
kth bits are the same. Now the index k for which zk is minimal, is the index of
the leftmost bit wherei and j di®er. Thus we candeterminewhether j · i , using
O(

p
logN ) y-queries.By standard techniqueswe canreducethe error probability

to " = 1=logN by repeating the algorithm O(log(1=")) = O(log logN ) times. We
may assumewithout lossof generality that this computation doesnot a®ectthe
input j and doesnot useintermediate measurements. Thus we obtain:

3.4.1. Lemma. There is a quantumalgorithm A that makesO(
p

logN loglogN )
queriesto a logN -bit input y, suchthat if y representsthe number i 2 f 0; : : : ; N ¡
1g, then for every j 2 [0; N ¡ 1], A maps

jj ;~0i ! ®jj ; x j ij Vij i + ¯ jj ; x j ij V 0
ij i ;

where x j = 1 if j · i and x j = 0 if j > i , j¯ j2 · " = 1=logN , and Vij and V 0
ij

are unit-length vectors that depend on i and j .
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Cleaning up by rev ersing the computation

If wewant to simulate an x-query, wemust makesurethat the simulation doesnot
leave behind usednon-zeroworkspace,sincethis may destroy interferencelater
on. Thus we must somehow \clean up" the vectors jVij i and jV 0

ij i introducedby
the previous lemma. We can in fact do this at a small overhead(a factor of 2 in
the time and number of queries). The idea of the proof is familiar from classical
reversiblecomputing:

1. do the original computation A

2. copy the answer bit to a safeplace(a fresh new qubit)

3. reversethe computation (i.e., apply A ¡ 1) to return to the cleaninitial state
plus the copy of the answer bit

If the computation is exact, then the answer bit is in fact a classicalbit (j0i or j1i )
and this schemeworks perfectly. If the computation hasa small error probability,
then part of the state after step (1) will have answer bit j0i and part will have
answer bit j1i . Thus in this casestep (2) will introduce some entanglement
betweenthe new copy of the answer bit and the rest of the state, and we cannot
reverseit exactly. However, if most of the amplitude is concentrated on oneof the
two answers, then the answer bit is approximatelyclassical,and step (3) will still
return the state to approximatelythe cleaninitial state. This technique is by now
standard in quantum computing, and can be found for instancein [25, 54, 42].

Lemma 3.4.2¯rst shows that the above technique works when applying A to
basisstates,Lemma 3.4.3 then extendsthis by showing that it also works when
applying A to superpositions of basisstates.

3.4.2. Lemma. SupposeA is a quantumalgorithm that usesT y-queriesand for
every j 2 [0; N ¡ 1] maps

jj ;~0i ! ®jj ; x j ij Vij i + ¯ jj ; x j ij V 0
ij i ;

where j¯ j2 · " and Vij and V 0
ij haveunit length.

Then there existsa quantumalgorithm A0 that uses2T y-queriesand maps

jj ; b;~0i ! jj ; b© x j ;~0i + jj ij Wij bi ;

where k jWij bi k·
p

2", for every i; j , and b2 f 0; 1g.

Pro of. For easeof notation we assumeb follows the workspace~0 instead of
precedingit. Thus we can write

Ajj ;~0; bi = ®jj ; x j ij Vij ij bi + ¯ jj ; x j ij V 0
ij ij bi :



64 Chapter 3. Boundsfor Quantum Search

Applying a controlled-not operation that XORs the answer bit into b, we get

®jj ; x j ij Vij ij b© x j i + ¯ jj ; x j ij V 0
ij ij b© x j i =

¡
®jj ; x j ij Vij i + ¯ jj ; x j ij V 0

ij i
¢

jb© x j i + ¯ jj ; x j ij V 0
ij ij b© x j i ¡ ¯ jj ; x j ij V 0

ij ij b© x j i :

Applying A ¡ 1 ­ I gives

jj ;~0ij b© x j i + (A ¡ 1 ­ I )
¡
¯ jj ; x j ij V 0

ij ij b© x j i ¡ ¯ jj ; x j ij V 0
ij ij b© x j i

¢
:

BecauseA and hencealsoA ¡ 1 do not changej , this superposition can be written
as

jj ;~0; b© x j i + jj ij Wij bi ;

for somevector jWij bi . Now

kjWij bi k = k jj ij Wij bi k (3.1)

= k(A ¡ 1 ­ I )
¡
¯ jj ; x j ij V 0

ij ij b© x j i ¡ ¯ jj ; x j ij V 0
ij ij b© x j i

¢
k (3.2)

= k¯ jj ; x j ij V 0
ij ij b© x j i ¡ ¯ jj ; x j ij V 0

ij ij b© x j i k (3.3)

=
p

j¯ j2 + j ¡ ¯ j2 (3.4)

·
p

2": (3.5)

Here (3.1) holds becausejj i hasnorm 1. Equality between(3.2) and (3.3) holds
becauseA ¡ 1 ­ I is unitary and hencepreserves norm. Equality between (3.3)
and (3.4) holds becausethe two vectors jj ; x j ij V 0

ij ij b© x j i and jj ; x j ij V 0
ij ij b© x j i

in (3.3) have norm 1 and are orthogonal (they di®er in the last bit).
Accordingly, the quantum algorithm A0 that ¯rst applies A, then XORs the

answer-bit into b, and then appliesA ¡ 1 satis¯es the lemma. 2

Wehavenow shown that wecan\cleanly" simulate Ox on a basisstate jj ; b;~0i .
It remainsto show that the simulation alsoworks well on superpositions of basis
states. The next lemma provesthis, using an idea from [54].

3.4.3. Lemma. Let Ox and fOx be unitary transformationssuchthat

Ox : jj ; b;~0i ! jj ; b© x j ;~0i
fOx : jj ; b;~0i ! jj ; b© x j ;~0i + jj ij Wij bi

If k jWij bi k· " for every i; j ; b and jÁi =
P

j ;b ®j bjj ; b;~0i has norm 1, then

kOx jÁi ¡ fOx jÁi k· "
p

2.
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Pro of.

kOx jÁi ¡ fOx jÁi k = k
X

j ;b

®j bjj ij Wij bi k (3.6)

= k
X

j

®j 0jj ij Wij 0i +
X

j

®j 1jj ij Wij 1i k (3.7)

· k
X

j

®j 0jj ij Wij 0i k + k
X

j

®j 1jj ij Wij 1i k (3.8)

=
s X

j

j®j 0j2 k jj ij Wij 0i k2 +
s X

j

j®j 1j2 k jj ij Wij 1i k2 (3.9)

· " ¢
s X

j

j®j 0j2 + " ¢
s X

j

j®j 1j2 (3.10)

· "
p

2: (3.11)

The stepfrom (3.7) to (3.8) is the triangle inequality. The step from (3.8) to (3.9)
holdsbecausethe statesjj ij Wij bi in

P
j ®j bjj ij Wij bi form an orthogonal set. The

last inequality holds because
P

j j®j 0j2 +
P

j j®j 1j2 = 1 and
p

a +
p

1 ¡ a ·
p

2
for all a 2 [0; 1]. 2

3.4.3 Lower bound for ordered search

Using the above technicalities, we can now formalize the intuitiv e proof:

3.4.4. Theorem (Buhrman & de Wolf [47]). A bounded-error quantumal-
gorithm for searching an ordered input of N elementsneeds ­(

p
logN =loglogN )

queries.

Pro of. Suppose we have a bounded-error algorithm S for search that uses
T queriesto ¯nd the step i hidden in an ordered input x. Since logN queries
are su±cient for this (classicalbinary search), we can assumeT · logN . We
will show how we can get from S to a network eS that determines the whole
contents of an arbitrary input y of logN bits with high probability, using only
T ¢O(

p
logN loglogN ) queriesto y. This would allow us to computePARITY( y)

with small error probability. Sincewe have a (log N )=2 lower bound for the latter
(Corollary 2.6.7), we obtain

T ¢O(
p

logN loglogN ) ¸
logN

2
;

from which the theoremfollows.
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Solet y bean arbitrary logN -bit string. It represents somei 2 f 0; : : : ; N ¡ 1g.
Let x = (x1; : : : ; xN ) be the orderedinput with step at i , sox j = 1 i® j · i . The
algorithm S, when allowed to make queriesto Ox , outputs the number i with
high probability. Ox maps

jj ; b;~0i ! jj ; b© x j ;~0i :

Sincex j = 1 i® j · i , Lemmas3.4.1 and 3.4.2 imply that there is a quantum
algorithm fOx that usesO(

p
logN loglogN ) y-queriesand maps

jj ; b;~0i ! jj ; b© x j ;~0i + jj ij Wij bi ;

where k jWij bi k· ´ =logN for all i; j ; b, for some small ¯xed ´ of our choice
(´ = 0:1 su±ces).

Let eS be obtained from S by replacing all T Ox -queriesby fOx -queries. Note
that eS contains T ¢O(

p
logN loglogN ) queriesto y. Considerthe way eS acts on

initial state j~0i , comparedto S. Each replacement of Ox by fOx introducesan error,
but each of theseerrorsis at most ´

p
2=logN in Euclideannorm by Lemma3.4.3.

Using the triangle inequality and the unitarit y of the transformationsin S and eS,
it is easyto show that theseT errors add at most linearly (seefor instance[25,
p.1515]). Hencethe ¯nal statesafter S and eS will be closetogether:

kSj~0i ¡ eSj~0i k· T´
p

2=logN · ´
p

2:

Since observing the ¯nal state Sj~0i yields the number i with high probability,
observing eSj~0i will alsoyield i with high probability. Thus the network eS allows
us to learn i and hencethe whole input y. 2

3.5 Summary

In this chapter we examinedthe quantum complexity of searching a spaceof N
elements. This spacemay be either ordered or unordered. For the unordered
casewe derived tight bounds on the number of queriesrequired to search the
spacedependingon its number t of solutionsand the allowed error probability " .
Theseboundsbasicallyshow that the error probability of quantum search can be
reducedslightly better than the naive classicalmethod that just repeatsGrover's
algorithm many times. Secondly, our lower boundsfor quantum search imply that
any quantum method that reducesthe error of arbitrary algorithms to · " needs
to repeat the algorithm about log(1=") many times, which is the samebound as
for the classicalrepetition-method up to constant factors. Thirdly , we proved a
lower bound of roughly

p
logN querieson the quantum complexity of searching

an ordered N -element space.This lower bound has subsequently beenimproved
by others to nearly logN queries,which shows that quantum computersare not
signi¯cantly better for this problem than classicalbinary search.



Chapter 4

Elemen t Distinctness and Related
Problems

This chapter is basedon the paper

² H. Buhrman, Ch. DÄurr, M. Heiligman, P. H¿yer, F. Magniez, M. Santha,
and R. deWolf. Quantum Algorithms for Element Distinctness. In Proceed-
ings of 16th IEEE Annual Conference on Computational Complexity(CCC
2001),pages131{137,2001.

4.1 In tro duction

As we saw in Chapter 1, only a few good quantum algorithms are known to
date, the two main examplesbeingShor'sfactoring algorithm and Grover's search
algorithm. Whereasthe ¯rst sofar hasremaineda seminalbut somewhatisolated
result, the secondhas been applied as a building block in quite a few other
quantum algorithms.

One of the earliest applications of Grover's algorithm was the algorithm of
Brassard,H¿yer, and Tapp [36] for ¯nding a collision in a 2-to-1 function f .1 A
function f is 2-to-1 if every element in the rangeof f hasexactly 2 pre-images.A
collision is a pair of distinct elements x; y such that f (x) = f (y). Supposethe size
of f 's domain is N . For a classicalrandomizedalgorithm, it can be shown that
£(

p
N ) evaluations of the function are necessaryand su±cient to ¯nd a collision.

The quantum algorithm of [36] ¯nds a collision using O(N 1=3) evaluations of f
(and canbe madeto do this with certainty). No non-trivial quantum lower bound
is known for this problem. A notion related to collisionsis that of a claw. A claw
in functions f and g is a pair (x; y) such that f (x) = g(y). If f and g are

1Note that we are using f here not as a Boolean function that we want to compute (in
contrast to previous chapters where f was usually something like OR or PARITY), but as the
name of the input of the problem that we want solve.

67
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permutations on [N ] = f 1; : : : ; N g, then we can reduce the problem of claw-
¯nding to collision-¯nding for 2-to-1 functions: the function h on [2N ] de¯ned
by h(i ) = f (i ) and h(i + N ) = g(i ) for i 2 [N ], is a 2-to-1 function. Thus the
algorithm of Brassard,H¿yer, and Tapp [36] can also¯nd a claw in such f and g
using O(N 1=3) evaluations of f and g.

In this paper we consider the quantum complexity of collision-¯nding and
claw-¯nding with and without restrictions on the functions f and g. In Section4.2
we considerthe situation wheref : [N ] ! Z and g : [M ] ! Z are arbitrary. Our
aim is to ¯nd a claw betweenf and g, if oneexists. For now, let usassumeN = M
(in the body of the chapter we treat the generalcase). The complexity measure
we use is the number of comparisons between elements. That is, we assumea
total order on Z and our only way to accessf and g is by comparing f (x) with
f (y), g(x) with g(y), or f (x) with g(y), accordingto this total order. The abilit y
to make such comparisonsis weaker than the abilit y to evaluate and actually
obtain the function values f (x) and g(y), becauseif we can obtain the values
f (x) and g(y), we can of coursealsocomparethosetwo values. Accordingly, the
existenceof a quantum algorithm that ¯nds a claw using T comparisonsimplies
the existenceof a quantum algorithm that ¯nds a claw using O(T) function-
evaluations. However, also the lower bounds on the complexity of claw-¯nding
presented here remain essentially the sameif we were to count the number of
function-evaluations instead of comparisons.This shows that it doesnot matter
much for our results whether we count comparisonsor function-evaluations.

A simple yet essentially optimal classical algorithm for this general claw-
¯nding problem is the following. Viewing the valuesof f asa list of N items, we
can sort it using N logN + O(N ) comparisons. Once f is sorted, we can for a
given y 2 [N ] ¯nd an x such that f (x) = g(y) provided such an x exists, using
logN comparisons(by utilizing binary search on f ). Thus exhaustive search on
all y yields an O(N logN ) algorithm for ¯nding a claw with certainty, provided
one exists. This N logN is optimal up to constant factors even for bounded-
error classicalalgorithms, asfollows from the classical­( N logN ) boundsfor the
elementdistinctnessproblem, explained below. In this chapter we show that a
quantum computer can do better: we exhibit a quantum algorithm that ¯nds a
claw with high probability using O(N 3=4 logN ) comparisons. We also prove a
lower bound for this problem of ­( N 1=2) comparisonsfor bounded-errorquantum
algorithms and ­( N ) for exact quantum algorithms.

Our algorithm for claw-¯nding also yields an O(N 3=4 logN ) bounded-error
quantum algorithm for ¯nding a collision for arbitrary functions. Note that de-
ciding if a collision occurs in f is equivalent to deciding whether f maps all x
to distinct elements. This is known as the elementdistinctnessproblem and has
beenwell studied classically, seefor instance[166, 118, 81, 18]. Element distinct-
nessis particularly interesting becauseits classicalcomplexity is related to that
of sorting, which is well known to requireN logN + £( N ) comparisonsclassically.
If we sort f , we can decideelement distinctnessby going through the sorted list
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once,which givesa classicalupper bound of N logN + O(N ) comparisons.Con-
versely, element distinctnessrequires­( N logN ) comparisonsin caseof classical
bounded-erroralgorithms (even in a much stronger model, see[81]), so sorting
and element distinctnessare equally hard for classicalcomputers. On a quantum
computer, the best known upper bound for sorting is roughly 0:53 N logN com-
parisons[70] and it was recently shown that such a linear speed-upis the best
possible:quantum sorting requires­( N logN ) comparisons,even if oneallows a
small probability of error [93]. Accordingly, our O(N 3=4 logN ) quantum upper
bound shows that element distinctness is signi¯cantly easierthan sorting for a
quantum computer, in contrast to the classicalcase.

In Section 4.3, we consider the case where f is ordered (monotone non-
decreasing): f (1) · f (2) · ¢¢¢· f (N ). In this case,the quantum complexity
of claw-¯nding and collision ¯nding drops from O(N 3=4 logN ) to O(N 1=2 logN ).
In Section4.4 we show how to remove the logN factor (replacing it by a near-
constant function) if both f and g areordered. The lower bound for this restricted
caseremains ­( N 1=2). We then, in Section 4.5, give bounds for the number of
edgesa quantum computer needsto query in order to ¯nd a triangle in a given
graph (which, informally, can be viewed as a collision betweenthree nodes).

4.2 Finding Claws if f and g Are not Ordered

We considerthe following problems:

Claw-¯nding problem
Given two functions f : X ! Z and g : Y ! Z , ¯nd a pair (x; y) 2 X £ Y
such that f (x) = g(y).

Collision-¯nding problem
Given a function f : X ! Z , ¯nd two distinct elements x; y 2 X such that
f (x) = f (y).

We assumethat X = [N ] = f 1; : : : ; N g and Y = [M ] = f 1; : : : ; M g with
N · M . We are interested in the number of comparisonsrequired for claw-
¯nding and collision-¯nding. A comparisonbetweenf (x) and f (y) is formalized
as an application of the following unitary transformation:

jx; y; bi ! jx; y; b© [f (x) · f (y)]i ;

where b 2 f 0; 1g and [f (x) · f (y)] denotesthe truth-v alue of the statement
\ f (x) · f (y)". We formalize comparisonsbetweenf (x) and g(y) similarly.

First we consider the most generalcase,where f and g are arbitrary func-
tions. Our claw-¯nding algorithms are instancesof the following genericalgo-
rithm, which is parameterizedby an integer ` · minf N;

p
M g:
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Algorithm Generic claw-¯nder

Apply amplitude ampli¯cation on steps1{4:

1. Selecta random subsetA µ [N ] of size`

2. Selecta random subsetB µ [M ] of size`2

3. Sort the elements in A accordingto their f -value

4. For a speci¯c b 2 B, we can check if there is an a 2 A such that (a;b) is a
claw using classicalbinary search on the sorted versionof A. Combine this
with quantum search on the B-elements to search for a claw in A £ B.

We analyze the comparison-complexity of this algorithm. Steps1 and 2 do
not useany queries.Step 3 just employs classicalsorting and takes` log` + O(`)
comparisons.Step4 takesO(

p
jB j logjAj) = O(` log`) comparisons,sincetesting

if there is an A-element colliding with a given b2 B takesO(log A) comparisons
(via binary search on the sortedA) and the quantum search needsO(

p
jB j) such

tests to ¯nd a B-element that collideswith an element occurring in A, if there is
such a B-element. In total, steps1{4 take O(` log`) comparisons.

If no claws between f and g exist, then this algorithm does not terminate.
Now supposethere is a claw (x; y) 2 X £ Y. Then (x; y) 2 A £ B with probability
(`=N ) ¢(`2=M ), and if indeed(x; y) 2 A £ B, then step 4 will ¯nd this (or some
other) collision with probability at least 1=2 in at most O(` log`) comparisons.
Hencethe overall successprobability of steps1{4 is at least p = `3=2N M , and
the overall amplitude ampli¯cation requiresan expectednumber of O(

p
N M =`3)

iterations of steps1{4. Accordingly, the total expectednumber of comparisonsto

¯nd a claw is O(
q

N M
` log`), provided there is one. In order to minimize the num-

ber of comparisonswe maximize `, subject to the constraint ` · minf N;
p

M g.
This gives upper bounds of O(N 1=2M 1=4 logN ) comparisonsif N · M · N 2,
and O(M 1=2 logN ) if M > N 2.

What about lower bounds for the claw-¯nding problem? We can reducethe
ORM -problem to claw-¯nding as follows. Given an input x 2 f 0; 1gM , we set
N = 1 and de¯ne f (1) = 1 and g(i ) = x i . Then there is a claw between f
and g i® ORM (x) = 1. Thus, if we can ¯nd a claw using c comparisons,we can
decide ORM using 2c queries to x, since two x-queriessu±ce to implement a
comparison. Using the lower bounds QE (ORM ) = M and Q2(ORM ) 2 £(

p
M )

from Chapter 2, this givesan ­( M ) bound for exactquantum claw-¯nding (nearly
matching the classicaldeterministic O(M logN ) upper bound that comesfrom
sorting the ¯rst list and then searching the second),and an ­(

p
M ) bound for

bounded-error quantum claw-¯nding. We thus have establishedthe following
theorem:
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4.2.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the claw-¯nding problemis

² ­( M 1=2) · Q2(Claw) ·
½

O(N 1=2M 1=4 logN ) if N · M · N 2

O(M 1=2 logN ) if M > N 2

² ­( M ) · QE (Claw) · O(M logN ).

The boundsfor the caseM > N 2 and the caseof exact computation are tight
up to the logN term, but the caseM · N 2 is nowherenear tight. In particular,
for N = M the complexity lies somewherebetweenN 1=2 and N 3=4 logN .

Now consider the problem of ¯nding a collision for an arbitrary function
f : [N ] ! Z , i.e., to ¯nd distinct x; y 2 [N ] such that f (x) = f (y). A sim-
ple modi¯cation of the above algorithm for claw-¯nding works ¯ne to ¯nd such
(x; y)-pairs if they exist (put g = f and avoid claws of the form (x; x)), and gives
a bounded-erroralgorithm that ¯nds a collisionusingO(N 3=4 logN ) comparisons.
This algorithm may be viewed as a modi¯cation of the Genericclaw ¯nder with
jAj = ` 2 O(

p
N ) and B = [N ]nA. Note that now the choice of A determines

B, so our algorithm only has to store A and sort it, which meansthat the space
requirements of steps 1{4 are now only O(

p
N logN ) qubits. The overall am-

plitude ampli¯cation requires not more spacethan the algorithm that is being
ampli¯ed, sothe total spacecomplexity of our algorithm is O(

p
N logN ) aswell.

The bestknown lower boundsfollow againvia reductionsfrom the ORN -problem:
given x 2 f 0; 1gN , we de¯ne f : [N + 1] ! f 0; : : : ; N g as f (i ) = i (1 ¡ x i ) and
f (N + 1) = 0. Now ORN (x) = 1 i® f contains a collision.

As mentioned in the introduction, the problemof decidingif there is a collision
is equivalent to the element distinctness(ED) problem, so we have obtained the
following bounds:

4.2.2. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the elementdistinctnessproblemis

² ­( N 1=2) · Q2(ED) · O(N 3=4 logN )

² ­( N ) · QE (ED) · O(N logN ).

In contrast, for classical(exact or bounded-error)algorithms, element distinct-
nessis as hard as sorting and requires £( N logN ) comparisons. The ­( N 1=2)
lower bound on bounded-errorquantum algorithms for element distinctnesswas
improved recently to ­( N 1=2 logN ) in [93].

Collision-¯nding requiresfewer comparisonsif we know that somevaluez 2 Z
occurs at least k times. If we pick a random subset S of cN=k elements of
the domain, for c a small constant like 10, then with high probability (at least
1 ¡ 2¡ ­( c)), S will contain at least two pre-imagesof z. Thus running our al-
gorithm on S will ¯nd a collision with high probability, resulting in complex-
it y O((N=k)3=4 log(N=k)). Also, if f is a 2-to-1 function, we can rederive the
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O(N 1=3 logN ) bound of Brassard,H¿yer, and Tapp [36] by taking ` = N 1=3. This
yields constant successprobability after steps1{4 in the genericalgorithm, and
henceonly O(1) rounds of amplitude ampli¯cation are required. As in the case
of [36], this algorithm can be made exact by using the exact form of amplitude
ampli¯cation (the successprobability can be exactly computed in this case,so
exact amplitude ampli¯cation is applicable).

4.3 Finding Claws if f is Ordered

Now supposethat function f is ordered: f (1) · f (2) · ¢¢¢· f (N ), and that
function g : [M ] ! Z is arbitrary. In this case,given somey 2 [M ], we can
¯nd an x 2 [N ] such that (x; y) is a claw using binary search on f . Thus,
combining this with a quantum search on all y 2 [M ], we obtain the upper bound
of O(

p
M logN ) for ¯nding a claw in f and g. The lower bounds via the OR-

reduction still apply (seealso the next section), hencewe obtain the following
theorem:

4.3.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the claw-¯nding problemwith ordered f is

² ­( M 1=2) · Q2(Claw) · O(M 1=2 logN )

² ­( M ) · QE (Claw) · O(M logN ).

Note that collision-¯nding for an orderedf : [N ] ! Z is equivalent to search-
ing a spaceof N ¡ 1 elements (namely all N ¡ 1 consecutive pairs in the domain
of f ) and hencerequires£(

p
N ) comparisons.

4.4 Finding Claws if both f and g Are Ordered

Now considerthe casewhereboth f and g areordered. Assumefor simplicity that
N = M . Again we get an ­(

p
N ) lower bound via a reduction from the ORN -

problem,asfollows. Givenan ORN -instancex 2 f 0; 1gN , wede¯ne f ; g : [N ] ! Z
by f (i ) = 2i + 1 and g(i ) = 2i + x i for all i 2 [N ]. Then f and g are ordered,
and ORN (x) = 1 if and only if there is a claw betweenf and g. The lower bound
Q2(Claw) 2 ­(

p
N ) follows.

We give a quantum algorithm that solves the problem using O(
p

N clog? (N ))
comparisonsfor someconstant c > 0. The function log?(N ) is de¯ned as the
minimum number of iterated applications of the logarithm function necessaryto
obtain a number lessthan or equal to 1: log?(N ) = minf i ¸ 0 j log(i )(N ) · 1g,
where log(i ) = log±log(i ¡ 1) denotesthe i -fold application of log, and log(0) is the
identit y function. Even though clog? (N ) is exponential in log?(N ), it is still very
small in N , in particular clog? (N ) 2 o(log(i )(N )) for any constant i ¸ 1. Thus we
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replacethe logN in the upper bound of the previoussectionby a near-constant
function.

Our algorithm de¯nes a set of subproblemssuch that the original problem
(f ; g) contains a claw if and only if at least one of the subproblemscontains a
claw. Wethen solve the original problemby running the subproblemsin quantum
parallel and applying amplitude ampli¯cation.

Let r > 0 be an integer. We de¯ne 2
§

N
r

¨
subproblemsas follows.

4.4.1. Definition. Let r > 0 be an integer and f ; g : [N ] ! Z .
For each 0 · i · dN=re ¡ 1, we de¯ne the subproblem(f i ; g0

i ) by letting f i

denote the restriction of f to subdomain [ir + 1; (i + 1)r ], and g0
i the restriction

of g to [j ; j + r ¡ 1] wherej is the minimum j 0 2 [N ] such that g(j 0) ¸ f (ir + 1).
Similarly, for each 0 · j · dN=re ¡ 1, we de¯ne the subproblem(f 0

j ; gj ) by
letting gj denotethe restriction of g to [j r + 1; (j + 1)r ], and f 0

j the restriction of
f to [i; i + r ¡ 1] wherei is the minimum i 0 2 [N ] such that f (i 0) ¸ g(j r + 1).

It is not hard to check that thesesubproblemsall together provide a solution
to the original problem.

4.4.2. Lemma. Let r > 0 be an integer and f ; g : [N ] ! Z . Then (f ; g) contains
a claw if and only if for somei or j in [0; dN=re ¡ 1] the subproblem(f i ; g0

i ) or
(f 0

j ; gj ) contains a claw.

Each of these2
§

N
r

¨
subproblemsis itself an instanceof the claw-¯nding prob-

lem of sizer . By running them all together in quantum parallel and then applying
amplitude ampli¯cation, we obtain our main result.

4.4.3. Theorem (BDHHMSW [45]). There exists a quantum algorithm that
outputs a claw between ordered f and ordered g with probability at least 2=3 pro-
vided one exists, using O(

p
N clog? (N )) comparisons, for someconstant c.

Pro of. Let T(N ) denote the worst-casenumber of comparisonsrequired if f
and g have domain of sizeN . We show that

T(N ) · c0

r
N
r

³
dlog(N + 1)e+ T(r )

´
; (4.1)

for some(small) constant c0. Let 0 · i · dN=re¡ 1 and considerthe subproblem
(f i ; g0

i ). Using at most dlog(N + 1)e + T(r ) comparisons,we can ¯nd a claw in
(f i ; g0

i ) with probability at least 2=3, provided there is one. We do that by using
binary search to ¯nd the minimum j for which g(j ) ¸ f (ir + 1), at the cost of
dlog(N + 1)e comparisons,and then recursively determining if the subproblem
(f i ; g0

i ) contains a claw at the cost of at most T(r ) additional comparisons.There
are2

§
N
r

¨
subproblems,soby applying amplitude ampli¯cation wecan¯nd a claw
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among any one of them with probability at least 2=3, provided there is one, in
the number of comparisonsgiven in equation (4.1).

Take r = dlog2(N )e. SinceT(r ) ¸ ­(
p

r ) = ­(log N ), Equation 4.1 implies

T(N ) · c00

r
N
r

T(r ); (4.2)

for someconstant c00. Furthermore, our choiceof r implies that the depth of the
recursionde¯ned by equation (4.2) is on the order of log?(N ), so unfolding the
recursiongivesthe theorem. 2

4.5 Finding a Triangle in a Graph

Finally we consider a related search problem, which is to ¯nd a triangle in a
labeled graph, provided one exists. Consider again the setting for computing
graph properties of Section 2.7.3. There is an undirected graph G = (V; E) on
jV j = n nodeswith jE j = m edges.There areN =

¡ n
2

¢
edgeslots for the elements

of E, which we can query as in Section2.7.3. The triangle-¯nding problem is the
following:

Triangle-¯nding problem
Given undirected labeledgraph G = (V; E), ¯nd distinct verticesa;b;c 2 V
such that (a;b); (a;c); (b;c) 2 E.

Sincethereare
¡ n

3

¢
< n3 triples a;b;c, and wecandecidewhethera giventriple

is a triangle using 3 queries,we can useGrover's algorithm to ¯nd a triangle in
O(n3=2) queries.Below wegivean algorithm that worksmoree±ciently for sparse
graphs.

Algorithm Triangle-¯nder

Apply amplitude ampli¯cation on steps1{2:

1. Quantum search for an edge(a;b) 2 E amongall
¡ n

2

¢
potential edges.

2. Quantum search for a node c 2 V such that a;b;c is a triangle.

Step 1 takesO(
p

n2=m) queriesand step 2 takesO(
p

n) queries. If there is
a triangle in the graph, then the probability that step 1 ¯nds an edgebelonging
to this speci¯c triangle is £(1 =m). If step 1 indeed ¯nds an edgeof a triangle,
then with probability at least 1/2, step 2 ¯nds a c that completesthe triangle.
Thus the successprobability of steps 1{2 is £(1 =m) and the overall amplitude
ampli¯cation requires O(

p
m) iterations of steps 1{2. The total complexity is
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thus O((
p

n2=m +
p

n)
p

m) = O(n +
p

nm). If G is sparsein the sensethat
m = jE j 2 o(n2), then o(n3=2) queriessu±ce. Of coursefor densegraphs our
algorithm will still require £( n3=2) queries.

We again obtain lower boundsby a reduction from the ORN -problem. Con-
sider an ORN -input x 2 f 0; 1g(n

2) as a graph on n nodes. Let G be the graph
obtained from this by adding an (n + 1)st node and connectingthis to all other n
nodes. Now G has jxj + n edges,and ORN (x) = 1 i® G contains a triangle. This
gives ­( n2) bounds for exact quantum algorithms and bounded-error classical
algorithms, and an ­( n) bound for bounded-errorquantum algorithms. We have
shown:

4.5.1. Theorem (BDHHMSW [45]). If ­( n) · jE j ·
¡ n

2

¢
, then the quantum

query complexity of triangle-¯nding is

² ­( n) · Q2(Triangle) · O(n +
p

nm)

² QE (Triangle) 2 £( n2)

where n = jV j and m = jE j for the input graph G = (V; E).

Note that for graphs with £( n) edges,the bounded-error quantum bound
becomes£( n) queries,whereasthe classicalbound remains£( n2). Thus we have
a quadratic gap for such very sparsegraphs.

4.6 Summary

The claw-¯nding problem is: given functions f and g, ¯nd x; y such that f (x) =
g(y). We gave a quantum algorithm that ¯nds a collision between arbitrary
functions f and g having a domain of size N . The algorithm usesabout N 3=4

comparisons.This implies an N 3=4 algorithm for both the problem of ¯nding a
collision in a single function and for the element distinctnessproblem (which is:
areall elements on a list of N numbersdistinct?). This shows that for a quantum
computer, element distinctness is signi¯cantly easierthan sorting (which takes
­( N logN ) comparisonsclassically as well as quantumly) and contrasts with
the classical case, where both sorting and element distinctness require about
N logN comparisons.The main problem left open by this chapter is to closethe
gap between upper and lower bounds for element distinctness. An interesting
direction could be to take into account simultaneouslytime complexity and space
complexity, as hasbeendonefor classicalalgorithms in e.g. [166, 2, 18].





Chapter 5

Av erage-Case and Non-Deterministic
Query Complexit y

This chapter is basedon the papers

² A. AmbainisandR. deWolf. Average-CaseQuantum Query Complexity. In
Proceedingsof 17th Annual Symposium on Theoretical Aspects of Computer
Science (STACS2000),LNCS 1770,pages133{144,Springer,2000. Journal
versionto appear in the Journal of PhysicsA, 2001.

² R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conference on ComputationalComplexity(CCC 2000),pages271{278,
2000.

5.1 In tro duction

The interest in quantum computersmainly derives from the fact that they are
much faster (or in someother way better) than classicalcomputersfor someinter-
esting problems|sometimes even exponentially faster. As we saw in Chapter 1,
virtually all existing quantum algorithms work in the query complexity model. In
Chapter 2 we proved the somewhatdisappointing result that the maximal possi-
ble quantum speed-upin this model is only polynomial, for all total functions. In
other words, in the standard model of query complexity, exponential speed-ups
can only be attained for speci¯c promise-problems,like Simon's and Shor's. In
this chapter we analyzetwo other commoncomputational models| average-case
complexity and non-deterministic complexity|and prove that in both of these
models there are total functions for which quantum algorithms require at least
exponentially fewer queriesthan classicalalgorithms.

In our query complexity setting, average-casecomplexity concernsthe ex-
pected number of queriesneededto compute somefunction f when the input is

77
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distributed accordingto somegiven probability distribution ¹ . If the hard inputs
(i.e., thoserequiring many queries)receive little ¹ -probability, then average-case
complexity can be signi¯cantly smaller than worst-casecomplexity. Let D ¹ (f ),
R¹

2 (f ), and Q¹
2(f ) denotethe average-caseanaloguesof the worst-casecomplex-

ities D(f ), R2(f ), and Q2(f ), respectively, to be de¯ned more precisely in the
next section. By de¯nition we have Q¹

2(f ) · R¹
2 (f ) · D ¹ (f ); the objective of the

following sectionsis to comparethesemeasuresand to investigate the possible
gapsbetweenthem. Our main results for average-casecomplexity are:

² Under the uniform distribution ¹ , there is a total function f such that Q¹
2(f )

is exponentially lessthan R¹
2 (f ). Thus the polynomial relation that holds

betweenquantum and classicalquery complexitiesin the caseof worst-case
complexity (Theorem2.5.15)doesnot carry over to the average-casesetting.

