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Chapterl

Intro duction

As an introduction, we will brie y discusstwo themesthat illustrate the cortext
in which this thesisshould be understood.

1.1 Generalized correspondence theory

It is well-known that modal logic can be viewed either asa fragmert of rst-order
logic (when it is interpreted on models) or as a fragmen of second-orderdogic
(when it is interpreted on frames). In both cases,it is natural to ask exactly
how the expressie power of modal logic and rst-order (or second-order)logic
compare.

From the rst of the two perspectives, Van Benthem [11] provesthat a rst-
order formula with one free variable is equivalent to (the standard translation
of) a modal formula i it is invariant for bisimulations. Put in the form of an
equation:

madal logic = rst-or der logic = bisimulations (1.1)

While this result answers an important question, it also raisesmany questions.
One set of questionsis generatedby xing two parametersof the equation and
askingfor the correct solution. For instance,

X = monadic second-order logic = bisimulations
hasthe solution x = modal -calculus [67], and

tenselogic = rst-or der logic = x

hasthe solution x = two-way bisimulations Likewise,one could ask for which x
other than rst-or der logic the equation

modal logic = x = bisimulations

1



2 Chapterl. Introduction

holds. In Chapter 12 of this thesis, it is proved that this equation also holds for
x = seond-order propositional modal logic (i.e., modal logic with propositional
guarti ers).

A more interesting question, perhaps,is the following: just as(1.1) character-
izesmodal logic asa fragmernt of rst-order logic, could we characterize rst-order
logic in terms of modal logic? In other words, doesthe equation

rst-or der logic = modal logic + X

have a natural solution? In this thesis, we give a positive answer. It is shown
that rst-order logic is the smallestextensionof modal logic with nominals and
the global modality that hasinterpolation. In other words:

rst-or der logic = madal logic + nominals + glokal modality + interpolation
Likewise,it is shavn that
rst-or der logic = madal logic + di er ence operator + interpolation

It is worth comparingthesecharacterizationsof rst-order logic with Lindstrom's
characterization [77, 8], which statesthat no proper extensionof rst-order logic
hasboth compactnessnd the Lowenheim-Slolemproperty. Lindstrom'stheorem
characterizes rst-order logic from above (i.e., asmaximal with respectto certain
properties), whereasour results characterizesit from below (i.e., asminimal with

respectto certain properties). One may evenconbine the two, showving that rst-

order logic is the unique languagethat extendsmodal logic with nominals and
the glokal modality and that hasinterpolation, compactnessand the Lewenheim-
Skolem property! *

A similar story can be told for modal formulas interpreted on frames. The
celebrated Goldblatt-Thomason theorem [50] states that a rst-order formula
de nes a modally de nable frame classi it is presened under taking gener-
ated subframes,disjoint unions and bounded morphic images,and its negation
is presened under taking ultra Iter extensions. Again, this result raisesmany
guestions. To namea few:

Can the rst-or der formulas preserve under theseframe constructions be
characterized syntactically?

Van Benthem [1]] givesa partial positive answer. For instance, he givesa syn-
tactic characterization of the rst-order formulas presened under generatedsub-
frames, disjoint unions and bounded morphic images. Howewer, an important

YIincidentally, the basic modal languageitself can also be given a Lindstrom-style character-
ization, cf. [86].



1.2. Hyhrid logic 3

guestionthat has remainedunanswered so far is whether the rst-order formu-
las presened under ultra lter extensionscan be syntactically characterized. In
Chapter 2 of this thesis,we give a negative answer by shawing that the rst-order
formulas presened under ultra lter extensionsare not recursively erumerable.

Can we give similar characterizationsfor the frame classesde nable in
extensionsof the modal language,suchas with nominals or with propositional
quanti ers?

Many results in this thesis can be seenas answersto this question. The frame
de nable power of seweral hybrid languages(i.e., extensionsof the basic modal

languageinvolving nominals) is investigated,as well asthat secondorder propo-
sitional modal logic (modal logic extendedwith propositional quarti ers). One of
our resultsis, for instance, that an elemenary frame classis de nable in second
order propositional modal logici it is closedunder generatedsubframesand it

re ects point-generatd subframes.

Conversely an interesting line of questionsis the following:

Can we nd an extensionof the modal languagethat can de ne precisely the
elementaryframe classesclosel under geneated subfames?Or that re ect
ultra lter extensions?...

One answer is given in [56], whereit is shovn that the modal languagewith the
global modality can de ne preciselythe elemenary frame classesclosedunder
boundedmorphic imagesthat re ect ultra lter extensions.

While this thesisdoesnot contain any further answersto this question,some
of its resultscan be seenaspartial answers. In particular, our resultssuggesthat
H (E), the extensionof modal logic with nominalsand the global modality, comes
closeto de ning all elemenary frame classesthat re ect ultra lter extensions.
Similarly, the languageH (@;#) can de ne almost all elemenary frame classes
that are closedunder generatedsubframes.

1.2 Hybrid logic

Given that modal logic is the bisimulation invariant fragmert of a relational
rst-order language,onemight askwhat the bisimulation invariant fragmert of a
rst-order languagewith constaris is. In other words: what is the modal analogue
of rst-order constaris? The answer is: nominals

Nominals (denotedby i; j;:::) form a secondsort of proposition letters, whose
interpretation is requiredto be a singleton. In other words, nominalsname worlds
of the model. An exampleof a formula involving nominalsis 3i " 21, which ex-
presseghat the world namedby the nominali is a successoof the current world,
and that it is the only successor.The languageobtained by adding nominalsto
the basicmodal language,is called the minimal hybrid languageH .
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In the presenceof nominals, it is naturally to consideralso another addition
to the language,namely satisfaction operators. Satisfaction operators (denoted
by @;@;:::) allow oneto expressthat a formula holds at the world named by
a nominal. For instance @p expresseshat p holds at the world namedi, and
@3] expresseshat the world named] is a successopf the world namedi. The
extensionof the basic modal languagewith nominals and satisfaction operators
is called the basic hybrid languageH (@). As promised,H (@) is the bisimulation
invariant fragmert of a rst-order languagewith constarts. Of course,to make
this preciseone hasto de ne bisimulations for languagescortaining constarts.
The details can be found in Chapter 4.

BesidesH and H (@), a number of other hybrid languageswill be studied in
this thesis,mostimportantly H(E) andH (@, #). The largestpart of this thesiscan
be seenas a detailed investigation into the model theory of theselanguages.We
investigate expressiviy, frame de nabilit y, axiomatizations, interpolation, and
complexity.

Which properties of modal logics are preservel whenthe languageis extende
with nominals, satisfaction operators, etc.? And which techniquesusal for
proving resultsalout madal logics can still be usaed whenfacing hybrid logics?

We hope this thesisshedslight on thesequestions.

1.3 Overview of the thesis

With the exception of the rst chapter, which discusseshe basic modal lan-
guage,the thesisis divided into two parts. Part | concernsthe hybrid languages
H;H(@)and H(E). Each chapter discusses properties of theselanguagessut
as expressivit, axiomatization, interpolation and complexity. Part |l of the the-
sis discussesmore expressie extensionsof the basic modal language, namely
the boundedfragmert, the guardedfragmen, relation algebraand secondorder
propositional modal logic. Again, topics that are addressedinclude expressiv-
ity, axiomatization, interpolation and complexity. Figure 1.1 shovs most of the
languagesand how they relate in terms of expressiviy.

Important topics that are not discussedn this thesisare proof theory, imple-
mertations, and real world applications.
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Monadic second-order logic

First-order logic

Second order modal logic
(ML with propositional quantifiers)

Guarded frag Bounded fragment ( H(Q,}) )

Mild extensions of modal

logic ( H, H(@), H(E) )

Modal logic

Figure 1.1: Extensions of the basic modal language






Chapter2

Mo dal logic

This chapter senestwo purposes.Firstly, it reviewsthe basicnotions and results
of modal logic, from a model theoretic perspective. Secondly we prove the follow-
ing newresults: non-recursive erumerability of the rst-order formulas presened
under ultra Iter extensions,an improvemeri of a generalinterpolation result for
modal logics, and someresults concerningshallow modal formulas (i.e., modal
formulas in which no occurenceof a proposition letter is in the scope of more
than one modal operator).

2.1 Syntax and semantics

We will assumea courntably in nite setof proposition letters pr op anda nite set
of (unary) modalities mod.! A Kripke frameis a pair F = (W; (R3)32mod), Where
W is a set, calledthe domain of F, and eat R3 is a binary relation over W. The
elemens of the domain of a frame are often called worlds, states, points, nodes,
or simply elements The relations R3 are often called accessibility relations A
Kripk e model is a pair (F; V), whereF isa Kripkeframe,andV :prop! } (W)
is a valuation for F, i.e., afunction that assigndo ead proposition letter a subset
of the domain of F. We will often drop the quali cation \Kripke", and simply
talk about framesand models.

The basicmodal languageM is a languagethat is usedfor describingmodels
and frames. Its formulas are given by the following recursive de nition.

R T R

The other connectives,sud as 2, will be consideredshorthand notations. Given
amodelM = (W; (R3)32mod; V), aworld w2 W and a modal formula ' , truth
or falsity of * at win M is de ned asfollows, whereM ;w F ' expresseshat '

1In most parts of this thesis, we restrict attention to a nite setof unary modalities. This is
only for presenational reasons,and all results we presern can be generalizedto in nitely many
modalities and k-ary modalities (k  0).
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istrue atwin M.

M;wpE >

MiwF p i w2V(p

M;wgE ' i M;wég'

M;wg "' " i M;wgE' andM;wFE

M;wpE 3' i thereisav2 W sud that Rz (w;v) andM ;v "'

We say that M glokally satises ' (notation: M F ') if M;w F ' for all
w2 W. We sg that ' isvalid on aframeF (notation: FE ") if (F;V) ' for
all valuationsV for F. Dually, ' is satis able on a frameF if there is a valuation
V and aworld w such that F; V;w | ' . The frameclassde ned by' isthe class
of all frameson which ' is valid. Finally, ' is saidto be valid (notation F ') if
" isvalid on all frames,and ' is saidto be satis able if it is satis able on some
frame.

The modal depth of a formula ' , denotedby md(' ), is the maximal nesting
of modal operatorsin ' . One can alsogive a proper inductive de nition:

md(>) = 0

md(p) = 0

md(: ') = md(")

md(* ~ ) = maxmd(’ );md( )g
md(3" ) = md(")+1

In the remainder of this chapter, we review the model theory of the basic modal
languageM , focusingon expressiviy, frame de nabilit y, axiomatizations, inter-
polation, and decidability and complexity.