² Under non-uniform ¹ the gap can be even larger: we give distributions ¹
whereQ¹

2(ORN ) is constant, whereasR¹
2 (ORN ) is almost

p
N .

² For the MAJORITY-function under uniform ¹ , we have Q¹
2(MAJ N ) 2

O(
p

N (log N )2) and Q¹
2(MAJ N ) 2 ­(

p
N ). In contrast, R¹

2 (MAJ N ) 2
­( N ).

In the secondpart of the chapter we deal with non-deterministic complexity.
We de¯ne a non-deterministicalgorithm for a Booleanfunction f asan algorithm
that haspositiveacceptanceprobability if f (x) = 1 and that hasacceptanceprob-
abilit y 0 if f (x) = 0 (other de¯nitions of non-deterministiccomplexity arepossible
and will be discussedbelow). We useN (f ) and N Q(f ) for the non-deterministic
query complexity of f on classicaland quantum computers,respectively. While
the classicalcomplexity N (f ) equalsthe certi¯cate complexity C (1) (f ), we prove
that the quantum complexity N Q(f ) equals the minimal degreeof a so-called
non-deterministic polynomial for f , up to a factor of 2. This contrasts with the
standard model of computation, where the quantum complexitiesare polynomi-
ally related to the respective degrees(Section2.5)

deg(f )
2

· QE (f ) · 2 deg(f )4 and
gdeg(f )

2
· Q2(f ) · 512 gdeg(f )6;

but wherea linear relation is not known to hold (nor not to hold). Wealsoexhibit
a total function f on N variables with a very large gap between quantum and
classicalnon-deterministic complexity: N Q(f ) = 1 and N (f ) = N . This is the
largest possiblegap allowed by the query complexity model.

5.2 Av erage-Case Complexit y: De¯nitions

Westart by discussingseveral issuespertaining to the proper de¯nition of average-
casequery complexity. As described in Section2.3.3,a quantum algorithm A =
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UT OUT ¡ 1O ¢¢¢OU0 will make exactly T querieson every input x. Sincewe are
interestedin average-casenumber of queriesand the required number of queries
will depend on the input x, we needto allow the algorithm to sometimesgive an
output after fewer than T queries. We will do that by measuring,after each Uj ,
a dedicated°ag-qubit of the intermediate state at that point. This bit indicates
whether the algorithm is already preparedto stop and output a value. If this bit
is 1, then we measurethe output bit, output its value A(x) 2 f 0; 1g and stop; if
the °ag-bit is 0 we let the algorithm continue with the next query O and Uj +1 .
Note that the number of queriesthat the algorithm makeson input x is now a
random variable, sinceit dependson the probabilistic outcomeof measuringthe
°ag-qubit after each step. We useTA (x) to denotethe expected number of queries
that A makeson input x. The Booleanoutput A(x) of the algorithm is a random
variable as well.

Wemainly focuson three kinds of algorithms for computing f : classicaldeter-
ministic, classicalrandomized bounded-error,and quantum bounded-erroralgo-
rithms. Let D(f ) denotethe setof classicaldeterministic algorithms that compute
f . Let R(f ) = f classicalA j 8x 2 f 0; 1gN : Pr[A(x) = f (x)] ¸ 2=3g be the set of
classicalrandomized algorithms that compute f with boundederror probability.
Similarly we let Q(f ) = f quantum A j 8x 2 f 0; 1gN : Pr[A(x) = f (x)] ¸ 2=3g be
the set of bounded-errorquantumalgorithms for f .

The following are our familiar worst-casecomplexities:1

D(f ) = min
A2D (f )

max
x2f 0;1gN

TA (x)

R2(f ) = min
A2R (f )

max
x2f 0;1gN

TA (x)

Q2(f ) = min
A2Q (f )

max
x2f 0;1gN

TA (x)

Let ¹ : f 0; 1gN ! [0; 1] be a probability distribution. We de¯ne the average-case
complexity of an algorithm A with respect to a distribution ¹ as:

T ¹
A =

X

x2f 0;1gN

¹ (x)TA (x):

The average-casedeterministic, randomized,and quantum complexitiesof f with
respect to ¹ are de¯ned as

D ¹ (f ) = min
A2D (f )

T ¹
A

R¹
2 (f ) = min

A2R (f )
T ¹

A

Q¹
2(f ) = min

A2Q (f )
T ¹

A

1Actually , they areslightly di®erent from the de¯nitions of Chapter 2 becausewearecounting
expected number of querieson the worst-caseinput here, instead of worst-casenumber of queries
on the worst-caseinput. However, this changeof de¯nition can change the complexities by at
most a small constant factor, and we will henceforth ignore the di®erence.
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Note that the algorithms still have to satisfy the appropriate output requirements
(such asoutputting f (x) with probability ¸ 2=3 in caseof R2 or Q2) on all inputs
x, even on x that have ¹ (x) = 0. Clearly Q¹

2(f ) · R¹
2 (f ) · D ¹ (f ) · N for all

¹ and f . Our goal is to examinehow large the gapsbetweenthesemeasurescan
be, in particular for the uniform distribution, which hasunif (x) = 2¡ N .

The above treatment of average-casecomplexity is the standard one usedin
average-caseanalysisof algorithms [157]. One counter-intuitiv e consequenceof
thesede¯nitions, however, is that the average-caseperformanceof polynomially
related algorithms can be superpolynomially apart (we will seethis happen in
Section5.5.1). This seeminglyparadoxical e®ectmakesthesede¯nitions unsuit-
able for dealing with polynomial-time reducibilities and average-casecomplexity
classesin structural complexity theory, which is what led Levin to his alterna-
tiv e de¯nition of \p olynomial time on average" [112]. Nevertheless,we feel the
above de¯nitions are the appropriate onesfor our query complexity setting: they
just are the averagenumbers of queriesthat one needswhen the input is drawn
accordingto distribution ¹ .

5.3 Av erage-Case: Deterministic vs. Bounded-
Error

Here we show that D unif (f ) can be much larger then Runif
2 (f ) and Qunif

2 (f ):

5.3.1. Theorem. De¯ne f on N variablessuch that f (x) = 1 i® jxj ¸ N=10.
Then Qunif

2 (f ) and Runif
2 (f ) are O(1) and D unif (f ) 2 ­( N ).

Pro of. Supposewe randomly samplek bits of the input. Let a = jxj=N denote
the fraction of 1sin the input and ~a the fraction of 1sin the sample.The Cherno®
bound (seee.g. [4]) implies that there is a constant c > 0 such that

Pr[~a < 2=10 j a ¸ 3=10] · 2¡ ck:

Now considerthe following randomizedalgorithm for f :

1. Let i = 100.

2. Sampleki = i=c bits. If the fraction ~ai of 1s is ¸ 2=10, then output 1 and
stop.

3. If i < logN , then increasei by 1 and repeat step 2.

4. If i ¸ logN , then count jxj exactly using N queriesand output the correct
answer.
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It is easily seenthat this is a bounded-erroralgorithm for f . Let us bound its
average-casecomplexity under the uniform distribution.

If a ¸ 3=10, the expectednumber of queriesfor step 2 is

log NX

i =100

Pr[~a1 · 2=10; : : : ; ~ai ¡ 1 · 2=10 j a ¸ 3=10]¢
i
c

·

log NX

i =100

Pr[~ai ¡ 1 · 2=10 j a ¸ 3=10]¢
i
c

·
log NX

i =100

2¡ (i ¡ 1) ¢
i
c

2 O(1):

The probability that step 4 is needed(given a ¸ 3=10) is at most 2¡ (c log N )=c =
1=N . This adds 1

N N = 1 to the expectednumber of queries.
Under the uniform distribution, the probability of the event a < 3=10 is

at most 2¡ c0N for someconstant c0. This casecontributes at most 2¡ c0N (N +
(log N )2) 2 o(1) to the expectednumber of queries. Thus in total the algorithm
usesO(1) querieson average,henceRunif

2 (f ) 2 O(1). SinceQunif
2 (f ) · Runif

2 (f ),
we alsohave Qunif

2 (f ) 2 O(1).
Sincea deterministic classicalalgorithm for f must be correct on every input

x, it is easyto seethat it must make at least N=10 querieson every input, hence
D unif (f ) ¸ N=10. 2

Accordingly, we can have hugegapsbetweenD unif (f ) and Qunif
2 (f ). However,

this example tells us nothing about the gaps between quantum and classical
bounded-erroralgorithms. In the next sectionwe exhibit an f whereQunif

2 (f ) is
exponentially smaller than the classicalbounded-errorcomplexity Runif

2 (f ).

5.4 Av erage-Case: Randomized vs. Quan tum

5.4.1 The function

We usethe following modi¯cation of Simon'sproblem from Section1.5:2

Mo di¯ed Simon's problem:
We aregivenx = (x1; : : : ; x2n ), with x i 2 f 0; 1gn . We want to computea Boolean
function de¯ned by: f (x) = 1 i® there is a non-zerok 2 f 0; 1gn such that for all
i 2 f 0; 1gn we have x i©k = x i .

Here we treat i 2 f 0; 1gn both as an n-bit string and as a number between1
and 2n , and © denotesbitwiseXOR (addition modulo 2). Note that this function
is total, unlike Simon's original promise function. Formally, f is not a Boolean
function becausethe variables x i are f 0; 1gn -valued. However, we can replace

2The preprint [90] proves a related but incomparable result about another modi¯cation of
Simon's problem.
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every variable x i by n Booleanvariablesand then f becomesa Booleanfunction
of N = n2n variables. The number of queriesneededto compute the Boolean
function is at least the number of queriesneededto compute the function with
f 0; 1gn -valued variables(becausewe can simulate a query to the Boolean input-
variablesby meansof a query to the f 0; 1gn -valued input-variables,just ignoring
the n ¡ 1 bits we arenot interestedin) and at most n times the number of queries
to the f 0; 1gn -valued input variables (becauseone f 0; 1gn -valued query can be
simulated using n Boolean queries). As the numbers of queriesare so closely
related, it doesnot make a big di®erencewhether we usethe f 0; 1gn -valued input
variablesor the Boolean input variables. For simplicity we count queriesto the
f 0; 1gn -valued input variables.

We are interested in the average-casecomplexity of this function. The main
result is the following exponential gap, to be proven in the next sections:

5.4.1. Theorem (Ambainis & de Wolf [13]). For f as above, we havethat
Qunif

2 (f ) · 22n + 1 and Runif
2 (f ) 2 ­(2 n=2).

5.4.2 Quan tum upp er bound

Our quantum algorithm for f is similar to Simon's. Start with the 2-registersu-
perposition

P
i 2f 0;1gn ji ij ~0i (for convenienceweignorenormalizing factors). Apply

a query to obtain X

i 2f 0;1gn

ji ij x i i :

Measuringthe secondregister givessomej and collapsesthe ¯rst register to
X

i :x i = j

ji i :

Applying a Hadamard transform to each qubit of the ¯rst register gives
X

i :x i = j

X

i 02f 0;1gn

(¡ 1)(i;i 0) ji 0i : (5.1)

Here (a;b) denotes inner product modulo 2; if (a;b) = 0 we say a and b are
orthogonal.

If f (x) = 1, then there is a non-zero k such that x i = x i©k for all i . In
particular, x i = j i® x i©k = j . Then the ¯nal state (5.1) can be rewritten as

X

i 02f 0;1gn

X

i :x i = j

(¡ 1)(i;i 0) ji 0i =
X

i 02f 0;1gn

Ã
X

i :x i = j

1
2

((¡ 1)(i;i 0) + (¡ 1)(i©k;i 0))

!

ji 0i

=
X

i 02f 0;1gn

Ã
X

i :x i = j

(¡ 1)(i;i 0)

2
(1 + (¡ 1)(k;i 0))

!

ji 0i :
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Notice that ji 0i hasnon-zeroamplitude only if (k; i 0) = 0. Henceif f (x) = 1, then
measuringthe ¯nal state givessomei 0 orthogonal to the unknown k.

To decide if f (x) = 1, we repeat the above processm = 22n times. Let
i 1; : : : ; i m 2 f 0; 1gn be the results of the m measurements. If f (x) = 1, there
must be a non-zerok that is orthogonal to all i r (r 2 f 1; : : : ; mg). Compute
the subspaceS µ f 0; 1gn that is generatedby i 1; : : : ; i m (i.e., S is the set of
binary vectorsobtained by taking linear combinations of i 1; : : : ; i m over GF (2)).
If S = f 0; 1gn , then the only k that is orthogonal to all i r is k = 0n (clearly
i r ¢0n = 0 for all i r ), so then we know that f (x) = 0. If S 6= f 0; 1gn , we just
query all 2n valuesx0:::0; : : : ; x1:::1 and then compute f (x). Of course,this latter
step is very expensive, but it is neededonly rarely:

5.4.2. Lemma. Assumethat x = (x0; : : : ; x2n ¡ 1) is chosenuniformly at random
from f 0; 1gN . Then, with probability at least 1 ¡ 2¡ n , f (x) = 0 and the measured
i 1; : : : ; i m generate f 0; 1gn .

Pro of. It can be shown by a small modi¯cation of [4, Theorem 5.1, p.91] that
with probability at least 1 ¡ 2¡ c2n

(c > 0), there are at least 2n=8 valuesj such
that x i = j for exactly one i 2 f 0; 1gn (and hencef (x) = 0). We assumethat
this is the casein the following.

If i 1; : : : ; i m generatea proper subspaceof f 0; 1gn , then there is a non-zero
k 2 f 0; 1gn that is orthogonal to this subspace.We estimate the probability that
this happens. Considersome¯xed non-zerovector k 2 f 0; 1gn . The probability
that i 1 and k are orthogonal is at most 15

16, as follows. With probability at least
1/8, the measurement of the secondregister gives j such that f (i ) = j for a
unique i . In this case,the measurement of the ¯nal superposition (5.1) gives a
uniformly random i 0. The probability that a uniformly random i 0 has (k; i 0) 6= 0
is 1/2. Therefore,the probability that (k; i 1) = 0 is at most 1 ¡ 1

8 ¢1
2 = 15

16.
The vectors i 1; : : : ; i m are chosenindependently. Therefore, the probability

that k is orthogonal to each of them is at most ( 15
16)m = ( 15

16)22n < 2¡ 2n . There are
2n ¡ 1 possiblenon-zerok, so the probability that there is a k that is orthogonal
to each of i 1; : : : ; i m , is · (2n ¡ 1)2¡ 2n < 2¡ n . 2

Note that this algorithm is actually a zero-error algorithm: it always outputs
the correct answer. Its expectednumber of querieson a uniformly random input
is at most m = 22n for generatingi 1; : : : ; i m and at most 1

2n 2n = 1 for querying
all the x i if the ¯rst step does not give i 1; : : : ; i m that generatef 0; 1gn . This
completesthe proof of the ¯rst part of Theorem5.4.1. In contrast, in Section5.4.4
we show that the worst-casezero-errorquantum complexity of f is ­( N ), which
is near-maximal.
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5.4.3 Classical lower bound

Let D1 be the uniform distribution over all inputs x 2 f 0; 1gN and D2 be the
uniform distribution over all x for which there is a unique k 6= 0 such that
x i = x i©k (and hence f (x) = 1). We say that an algorithm A distinguishes
betweenD1 and D2 if the averageprobability that A outputs 0 is ¸ 2=3 under
D1 and the averageprobability that A outputs 1 is ¸ 2=3 under D 2.

5.4.3. Lemma. If there is a bounded-error algorithm A that computesf with m =
Tunif

A querieson average,then there is an algorithm that distinguishesbetween D 1

and D2 and usesO(m) querieson all inputs.

Pro of. Without lossof generality we assumeA has error probability · 1=10.
Under D1, the probability that A outputs 1 is at most 1=10 + o(1) (1=10 is
the maximum probability of error on an input with f (x) = 0 and o(1) is the
probability of getting an input with f (x) = 1), so the probability that A outputs
0 is at least9=10¡ o(1). Werun A until it stopsor makes10m queries.The average
probability (under D1) that A doesnot stop before10m queriesis at most 1=10,
for otherwisethe averagenumber of querieswould be more than 1

10(10m) = m.
Thereforethe probability under D1 that A outputs 0 after at most 10m queries,
is at least (9=10¡ o(1)) ¡ 1=10 = 4=5¡ o(1). In contrast, the D 2-probability that
A outputs 0 is · 1=10 becausef (x) = 1 for any input x from D 2. We can use
this to distinguish D1 from D2. 2

5.4.4. Lemma. A classical randomized algorithm A that makes m 2 o(2n=2)
queriescannot distinguish between D1 and D2.

Pro of. Supposem 2 o(2n=2). For a random input from D1, the probability that
all answers to m queriesare di®erent is

1 ¢
µ

1 ¡
1
2n

¶
¢¢¢

µ
1 ¡

(m ¡ 1)
2n

¶
¸ 1 ¡

m¡ 1X

i =1

i
2n

= 1 ¡
m(m ¡ 1)

2n+1
= 1 ¡ o(1):

For a randominput from D2, the probability that there is an i such that A queries
both x i and x i©k (k is the hidden vector) is ·

¡ m
2

¢
=(2n ¡ 1) 2 o(1), because:

1. for every pair of distinct i; j , the probability that i = j © k is 1=(2n ¡ 1)

2. sinceA queriesonly m of the x i , it queriesonly
¡ m

2

¢
distinct pairs i; j

If no pair x i , x i©k is queried, the probability that all answersare di®erent is

1 ¢
µ

1 ¡
1

2n¡ 1

¶
¢¢¢

µ
1 ¡

(m ¡ 1)
2n¡ 1

¶
= 1 ¡ o(1):
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It is easy to see that all sequencesof m di®erent answers are equally likely.
Therefore,for both distributions D1 and D2, we get a uniformly randomsequence
of m di®erent valueswith probability 1¡ o(1) and somethingelsewith probability
o(1). Thus A cannot \see" the di®erencebetween D1 and D2 with su±cient
probability to distinguish betweenthem. 2

The secondpart of Theorem 5.4.1 now follows: a classicalalgorithm that
computes f with an averagenumber of m queries can be used to distinguish
betweenD1 and D2 with O(m) queries(Lemma 5.4.3), but then O(m) 2 ­(2 n=2)
(Lemma 5.4.4).

5.4.4 Worst-case quan tum complexit y of f

For the sake of completeness,we will hereshow a lower bound of ­( N ) queriesfor
the zero-errorworst-casecomplexity Q0(f ) of the function f on N = n2n binary
variablesde¯ned in Section5.4. (We count binary queriesthis time.) Considera
quantum algorithm that makesat most T queriesand that, for every x, outputs
either the correct output f (x) or, with probability · 1=2, outputs \don't know".
Consider the polynomial P which is the acceptanceprobability of our T-query
algorithm for f . It has the following properties:

1. P hasdegreed · 2T

2. if f (x) = 0 then P(x) = 0

3. if f (x) = 1 then P(x) 2 [1=2; 1]

We ¯rst show that only very few inputs x 2 f 0; 1gN make f (x) = 1. The number
of such 1-inputs for f is the number of ways to choosek 2 f 0; 1gn ¡ f 0ng, times
the number of ways to choose2n=2 independent x i 2 f 0; 1gn . This is (2n ¡ 1) ¢
(2n )2n =2 < 2n(2n =2+1) . Accordingly, the fraction of 1-inputs amongall 2N inputs x
is < 2n(2n =2+1) =2n2n

= 2¡ n(2n =2¡ 1). Thesex are exactly the x that make P(x) 6= 0.
However, the following result is known [148, 133]:

5.4.5. Lemma (Schw ar tz). If P is a non-constant N -variate multilinear poly-
nomial of degree d, then

jf x 2 f 0; 1gN j P(x) 6= 0gj
2N

¸ 2¡ d:

This implies d ¸ n(2n=2 ¡ 1) and henceT ¸ d=2 ¸ n(2n=4 ¡ 2) ¼ N=4.
Thus we have proved that the worst-casezero-errorquantum complexity of f is
near-maximal:

5.4.6. Theorem (Ambainis & de Wolf [13]). Q0(f ) 2 ­( N ).
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5.5 Further Av erage-Case Results

5.5.1 Super-exp onential gap for non-uniform ¹

The last sectiongavean exponential gapbetweenQ¹
2(f ) and R¹

2 (f ) underuniform
¹ . Herewe show that the gapcanbe even larger for non-uniform ¹ . Considerthe
average-casecomplexity of the OR-function. It is easyto seethat D unif (ORN ),
Runif

2 (ORN ), and Qunif
2 (ORN ) areall O(1), sincethe averageinput under the uni-

form distribution will have many 1s. Now we give someexamplesof non-uniform
distributions ¹ whereQ¹

2(ORN ) is super-exponentially smaller than R¹
2 (ORN ):

5.5.1. Theorem (Ambainis & de Wolf [13]). For ® 2 (0; 1=2), de¯ne the
distribution ¹ (x) = c=

¡ N
jxj

¢
(jxj + 1)®(N + 1)1¡ ® (where c ¼ 1¡ ® is a normalizing

constant). Then we haveR¹
2 (ORN ) 2 £( N ®) and Q¹

2(ORN ) 2 £(1) .

Pro of. Any classicalalgorithm for ORN requires £( N=(jxj + 1)) querieson
input x. The upper bound follows from random sampling, the lower bound from
a block sensitivity argument (Theorem 2.5.8). Hence,omitting the intermediate
£s, we obtain:

R¹
2 (ORN ) =

X

x

¹ (x)
N

jxj + 1
=

NX

t=0

cN®

(t + 1)®+1
2 £( N ®);

where the last step can be shown by approximating the sum over t with an
integral. Similarly, by the quantum search bounds(Chapter 3), £(

p
N=(jxj + 1))

queriesare necessaryand su±cient for a quantum computer on input x, so

Q¹
2(ORN ) =

X

x

¹ (x)

s
N

jxj + 1
=

NX

t=0

cN®¡ 1=2

(t + 1)®+1 =2
2 £(1) :

2

In particular, for ® = 1=2¡ " we have the very largegapof O(1) quantum ver-
sus­( N 1=2¡ " ) classical.Note that weobtain this super-exponential gapby weigh-
ing the complexity of two algorithms (classicaland quantum OR-algorithms) that
areonly quadratically apart on each input x. This is the phenomenonwe referred
to at the end of Section5.2.

5.5.2 General bounds

In this sectionwe prove somegeneralbounds for average-casecomplexity. First
we make precisethe intuitiv ely obvious fact that if an algorithm A is faster on
every input than another algorithm B, then it is alsofaster on averageunder any
distribution:
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5.5.2. Theorem (Ambainis & de Wolf [13]). If Á : R ! R is a concave
function and TA (x) · Á(TB (x)) for all x, then T ¹

A · Á(T ¹
B ) for every ¹ .

Pro of. Jensen'sinequality [59] says that E ¹ [Á(T)] · Á(E¹ [T]) for concave Á,
hence

T ¹
A =

X

x2f 0;1gN

¹ (x)TA (x) ·
X

x2f 0;1gN

¹ (x)Á(TB (x))

· Á

0

@
X

x2f 0;1gN

¹ (x)TB (x)

1

A = Á(T ¹
B ) :

2

In words: taking the averagecannot make the complexity-gap between two
algorithmssmaller. For instance,if TA (x) ·

p
TB (x) (say, A is Grover'salgorithm

and B is a classicalalgorithm for OR), then T ¹
A ·

p
T ¹

B . On the other hand,
taking the averagecan make the gap much larger, as we saw in Theorem 5.5.1:
the quantum algorithm for OR runs only quadratically faster than any classical
algorithm on each input, but the average-casegapbetweenquantum and classical
can be much bigger than quadratic.

Using that TA (x) 2 ­( bsx (f )) for classicalalgorithms A (Theorem 2.5.8) and
TA (x) 2 ­(

p
bsx (f )) for quantum algorithms A (Theorem 2.5.7), we obtain a

simple lower bound in terms of the ¹ -expectedblock sensitivity:

5.5.3. Theorem (Ambainis & de Wolf [13]). For all f and ¹ we havethat
R¹

2 (f ) 2 ­( E¹ [bsx (f )]) and Q¹
2(f ) 2 ­( E¹ [

p
bsx (f )]).

5.5.3 MAJORITY

Here we examinethe average-casecomplexity of the MAJORITY-function. The
hard inputs for majorit y occur when t = jxj ¼ N=2. Any quantum algorithm
needs­( N ) queriesfor such inputs (Section2.6.4). Sincethe uniform distribution
puts most probability on the set of x with jxj closeto N=2, we might expect an
­( N ) average-casecomplexity aswell. However, wewill provethat the complexity
is nearly

p
N , using the result about quantum counting mentioned in Section1.7.

5.5.4. Theorem (Ambainis & de Wolf [13]). Qunif
2 (MAJ N ) 2 O(

p
N (log N )2).

Pro of. For all i 2 f 1; : : : ; logN g, de¯ne A i = f x j N=2i +1 < jjxj ¡ N=2j ·
N=2i g. The probability under the uniform distribution of getting an input X 2 A i

is ¹ (A i ) 2 O(
p

N =2i ), sincethe number of inputs X with k 1sis
¡ N

k

¢
2 O(2N =

p
N )

for all k. The ideaof our algorithm is to have logN runs of the quantum counting
algorithm, with increasingnumbers of queries,such that the majorit y value of
inputs from A i is probably detectedaround the i th counting stage. We will use
Ti = 100¢2i logN queriesin the i th counting stage.Our algorithm is the following:
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For i = 1 to logN do:

quantum count jxj using Ti queries(call the estimate ~t i )
if jet i ¡ N=2j > N=2i , then output whether et i > N=2 and stop.

Classicallycount jxj using N queriesand output its majorit y.

Let us analyze the behavior of the algorithm on an input x 2 A i . For t = jxj,
we have jt ¡ N=2j 2 (N=2i +1 ; N=2i ]. By Theorem 1.7.2, with probability > 1 ¡
1=10logN we have

¯
¯et i ¡ t

¯
¯ · N=2i , so with probability (1 ¡ 1=10logN ) log N ¼

e¡ 1=10 > 0:9 we have
¯
¯et i ¡ t

¯
¯ · N=2i for all 1 · i · N . This ensuresthat the

algorithm outputs the correct value with high probability.
Consider the (i + 2)nd counting stage. With probability 1 ¡ 1=10logN we

will have j~t i +2 ¡ tj · N=2i +2 . In this casethe algorithm will terminate, because

j~t i +2 ¡ N=2j ¸ jt ¡ N=2j ¡ j~t i +2 ¡ tj > N=2i +1 ¡ N=2i +2 = N=2i +2 :

Thuswith high probability the algorithm needsno morethan i + 2 counting stages
on x. Later counting stagestake exponentially more queries(Ti +2+ j = 2j Ti +2 ),
but are neededonly with exponentially decreasingprobability O(1=2j logN ): the
probability that j~t i +2+ j ¡ tj > N=2i +2 goes down exponentially with j precisely
becausethe number of queriesgoesup exponentially . Similarly, the last step of
the algorithm (classicalcounting) is neededonly with negligibleprobability.

Now the expectednumber of querieson input x can be upper boundedby

i +2X

j =1

Ti +
log NX

k= i+3

TkO
µ

1
2k¡ i ¡ 3 logN

¶
< 100¢2i +3 logN +

log NX

k= i+3

100¢2i +3 2 O(2i logN ):

Thereforeunder the uniform distribution the averageexpectednumber of queries
can be upper boundedby

P log N
i=1 ¹ (A i )O(2i logN ) 2 O(

p
N (log N )2): 2

The nearly matching lower bound is:

5.5.5. Theorem (Ambainis & de Wolf [13]). Qunif
2 (MAJ N ) 2 ­(

p
N ).

Pro of. Let A be a bounded-error quantum algorithm for MAJORITY. It
follows from the worst-caseresults of Section 2.6.4 that A uses­( N ) queries
on the hardest inputs, which are the x with jxj = N=2 § 1. Sincethe uniform
distribution puts ­(1 =

p
N ) probability on the set of such x, the average-case

complexity of A is at least ­(1 =
p

N )­( N ) = ­(
p

N ). 2

What about the classical average-casecomplexity of MAJORITY? Alonso,
Reingold, and Schott [6] prove the bound D unif (MAJ N ) = 2N=3 ¡

p
8N=9¼+

O(log N ) for deterministic classicalcomputers. We can alsoprove a linear lower
bound for the bounded-error classicalcomplexity, using the following lemma:
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5.5.6. Lemma. Let ¢ 2 f 1; : : : ;
p

N g. Any classical bounded-error algorithm
that computesMAJORITY on inputs x with jxj 2 f N=2; N=2 + ¢ g must make
­( N ) querieson all suchinputs.

Pro of. We will prove the lemma for ¢ =
p

N , which is the hardest case.
We assumewithout loss of generality that the algorithm queriesits input x at
T(x) random positions, and outputs 1 if the fraction of 1s in its sample is at
least (N=2 + ¢) =N = 1=2 + 1=

p
N . We do not carewhat the algorithm outputs

otherwise. Consideran input x with jxj = N=2. The algorithm usesT = T(x)
queriesand should output 0 with probability at least 2=3. Thus the probability
of output 1 on x must be at most 1=3, in particular

Pr[ at least T(1=2 + 1=
p

N ) 1s in T-sample]· 1=3:

Sincethe T queriesof the algorithm can be viewed as samplingwithout replace-
ment from a set containing N=2 1sand N=2 0s, this error probability is given by
the hypergeometricdistribution

Pr[ at least T(1=2 + 1=
p

N ) 1s in T-sample]=

TX

i = T (1=2+1 =
p

N )

µ
N=2

i

¶
¢
µ

N=2
T ¡ i

¶

µ
N
T

¶ :

We can approximate the hypergeometricdistribution using the normal distribu-
tion, seee.g. [128]. Let zk = (2k ¡ T)=

p
T and ©(z) =

Rz
¡1

1p
2¼

e¡ t2=2dt, then the
above probability approaches

©(zT ) ¡ ©(zT (1=2+1 =
p

N )):

Note that ©(zT ) = ©(
p

T) ! 1 and that ©(zT (1=2+1 =
p

N )) = ©(2
p

T=N ) ! 1=2
if T 2 o(N ). Accordingly, we can only avoid having an error probability closeto
1/2 by using T 2 ­( N ) querieson x with jxj = N=2. A similar argument shows
that we must alsouse­( N ) queriesif jxj = N=2 + ¢. 2

It now follows that:

5.5.7. Theorem (Ambainis & de Wolf [13]). Runif
2 (MAJ N ) 2 ­( N ).

Pro of. The previous lemma shows that any algorithm for MAJORITY needs
­( N ) querieson inputs x with jxj 2 [N=2; N=2 +

p
N ]. Sincethe uniform distri-

bution puts ­(1) probability on the set of such x, the theoremfollows. 2

Accordingly, on averagea quantum computer can compute MAJORITY al-
most quadratically faster than a classicalcomputer, whereasfor the worst-case
input quantum and classicalcomputersare about equally fast (or slow).
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5.5.4 PARITY

Finally we prove someresultsfor the average-casecomplexity of PARITY. This is
in many ways the hardest Booleanfunction. Firstly, bsx (f ) = N for all x, hence
by Theorem5.5.3:

5.5.8. Cor ollar y (Ambainis & de Wolf [13]). For every ¹ we havethat
R¹

2 (PARITY N ) 2 ­( N ) and Q¹
2(PARITY N ) 2 ­(

p
N ).

With high probability we canget an exact count of jxj, usingO(
p

(jxj + 1)N )
quantum queries (Theorem 1.7.2). Combining this with a distribution ¹ that
puts O(1=

p
N ) probability on the set of all x with jxj > 1 and distributes the

remainingprobability arbitrarily over the x with jxj · 1, we obtain a distribution
¹ such that Q¹

2(PARITY N ) 2 O(
p

N ).
More than a linear speed-upon averageis not possibleif ¹ is uniform:

5.5.9. Theorem (Ambainis & de Wolf [13]). Qunif
2 (PARITY N ) 2 ­( N ).

Pro of. Let A be a bounded-errorquantum algorithm for PARITY N . Let B be
an algorithm that °ips each bit of its input x with probability 1=2, recordsthe
number b of actual bit°ips, runs A on the changedinput y, and outputs A(y) ©
b mod 2. It is easyto seethat B is a bounded-erroralgorithm for PARITY N and
that it usesan expected number of T ¹

A querieson every input. By breaking o®
the computation if it has not ¯nished after several times its expectednumber of
queries,we can turn this into an algorithm for PARITY N with worst-caseO(T ¹

A )
queries.Sincethe worst-caselower bound for PARITY N is N=2 (Corollary 2.6.7),
the theoremfollows. 2

5.6 Non-Deterministic Complexit y: De¯nitions

Now we turn our attention from average-caseto non-deterministic complexity.
There are two ways to view a classical non-deterministic algorithm for some
Boolean function f . First, we may think of it as a deterministic algorithm A
that receivesthe input x and a \certi¯cate" y. For all inputs x, if f (x) = 1 then
there is a certi¯cate y such that A(x; y) = 1; if f (x) = 0 then A(x; y) = 0 for all
certi¯cates y. Secondly, we may view A as a randomized algorithm whoseaccep-
tanceprobability P(x) is positive if f (x) = 1 and P(x) = 0 if f (x) = 0. It is easy
to seethat these two views are equivalent in the caseof classicalcomputation:
there is a view 1 algorithm for f i® there is a view 2 algorithm for f of roughly
the samecomplexity.

Both views may be generalizedto the quantum case,yielding three possibly
non-equivalent de¯nitions of non-deterministic quantum algorithms. The quan-
tum algorithm may be required to output the right answer f (x) when given an
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appropriate certi¯cate (which may be quantum or classical);or the quantum al-
gorithm may be required to have positive acceptanceprobability i® f (x) = 1. An
example is given by two alternative de¯nitions of \quantum-NP ". Kitaev [100]
(see also [98]) de¯nes this class as the set of languagesthat are acceptedby
polynomial-time quantum algorithms that are given a polynomial-sizequantum
certi¯cate. On the other hand, Adleman et al. [1] and Fenner et al. [73] de¯ne
quantum-NP asthe setof languagesL for which there is a polynomial-time quan-
tum algorithm whoseacceptanceprobability is positive i® x 2 L. This quantum
classwas shown equal to the classicalcounting classco-C= P in [73], using tools
from [76].