2.2 Bisimulations and expressivity on models

Bisimulation allow usto tell whentwo worlds in models can be distinguished by
a modal formula.

2.2.1. Definition. A bisimulation between modelsM = (W; (R3)32moq; V) and
N = (W%(R3)32mod; V9 is abinary relationz W W P9satisfyingthe following
conditions.

Atom If wZvthenM;wiE pi N;viE pforall p2 prop

Zig If wZv and wRzw? then there is a v°2 WP suchthat vR3v® and w%Z v°.
Zag If wZv and vR}V®, then thereis a w®2 W suchthat wR3w® and wZ V.

We say that M ;w and N;v are bisimilar (notation: M;w $ N;v) if there is a
bisimulation Z between M and N suchthat wZv.
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Table 2.1: Standard translation from modal logic to L*

STx(>) = >

STu(p) = Pp(x)

ST(: ") = ST(")

ST(" ~ ) = STi(" )" STy( )

ST«(3") = 9y(R(x;y) ™ STy(' )) for y avariable distinct from x

Modal formulas cannot distinguish bisimilar points. In other words, if two points
are bisimilar, they are modally equivalert. The conversedoesnot hold in general,
but it hold on! -saturated models(cf. Appendix A). Let uswrite M;w y N;Vv
if for all modal formulas' , M;wFE " i N;vE ',

2.2.2. Theorem. LetM ;N be modelsandw;v points in thesemaodels. If w and
v are bisimilar thenM ;w  N;v. Conversely,if M andN are! -saturated and
M:w u N;vthenw andv are bisimilar.

A proof can be found in [21]].

The rst-or der correspndene languagelL?! is the rst-order languagewith
equality that cortains a unary predicate P, for ead proposition letter p 2 pr op
and a binary relation R3 for each modality 3 2 mod. Any model M =
(W; (R3)32mod; V) canbe regardedas a model for the rst-order correspndence
language.The accessibiliy relations R; are usedto interpret the binary relation
Rs and the unary predicatesP, are interpreted as the subsetsthat V assigns
to the correspnding proposition letter. In what follows, we will not distinguish
betweenKripk e models and models for the rst-order correspndencelanguage,
and we will cortinue to usethe notation M = (W; (R3)32mod; V).

Table 2.1 presents the standard translation ST, from the modal language
to the rst-order correspndencelanguagel®. This translation presenestruth,
in the sensethat for all modal formulas ', models M, and worlds w of M,
M;wiFE" i M FE STi(") [x : w]. In this way, the standard translation showvs
that modal logic is a fragmert of rst-order logic. Bisimulations allow one to

2.2.3. Theorem ([11]). Let' (x) be a formula of the rst-or der correspndene
languagewith at most one free variable. Then the following are equivalent:

1. ' (x) is invariant under bisimulations
2. ' (x) is equivalentto the standad translation of a modal formula.

Rosen[87] proved that this result holds alsoon nite structures.
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2.3 Frame de nabilit y

When interpreted on frames, modal formulas expresssecondorder frame condi-
tions. For instance,the modal formula p! 3 p expresseshe frame condition
8x:8P:(Px ! 9y:(Rxy ™ Py)). At it happens,this particular secondorder for-
mula is equivalert to the rst-order formula 8x:Rxx. Howeer, this is in general
not the case. For instance, the modal formula 23 p! 32 p expressesa frame
condition that is not de nable by rst-order formulas.

To be a little more precise,given a set of modal formulas , the frame class
de ned by is the classof all frameson which ead formula in  is valid. A
frame classis modally de nable if there is a set of modal formulas that de nesiit.
A frame classis elementaryif it is de ned by a sertenceof the rst order frame
correspndene languagel {,, which is the rst-order languagewith equality and
binary relation symbol for eat modality.?

In this section, we discussa number of result concerningthe relationship
between modally de nable frame classesand elemenary frame classes. First,
we will considermodel theoretic characterizations. Then, we will review some
attempts at syntactic characterizations.

Mo del theoretic characterizations

A famousresult due to Goldblatt and Thomason characterizesthe modally de-
nable elemenary frame classesn terms of four operations on frames.

2.3.1. Definition (Genera ted subframe). A frameF = (W;(R3)32moq) iS
a generatedsubframeof a frame G = (W% (R$)32moq) if W WP°and for all
(w;v) 2 RY (3 2 mod), if w2 W thenv2 W.

2.3.2. Definition  (Disjoint union). Let F;i = (Wi;(R5)32moa) (i 2 1) bea
settgf frameswith disjoirg domairg. The disjoint union of theseframes, denotel
by ,, Fiistheframe( ,, Wi;( i, R5)32mod)-

2.3.3. Definition  (Bounded morphism). A boundel morphismfrom a frame
F = (W;(R3)32mod) to aframeG = (W% (R3)32moq) is a function f : W ! WO
satisfying the following conditions.

forth for all w;v2 W and 3 2 mod, if Rz (w;V) then R (f (w);f (v))

back forallw2 W, v2 W%and3 2 mod, if R (f (w);Vv) thenthereisau 2 W
suchthat R3 (w;u) and f (u) = v.

If there is a surjective boundel morphism from F to G, then we saythat G is a
bounded morphic image of F.

°Note that, in the literature, a classis sometimescalled elemenary if it is de ned by a set
of rst-order formulas. Here, we call a classelemenary if it is de ned by a single rst-order
sertence.
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In orderto formulate the fourth operation on frames,we needto introducea piece
of notation. Givena frame F = (W;(R3)32mod), X W and 3 2 mod, we will
write m3 (X)) for the setfw 2 W j 9v 2 X:wR3vg. In other words, m3 (X) is the
set of 3 -predecessorsf elemeits of X .

2.3.4. Definition (Ul trafil ter extension). Given a frame F =
(W; (R3)32mod), the ultralter extension of F, denota by ueF, is the frame
(UF(W); (R5)32moa), Where Uf(W) is the setof ultra lters over W (cf. Appendix
A), and for u;v 2 Uf(W), R§%(u;v) i for all X 2 v, m3(X) 2 u.

Every modally de nable frame classis closedunder disjoint unions, generated
subframesand bounded morphic images. Furthermore, modally de nable frame
classege ect ultra lter extensions,meaningthat whene\er the ultra Iter exten-
sion of a frame is in the class,then the frame itself is in the class. Goldblatt
and Thomasonproved that the converseholds with respect to elemenary frame
classes.

2.3.5. Theorem (Goldbla tt-Thomason[ 50]). An elementaryframeclassis
maodally de nable i it is closel under geneated subffames, disjoint unions and
boundal morphic images,and re ects ultra lter extensions.

This tells us which elemeniary frame classesare modally de nable. The opposite
guestion,i.e., which modally de nable frame classesre elemertary, wasanswered
by Van Benthem.

2.3.6. Theorem ([10]). Let K be any modally de nable frame class. The fol-
lowing are equivalent:

1. K is elementary

2. K is de ned by a setof rst-or der sentenes
3. K is closal under elementaryequivalene

4. K is closal under ultrapowers.

Syntactic characterizations

The above resultsdo not tell uswhich modal formulasde ne an elemenary frame
class,nor which rst-order formulas de ne a modally de nable frame class.

As we will soon see(cf. Theorem 2.6.5, the problem whether a given modal
formula de nes an elemenary frame classis highly undecidable. This implies that
a syntactic characterization of the form \ a madal formula de nes an elementary
classi it is equivalentto a formula of the form X" with X a decidableclassof
formulas cannotbe obtained. Howewer, this still leavesopenthe questionwhether
sud a characterization existsif equivalent is replacedby frame-euivalent

An important su cient condition for elemenarity was proved by Sahlqvist
[88 and Van Berthem [11].
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2.3.7. Definition  (Sahlgvist formulas). A modal formula is positive
(negative) if every occurrence of a proposition letter is under the sope of an
even(odd) numter of negation signs.

A Sabhlqvist antecedert is a formula built up from >;?, boxed atoms of the
foom 2; 2,p (n 0), and negative formulas using conjunction, disjunction
and diamonds.

A Sahlqgvistimplication is a formula of theform' ! | wher' is a Sahlgvist
antecedentand is positive.

A Sahlqvist formula is a formula that is obtained from Sahlvistimplications
by applyingboxesand conjunction, and by applyingdisjunctions betwesn formulas
that do not share any proposition letters.

2.3.8. Theorem ([88, 11]). Every Sahlgvist formula de nes an elementary
classof frames.

Likewise,Van Bernthem [11] hasshown that every modal formula that hasmodal
depth at most onede nes an elemertary classof frames. Axioms of modal depth
at most one were rst consideredby Lewis [76]. Van Bernthem's result may be
improved slightly, by consideringthe following classof formulas.

2.3.9. Definition  (Shallo w formulas). A maodal formula is shallow if ev-
ery occurrence of a proposition letter is in the s@mpe of at mostone modal operator.

2.3.10. Theorem. Everyshalow formula de nes an elementaryclassof frames.
Pro of: The proof will be givenin Section2.4. 2

Typical examplesof shallov modal formulasarep! 3p, 3p! 2pand3p!
3 2p. Furthermore, every closedformula (i.e., formula cortaining no proposition
letters) is shallov. The formula 2 1(p_q)! 32(p” g) is an exampleof a shallov
formula that is not a Sahlqgvist formula.

Incidentally, correspndenceresults like thesemight also be obtained for lan-
guagesother than the rst-order correspndencelanguage. Recerly, [14] and
[57] have independertly found a generalizationof the classof Sahlqvist formulas,
with the property that every generalizedSahlqvist formula has a correspndert
in LFP(FO), which is the extensionof rst-order logic with least xed point op-
erators. By results of [6], there are modal formulas that have no correspndert
in LFP(FO), not even with respectto nite frames.

Next, let us addressthe questionwhich rst-order formulas de ne modally de n-
able frame conditions. Again, no completesyntactic characterization is known.
Let a p-formula be a rst-order formula obtained from atomic formulas (in-
cluding equality statemerts) using conjunction, disjunction, existertial and uni-
versalquarti ers, and boundeduniversalquarti ers of the form 8x(Rtx ! ). A
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Table 2.2: Formula that characterizes(N; <)

8x8y(x<y! 8z(y<z! x<2) (transitivit y)
BXY(X<Yy_y<X_X=Y) (tric hotomy)

8x9y(x <'y) (unboundednessn the right)
Ix8y(y< x! ?) (boundednes®n the left)

IX(X< X)! IXy(X< XAx<yr:(y<y)

p-sertenceis a p-formula that is a serience. An inductive argumert shows that
p-seriencesare presened under taking imagesof bounded morphisms. In fact,
the converseholds aswell, modulo logical equivalence.

2.3.11. Theorem (Feferman [39]). A rst-or der sentene ' is preserve un-
der surjective boundal morphismsi ' is equivalentto a p-sentene.

It follows that if a rst-order sertence de nes a modally de nable frame class,
then it is equivalert to a p-sertence. We can improve this a bit further. Let a
positive restricted formula be a rst-order formula built up from ? and atomic
formulas, using conjunction, disjunction, and restricted quarti cation of the from
9y:(Rxy ~ ) and 8y:(Rxy ! ), wherex andy are distinct variables.

2.3.12. Theorem (Van Benthem [11]). A rst-or der sentene' is preserve
under surjective bounded morphisms, geneated subfamesand disjoint unions i
' is equivalentto 8x: (x), for somepositive restricted formula (x).

Again, it follows that if a rst-order sertencede nes a modally de nable frame
class,it is equivalert to a sertence of the given form. What remainsin order
to obtain a complete characterization is to characterize anti-presenation under
ultra Iter extensions. It is possibleto give a presenation result similar to the
above, that characterizesthe rst-order sertences(anti-)preserved under ultra |-
ter extensions?As we will now show, the answer is No.

Let #(n.<) be the conjunction of the formulas givenin Table 2.2 Surprisingly,
#(n:<) Characterizeg(N; <), in the sensdhat it is preseredundertaking ultra Iter
extensionspreciselyin casethe original model is not isomorphicto (N;<).

2.3.13. Proposition. For all modelsM, M = (N;<) i M F #n<) and
UeM @ #(N;<).

Pro of: The left-to-right direction simply says that (N;<) F #.<) and ugN; <
) 6] #n.<). That (N;<) F #n.<) is clear. Now, considerthe ultra lter extension
ug(N; <) = (Uf(N); <. As pointed out in [21, Example 2.58], this model con-
sists of an isomorphic copy of the natural numbers, followed by an uncourtable
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cluster cortaining all non-principal ultra Iters. In particular, for all non-principal
ultralter u, u <Y u. This implies that the anteceden of the fth conjunct of
#n:<) Is true in ug(N;<). The consequen of this formula is clearly false (all
non-principal ultra lters are to the right of the principal ultra lters). Hence,
ug(N; <) 6 #(ni<).-

As for the right-to-left direction, supposeM F #n.<) and M 6 (N;<). The
rst four conjuncts of #y.<)y expressmodally de nable elemenary frame proper-
ties (de nable usingthe global modality and corversemodalities, if needed),and
hence,by aresult of Van Benthem [11], are presened under ultra lter extensions.
Hence,they are true in ueN. As for the fth conjunct, we can distinguish two
cases.

1. MFEF 9Xy:(x < x*x < y”™y8 y). Sincethis formula has no universal
guarti ers, it is presened under extensions. As ueM is an extension of
M, it follows that ueM F 9xy:(x < x* x < y” : (y < y)), and therefore
ueM F #(N;<)-

2. M 6] 9x:(x < x). Then M = (D;<) for someset D and strict total order
< that is boundedon the left but unboundedon the right. If it would be
the casethat ewery point hasonly nitely many predecessoraM would be
isomorphicto (N;<). By assumption,this is not the case.Hence,there is
a point w for which there are in nitely many v suc that v < w. Let S be
the set of all predecessorsf w.

Now, considerthe ultra lter extensionueM = (Uf(D);<"¢). Let , bethe
principal ultra Iter generatedby w, and let u be a non-principal ultra lter
with S 2 u (such u exist sinceS is in nite). By construction, u <Y ,
and ,, 8¢ . Furthermore, u <“¢ u. To seethis, takeany X 2 u, and
considerthe setY = fvj 9x 2 X:(v < x)g It is easyto seethat at mostone
elemen of X isnotin Y, ie,jX\ (DnY)j 1. Sinceu is non-principal,
it followsthat D nY 62u, and thereforeY 2 u.

Thus, we have shavn that ueM F 9xy:(Xx < x* x < y”" :(y <y)), and
thereby ueM F #n.<). 2

We can still improve this result a bit. Considerthe formula
8x9y:Sxy N 8x8y(Sxy! x<y) N 8x8y(Sxy! 8z(x<z! y=1z_ y<2)

This formula is presened under ultra Iter extensions,and, on the natural num-
bers, it de nes the successorrelation (i.e., it expressesthat Smn holds i
n = m+ 1). Hence,if we let #n.<.su) be the conjunction of #.<) and this
formula, then we immediately obtain the following corollary and improvemern of
Proposition 2.3.13

2.3.14. Pr oposition. For all modelsM, M = (N;<;Suc) i M F #n.<suo)
and ueM 6] #(n.<:s uc)-
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In fact, unary predicatesZero and One and ternary relations Plus and Times
(with the intended semartics) can be de ned in a similar way, leadingto a char-
acterization a la Proposition 2.3.13of the structure (N;<; Suc;0;1;+; ). We
will not give the details here. For present purposes,the following corollary of
Proposition 2.3.14is important.

2.3.15. Cor ollar y. Let' byanyrelational rst-or der formula preserve under
ultra lter extensions(possibly containing relation symiwls other than < and S).
The following are equivalent.

1. ' hasa madel that is an exmnsion of (N; <; Suc)

2. " ™ #n<sue) IS not preserve under ultra lter extensions

Again, we canimprove this result slighly. Let #?IN;<;S ucy Dethe result of relativising
all quarti ers in #n.<:s uc) With the unary predicateN (i.e., replacingsubformulas
of the form 9x: by 9x:(Nx” ) and subfornulas of the form 8: by 8x:(Nx !

)). It isnot hard to seethat aformula’ is presenedunderultra lter extensions
i the relativisation ' N is presened under ultra lter extensions,provided that
N doesnot occur in ' . Hence,we obtain the following relativized version of
Corollary 2.3.15

2.3.16. Cor ollar y. Let' byanyrelational rst-or der formula preserve under
ultra Iter extensions(possibly containing relation symlwls other than <, S and
N). The following are equivalent.

1. ' has a madel, of which the submalel de ned by N is an exmnsion of
(N; <; Suc)

2. ' N #il<s ue IS NOt preservel under ultra Iter extensions

Finally, we will useCorollary 2.3.16to prove that the set of rst-order formulas
presened under ultra lter extensionsis i-hard.

2.3.17. Theorem. Preservationof rst-or der formulas under ultra lter exten-
sionsis 1-hard.

Pro of: We will make useof the 1-completerecurrert tiling problem of Harel,

2. ' (1) hasa model, of which the submadel de ned by N is an expansionof
(N; <; Suc)
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Table 2.3: Encoding the the recurrert tiling problem

Two dimensionalgrid (modulo unwinding)

8x9y:Rh(X;y) N 8Xx9y:Ry(X;Y)
8x8y(Rn(x;y) ! 8z(Rn(x;2)! y=2)
8x8y(Rv(x;y) ! 8z(Rv(x;2)! y= 2))
8x8y(Rn(x;y) ! 8z(Ry(x;2) ! 9u:(Ry(y;u) " Rn(z;u))))

Correct tiling
N
8x: Pyx A tPx
1 k n 1 n
"8k
8x8y: Ry(x;y)! — (Pkx"~Py)
(tk)right =(t)rig nt
8x8y: Ry(x;y)! — (Pcx”™P-y)

(tk)top =( ) bottom

Recurrene of tile t; in the submalel de ned by N

8x8y(Rn(x;y) ! (Nx! (Ny” Sxy)))
8X(Nx! 9y:(Ny~ x<y” Piy))
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Table 2.4: Axioms and inferencerules of K

(CT) ° ', for all classicaltautologies'
(Dual) * 3p$ :2:p, for2 2 mod
(K) T 2(p! 9! 2p! 2q, for2 2 mod

(MP) If ~ " ! and " ' then’
(Nec) If ° ' then™ 2',for 2 2 mod
(Subsy) If © ' then ™ ' , where is a substitution that uniformly replaces

proposition letters by formulas.

3. " (tt) ™ #in<s uey IS NOL presened under ultra lter - extensions

The equivalenceof (1) and (2) is relatively easyto see,and the equivalencebe-
tween(2) and (3) follows from Corollary 2.3.16 since' (r4,) is presened under
ultra Iter extensions(by the samereasoningas before: they expressmodally de-
nable elemenary frame properties). It follows that presenation of rst-order
formulas under ultra lter extensionsis i-hard. 2

In particular, it follows that the rst-order senences(anti-)preserved under ul-
tra Iter extensionsare not recursively erumerable,and cannot be characterized
by meansof a presenation theorem.

2.4 Completeness via general frames

Givenaframeclassk, onewould liketo describethe setof modal formulasvalid on
K (\the modal logic of K"). For the classof all frames,the axiomsand inferences
rules givenin Table 2.4 constitute a soundand completeaxiomatization. We will
referto this axiomatization asKy, . Wewill write * ,, ' if ' isderivablein Ky, .

2.4.1. Theorem (Basic Completeness). For all modal formulas' , F ' |
e

Thus, Ky axiomatizesthe set of modal formulas valid on the classof all frames.
In order to axiomatize morerestricted frame classesgextra axioms(or rules) must
be addedto K, . For any set of modal formulas, we will useK, to denote
the axiomatization obtained by adding all formulasin asaxiomsto K . One
might hope that Ky completely axiomatizesthe set of modal formulas valid
on the frame classde ned by . Unfortunately, this is in generalnot the case.
Newerthelessthere are natural classe®f modal formulas, for which sudh a general
completenessesult can be obtained.

In order to facilitate the study of completenessand incompletenessit is con-
veniert to introduce a generalizationof the notion of frames. A generl frame
consistsaframeF = (W, (R3)32moq) togetherwith asetA } (W) satisfyingcer-
tain regularity conditions, to be spelled out belon. The elemens of A are called
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admissiblesubsets A modal formula ' containing proposition letters py;:::;pn
is said to be valid on a sud a generalframe if it is valid under any valuation
that assignsadmissiblesubsetsto p;;:::;pn. Note that the ordinary frames,or

Kripke frames aswe will referto them in this section,are simply generalframes
for which the set of admissiblesubsetsis the set of all subsets.

Recall that, given a frame F = (W, (R3)32mod), X W and 3 2 mod,
mz(X)=fw2 W j9v 2 X:wR3vg.

2.4.2. Definition  (General frames). A geneal frame is a pair (F;A),
whee F = (W;(R3)32mod) is a frameand A} (W), suchthat W 2 A and
A is closa@l under complement, nite intersection and ms for 3 2 mod.