We will here adopt the latter view: a non-deterministic algorithm for f is
an algorithm that has positive acceptanceprobability on input x i® f (x) = 1.
Let N (f ) and N Q(f ) denotethe query complexitiesof optimal non-deterministic
classicaland quantum algorithms for f , respectively. Beforecharacterizing these
complexities in the next section, let us contrast our de¯nition of N Q(f ) to the
other possiblede¯nitions. Wemay considerthe complexity of quantum algorithms
that either:

1. output 1 i® given an appropriate classical certi¯cate (such certi¯cates must
exist i® f (x) = 1)

2. output 1 i® given an appropriate quantumcerti¯cate (such certi¯cates must
exist i® f (x) = 1)

3. output 1 with positive probability i® f (x) = 1

The third de¯nition is the one we adopted. Clearly the secondde¯nition is at
leastasstrong asthe ¯rst, in the sensethat an optimal algorithm accordingto the
secondde¯nition requiresno more queriesthan an optimal algorithm according
to the ¯rst de¯nition. Here we will show that the third de¯nition is at least as
strongasthe second.Thusour N Q(f ) givesin fact the smallestnon-deterministic
complexity among the three alternative de¯nitions. (We give the proof for the
querycomplexity setting, but the sameproof worksfor communication complexity
and other non-uniform settings as well.)

We formalize the secondde¯nition as follows: a T-query quantumveri¯er for
f is a T-query quantum algorithm V together with a set C of m-qubit states,
such that for all x 2 f 0; 1gN we have: (1) if f (x) = 1 then there is a jÁx i 2 C
such that V jÁx i has acceptanceprobability 1 on input x, and (2) if f (x) = 0
then VjÁi hasacceptanceprobability 0 on input x, for every jÁi 2 C. Informally:
the set C contains all possiblecerti¯cates, and (1) for every 1-input there is a
veri¯able 1-certi¯cate in C, and (2) for 0-inputs there aren't any. We do not put
any constraints on C. However, note that the de¯nition implies that if f (x) = 0
for somex, then C cannot contain all m-qubit states: otherwisethe state V ¡ 1

x j1~0i
would be a 1-certi¯cate in C even for x with f (x) = 0.
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We now prove that a T-query quantum veri¯er can be turned into a T-query
non-deterministic quantum algorithm according to our third de¯nition. This
shows that the third de¯nition is at least as powerful as the second(in fact, this
evenholdsif we replacethe acceptanceprobability 1 in clause(1) of the de¯nition
of a quantum veri¯er by just positive acceptanceprobability | in this caseboth
de¯nitions are equivalent).

5.6.1. Theorem (de Wolf [160]). Supposethere is a T-query quantum veri-
¯er V for f . Then N Q(f ) · T.

Pro of. The veri¯er V and the associated set C satisfy:

1. if f (x) = 1 then there is a jÁx i 2 C such that V jÁx i hasacceptanceproba-
bilit y 1 on input x

2. if f (x) = 0 then VjÁi hasacceptanceprobability 0 on input x, for all jÁi 2 C

Let X 1 = f z j f (z) = 1g. For each z 2 X 1 choose one speci¯c 1-certi¯cate
jÁzi 2 C. Now let us considersomeinput x and seewhat happensif we run V ­ I
(where I is the 2N £ 2N identit y operation) on the m + n-qubit state

jÁi =
1

p
jX 1j

X

z2 X 1

jÁzij zi :

V only actson the ¯rst m qubits of jÁi , the jzi -part remainsuna®ected.Therefore
running V ­ I on jÁi gives the sameacceptanceprobabilities as when we ¯rst
randomly choose somez 2 X 1 and then apply V to jÁzi . In casef (x) = 0,
this V jÁzi will have acceptanceprobability 0, so (V ­ I )jÁi will have acceptance
probability 0 as well. In casethe input x is such that f (x) = 1, the speci¯c
certi¯cate jÁzi that we chosefor this x will satisfy that V jÁx i has acceptance
probability 1. But then (V ­ I )jÁi has acceptanceprobability at least 1=jX 1j.
Accordingly, (V ­ I )jÁi has positive acceptanceprobability i® f (x) = 1. By
pre¯xing V ­ I with a unitary transformation that maps the n + m-qubit state
j~0i to jÁi , we have constructeda non-deterministicquantum algorithm for f with
T queries. 2

5.7 Non-Deterministic Complexit y: Character-
ization and Separation

In this sectionwewill characterizeN (f ) andN Q(f ) andexhibit a largeseparation
betweenthem. Our main tools will be \non-deterministic polynomials".
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5.7.1 Non-deterministic polynomials

Recall from Chapter 2 that an N -variate multilinear polynomial is a function
p : RN ! R that can be written as

p(x) =
X

Sµ [N ]

aSxS;

where S rangesover all sets of indices of variables, aS is a real number, and
xS = ¦ i 2 Sx i . The degree deg(p) of p is the degreeof a largest monomial with
non-zero coe±cient. Every multilinear polynomial p =

P
S aSxS can also be

written out uniquely in the so-calledFourier basis:

p(x) =
X

S

cS(¡ 1)x¢S:

Again S rangesover all setsof indicesof variables(we often identify a setS µ [N ]
with its characteristic N -bit vector), cS is a real number, and x ¢S denotesthe
inner product of the N -bit strings x and S, equivalently x ¢S = jx ^ Sj =

P
i 2 S x i .

It is easyto seethat deg(p) = maxfj Sj j cS 6= 0g. For example,OR2(x1; x2) =
3
4 ¡ 1

4(¡ 1)x1 ¡ 1
4(¡ 1)x2 ¡ 1

4(¡ 1)x1+ x2 in the Fourier basis.
We introducethe notion of a non-deterministic polynomial for f :

5.7.1. Definition. A multilinear N -variate polynomial p is a non-deterministic
polynomial for a Boolean function f : f 0; 1gN ! f 0; 1g, if it holds that p(x) 6= 0
i® f (x) = 1. The non-deterministic degree of f , denotedndeg(f ), is the minimum
degreeamongall non-deterministic polynomials p for f .

Without loss of generality we can assumep(x) 2 [¡ 1; 1] for all x 2 f 0; 1gN (if
not, just divide by maxx jp(x)j).

We mention someupper and lower boundsfor ndeg(f ). For example,p(x) =P
i x i =N is a non-deterministicpolynomial for ORN , hencendeg(ORN ) = 1. More

generally, let f be a non-constant symmetric function, which is 0 on z Hamming
weights, k1; : : : ; kz. Since jxj =

P
i x i , it is easy to seethat (jxj ¡ k1)( jxj ¡

k2) ¢¢¢(jxj ¡ kz) is a non-deterministicpolynomial for f , hencendeg(f ) · z. This
upper bound is tight for AND (seebelow) but not for PARITY. For example,
p(x1; x2) = x1 ¡ x2 is a degree-1non-deterministic polynomial for PARITY 2: it
assumesvalue0 on x-weights 0 and 2, and § 1 on weight 1. Usingsymmetrization
techniquesas in Chapter 2, we can alsoshow the generallower bound ndeg(f ) ¸
z=2 for symmetric f . Furthermore, it is easyto show that ndeg(f ) · C (1) (f ) for
every f (just take a polynomial that is the \sum" over all 1-certi¯cates for f ).

Finally, we mention a generallower bound on ndeg(f ). Letting Pr[p 6= 0] =
jf x 2 f 0; 1gN j p(x) 6= 0gj=2N be the probability that a random Boolean input
x makesa function p non-zero,it follows from Schwartz's Lemma (Lemma 5.4.5)
that

ndeg(f ) ¸ log(1=Pr[f 6= 0]) = log(1=Pr[f = 1]):
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Accordingly, functions with a very small fraction of 1-inputs will have high non-
deterministic degree.For instance,Pr[AND N = 1] = 2¡ N , so ndeg(AND N ) = N .

5.7.2 Characterization of N (f ) and N Q(f )

It is easyto seethat the 1-certi¯cate complexity characterizesthe classicalnon-
deterministic complexity of f :

5.7.2. Pr oposition. N (f ) = C(1) (f ).

Pro of.
N (f ) · C (1)(f ): a classicalalgorithm that guessesa 1-certi¯cate, queriesits

variables,and outputs 1 i® the certi¯cate holds, is a non-deterministic algorithm
for f .

N (f ) ¸ C (1)(f ): a non-deterministic algorithm for f can only output 1 if the
outcomesof the queriesthat it hasmadeforcethe function to 1. Henceif x is an
input where all 1-certi¯cates have sizeat least C (1) (f ), then the algorithm will
have to query at least C(1) (f ) variablesbeforeit can output 1 (which it must do
on someruns). 2

Next, weshow a tight relation betweennon-deterministicquantum querycom-
plexity N Q(f ) and non-deterministic degreendeg(f ). The upper bound usesa
trick similar to the oneusedin [73] to show co-C= P µ quantum-NP .

5.7.3. Theorem (de Wolf [160]).
ndeg(f )

2
· N Q(f ) · ndeg(f ).

Pro of. Supposewehavean N Q(f )-query non-deterministicquantum algorithm
A for f . By Lemma 2.4.1, its acceptanceprobability can be written asa polyno-
mial P(x) of degree· 2N Q(f ). BecauseA is a non-deterministic algorithm for
f , P(x) is a non-deterministic polynomial for f . Hencendeg(f ) · 2N Q(f ).

For the upper bound: let p(x) be a non-deterministic polynomial for f of
degreed = ndeg(f ). We write p in the Fourier basis:

p(x) =
X

S

cS(¡ 1)x¢S:

Sincedeg(p) = maxfj Sj j cs 6= 0g, we have that cS 6= 0 only if jSj · d.
We can make a unitary transformation F that uses d queries and maps

jSi ! (¡ 1)x¢SjSi whenever jSj · d. Informally, this transformation does a
controlled parity-computation: it computesx ¢S mod 2 using jSj=2 queries(see
Corollary 2.6.7), copiesthe answer to a safeplace, and then reversesthe com-
putation to cleanup the workspaceat the cost of another jSj=2 queries. By the
standard trick explained in Section 1.5.1, the answer x ¢S mod 2 can then be
turned into a phasefactor (¡ 1)x¢S mod 2 = (¡ 1)x¢S.

Now considerthe following quantum algorithm:
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1. Start with c
P

S cSjSi (an N -qubit state, where c = 1=
p P

S c2
S is a nor-

malizing constant)

2. Apply F to the state

3. Apply a Hadamard transform H to each qubit

4. Measurethe ¯nal state and output 1 if the outcomeis the all-zerostate j~0i
and output 0 otherwise.

The acceptanceprobability (i.e., the probability of observingj~0i at the end) is

P(x) = jh~0jH ­ nF c
X

S

cSjSij 2

=
c2

2N
j
X

S0

hS0j
X

S

cS(¡ 1)x¢SjSij 2

=
c2

2N
j
X

S

cS(¡ 1)x¢Sj2 =
c2p(x)2

2N
:

Sincep(x) is non-zeroi® f (x) = 1, P(x) will be positive i® f (x) = 1. Hencewe
have a non-deterministic quantum algorithm for f with d = ndeg(f ) queries. 2

The upper bound in this theorem is tight: by a proof similar to Proposi-
tion 2.6.5 we can show N Q(AND N ) = ndeg(AND N ) = N . We do not know if
the factor of 2 in the lower bound can be dispensedwith. If we were to change
the output requirement of the quantum algorithm a little bit, by saying that the
algorithm acceptsi® measuringthe ¯nal superposition givesbasisstate j~0i , then
the required number of queriesis exactly ndeg(f ): the upper bound of ndeg(f )
queries in this changedmodel is the sameas above, while the lower bound of
ndeg(f ) queriesholdsbecausethe amplitude of the basisstate j~0i in the ¯nal su-
perposition must now benon-zeroi® f (x) = 1, and this amplitude is a polynomial
of degreeat most the number of queries(Lemma 2.4.1).

5.7.3 Separations

What is the biggestpossiblegapbetweenquantum and classicalnon-deterministic
query complexity? Considerthe Booleanfunction f de¯ned by

f (x) = 1 i® jxj 6= 1.

It is easyto seethat N (f ) = C(1) (f ) = C(0) (f ) = N . On the other hand, the
following is a degree-1non-deterministic polynomial for f :

p(x) =
P

i x i ¡ 1
N ¡ 1

:
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Thus ndeg(f ) = 1 and by Theorem 5.7.3 we have N Q(f ) = 1. For the comple-
ment of f , we can easilyshow N Q(f ) ¸ N=2, sincethe acceptanceprobability of
a non-deterministic algorithm for f is a polynomial of degree· 2N Q(f ) that is
0 on N Hamming weights and hencehas degreeat least N (this N Q(f ) ¸ N=2
is tight for N = 2, witnessp(x) = x1 ¡ x2). In sum:

5.7.4. Theorem (de Wolf [160]). For the above f we havethat N Q(f ) = 1,
N Q(f ) ¸ N=2 and N (f ) = N (f ) = N .

A slightly smaller gap holds for the function de¯ned by DeJo(x) = 1 i® jxj 6=
N=2. This is a total versionof the Deutsch-Jozsapromiseproblemof Section1.5.1.
The Deutsch-Jozsaalgorithm turns out to be a non-deterministic quantum algo-
rithm for DeJo,soN Q(DeJo) = 1. In contrast, N (DeJo) = C (1) (DeJo) = N=2+ 1.

5.7.4 Relation of N Q(f ) to other complexities

In Chapter 2 we saw that the classicaldeterministic query complexity D(f ) and
the quantum bounded-error complexity Q2(f ) are polynomially related. This
relation wasproved usingnotions like certi¯cate complexity and block sensitivity.
In this subsectionwe will similarly embed N Q(f ) in this web of relations, and
give upper bounds on D(f ) in terms of N Q(f ), C(f ), and bs(f ). Theseresults
are new and have not (yet) beenpublishedanywhere.

5.7.5. Lemma (de Wolf). If f (x) = 0 and B is a minimal sensitiveblock for
x, then jB j · ndeg(f ).

Pro of. Assumewithout lossof generality that x = ~0. BecauseB is minimal,
for every proper subsetB 0 of B we have f (x) = f (xB 0

) = 0, but on the other
hand f (xB ) = 1. Accordingly, if we ¯x all variables outside of B to zero, then
we obtain the AND-function of jB j variables, which requires non-deterministic
degreejB j. HencejB j · ndeg(f ). 2

5.7.6. Cor ollar y (de Wolf). C(0) (f ) · bs(f )ndeg(f ).

Pro of. Considerany input x such that f (x) = 0. In the proof of Theorem2.5.4
weshowedthat the union of the setof minimal sensitiveblocks in x is a certi¯cate
for x. Sincethere are at most bs(f ) such blocks and each block contains at most
ndeg(f ) variablesby the above lemma, the corollary follows. 2

5.7.7. Theorem (de Wolf). D(f ) · C(0) (f )ndeg(f ).
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Pro of. Let p be a non-deterministic polynomial for f of degreendeg(f ). Note
that if we take a 0-certi¯cate C : S ! f 0; 1g and ¯x the S-variablesaccordingly,
then p must reduceto the constant-0 polynomial. This implies that S intersects
all maxonomialsof p (becausea non-intersectedmaxonomialwould still bepresent
in the reducedpolynomial, which would then not be constant-0). Thus, taking a
minimal 0-certi¯cate and querying its variablesreducesthe degreeof p by at least
1. Repeating this at most ndeg(f ) times, we reducep to a constant polynomial
and know f (x). This algorithm takesat most C (0) (f )ndeg(f ) queries. 2

Combining with Theorems2.5.7and 5.7.3we obtain:

5.7.8. Cor ollar y (de Wolf). D(f ) · bs(f )ndeg(f )2 · 24 Q2(f )2N Q(f )2.

This corollary has the somewhat paradoxical consequencethat if the non-
deterministic complexity N Q(f ) is small, then the bounded-error complexity
Q2(f ) must be large (i.e., closeto D(f )). For instance, if N Q(f ) 2 O(1) then
Q2(f ) 2 ­(

p
D(f )). We hope that this result will help tighten the relations

D(f ) 2 O(Q2(f )6) and D(f ) 2 O(Q0(f )4) that we proved in Chapter 2.

5.8 Summary

In Chapter 2 we saw that the bounded-errorquantum query complexity of ev-
ery total function is at most polynomially smaller than its classicaldeterministic
complexity. In this chapter we consideredtwo other modelsof query complexity,
for which the quantum-classicalgap can be much larger. First, for the model of
average-casecomplexity weconstructeda total function basedon Simon'sproblem
where the averagequantum complexity under the uniform distribution is expo-
nentially smaller than the classicalaverage-casecomplexity. We also obtained a
super-exponential gap for the OR-function under a non-uniform distribution and
a near-quadratic gap for the MAJORITY-function under the uniform distribu-
tion. Second,we de¯ned the non-deterministic quantum complexity N Q(f ) of
f as the minimal number of queriesrequired for an algorithm that has positive
acceptanceprobability on input x i® f (x) = 1. WeshowedN Q(f ) to beequal(up
to a factor of 2) to the non-deterministic polynomial degreeof f and exhibited a
function whereN Q(f ) = 1 but wherethe classicalnon-deterministic complexity
is N .
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Chapter 6

Quan tum Comm unication Complexit y

This chapter is basedon the paper

² R. de Wolf. Quantum Communication and Complexity. Invited paper for
Theoretical Computer Science.

6.1 In tro duction

The areaof communication complexity dealswith the following type of problem.
There are two separatedparties, called Alice and Bob. Alice receivessomeinput
x 2 X , Bob receives somey 2 Y, and together they want to compute some
function f (x; y). Sincethe value f (x; y) will generallydepend on both x and y,
neither Alice nor Bob will have su±cient information to do the computation by
themselves,sothey will haveto communicate in order to achievetheir goal. In this
model, individual computation is free, but communication is expensive and has
to beminimized. How many bits do they needto exchangebetweenthem in order
to compute f (x; y)? Clearly, Alice can just sendher completeinput to Bob, but
sometimesmoree±cient schemesarepossible.The minimum number of bits that
Alice and Bob needto communicate is called the communication complexityof f .
This model wasintroducedby Yao[163], inspiredby the older \crossingsequence"
arguments used for obtaining lower bounds on Turing machine computations.
Communication complexity hasbeenstudiedextensively, both for its applications
(like lower boundson VLSI and circuit complexity) and for its own sake. A wealth
of results may be found in the book of Kushilevitz and Nisan [109].

In the quantum setting, the communication resourcesare quantumbits rather
than classicalbits, soan interestingvariant of classicalcommunication complexity
is quantum communication complexity: supposethat Alice and Bob each have
a quantum computer at their disposal and are allowed to exchange quantum
bits (qubits) and/or to make use of the quantum correlations given by shared
EPR-pairs (2-qubit systemsin the entangled state 1p

2
(j00i + j11i )). Can Alice

101
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and Bob now compute f using lessof the new communication resourcesthan in
the classicalcase?Quantum communication complexity was ¯rst consideredby
Yao [165] for the model with qubit communication and no prior EPR-pairs, and
it wasshown later that for someproblemsthe amount of communication required
in the quantum world is indeed considerably less than the amount of classical
communication.

In this chapter we give an introduction to quantum communication complex-
it y. We ¯rst give brief explanationsof quantum communication, and then cover
the main known upper bounds of quantum communication complexity in Sec-
tion 6.4. We include proofs of someof the central results and referencesto oth-
ers. In Section 6.5 we mention someapplications of quantum communication
complexity. In the next chapter we will describe somenew lower bound results
for quantum communication complexity and in Chapter 8 we will give a new ex-
ample of a strong quantum-classicalseparation for a variant of communication
complexity. Someother recent surveys of quantum communication complexity
are [154, 39, 102, 32], and a more popular account can be found in [153].

6.2 Quan tum Comm unication

Before going into quantum communication complexity, we will ¯rst look brie°y
at quantum communication in general. The areaof quantum information theory
dealswith the propertiesof quantum information and its communication between
di®erent parties. We refer to [27, 130] for generalsurveys,and will here restrict
ourselves to explaining two important phenomena:teleportation [23] and super-
densecoding [24]. Thesepre-datequantum communication complexity and show
someof the power of quantum communication.

Here we explain how teleporting a qubit works. Alice has a qubit ®0j0i +
®1j1i that she wants to send to Bob via a classical channel. Without further
resourcesthis would be impossible, since it may take in¯nitely many classical
bits to describe and transmit the exact amplitudes ®0 and ®1. However, if Alice
alsosharesan EPR-pair 1p

2
(j00i + j11i ) with Bob then it can be done,asfollows.

Initially , their joint state is

(®0j0i + ®1j1i ) ­
1

p
2

(j00i + j11i ):

The ¯rst two qubits belongto Alice, the third to Bob. Alice performsa controlled-
not on her two qubits and then a Hadamard transform on her ¯rst qubit. Their
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joint state can now be written as

1
2 j00i ­ (®0j0i + ®1j1i ) +
1
2 j01i ­ (®0j1i + ®1j0i ) +
1
2 j10i ­ (®0j0i ¡ ®1j1i ) +
1
2 j11i

|{z}
Al ice

­ (®0j1i ¡ ®1j0i )
| {z }

B ob

:

Alice then measuresher two qubits and sendsthe result (2 random classical
bits) to Bob, who now knows which transformation he must do on his qubit in
order to regain the qubit ®0j0i + ®1j1i . For instance, if Alice sent 11 then Bob
knows that his qubit is ®0j1i ¡ ®1j0i . A bit-°ip (jbi ! j1 ¡ bi ) followed by a
phase-°ip (jbi ! (¡ 1)bjbi ) will give him Alice's original qubit ®0j0i + ®1j1i . This
techniquecaneasilybegeneralizedto many-qubit systems,and canalsobeshown
to preserve entanglement: if Alice teleports part of her state to Bob, then Bob's
new state will be entangled with the part of the state that Alice kept to herself.

Note that the qubit on Alice's side has beendestroyed: teleporting movesa
qubit from Alice to Bob, rather than copying it. In fact, copying an unknown
qubit is impossible[162], which can be seenasfollows. SupposeC werea 1-qubit
copier, i.e., CjÁij 0i = jÁij Ái for every qubit jÁi . In particular Cj0ij 0i = j0ij 0i
and Cj1ij 0i = j1ij 1i . But then C would not copy jÁi = 1p

2
(j0i + j1i ) correctly,

sinceby linearity CjÁij 0i = 1p
2
(Cj0ij 0i + Cj1ij 0i ) = 1p

2
(j0ij 0i + j1ij 1i ) 6= jÁij Ái .

In teleportation, Alice uses2 classicalbits and 1 EPR-pair to send1 qubit to
Bob. Superdensecoding achieves the opposite: using 1 qubit of communication
and 1 EPR-pair, Alice can send 2 classicalbits b1 and b2 to Bob. It works as
follows. Initially they sharean EPR-pair 1p

2
(j00i + j11i ). First, if b1 = 1 then

Alice appliesthe phasegateR¼ to her half of the pair (this mapsjbi ! (¡ 1)bjbi ).
Second,if b2 = 1 then she applies a bit-°ip. Third, she sendsher half of the
EPR-pair to Bob, who now hasoneof 4 states jÁb1b2 i :

jÁ00i = 1p
2
(j00i + j11i )

jÁ01i = 1p
2
(j10i + j01i )

jÁ10i = 1p
2
(j00i ¡ j11i )

jÁ11i = 1p
2
(j10i ¡ j01i )

Sincethesestatesform an orthogonalset,Bob canapply a unitary transformation
that maps jÁb1b2 i ! jb1b2i and thus learn b1 and b2.

SupposeAlice wants to sendn classicalbits of information to Bob and they
do not shareany prior entanglement. Alice can just sendher n bits to Bob, but,
alternatively, Bob can also ¯rst sendn=2 halvesof EPR-pairs to Alice and then
Alice can sendn bits in n=2 qubits using superdensecoding. In either case,n
qubits are exchangedbetween them. If Alice and Bob already sharen=2 prior
EPR-pairs, then n=2 qubits of communication su±ce by superdensecoding. The
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following result showsthat this is optimal. Wewill refer to it asHolevo'stheorem,
becausethe ¯rst part is an immediate consequenceof a result of [91] (the second
part was derived in [54]).

6.2.1. Theorem (Holev o). If Alice wantsto sendn bits of information to Bob
via a qubit channel,and they do not share prior entanglement,then they haveto
exchangeat least n qubits. If they do share unlimited prior entanglement,then
Alice has to send at least n=2 qubits to Bob, no matter how many qubits Bob
sendsto Alice.

A somewhatstrongerand moresubtle variant of this lower bound wasderived
by Nayak [125], improving upon [11]. Supposethat Alice doesn't want to send
Bob all of her n bits, but just wants to senda messagethat allows Bob to learn
one of her bits x i , where Bob can choose i after the messagehas been sent
(such a messageis called a random accesscode). Even for this weaker form of
communication, Alice has to sendan ­( n)-qubit message.

6.3 The Mo del of Comm unication Complexit y

6.3.1 Classical

First we sketch the setting for classical communication complexity, referring
to [109] for more details. Alice and Bob want to compute somefunction f :
D ! f 0; 1g, where D µ X £ Y. Usually X = Y = f 0; 1gn . If the domain D
equalsX £ Y then f is calleda total function, otherwiseit is a promisefunction.
Alice receivesinput x, Bob receivesinput y, with (x; y) 2 D. As the value f (x; y)
will generallydepend on both x and y, somecommunication betweenAlice and
Bob is required in order for them to be able to compute f (x; y). At the end of
the protocol, Alice and Bob should have the sameoutput. We are interested in
the minimal amount of communication they needfor this.

A communication protocol is a distributed algorithm where ¯rst Alice does
someindividual computation, then sendsa message(of oneor morebits) to Bob,
then Bob doessomecomputation and sendsa messageto Alice, etc. Each message
is called a round. After oneor more rounds the protocol terminates and outputs
somevalue, which must be known to both players. We sketch the form of a
3-round communication protocol in Figure 6.1.

The conversationof somerun of the protocol on someinput is the concate-
nation of all messagessent during that run. The cost of a protocol is the total
number of bits communicated on the worst-caseinput, i.e., the length of the
longestconversation.

We considerthe samethree error-models as in the caseof query complexity
(Chapter 2). A deterministic protocol for f always has to output the right value
f (x; y) for all (x; y) 2 D. In a bounded-error protocol, Alice and Bob may °ip
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Alice: x Bob: y

round 1

round 2

round 3

-

¾

-

Figure 6.1: A 3-round communication protocol

coinsand the protocol hasto output the right valuef (x; y) with probability ¸ 2=3
for all (x; y) 2 D. In a zero-error protocol, Alice and Bob may claim ignorance
(\don't know") with probability · 1=2 on every input (x; y) 2 D, but if they give
an output, then this must be the correct value f (x; y). The acceptance probability
of a protocol on input (x; y) is its probability to output the value1 on that input.
We useDcc(f ), Rcc0(f ), and Rcc2(f ) to denotethe minimal costof deterministic,
zero-error, and (2-sided) bounded-error protocols for f , respectively. The `cc'
in thesenamesstands for \communication complexity"; this is not used in the
standard reference[109], but we add it hereto avoid confusionwith the notation
for query complexitiesusedin the previous part of this thesis. We will add the
superscript \1 round" whenwerestrict attention to protocolswith only oneround
of communication: Alice sendsa messageto Bob, who then computesthe output.

In caseof the randomizedversionsof communication complexity, Rcc0(f ) and
Rcc2(f ), we can either allow Alice and Bob to toss coins individually (private
coin) or jointly (public coin). We will add superscript `pub' if we speak about
the latter model. The di®erencebetween the two is not large: Newman [126]
(seealso [50]) proved that a public coin can save at most about O(log n) bits of
communication, comparedto a protocol with a private coin.

Someoften studied total functions whereX = Y = f 0; 1gn are:

² Equality: EQn (x; y) = 1 i® x = y

² Inner product: IPn (x; y) = PARITY n (x ^ y) =
P

i x i yi (mod 2)
(for x; y 2 f 0; 1gn , x i is the i th bit of x and x ^ y 2 f 0; 1gn is the bit-wise
AND of x and y)

² Disjointness: DISJn (x; y) = NORn (x ^ y). This function is 1 i® there is no
i wherex i = yi = 1 (viewing x and y as characteristic vectors of sets, the
setsare disjoint)

Note that therealways is a trivial protocol with n+ 1 bits of communication: Alice
sendsx to Bob, then Bob computesf (x; y) and sendsback the 1-bit answer. It
is known that this trivial protocol is often optimal, for example Dcc(EQn ) =
Dcc(IP n ) = Dcc(DISJn ) = n + 1, and Rcc2(IP n ); Rcc2(DISJn ) 2 ­( n). However,
sometimesthere are much more e±cient protocols. For instance,Rccpub

2 (EQn ) is
only O(1), as follows. Alice and Bob jointly toss a random string r 2 f 0; 1gn .
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Alice sendsthe bit a = x ¢r mod 2 =
P n

i=1 x i r i mod 2 to Bob. Bob computes
b= y ¢r mod 2 and comparesthis with a. If x = y then a = b, but if x 6= y then
a 6= b with probability 1/2. Thus Alice and Bob can decideequality with small
error using O(n) public coin °ips and O(1) communication. Since public coin
and private coin protocols are closeby Newman's result, this also implies that
Rcc2(EQn ) 2 O(log n) with a private coin. More about e±cient communication
protocols for equality may be found in Chapter 8.

6.3.2 Quan tum

Now what happensif we give Alice and Bob a quantum computerand allow them
to sendeach other qubits and/or to make useof EPR-pairs that they shareat the
start of the protocol? Formally speaking, we can model a quantum protocol as
follows. The total state consistsof 3 parts: Alice's private space,the communica-
tion channel, and Bob's private space.The starting state is jx; ~0ij ~0ij y;~0i : Alice
gets input x, and someadditional initially-zero qubits asworkspace;the channel
is initially empty (zero); and Bob gets input y and someworkspace. (We will
usually not specify the precisenumber of workspace-qubitsused,and sometimes
omit them from the presentation altogether.) Now Alice appliesa ¯xed unitary
transformation UA

1 to her spaceand the channel. This correspondsto her private
computation as well as to putting a messageon the channel. The length of this
¯rst messageis the number of channel-qubitsa®ectedby Alice's operation. Since
nothing happensto Bob's spaceduring the ¯rst round, the overall unitary trans-
formation is UA

1 ­ I B , whereI B is the identit y operation on Bob's space.For the
secondround, Bob applies a ¯xed unitary transformation UB

2 to his spaceand
the channel, then Alice appliesUA

3 , etc. The ¯nal state of a k-round protocol on
input (x; y) is

(UA
k ­ I B )( I A ­ UB

k¡ 1) ¢¢¢(I A ­ UB
2 )(UA

1 ­ I B )jx; ~0ij ~0ij y;~0i :

For technical reasonsit will be convenient to assumethat at the end of the
protocol, the ¯rst qubit of the channel contains the answer. A measurement of
this qubit then determinesthe output of the protocol. This is similar to assuming
that both partiesknow the output bit at the endof the protocol (roughly speaking,
the party who sent the output qubit must know the output in order to be able to
put it on the channel, and the party who receivesthis qubit then alsoknows it).
Note that, despitethe fact that the operation UA

m is independent of x and the ¯rst
m ¡ 1 messages,the mth messagestill dependson x and the earlier messages.
The reasonis that UA

m acts on Alice's workspaceaswell ason the channel,so the
new messagewill depend on what Alice hasin her part of the spaceat that point
(i.e., x and what shehasstored of earlier messages).

A second,equivalent, way to view these protocols is to assumethat they
start in state j~0ij ~0ij ~0i (Alice's workspace;channel; Bob's workspace)and that
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the unitary transformations that Alice and Bob apply are functions of their in-
put. In other words, for a k-round protocol there are unitary transformations
UA

1 (x); UB
2 (y); UA

3 (x); : : : ; UB
k¡ 1(y); UA

k (x), which act on Alice's (resp. Bob's) part
of the spaceand the channel. The ¯nal state of the protocol on input (x; y) is

(UA
k (x) ­ I B )( I A ­ UB

k¡ 1(y)) ¢¢¢(I A ­ UB
2 (y))( UA

1 (x) ­ I B )j~0ij ~0ij ~0i :

Again, at the end of the protocol a measurement of the ¯rst channel-qubit de-
termines the output. It is not hard to show that both kinds of protocols are
equivalent.1

We can considerthree di®erent kinds of quantum communication complexity,
depending on whether we allow qubit communication and/or the use of shared
EPR-pairs. WeuseQccE (f ) to denotethe minimal communication costof a quan-
tum protocol that is allowedqubit communication but no prior entanglement and
that computesf (x; y) exactly (= with error probability 0, the `E' standsfor `ex-
act'). This model was introducedby Yao [165]. In the secondmodel, introduced
by Cleve and Buhrman [53], Alice and Bob sharean unlimited number of EPR-
pairs 1p

2
(j00i + j11i ) at the start of the protocol, but now they communicate via

a classical channel: the channelhasto be in a classicalstate throughout the pro-
tocol. (Actually , Cleve and Buhrman introduceda 3-party versionof this, where
Alice, Bob, and Charley sharethe 3-qubit \GHZ-state" 1p

2
(j000i + j111i )). We

useCcc¤
E (f ) for the minimal complexity of an exact protocol for f in this model.

Note that we only count the communication, not the number of EPR-pairs used;
this is similar to classicalcommunication complexity with a public coin, where
one usually doesnot count the number of coin °ips used. Only communication
is consideredan expensive resourcein this model. The third variant combines
the strengths of the other two: here Alice and Bob start out with an unlimited
number of sharedEPR-pairs and they are allowed to communicate qubits. We
useQcc¤

E (f ) to denotethe communication complexity in this third model.
Clearly, quantum protocolsare at least aspowerful asthe corresponding clas-

sical protocols. Also, by teleportation, 1 EPR-pair and 2 classicalbits can re-
place 1 qubit of communication, so we have Qcc¤

E (f ) · Ccc¤
E (f ) · 2Qcc¤

E (f ) ·
2QccE (f ). Similarly wede¯ne Qcc0(f ), Ccc¤

0(f ), and Qcc¤
0(f ) for zero-error quan-

tum protocolsof the three°avors,and Qcc2(f ), Ccc¤
2(f ), and Qcc¤

2(f ) for bounded-
error quantum protocols.2 Note that a sharedEPR-pair can simulate a public

1We can assumethat protocols of the ¯rst kind do not changethe input-parts containing x
and y during the computation. To get a protocol of the ¯rst kind from one of the secondkind,
just de¯ne UA

1 =
P

z jzihzj ­ UA
1 (z), and similarly de¯ne UB

2 , etc. To get a protocol of the
secondkind from one of the ¯rst kind, de¯ne UA

1 (x) to be the unitary transformation that UA
1

applies to Alice's workspaceand channel if x is ¯xed, and similarly de¯ne UB
2 (y), etc.