In addition, the geneal frame (F; A) is

di erentiated if for all w;v 2 W with w 6 v thereis an A 2 A suchthatw 2 A
and v 62A

tight if for all w;v2 W and 3 2 mod suchthat (w;v) 62R3; thereisan A 2 A
suchthat v2 A andw 62m3 (A)

compact if everyA® A with the nite intersection property hasa non-empty
intersection

rened if it is dier entiated and tight

descriptive if it is di er entiated, tight and compact
discrete if for allw2 W, fwg2 A

atomless if fornow2 W, fwg2 A

A valuation for a generalframe F is admissibleif V(p) 2 A for all p 2 prop.
Validity with respect to generalframesis de nes as follows: F = ' if for all
admissible valuations V and worlds w, (F;V);w F '. Every set of modal
formulas de nes a classof generalframes, namely the classconsisting of those
generalframeson which ead formula in s valid.

Unlike Kripk e frames, general frames o er a fully adequate semartics for
modal logics,in the sensethat for all sets of modal formulas, K\, completely
axiomatizesthe set of modal formulas valid on the classof generalframesde ned
by . In fact, this holdsewenif we restrict attention to descriptive frames. Given
a set of modal formulas and a classK of generalframes,we say that Ky, is
completefor K if K\, completely axiomatizesthe set of modal formulas valid
onK,ie,forall' , KF"i "k, '

2.4.3. Theorem ([52]). Let be any setof modal formulas. Ky, is complete
for the classof descriptive generl framesde ned by

Of course, our actual interest is not in general frames but in Kripke frames.
Theorem 2.4.3 can be seenas an important rst step towards proving Kripke
completeness.The secondstep typically involves persistence,a notion that will
be de ned next.
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2.4.4. Definition. A madal formula ' is persistert with respect to a type of
genenl frames(such as descriptivegenearl frames,etc.) if for all geneal frames
F of the relevanttype, if F = ' then' is valid on the underlying Kripke frame
of F.

Persistencewith respectto descriptive frameis alsocalledd-persistene, or canon-
icity . Persistencewith respect to discreteframesis often called di-persistene.

Recall the de nition of Sahlgvist formulas on page12 An important result
in modal logic is the following.

2.4.5. Theorem ([88]). Everymadal Sahlqvistformulais persistentwith respect
to descriptive generl frames.

If we put Theorem 2.4.3 and Theorem 2.4.5 together, we obtain the following
Kripk e completenessesult for Sahlqvist formulas.

2.4.6. Cor ollar y ([88]). If isasetofSahlgvisttormulas,thenKy is com-
plete for the classof Kripke framesde ned by

A similar result can be proved for shallov formulas. Recallthat a modal formula
is shallow if every occurrenceof a proposition letter is under the scope of at most
one modal operator.

2.4.7. Theorem. Every shalow formula is persistent with respgct to re ned
frames,and hene with respct to descriptive framesand with respect to discrete
frames.

Pro of sketch: The proof proceedsby corntraposition. Let F be are ned general
frame and supposeF;V;w 6 ', where' is a shallov modal formula, V a not
necessarilyadmissiblevaluation and w a world. We will construct an admissible
valuation V°sud that F;V%w 6j ' , thus showing that F & ' .

Let 4;:::; n bethe closedsubfornmulasof' andlet p;;:::;pmn bethe propo-

in fact assumethat ' is a Boolean combination of formulas of the form ~ or
3( N ). LetW ,W andW denotethe subsetsof the domain of F de ned
by , and ” , respectively, under the valuation V. Also, for 3 one of the
(nitely many) modalities occuringin ', let Suc?, denotethe set of 3 -successors
of w.

Fix any , and considerthe setW . Since is a closedformula, W is admis-
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with W\ Suc, 6 ;, pick a witness of the non-emptynessof this intersection.
Furthermore, if w 2 W for some , then add w as a witness. In this way, we
pick nitely many witnessedor eadt W . By the di erentiatednessof F, we can
nd foreah and °anadmissiblesetthat separateghe witnessedor W  from
the witnessedor W . Also, by the tightnessof F, we can nd for eady and for
eadh modality 3 sud that W \ Sucd = ; an admissibleset that cortains all
witnessesof W but that cortains no 3 -successoof w. By taking appropriate
intersectionsand unions of theseadmissiblesets (and intersectingwith W ), we
obtain a new partition of W into admissiblesubsetsW?® , such that ead witness
foraW is still a menber of W° . Hence,

W \Sucg=;i WP\ Suc =;
w2W i w2WwP°

Usingthesenew partitions, we will now de ne a admissiblevaluation V° For eah
proposition letter p, (K m), let V{py) bethe union of all W° with F px. By
construction, V%is an admissiblevaluation, and F; V;w and F;V%w agreeon ' .
It followsthat F;V%w &', and henceF & ' . 2

Again, we obtain Kripk e completenesss a corollary.

2.4.8. Cor ollar y. If is asetof shalow formulas,thenK is completefor
the classof Kripke framesde ned by

In fact, combining Theorem 2.4.3 2.4.5 and 2.4.7, we obtain completenessof
Kwm for all sets consistingof shallov and/or Sahlgvist formulas.
Incidentally, every modal formula that is persistert with respect to re ned
frames de nes an elemertary frame class[73]. Hence, this also proves Theo-
rem 2.3.10
To nish this section,we brie y considerdiscretegeneralframes. Venema[98]
proved the following persistenceresult with respect to discrete generalframes.

2.4.9. Definition  (Ver y simple Sahlqvist formulas). A very simple
Sahlqgvist anteceden is a madal formula built up from >;? and proposition
letters using conjunction and diamonds. A very simple Sahlqgvist formula is
an implication * ! , whee ' is a very simple Sahlgvistantecedent and is
positive.

2.4.10. Theorem ([98]). Every very simple Sahlgvistformula is persistentwith
respect to discrete frames.

This by itself doesnot imply completenesdgor logicsaxiomatized by very simple
Sahlqvist formulas (even though this follows from Theorem2.4.5. The reasonis
that Ky, might not be completefor the classof discretegeneralframesde ned
by . In other words, there is no analogueof Theorem 2.4.3for discretegeneral
frames. Indeed, Venema[98] proved the following strong incompletenesgesult.
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2.4.11. Theorem ([98]). Thereis a modal formula' suchthat Ky f' gis con-
sistent and every genenl frame on which' is valid is atomless.

It follows that for the relevant formula ' , Ky f' g is incomplete with respect to
the classof discreteframesde ned by ' . Incidentally, the formula' usedby [98
corntains more than one modality. This is necessarilyso: an obsenation due to
Makinsonimplies that, for all uni-modal formulas’ , if K, f' gis consisten then
it hasa generalframe whosedomainis a singletonset. Clearly every suc general
frame is discrete.

2.5 Interp olation and Beth de nabilit y

Analoguesof Craig's interpolation theorem have been proved for many modal
logics. For any modal formula ' , let prop(' ) is the set of proposition letters
occurring in ' . Further, let us say that the basic modal languagehas interpo-
lation on a frame classkK, if for all modal formulas’; sud that K ' ! ,
there is a modal formula # sudh that K ' | #and K  # ! , and
prop(#) prop(' )\ prop( ). Notethat no restriction is madeon the modali-
ties occurring in #. It would thereforebe more appropriate to talk about interpo-
lation over proposition letters, indicating that it is only the proposition letters in
the interpolation that must occur both in the anteceden and in the consequen

2.5.1. Definition. A bisimulation product of a set of framesfF; ji 2 Igis a
subflame G of the cartesian product F; suchthat for eachi 2 I, the natural
projection function f; : G! F; is a surjective boundel morphism.

Bisimulation products are a special caseof subdirect products (for the de nition
of cartesian products and subdirect products, seeAppendix A). Their nameis
motivated by the following obsenation:

2.5.2. Pr oposition ([80]). Let H be a submadalel of the product F G. Then
H is a bisimulation product of F and G i the domain of H is a total frame
bisimulation between F and G.

Here, with a total frame bisimulation betweenthe framesF and G we meana
binary relation Z betweenthe domains of F and G satisfying the zig and zag
conditions of De nition 2.2.1, and sud that for eat world w of F there is a
world v of G sudh that wZv, and vice versa.

We say that a classof framesK is closel under bisimulation products if for all
F; G 2 K, all bisimulation productsof F and G arein K. It wasprovedin [8(] that
if a frame classK is de ned by a set of d-persistert modal formulas and closed
under bisimulation products, then the basic modal languagehas interpolation
relative to K. Here, we will slightly strengthenthis result.?

3Strictly speaking, Theorem 2.5.3is not a strengthening of the result of [80], sincethere are
canonical modal formulas that de ne a non-elemertary frame class[42].
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2.5.3. Theorem (Interpola tion for modal logics). Let K be any ele-
mentary frame classclosal under geneated subflamesand bisimulation products.
Then the basic modal languagehas interpolation relative to K.

Pro of: Let K be any elemenary frame classclosedunder generatedsubframes

and bisimulation products, let K 5 ' ! , and supposefor the sale of contra-
diction that there is no interpolant for this implication. Let Cons(' ) be the set
of modal formulas sud that K ' ! andprop( ) prop( )\ prop( ).

Claim 1: Thereis a model M basedon a framein K, with a world w, sudc
that M;wE Cons(" )[ . g

Pro of of claim: By Compactnessjt su ces to shav that every nite subset

of Cons(" ) [ f: g is satisable on K. Considerany 4;:::; » 2 Cons(' ).
If f 1;:::; o0 g wouldn't be satis able on K, then 7 A, would be
an interpolant for ' ! . By assumption,’ ! has no interpolant, and
therefore,f 1;:::; ;. gissatisable onK. a

SinceK is closedunder generatedsubframes we may assumethat M is generated
by w. Let Th(M ;w) be the setof all modal formulas sud that M;wF and

prop( ) prop(')\ prop( ).

Claim 2: Thereis a model N basedon a frame in K, with a world v, sudc
that N;vE Th(M;w)[ f'g.

Pro of of claim: By Compactnessjt su ces to shav that every nite subset
of Th(M;w)[ f' gis satis able on K. Considerany i;:::; n 2 Th(M;w).

K. ThenKg " ! (.~ ™ ,). Hence,:( .~ ~ ,)2Cons('), and
thereforee M;wE : ( {~ ™ ). This contradicts the factthat ;:::; , 2
Th(M;w). a

Again, we may assumethat N is generatedby v. Let M* and N* be! -saturated
elemertary extensionsof M and N. SinceK is elemenary, the underlying frames
of M* and N* are in K. De ne the binary relation Z betweenthe domains of
M* and N* by letting dZeif M";dE , N¥*;efF for all modal formulas

with prop( ) prop(' )\ prop( ). In other words, dZe if d and e cannot
be distinguishedby a modal formula in the commonlanguageof ' and . Note
that, by construction, wZv.