2A comment on the pronunciation of this: Qcc¤
2(f ) is \b ounded-error quantum communica-

tion complexity of f with sharedentanglement", Ccc¤
E (f ) is \exact communication complexity

of f with classicalbits and shared entanglement", etc. We sometimesrefer to protocols that
start with prior entanglement as entanglement-enhanced quantum protocols.
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coin toss: if Alice and Bob each measuretheir half of the pair, they get the same
random bit. This implies for instancethat Qcc¤

2(f ) · Rccpub
2 (f ). In particular we

have Qcc¤
2(EQn ) 2 O(1) using the classicalpublic-coin protocol for equality from

the previoussection.
Before continuing to study this model, we ¯rst have to face an important

question: is there anything to be gained here? At ¯rst sight, the following argu-
ment seemsto rule out any signi¯cant gain. By de¯nition, in the classicalworld
Dcc(f ) bits have to be communicated in order to compute f . Since Holevo's
theoremsays that k qubits cannot contain more information than k classicalbits,
it seemsthat the quantum communication complexity should be roughly Dcc(f )
qubits as well (maybe Dcc(f )=2 to account for superdensecoding, but not less).
Fortunately and surprisingly, this argument is false, and quantum communica-
tion can sometimesbe much lessthan classicalcommunication complexity. The
information-theoretic argument via Holevo's theoremdoesnot apply, becauseAl-
ice and Bob do not needto communicate the information in the Dcc(f ) bits of
the classicalprotocol; they are only interestedin the value f (x; y), which is just
1 bit. Below we survey the main examplesthat have so far beenfound of gaps
betweenquantum and classicalcommunication complexity.

6.4 Quan tum Upp er Bounds

6.4.1 Initial steps

Quantum communication complexity was introduced by Yao [165] and studied
by Kremer [108], but neither showed any advantagesof quantum over classical
communication. Cleve and Buhrman [53] introduced the variant with classical
communication and sharedEPR-pairs, and exhibited the ¯rst quantum protocol
provably better than any classicalprotocol. It usesEPR-pairs and 2 classicalbits
of communication to solve somespeci¯c 3-party communication problem exactly,
which would require 3 bits of communication without prior entanglement. This
gapwaslater extendedby Buhrman, Cleve, and van Dam [40] and Buhrman, van
Dam, H¿yer, and Tapp [44].

6.4.2 Buhrman, Clev e, and Wigderson

The ¯rst impressively large gaps between quantum and classical communica-
tion complexity were exhibited by Buhrman, Cleve, and Wigderson [42]. Their
protocols are distributed versionsof known quantum query algorithms, like the
Deutsch-Jozsa and Grover algorithms from Chapter 1. The following lemma
shows how a query algorithm inducesa communication protocol:
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6.4.1. Lemma (BCW [42]). Let g : f 0; 1gn ! f 0; 1g and f (x; y) = g(x ? y),
where ? is any binary connective (for instance © or ^ ). If there is a T-queryquan-
tum algorithm for g, then there is a protocol for f that communicatesT(2 logn+ 4)
qubits (and usesno prior entanglement)and that has the sameerror probability
as the query algorithm.

Pro of. The quantum protocol consistsof Alice's simulating the quantum query
algorithm A on input x ? y. Every query in A will correspond to 2 rounds of
communication. Namely, supposeAlice at somepoint wants to apply a query to
the (log n + 1)-qubit state jÁi =

P
i 2f 1;:::;ng;b2f 0;1g ®ib ji; bi (for simplicity we omit

Alice's workspace). Then sheadds a j0i -qubit to the state, applies the unitary
mapping ji; b;0i ! ji; b;x i i , and sendsthe resulting (log n+ 2)-qubit state to Bob.
Bob now appliesthe unitary mapping ji; b;x i i ! ji; b© (x i ?yi ); x i i and sendsthe
resulting (log n + 2)-qubit state back to Alice. Alice applies ji; b;x i i ! ji; b;0i ,
takeso®the last qubit, and endsup with the state

P
i;b ®ib ji; b© (x i ?yi )i , which

is exactly the result of applying an x ? y-query to jÁi . Thus every query to x ? y
can be simulated using 2logn + 4 qubits of communication. The ¯nal quantum
protocol will have T(2 logn + 4) qubits of communication and computesf (x; y)
with the sameerror probability as A hason input x ? y. 2

Now considerthe disjointnessfunction: DISJn (x; y) = NORn (x ^ y), which is
1 i® x i = yi = 1 for at least one i 2 f 1; : : : ; ng. SinceGrover's algorithm can
compute the NORn of n variables with O(

p
n) queries and small error prob-

abilit y, the previous lemma implies a bounded-error protocol for disjointness
with O(

p
n logn) qubits of communication. On the other hand, the linear lower

bound for disjointnessis a well-known result of classicalcommunication complex-
it y [96, 139]. Thus we obtain the following near-quadraticseparation:

6.4.2. Theorem (BCW [42]). Qcc2(DISJn ) 2 O(
p

n logn) and Rcc2(DISJn ) 2
­( n).

The disjointnessproblem is very similar to the appointment scheduling prob-
lem, which is: Alice and Bob each have an n-slot agenda,and they want to ¯nd
a slot on which they are both free. Viewing their input as n-bit strings, with
a 1 indicating a free day, Alice and Bob need to ¯nd a slot i such that they
both have a 1 on that slot|and this is exactly what the distributed version of
Grover's algorithm does, using near-quadratically lesscommunication than the
best classicalprotocols.

Another separation is given by a distributed version of the Deutsch-Jozsa
problem of Section1.5. Let n be divisible by 4 and DeJon be the Deutsch-Jozsa
promise function on n-bit input z, which is de¯ned to be 1 if jzj = 0, to be 0
if jzj = n=2, and which is unde¯ned if jzj 62f 0; n=2g. De¯ne a communication
complexity problem as EQ0

n (x; y) = DeJon (x © y). This is a promiseversion of
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equality, where the promise is that x and y are either equal or are at Hamming
distance¢( x; y) = n=2 (EQ0

n (x; y) is unde¯ned for other x; y). Sincethere is an
exact 1-query quantum algorithm for DeJon , Lemma 6.4.1 implies QccE (EQ0

n ) 2
O(log n). In contrast, Buhrman, Cleve, and Wigdersonusea combinatorial result
of Frankl and RÄodl [77] to prove the classicallower bound Dcc(EQ0

n ) 2 ­( n),
giving the following exponential separationfor exact protocols:

6.4.3. Theorem (BCW [42]). QccE (EQ0
n ) 2 O(log n) and Dcc(EQ0

n ) 2 ­( n).

Pro of. The quantum upper bound follows immediately from combining the
Deutsch-Jozsaalgorithm with Lemma 6.4.1.

Any classicalprotocol will require­( n) classicalbits of communication to solve
EQ0

n with certainty, as follows. Supposethere is a c-bit deterministic classical
protocol for EQ0

n . It is easyto prove that every conversation corresponds to a
rectangleR = S £ T, with S; T µ f 0; 1gn , such that the protocol has the same
conversation and output i® (x; y) 2 R (seee.g. [109, Section 1.2]). Sincethere
are at most 2c possibleconversations,the protocol partitions f 0; 1gn £ f 0; 1gn in
at most 2c di®erent such rectangles.Now considerall n-bit strings x of Hamming
weight n=2, there are roughly 2n=

p
n of those. Sinceevery (x; x)-pair must occur

in somerectangleand there are only 2c rectangles,there is a rectangleR = S£ T
that contains at least 2n=

p
n2c di®erent such (x; x)-pairs. Let A = f x j jxj =

n=2; (x; x) 2 Rg be the set of such x. SinceR contains some(x; x)-pairs (on
which the protocol outputs 1) and the protocol hasthe sameoutput for all inputs
in R, R contains no 0-inputs. This implies that the Hamming distanceof every
pair x; y 2 A is di®erent from n=2, for otherwise(x; y) would be a 0-input in R.
Viewing the x in A ascharacteristic vectorsof sets,it is easyto seethat the size
of the intersection of x; y 2 A is never n=4. Thus we have a set systemA of at
least 2n=

p
n2c sets,such that the sizeof the intersection of any two sets in A is

not n=4. However, by Corollary 1.2 of [77], such a set systemcan have at most
1:99n elements, so we have

2n

p
n2c

· jAj · 1:99n :

This implies c ¸ log(2n=
p

n1:99n ) ¸ 0:007n. 2

6.4.3 Raz

Notice the contrast between the two separationsof the previous section. For
the distributed Deutsch-Jozsaproblem we get an exponential quantum-classical
separation,but the separationonly holds if we force the classicalprotocol to be
exact; it is easyto seethat O(log n) bits of communication su±ce for classical
protocols if we allow a small probability of error (the classicalprotocol can just
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try a few random positions i and check if x i = yi or not). On the other hand, the
gap for the disjointnessfunction is only quadratic, but it holds even if we allow
classicalprotocols to have someerror probability. Ran Raz [138] hasexhibited a
function wherethe quantum-classicalseparationhasboth features: the quantum
protocol is exponentially better than the classicalprotocol, even if the latter is
allowed someerror probability. Considerthe following promiseproblem P:

Alice receivesa unit vector v 2 Rm and a decomposition of the cor-
responding spacein two orthogonal subspacesH (0) and H (1) . Bob
receivesan m £ m unitary transformation U.
Promise: Uv is either \close" to H (0) or to H (1) .
Question: which of the two?

Formally, Uv being \close" to subspaceH (i ) meansthat k Pi Uv k2¸ 2=3, where
Pi is the projector on subspaceH (i ) . As stated, this is a problem with continuous
input, but it can be discretizedby approximating each real number by O(log m)
bits. Alice and Bob's input is now n 2 O(m2 logm) bits long. There is a simple
yet e±cient 2-round quantum protocol for this problem: Alice viewsv asa logm-
qubit state and sendsthis to Bob. Bob applies U and sendsback the result.
Alice then measuresin which subspaceH (i ) the vector Uv lies and outputs the
resulting i . This takesonly 2logm 2 O(log n) qubits of communication and has
small probability of error.

The e±ciency of this protocol comesfrom the fact that an m-dimensional
vector can be \compressed" or \represented" as a logm-qubit state. Similar
compressionis not possiblewith classicalbits, which suggeststhat any classical
protocol for P will haveto sendthe vectorv moreor lessliterally andhencerequire
much communication. This turns out to be true but the proof is surprisingly
hard [138]. The result is the ¯rst exponential gap betweenQcc2 and Rcc2:

6.4.4. Theorem (Raz [138]). Qcc2(P) 2 O(log n) and Rcc2(P) 2 ­
µ

n1=4

logn

¶
.

6.5 Some Applications

The main applications of classical communication complexity have beenin prov-
ing lower bounds for various models like VLSI, Boolean circuits, formula size,
Turing machine complexity, data structures, automata sizeetc. We refer to [109]
for many examples. Typically, one proceedsby showing that a communication
complexity problem f is \embedded" in the computational problem P of inter-
est, and then usescommunication complexity lower bounds on f to establish
lower boundson P. Similarly, quantum communication complexity can be used
to establish lower bounds in various models of quantum computation, though
such applications have received relatively little attention so far. We will brie°y
mention some.
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Yao [165] initially introduced quantum communication complexity as a tool
for proving a superlinear lower boundon the quantum formula sizeof the majorit y
function (a \form ula" is a circuit of restricted form). More recently, Klauck [101]
usedone-roundquantum communication complexity lower boundsto prove lower
boundson the sizeof quantum formulae.

Sinceupper boundson querycomplexity giveupper boundson communication
complexity (Lemma6.4.1),lower boundson communication complexity give lower
boundson query complexity. For instance, IPn (x; y) = PARITY n (x ^ y), so the
­( n) boundwhich wasprovenfor IPn in [54](seealsoSection7.4below) impliesan
­( n=logn) lower bound for the quantum query complexity of the parity function,
asobserved by Buhrman, Cleve, and Wigderson[42]. This lower bound waslater
strengthenedto n=2, as explainedin Section2.6.3of this thesis.

Furthermore, as in the classicalcase,lower bounds on (one-way) communi-
cation complexity imply lower bounds on the sizeof ¯nite automata. This was
usedby Klauck [101] to show that zero-errorquantum ¯nite automata cannot be
much smaller than classicaldeterministic ¯nite automata.

Finally, Ben-Or [21] has recently applied the lower bounds for IPn in a new
proof of the security of quantum key distribution.

6.6 Other Dev elopmen ts

At the endof this introductory chapter, wemention someother resultsin quantum
communication complexity or related models:

² Zero-error proto cols. We have seenquantum-classicalseparationsin the
exact and the bounded-errorsettings. What about the zero-errorsetting?
It wasobservedin [43] that wecancombine Lemma6.4.1with our zero-error
quantum algorithms for AND-OR trees(Section2.7.2)to get quantum zero-
error protocolsfor the total function which is the dth-level AND-OR tree of
x ^ y. Theseprotocols useO(n1=2+1 =d logn) qubits of communication. We
conjecturethat classicalzero-errorprotocolsneed­( n) communication for
thesefunctions (for ¯xed d), but were unfortunately unable to prove this.
Klauck [101] later constructeda similar function f for which he could prove
a good lower boundon Rcc0(f ), thusestablishingthe ¯rst quantum-classical
separationbetweenQcc0(f ) and Rcc0(f ) for a total function.

² One-w ay comm unication. Supposethe communication is one-round:Al-
ice just sendsqubits to Bob. Klauck [101] showedfor all total functions that
quantum communication is not signi¯cantly better than classicalcommuni-
cation for one-way communication in the exact or zero-errorsettings.

² Rounds. It is well known in classicalcommunication complexity that al-
lowing Alice and Bob k + 1 rounds of communication instead of k reduces
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the required communication exponentially for somefunctions. An analo-
gousresult has recently beenshown for quantum communication [104].

² Quan tum sampling. For the sampling problem, Alice and Bob do not
want to compute somef (x; y), but instead want to samplean (x; y)-pair
accordingto someknown joint probability distribution, using as little com-
munication as possible. Ambainis et al. [12] give a tight algebraiccharac-
terization of quantum samplingcomplexity, and exhibit an exponential gap
betweenthe quantum and classicalcommunication required for a sampling
problem related to disjointness.

² Spooky comm unication. Brassard, Cleve, and Tapp [33] exhibit tasks
that can be achieved in the quantum world with entanglement and no
communication, but which would require communication in the classical
world. They call such quantum protocols \spooky" in referenceto Ein-
stein's description of certain quantum e®ectsas \spooky actions at a dis-
tance" (\spukhafte Fernwirkungen"). Brassard,Cleve, and Tapp also give
upper and lower boundson the amount of classicalcommunication needed
to \simulate" EPR-pairs. Their results may be viewed as quantitativ e ex-
tensionsof the famousBell inequalities [20].

6.7 Summary

The basic problem of communication complexity is the following: Alice receives
an input x and Bob receives an input y (usually of n bits each), and together
they want to compute somefunction f (x; y) using as little communication be-
tweenthem as possible.This model of distributed computation has found many
applications in classicalcomputing. Quantum communication complexity asks
whether the amount of communication of such a problem can be reducedsig-
ni¯cantly if Alice and Bob can communicate qubits and/or make use of shared
entanglement. The answer is `yes' (sometimes). In this chapter we described the
main examplesknown wherequantum communication complexity is signi¯cantly
lessthan classicalcommunication complexity, as well as someapplications.





Chapter 7

Lower Bounds for Quan tum
Comm unication Complexit y

This chapter is basedon the papers

² H. Buhrman and R. de Wolf. Communication Complexity Lower Bounds
by Polynomials. In Proceedings of 16th IEEE Annual Conference on Com-
putational Complexity (CCC 2001),pages120{130,2001.

² R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conference on ComputationalComplexity(CCC 2000),pages271{278,
2000.

7.1 In tro duction

To repeat the previouschapter, the ¯eld of communication complexity dealswith
the following kind of problem: Alice receives someinput x 2 X , Bob receives
somey 2 Y, and together they want to compute some(usually Boolean) func-
tion f (x; y) which depends on both x and y. At the end of the protocol they
shouldboth have the sameoutput. We are interestedin the minimum amount of
communication that Alice and Bob need. The communication may be classical
or quantum, and the protocolsmay be exact, zero-error,or bounded-error.

In Section 6.4, we saw someexampleswhere quantum communication com-
plexity was exponentially smaller than classicalcommunication complexity. The
questionariseshow big the gapsbetweenquantum and classicalcan be for vari-
ous (classesof) functions. In order to answer this, we needto exhibit limits on
the power of quantum communication complexity, i.e., establishlower boundson
quantum communication complexity. Few such lower bound techniquesare cur-
rently known. Somelower bound methodsareavailable for QccE (f ) [165, 108, 54,
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12], but the only lower bound known for the entanglement-enhancedcomplexity
Qcc¤

E (f ) is for the inner product function [54].1 For the caseof lower bounds
on bounded-errorprotocols, our current techniquesare even more limited. The
main purposeof this chapter is to develop new tools for proving lower boundson
quantum communication protocols.

The tools we will develop are quite successfulfor proving lower bounds on
exactquantum protocols. A strong and well known lower bound for the classical
deterministic complexity Dcc(f ) is given by the logarithm of the rank (over the
¯eld of real numbers) of the communication matrix for f [121]. As ¯rst noted
in [42], techniquesof Yao [165] and Kremer [108] imply that an ­(log rank(f ))-
bound also holds for QccE (f ). Our ¯rst result in this chapter is to extend this
bound to the entanglement-enhancedcomplexity Qcc¤

E (f ) and to derive the op-
timal constant:2

Qcc¤
E (f ) ¸

log(rank(f ) ¡ 1)
2

:

This implies n=2 lower bounds for the Qcc¤
E -complexity of the equality and dis-

jointness problems, for which no good bounds were known prior to this work.
This n=2 is tight up to 1 bit, sinceAlice can sendher n-bit input to Bob with
n=2 qubits and n=2 EPR-pairs using superdensecoding [24]; Bob can then com-
pute f (x; y) and sendback the 1-bit answer. Our n=2 lower bound alsoprovides
a new proof of optimality of superdensecoding: if we were able to send more
than 2 classicalbits via 1 qubit of communication, then we would violate our
communication complexity lower bounds. The samen=2 bound can be shown to
hold for almost all functions (which, however, doesnot precludethe existenceof
interesting problemswith large quantum-classicalgaps).

In another direction, proof of the well known \log-rank conjecture" (Dcc(f ) ·
(log rank(f )) k for some k) would now imply polynomial equivalence between
Dcc(f ) and Qcc¤

E (f ) (as already noted for Dcc(f ) and QccE (f ) in [12]). How-
ever, this conjecture is a long standing open question which is probably hard
to solve in full generality. In order to get a better handle on rank(f ), we re-
late it to a property of polynomials. If our communication problem is of the
form f (x; y) = g(x ^ y) for someBoolean function g (where x ^ y is the n-bit
string obtained by bitwiseANDing x and y), then we prove that rank(f ) equals
the number of monomialsmon(g) in the unique representing polynomial for g.
Sincemon(g) is often easyto count, this relation allows us to prove polynomial
equivalenceof Dcc(f ) and Qcc¤

E (f ) for the special caseswhereg is monotoneor

1Recall from the previous chapter that for the Q¤ and C¤ complexities we only count the
number of communicated qubits, not the number of prior EPR-pairs consumedby the protocol.

2During discussionswe had with Michael Nielsenin Cambridge (UK) in the summerof 1999,
it appearedthat an equivalent result canbe derived from results about Schmidt numbers in [129,
Section 6.4.2].

Actually , in the conferenceversion of this work [48], the lower bound was stated without the
¡̀ 1', but that proof contained a bug.



7.2. Lower Boundsfor Exact Protocols 117

symmetric.
For the caseof bounded-error quantum protocols, very few lower boundsare

currently known (exceptions are inner product [54] and the general \discrep-
ancy" bound [108]). In particular, no good lower bounds are known for the
disjointnessproblem. The best known upper bound for this is O(

p
n logn) qubits

(Section6.4.2),contrasting with linear classicalrandomizedcomplexity. Sincedis-
jointnessis a \co-NP -complete"communication problem[14], a good lower bound
for this problem would imply lower bounds for all \ NP -hard" communication
problems. In order to attack this problem, we make an e®ortto extend the above
polynomial-basedapproach to bounded-errorprotocols. We considerthe approxi-
mate rank, denoted ]rank(f )), and show the bound Qcc2(f ) ¸ (log ]rank(f ))=2 for
2-sidedbounded-errorqubit protocols (again using techniques from [165, 108]).
Unfortunately, lower bounds on ]rank(f ) are much harder to obtain than for
rank(f ). If we could prove for the casef (x; y) = g(x ^ y) that ]r ank(f ) roughly
equalsthe number of monomials gmon(g) of an approximating polynomial for g,
then an ­(

p
n) lower bound would follow for disjointness,becausewe show that

disjointnessrequiresat least2
p

n monomialsto approximate. Sincewe prove that
the quantities rank(f ) and mon(g) are in fact equal in the exact case,this gives
somehope for a similar result ]r ank(f ) ¼ gmon(g) in the approximating case,and
hencefor resolvingthe complexity of disjointness. Nevertheless,the boundsthat
we actually are able to prove for disjointnessare disappointingly weak. We end
the chapter with a discussionof someof the main open problems for quantum
communication complexity.

7.2 Lower Bounds for Exact Proto cols

Consider a total function f : f 0; 1gn £ f 0; 1gn ! f 0; 1g. The communication
matrix M f corresponding to this f is the 2n £ 2n Boolean matrix whose(x; y)-
entry is f (x; y). We use rank(f ) to denote the rank of M f (over the reals).
One of the most powerful techniquesfor lower boundson classicaldeterministic
communication complexity is the well known log-rank lower bound: Dcc(f ) ¸
logrank(f ). This was ¯rst proven by Mehlhorn and Schmidt [121].

As noted in [42, 12], techniquesfrom [165, 108] imply a similar lower bound for
quantum protocolswith prior entanglement: QccE (f ) 2 ­(log rank(f )). Herewe
will ¯rst prove the logrank(f ) bound for clean quantum protocolsand afterwards
extend it to generalentanglement-enhancedprotocols. A clean qubit protocol is
a protocol, of the secondkind consideredin Section 6.3.2, that leaves a clean
workspacebehind at the end of the protocol: it starts in the state j~0ij 0ij ~0i (no
prior entanglement) and endswith j~0ij f (x; y)ij ~0i We useQccc(f ) for the minimal
cost of such clean protocols for f . For simplicity, our proof assumesthat the
channel is a 1-qubit space. The sameproof works if the channel can hold more
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qubits. We usethe following lemma:

7.2.1. Lemma (Y ao [165]; Kremer [108]). The ¯nal state of an `-qubit pro-
tocol (without prior entanglement)on input (x; y) can be written as

X

i 2f 0;1g`

®i (x)¯ i (y)jA i (x)ij i ` ij B i (y)i ;

where the ®i (x); ¯ i (y) are complex numbers of magnitude · 1, the A i (x); B i (y)
are unit vectors, and i ` denotesthe last bit of the `-bit string i .

Pro of. The proof is by induction on `:
Base step. For ` = 0 the lemma is obvious.
Induction step. Supposeafter ` qubits of communication the state can be

written as X

i 2f 0;1g`

®i (x)¯ i (y)jA i (x)ij i ` ij B i (y)i : (7.1)

We assumewithout lossof generality that it is Alice's turn: sheappliesUA
`+1 (x)

to her part and the 1-qubit channel. Note that there exist complex numbers
®i 0(x); ®i 1(x) and unit vectorsA i 0(x); A i 1(x) such that

(UA
`+1 (x) ­ I )jA i (x)ij i ` ij B i (y)i =

®i 0(x)jA i 0(x)ij 0ij B i (y)i + ®i 1(x)jA i 1(x)ij 1ij B i (y)i :

Thusevery element of the superposition (7.1) \splits in two" whenwe apply UA
`+1 .

Accordingly, we canwrite the state after U`+1 in the form requiredby the lemma,
which concludesthe proof. 2

7.2.2. Theorem (Buhrman & de Wolf [48]). Qccc(f ) ¸ logrank(f ) + 1.

Pro of. Considera clean`-qubit protocol for f . By Lemma 7.2.1,we can write
its ¯nal state as X

i 2f 0;1g`

®i (x)¯ i (y)jA i (x)ij i ` ij B i (y)i :

The protocol is clean, so the ¯nal state is j~0ij f (x; y)ij ~0i . Hence all parts of
jA i (x)i and jB i (y)i other than j~0i will cancelout, and we can assumewithout
lossof generality that jA i (x)i = jB i (y)i = j~0i for all i . Now the amplitude of the
j~0ij 1ij ~0i -state is simply the sum of the amplitudes ®i (x)¯ i (y) of the i for which
i ` = 1. This sum is either 0 or 1, and equalsthe acceptanceprobability P(x; y)
of the protocol. Letting ®(x) (resp. ¯ (y)) be the dimension-2̀¡ 1 vector whose
entries are ®i (x) (resp. ¯ i (y)) for the i with i ` = 1, we obtain:

P(x; y) =
X

i :i ` =1

®i (x)¯ i (y) = ®(x)T ¢¯ (y):
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Sincethe protocol is exact, we must have P(x; y) = f (x; y). Henceif we de¯ne
A as the jX j £ d matrix having the ®(x) as rows and B as the d £ jY j matrix
having the ¯ (y) as columns,then M f = AB . But now

rank(M f ) = rank(AB ) · rank(A) · d · 2l ¡ 1;

and the theoremfollows. 2

We now extend this to the casewhereAlice and Bob sharean unlimited (but
¯nite) number of EPR-pairs at the start of the protocol:

7.2.3. Theorem (Buhrman & de Wolf [48]). Qcc¤
E (f ) ¸

log(rank(f ) ¡ 1)
2

.

Pro of. Let M §
f be the matrix whose(x; y)-entry is (¡ 1)f (x;y ) ; this is the matrix

weget if wereplacef 0; 1g by f +1; ¡ 1g in the ordinary communication matrix M f .
Letting J denotethe all-1 matrix (which hasrank 1), we have M §

f = J ¡ 2M f , so
the ranks of M f and M §

f di®erby at most 1. For m > 0, let f ©m : X m £ Y m !
f 0; 1g denote the Boolean function that is the XOR of m independent copies
of f , i.e., f ©m (x1; : : : ; xm ; y1; : : : ; ym ) = f (x1; y1) © ¢¢¢© f (xm ; ym ). Note that
M §

f © m = (M §
f )­ m , becausethe XOR of m Boolean variables in § -notation is

just their product. This implies that rank(M §
f © m ) = rank(M §

f )m and hencealso
rank(f ©m ) ¸ (r ank(f ) ¡ 1)m ¡ 1.

Now supposewe have someexact protocol for f that uses` qubits of com-
munication and k prior EPR-pairs. We will build a cleanqubit protocol without
prior entanglement for f ©m , and then invoke Theorem7.2.2to get a lower bound
on `. The idea is to establish the prior entanglement once, then to reuseit to
cleanly compute f m times, and ¯nally to \uncompute" the entanglement.

First Alice makesk EPR-pairs and sendsone half of each pair to Bob (at a
cost of k qubits of communication). Now they run the protocol to compute the
¯rst instance of f (` qubits of communication). Alice and Bob each copy the
answer to a safeplace,which we will call their respective `answer bits', and they
reversethe protocol (again ` qubits of communication). This gives them back
the k EPR-pairs and an otherwiseclean workspace,which they can reuse. Now
they compute the secondinstance of f , they each XOR the answer into their
answer bit (which can be donecleanly), and they reversethe protocol, etc. After
all m instancesof f have beencomputed, Alice and Bob both have the answer
f ©m (x; y) left and the k EPR-pairs, which they uncomputeusinganotherk qubits
of communication (Bob sendshis halves of the k EPR-pairs to Alice, who sets
them back to j00i ).

This gives a clean protocol for f ©m that uses2m` + 2k qubits and no prior
entanglement. By Theorem7.2.2we obtain:

2m` + 2k ¸ Qccc(f
©m ) ¸ logrank(f ©m ) + 1

¸ log((rank(f ) ¡ 1)m ¡ 1) + 1 ¸ m log(rank(f ) ¡ 1);
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hence

` ¸
log(rank(f ) ¡ 1)

2
¡

k
m

:

Sincethis must hold for every m > 0, the theoremfollows. 2

We can derive a stronger bound for the Ccc¤
E (f )-complexity, which combines

classical communication with unlimited prior entanglement:

7.2.4. Theorem (Buhrman & de Wolf [48]). Ccc¤
E (f ) ¸ log(rank(f ) ¡ 1).

Pro of. Let f ^ f : X 2 £ Y 2 ! f 0; 1g denote the Boolean function that is
the AND of two independent copiesof f . Note that M f ^ f = M f ­ M f and
hencerank(f ^ f ) = rank(f )2. Since a qubit and an EPR-pair can be used
to send 2 classical bits via superdensecoding (Section 6.2), we can devise a
qubit protocol for f ^ f using Ccc¤

E (f ) qubits (compute the two copiesof f in
parallel usingthe classicalbit protocol). Henceby the previoustheoremweobtain
Ccc¤

E (f ) ¸ Qcc¤
E (f ^ f ) ¸ (log(rank(f ^ f ) ¡ 1))=2 ¸ log(rank(f ) ¡ 1). 2

Below we draw someconsequencesfrom theselog-rank lower bounds. Firstly,
the communication matrix M EQn of the equality-problem is the 2n £ 2n iden-
tit y matrix, so rank(EQn ) = 2n . This implies Qcc¤

E (EQn ) ¸ n=2, which is
tight up to 1 bit becauseof superdensecoding, and Ccc¤

E (EQn ) ¸ n (in con-
trast, Qcc2(EQn ) 2 £(log n) and Ccc¤

2(EQn ) 2 O(1)). The disjointness func-
tion on n bits is the AND of n disjointnesseson 1 bit (which have rank 2
each), so rank(DISJn ) = 2n . The complement of the inner product function
has rank(IPn ) = 2n . Thus we have the following strong lower bounds, all tight
up to 1 bit: 3

7.2.5. Cor ollar y (Buhrman & de Wolf [48]).

² Qcc¤
E (EQn ); Qcc¤

E (DISJn ), Qcc¤
E (IP n ) ¸ n=2

² Ccc¤
E (EQn ); Ccc¤

E (DISJn ); Ccc¤
E (IP n ) ¸ n

Koml¶os[107] hasshown that the fraction of m£ m Booleanmatricesthat have
determinant 0 goesto 0 as m ! 1 . Hencealmost all 2n £ 2n Booleanmatrices
have full rank 2n , which implies that almost all functions have maximal quantum
communication complexity:

7.2.6. Cor ollar y (Buhrman & de Wolf [48]). For almost all total f we
haveQcc¤

E (f ) ¸ n=2 and Ccc¤
E (f ) ¸ n.

3The samebounds for IPn are also given in [54]. The bounds for EQn and DISJn are new,
and can also be shown to hold for zero-error quantum protocols.
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In classicalcommunication complexity, much research went into variouskinds
of direct sum properties (see[109, Section4.1]). We say f satis¯es the quantum
direct sum property if computing m independent copiesof f (without prior en-
tanglement) takesmQccE (f ) qubits of communication in the worst case.We do
not know an exampleof an f without this property. Using the sametechnique as
before,we can prove an equivalencebetweenthe qubit modelswith and without
prior entanglement for f that satisfy this property:

7.2.7. Cor ollar y (Buhrman & de Wolf [48]). If f satis¯es the quantum
direct sum property, then Qcc¤

E (f ) · QccE (f ) · 2Qcc¤
E (f ).

Pro of. Qcc¤
E (f ) · QccE (f ) is obvious. Using the techniquesof Theorem 7.2.3

wehavemQccE (f ) · 2mQcc¤
E (f )+ k, for all m andsomē xed k, henceQccE (f ) ·

2Qcc¤
E (f ). 2

Finally, becauseof Theorem7.2.3, the well known \log-rank conjecture" now
implies the polynomial equivalenceof deterministic classicalcommunication com-
plexity and exact quantum communication complexity (with or without prior
entanglement) for all total f :

7.2.8. Cor ollar y (Buhrman & de Wolf [48]). If for somefunction f we
have that Dcc(f ) 2 O((log rank(f )) k), then Qcc¤

E (f ) · QccE (f ) · Dcc(f ) 2
O(Qcc¤

E (f )k).

7.3 A Lower Bound Technique via Polynomials

7.3.1 Decomp ositions and polynomials

The previoussectionshowed that lower boundson rank(f ) imply lower bounds
on Qcc¤

E (f ). In this sectionwe relate rank(f ) to the number of monomialsof a
polynomial for f and usethis to prove lower boundson Qcc¤

E (f ) for someclasses
of functions.

We de¯ne the decomposition number m(f ) of some function f : f 0; 1gn £
f 0; 1gn ! R as the minimum m such that there exist functions a1(x); : : : ; am (x)
and b1(y); : : : ; bm (y) (from Rn to R) for which f (x; y) =

P m
i=1 ai (x)bi (y) for all

x; y. We say that f can be decomposed into the m functions ai bi . Without lossof
generality, the functions ai ; bi may be assumedto be multilinear polynomials. It
is easyto seethat the decomposition number equalsthe rank:4

4The ¯rst part of the proof employs a technique of Nisan and Wigderson [134]. They used
this to prove logr ank(f ) 2 O(n log 3 2) for a speci¯c f . Our Corollary 7.3.4, together with an
easylower bound on the number of monomials in the polynomial for their function, implies that
this is tight: logr ank(f ) 2 £( n log 3 2) for their f .
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7.3.1. Lemma (Buhrman & de Wolf [48]). r ank(f ) = m(f ).

Pro of.
rank (f ) · m(f ): Let f (x; y) =

P m(f )
i =1 ai (x)bi (y), M i be the matrix de¯ned by

M i (x; y) = ai (x)bi (y), r i be the row vector whoseyth entry is bi (y). Note that
the xth row of M i is ai (x) times r i . Thus all rows of M i are scalar multiples of
each other, henceM i has rank 1. Sincerank(A + B) · rank(A) + rank(B) and
M f =

P m(f )
i =1 M i , we have rank(f ) = rank(M f ) ·

P m(f )
i =1 r ank(M i ) = m(f ).

m(f ) · rank (f ): Supposerank(f ) = r . Then there are r columnsc1; : : : ; cr

in M f which spanthe column spaceof M f . Let A be the 2n £ r matrix that has
theseci ascolumns. Let B be the r £ 2n matrix whosei th column is formedby the
r coe±cients of the i th column of M f when written out as a linear combination
of c1; : : : ; cr . Then M f = AB , hencef (x; y) = M f (x; y) =

P r
i =1 Axi B iy : De¯ning

functions ai ; bi by ai (x) = Axi and bi (y) = B iy , we have m(f ) · r ank(f ). 2

Combined with Theorems7.2.3and 7.2.4we obtain

7.3.2. Cor ollar y (Buhrman & de Wolf [48]). Qcc¤
E (f ) ¸

log(m(f ) ¡ 1)
2

and Ccc¤
E (f ) ¸ log(m(f ) ¡ 1).

Accordingly, for lower bounds on quantum communication complexity it is
important to be able to determine the decomposition number m(f ). Often this
is hard. It is much easierto determine the number of monomialsmon(f ) of the
representing polynomial for f . Clearly m(f ) · mon(f ). Below we show that in
the special casewheref (x; y) = g(x ^ y), thesetwo numbersare the same.5

Below, a monomial is calledevenif it contains x i i® it contains yi , for example
2x1x3y1y3 is evenand x1x3y1 is not. A polynomial is evenif each of its monomials
is even.

7.3.3. Lemma (Buhrman & de Wolf [48]). If p : f 0; 1gn £ f 0; 1gn ! R is
an evenpolynomial with k monomials, then m(p) = k.

Pro of. Clearly m(p) · k. To prove the converse, consider DISJn (x; y) =
¦ n

i=1 (1 ¡ x i yi ), the unique polynomial for the disjointness function. Note that
this polynomial contains all and only even monomials (with coe±cients § 1).
Since DISJn has rank 2n , it follows from Lemma 7.3.1 that DISJn cannot be
decomposedin fewer then 2n terms. We will show how a decomposition of p with
m(p) < k would give rise to a decomposition of DISJn with fewer than 2n terms.
Supposewe can write

p(x; y) =
m(p)X

i =1

ai (x)bi (y):

5After learning about this result, Mario Szegedy(personal communication) came up with
an alternativ e proof of this, using Fourier transforms.
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Let axSyS be someeven monomial in p and supposethe monomial xSyS in DISJn

hascoe±cient c = § 1. Now whenever bxS occursin someai , replacethat bxS by
(cb=a)xS. Using the fact that p contains only even monomials, it is not hard to
seethat the new polynomial obtained in this way is the sameas p, except that
the monomial axSxS is replacedby cxSxS.

Doing this sequentially for all monomialsin p, we endup with a polynomial p0

(with k monomialsand m(p0) · m(p)) which is a subpolynomial of DISJn , in the
sensethat each monomial in p0 also occurs with the samecoe±cient in DISJn .
Notice that by adding all 2n ¡ k missing DISJn -monomials to p0, we obtain a
decomposition of DISJn with m(p0) + 2n ¡ k terms. But any such decomposition
needsat least 2n terms, hencem(p0) + 2n ¡ k ¸ 2n , which implies k · m(p0) ·
m(p). 2

If f (x; y) = g(x ^ y) for someBoolean function g, then the polynomial that
represents f is just the polynomial of g with the i th variable replacedby x i yi .
Hencesuch a polynomial is even, and we obtain:

7.3.4. Cor ollar y (Buhrman & de Wolf [48]). If g : f 0; 1gn ! f 0; 1g and
f (x; y) = g(x ^ y), then mon(g) = mon(f ) = m(f ) = rank(f ).

This givesa tool for lower bounding (quantum and classical)communication
complexity whenever f is of the form f (x; y) = g(x ^ y): log(mon(g) ¡ 1) ·
Ccc¤

E (f ) · Dcc(f ). Below we give someapplications.

7.3.2 Symmetric functions

As a ¯rst application we show that Dcc(f ) and Qcc¤
E (f ) are linearly related if

f (x; y) = g(x ^ y) and g is symmetric (this follows from Corollary 7.3.8 be-
low). Furthermore, we show that the classicalrandomizedpublic-coin complexity
Rpub

2 (f ) canbeat mosta logn-factor lessthan Dcc(f ) for such f (Theorem7.3.10).
We will assumewithout lossof generality that g(~0) = 0, so the polynomial rep-
resenting g doesnot have the constant-1 monomial.

7.3.5. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function such
that its lowest-weight1-input hasHamming weight t > 0, and f (x; y) = g(x ^ y),
then Dcc1 r ound (f ) = log

¡P n
i= t

¡ n
i

¢
+ 1

¢
+ 1.

Pro of. It is known (and easyto see)that Dcc1 r ound (f ) = logr + 1, wherer is the
number of di®erent rowsof M f (this equalsthe number of di®erent columnsin our
case,becausef (x; y) = f (y; x)). We count r . Firstly, if jxj < t then jx ^ yj < t, so
then the x-row of M f contains only zeroesby de¯nition of f . Secondly, if x 6= x0

and both jxj ¸ t and jx0j ¸ t then it is easy to seethat there exists a y such
that jx ^ yj = t and jx0 ^ yj < t (or vice versa), hencef (x; y) 6= f (x0; y) so the
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x-row and x0-row are di®erent. Accordingly, r equalsthe number of di®erent x
with jxj ¸ t, +1 for the 0-row, which givesthe lemma. 2

7.3.6. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function such
that its lowest-weight1-input hasweight t > 0, then

(1 ¡ o(1)) log

Ã
nX

i = t

µ
n
i

¶ !

· logmon(g) · log

Ã
nX

i = t

µ
n
i

¶ !

:

Pro of. The upper bound follows immediately from the fact that g can only
contain monomialsof degree¸ t. For the lower bound we distinguish two cases.

Case 1: t · n=2. It has been proven by von zur Gathen and Roche that
every symmetric g has degreedeg(g) = n ¡ O(n0:548) (Theorem 2.6.1). This
implies that g must contain a monomial of degreed for somed 2 [n=2; n=2 + b]
with b2 O(n0:548), for otherwisewe could set n=2¡ b variablesto zeroand obtain
a non-constant symmetric function on m = n=2+ bvariableswith degree< n=2 ·
m¡ O(m0:548). But becauseg is symmetric, it must then contain all

¡ n
d

¢
monomials

of degreed. Using Stirling's approximation (n! = (1 + o(1))
p

2¼n(n=e)n ) we now
get (suppressingconstant factors in the derivation):

mon(g) ¸
µ

n
d

¶

¸
µ

n
n=2 + b

¶

=
nn+1 =2

(n=2 ¡ b)n=2¡ b+1 =2(n=2 + b)n=2+ b+1 =2

=
nn+1 =2

((n=2)2 ¡ b2)n=2¡ b+1 =2(n=2 + b)2b

¸
nn+1 =2

(n2=4)n=2¡ b+1 =2n2b

=
nn+1 =2

(n=2)n¡ 2b+1 n2b

=
2n¡ 2b+1

p
n

:

Hencelogmon(g) ¸ n ¡ O(n0:548) = (1 ¡ o(1))n ¸ (1 ¡ o(1)) log
¡P n

i= t

¡ n
i

¢¢
.

Case 2: t > n=2. It is easy to seeby symmetry that g contains all
¡ n

t

¢

monomialsof degreet. Now

(n ¡ t + 1)mon(g) ¸ (n ¡ t + 1)
µ

n
t

¶
¸

nX

i = t

µ
n
i

¶
:
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Hencelogmon(g) ¸ log
¡P n

i= t

¡ n
i

¢¢
¡ log(n ¡ t + 1) = (1 ¡ o(1)) log

¡P n
i= t

¡ n
i

¢¢
. 2

The number mon(g) may be lessthen
P n

i= t

¡ n
i

¢
. For example, consider the

function g(x1; x2; x3) = x1 + x2 + x3 ¡ x1x2 ¡ x1x3 ¡ x2x3 [133]. Heremon(g) = 6
but

P 3
i=1

¡ 3
i

¢
= 7. Hencethe 1 ¡ o(1) of Lemma 7.3.6 cannot be improved to 1

in general(it can if g is a threshold function).
Combining the previousresults:

7.3.7. Cor ollar y (Buhrman & de Wolf [48]). If g is a symmetric func-
tion whoselowest-weight1-input hasweight t > 0 and f (x; y) = g(x ^ y), then

(1 ¡ o(1)) log

Ã
nX

i = t

µ
n
i

¶ !

· Ccc¤
E (f ) ·

Dcc(f ) · Dcc1 r ound (f ) = log

Ã
nX

i = t

µ
n
i

¶
+ 1

!

+ 1:

Accordingly, for symmetric g the communication complexity (quantum and
classical,with or without prior entanglement, 1-round and multi-round) asymp-
totically equalslogrank(f ) up to small constant factors. In particular:

7.3.8. Cor ollar y (Buhrman & de Wolf [48]). If g is a symmetric func-
tion and f (x; y) = g(x ^ y), then (1 ¡ o(1))Dcc(f ) · Ccc¤

E (f ) · Dcc(f ).

We have shown that Ccc¤
E (f ) and Dcc(f ) are asymptotically equal whenever

f (x; y) = g(x ^ y) and g is symmetric. For such f , Dcc(f ) is alsonearly equal to
the classicalbounded-errorcommunication complexity Rccpub

2 (f ), wherewe allow
Alice and Bob to share public coin °ips. In order to prove this, we introduce
the notion of 0-block sensitivity in analogy to the notion of block sensitivity of
Nisan (Section 2.5.1). For input x 2 f 0; 1gn , let bs0x (g) be the maximal number
of disjoint setsS1; : : : ; Sb of indicesof variables,such that for every i we have (1)
all Si -variableshave value 0 in x and (2) g(x) 6= g(xSi ), where xSi is the string
obtained from x by setting all Si -variablesto 1. Let bs0(g) = maxx bs0x (g). We
now have:

7.3.9. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function, then
mon(g) · n2bs0(g) .

Pro of. Denote gk = g(x) for jxj = k, and let t be the smallest number such
that gt 6= gt+1 . Then bs0(g) ¸ n ¡ t, becausecomplementing any oneof the n ¡ t
0-variables in a weight-t input x, will changethe function value from gt to gt+1 .
If t · n=2 then bs0(g) ¸ n=2, so mon(g) · 2n · n2bs0(g) . If t > n=2 then g has
no monomialsof degree· t, hencemon(g) ·

P n
i= t+1

¡ n
i

¢
· n2bs0(g) : 2

Now it follows that Rccpub
2 (f ) cannot be much lessthan Dcc(f ):
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7.3.10. Theorem (Buhrman & de Wolf [48]). If g is a symmetric function
and f (x; y) = g(x ^ y), then Dcc(f ) 2 O(Rccpub

2 (f ) logn).

Pro of. By Corollaries7.3.6and 7.3.7we have Dcc(f ) · (1 + o(1)) logmon(g).
Lemma7.3.9impliesDcc(f ) 2 O(bs0(g) logn). Finally wecanfairly easilymodify
Razborov's lower bound proof for disjointness [139] (seealso [109, Section 4.6])
to show Rccpub

2 (f ) 2 ­( bs0(f )) (we omit the technical details). This implies the
theorem. 2

This theorem is tight for the function de¯ned by g(x) = 1 i® jxj ¸ n ¡ 1.
We have mon(g) = n + 1, so logn · Dcc(f ) · (1 + o(1)) logn. On the other
hand, an O(1) bounded-errorpublic coin protocol can easilybe derived from the
O(1)-protocol for equality (Section 6.3.1): Alice tests if jxj < n ¡ 1, sendsa 0 if
so and a 1 if not. In the ¯rst caseAlice and Bob know that f (x; y) = 0. In the
secondcase,we have f (x; y) = 1 i® x = y or y = ~1, which can be tested with 2
applications of the equality-protocol. HenceRccpub

2 (f ) 2 O(1).
The above resultsshow that deterministic complexity, classicalbounded-error

complexity, andexactquantum complexity areall nearlyequalif f (x; y) = g(x^ y)
and g is symmetric. What about the quantum bounded-errorcomplexity? Recall
that Theorem6.4.2gave the near-quadraticgap Qcc2(DISJn ) 2 O(

p
n logn) and

Rcc2(DISJn ) 2 ­( n) for the disjointness function DISJn (x; y) = NOR(x ^ y).
Unfortunately, no good lower boundson Qcc2(DISJn ) are known (seebelow), so
we do not know whether this is the largest gap possible.

7.3.3 Monotone functions

A secondapplication concernsmonotoneproblems. Lov¶asz and Saks[116] (see
also[115]) provethe log-rankconjecturefor (amongothers) the following problem,
which they call the union problem for C. Here C is a monotone set system
(i.e., (A 2 C ^ A µ B) ) B 2 C) over somesize-n universe. Alice and Bob
receivesetsx and y, respectively, from this universe,and their task is to determine
whether x [ y 2 C. Identifying sets with their representation as n-bit strings,
this problem can equivalently be viewed as a function f (x; y) = g(x _ y), where
g is a monotoneincreasingBoolean function. Note that it doesn't really matter
whether we take g increasingor decreasing,nor whether we usex _ y or x ^ y, as
theseproblemscan all be converted into each other via De Morgan's laws.

7.3.11. Theorem (Lo v ¶asz & Saks [116]). If g is a monotone function and
f (x; y) = g(x ^ y), then Dcc(f ) 2 O((log rank(f )) 2).

7.3.12. Cor ollar y (Buhrman & de Wolf [48]). If g is a monotone func-
tion and f (x; y) = g(x ^ y), then Dcc(f ) 2 O(Qcc¤

E (f )2).
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This result can be tightened for the special caseof d-level AND-OR-trees.
For example,let g be a 2-level AND-of-ORs on n variableswith fan-out

p
n and

f (x; y) = g(x ^ y). Then g has(2
p

n ¡ 1)
p

n monomialsand henceQcc¤
E (f ) ¸ n=2.

In contrast, the zero-errorquantum complexity of f is Qcc0(f ) 2 O(n3=4 logn),
which follows from combining Lemma 6.4.1 with our zero-erroralgorithms from
Section2.7.2.

7.4 Lower Bounds for Bounded-Error Proto cols

In the previoussectionswe saw that the logrank(f ) lower bound on exact quan-
tum communication complexity Qcc¤

E (f ) is a strong tool, which often givesgood
lower bounds. The situation is much worse when it comesto lower bounds on
bounded-errorquantum communication complexity. Kremer [108] showed that
the so-called\discrepancy" lower bound alsoholdsfor Qcc2(f ). This givesa lower
bound Qcc2(IP n ) 2 ­( n) for inner product but doesnot provide good boundsfor
functions like disjointness. Cleve, van Dam, Nielsen,and Tapp [54] later indepen-
dently proved the lower bound for Qcc¤

2(IP n ). We will sketch their very elegant
proof herefor the caseof exact protocols;for bounded-errorprotocolsit is similar
but more technical. The proof usesthe IP-protocol to communicate Alice's n-bit
input to Bob, and then invokesHolevo's theorem to concludethat many qubits
must have beencommunicated in order to achieve this. SupposeAlice and Bob
have someprotocol for IPn . They canusethis to computethe following mapping:

jxij yi ! jxi (¡ 1)x¢y jyi :

Now supposeAlice starts with an arbitrary n-bit state jxi and Bob starts with
the uniform superposition 1p

2n

P
y2f 0;1gn jyi . If they apply the above mapping,

the ¯nal state becomes

jxi
1

p
2n

X

y2f 0;1gn

(¡ 1)x¢y jyi :

If Bob now appliesa Hadamardtransform to each of his n qubits, then heobtains
the basisstate jxi , so Alice's n classicalbits have been communicated to Bob.
Theorem6.2.1now implies that the IPn -protocol must communicate ­( n) qubits,
even if Alice and Bob shareunlimited prior entanglement. The above proof works
for IPn , but unfortunately doesnot easily yield good boundsin general.

A generallyapplicablebut usually weak lower bound is due to Kremer [108]:

7.4.1. Theorem (Kremer [108]). For every f (total or partial) we have

Dcc1 r ound (f ) · (4Qcc2(f ) + 2)22Qcc2 (f )¡ 2:
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Pro of. Let ` = Qcc2(f ). By Lemma 7.2.1 we can write the ¯nal state of an
`-qubit bounded-errorprotocol for f as

X

i 2f 0;1g`

®i (x)¯ i (y)jA i (x)ij i ` ij B i (y)i :

Let Á(x; y) =
P

i 2f 0;1g` ¡ 1 ®i 1(x)¯ i 1(y)jA i 1(x)ij 1ij B i 1(y)i be the part of the ¯nal
state that corresponds to a 1-output of the protocol. For i; j 2 f 0; 1g` ¡ 1, de¯ne
functions aij ; bij by

aij (x) = ®i 1(x)®j 1(x)hA i 1(x)jA j 1(x)i

bij (y) = ¯ i 1(y)¯ j 1(y)hB i 1(y)jB j 1(y)i

Note that jaij (x)j · 1 and jbij (y)j · 1 for all x and y, and that the acceptance
probability can now be written as

P(x; y) = hÁ(x; y)jÁ(x; y)i =
X

i;j 2f 0;1g` ¡ 1

aij (x)bij (y):

The classical1-round protocol is as follows. Alice approximates the numbers
aij (x) by numberseaij (x) of 4` + 2 bits each (2` + 1 bits for the real part of aij (x)
and 2` + 1 bits for its imaginary part). Shesendstheseapproximations to Bob,
which takes(4` + 2)22`¡ 2 bits of communication. Bob then computes eP(x; y) =P

i;j eaij (x)bij (y), and outputs 1 if this value is above 1/2, and 0 otherwise. Since
jf (x; y) ¡ P(x; y)j · 1=3 and

jP(x; y) ¡ eP(x; y)j =

¯
¯
¯
¯
¯
¯

X

i;j 2f 0;1g` ¡ 1

(aij (x) ¡ eaij (x))bij (y)

¯
¯
¯
¯
¯
¯

·
X

i;j 2f 0;1g` ¡ 1

jaij (x) ¡ eaij (x)j

<
X

i;j 2f 0;1g` ¡ 1

2¡ (2`+1)

= 22`¡ 22¡ (2`+1) =
1
8

;

Bob is guaranteed to output the right value f (x; y). 2

7.4.2. Cor ollar y (Kremer [108]). Qcc2(f ) ¸
¡

1
2 ¡ o(1)

¢
log

¡
Dcc1 r ound (f )

¢
.

This says that bounded-error quantum communication complexity without
prior entanglement is at most exponentially lessthan 1-round deterministic com-
munication complexity. There are few caseswhere this corollary is more or less
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tight. One example is the distributed Deutsch-Jozsaproblem (Theorem 6.4.3),
where Qcc2(f ) 2 O(log n) and Dcc(f ) 2 ­( n). Note that Corollary 7.4.2 does
not hold for the models with prior entanglement: Qcc¤

2(EQn ) 2 O(1) while
Dcc(EQn ) = n + 1.

Now we generalizethe lower bound approach of the previous sections to
bounded-errorquantum protocols. We say that a matrix M approximates the
communication matrix M f if jM (x; y) ¡ f (x; y)j · 1=3 for all x; y (equivalently,
k M ¡ M f k1 · 1=3). The approximate rank ]rank(f ) of f is the minimum rank
amongall matricesM that approximate M f . Let the approximate decomposition
number em(f ) be the minimum m such that there exist functions a1(x); : : : ; am (x)
and b1(y); : : : ; bm (y) for which jf (x; y) ¡

P m
i=1 ai (x)bi (y)j · 1=3 for all x; y. By

the sameproof as for Lemma 7.3.1we obtain:

7.4.3. Lemma (Buhrman & de Wolf [48]). ]r ank(f ) = em(f ).

By a proof similar to Theorem7.2.2we can show

7.4.4. Theorem (Buhrman & de Wolf [48]). Qcc2(f ) ¸
log em(f )

2
.

Pro of. As in Theorem 7.4.1, we can write the acceptanceprobability of an
`-qubit protocol for f as

P(x; y) = hÁ(x; y)jÁ(x; y)i =
X

i;j 2f 0;1g` ¡ 1

aij (x)bij (y):

We have now decomposedP(x; y) into 22`¡ 2 functions. However, we must have
jP(x; y) ¡ f (x; y)j · 1=3 for all x; y, hence22`¡ 2 ¸ em(f ). It follows that ` ¸
(log em(f ))=2 + 1. 2

Unfortunately, it is much harder to prove boundson em(f ) than on m(f ).6 In
the exact casewe have m(f ) = mon(g) whenever f (x; y) = g(x ^ y), and mon(g)
is often easyto determine. If somethingsimilar is true in the approximate case,
then we obtain strong lower boundson Qcc2(f ), becauseour next theoremgives
a bound on gmon(g) in terms of the 0-block sensitivity de¯ned in the previous
section.

The theorem usesthe notion of a hypergraph. Let [n] = f 1; : : : ; ng and 2[n]

be the power set of [n] (i.e., the set of all subsetsof [n]). A hypergraph is a set
systemH µ 2[n]. The setsE 2 H are called the edgesof H ; the sizeof H is its
number of edges.We call H an s-hypergraph if all E 2 H satisfy jE j ¸ s. A set
S µ f 1; : : : ; ng is a blocking set for H if it \hits" every edge: S \ E 6= ; for all
E 2 H .

6It is interesting to note that IPn (the negation of IPn ) has lessthan maximal approximate
decomposition number. For example for n = 2, m(f ) = 4 but em(f ) = 3.
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7.4.5. Lemma (Buhrman & de Wolf [48]). Let g : f 0; 1gn ! f 0; 1g be a
Boolean function for which g(~0) = 0 and g(ei ) = 1, p be a multilinear polynomial
which approximatesg (i.e., jg(x) ¡ p(x)j · 1=3 for all x 2 f 0; 1gn ), and H be
the

p
n=12-hypergraph formed by the set of all monomials of p that havedegree

¸
p

n=12. Then H hasno blocking set of n=2 elements.

Pro of. Assume,by way of contradiction, that there exists a blocking set S
of H with jSj · n=2. Obtain restrictions h and q of g and p, respectively, on
n ¡ jSj ¸ n=2 variables by ¯xing all S-variables to 0. Then q approximates h
and all monomialsof q have degree<

p
n=12 (all p-monomialsof higher degree

have been set to 0 becauseS is a blocking set for H ). Since q approximates
h we have q(~0) 2 [¡ 1=3; 1=3], q(ei ) 2 [2=3; 4=3], and q(x) 2 [¡ 1=3; 4=3] for all
other x 2 f 0; 1gn . By the symmetrization techniques from Section 2.2.2, we
can turn q into a single-variate polynomial r of degree<

p
n=12, such that

r (0) 2 [¡ 1=3; 1=3], r (1) 2 [2=3; 4=3], and r (i ) 2 [¡ 1=3; 4=3] for i 2 f 2; : : : ; n=2g.
Sincer (0) · 1=3 andr (1) ¸ 2=3, wemust havep0(x) ¸ 1=3 for somerealx 2 [0; 1].
But then deg(r ) ¸

p
(1=3)(n=2)=(1=3 + 4=3 + 1=3) =

p
n=12 by Theorem 2.5.5,

contradiction. Hencethere is no blocking set S with jSj · n=2. 2

The next lemma shows that H is large if it hasno blocking set of size· n=2:

7.4.6. Lemma (Buhrman & de Wolf [48]). If H µ 2[n] is an s-hypergraph
of sizem < 2s, then H hasa blocking set of n=2 elements.

Pro of. We usethe probabilistic method to show the existenceof a blocking set
S. Randomly choosea set S of n=2 elements. The probability that S doesnot
hit somespeci¯c E 2 H is

¡ n¡j E j
n=2

¢

¡ n
n=2

¢ =
n
2 ( n

2 ¡ 1) : : : ( n
2 ¡ jE j + 1)

n(n ¡ 1) : : : (n ¡ jE j + 1)
· 2¡j E j :

Then the probability that there is someedgeE 2 H which is not hit by S is

Pr[
_

E 2 H

S doesnot hit E] ·
X

E 2 H

Pr[S doesnot hit E] ·
X

E 2 H

2¡j E j · m ¢2¡ s < 1:

Thus with positive probability, S hits all E 2 H , which provesthe existenceof a
blocking set. 2

The above lemmasallow us to prove:

7.4.7. Theorem (Buhrman & de Wolf [48]). If g is a Boolean function, then

gmon(g) ¸ 2
p

bs0(g)=12:
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Pro of. Let p be a polynomial which approximates g with gmon(g) monomials.
Let b = bs0(g), and z and S1; : : : ; Sb be the input and sets which achieve the
0-block sensitivity of g. We assumewithout lossof generality that g(z) = 0.

We derive a b-variable Boolean function h(y1; : : : ; yb) from g(x1; : : : ; xn ) as
follows: if j 2 Si then we replacex j in g by yi , and if j 62Si for any i , then we
¯x x j in g to the value zj . Note that h satis¯es

1. h(~0) = g(z) = 0

2. h(ei ) = g(zSi ) = 1 for all unit ei 2 f 0; 1gb

3. gmon(h) · gmon(g), becausewe can easily derive an approximating polyno-
mial for h from p, without increasingthe number of monomialsin p.

It now follows from combining the previouslemmasthat any approximating poly-
nomial for h requiresat least 2

p
b=12 monomials. 2

In particular, for DISJn (x; y) = NORn (x^ y) it is easyto seethat bs0(NORn ) = n,
so log gmon(NORn ) ¸

p
n=12 (the upper bound log gmon(NORn ) 2 O(

p
n logn)

followsfrom the constructionof a degree-
p

n polynomial for ORn in [133]). Conse-
quently, a proof that the approximate decomposition number em(f ) roughly equals
gmon(g) would give Qcc2(DISJn ) 2 ­(

p
n), nearly matching the O(

p
n logn) up-

per bound of Section6.4.2. Sincem(f ) = mon(g) holds in the exact case,a result
like em(f ) ¼ gmon(g) might be doable, but we have not beenable to prove this
(yet).

We end this section by proving someweaker lower bounds for disjointness.
Firstly, disjointness has a bounded-errorprotocol with O(

p
n logn) qubits and

O(
p

n) rounds (Section 6.4.2), but if we restrict to 1-round protocols then a
linear lower bound follows from a result of Nayak [125].

7.4.8. Pr oposition (Buhrman & de Wolf [48]). Qcc1 r ound
2 (DISJn ) 2 ­( n).

Pro of. Supposethere exists a 1-round qubit protocol with m qubits: Alice
sendsa messageM (x) of m qubits to Bob, and Bob then has su±cient infor-
mation to establishwhether Alice's x and Bob's y are disjoint. Note that M (x)
is independent of y. If Bob's input is y = ei (the string with a 1 only on posi-
tion i ), then DISJn (x; y) is the negationof Alice's i th bit. But then the message
is an (n; m; 2=3) quantum random accesscode: by choosing input y = ei and
continuing the protocol, Bob can extract from M (x) the i th bit of Alice (with
probability ¸ 2=3), for any 1 · i · n of his choice. For this the lower bound
m ¸ (1 ¡ H (2=3))n > 0:08 n is known [125], where H (¢) is the binary entropy
function. 2
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Independently from our work, Klauck et al. [104] recently proved the stronger
result that k-round protocols for disjointnessrequire ­( n1=k=k3) qubits of com-
munication, even in the presenceof prior entanglement.

For unlimited-roundsbounded-errorquantum protocolsfor disjointnesswecan
only prove a logarithmic lower bound, using the information-theoretic technique
from [54] (the bound Qcc2(DISJn ) 2 ­(log n) was already shown in [12] and also
follows from Corollary 7.4.2).

7.4.9. Pr oposition (Buhrman & de Wolf [48]). Qcc¤
2(DISJn ) 2 ­(log n).

Pro of. Wesketch the proof for a protocol mappingjxij yi ! (¡ 1)DISJ n (x;y ) jxij yi .
Alice choosessomei 2 f 1; : : : ; ng and starts with jei i , the classicalstate which
hasa 1 only at the i th bit, and Bob starts with 1p

2n

P
y2f 0;1gn jyi . After running

the protocol, Bob hasstate

jÁi i =
X

y

(¡ 1)DISJ n (ei ;y)

p
2n

jyi =
X

y

(¡ 1)1¡ yi

p
2n

jyi :

Note that

hÁi jÁj i =
1
2n

X

y

(¡ 1)yi + yj =
½

1 if i = j
0 if i 6= j

Hencethe jÁi i form an orthogonal set, and Bob can determineexactly which jÁi i
he hasand thus learn i . Alice now hastransmitted logn bits to Bob and Holevo's
theorem (Theorem 6.2.1) implies that at least (log n)=2 qubits must have been
communicated to achieve this. A similar but more technical analysisworks for
the bounded-errorcase(as in [54]). 2

Finally, for the casewhere we want to compute disjointnesswith very small
error probability " , wecanprovean ­(log (n=")) bound. Hereweusethe subscript
\ "" to indicate qubit protocolswithout prior entanglement whoseerror probability
is < ". We ¯rst give a bound for equality:

7.4.10. Pr oposition (Buhrman & de Wolf [48]). If " ¸ 2¡ n , thenwehave
Qcc" (EQn ) 2 ­(log (n=")).

Pro of. For simplicity we assume1=" is an integer. Supposethat matrix M
approximates M EQn = I entry-wise up to ". Consider the 1=" £ 1=" matrix
M 0 that is the upper left block of M . This M 0 is strictly diagonally dominant:
jM 0

ii j > 1 ¡ " = ( 1
" ¡ 1)" >

P
j 6= i jM 0

ij j. A strictly diagonally dominant matrix
has full rank [92, Theorem6.1.10.a],henceM itself has rank at least 1=". Using
Lemma 7.4.3and Theorem7.4.4,we now have Q" (EQn ) 2 ­(log (1=")).

SinceQcc" (EQn ) 2 ­(log n) for all " · 1=3 (from Corollary 7.4.2), we have
Qcc" (EQn ) 2 ­(max (log(1="); logn)) = ­(log (n=")): 2
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We now reduce equality to disjointness. Let x; y 2 f 0; 1gn=2. De¯ne x0 2
f 0; 1gn by replacingx i by x i x i in x, and y0 2 f 0; 1gn by replacingyi by yi yi in y.
It is easyto seethat EQn=2(x; y) = DISJn (x0; y0) sofrom the previousproposition
we obtain:

7.4.11. Cor ollar y (Buhrman & de Wolf [48]). If " ¸ 2¡ n=2, thenwehave
Qcc" (DISJn ) 2 ­(log (n=")).

In particular, both equality and disjointnessrequire ­( n) qubits of communi-
cation if we want the error probability to be exponentially small.

7.5 Non-Deterministic Complexit y

Aboveweshoweda lower bound on Qcc¤
E (f ) in terms of logrank(f ), but werenot

ableto prove the desiredgeneralupper bound on Qcc¤
E (f ) in terms of logrank(f ).

In this section we will prove that such a result holds for the non-deterministic
case:the non-deterministic quantum communication complexity NQcc(f ) equals
lognr ank(f ) up to a factor of 2, wherenr ank(f ) is the non-deterministicanalogue
of rank(f ), to be de¯ned below.

7.5.1 Some de¯nitions

Considersomecommunication complexity problem f : f 0; 1gn £ f 0; 1gn ! f 0; 1g.
A non-deterministic protocol for f is a protocol whoseacceptanceprobability (=
the probability of outputting 1) on an input (x; y) is positive i® f (x; y) = 1. For
a discussionof this choice of de¯nition and a comparisonwith other potential
de¯nitions, we refer to Section5.6. We useNcc(f ) and NQcc(f ) for the cost of
optimal classicaland quantum non-deterministic protocols for f , respectively.

It is well known that the classical non-deterministic complexity Ncc(f ) is
closely related to the minimal size of a 1-cover for f , de¯ned as follows. A
rectangle is a subset R = S £ T µ X £ Y. Such an R is a 1-rectangle (for
f ) if f (x; y) = 1 for all (x; y) 2 R. A 1-cover for f is a set of 1-rectangles
whoseunion contains all (x; y) 2 f 0; 1gn £ f 0; 1gn for which f (x; y) = 1. We
use Cov1(f ) to denote the minimal size (i.e., minimal number of rectangles)of
a 1-cover for f . Similarly we de¯ne 0-rectangles,0-covers, and Cov0(f ). Now it
is easyto prove that Ncc(f ) = dlogCov1(f )e (seee.g. [109, Section2.1]), so the
classicalnon-deterministic communication complexity is completely determined
by the combinatorial notion of 1-covers.

Below we show that the quantumnon-deterministic communication complex-
it y is almost completelydeterminedby the algebraicnotion of non-deterministic
rank, de¯ned as follows. Recall that the communication matrix M f of f is the
2n £ 2n Booleanmatrix whosex; y entry is f (x; y) and that rank(f ) denotesthe
rank of M f over the reals. A real 2n £ 2n matrix M is called a non-deterministic
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communication matrix for f if it hasthe property that M (x; y) 6= 0 i® f (x; y) = 1.
Thus M is any matrix obtainable by replacing1-entries in M f by non-zeroreals.
Let the non-deterministic rank of f , denoted nr ank(f ), be the minimum rank
over all non-deterministic matrices M for f . Without lossof generality we can
assumeall M -entries are in [¡ 1; 1], becausewe can divide by maxx;y jM [x; y]j
without changing the rank of M .

7.5.2 Equalit y to non-deterministic rank

Here we characterizethe non-deterministic quantum communication complexity
NQcc(f ) in terms of the non-deterministic rank nr ank(f ):

7.5.1. Theorem (de Wolf [160]).
lognr ank(f )

2
· NQcc(f ) · dlognr ank(f )e.

Pro of. Consideran NQcc(f )-qubit non-deterministic quantum protocol for f .
UsingLemma7.2.1in the sameway asin Theorems7.2.2and 7.4.4,its acceptance
probabilities P(x; y) form a matrix of rank · 22NQcc(f ) . It is easyto seethat this
is a non-deterministic matrix for f , hencenr ank(f ) · 22NQcc(f ) and the ¯rst
inequality follows.

For the upper bound, let r = nr ank(f ) and M be a rank-r non-deterministic
matrix for f . Let M T = U§ V be the singular value decomposition of M T (see
Appendix A.3), soU and V are unitary, and § is a diagonalmatrix whose¯rst r
diagonalentries are positive real numbersand whoseother diagonalentries are 0.
Below wedescribea 1-roundnon-deterministicprotocol for f , usingdlogrequbits.
First Alice preparesthe vector jÁx i = cx§ Vjxi , where cx > 0 is a normalizing
real number that depends on x. Becauseonly the ¯rst r diagonal entries of
§ are non-zero,only the ¯rst r amplitudes of jÁx i are non-zero,so jÁx i can be
compressedinto dlogre qubits. Alice sendsthesequbits to Bob. Bob then applies
U to jÁx i and measuresthe resulting state. If he observesjyi then he outputs 1
and otherwisehe outputs 0. The acceptanceprobability of this protocol is

P(x; y) = jhyjUjÁx ij 2

= c2
x jhyjU§ Vjxij 2

= c2
x jM T (y; x)j2

= c2
x jM (x; y)j2:

SinceM (x; y) is non-zeroi® f (x; y) = 1, P(x; y) will be positive i® f (x; y) = 1.
Thus we have a non-deterministic protocol for f with dlogre qubits. 2

In sum: classicallywe have Ncc(f ) = dlogCov1(f )e and quantumly we have
NQcc(f ) ¼ lognr ank(f ).
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7.5.3 Exp onential quan tum-classical separation

We now give an f with an exponential gap between the classical complexity
Ncc(f ) and the quantum complexity NQcc(f ). For n > 1, de¯ne f by

f (x; y) = 1 i® jx ^ yj 6= 1.