Claim 3: Z is atotal bisimulation betweenM * and N* with respect to the
commonlanguageof' and
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Pro of of claim: We will shov that Z satis es the zig condition of De ni-
tion 2.2.1 The proof of the zag condition is similar, and that Z respectsthe
proposition letters in prop(' )\ prop( ) isimmediate from its de nition.

SupposewZ v and WRz W Let = fST,( )jM*;w% andprop( )
prop(' )\ prop( )g. We needto show that s realizedin N* by a 3 -
successorsf V2 By ! -saturatednessit su ces to show that every nite subset
of s realizedin N* by a 3 -successor®f v But this is clearly the case:
considerany ST, ( 1);:::;STx( n)2 . ThenM*;wE 3( .~ ~ ), and
henceN*; VP 3( 1~  ~ ).
Finally, it needsto be shown that Z is atotal bisimulation. Let w2 M *. Let
= fST,( )jM*;wPF andprop( ) prop( )" prop( )g. We need
to show that is realizedin N*. By ! -saturatednessjt su ces to show that
ewery nite subsetof isrealizedin N*. Let STy( 1);:::;STx( n) 2 . Then
OX:(STx( 1) " STx( n)) istrue in M* and thereforealsoin M (recall that
M* is an elemeniary extensionof M). SinceM is generatedby w, there are
31;::53m2mod sunthat M;wiE 37 30( 1M N h). Hence,since
wZv, wehavethat N;viE 3;  3,( 1 " ). SinceN™ isan elemetary
extensionof N, it followsthat N*;viE 37 3n,( 1 ~ 4). Weconclude
that thereis a point VOsud that N* ;v ~ ~ . a

Let F and G be the underlying framesof M* and N*. Then, in particular, Z
is a total frame bisimulation betweenF and G. Hence, by Proposition 2.5.2
there is a bisimulation product H 2 K of F and G of which the domainis Z.
By the de nition of bisimulation products, the natural projectionsf : H! F
andg: H! G are surjective bounded morphisms. For any proposition letter
p2prop('), letV(p) = fuj M*;f(u) F pg, and for any proposition letter
p2 prop( ) let V(p) = fuj N*;g(u) F pg. The properties of Z guarartee
that this V is well-de ned for p 2 prop(' )\ prop( ). Finally, by a standard
argumern, the graph of f is a bisimulation between(H;V) and M * with respect
to prop(' ), and the graph of g is a bisimulation between(H;V) and N* with
respectto prop( ). It followsthat (H;V);hw;vi ' ~: . This cortradicts our
initial assumptionthat K" ! . 2

This result cannot easily be strengthened. An exampleof an elemenary frame
classthat is not closedunder generatedsubframesbut not under bisimulation
products, on which the basic modal languagelacks interpolation is the classde-
ned by 32 p! 23 p.#

An exampleof an elemertary frame classclosedunder bisimulation products
but not closedunder generatedsubframeson which the basicmodal languagdacks

4To seethat the basic modal languagelacks interpolation on this frame class, consider the
following implication.

2(s! 2(¢p! rpyr2(¢t 2¢pt r)) ! 3(s™2(p! q)! 2@! 3(p" )
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interpolation is the classde ned by 8x:(8y9z:R;yz! Rixx)” 8x:(9y8z:(R1yz !

?) ! Ryxx). It follows from Theorem 2.5.5below that this rst-order sertence
is presened under taking bisimulation products. Again, an easy bisimulation
argumert showsthat thereis no interpolant for the valid implication p” : 3 ;1p!

(g! 3,0). Note that this implication hasan interpolant with global modality,
namely E2 ,? . Indeed, a relatively straightforward adaptation of the proof of
Theorem 2.5.3 shaws that the modal languagewith global modality, M (E), has
interpolation on any elemenary frame classclosedunder bisimulation products.

The Beth property

Let F£9° denotethe global ertailment relation on models,i.e., F9°' means
that for all modelsM, if M globally satis es all formulasin  then M globally
satises ' . Global entailment relative to a classof frames, denoted by jzﬂ'o, is
de ned similarly. For a set of formulas ( p) cortaining the proposition letter p
(and possibly other proposition letters), we say that ( p) implicitly de nes p,
relative to a frame classk, if ( p)[ ( p9 j:fim p$ p° Here,plis a proposition
letter not occurring in , and ( p% is the result of replacing all occurrencesof
p by p®in ( p). The basicmodal languageM is said to have the Beth property
relative to a frame classK if wheneer a set of modal formulas ( p) implicitly
de nes a proposition letter p relative to K, then there is a modal formula # in
which p doesnot occur, such that [ E'O p$ #. The relevant formula # is called
an explicit de nition of p, relativeto and K.

The Beth property is an important property. Intuitiv ely, if alogic hasit, this
can be seenas evidencethat its syntax and semartics match well. Tarski refers
to the Beth property ascompletenessn the theory of de nitions (as opposedto
the theory of deductions).

By a standard argumert, we obtain as a corollary of the above interpolation
resultsthe Beth property for the basicmodal language, relative to every elemen-
tary frame classclosedunder bisimulation products and generatedsubframes.

2.5.4. Theorem. If K is a elementaryframe classclosa& under geneated sub-
frames and bisimulation products, then the basic modal languagehas the Beth
property relative to K.

Pro of: For easeof presenation we restrict attention to the uni-modal case.The
proof generalizesasily to languagescortaining more modalities.

Let ( p) beany setof modal formulas cortaining the proposition letter p (and
possibly other proposition letters and nominals), and suppose ( p) implicitly
de nes the proposition letter p, relative to K. Let p®be a new proposition letter,

This formula is valid on the given frame class,but a simple bisimulation argument shows that
there is no interpolant. Note that, intuitiv ely, an interpolant would have to expressthe fact
that for every successorx satisfying s and for every successoty satisfying t, x and y have a
common successorsatisfying p.
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and let ( p%) be the result of replacing all occurrencesof pin by p® Then,
by the de nition of implicit de nability, (p)[ (p) F2°p$ p° Let (p) =
f2" j' 2 (p);n2!g, anddene (p% similarly.

Clam 1. (p)[ (PYFkp$ P

Pro of of claim: SupposeM;wiE (p)[ (p9 for somemodel M basedon
a framein K. Let M,, be the submadel of M generatedby w. By closure
under generated subframes,the underlying frame of M, is alsoin K. By
construction, M, globally satis es ( p) and ( p9. It followsthat M, globally
satisesp$ p° henceM,;wiE p$ p° henceM;wiE p$ p° a

By compactnessthereiga nite subsgt o sudthat o(P)[ o) Fxp$ P
It followsthat Fx (p” o) ! ( oP)! p9. Let # be an interpolant for
this implication. Then the following facts hold.

1. The proposition letters p and p°® do not occur in #.

, Y%
2. Fk (P op)! #

\%
3R #! ( o) ! pY, and hence,by uniform substitution, Fx # !
( o@! p).

We concludethat o(p) Ex p$ #, and hence ( p) j=E'° p$ #. 2

Here is a simple example of an elemertary frame classon which the basic
modal languagelacks the Beth property. Let K be the classof framessatisfying
Ix8yz:(Ryz$ y = x),andlet = fp! 2q:p! 2:qg Clearly, in models
that are basedon a frame in K and that globally satisfy , g holds at a state
i p holds at the root, and hence, implicitly de nes g in terms of p, relative
to K. Howewer, a simple bisimulation argumert shows that there is no explicit
de nition of g in terms of p, relativeto and K, in the basic modal language.

Preservation results for bisimulation products

One might ask for a syntactic characterization of the elemenary frame proper-
ties that are presened under taking bisimulation products. Sud a presenation
theorem can indeed be given. In what follows, we will characterize the rst-
order formulas that are presered under bisimulation products, in the form of a
presenation theorem. Recall the de nition of p-formulas on pagel2

In the following proof we will referto framesas models (models of the rst-
order frame correspndencelanguagel ?,, to be precise). This seemsthe more
natural choicein the presern cortext, sincethe theoremconcerns rst-order for-
mulas.
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2.5.5. Theorem. A rst-or der sentene’ is preserve under bisimulation prod-
uctsi ' is equivalentto a conjunction of sentenes of the form 8x( ! ),
wher is a p-formula and is either an atomic formula or ?.

Pro of: [( ] The right-to-left direction is easyto prove: considerany formula of
theform8%( ! ) with and asspecied above,andlet G bea bisimulation
product of frames(F;)i,,. Foreahi 2 I, letf; : G! F; be the natural pro-
jection. By de nition, ead f; is a surjective bounded morphism. Next, suppose

by contraposition that G 6 8x( ! ). Then there are dq;:::;d, sud that
GFE ": [dg;:::;dh]. Since is an atomic formula, and by the de nition of
bisimulation products, Fi £ :  [fi(dy);:::;fi(d)] for somei 2 |. Furthermore,
by presenation under surjective boundedmorphisms,F; £ [fi(dy);:::;fi(dh)].
It followsthat F; § 8x( ! ).

[) ] Call an basic p-Horn sentene a serienceof the form 8%( ! ), where

is a p-formulas and is an atom or ?. Let Lo be the vocabulary of ' , and
for any vocabulary L, let PCons, (' ) be the set of basic p-Horn sertencesin L
entailed by ' . SupposeM o F PCons (' ). Wewill shov that Mo F ' . It then
follows by compactnessthat ' is equivalent to a conjunction of nitely many
basicp-Horn senences.

We will perform a sort of step by step construction. Call an approximation a
triple A = (L; M;S), whereL Ly is a (not necessarilycourtable) vocabulary,
M is an L-model satisfying PCons_ (' ) and S is a set of L-models satisfying ' ,
sud that every p-seriencetrue in M is true in all modelsin S. In particular, let
Ao be the approximation (Lg;My;;). We call an appraximation A = (L; M;S)
perfect if it satis es the following additional properties.

1. Every elemenh of M or of somemodel N 2 S is namedby a constart.

2. For constart ¢ and ewery point w in somemodel N 2 S, if N E Rcx [w]
then there is a constart k¢, namingw sud that M F Rcke,.

3. For every atomic sertence (including equality statemens), if M 6 then
thereisan N 2 S sud that N 6

We are interestedin a perfect approximation, for the following reason.

Claim 1: If (L; M;S) is a perfect approximation, then M is isomorphicto a
bisimulation product of the modelsin S, and henceM F ' .