We ¯rst show that the quantum complexity NQcc(f ) is low:

7.5.2. Theorem (de Wolf [160]). NQcc(f ) · dlog(n + 1)e for the above f .

Pro of. By Theorem7.5.1,it su±cesto prove nr ank(f ) · n + 1. Let M i be the
Booleanmatrix whose(x; y)-entry is 1 if x i = yi = 1, and whose(x; y)-entry is 0
otherwise. Notice that M i has rank 1. Now de¯ne a 2n £ 2n matrix M by

M (x; y) =
P

i M i (x; y) ¡ 1
n ¡ 1

:

Note that M (x; y) is non-zeroi® the Hamming weight of x ^ y is di®erent from
1, henceM is a non-deterministic matrix for f . BecauseM is the sum of n + 1
rank-1 matrices, it has rank at most n + 1. 2

Now weshow that the classicalNcc(f ) is high (both for f and its complement):

7.5.3. Theorem (de Wolf [160]). Ncc(f ) 2 ­( n) and Ncc(f ) ¸ n ¡ 1 for the
above f .

Pro of. Let R1; : : : ; Rk be a minimal 1-cover for f . We use the following
result from [109, Example 3.22 and Section 4.6], which is essentially due to
Razborov [139].

Thereexist setsA; B µ f 0; 1gn £ f 0; 1gn and a probability distribution
¹ : f 0; 1gn £ f 0; 1gn ! [0; 1] such that all (x; y) 2 A have jx ^ yj = 0,
all (x; y) 2 B have jx ^ yj = 1, ¹ (A) = 3=4, and there are constants
®; ± > 0 (independent of n) such that for all rectanglesR, ¹ (R \ B) ¸
®¢¹ (R \ A) ¡ 2¡ ±n :

Sincethe Ri are1-rectangles,they cannotcontain elements from B. Hence¹ (R i \
B ) = 0 and ¹ (Ri \ A) · 2¡ ±n=®. But sinceall elements of A are coveredby the
Ri we have

3
4

= ¹ (A) = ¹

Ã
k[

i =1

(Ri \ A)

!

·
kX

i =1

¹ (Ri \ A) · k ¢
2¡ ±n

®
:

ThereforeNcc(f ) = dlogke ¸ ±n + log(3®=4).
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For the lower bound on Ncc(f ), consider the set S = f (x; y) j x1 = y1 =
1; x i = yi for i > 1g. This S contains 2n¡ 1 elements, all of which are 1-inputs
for f . Note that if (x; y) and (x0; y0) are two elements from S then jx ^ y0j > 1
or jx0 ^ yj > 1, so a 1-rectanglefor f can contain at most one element of S.
This shows that a minimal 1-cover for f requires at least 2n¡ 1 rectanglesand
Ncc(f ) ¸ n ¡ 1. 2

Another quantum-classicalseparationwasobtained earlier by Massaret al. [120]:

7.5.4. Theorem (MBCC [120]). For the non-equality problem on n bits, we
haveNQcc(NEn ) = 1 versusNcc(NEn ) = logn.

Pro of. Ncc(NEn ) = logn is well known (see[109, Example 2.5]). Below we
give the [120]-protocol for NEn .

Viewing her input x as a number 2 [0; 2n ¡ 1], Alice rotates a j0i -qubit over
an anglex¼=2n , obtaining a qubit cos(x¼=2n )j0i + sin(x¼=2n )j1i which shesends
to Bob. Bob rotates the qubit back over an angle y¼=2n , obtaining cos((x ¡
y)¼=2n )j0i + sin((x ¡ y)¼=2n )j1i . Bob now measuresthe qubit and outputs the
observed bit. If x = y then sin((x ¡ y)¼=2n ) = 0, so Bob always outputs 0. If
x 6= y then sin((x ¡ y)¼=2n ) 6= 0, so Bob will output 1 with probability > 0. 2

Note that nr ank(EQn ) = 2n , sinceevery non-deterministic matrix for equal-
it y will be a diagonal 2n £ 2n matrix with non-zero diagonal entries. Thus
NQcc(EQn ) ¸ (log nr ank(EQn ))=2 = n=2, which contrasts sharply with the non-
deterministic quantum complexity NQcc(NEn ) = 1 of its complement.

7.6 Op en Problems

To end this chapter, we identify three important open questions in quantum
communication complexity. First, are Qcc¤

E (f ) and Dcc(f ) polynomially re-
lated for all total f ? For the caseof query complexity we proved in Chapter 2
that D(f ) 2 O(Q2(f )6) for all total f , so deterministic classicalquery com-
plexity and bounded-error quantum query complexity are polynomially related.
Such a strong result cannot hold for communication complexity, becausehere
we have exponential gapseven in the classicalworld: Dcc(EQn ) = n + 1 versus
Rcc2(EQn ) 2 O(log n). However, we conjecturethat a polynomial relation holds
for the caseof exact protocols: Dcc(f ) 2 O(Qcc¤

E (f )k) for somek. This conjec-
ture is implied by the classicallog-rank conjecture(seeCorollary 7.2.8),but that
has beena long-standingopen problem in its own right, and is quite possibly a
stronger statement.

Secondly, how do we prove good lower bounds on bounded-error quantum
protocols? Theorems7.4.4 and 7.4.7 of the previous section show that Qcc2(f )
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is lower bounded by the approximate rank, but this approximate rank is often
hard to determine. One way to go would be to show that em(f ) ¼ gmon(g)
whenever f (x; y) = g(x ^ y). As explained in the previous section, this would
imply Qcc2(f ) 2 ­(

p
bs0(g)) and in particular Qcc2(DISJn ) 2 ­(

p
n). Recently,

Klauck [103] developed somenew lower bound methods for Qcc2(f ), but unfor-
tunately thesedo not give good boundsfor disjointnesseither.

Finally, doesprior entanglement add much power to qubit communication, or
are QccE (f ) and Qcc¤

E (f ) equal up to small additive or multiplicativ e factors?
Similarly, are Qcc2(f ) and Qcc¤

2(f ) roughly equal? The largestgap that we know
is Qcc2(EQn ) 2 £(log n) versusQcc¤

2(EQn ) 2 O(1).

7.7 Summary

In this chapter we consideredlower bounds on quantum communication com-
plexity. We proved log-rank lower bounds for entanglement-enhancedquantum
protocols that communicate qubits and classicalbits, respectively:

Qcc¤
E (f ) ¸

log(rank(f ) ¡ 1)
2

and Ccc¤
E (f ) ¸ log(rank(f ) ¡ 1):

Relating rank(f ) to the number of monomialsof certain polynomials, we were
able to prove strong lower bounds on exact quantum communication protocols
for speci¯c classesof functions. Much less is known about lower bounds on
quantum communication protocols which are allowed to have somesmall error
probability. We proved an approximate-rank lower bound for this case,but were
unable to prove strong boundson the approximate rank of interesting functions
like disjointness. Finally, we proved that the rank essentially determines the
quantum communication complexity in the caseof non-deterministic protocols:
NQcc(f ) equalslognr ank(f ) up to a factor of 2. We also exhibited a function
where the quantum non-deterministic complexity is exponentially smaller than
the classicalnon-deterministic complexity.





Chapter 8

Quan tum Fingerprin ting

This chapter is basedon the paper

² H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum Finger-
printing. Submitted to Physical ReviewLetters. quant-ph/0102001. (Not
all results below were included in this paper, but I have cited those as
\BCWW" nonetheless.)

8.1 In tro duction

In classicalcomputing, ¯ngerprinting can be a usefulmechanismfor determining
if two strings are the same: each string is associated with a much shorter ¯n-
gerprint and comparisonsbetweenstrings are madein terms of their ¯ngerprints
alone. This can lead to savings in the communication and storageof information.

The notion of ¯ngerprinting arisesnaturally in the setting of communication
complexity. The particular model of communication complexity that we consider
is called the simultaneous messagepassing model (also known as oblivious com-
munication complexity). It is a variant of 1-round communication complexity,
¯rst introducedby Yao [163] in his original paper on communication complexity.
In this model, the two parties|Alice and Bob|receiv e inputs x and y, respec-
tiv ely, and are not permitted to communicate with oneanother directly. Rather
they each senda messageto a third party, called the referee, who determinesthe
output of the protocol basedsolely on the messagessent by Alice and Bob. We
illustrate this in Figure 8.1. The collective goalof the three parties is to causethe
protocol to output the correct value of somefunction f (x; y) while minimizing
the amount of communication that Alice and Bob sendto the referee.

For the equality problem on n bits, the function to be determinedis

EQn (x; y) =
½

1 if x = y,
0 if x 6= y.

139
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Alice: x Bob: y

M x M y

Referee

H H HHj
©©©©¼

?

f (x; y)

Figure 8.1: The model of simultaneousmessagepassing

This problem can of coursebe trivially solved if Alice sendsx and Bob sendsy
to the referee,who can then simply compute EQn (x; y). However, the cost of
this protocol is high: if x and y are n-bit strings, then a total of 2n bits are
communicated. If Alice and Bob instead send ¯ngerprints of x and y, which
may each be considerablyshorter than x and y themselves,then the cost can be
reducedsigni¯cantly. The question we are interested in is how much the sizeof
the ¯ngerprints can be reduced.

If Alice and Bob sharea random O(log n)-bit key then the ¯ngerprints need
only be of constant length if we allow a small probability of error. This works
as follows. A binary error-correctingcode is used,which can be represented as a
function E : f 0; 1gn ! f 0; 1gm , whereE(x) is the codeword associated with x 2
f 0; 1gn . Thereexist error-correctingcodes(Justesencodes,for instance)with m =
cn such that the Hammingdistancebetweenany two distinct codewordsE(x) and
E(y) is at least (1 ¡ ±)m, wherec and ± are constants. For the particular caseof
Justesencodes,we may chooseany c > 2 and we will have ± < 9=10+ 1=(15c)
(assumingn is su±ciently large). For further information on Justesencodes,see
Justesen[94] andMacWilliams andSloane[119, Chapter 10]. Now, for x 2 f 0; 1gn

and i 2 f 1; 2; : : : ; mg, let E i (x) denote the i th bit of E(x). The sharedkey is a
random i 2 f 1; 2; : : : ; mg (which consistsof logm = logn + O(1) bits). Alice and
Bob respectively sendthe bits E i (x) and E i (y) to the referee,who then outputs
1 if and only if E i (x) = E i (y). If x = y then E i (x) = E i (y), so then the outcome
is correct. If x 6= y then the probability that E i (x) = E i (y) is at most ±, so the
outcomeis correct with probability 1 ¡ ±. The error probability can be reduced
from ± to any " > 0 by having Alice and Bob send O(log(1=")) independent
random bits of the codewords E(x) and E(y) to the referee(where the O(¢)
notation hides the dependenceon ±). In this case,the length of each ¯ngerprint
is O(log(1=")) bits and the length of the requiredrandom key is O(log(1=") logn)
bits.

One disadvantage of the above schemeis that it requiresoverheadin creating
and maintaining a sharedkey. Moreover, oncethe key is distributed, it must be
stored securelyuntil the inputs are obtained. This is becausean adversary who
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knows the value of the key can easily chooseinputs x and y such that x 6= y but
for which the output of the protocol always indicates that x = y.

Yao [163, Section4.D] posedasan open problem what happensin this model
if Alice and Bob do not have a sharedkey. Note that in this setting Alice and
Bob still have accessto random bits, but their random bits are not correlated.
Ambainis [7] proved that ¯ngerprints of O(

p
n) bits su±ce if we allow a small

error probability, andsubsequently, NewmanandSzegedy[127] proveda matching
lower bound of ­(

p
n) bits.

We shall considerthe problem wherethere is no sharedkey (or entanglement)
betweenAlice and Bob, but the ¯ngerprints can consistof quantuminformation.
In Section8.2, we show that O(log n)-qubit ¯ngerprints are su±cient to solve the
equality problemin this setting|an exponential improvement over the

p
n-bound

for the comparableclassicalcase. This result seemsto be the ¯rst exponential
quantum-classicalseparationfor a total function in any variant of communication
complexity. Our method is to set the 2n ¯ngerprints to quantum states whose
pairwise inner-products are boundedbelow 1 in absolutevalue and to usea test
that identi¯es identical ¯ngerprints and distinguishesdistinct ¯ngerprints with
good probability. This givesa simultaneousmessagepassingprotocol for equality
in the obvious way: Alice and Bob sendthe ¯ngerprints of their respective inputs
to the referee,who then executesthe test to check if the ¯ngerprints are equal
or distinct. In Section8.2, we also show that the ¯ngerprints must consistof at
least ­(log n) qubits if the error is boundedbelow 1.

In Sections8.3 and 8.4, we considerpossibleimprovements to the e±ciency of
the ¯ngerprinting methodsof Section8.2. In Section8.5weanalyzethe conditions
under which quantum ¯ngerprints canbemadeexactly orthogonal. In Section8.6
we considerexact classical ¯ngerprints in the presenceof a sharedquantumkey
of EPR-pairs. Finally, in Section 8.7 we show that the quantum ¯ngerprints
can be used in a speci¯c context to represent sparsesets much more e±ciently
than is possibleclassically. A word of warning: Sections8.5{8.7 describe some
preliminary results rather than a completepicture, and will require more study
in the future.

8.2 Simultaneous Message Passing

The simultaneousmessagepassingmodel of communication complexity is as fol-
lows: Alice, Bob, and a refereewant to compute somef : D ! f 0; 1g. We will
here only consider total functions where D = f 0; 1gn £ f 0; 1gn . Alice receives
input x, Bob receives y, they each passa messageto the referee,who should
then announcef (x; y). A protocol that satis¯es this is called a simultaneous
messageprotocol for f . Its cost is the sum of the lengths of the two messages
that are passedto the referee. We use Dcck(f ) for the minimal cost of classi-
cal deterministic simultaneousmessageprotocols for f , and Rcck

2(f ) for classical
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bounded-errorsimultaneousmessageprotocols. For the latter we assumeAlice
and Bob have private coin °ips but no public coin °ips. Similarly we de¯ne
Qcck

E (f ) and Qcck
2(f ) for exact and bounded-errorquantum simultaneous mes-

sageprotocols,respectively. Note that the simultaneousmessagepassingmodel is
weaker than the 1-round versionof communication complexity, sincein the latter
model Bob can play the role of Bob and the refereeat the sametime. Thus we
have Dcc1 r ound (f ) · Dcck(f ), Rcc1 r ound

2 (f ) · Rcck
2(f ), and similarly for the two

quantum complexities.
Recall that the communication matrix M f is the 2n £ 2n matrix that has

f (x; y) as its (x; y)-entry. Let nr ow(f ) be the number of distinct rows of M f and
ncol(f ) the number of distinct columns. For the exactcaseit is easyto seethat
Dcck(f ) = lognr ow(f ) + logncol(f ). The sameholds for the quantum case:

8.2.1. Theorem (BCWW). Qcck
E (f ) = dlognr ow(f )e+ dlogncol(f )e.

Pro of. For the upper bound, Alice numbers the distinct rows, with two rows
receiving the same number i® they are equal, and Bob numbers the distinct
columns. On input (x; y) Alice sendsthe number of the x-row to the referee(at
a cost of dlognr ow(f )e classicalbits) and Bob sendsthe number of the y-column
(dlogncol(f )e bits). The refereenow can determinef (x; y).

For the lower bound, ¯x a protocol and let jvx i and jwy i be the quantum
messagessent by Alice and Bob on input (x; y), respectively. Supposex and x0

correspond to distinct rows, then there is a y such that f (x; y) 6= f (x0; y). On
input (x; y) the refereereceivesmessagesjvx i ; jwy i and on input (x0; y) he receives
jvx0i ; jwy i . Sincethe refereemust be able to distinguish betweenthesetwo cases
with certainty, jvx i and jvx0i must be orthogonal (see e.g. [130, p.87]). Thus
there is a set of nr ow(f ) vectorsjvx i (corresponding to distinct rows) that are all
pairwise orthogonal. Thesevectorsmust then have dimensionat least nr ow(f ),
and thus have at leastdlognr ow(f )e qubits. Similarly somejwy i must be at least
dlogncol(f )e qubits. 2

In particular this shows that for the equality function wherex and y are n-bit
strings, we have Dcck(EQn ) = Qcck

E (EQn ) = 2n.
For the bounded-error case,Babai and Kimmel have shown that the gap be-

tweenDcck(f ) and Rcck
2(f ) is at most quadratic. This was shown independently

at around the sametime by Bourgain and Wigderson(unpublished,but sketched
in [15]).

8.2.2. Theorem (Babai & Kimmel [15]; Bour gain & Wigderson [15]).

Rcck
2(f ) 2 ­

µ q
Dcck(f )

¶
.

The following corollary was independently and somewhatearlier obtained by
Newmanand Szegedy:
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8.2.3. Cor ollar y (Newman & Szegedy [127]). Rcck
2(EQn ) 2 ­(

p
n).

Togetherwith Ambainis' [7] matching upper bound (seealso [15]), it follows
that Rcck

2(EQn ) 2 £(
p

n).
We now show that the analogueof Theorem8.2.2doesnot hold in the quan-

tum world, and in fact Qcck
2(f ) can be exponentially smaller than both Qcck

E (f )
and Rcck

2(f ) for f = EQn . Our method usesquantum ¯ngerprints basedon clas-
sical error-correcting codes, though in a di®erent manner than discussedin the
introduction, sinceno sharedkey is available.

Assume that for ¯xed c > 1 and ± < 1 we have an error correcting code
E : f 0; 1gn ! f 0; 1gm for each n, where m = cn and such that the distance
betweendistinct codewords E(x) and E(y) is at least (1 ¡ ±)m. As mentioned
in the introduction, a reasonable¯rst choice of such codes are Justesencodes,
which give ± < 9=10+ 1=(15c) for any chosenc > 2. Now, for any choiceof n and
x 2 f 0; 1gn , we de¯ne the (log m + 1)-qubit state jhx i as

jhx i =
1

p
m

mX

i =1

ji ij E i (x)i :

Sincetwo distinct codewords can be equal in at most ±m positions, for any x 6= y
we have hhx jhy i · ±m=m = ±. Thus we have 2n di®erent (log n + O(1))-qubit
states,and each pair of them has inner product at most ±.

The simultaneousmessagepassingprotocol for the equality problem works as
follows. When givenn-bit inputs x and y, respectively, Alice and Bob send¯nger-
prints jhx i and jhy i to the referee.Then the refereemust distinguish betweenthe
casewherethe two statesreceived|call them jÁi and jÃi |are identical or have
inner product at most ±. This is accomplishedwith one-sidederror probability
by the procedurethat measuresand outputs the ¯rst qubit of the state

(H ­ I )(c-SWAP)( H ­ I )j0ij Áij Ãi :

HereH is the Hadamardtransform, which mapsjbi ! 1p
2
(j0i + (¡ 1)bj1i ), SWAP

is the operation jÁij Ãi ! jÃij Ái and c-SWAP is the controlled-SWAP (controlled
by the ¯rst qubit). The circuit for this procedureis illustrated in Figure 8.2.

By tracing through the executionof this circuit, one can determine that the
¯nal state beforethe measurement is

1
2 j0i (jÁij Ãi + jÃij Ái ) + 1

2 j1i (jÁij Ãi ¡ jÃij Ái ):

Measuring the ¯rst qubit of this state producesoutcome1 with probability 1
2 ¡

1
2 jhÁjÃij 2. This probability is 0 if x = y and is at least 1

2(1¡ ±2) > 0 if x 6= y. Thus,
the test determineswhich caseholds with one-sidederror probability at most
1
2(1+ ±2). The error probability of the test canbe reducedto any " > 0 by setting
the ¯ngerprint of x 2 f 0; 1gn to jhx i ­ k for a suitable k 2 O(log(1=")). From
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j0i

jÁi

jÃi

measureH Ht

SWAP

Figure 8.2: Circuit to test whether jÁi = jÃi or jhÁjÃij · ±

such ¯ngerprints, the refereecan independently perform the test in Figure 8.2 k
times, resulting in an error probability below ". In this case,the length of each
¯ngerprint is O((log n)(log(1=")).

As the above test shows that the refereecan test whether the ¯ngerprints he
received from Alice and Bob are the same,we have proved:

8.2.4. Theorem (BCWW [41]). Qcck
2(EQn ) 2 O(log n).

It is worth consideringwhat goes wrong if one tries to simulate the above
quantum protocol using classicalprobability distributions in place of quantum
superpositions. In such a protocol, Alice and Bob send(i; E i (x)) and (j ; E j (y))
respectively to the refereefor independent random uniformly distributed i; j 2
f 1; 2; : : : ; mg. If it shouldhappenthat i = j then the refereecanmakea statistical
inferenceabout whether or not x = y. But i = j occurs with probability only
O(1=n)|and the abilit y of the refereeto make an inferencewhen i 6= j seems
di±cult. For many error-correctingcodes,no inferencewhatsoever about x = y is
possiblewhen i 6= j and the lower bound in [127] implies that no error-correcting
code enablesinferencesto be made when i 6= j with error probability bounded
below 1. The distinguishing test in Figure 8.2 can be viewed as a quantum
operation which hasno analogousclassicalprobabilistic counterpart.

Our quantum protocol for equality in the simultaneousmessagemodel uses
O(log n)-qubit ¯ngerprints for any constant error probability. Is it possibleto
use fewer qubits? In fact, without a sharedkey, ­(log n)-qubit ¯ngerprints are
necessary. This is becauseany k-qubit quantum state can be speci¯ed within
exponential precision with O(k2k) classicalbits. Therefore the existenceof a
k-qubit quantum protocol implies the existenceof an O(k2k)-bit deterministic
classicalprotocol. From the fact that Dcck(EQn ) = 2n we can now infer that
k ¸ (1 ¡ o(1)) logn.
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8.3 Short Near-Orthogonal Quan tum States

In Section 8.2, we employed a particular classicalerror-correcting code to con-
struct a setof 2n quantum stateswith pairwiseinner products below ± in absolute
value. Here, we considerthe questionof how few qubits are su±cient for this to
be accomplishedfor somesmall ± > 0.

An alternative construction wherewe cane±ciently achieve a very small inner
product is asfollows. Let n and ± > 0 be given and let F be a ¯eld of sizen=±(we
ignore the fact that n=± should be rounded to the nearestprime power in order
for F to be a ¯eld). For x = x1 : : : xn 2 f 0; 1gn , de¯ne the polynomial px (z) over
F as

px (z) = x1 + x2z + x3z2 + ¢¢¢+ xnzn¡ 1:

For each x 2 f 0; 1gn , de¯ne the 2log(n=±)-qubit state jhx i as

jhx i = 1p
jFj

X

z2 F

jzij px (z)i :

Two distinct polynomialsof degree· d can be equalon at most d elements of F,
so for any x 6= y we have hhx jhy i · (n ¡ 1)±=n < ±. Thus we have 2n di®erent
2log(n=±)-qubit states,and each pair of them is almost orthogonal.

In fact, even logn + O(log(1=±)) qubits are su±cient, as follows. Using a
probabilistic argument (seee.g.[4]), it canbe shown that, for an arbitrarily small
± > 0, there exists an error-correctingcode E : f 0; 1gn ! f 0; 1gm with m · n=±c

(for someconstant c) such that the Hamming distancebetweenany two distinct
codewords E(x) and E(y) is between(1 ¡ ±)m=2 and (1 + ±)m=2. (If a set S of
2n m-bit strings is chosenat random then the probability that there is a pair of
strings in S whoseHamming distance deviates from m=2 by more than ±m, is
lessthan 1. This shows that there existsa set S with the right properties.) Note
that this existenceproof doesnot yet yield an explicit construction of the code;
however, VenkatesanGuruswami and Adam Smith (personalcommunication via
Richard Cleve) recently pointed out to us that explicit constructions of such
codescan be obtained from results in [3, 29]. Given such a code, the logm-qubit
¯ngerprint of x 2 f 0; 1gn can be set to

jhx i =
1

p
m

mX

i =1

(¡ 1)E i (x) ji i

to yield the following theorem:

8.3.1. Theorem (BCWW [41]; Gur uswami & Smith). For everyn and± >
0 one can construct a set fj hx i j x 2 f 0; 1gng of states of logn + O(log(1=±))
qubits, suchthat jhhx jhy ij · ± wheneverx 6= y.

Theseconstructionsare optimal in the following sense:
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8.3.2. Theorem (BCWW [41]). Let ± ¸ 2¡ n . Then an assignmentof b-qubit
statesto all n-bit strings suchthat the absolutevalueof the inner product between
any two ¯ngerprints is at most ±, requires b2 ­(log (n=±2)) qubits.

Pro of. Let fj hx i j x 2 f 0; 1gng be the b-qubit states. We will use these
states to get a 1-round protocol for the equality function. Suppose Alice has
input x and Bob has input y. Then Alice sendsBob the state jhx i and Bob
performsa 2-outcomeorthogonalmeasurement given by projectors P1 = jhy ihhy j
and P0 = I ¡ P1. Bob outputs 1 with probability Tr(P1jhx ihhx j) = jhhx jhy ij 2.
If x = y then this is 1, and if x 6= y then this is · ±2. Thus we have a b-qubit
protocol for EQn with error probability · ±2. Proposition 7.4.10 now implies
b2 ­(log (n=±2)). 2

It should be noted that having small inner product ± is desirable but not
all-important. For instance, there is a trade-o®between ± and the number of
copiesof each state sent by Alice and Bob in the simultaneousmessagepassing
protocol for equality from the previous section in terms of the total number of
qubits communicated and the resulting error bound.

8.4 The State Distinguishing Problem

Motivated by the referee'stest of Section8.2, we de¯ne the state distinguishing
problemas follows. The input consistsof k copiesof each of two quantum states
jÁi and jÃi , with a promise that jÁi and jÃi are either identical or have inner
product boundedin absolutevalueby somegiven± < 1. The goalis to distinguish
betweenthe two caseswith as high a probability as possible.

One method for solving this problem is to use the method in Section 8.2,
independently performing the test in Figure 8.2 k times, resulting in an error
probability of 0 in the identical caseand ( 1+ ±2

2 )k otherwise. We will describe an
improved method, whoseerror probability is approximately

p
¼k( 1+ ±

2 )2k , which
is almost quadratically better when ± is small. We also show that this is nearly
optimal by proving a lower bound of 1

4( 1+ ±
2 )2k on the error probability.

The improved method for the state distinguishing problem uses registers
R1; : : : ; R2k , which initially contain jÁi ; : : : ; jÁi ; jÃi ; : : : ; jÃi (k copiesof each).
It also usesa register P whoseclassicalstates include encodings of all the (2k)!
permutations on 2k elements, i.e., all ¾2 § 2k . Let 0 denotethe identit y permu-
tation and let P be initialized to 0. Let F be any transformation satisfying

F : j0i !
1

p
(2k)!

X

¾2 § 2k

j¾i :

For example,F could be the quantum Fourier transform on (2k)! elements. Since
all prime factors of (2k)! are O(k), this QFT can be computed e±ciently, using
poly(k) many gates(see,e.g., [51] or the conferenceversionof [151]).
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The distinguishing procedureoperatesas follows:

1. Apply F to register P.

2. Apply a conditional permutation on the contents of registersR1; : : : ; R2k ,
conditioned on the permutation speci¯ed in P.

3. Apply F ¤ = F ¡ 1 to P and measurethe ¯nal state. If P contains 0 then
answer equal, otherwiseanswer not equal.

We now analyzethis procedure. The state after step 2 is
1

p
(2k)!

X

¾2 § 2k

j¾i ¾(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

(where¾(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi ) meanswe permute the contents of the 2k registers
accordingto ¾).

Case 1: jÁi = jÃi . In this casethe permutation of the registersdoesabsolutely
nothing, so the procedureanswersequal with certainty.

Case 2: AssumejhÁjÃij < ±. The probability of answering equal is the squared
norm of the vector obtained by applying the projection j0ih0j ­ I to the ¯nal
state, which is

peq =

°
°
°
°
°

1
p

(2k)!

X

¾2 § 2k

h0jF ¤j¾i ¾(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

°
°
°
°
°

2

=

°
°
°
°
°

1
(2k)!

X

¾2 § 2k

¾(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

°
°
°
°
°

2

:

Sincekj´ ik 2 = h́ j´ i for any j´ i we may simplify this probability as follows:

peq =
1

((2k)!)2

X

¾;¿2 § 2k

¾(hÁj ¢¢¢hÁjhÃj ¢¢¢hÃj)¿(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

=
1

((2k)!)2

X

¾;¿2 § 2k

hÁj ¢¢¢hÁjhÃj ¢¢¢hÃj¾¡ 1¿(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

=
1

(2k)!

X

¾2 § 2k

hÁj ¢¢¢hÁjhÃj ¢¢¢hÃj¾(jÁi ¢¢¢jÁij Ãi ¢¢¢jÃi )

=
(k!)2

(2k)!

kX

j =0

µ
k
j

¶ 2

±2j

·
(k!)2

(2k)!

kX

j =0

µ
2k
2j

¶
±2j

·
(k!)2

(2k)!
(1 + ±)2k :
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The sumof binomial coe±cients arisesby grouping the permutations ¾according
to the number of registersj in the set f R1; : : : ; Rkg that ¾causesto contain jÃi .
From Stirling's approximation we thereforeobtain:

8.4.1. Theorem. The above procedure, on input jÁi ­ k and jÃi ­ k such that ei-
ther jÁi = jÃi or jhÁjÃij · ±, decides which of the two is the case with error
O(

p
k

¡
1+ ±

2

¢2k
).

We now show that the error probability cannot be lessthan 1
4( 1+ ±

2 )2k for the
state distinguishing problem.1 Consideran optimal state distinguisher that acts
on k copiesof jÁi and k copiesof jÃi whereeither jÁi = jÃi or jhÁjÃij · ±. Let
jÁ1i = jÃ1i = j0i , and let jÁ2i = cos( µ

2)j0i + sin(µ
2)j1i and jÃ2i = cos(µ2)j0i ¡

sin(µ
2)j1i , where µ = arccos±. Clearly, jÁ1i = jÃ1i and hÁ2jÃ2i = ±. A state

distinguisher must distinguish between the state jai = jÁ1i ­ k ­ jÃ1i ­ k and the
state jbi = jÁ2i ­ k ­ jÃ2i ­ k . We consider the probability with which a state
distinguishercandistinguish betweenthesetwo states. SincehÁ1jÁ2i = hÃ1jÃ2i =
cos(µ2), it follows that hajbi = cos2k( µ

2) = ( 1+cos µ
2 )k = ( 1+ ±

2 )k . Now, it is known
that the optimal proceduredistinguishing betweentwo stateswith inner product
cos® has error probability 1¡ sin ®

2 ¸ 1
4(cos®)2. (This follows from an early result

of Helstrom [89], which waslater strengthenedby Fuchs [78, Section3.2]. A clean
and self-contained derivation of this result may alsobe found in [137].) Therefore,
the state distinguisher must have error probability at least 1

4( 1+ ±
2 )2k .

8.5 Exactly Orthogonal Quan tum States

As constructed above, di®erent quantum ¯ngerprints are nearly orthogonal but
not completely. In general,quantum mechanicsallows no short ¯ngerprints that
are exactly orthogonal, becauseif the 2n vectorsare all pairwiseorthogonal then
they must have dimensionat least 2n and hencerequire at least n qubits. How-
ever, if we are promisedthat not all pairs of ¯ngerprints will be compared,then
short but exactly orthogonal quantum ¯ngerprints are sometimespossible. Let
G = (V; E) be some graph with V = f 0; 1gn . We consider exactly orthogo-
nal ¯ngerprints under the promisethat the ¯ngerprints for x and y will only be
comparedif x = y or if (x; y) 2 E.

We want to associate ¯ngerprints with the nodes such that adjacent nodes
receive orthogonal ¯ngerprints. In the classicalcasethese¯ngerprints correspond
to classicalbitstrings, which when represented as a state in Hilbert spaceare
vectorswith a 1 at a speci¯c position and zeroeselsewhere.In this caseit is easy
to seethat the length (in bits) of the ¯ngerprints is characterizedby the length (in

1Note that this lower bound concerns a problem that is slightly more general than the
problem of distinguishing ¯ngerprints , becausethe ¯ngerprin ts used in Section 8.2 are not
arbitrary but comefrom a known set of only 2n states.
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bits) of the chromatic number Â(G) of the graph G (Â(G) is the minimal number
of colorsrequired to assigna color to each node of the graph in such a way that
two adjacent nodesget di®erent colors.) On the one hand, if we have a coloring
of the graph, then thosecolorscan serve asclassical̄ ngerprints of logÂ(G) bits.
Conversely, if we have assignedclassical̄ ngerprints hx to the nodesx, then these
form a proper coloring of the graph.

It is also easyto prove a 1-1 correspondencebetweencoloringsof G and de-
terministic 1-round communication protocols for the communication complexity
problem problem EQG, which is the promiseversionof EQn speci¯ed by G. The
color for node x in G would correspond to the messagethat Alice sendswhen
shereceives input x. In particular, we have an equivalencebetweenthe optimal
1-round communication complexity and the chromatic number Â(G):

8.5.1. Theorem (BCWW). Dcc1 r ound (EQG) = logÂ(G).

In the quantum world, an exact ¯ngerprinting scheme would assignstates
jhx i 2 Cd to the nodesof G such that hhx jhy i = 0 if (x; y) 2 E. We call such
an assignment an orthogonal representation of G (see[114, 82, 105] for related
notions). The orthogonaldimensiondim(G) of G is the minimal d for which such
a representation exists. Sincean orthogonalrepresentation and an exactquantum
¯ngerprinting schemeare just the samething, logdim(G) qubits are necessary
and su±cient for exact quantum ¯ngerprints. The orthogonal dimension also
characterizesthe 1-round quantum communication complexity of equality with
the G-promise:

8.5.2. Theorem (BCWW). Qcc1 r ound
E (EQG) = logdim(G).

Pro of. Let fj hx i j x 2 f 0; 1gng be an orthonormal representation of G. A
1-round quantum protocol is the following: Alice sendsjhx i to Bob in logdim(G)
qubits and Bob measuresit according to the 2-outcomemeasurement speci¯ed
by the projectors P1 = jhy ihhy j and P0 = I ¡ P1. Sincethe vectors comefrom
an orthonormal representation of G, we have that hhx jhy i = 0 whenever x 6= y
and (x; y) 2 E. Accordingly, the protocol will output 1 i® x = y and we have
Q1 r ound (EQG) · logdim(G).