Pro of of claim: ForeadiN 2 S,letfy : M ! N bethe natural function in-
ducedby the constarts, andletg: M ! n2sN sud that g(x) = Hy(X)inzs.
From the fact that (L; M ;S) is a perfect approximation, it follows that fy is
a surjective bounded morphism for eadh N 2 S, and that g is an enbedding,
i.e., aninjection that presenestruth and falsity of atomic formulas (note that,
sinceewery atomic sertence is ap-formula, M i eah N 2 S satis es
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). It followsthat N is isomorphicto a bisimulation product of the modelsin
S. a

We alsoneedsomeother lemmason approximations. In what follows, we will use
the notation M | N to say that N is an elemenary extensionof M, relative
to the vocabulary L. We write (L;M;S) (L%M©%S9 if the following holds:
L L°M | MP%andthereis aninjection f : S! S%sudc that for all N 2 S,
N | f(N). Wewill write (L;M;S) ; (L%M?%S9 if we wish to indicate the
injection.

Claim 2: For eat approximation (L; M;S) there is an appraximation
(LEM®SY sudh that (L;M;S)  (L2M2SY and every elemen of MO is
namedby a constart.

Pro of of claim: Let L° extend L with a constart ¢, for ead world w of
M, and let M © be the natural L%expansionof M. Then M%E PCons,o(* ).
This holds, for considerany 2 PCons,o(' ), let ¢;;:::;c, be the constaris
of L°nL occurring in , and let x4;:::;X, be correspnding new variables.

stants of L°nL occurringin 1;:::; ,, and kgt X1;:::; X be correspnding
newvariables. Thenthe p-sertence9x1  Xm: ,-;.., «[€¥]istruein M and
hencealsoin N. In other words, N hasan expansionsatisfying 1;:::; . It
follows by a well-known model theoretic argumert that N° = PTh(M9 for
someL “model N® with N | N© It followsthat N°F ' .

Finally, let S°= fN°%j N 2 Sg. Then, by the above considerations,(L% M ¢ S9
is an appraximation, and (L; M;S)  (L%M%S9. Moreover, every elemen of
M %is namedby a constar. a

Claim 3: For eat approximation (L; M;S) there is an appraximation
(L%MCSY such that (L; M;S) ; (L&M%SY for somef and sudh that the
following holds for ead N 2 S:

1. For every elemen w of N there is a constart ¢, that namesw in f (N).

2. If N E Rcx [w] for someconstart ¢ 2 L and elemen w, then there is a
constart ke, 2 L°that namesw in f (N), sud that M °F Rckey.

Pro of of claim: For eah N 2 S, let the extensionL(™) of L be de ned as
follows. For ead elemen w of N pick a new constart c,. Furthermore,
for ead constart ¢ 2 L and elemen w of N sud that N F Rcx [w],
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pick a new constart k... Let L) be the extensionof L with these con-
stants, and let N; be the natural expansionof N to L™, Let , = f ' j
' is ap-serienceof L) and N, 6j ' g[ fRckewjc2 L andkey 2 LN nLg.

As a rst step,we claim that, foreatci N 2 S, every nite subsetof |\, istrue

in someexpansionof M. For, let 1;:::; niRCGKew, ;i RCnKeywe 2 Nys
where 4;:::; , are negatedp-seriences. Let ¢c,,;:::;Cy, be the constarts
of LM nL occurringin 1;:::; 4, other than Ke,w,;: i Koy wy - LEL  be the
L -sertence

90\N1 e CWn 9k01W1(Rclk01W1 N 9ka Wm (RkaCm Wm " i) )

Then N E , and hence, since the negation of is equivalen to a
p-serience, M F . It follows that some expansion of M satis es
15000 i RCKgw s RemKenwy 20 N -

Next, let L= ~,o L™, andlet bethe setofLOformuIasSN2$ Ng- Since
LN nL is disjoint from LK nL for N 6 K (N;K 2 S), it follows from the
above considerationsthat every nite subsetof is true in someexpansionof
M, and hence,by a familiar model theoretic argumert, hasmodel M ° such
that M | M© By construction, every p-serience of L") true in M %is true
in N, for N 2 S.

Next, we claim that M% = PCons,o(' ). This is quite easily seen: let 2
PCons_o(' ), and let c;;:::;cy bethe constarts of L°NL occurringin . Pick

correspnding variables X3;:::;Xm. Then 8Xy:::Xn: [C1=X1;:::;Cn=Xm] 2
PCons ("), hence M F 8X1:::Xn: [G1=X1):::;Cn=Xm], hence M° [
88Xy Xn: [C1=X1; i1 Cn=Xm], henceM F

Finally, we apply the sametechnique asin the proof of Claim 2 to obtain an
L%model N°® with N; | ) N© and we set S°= fN°j N 2 Sg, and take
f :S 1 S%sud that f(N) = N% Then (LEM%S9 is an approximation,
(L;M;S) ¢ (LSM%SY and all other requiremerts are ful lled. a

Claim 4. For eat approximation (L; M;S) there is an appraximation
(LM SY sud that (L; M;S) (L%M2S9 and for eah atomic L %sertence

with M°%8j  (including equality statemerts), there is a model N 2 S°sudh
that N 6§

Pro of of claim: For eat atomic L-sertence with M 6 , thereis a model
N. sudrthat N. F PTh(M)[ f; : g, wherePTh(M) is the set of p-
sertencestrue in M% For, supposenot. Then by compactness,there are

;.70 n2PTh(M) such that |~ N N A s not satis able, and
hence( " A ) 2 PCons_(' ). This cortradicts the assumption
that M = PCons_(' ).
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Let S°= S[ fN. jM 8 g. Then (L; M;S9 is an approximation, and,
by construction, for ead atomic L-sertence with M & there is a model
N 2 S%such that N & . a

We will now construct an in nite sequenceof approximations and, as the limit
of that sequencea perfect appraximation. Recallthat A, is the approximation
= (Lo;My;;). Now, for given Ay, apply oneof the Claims 2, 3, 4 (dependingon
k mod 3) to obtain Ag:;. In this way, we obtain a sequenceof appraximations
Ao 1, A1 1, Ay ¢, i asin Figure 2.1 Th%limit of this squenceis a

perfect approximation. More precisely let L, = |, Ly, let My = | My be
the union of the elemettary chain Mo [, M1 , :::, and, nally, let S, be
de ned asfollows. Each modelN 2 Sy (k 2 !) isthe start of an elemerttary chain
N [, fk(N) L feaa (F(N)) o . Let S, be the set of unions of suc
elemenary chains. By construction, (L, ;M ;S)) is a perfectappraximation, and
hence,by Claim 1, M, F ' . SinceMy, |, M, we obtain that Mo F ' . 2

Incidentally, the above proof is somewhatreminiscert to that of Van Benthem
[14] for rst-order formulas presened under predicate intersection.

A similar characterization can be given for the rst-order sertencesthat are
presened under bisimulation products and generatedsubframes. Call a strict
p-serienceonethat cortains no unboundeduniversalquarti ers. In other words:
boundeduniversalquarti ers, unboundedexistertial quarti ers, positive atoms.

2.5.6. Theorem. A rst-or dersenteneis preserve under bisimulation products
and genented subfamesi it is equivalentto a conjunction of formulas of the
form 8%(" ! ) whee' is a strict p-formula and is atomic or ?.

2.6 Decidability and complexity

Many decision problems can be formulated in the cortext of modal logic. We
will mention a few. The model checking problem: given M ;w and ' , ched if
M;wgE".

2.6.1. Theorem ([61]). The madel checking problemfor modal formulas can be
solvel in polynomial time.

The frame checking problem: givenF and ' , chek if F = ' .

2.6.2. Theorem. The frame checking problem for modal formulas is co-NP -
complete.

The modal equivalene problem: given M ;w and N;v, ched if there is a modal
formula that distinguishesw from v.

2.6.3. Theorem ([82]). The madal equivalene problemcan be solvel in poly-
nomial time.
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The frame satis ability problem: given a formula ' , ched if there is a frame on
which ' is valid.

2.6.4. Theorem. The frame satis ability problemfor modal formulas is highly
undecidable,in fact not analytical.

Pro of: By Theorem B.0.3, the satis abilit y problem for monadic secondorder
formulas in one binary relation is non-analytical. Thomason[95] reducedthis
problem to the following problem:

Givenuni-modal formulas';  of the basicmodal language,sud that
Is closed(i.e., cortains no proposition letters). Does' entail on
frames(i.e., is valid on ewery frame on which ' is valid)?

This problem can again be reducedto the frame satis abilit y problem: it su ces

to note that, for a modal operator 3 not occurringin ' and ,' ertails on
framesi ' ~3: hasnoframe(here,we usethe factthat isaclosedformula).
2

Incidentally, the frame satis abilit y problem for uni-modal formulas is trivially
decidablein co-non-deterministic polynomial time, due to the fact that ewvery
frame satis able uni-modal formula has a singletonframe.

The elementarity problem: given a formula ' , does' de ne an elemetary
frame class?

2.6.5. Theorem. The problemwhethera given modal formula de nes an ele-
mentary frame classis highly undecidable,in fact not analytical.

Pro of: Let' bea modal formula, and let 3 be a modal operator not occurring
in'. Then' isframesatisablei ' ~ (23 p! 32 p) is not elemenary. It
follows by Theorem2.6.4that the elemerarity problem is not analytical. 2

Finally, the decisionproblemthat will receive most attention in this thesisis the
satis ability problem For a given frame classk, the problemis to test if a modal
formula is satis able on K or not. For di erent classe<, and for di erent exten-
sionsof the basicmodal language,we will addressthe questionif this problemis
decidable,and if so,what is its complexity.

Let us say that a frame classK has the nite model property if whenewer
a modal formula is satis able on a frame in K, then it is satis able on a nite
framein K. If K hasthe nite model property, and if membership of a frame with
respectto K canbetestede ectiv ely, then the modal formulasthat are satis able
on K can be erumerated: simply erumerate all triples (M ;w;" ), whereM is a
nite model, w is a world of M and ' is a modal formula, and ched for eat
sud triple if M;w F ' andif the underlying frame of M is in K.
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Dually, if Ky f' gis completewith respectto K, for some' , then we can use
this in order to enumerate the formulas that are not satis able with respect to
K: simply enumerate all negationsof formulas derivablein K, f' g.

If both the satis able and the non-satis able formulascanbe enumerated,then
the satis abilit y problem is decidable: the decision procedure simply performs
both enumerationsin parallel, and stops as soon as the input formula occursin
one of the two enumerations. Since every formula is either satis able or non-
satis able, the algorithm will stop after a nite amourt of time. Note that while
decidability might be showvn in this way, no concretebounds on the amourt of
time, or space,neededto solve the problem can be derived.

A usefulmethod for proving the decidability and the nite model property is
using Itr ations. Let M be a model basedon aframeF = (W;R) andlet bea
set of formulas closedunder subfornulas. De ne an equivalencerelation on
W sud that for every w;v 2 W:

w vi foreery 2, M;wE i M;VE

Denote by [w] the  -equivalenceclasscortaining w and let W= be the set
of all -equivalenceclassesof W. De ne a valuation V. on W= sud that
V(p) = flwljw2 V(pg. The model M= = (W= ;R ;V ) is calleda
Itr ation of M through if R is a binary relation on W= sud that for any

2 andw2W,M;wF i M= ;[w]F . This notion canbe generalized
to multi-modal languagesas well.

2.6.6. Definition  (Fil tra tions). A frameclassK admits Itration if for ev-
ery modal formula' thereis a nite setofformulas - containing all subformulas
of ' , suchthat wheneverM ;w £ ' and M baseal on a frame in K, there is a
Itr ation of M over . whoseunderlying frameis in K.

We say that K admits polynomial ltration if it admits Itr ation and the size
of . is polynomial in the lengthof ' . We saythat K admits simple Itr ation if
it admits Itr ation and for everyformula', - is the setof subformulasof ' .

Sincejw= | 2 1 if Kadmits ltration thenit hasthe nite model property.
Sincethe number of subformulas of ' is polynomial in the length of ' , every
frame classthat admits simple Itration admits polynomial Itration.

2.6.7. Theorem. LetK be any elementaryframe class. If K admits polynomial
Itr ation then satis ability of maodal formulas with respgct to K can be decided in
NExpTime .

Pro of: This can be considereda folklore result.

If K admits polynomial Itration, then every satis able formula' hasa model
whosesize can be bounded by an exponertial in the length of ' . It therefore
su ces to guesssudr a model and ched if it satises' and if the underlying
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frameis in K. Both of thesecheds can be performedin polynomial time (note
that the model cheding problem for a xed rst order formula can be solved in
polynomial time). 2

Frame classesde ned by shallowv formulas give us a nice examplefor the use of
the lItration method.

2.6.8. Theorem. Everyframeclassde ned by a nite setof shalow modal for-
mulas admits polynomial Itr ation, hen@ hasthe nite model property and hasa
satis ability problemthat can be solval in NExpTime .

Pro of: Lewis [76] proved a restricted version of this result, for frame classes
de ned by modal formulas with modal depth at most 1. The same proof can
be usedto prove our more generalresult, with a small modi cation. Let K be a
frame classde ned by a nite set of shallov modal formulas. For any modal
formula' , de ne . to bethe union of the setof subformulasof' with the setof
closedsubfornulas of formulasin  (recall that a formula is closedif it contains
no proposition letters). Proceedingasin [76] using - asthe ltration setfor ',
one can construct for every model M basedon a framein K a ltration M °with
respectto ., sud that the underlying frame of M %isin K, and"' is satis ed at
someworld in M2,

Alternativ ely, a proof of this result can be extracted from the proof of Theo-
rem7.4.2 2
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Chapter3

Intro duction to hybrid languages

Part | of this thesisconcernshybrid languages Theseare extensionsof the basic
modal languageinvolving nominals Syrtactically, nominalsact asa secondsort
of proposition letters. Howewer, semartically, their interpretation is restricted to
singleton sets. In other words, nominals act as namesfor elemerits of the model,
much like constarts in rst-order logic. Examplesof modal formulas cortaining
nominalsarei” : 3i (\the current world is namedby the nominal i, and it not a
successoof itself”) and 3i” 2i (\the world namedi is a successoof the current
world, and it is the only successor").

Hybrid languageshave a long history: the useof nominalscan be traced badk
Prior and Bull's work in the sixties [84, 25. Nominals werereinverted at se\eral
occasions.The history of hybrid languagesand the many motivations for studying
them will not be discussedurther here, but the readeris referredto [83, 18] for
two excellert expositions.

This chapter introducethree hybrid languagesH, H(@)and H(E). Di erent
apects of theselanguages,including expressiviy, axiomatizations, interpolation
and complexity, will be studied in Chapter 4{8. Besidesgiving the syntax and
semartics of H, H(@) and H (E), the presen chapter also corntains a number of
syntactic normal form results that will be usedlater on.

Incidentally, onehybrid languagehasnot yet beenmertioned, namelyH (@; #).
For reasonghat will becomeclearlater on, the study of H(@; #) will be postponed
until Chapter 9 of this thesis. For now, it su ces to sa that, in many respects,
H (@, #) is more similar to rst-order logic than to the languagesstudied here.

3.1 Syntax and semantics of H, H(@) and H(E)

As was mernioned already, nominals are simply proposition letters whoseinter-
pretation is always a singleton set. In other words, nominals name elemeits of
the domain.

37
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Besidesnominals, we will also consider satisfaction operators. Satisfaction
operators are operators that make it possibleto expressthat a formula holds at
a world named by a nominal. An example of a formula corntaining a nominal
and a satisfaction operator is @3 p, which statesthat the world namedi hasa
successosatisfying p.

The last addition to the languagethat we will consideris the glotal madality,
E. It is a special modal operator that has as its accessibiliy relation the total
relation. In other words, E' holds at a world if there is a world (any world) in
the model satisfying' . The dual of E, denotedby A expresseglobal truth: A’
holds at a world if ' holds at every world in the model. Note that satisfaction
operators can be de ned usingthe global modality: @' is equivalert to E(i ™ ')
and A(i ! ).

Formally, let prop be a countably in nite set of proposition letters, nom a
courtably in nite setof nominals,andlet mod be a nite setof unary modalities
(most of our results generalizeto the casewith in nitely many modalities, and to
modality with arbitrary arity). Then the syntax of the languagesH, H(@) and
H(E) is de ned asfollows.

Ca=>gpiiitit A s (H)
Ca=>gpiiit it A 3@ (H(@))
Cu=>gpjijitit A j3E (H(E)

wherep 2 prop, i 2 nom and3 2 mod. Weusenom(' ), mod(' ) and prop(' )
to referto the respective symbols occurring in ' . We employ the usual abbrevia-
tions. In particular, 2" is shorthandfor: 3:' and A" is shorthandfor: E: ' .

The frameswe work with are the sameas for plain modal logic: they are of
the form F = (W; (R3)32mod), WhereW is a set of worlds and eat R3 is a binary
relation over W. Modelsfor hybrid languagesare pairs (F; V), whereF is a frame
and V is a valuation function for the proposition letters and nominals, sud that
jV(i)j = 1fori 2 nom. In other words, nominals are true at exactly one point
in the model. Relative to sud models, the formulas of our hybrid languagesare
evaluated as follows.

M;w) F >

M;w) F p i w2V(p

(M;w) E i i w2 V()

M;w) F o i (Miw) &

Miw)F"r 0 (Miw)F " and(M;w)

(M;w) F 3' I thereisav 2 W sud that wRzv and (M;v) '
M;w) F @' i (M;v)F "' whereV(i) = fvg

(M;w) F E i thereisav2 W sud that (M;v) '

wherep 2 prop, i 2 nom and 3 2 mod.
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Validity and satis abilit y with respect to a frame or classof framesis de ned
asfor modal formulas. The frame classde ned by a hybrid formula is simply the
classconsistingof the frameson which the formula is valid.

The modal depth of a hybrid formula ' is de ned as on page8, not court-
ing occurencesof satisfaction operators or the global modality, i.e., md(@" ) =
md(E ) = md(" ).

A hybrid formula is saidto be pure if it cortains no proposition letters (nom-
inals are allowed).

3.2 First-order correspondence languages

The rst-or der correspndene languagefor our hybrid languages) !, is the rst-
orderlanguagewith equality over the vocabulary cortaining a constart ¢; for eat
i 2 nom, a unary predicate symbol P, for eat p 2 prop, and a binary relation
symbol R3 for eatch 3 2 mod. A modelM = (W;(R3)32mod; V) Can be seenas
a model for the rst-order languageL !: the interpretation of the constans ¢ is
given by V (i), the interpretation of the unary predicate symbols P, is given by
V (p) and the interpretation of the binary relation symbolsR3 is the relations R3
of M.

Note that we usethe samenotation, L!, to refer to the correspndencelan-
guagefor the basicmodal language,and the corresppndencelanguagefor hybrid
languages.Thesetwo languagesdi er, in that the latter cortains a constart for
eat nominal. It will always be clearfrom cortext which languagewe arereferring
to.

3.2.1. Definition.  The standad translation ST ( ) mapsformulasof H, H(@)
and H (E) to formulasof L* with at mostonefree variable. It is de ned asfollows,
wheee x andy are distinct rst-or der variables.

ST« (>) = >

STy (p) = PpX

STi(i) = X=¢

ST«(: ") = ST(")

STx(" » ) = ST(" )" STk( )
STx(3') = 9y:(Rsxy”™ STy("))
STu(@') = 9yu(y=¢c"ST,())
ST«(E') = 9y:ST,(")

3.2.2. Theorem ([47, 46, 16]). For all hybrid formulas ', models M and
worldsw, M;wiE " i M F ST,(") [X :w].

When interpreted on frames, hybrid formulas expresssecondorder properties of
frames. In this case|t is moreappropriateto considera rst-order correspndence
languagethat cortains only the relation symbols interpreted by the frame, not
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the unary predicatesand constaris that areinterpreted by the valuation function.
Recall that the rst-or der frame correspndene language L{,, is the rst-order
languagewith equality over the vocabulary cortaining a binary relation symbol
Rs; for each 3 2 mod. Also recall that a frame F = (W;(R3)32moq) Can be
seenas a model for L}, : the interpretation of the binary relation symbols R
is the relations R3 of the frame. While not every hybrid formula hasan L{,-
correspndert, someformulasdo. For instance,p! 3 p de nesthe sameclassof
framesas8x:R3xx, andi ! : 3i de nesthe sameclassof framesas8x:: R3 xX.
The next chapter is dewoted to a comparisonof the expressiviy of hybrid formulas
on the one hand and L *-formulas and L {, -formulas on the other hand.

3.3 Syntactic normal forms for hybrid formulas

This sectioncorntains results on syrntactic normal forms for formulas of H (@) and
H(E). Theseresultswill be usedin later parts of this thesis.

3.3.1. Definition. An H(@)formula' is in @-normalform if no satisfaction
operator occurs in the sampe of a modal operator or of another satisfaction oper-
ator. If, in addition, ' is a Boolean combination of @-pe xed formulas, then
is in strong @-normalform.

With an @-pre xed formula, we mean a formula of the form @ . It is easyto
seethat the H(@)-formulasin (strong) @-normalform are preciselythe formulas
generatedby the following recursive de nition, where is an H-formula, and
i 2 nom.

oo j@ j'1"N"2):"  (@-normalform)
= >j@ jiN" 2]t (strong @-normalform)

3.3.2. Theorem. Every H(@)formula is equivalentto an H(@)formula in @
normal form. Moreover, everyH (@)formula of the form @ is equivalentto an
H (@)formula in strong @normal form.