Conversely, considersomeoptimal 1-round quantum protocol for EQG. We
canassumewithout lossof generality that Alice's messagesarepure states,which
are not entangled with her workspace.Let jhx i be the messagethat Alice sends
to Bob if her input is x. Suppose(x; y) 2 E and Bob gets input y. If he receives
messagejhx i then he should output 0 and if he receives jhy i then he should
output 1. But this meansthat Bob must be able to distinguish the vectors jhx i
and jhy i with certainty, which is possibleonly if jhx i and jhy i are orthogonal
[130, p.87]. Thus the vectors jhx i form an orthonormal representation of G of
dimension2QccE

1 r ound (EQ G ) . 2
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Wehaveshown that the minimal length of classical̄ ngerprints is logÂ(G) bits
and the minimal length of quantum ¯ngerprints is logdim(G) qubits. Sometimes
the latter is much smallerthan the former. Oneinterestingexampleof this canbe
derived from the distributed Deutsch-Jozsaproblem of Section6.4.2. It concerns
the graph G = (V; E) with V = f 0; 1gn , E = f (x; y) j ¢( x; y) = n=2g, where
¢ denotesHamming distance, and n is divisible by 4. A simple orthonormal
representation of G of dimensionn is jhx i = 1p

n

P n
i=1 (¡ 1)x i ji i , sincehhx jhy i = 0

i® ¢( x; y) = n=2. On the other hand, note that the EQG problem for this G is
just the distributed Deutsch-Jozsaproblem, for which we proved a lower bound
of Dcc(EQG) ¸ 0:007 n in Theorem 6.4.3. Combined with Theorem 8.5.1, this
implies that G hashigh chromatic number:

8.5.3. Theorem (BCWW). The aboveG hasdim(G) · n and Â(G) ¸ 20:007n ,
so exact quantum ¯ngerprints are exponentially shorter than exact classical ¯n-
gerprints for this graph.

It would be interesting to characterize the graphs for which exact quantum
¯ngerprints are much shorter than the classicalones, i.e., for which dim(G) is
much smaller than Â(G). It is easyto seethat dim(G) is lower boundedby the
sizeof the largest clique in G, so such graphsshould have only small cliques.

8.6 Exact Fingerprin ting with a Quan tum Key

Here we brie°y considerthe caseof ¯ngerprinting where Alice and Bob have a
sharedquantumkey, consistingof O(log n) EPR-pairs, but are requiredto output
classical strings as ¯ngerprints. Is there any sensein which a quantum key can
result in improved performanceover the caseof a classicalkey?

Consideragain a Deutsch-Jozsatype of promise(with n a power of 2): either
x = y or the Hamming distancebetweenx and y is n=2. Under this restriction,
any exactclassicalschemewith a sharedclassicalkey would require¯ngerprints of
length ­( n). This follows immediately from the ­( n) lower bound for Dcc(DeJo)
(Theorem 6.4.3): Alice can sendher ¯ngerprint to Bob to get an exact 1-round
classicalprotocol for the distributed Deutsch-Jozsaproblem.

On the other hand, there is a schemedue to Brassard,Cleve, and Tapp [33]
with a sharedquantum key of logn EPR-pairs that outputs classical̄ ngerprints
of length only logn bits, such that x = y i® the ¯ngerprints are equal. It works
as follows. Initially the logn EPR-pairs are in the following state:

1
p

n

X

i 2f 0;1glog n

ji ij i i :

This is a 2logn-qubit state, where the ¯rst logn qubits belong to Alice and
the last logn qubits belong to Bob. Alice applies the unitary transformation
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ji i ! (¡ 1)x i ji i to her part and Bob appliesji i ! (¡ 1)yi ji i , giving

1
p

n

X

i 2f 0;1glog n

(¡ 1)x i ji i (¡ 1)yi ji i :

They now each apply Hadamard transforms to their qubits, giving

1
n3=2

X

i 2f 0;1glog n

0

@(¡ 1)x i
X

k2f 0;1glog n

(¡ 1)i ¢k jki

1

A

0

@(¡ 1)yi
X

`2f 0;1glog n

(¡ 1)i ¢̀ j` i

1

A :

Note that the total amplitude of the state jkij ki is now

1
n3=2

X

i 2f 0;1glog n

(¡ 1)x i (¡ 1)i ¢k(¡ 1)yi (¡ 1)i ¢k =
1

n3=2

X

i 2f 0;1glog n

(¡ 1)x i ©yi :

This amplitude will be 1=
p

n if x = y and it will be 0 if ¢( x; y) = n=2. Thus
if Alice and Bob each measuretheir part of the state and output the resulting
logn-bit strings a and b, then a = b i® x = y and they have achieved their goal.

8.7 Quan tum Data Structures

Finally, we give an application of quantum ¯ngerprints to data structures. Con-
sideran N = 2n -element universeU, which we can identify with f 0; 1gn . Suppose
we want to store a set S of at most k elements from U asa data structure dS, in
such a way that we can answer a membershipquestion`x 2 S?' by looking at dS.
We want the data structure dS to be as small as possible. It may consistof bits
or qubits. We will ¯rst analyzethe qubit case,and then contrast this to what is
and is not possibleclassically.

8.7.1 The quan tum case

First considerthe casek = 1, soS = f xg for somex 2 f 0; 1gn . We can represent
S by a ¯ngerprint of x. We will use the polynomial-basedconstruction from
Section8.3. Let F be a ¯eld of sizen=" and de¯ne

jhx i =
1

p
jFj

X

z2 F

jzij px (z)i :

A query of the form `y 2 S?' is now simply the question `x = y?' and can be
answeredwith bounded-error,for instanceby applying the test of Figure 8.2. A
better test in this caseis to apply the following e±ciently computable unitary
transformation on the ¯ngerprint with an auxiliary j0i -qubit:

jzij pij 0i ! jzij pij [py(z) = p]i ;
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and measuringthe last bit (here [py(z) = p] is the truth-v alue of the statement
`py(z) = p'). If x = y then this measurement will give a 1 with certainty; if x 6= y
then it will give a 0 with probability > 1¡ " . We will call such a test for `x = y?'
a query to the data structure.

A severe disadvantage is that the quantum structure can be usedonly once,
sinceanswering a membershipquery will involve a measurement and will disturb
the state. However, we can make the data structure such that with high proba-
bilit y it can be usedm times by setting " · 1=4m, i.e., by choosing our ¯eld F
to be of sizen=" = 4mn. This we prove as follows. Considerthe data structure
jhx i and supposewe sequentially query y1; : : : ; ym for equality with x, using the
test described in the previous paragraph. First considery1. If x = y1 then the
test will work with probability 1 and will not disturb the ¯ngerprint at all. If
x 6= y1 then with probability ¸ 1 ¡ " the test will give the right answer. In this
casethe measurement will eliminate from the superposition all basis states jzi
for which px (z) = py1 (z); there are at most n ¡ 1 such jzi . Beforethe secondtest
(`x = y2?') there are at least4mn ¡ (n ¡ 1) jzi left in the superposition. If x = y2

then with probability 1 the secondtest gives the correct answer and the state
will not be a®ected. If x 6= y2 then we get the correct answer with probability
¸ 1¡ n¡ 1

4mn ¡ (n¡ 1) and the measurement will againdeleteat most n ¡ 1 basisstates
jzi from the superposition. In general,assumingall previous tests gave the cor-
rect answer, the probability that the test yi = x givesthe right answer is at least
1 ¡ n¡ 1

4nm ¡ (i ¡ 1)(n¡ 1) . Thus the probability that all m tests give the correct answer
is at least

mY

i =1

µ
1 ¡

n ¡ 1
4nm ¡ (i ¡ 1)(n ¡ 1)

¶
¸

µ
1 ¡

1
3m

¶ m

¸
2
3

, for all m ¸ 1:

Choosing jFj ¼ 4mn gives ¯ngerprints of about 2log(4mn) qubits. What this
shows is that we can cheaply make our data structure reusable.In particular, at
the costof only a constant factor c for the number of qubits of the data structure,
we canmake the structure m = nc times reusablebeforeit is disturbed too much.

A ¯ngerprint jhx i stores just one element x. Setsof k > 1 elements can be
stored in O(k log(kn)) qubits, sincewe can represent S = f x1; : : : ; xkg by giving
the ¯ngerprints jhx1 i ; : : : ; jhxk i of each element, with error probability of each
¯ngerprint reducedto, say, " = 0:01=k. The question `y 2 S?' reducesto the k
questions`y = x i ?', which canall be answeredwith high successprobability using
the ¯ngerprints.

We summarizethe above discussionin the following theorem:

8.7.1. Theorem (BCWW [41]). Let n; k; m be positive integers. There exists
a schemethat can store any set S µ f 0; 1gn of size jSj · k in a quantum data
structure of O(k log(nmk)) qubits, in sucha way that with probability ¸ 2=3, m
consecutive membership queries(each of the form `x 2 S?') to the data structure
wil l all be answered correctly.
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What about lowerboundson the sizeof such a quantum data structure? If we
are able to represent any · k-element subsetof our universe,then we can embed
a k-bit quantumrandomaccesscodein the data structure: the abilit y to represent
any subsetof f 1; : : : ; kg such that onemembershipquery canbe answeredentails
the abilit y to represent any k-bit string such that any onebit-probe in this string
can be answered. Nayak [125] proved that such a quantum data structure needs
(1 ¡ H (´ ))k qubits, where H (´ ) is the binary entropy function applied to the
error probability of the queries. Thus the size of quantum data structures lies
roughly betweenk and k log(kn).

8.7.2 Comparison with the classical case

What about classicaldata structures for the set membershipproblem, how many
bits arerequiredto represent a setS µ f 0; 1gn of at most k elements? The answer
dependson what we expect from the data structure. Most reasonableseemsto
require the data structure to be a classicalstring (possiblygeneratedaccordingto
somedistribution dependingon S) which we canstoresomewhereand afterwards
useto determinewhether y 2 S for any y of our choice. With this constraint, the
classicaldata structure requiresabout log

³ P k
i=0

¡ N
i

¢́
¼ kn bits (the logarithm of

the number of setsthat wewant to represent). Accordingly, in this case,quantum
mechanics allows exponential spacesavings for small k: if k 2 polylog(n) then
the quantum data structure for S requiresabout k log(kn) 2 polylog(n) qubits,
which is exponentially lessthan the classicalspaceof about kn bits.

There is, however, another way to view the classicaldata structure, a way
which usesclassical̄ ngerprinting and requiresonly O(k log(kn)) bits to represent
S. Supposewe choosea ¯eld F of, say, 100kn elements. For each x 2 S we choose
a random zx 2 F and we represent S by giving the pairs (zx ; px (zx )) for all x 2 S.
This takesk ¢2log(100kn) bits. If we now want to test whether somey is in S,
then we can comparepx (zx ) with py(zx ) for all k pairs. If y 2 S then oneof these
k comparisonswill give equality, and if y 62S then probably all comparisonsgive
inequality, where the probability is taken over the random choicesof zx . If this
probabilistic result satis¯esus, then we have a classicaldata structure which is as
e±cient asthe quantum onegivenabove. The problemwith this approach is that
oncethe randomness(the choicesof zx ) has been¯xed, an adversary can ¯nd a
y such that with certainty the data structure will give the wrong answer for the
query `y 2 S?'. The quantum data structure doesnot su®erfrom this drawback.
In the quantum casethere is no randomnessthat needsto be ¯xed, and every
query is answeredwith high probability no matter which y the adversarychooses.
One way to expressthis is to say that the quantum superposition \p ostpones"
the randomnessto the actual time at which the query is made.

The di®erencebetweenthe quantum and the classicalcasealso shows up in
the simultaneousmessagepassingmodel mentioned in the ¯rst part of this paper.
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SupposeAlice receivesS µ f 0; 1gn of sizejSj · k, Bob receivessomey 2 f 0; 1gn ,
and they each want to sendonemessageto the refereeto enablehim to determine
whether y 2 S. In the quantumcase,Alice can sendthe quantum data structure
for S to the referee(O(k log(kn)) qubits), Bob can send a ¯ngerprint of y to
the refereewith error reducedto ¼ 1=k (O(log(kn)) qubits), and the refereecan
determinewhether y 2 S with small error probability. Note that the refereehas
to apply the test of Figure 8.2,he cannot apply the simpler test from this section,
sincehe does not have the completey. In the classical case,Alice and/or Bob
needto sendexponentially more bits to the referee(in particular, for k = 1 this
is just the equality problem, for which the classicalbound is £(

p
n)).

8.8 Summary

In many contexts, testing the equality of n-bit strings x and y can be done by
taking short ¯ngerprints of x and y and comparingonly those. If the two parties
making the respective ¯ngerprints share O(log n) bits of randomness,then the
classical¯ngerprints needonly be O(1) bits long. However, if the parties do not
share randomness,then the ¯ngerprints need£(

p
n) bits. We gave a quantum

¯ngerprinting schemein which the ¯ngerprints can be O(log n) qubits even if the
parties shareno randomnesswhatsoever. This implies an exponential quantum-
classicalgapfor the equality problemin the simultaneousmessagepassingvariant
of communication complexity: Alice and Bob are uncorrelated, they get inputs
x and y, respectively, and should each senda messageto a refereeto enablehim
to decidewhether x = y. Classically this takes £(

p
n) bits of communication,

quantumly it takes only O(log n) qubits. We analyzed the required size of the
quantum ¯ngerprints and the error probability of the referee'sequality test in
detail, and alsogave someother applications of quantum ¯ngerprinting.



Chapter 9

Priv ate Quan tum Channels

This chapter is basedon the paper

² A. Ambainis, M. Mosca,A. Tapp, and R. de Wolf. Private Quantum Chan-
nels. In Proceedings of 41th IEEE FOCS, pages,547{553,2000.

9.1 In tro duction

In the previous chapters we have discussedbounds on the amount of quantum
communication that is neededfor solving various tasks. Whenever two people
communicate over somechannel, they run the risk of beingspiedon: someeaves-
dropper Eve may tap the channel and learn things about the conversation that
Alice and Bob would rather shedidn't know. In this chapter we will investigate
what resourcesare neededfor Alice and Bob to make their quantum communi-
cation secure, in the sensethat Eve will get no information about the messages
when shetaps the channel.

Securetransmissionof classical information is a well studied topic. Suppose
Alice wants to sendan n-bit messageM to Bob over an insecure(i.e., spied-on)
channel, in such a way that the eavesdropper Eve cannot obtain any information
about M from tapping the channel. If Alice and Bob share somesecret n-bit
key K , then here is a simple way for them to achieve their goal: Alice exclusive-
ors M with K and sendsthe result M 0 = M © K over the channel, Bob then
xors M 0 again with K and obtains the original messageM 0 © K = M . Eve
may seethe encoded messageM 0, but if she does not know K then this will
give her no information about the real messageM , since for any M there is
a key K 0 giving rise to the sameencoding M 0. This scheme is known as the
Vernam cipher or one-time pad (\one-time" becauseK can be used only once
if we want information-theoretic security). It shows that n bits of sharedsecret
key are su±cient to securelytransmit n bits of information. Shannon[149, 150]

155
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hasshown that this schemeis optimal: n bits of sharedkey are alsonecessaryin
order to transmit an n-bit messagein an information-theoretically secureway.

Now let us considerthe analogoussituation in the quantum world. Alice and
Bob areconnectedby a one-way quantum channel, to which an eavesdropper Eve
hascompleteaccess.Alice wants to transmit to Bob somen-qubit state ½taken
from someset S, without allowing Eve to obtain any information about ½. (Here
½is a mixed quantum state, a probability distribution on pure quantum states,
to be de¯ned in more detail in the next section.) Alice and Bob could easily
achieve such security if they sharen EPR-pairs or if they were able to establish
EPR-pairs over a securequantum channel, for then they can apply teleportation
(Section6.2) and transmit every qubit via 2 random classicalbits, which will give
Eve no information whatsoever. But now supposeAlice and Bob do not share
EPR-pairs, but instead they only have the resourceof sharedrandomness,which
is weaker but easierto maintain.

A ¯rst question is: is it at all possible to send quantum information fully
securelyusing only a ¯nite amount of randomness?At ¯rst sight this may seem
hard: Alice and Bob have to \hide" the amplitudes of a quantum state, which
are in¯nitely precisecomplexnumbers. Nevertheless,the questionhasa positive
answer. More precisely, to privately sendn qubits, a shared2n-bit classicalkey is
su±cient. The encryption technique is fairly natural. Alice appliesto the state ½
that shewants to transmit a reversiblequantum operation speci¯ed by the shared
key K (basically, sheappliesa random Pauli matrix to each qubit), and shesends
the result ½0 to Bob. In the most generalsetting this reversibleoperation can be
represented asdoing a unitary operation on the state ½augmented with a known
¯xed ancilla state ½a. Knowing the key K that Alice used, Bob knows which
operation Alice applied and he can reversethis, remove the ancilla, and retrieve
½. In order for this scheme to be information-theoretically secureagainst the
eavesdropper, we have to require that Eve always \sees" the samedensity matrix
½0 on the channel, no matter what ½was. BecauseEve does not know K , this
condition can indeedbe satis¯ed. Accordingly, an insecurequantum channel can
be madesecure(private) by meansof sharedclassicalrandomness.

A secondquestionis, then, howmuchkey Alice and Bob needto sharein order
to be able to privately transmit any n-qubit state. A good way to measurekey
sizeis by the amount of entropy required to create it, that is, by the entropy of
the probability distribution accordingto which Alice and Bob selecttheir secret
key. In the caseof a uniform distribution, this is just the number of bits of the
key. As onemight imagine,showing that 2n bits of key arenot only su±cient but
also necessary, is the most intricate part of this chapter.1 We prove this 2n-bit
lower bound in Section9.5, and show that it even holds for the simpler task of

1Note that if Alice and Bob sharean insecuretwo-way channel, then they can do quantum
key exchange[26] in order to establish a sharedrandom key, so in this caseno prior sharedkey
(or only a very small one) is required.
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privately transmitting n unentangled qubits. Accordingly, in analogy with the
classicalone-time pad, we have an optimal quantum one-time pad that uses2n
classicalbits to completely \hide" n qubits from Eve. In particular, hiding a
qubit is only twice as hard as hiding a classicalbit, despite the fact that in the
qubit we now have to hide amplitudes coming from a continuousset.

The chapter is organizedas follows. Section 9.2 introducessomenotation
and someproperties of Von Neumann entropy. In Section 9.3 we give a formal
de¯nition of a private quantum channel (PQC). In Section 9.4 we give some
examplesof PQCs. In particular we show that there is a PQC that privately
sendsany n-qubit state using2n bits of randomness(sharedkey). Wealsoexhibit
a non-trivial set of n-qubit states for which there is PQC requiring only n bits
of randomness,namely the tensor products of qubits with real amplitudes. The
latter result includesthe classicalone-time pad. In Section9.5 we show that 2n
bits of randomnessare necessaryif we want to be able to sendany n-qubit mixed
state privately.

Remark about related work. Several recent papers independently discussed
issuessimilar to the work presented in this chapter. In a related but slightly
di®erent setting, Braunstein, Lo, and Spiller [38, 113] have shown that 2 bits
of entropy are necessaryand su±cient to \randomize" a qubit. At around the
sametime as this work was done, Boykin and Roychowdhury [31] exhibited the
2n-bit Pauli-matrix one-time pad. They also gave a general characterization
of all possibleencryption schemeswithout ancilla, a characterization which can
also be derived from the simultaneous and independent work of Werner [159].
Furthermore, Boykin and Roychowdhury proved a 2n-bit lower bound for the
casewhere the encryption schemedoesnot allow the useof an ancilla state. In
Section9.5we start with a simpli¯ed proof of their lower bound for the no-ancilla
caseand give a di®erent and more complicatedproof for the lower bound in the
casewherewe do allow an ancilla.

9.2 Preliminaries

9.2.1 Mixed states and superop erators

In this chapter we needto go a little bit beyond the usual pure state formalism
that we introducedin Section1.2. A mixed quantumstate or density matrix ½is
a non-negative Hermitian matrix that has trace Tr(½) = 1. The density matrix
corresponding to a pure state jÁi is the outer product jÁihÁj. Becausea density
matrix ½is Hermitian, it has a diagonalization ½=

P r
i =1 pi jÁi ihÁi j, where r is

the rank of ½, the pi are its eigenvalues,and the jÁi i form an orthonormal set.
Because½is non-negative and has trace 1, we also have pi ¸ 0 and

P
i pi = 1.

Thus ½can be viewed as describinga probability distribution or \mixture" over
pure states. A density matrix givesa completedescription of the quantum state,
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sothere is no way in which two quantum stateswith identical density matricescan
be distinguished. We use ~I M = 1

M I M = 1
M

P M
i=1 ji ihi j to denotethe totally mixed

state in an M -dimensionalspace,which represents the uniform distribution on all
basisstates. It should be noted that the samedensity matrix can be represented
by di®erent distributions. For example,the 2-dimensionaltotally mixed state is

~I 2 =
µ

1
2 0
0 1

2

¶
=

1
2

j0ih0j +
1
2

j1ih1j =
1
2

j+ ih+ j +
1
2

j¡ih¡j ;

wherewe de¯ned j+ i = 1p
2
(j0i + j1i ) and j¡i = 1p

2
(j0i ¡ j1i ).

If two systemsare in pure states jÁi and jÃi , respectively, then their joint
state is the tensor product pure state jÁi ­ jÃi = jÁij Ãi . If two systemsare in
mixed states ½1 and ½2, respectively, then their joint state is the tensor product
½1 ­ ½2. We refer to [130, Chapter 2] for more about density matrices.

Applying a unitary transformation U to a pure state jÁi givespure state UjÁi ,
and applying U to a mixed state ½givesmixed state U½U¤, whereU¤ = U¡ 1 is
the conjugate transposeof U. We will useE = f

p
pi Ui j 1 · i · N g to denote

the superoperator that appliesUi with probability pi to its argument (we assumeP
i pi = 1). Thus E(½) =

P
i pi Ui ½U¤

i . Quantum mechanics allows for more
general superoperators, but this type su±ces for our purposes. A very useful
result is that two identical superoperatorsare unitarily related [129, Section3.2]:

9.2.1. Theorem (Nielsen [129]). If E = f
p

pi Ui j 1 · i · N g and E0 =
f
p

p0
i U

0
i j 1 · i · N 0g are identical (E(½) = E0(½) for all ½), then they are

unitarily related in the following way (where we assumeN ¸ N 0 and if N > N 0

we pad E0 with zero operators to make E and E0 of equal size): there exists a
unitary N £ N matrix A suchthat for all i

p
pi Ui =

NX

j =1

A ij

q
p0

j U
0
j :

9.2.2 Von Neumann entrop y

Let density matrix ½have the diagonalization
P N

i=1 pi jÁi ihÁi j. The Von Neu-
mann entropy S(½) of ½is the classicalShannonentropy H of the eigenvalues
of ½: S(½) = H (p1; : : : ; pN ) = ¡

P N
i=1 pi logpi . This S(½) can be interpreted as

the minimal Shannonentropy of the measurement outcome,minimized over all
possiblecompletemeasurements. Note that S(½) only dependson the eigenvalues
of ½. The following properties of Von Neumannentropy will be useful later (for
proofs seefor instance[158, 130]).

1. S(jÁihÁj) = 0 for every pure state jÁi .

2. S(½1 ­ ½2) = S(½1) + S(½2).
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3. S(U½U¤) = S(½).

4. S(¸ 1½1 + ¸ 2½2 + ¢¢¢+ ¸ n½n ) ¸ ¸ 1S(½1) + ¸ 2S(½2) + ¢¢¢+ ¸ nS(½n ) if ¸ i ¸ 0
and

P
i ¸ i = 1.

5. If ½=
P N

i=1 pi jÁi ihÁi j with the jÁi i not necessarilyorthogonal, then S(½) ·
H (p1; : : : ; pN ). (Equality holds if the jÁi i form an orthonormal set.)

9.3 De¯nition of Priv ate Quan tum Channel

Let us sketch the scenariofor a private quantum channel. There are N possible
keys, which we identify for conveniencewith the numbers 1; : : : ; N . The i th
key has probability pi , so the key has entropy H (p1; : : : ; pN ) when viewed as a
random variable. The private quantum channelspeci¯esunitary transformations
Ui corresponding to the keys i . SupposeAlice wants to send an n-qubit pure
state jÁi from someset S to Bob. She appends m ¡ n ¯xed ancilla qubits in
state ½a to jÁihÁj and then applies Ui to the m-qubit state jÁihÁj ­ ½a, where i
is her key. Shesendsthe resulting m-qubit state Ui (jÁihÁj ­ ½a)U¤

i to Bob. Bob,
who sharesthe key i with Alice, appliesU¡ 1

i to obtain jÁihÁj ­ ½a, removes the
ancilla ½a, and is left with Alice's messagejÁihÁj. One can verify that this is the
most generalsetting allowed by quantum mechanicsif we want Bob to be able to
recover the state perfectly.

We will allow the eavesdropper Eve completeknowledgeof the schemeused
(including all the Uj 's). Of course,if shealsoknows the speci¯c key i used,then
shecan just intercept the messageon the channeland decode it usingU ¡ 1

i . How-
ever, i is supposedto be a secretkey known only to Alice and Bob. Accordingly,
in order for our scheme to be secureagainst the eavesdropper, we have to re-
quire that if Eve doesnot know i , then the density matrix ½0 that shegets from
monitoring the channel is independent of jÁi . This implies that shegets no in-
formation at all about jÁi . Of course,Eve'smeasuringthe channelmight destroy
the encoded message,but this is like classicallyjamming the channeland cannot
be avoided. The point is that if Eve measures,then shereceivesno information
about jÁi . We formalize this scenarioas follows.

9.3.1. Definition. Let n; m benatural numberswith m ¸ n. Let H 2n bethe set
of all pure n-qubit states,S µ H 2n be somesubsetthereof, E = f

p
pi Ui j 1 · i ·

N g be a superoperator whereeach Ui is a unitary mapping on H 2m ,
P N

i=1 pi = 1,
½a be an (m ¡ n)-qubit density matrix, and ½0 be an m-qubit density matrix.
Then [S; E; ½a; ½0] is called a Private Quantum Channel (PQC) if for all jÁi 2 S
we have

E(jÁihÁj ­ ½a) =
NX

i =1

pi Ui (jÁihÁj ­ ½a) U¤
i = ½0:

If n = m (i.e., no ancilla), then we omit ½a.
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Note that by linearity, if the PQC works for all pure states in S, then it
alsoworks for density matrices over S: applying the PQC to a mixture of states
from S gives the same½0 as when we apply it to a pure state. Accordingly, if
[S; f

p
pi Ui j 1 · i · N g; ½a; ½0] is a PQC, then H (p1; : : : ; pN ) bits of shared

randomnessare su±cient for Alice to sendany mixture ½of S-statesto Bob in a
secureway.

To sumup: Alice encodes½, togetherwith a ¯xed ancilla state ½a, in a unitary
way depending on her key i and Bob can decode becausehe knows the samei
and hencecan reverseAlice's unitary operation Ui . On the other hand, Eve has
no information about the key i apart from the distribution pi , so from her point
of view the channel is in state ½E ve = ½0. This is independent of the ½that Alice
wants to send,and hencegivesEve no information about ½.

9.4 Examples and Prop erties of PQCs

In this sectionwe exhibit someprivate quantum channels. The ¯rst uses2n bits
of key to privately sendany n-qubit state. The idea is simply to apply a random
Pauli matrix to each qubit individually. The 4 Pauli matrices are:

¾0 =
µ

1 0
0 1

¶
; ¾1 =

µ
0 1
1 0

¶
; ¾2 =

µ
0 ¡ i
i 0

¶
; ¾3 =

µ
1 0
0 ¡ 1

¶
:

Note that these matrices are unitary as well as Hermitian, so ¾i = ¾¤
i = ¾¡ 1

i .
Selectinga random Pauli matrix takes2 random bits per qubit and the resulting
qubit is in the totally mixed state. That is, for all qubits jÁi = ®j0i + ¯ j1i we
have

1
4

3X

i =0

¾i jÁihÁj¾¤
i = ~I 2:

Similarly, it is easilyveri¯ed that applying n random Pauli matrices to n qubits,
respectively, gives the totally mixed n-qubit state ~I 2n (irrespective of any en-
tanglement that may hold betweenthe n qubits; this fact also follows from the
1-qubit casecombined with Theorem9.4.5below). For notational conveniencewe
identify the numbersf 0; : : : ; 22n ¡ 1g with the set f 0; 1; 2; 3gn . For x 2 f 0; 1; 2; 3gn

we usex i 2 f 0; 1; 2; 3g for its i th entry, and we use¾x to denotethe n-qubit uni-
tary transformation ¾x1 ­ ¢¢¢­ ¾xn . This allows us to state our main exampleof
a private quantum channel:

9.4.1. Theorem (AMTW [10]). If E = f 1p
22n ¾x j x 2 f 0; 1; 2; 3gng, then we

havethat [H 2n ; E; ~I 2n ] is a PQC.

Sincethe above E contains 22n operations which have uniform probability, it
follows that 2n bits of private key su±ce to privately sendany state from H 2n .
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The next theoremshowsthat there is somenontrivial subspaceof H 2n wheren
bits of private key su±ce, namely the set of all tensor products of real-amplitude
qubits.

9.4.2. Theorem (AMTW [10]). If B = f cos(µ)j0i + sin(µ)j1i j 0 · µ < 2¼g,
S = B ­ n , and E = f 1p

2n ¾x j x 2 f 0; 2gng, then [S; E; ~I 2n ] is a PQC.

Pro of. This is easily veri¯ed: applying ¾0 and ¾2, each with probability 1/2,
puts any qubit from B in the totally mixed state. Operator E doesthis to each
of the n qubits individually. 2

Note that if we restrict B to classicalbits (i.e., µ 2 f 0; ¼=2g) then the above
PQC reducesto the classicalone-timepad: °ipping each bit with probability 1/2
givesinformation-theoretical security when the messagesare classical.Note also
that this PQC does not work for arbitrary entangled real-amplitude states; for
instancethe entangled state 1p

2
(j00i + j11i ) is not mapped to the totally mixed

state. For n = 1; 2; 3 there exist PQCs that require exactly n bits of entropy
and can privately transmit any entangled real-amplitude n-qubit state. However,
for n ¸ 4 we can show that such a PQC requiresentropy strictly greater than n
bits. This marks a di®erencebetweensendingentangled and unentangled real-
amplitude states. We omit the technical and not very intuitiv e proofs.

In the previousPQCs, ½0 wasthe totally mixed state ~I 2n . This is no accident,
and holds whenever n = m and ~I 2n is oneof the states that the PQC can send:

9.4.3. Theorem (AMTW [10]). If [S; E; ½0] is a PQC without ancilla and ~I 2n

can be written as a mixture of S-states, then ½0 = ~I 2n .

Pro of. If ~I 2n can be written as a mixture of S-states, then

½0 = E( ~I 2n ) =
NX

i =1

pi Ui
~I 2n U¤

i =
NX

i =1

pi

2n
Ui U¤

i =
NX

i =1

pi

2n
I 2n = ~I 2n : 2

In general½0 need not be ~I 2n . For instance, let S = fj 0i ; 1p
2
(j0i + j1i )g, E =

f 1
2I 2; 1

2H g, and ½0 =
µ

3
4

1
4

1
4

1
4

¶
. Then it is easilyveri¯ed that [S; E; ½0] is a PQC.

Finally we prove that a PQC for n-qubit statesand a PQC for m-qubit states
caneasilybe combined to a PQC for (n + m)-qubit states: entanglement between
the n-qubit and m-qubit parts is dealt with automatically. If E = f

p
pi Ui g and

E0 = f
p

p0
j U

0
j g are superoperators, then we useE­ E0 = f

p
pi p0

j Ui ­ U0
j g for their

tensorproduct. We will needthe following technical lemma,which we prove ¯rst:

9.4.4. Lemma (AMTW [10]). Suppose that E(jÁihÁj ­ ½a) = ½0 wheneverjÁi
is a tensor product of n qubits. Then E(jxihyj ­ ½a) = 0 wheneverx and y are
di®erent n-bit strings.
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Pro of. For notational conveniencewe assumewithout loss of generality that
½a = 0, so E usesno ancilla and ½0 is an n-qubit state (this doesnot a®ectthe
proof in any way). The proof is by induction on the Hamming distanced between
x and y.

Base case. If d = 1, then x and y di®er only in 1 bit, which implies that
1p
2
(jxi + jyi ) and 1p

2
(jxi + i jyi ) are tensorproducts of n qubits (the ¯rst of these

states has 1p
2
(j0i + j1i ) at the bit position wherex and y di®er, the secondhas

1p
2
(j0i + i j1i )). Hencewe can write ½0 in three ways:

½0 = E
µ

1
2

(jxihxj + jyihyj)
¶

=
1
2

(E(jxihxj) + E(jyihyj)) :

½0 = E
µ

(
1

p
2

(jxi + jyi ))(
1

p
2

(hxj + hyj))
¶

=
1
2

(E(jxihxj) + E(jyihyj) + E(jxihyj) + E(jyihxj)) :

½0 = E
µ

(
1

p
2

(jxi + i jyi ))(
1

p
2

(hxj ¡ ihyj))
¶

=
1
2

(E(jxihxj) + E(jyihyj) ¡ iE(jxihyj) + iE(jyihxj)) :

The ¯rst and secondequality together imply E(jxihyj) + E(jyihxj) = 0, the ¯rst
and third equality together imply E(jxihyj) ¡ E(jyihxj) = 0. HenceE(jxihyj) =
E(jyihxj) = 0.

Induction step. Let x; y 2 f 0; 1gn have Hamming distanced > 1. Without
loss of generality we assumex = 0dz and y = 1dz for somez 2 f 0; 1gn¡ d. We
have to show E(jxihyj) = 0.

Let v 2 f 0; 1gd. We considerthe pure n-qubit state

jÁv i =
1

p
2d

(j0i + i v1 j1i ) ­ ¢¢¢­ (j0i + i vd j1i ) ­ jzi :

Let u ¢v =
P

j uj vj denote the inner product of bitstrings u and v, and let u
denotethe negationof u (all bits °ipp ed). SincejÁv i is a tensorproduct, we have

½0 = E(jÁv ihÁv j) =
1
2d

X

u;u 02f 0;1gd

i u¢v(¡ i )u0¢vE(juihu0j ­ jzihzj):

Note that the 2d terms with u = u0 in the right-hand sidesum to ½0. Subtracting
this from both sidesof the equationreducesthe left-hand sideto 0. Furthermore,
by the induction hypothesiswehaveE(juihu0j­ jzihzj) = 0 whenever the Hamming
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distancebetweenu and u0 lies between1 and d ¡ 1. Thus the only terms which
are left in the right-hand sideof the above equation are the oneswhereu and u0

have Hamming distanced (i.e., u0 = u). Now, using i u¢v(¡ i )u¢v = (¡ i ) jvj(¡ 1)u¢v,
the equation reducesto:

0 =
(¡ i ) jvj

2d

X

u2f 0;1gd

(¡ 1)u¢vE(juihuj ­ jzihzj):

Removing the constant factor (¡ i ) jvj , summingover all v, and using the fact thatP
v(¡ 1)u¢v = 2d for u = 0d and 0 for u 6= 0d, we obtain:

0 =
1
2d

X

v2f 0;1gd

X

u2f 0;1gd

(¡ 1)u¢vE(juihuj ­ jzihzj) = E(j0: : : 0ih1: : : 1j ­ jzihzj):

Sincej0: : : 0ih1: : : 1j ­ jzihzj = jxihyj, this concludesthe proof. 2

9.4.5. Theorem (AMTW [10]). If [H 2n ; E; ½a; ½0] and [H 2m ; E0; ½a
0; ½0

0] are
PQCs, then [H 2n + m ; E ­ E0; ½a ­ ½a

0; ½0 ­ ½0
0] is a PQC.

Pro of. For notational conveniencewe will assume½a = ½a
0 = 0. Considerany

n + m-qubit pure state jÁi =
X

x2f 0;1gn ;y2f 0;1gm

®xy jxij yi . Using that jxij yihx0jhy0j =

jxihx0j ­ jyihy0j, we have:

(E ­ E0) (jÁihÁj) = (E ­ E0)

Ã
X

x;y ;x0;y0

®xy ®¤
x0y0jxihx0j ­ jyihy0j

!

=
X

x;y ;x0;y0

®xy ®¤
x0y0E(jxihx0j) ­ E0(jyihy0j)

(¤)
=

X

x;y

®xy ®¤
xy E(jxihxj) ­ E0(jyihyj)

=
X

x;y

j®xy j2½0 ­ ½0
0 = ½0 ­ ½0

0:

In the (¤)-step we usedthat E(jxihx0j) = 0 unlessx = x0 (Lemma 9.4.4). 2

The aboveproof alsoshowsthat a PQC for S = H ­ n
2 (the setof all unentangled

n-qubit states) is automatically also a PQC for S = H 2n (the set of all n-qubit
states).

Finally, a similar derivation canbe usedto show that Alice canusean n-qubit
PQC to privately sendBob n qubits from a larger entangled state in a way that
preservesthe entanglement. The PQC puts the n qubits in the ½0-state, so Eve
can obtain no information from the channel. When Bob reconstructsthe original
n-qubit state, this will still be entangled with the part of the state that Alice kept
to herself.
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9.5 Lower Bound on the Entrop y of PQCs

Aboveweshowedthat 2n bits of entropy su±ce for a PQC that cansendarbitrary
n-qubit states. In this sectionwewill show that 2n bits arealsonecessaryfor this.
Independently of our work, this 2n-bit lower bound was also proven by Boykin
and Roychowdhury [31] for the special casewherethe PQC is not allowed to use
any ancilla qubits. We will ¯rst give a shorter version of their proof, basically
by observingthat a large part of it can be replacedby a referenceto the unitary
equivalenceof identical superoperators stated at the end of Section9.2.1.

9.5.1. Theorem (Bo ykin & Roycho wdhur y [31]; AMTW [10]).
If [H 2n ; f

p
pi Ui j 1 · i · N g; ~I 2n ] is a PQC, then H (p1; : : : ; pN ) ¸ 2n.

Pro of. Let E = f
p

pi Ui g, and let E0 = f 1p
22n ¾x j x 2 f 0; 1; 2; 3gng be the

superoperator of Theorem9.4.1,and let K = max(22n ; N ). SinceE(½) = E0(½) =
~I 2n for all n-qubit states½, we have that E and E0 are unitarily related in the way
mentioned in Theorem 9.2.1: there exists a unitary K £ K matrix A such that
for all 1 · i · N we have

p
pi Ui =

X

x2f 0;1;2;3gn

A ix
1

p
22n

¾x :

We view the set of all 2n £ 2n matrices as a 22n -dimensionalvector spacewith
inner product hM ; M 0i = Tr(M ¤M 0)=2n and inducednorm kM k=

p
hM ; M i (as

done in [31]). Note that k M k= 1 if M is unitary. It is easyto seethat the set
of all ¾x forms an orthonormal basisfor this vector space,so:

pi = k
p

pi Ui k2= k
X

x

A ix
1

p
22n

¾x k2=
1

22n

X

x

jA ix j2 ·
1

22n
:

HenceN ¸ 22n and H (p1; : : : ; pN ) ¸ 2n. 2

However, even granted this result it is still conceivable that a PQC might
require fewer than 2n bits of randomnessif it can \spread out" its encoding over
many ancilla qubits | it is even conceivable that those ancilla qubits can be
used to establishprivately shared randomnessusing somevariant of quantum
key distribution. The general casewith ancilla is not addressedin [31], and
proving that the 2n-bit lower bound extends to this caserequires more work.
The next few theoremswill do this. They will in fact show something slightly
stronger, namely that a PQC that can transmit any unentangled n-qubit state
already requires 2n bits of randomness,no matter how many ancilla qubits it
uses.Thus Theorem9.4.1exhibits an optimal quantum one-timepad, analogous
to the optimal classicalone-timepad mentioned in the introduction.
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We use the notation Ck = fj i i j 0 · i · k ¡ 1g for the set of the ¯rst k
classicalstates. The next theorem implies that a PQC that privately conveys
n unentangled qubits using m bits of key, can be transformed into a PQC that
privately conveysany ji i 2 C22n , still using only m bits of key.

9.5.2. Theorem (AMTW [10]). If there existsa PQC [H ­ n
2 ; E = f

p
pi Ui j 1 ·

i · N g; ½a; ½0], then there is a PQC [C22n ; E0 = f
p

pi U0
i j 1 · i · N g; ½a; ~I 2n ­ ½0].

Pro of. For easeof notation we again assumeE usesno ancilla. First note
that it follows easily from Lemma 9.4.4 that the PQC E not only works for H ­ n

2
(the set of all unentangled n-qubit states) but alsofor H 2n (the set of all n-qubit
states). We will ¯rst de¯ne E0 and then show that it is a PQC.

Intuitiv ely, E0mapsevery state from C22n to a tensorproduct of n Bell statesby
mapping pairs of bits to oneof the four Bell states(which are 1p

2
(j00i § j11i ) and

1p
2
(j01i § j10i )). The secondbits of the pairs are then moved to the secondhalf

of the state and encrypted by applying E to them. Becauseof the entanglement
betweenthe two halvesof each Bell state, the resulting 2n-qubit density matrix
will be ~I 2n ­ ½0. More speci¯cally, for x 2 f 0; 1; 2; 3gn and ¾x = ¾x1 ­ ¢¢¢­ ¾xn

as in Theorem9.4.1,de¯ne the following unitary transformation U:

Ujxi = (¾x ­ I 2n )
1

p
2n

X

i 2f 0;1gn

ji ij i i :

Also de¯ne U0
i = (I 2n ­ Ui )U. It remains to show that E0(jxihxj) = ~I 2n ­ ½0 for

all jxi 2 C22n :

E0(jxihxj) =

=
NX

i =1

pi (I 2n ­ Ui )

2

4(¾x ­ I 2n )

0

@ 1
p

2n

X

y2f 0;1gn

jyij yi

1

A

¢

0

@ 1
p

2n

X

z2f 0;1gn

hzjhzj

1

A (¾x ­ I 2n )¤

3

5 (I 2n ­ Ui )¤

= (¾x ­ I 2n )

2

4 1
2n

NX

i =1

pi (I 2n ­ Ui )

0

@
X

y;z2f 0;1gn

jyihzj ­ jyihzj

1

A (I 2n ­ Ui )¤

3

5(¾x ­ I 2n )¤

= (¾x ­ I 2n )

2

4 1
2n

X

y;z2f 0;1gn

jyihzj ­

Ã
NX

i =1

pi Ui jyihzjU¤
i

! 3

5 (¾x ­ I 2n )¤

= (¾x ­ I 2n )

2

4 1
2n

X

y;z2f 0;1gn

jyihzj ­ E(jyihzj)

3

5 (¾x ­ I 2n )¤
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(¤)
= (¾x ­ I 2n )

2

4 1
2n

X

y2f 0;1gn

jyihyj ­ E(jyihyj)

3

5 (¾x ­ I 2n )¤

= (¾x ­ I 2n )
h

~I 2n ­ ½0

i
(¾x ­ I 2n )¤

= ~I 2n ­ ½0:

In the (¤)-step we usedthat E(jyihzj) = 0 unlessy = z (Lemma 9.4.4). 2

Privately sending any state from C2m corresponds to privately sending any
classicalm-bit string. If communication takes place through classical channels,
then Shannon'stheoremimplies that m bits of sharedkey are required to achieve
such security. Shannon'sclassicallower bound doesnot translate automatically
to the quantum world (it is in fact violated if a two-way quantum channelis avail-
able, seeFootnote 1 on page156). Nevertheless,if Alice and Bob communicate
via a one-way quantum channel, then Shannon'stheorem doesgeneralizeto the
quantum world:

9.5.3. Theorem (AMTW [10]). If [C2m ; f
p

pi Ui j 1 · i · N g; ½a; ½0] is a
PQC, then H (p1; : : : ; pN ) ¸ m.

Pro of. Diagonalizethe ancilla: ½a =
P r

j =1 qj jÃj ihÃj j, soS(½a) = H (q1; : : : ; qr ).
Note that the 5th property of Von Neumannentropy (Section9.2) implies:

S(½0) = S

Ã
NX

i =1

pi Ui (j0ih0j ­ ½a)U¤
i

!

= S

Ã
NX

i =1

rX

j =1

pi qj Ui (j0ih0j ­ jÃj ihÃj j)U¤
i

!

· H (p1q1; p1q2; : : : ; pN qr ¡ 1; pN qr )

= H (p1; : : : ; pN ) + H (q1; : : : ; qr ):

Also, using properties 2, 3, and 4 of Von Neumannentropy:

S(½0) = S

Ã
NX

i =1

pi Ui ( ~I 2m ­ ½a)U¤
i

!

¸
NX

i =1

pi S
³

~I 2m ­ ½a

´

=
NX

i =1

pi (m + S(½a))

= m + S(½a):
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Combining thesetwo inequalitiesgivesthe theorem. 2

In particular, for sendingarbitrary states from C22n we needentropy at least
2n. Combining Theorems9.5.2and 9.5.3we thus obtain the main lower bound:
any private quantum channel that can sendevery n-qubit state in a secureway,
needsat least 2n bits of secretkey. This shows that Theorem9.4.1 is optimal.

9.5.4. Cor ollar y (AMTW [10]). If [H ­ n
2 ; f

p
pi Ui j 1 · i · N g; ½a; ½0] is a

PQC, then H (p1; : : : ; pN ) ¸ 2n (and hence in particular N ¸ 22n ).

SinceH ­ n
2 µ H 2n , we have also proved the optimalit y of the PQC of Theo-

rem 9.4.1:

9.5.5. Cor ollar y (AMTW [10]). If [H 2n ; f
p

pi Ui j 1 · i · N g; ½a; ½0] is a
PQC, then H (p1; : : : ; pN ) ¸ 2n.

In relation to Theorem 9.4.2, note that C2n µ B ­ n . Henceanother corollary
of Theorem9.5.3 is the optimalit y of the PQC of Theorem9.4.2:

9.5.6. Cor ollar y (AMTW [10]). If [B ­ n ; f
p

pi Ui j 1 · i · N g; ½a; ½0] is a
PQC, then H (p1; : : : ; pN ) ¸ n (and hence in particular N ¸ 2n ).

9.6 Summary

The main result of this chapter is an optimal quantum version of the classical
one-timepad. On the onehand, if Alice and Bob share2n bits of secretkey, then
Alice cansendBob any n-qubit state ½, encodedin anothern-qubit state in a way
that conveysno information about ½to the eavesdropper. This is a simplescheme
which works locally (i.e., dealswith each qubit separately)and usesno ancillary
qubits. On the other hand, we showed that even if Alice and Bob are allowed
to useand sendany number of ancilla qubits, then they still require 2n bits of
entropy. Thus 2n bits of sharedrandomnessare necessaryaswell assu±cient for
private communication of n qubits.





App endix A

Some Useful Linear Algebra

In this appendix we sketch someusefulparts of linear algebra,most of which will
be usedsomewhereor other in the thesis.

A.1 Some Terminology and Notation

We useV = Cd to denote the d-dimensionalcomplexvector space,which is the
set of all column vectorsof d complexnumbers. We assumefamiliarit y with the
basicrules of matrix addition and multiplication. A set of vectorsv1; : : : ; vm 2 V
is linearly independentif the only way to get

P m
i=1 ai vi equal to the zero-vector~0

is to set a1 = ¢¢¢= am = 0. A basis for V is a set of vectorsv1; : : : ; vd such that
every vector v 2 V can be written as a linear combination of thosebasisvectors
v =

P d
i=1 ai vi . One can show that a basisis linearly independent.

We useA ij for the (i; j )-entry of a matrix A and AT for its transpose, which
hasAT

ij = A j i . I d denotesthe d £ d identit y matrix, which has1son its diagonal
and 0s elsewhere.We usually omit the subscript d when the dimension is clear
from context. If A is squareand there is a matrix B such that AB = BA = I ,
then weuseA ¡ 1 to denotethis B , which is calledthe inverseof A (and is uniqueif
it exists). Note that (AB )¡ 1 = B ¡ 1A ¡ 1. If A is a matrix (not necessarilysquare),
then A¤ denotesits conjugate transpose: the matrix obtained by transposing A
and taking the complex conjugatesof all entries. Note that (AB )¤ = B ¤A¤.
Physicistsoften write Ay instead of A¤.

For vectorsv; w, we usehvjwi = v¤w =
P

i v¤
i wi for their inner product. The

combination of the vector spaceV with this inner product is called a Hilbert
space. Two vectorsv; w are orthogonal if hvjwi = 0. The inner product induces
a vector norm kv k=

p
hvjvi =

p P
i jvi j2. The Cauchy-Schwarzinequality gives

jhvjwij ·k vk ¢kwk. A set f vi g of vectorsis calledan orthogonalset if all vectors
are pairwise orthogonal: hvi jvj i = 0 if i 6= j . If additionally the vectorsall have
norm 1, then the set is called orthonormal. The outer product of v and w is the

169
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matrix vw¤. Below we will restrict attention to squarematrices,unlessexplicitly
mentioned otherwise. The complex number ¸ is an eigenvalueof squarematrix
A is there is someeigenvector v such that Av = ¸v .

A.2 Unitary Matrices

A matrix A is unitary if A ¡ 1 = A¤. The following conditions are equivalent:

1. A is unitary

2. A preservesinner product: hAvjAwi = hvjwi for all v; w

3. A preservesnorm: kAv k= kvk for all v

4. kAv k= 1 if kvk= 1

(1) implies (2) becauseif A is unitary then A¤A = I , and hencehAvjAwi =
(v¤A¤)Aw = hvjwi . (2) implies (1) as follows: if A is not unitary then A¤A 6= I ,
so then there is a w such that A¤Aw 6= w and, hence,a v such that hvjwi 6=
hvjA¤Awi = hAvjAwi , contradicting (2). Clearly (2) implies (3). Moreover, it is
easyto show that (3) implies (2) using the following identit y:

kv + wk2= kvk2 + kwk2 + hvjwi + hwjvi :

The equivalenceof (3) and (4) is obvious. Note that by (4), the eigenvaluesof a
unitary matrix have absolutevalue 1.

A.3 Diagonalization and Singular Values

Matrices A and B are similar if there is an invertible matrix S such that A =
SBS¡ 1. Note that if Av = ¸v , then BS¡ 1v = ¸S ¡ 1v, so similar matrices have
the sameeigenvalues. Schur's lemmastates that every matrix A is similar to an
upper triangular matrix: A = U¡ 1TU for someunitary U and upper triangular
T. Sincesimilar matrices have the sameeigenvaluesand the eigenvaluesof an
upper triangular matrix areexactly its diagonalentries, the eigenvaluesof A form
the diagonalof T.

A matrix D is diagonal if D ij = 0 whenever i 6= j . Let S be somematrix
satisfying AS = SD for somediagonal matrix D. Let vi be the i th column of S
and ¸ i be the i th entry on the diagonalof D, then

0

B
@

...
...

Av1 ¢¢¢ Avd
...

...

1

C
A

| {z }
AS

=

0

B
@

...
...

¸ 1v1 ¢¢¢ ¸ dvd
...

...

1

C
A

| {z }
SD

;
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and weseethat vi is an eigenvectorof A associatedwith eigenvalue¸ i . Conversely,
if v1; : : : ; vd are eigenvectorsof A with eigenvalues¸ 1; : : : ; ¸ d, then we have AS =
SD, where S has the vi as columns and D is the diagonal matrix of ¸ i . We
call a squarematrix A diagonalizableif it is similar to somediagonal matrix D:
A = SDS¡ 1. This D then has A's eigenvalues¸ i on its diagonal, someof which
may bezero. Note that A is diagonalizablei® it hasa linearly independent setof d
eigenvectors. Theseeigenvectorswill form the columnsof S, giving AS = SD, and
linear independenceensuresthat S hasan inverse,giving A = SDS¡ 1. A matrix
A is unitarily diagonalizablei® it can be diagonalizedvia a unitary matrix U:
A = UDU¡ 1. By the sameargument asbefore,A will be unitarily diagonalizable
i® it hasan orthonormal set of d eigenvectors.

A matrix A is normal if it commutes with its conjugate transpose(A¤A =
AA ¤). For example,unitary matricesarenormal. If A is normal and A = U ¡ 1TU
for someupper triangular T (which must exist becauseof Schur's lemma), then
T = UAU ¡ 1 and T¤ = UA¤U¡ 1, so TT¤ = UAA ¤U¡ 1 = UA¤AU ¡ 1 = T¤T.
HenceT is normal and upper triangular, which implies (with a little work) that
T is diagonal. This showsthat normal matricesareunitarily diagonalizable.Con-
versely, if A is diagonalizableasU¡ 1DU, then AA ¤ = U¡ 1DD ¤U = U¡ 1D ¤DU =
A¤A, so then A is normal. Thus a matrix is normal i® it is unitarily diagonaliz-
able. If A is not normal, it may still be diagonalizablevia a non-unitary S, for
example: µ

1 1
0 2

¶

| {z }
A

=
µ

1 1
0 1

¶

| {z }
S

¢
µ

1 0
0 2

¶

| {z }
D

¢
µ

1 ¡ 1
0 1

¶

| {z }
S¡ 1

:

If A = UDU¡ 1 then A¤ = UD ¤U¡ 1, so the eigenvalues of A¤ are the complex
conjugatesof the eigenvaluesof A.

An important classof normal (and henceunitarily diagonalizable)matrices
are the Hermitian matrices,which are the onessatisfying A = A¤. Note that the
previous paragraph implies that the eigenvaluesof Hermitian matrices are real.
A Hermitian matrix is called positive (resp. non-negative) if all its eigenvalues
are positive (resp. non-negative). If all eigenvaluesare 0 or 1, then A is called a
projection or projection matrix. This is equivalent to requiring A2 = A.

Not all matrices are diagonalizable,for instance A =
µ

0 1
0 0

¶
. However,

every matrix A has a singular value decomposition, as follows. It is easyto see
that the matrix A¤A has the sameeigenvectorsasA and that its eigenvaluesare
the squaredabsolutevaluesof the eigenvaluesof A. SinceA¤A is Hermitian and
hencenormal, we have A¤A = UDU¡ 1 for someU and somenon-negative real
diagonal matrix D. The entries of § =

p
D are called the singular valuesof A.

Every A hasa singularvaluedecomposition A = U§ V ¡ 1, with U; V unitary. This
implies that A can be written asA =

P
i ¸ i ui v¤

i , with ui the columnsof U and vi

the columnsof V.
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A.4 Trace

The trace of a matrix A is the sum of its diagonalentries: Tr(A) =
P

i A ii . Some
important and easily veri¯ed properties of Tr(A) are:

² Tr(A + B) = Tr(A) + Tr(B)

² Tr(AB ) = Tr(BA)

² Tr(A) is the sum of the eigenvaluesof A
(This follows from Schur and the previous item: Tr(A) = Tr(UTU ¡ 1) =
Tr(U¡ 1UT) = Tr(T) =

P
i ¸ i )

A.5 Tensor Pro ducts

If A = (A ij ) is an m £ n matrix and B an m0£ n0 matrix, then their tensor or
Kronecker product is the mm0£ nn0 matrix

A ­ B =

0

B
B
B
@

A11B ¢¢¢ A1nB
A21B ¢¢¢ A2nB

.. .
Am1B ¢¢¢ Amn B

1

C
C
C
A

:

The following properties of the tensor product are easily veri¯ed:

² c(A ­ B) = (cA) ­ B = A ­ (cB) for all scalarsc

² (A ­ B)¤ = A¤ ­ B ¤ (and similarly for inverseand transpose)

² A ­ (B + C) = (A ­ B) + (A ­ C)

² A ­ (B ­ C) = (A ­ B) ­ C

² (A ­ B)(C ­ D) = (AC) ­ (BD)

Di®erent vector spacescan alsobe combined using tensor products. If V and V 0

are vectorsspacesof dimensiond and d0 with basisf v1; : : : ; vdg and f v0
1; : : : ; v0

d0g,
respectively, then their tensor product spaceis the d ¢d0-dimensionalspaceW =
V ­ V 0 spannedby f vi ­ v0

j j 1 · i · d;1 · j · d0g. Applying a linear operation
A to V and B to V 0 corresponds to applying the tensor product A ­ B to the
tensor product spaceW.
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A.6 Rank

The rank of a matrix A (over a ¯eld F ) is the sizeof the largest linearly inde-
pendent set of rows of A (linear independencetaken over F ). Unlessmentioned
otherwise,we take F to be the ¯eld of real numbers. We say that A hasfull rank
if its rank equalsits dimension. The following properties are all easyto show:

² rank(A) = rank(A¤)

² r ank(A) equalsthe number of non-zeroeigenvaluesof A (counting multi-
plicit y)

² r ank(A + B) · rank(A) + rank(B)

² rank(AB ) · minf rank(A); rank(B)g

² rank(A ­ B) = rank(A) ¢rank(B)

² A hasan inversei® A has full rank

A.7 Dirac Notation

Physicists often write their linear algebra in Dirac notation, and we will follow
that custom for denoting quantum states. In this notation we write jvi = v and
hvj = v¤. The ¯rst is called a ket, the seconda bra. Note that

² hvjwi = hvjjwi

² If A is unitarily diagonalizable,then A =
P

i ¸ i jvi ihvi j for someorthonormal
set of eigenvectorsf vi g

² jvihvj ­ jwihwj = (jvi ­ jwi )(hvj ­ hwj)
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Samenvatting

Computerszijn fysischeobjectenendusonderhevigaandewetten van denatuur-
kunde. Het is daarom enigszinsverrassenddat de computersvan tegenwoordig
(zowel theoretischeTuring machinesalshuis-tuin-en-keukenPCs) ontwikkeld zijn
op basisvan de klassiekenatuurkunde, en niet op basisvan de 20eeeuwseopvol-
ger daarvan, de quantum mechanica. Het nieuwe vakgebiedquantum computing
herstelt deze omissiedoor de eigenschappen te bestuderenvan computers die
zich gedragenvolgensde wetten van de quantum mechanica. Een van de meest
opvallendeeigenschappen van de quantum computer is dat dezein eensuperpo-
sitie van allerlei klassieke toestandentegelijk kan zijn, die interferentiepatronen
kunnen vertonen.

E¶en van de belangrijkste doelen van quantum computing is om quantum al-
goritmes (berekeningschema's)te vinden die bepaaldecomputationeleproblemen
veel sneller kunnen oplossendan de besteklassieke algoritmes. De tweesucces-
volste quantum algoritmes tot nu toe zijn Shor's algoritme uit 1994dat snel de
priemfactorenvan grote getallen kan vinden (waarmeede meestemodernecryp-
togra¯sche systemengekraakt zoudenkunnen worden) en Grover's algoritme uit
1996dat eenzoekruimte van n elementen in ongeveer

p
n stappenkan doorzoeken.

Deel I: Query Complexiteit

Het beginpunt van deel I van dit proefschrift is de observatie dat vrijw el alle be-
staandequantum algoritmes (inclusief die van Shor en Grover) beschreven kun-
nenwordenin termenvan querycomplexiteit: dequantum algoritmeshoevenveel
minder vaak naar bits van de input te \kijk en" dan klassieke algoritmes. Het lijkt
er op dat dit model van query complexititeit eensigni¯cant deel van de kracht
van quantum computersbevat. Daarom maken we in deel I van het proefschrift
een algemeneen gedetailleerdevergelijking tussenquantum query complexiteit
en klassieke query complexiteit voor allerlei computationeleproblemen.
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Ons belangrijkste instrument in dezevergelijking is algebraÄ³sch: we bewijzen
dat de graad van eenpolynoom dat het computationeleprobleemrepresenteert,
een ondergrensgeeft op quantum query complexiteit. Dit betekent dat we on-
dergrenzenop quantum complexiteit kunnen bewijzen door polynomenvoor die
problemen te analyseren. E¶en van de belangrijkste gevolgen is een bewijs dat
quantum query complexiteit hoogstenspolynomiaal kleiner kan zijn dan klassieke
query complexiteit wanneerwe te maken hebben met eentotaal computationeel
probleem (dat wil zeggen,een probleem dat gede¯nieerd is voor alle mogelijke
inputs). Met andere woorden, een quantum computer kan alleen exponentieel
snellerzijn dan eenklassieke computer in dit model wanneerwe weten dat de in-
put eenbepaaldespeci¯eke eigenschap zal hebben. Bijv oorbeeldin het geval van
Shorsalgoritme weten we dat eenbepaaldefunctie waarnaar het factoriserings-
probleemgereduceerdwordt, periodiek is.

Afgezienvan dezealgemeneresultaten die voor alle totale problemengelden,
houden we ons ook in detail bezig met verschillende speci¯eke computationele
problemen.Webewijzenbijvoorbeelddat dekansop eenfout antwoord in Grovers
algoritme wat beter gereduceerdkan wordenwanneerwedezefout-reductie op een
quantum manierdoendan wanneerwehet op denormaleklassiekemanierzouden
doen (die het algoritme gewoon eenpaar keerzouherhalen). We ontwikkelenook
een quantum algoritme voor het element distinctnessprobleem (dit is: zijn de
getallen op eengegeven lijst met n getallen allemaal verschillend?) dat ongeveer
n3=4 stappen nodig heeft. Dit laat zien dat voor een quantum computer het
probleemvan element distinctnessveel eenvoudiger is dan het sorteer-probleem.
Dit contrasteert met deklassiekewereld,waarin beideproblemenongeveern logn
stappen nodig hebben.

Tot slot laten we zien dat het negatieve resultaat voor standaardquery com-
plexiteit (quantum geeft hoogstenseenpolynomiale verbetering voor alle totale
problemen)niet geldt in tweeandereversiesvan query complexiteit: average-case
complexiteit en non-deterministischecomplexiteit. Voor beidemodellen laten we
totale computationeleproblemenzienwaarvoor quantum computersexponentieel
minder queriesnodig hebben dan de besteklassieke algoritmes.

Deel I I: Comm unicatie en Complexiteit

Sindsde jaren '70 is het bekenddat quantum communicatie niet e±ciÄenter is dan
klassieke communicatie voor informatieoverdracht: als Alice k bits aan informa-
tie wil sturen naar Bob dan zal ze hem minstensk quantum bits moeten sturen.
Echter, Cleve en Buhrman hebben ontdekt dat wanneerAlice en Bob niet zozeer
informatie willen oversturen, maar eenof ander computationeelprobleemwillen
oplossen(Alice krijgt x, Bob krijgt y, en samenwillen zeeenfunctie f (x; y) bere-
kenenmet minimale onderlingecommunicatie), dan kan debenodigdehoeveelheid
communicatie somsdrastisch gereduceerdworden als we quantum communicatie
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toestaan. Bijv oorbeeld, een resultaat van Buhrman, Cleve, en Wigderson laat
zien dat als Alice en Bob ieder een agendahebben met n dagenwaarin ze een
dag willen vinden waaropzeallebei vrij zijn, dan kunnen zezo'n dag vinden met
zo'n

p
n quantum bits aan communicatie. Klassiekzijn hier ongeveern bits voor

nodig.
In deel I I van dit proefschrift bekijken we dit model van communicatie com-

plexiteit van verschillende kanten. We bespreken eerstde belangrijkste voorbeel-
den waar quantum communicatie complexiteit signi¯cant minder is dan klassieke
communicatie complexiteit. Daarna bestuderenwe de anderekant, en ontwikke-
len we technieken om ondergrenzente bewijzenop quantum communicatie com-
plexiteit. Deze technieken laten bijvoorbeeld zien dat quantum communicatie
nauwelijks beter is dan klassieke communicatie voor bijna alle gedistribueerde
problemen. We laten echter ook eennieuw geval zien waar de quantum commu-
nicatie complexiteit welveellager is dan deklassieke complexiteit: in eenbepaald
3-partijen model (Alice en Bob sturen allebei eenboodschap naar eenarbiter, die
daarmeef (x; y) moet berekenen), kunnen Alice en Bob testen of hun inputs x
en y gelijk zijn met exponentieel veel minder communicatie wanneerwe quan-
tum communicatie toestaan. Dit voorbeeld gebruikt eennieuwe techniek die we
quantum¯ngerprinting noemen.

In het laatste hoofdstuk bekijken we tenslotte eenbeveiligingsaspect. Stel dat
Alice enBob hun onderlingecommunicatie niet alleenwillen minimaliseren,maar
dezecommunicatie ook geheimwillen houden: als een derde persoon, Eve, het
communicatiekanaalaftapt, dan magzehiervan niets lerenover deboodschappen
die Alice en Bob uitwisselen.Het is bekend dat eengedeeldegeheimesleutel van
n bits noodzakelijk en voldoendeis om eenklassieke n-bit boodschap van Alice
naar Bob te sturen op eenmanier die geeninformatie geeft aan Eve (Shannons
stelling). We bewijzenhet quantum analogonhiervan: eengedeelde2n-bit sleutel
is noodzakelijk en voldoende om veilig een boodschap van n quantum bits te
kunnen sturen.





Abstract

Computersarephysicalobjectsandhenceshouldfollow the lawsof physics. Some-
what surprisingly, today's computers(theoretical Turing machinesaswell asdesk-
top PCs) aredevelopedon the model of classical physicsrather than on the model
of its 20th century successorquantummechanics. The new¯eld of quantumcom-
puting tries to make up for this de¯cit by studying the properties of computers
that follow the laws of quantum mechanics. One of the striking properties of a
quantum computer is that it can be in a superposition of many classicalstatesat
the sametime, which can exhibit interference patterns.

One of the main goalsof the ¯eld of quantum computing is to ¯nd quantum
algorithms that solve certain problemsmuch faster than the best classicalalgo-
rithms. Its two main successessofar are Shor's1994e±cient quantum algorithm
for ¯nding the prime factors of large integers(which can break most of modern
cryptography) and Grover's 1996algorithm that can search an n-element space
in about

p
n steps.

Part I: Query Complexit y

The starting point of part I of this thesisis the observation that virtually all known
quantum algorithms (including Shor's and Grover's) can be described in terms
of query complexity: they require far fewer queriesto input bits than classical
algorithms do. It thus appearsthat the model of query complexity capturesa lot
of the power of quantum computing. Accordingly, in part I of the thesiswe make
a detailed and generalcomparisonof quantum query complexity versusclassical
query complexity for various kinds of computational problems.

Our main tool in this comparisonis algebraic: we prove that the quantum
query complexity of a computational problem is lower boundedby the degreeof
a certain polynomial that in somesenserepresents that problem. This means
that we can prove lower bounds on the quantum query complexity of various
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problems by analyzing polynomials for those problems. One of the main con-
sequencesof this technique is the result that quantum query complexity can be
at most polynomially smaller than classicalquery complexity when we consider
total computational problems(which are de¯ned on all possibleinputs). In other
words, any exponential quantum speed-upin this model will have to be basedon
somepromise on the input, someproperty that the input is known in advance
to have. For example, for Shor's algorithm this promise is the periodicity of a
certain function to which the factoring problem can be reduced.

Apart from thesegeneralresults that hold for all total problems,we alsocon-
sider in more detail the quantum complexitiesof various speci¯c computational
problems. For example, we prove that the error probability in Grover's search
algorithm can be reducedslightly better if we do this in a quantum way than if
we do it in the usual classicalway (which would just repeat Grover's algorithm
many times). We also derive an algorithm for the elementdistinctnessproblem
(which is: are the numberson a list of n elements all distinct?) that takesabout
n3=4 steps. This shows that for a quantum computer the problem of element
distinctnessis signi¯cantly easierthan the problem of sorting, in contrast to the
classicalworld, whereboth problemsrequire about n logn steps.

Finally, we show that the negative result for standard query complexity (at
most a polynomial quantum speed-upfor all total problems)doesnot hold in two
other versionsof querycomplexity: average-casecomplexity andnon-deterministic
complexity. For both modelswe exhibit total problemsand quantum algorithms
for solving those problems that are exponentially better than the best classical
algorithms.

Part I I: Comm unication and Complexit y

It has been known since the early 1970sthat quantum communication cannot
improveupon classicalcommunication whenit comesto information transmission:
if Alice wants to sendBob k bits of information, then shehasto sendhim at leastk
quantum bits (Holevo's theorem). However, Cleve and Buhrman discoveredthat
if the goal of Alice and Bob is not to communicate information but to solve some
distributed computational problem (Alice gets x, Bob gets y, and together they
want to compute somefunction f (x; y) with minimal communication between
them), then sometimesthe amount of communication can be reduceddrastically
by allowing quantum communication. For example,a result of Buhrman, Cleve,
and Wigdersonsays that if Alice and Bob each have an n-slot agendaand they
want to ¯nd a slot wherethey are both free, then they can do this with roughlyp

n quantum bits of communication, whereasin the classicalworld about n bits
of communication would be needed.

In part I I of the thesiswe look at this model of quantum communication com-
plexity from various angles. We ¯rst discussthe main examplesknown where
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quantum communication complexity is signi¯cantly lessthan classicalcommuni-
cation complexity. Then we consider the other side and develop techniques to
show lower boundson quantum communication complexity, againusingalgebraic
techniques. Thesetechniquesimply, for example,that quantum communication
cannot improve signi¯cantly upon classicalcommunication complexity for almost
all distributed problems. However, wealsoexhibit a newexamplewherequantum
communication complexity does improve upon classicalcomplexity: in a speci¯c
3-party model (Alice and Bob each senda messageto a referee,who should then
compute f (x; y)), the problem of testing equality betweenAlice and Bob's input
can be solved with exponentially lesscommunication when we allow quantum
communication, using a new technique called quantum ¯ngerprinting .

In the ¯nal chapter we addressan issueof security. SupposeAlice and Bob
care not only about minimizing the amount of their communication, but also
about keepingit secret: if somethird party Eve is tapping the communication
channel, then she should learn nothing about the actual messages.Classically,
it is known that a sharedsecretn-bit key is necessaryand su±cient to send a
classicaln-bit messagefrom Alice to Bob in a way that givesno information to
Eve (Shannon's theorem). We prove the quantum analogueof this: 2n bits of
shared secret key are necessaryand su±cient to securelysend a messageof n
quantum bits.
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