Pro of: If ' isaH(@)-fornmula cortaining a subfornula of the form @ , then'

isequivaletto (@ ~'[@ =])_( @ "'[@ =?]). By repeatedapplication
of this equivalence,any H (@) formula may be turned into a formula that is in
@-normalform. Moreover, if the original formula wasitself of the form @ then
the resulting formula will be in strong @-normalfrom. 2

The exponertial blowup involvedin the proof of Theorem3.3.2cannotbe avoided.

3.3.3. Pr oposition. There is no polynomial translation from H (@)-formulasto
H(@)formulas in @-normalform.
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Pro of: Considerthe sequenceof H(@)-fornulas' ,, = 3 szl;;;;;n(pk $ @),
with n 2 I, Each' ,, haslength polynomial in n, evenif the bi-implication signis
treated asa de ned connective. Now, take any sequence ,, (n 2 ! ) of formulas
in @-normalform, sud that the length of , is boundedby a polynomial in n.
We will shovthat ' , 6 |, forsomen2!.

Forn 2 !, let F, be the setof all functionsf : fl:::;ng! f0;1g. For
eath subsetG F,, dene a model Mg = (W;R;V) asfollows. The domain
W consistsof all f 2 G, together with two extra worlds, w;v. The relation

R connectsw to ead function f 2 G. The valuation function V is sud that

Sincethe number of subsetsof F,, is doubly exponertial in n, and the number
of subfornmulas of |, is polynomial in n, for large enoughn there must exist
G:;G, Fj, sud that G; 6 G, and sud that (M g,;w) and (M g,;w) agreeon
the truth of all subformulas of ,. Without lossof generality, we may assume
that Gi1nG, 6 ;. Let g2 G;nG,. Asa nal step,let the modelsM ; and M, be
identical to M g, and M g,, respectively, exceptthat in both casesv 2 V(px) for
all k nwith g(k) = 1. A simpleinductive argumert shovsthat M ;;wE |
Mo,;w E . Howewer, by construction, M, F ' , and M, 6 ' ,,. We conclude
that ,6 ' ,. 2

For many purposesyrather than having atruth preservingtranslation from H(@)-
formulas to H(@)-fornulas in @-normalform, it is enoughto have a translation
that presenessatis abilit y with respect to arbitrary frame classes.Translations
of the latter kind are often enoughfor deriving complexity results or frame de-
nabilit y results. Fortunately, there is a polynomial time satis abilit y preserving
translation from H(@)-formulasto H (@)-formulasin @-normalform.

3.3.4. Theorem. There is a polynomial time translation from H(@)-formulas
to H(@)formulas in strong @-normalform that preservessatis ability on any
frame class.

Pro of: Let any H(@)-formula ' be given. Pick a new nominal i, and for every
subformula of * of the form @ introduce a new proposition letter pg . Now,
de ne the mapping (:) on subformulasof ' asfollows:

—~
[ENN
-~ I
~—~~
(ORR N
NN
vvvvv—-b
|
-
N
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Note that () mapssubformulas of ' to formulas (of the extendedlanguage)in

which no satisfaction operator occurs. Finally, we translate' as' °=
N

QC )" C@(C )! @2™:pg )" (@( )! @2"pg )
@ 2Sub(')
m md(")
k2nom(' )[f ig

wheremd(' ) is the modal depth of ' . Note that ' ®is in strong @-normalform,
and that the length of ' %is polynomial in the length of ' . We claim that ' is
satis able onaframeF i ' Cis satis able on F. We prove both directions.

) ] Suppose(F;V);w ' . Let V?be the valuation that extendsV sud
that VYi) = fwg andsuch that v2 Vipg )i (F;V);v @ ,forallv2F
and subformulas @ of ' . A straightforward induction argumern shows that
M;vE | MvFE for all worlds v and subformulas of ' . From this,
it follows that M;w F @' and also (by de nition of V9 that all the other
conjunctsof ' %are true at w. Hence,M ;w ' ©

[( ] Suppose(F;V);w 'C% Let V(i) = fvg. Our task is to show that
(F;V);vo .

For any point u 2 F, let d(u) be the minimal number of transitions needed
to readh u from v or from someother point of F denotedby one of the nominals
occurringin' (let d(u) = 1 if uis not reachablefrom v nor from any other point
denotedby a nominal occurring in ' ). By construction (cf. the secondconjunct
of ' 9, we have the following:

for all u 2 F and for all subfornulas@ of ', if d(u) md(' ) then
Miu pg I M;u @( ).

It follows by induction on that

forall u 2 F andfor all subformulas of' ,ifd(u)+md( ) md(" ),
then M ;ufF I M;ufF

Finally, we concludethat M ;v ' . 2

It followsthat the satis abilit y problem for H (@)-fornulas, relative to any frame
class, is polynomially reducible to the satis abilit y problem of H(@)-fornulas
in @-normalform, with respect to the sameframe class. It also follows that
ewery frame classde nable by H(@)-fornulas is de nable by H(@)-fornulas in
@-normalform.

Next, let us considerthe languageH (E).

3.3.5. Definition.  An H(E) formula ' is in E-normal form if no occurrence
of E is in the smpe of a modal operator or of another occurrene of E. If, in
addition, ' is a Boolean combination of E-pre xed formulas, then' is in strong
E-normal form.
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Again, with an E-pre xed formula, we mean a formula of the form E . Keep
in mind that A is shorthand for : E: . It is easyto seethat the E-formulas
in (strong) @-normalform are preciselythe formulas generatedby the following
recursive de nition, where is an H-formula.

oo JE J' 17" 2" (E-normal form)

o= > JE AN 2 (strong E-normal form)

By similar argumerts asin the proof of Theorem 3.3.2 we obtain the following.

3.3.6. Theorem ([56]). Every H(E)-formula is equivalentto an H (E)-formula
in E-normal form. Moreover, every H (E)-formula of the form @ is equivalent
to an H(E)-formula in strong E-normal form.

Again, the polynomial translation can be found that turns ewvery formula into an
equisatis able formula in normal form.

3.3.7. Theorem. Thereis a polynomial time translation from H (E)-formulas to
H (E)-formulas in strong E-normal form that preservessatis ability on any frame
class.

Pro of: Let any H(E)-formula' be given. For ewvery subformula of * of the form
E introduce a new proposition letter pe . Now, de ne the mapping (:) on
subformulas of ' asfollows:

p = p
o=
(1" 2) = 1,
(1_ 2 = 1— 2
) =
B3) =3
(E) = pe

Note that () mapssubfornulas of ' to formulas (of the extendedlanguage)in
which no satisfaction operator occurs. Finally, we translate ' as' °=
N

E A (E ! Ape )" GCE ! Ape)
E 2Sub(' )
Note that ' Cis in strong E-normal form, and that its length is polynomial in the

lenght of ' . A similar argumert asin the proof of Theorem3.3.4showvsthat ' is
satis able on aframeF i ' Cis satis able on F. 2

Here nishes the introductory chapter of Part I. The following chapters will
study di erent aspectsof the languagesH, H(@) and H(E).






Chapter4

Expressivity and de nabillit y

One of the main reasonswhy hybrid languageshave gainedpopularity in the last
decadesds that many properties of framesthat are not modally de nable can be
de ned using nominals. Typical examplesinclude irre exivity (i ! : 3i) and
anti-symmetry ((i ~ 3(j ~ 3i)) ! j). Theseformulas are pure, meaning that
they do not cortain any proposition letters. A secondimportant reasonfor the
growing popularity of hybrid languagess a generalcompletenessesult for logics
axiomatized by pure formulas.

Surprisingly little is known about the preciseexpressiviy of hybrid languages.
Ideally, one would like to have a Goldblatt-Thomason-stle characterization of
the frame classesde nable by (sets of) (pure) formulas of H, H(@) and H (E).
The only known result in this direction is a characterization of the elemenary
frame classegle nable in H(E), dueto Gargov and Goranko [46]. Their proof is
essetially algebraicin nature, andrelieson a connectionbetweenH (E) andM (D)
(i.e., the extension of the basic modal languagewith the di erence operator,
cf. Chapter 11). It is not clear how to generalizethe proof to other hybrid
languages.

In this chapter, we will characterizethe elemenary frame classesde nable
in H(@), H(@) and H(E), as well asthe elemenary frame classesde nable by
pure formulas of these languages. Our proofs will be basedon Van Berthem's
model theoretic proof of the Goldblatt Thomasontheorem[12] In order to state
the characterizations, we will introduce two new types of morphisms between
frames, which we will call ultra lter morphisms and bisimulation systems Our
main results are summarizedin Table 4.1

Before we start, we would like to take note of the following curious fact con-
cerning frame classesde nable in H(@), the proof of which is straightforward.
This result will not play any role in the remainderof this chapter but is interest-
ing in its own right. Note that a similar result doesnot hold for the basic modal
language.
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Table 4.1: Elemertary frame classesde nable in H, H(@) and H (E)

H(@)

H(E)

frame classesde ned by arbitrary
formulas

closed under ultralter morphic
images, generated subframes, and

*)
closed under ultralter morphic

imagesand generatedsubframes

closed under ultra lter
images

morphic

frame classesde ned by pure for-
mulas

closed under images of bisimula-
tion systems,generatedsubframes,
and (*)

closed under images of bisimula-
tion systems and generated sub-
frames

closed under images of hisimula-
tion systems

(*) If every point-generated subframe of F is a proper generatedsubframe
of a frame in the class,then F is in the class.

For nominal boundel H-formulas (a notion that will be de ned in Section 4.2), the

condition (*) can be simplied to

(*9 If every point-generated subframe of F is in the class,then F is in the
class.
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4.0.8. Pr oposition. For all H(@)formulas'; that do not share any proposi-
tion letters, and for all distinct nominalsi; j not occurring in ' and , @' _ @
de nes the union of the frame classesde ned by ' and

4.1 Bisimulations and expressivity on models

Recall Theorem 2.2.3 which statesthat a formula ' (x) of the rst-order corre-
spondencelanguagefor modal logict with at most one free variable is equivalert

to the standard translation of a modal formulai ' (x) is invariant under bisimu-

lations. This result can be extendedwithout much e ort to the hybrid languages
H, H(@)and H(E), by slightly varying the de nition of bisimulations.

4.1.1. Definition.  An H-bisimulation between modelsM = (W; (R3)32mod; V)
and N = (W% (S3)32moq; V9 is a binary relation Z W V satisfying the
following conditions:

Atom If wZvthenw2 V(p)i v2 V{p), for all p2 prop[ nom.
Zig If wZv and wR3;wWC thenthere is a v° suchthat vS; v° and wZ v°
Zag If wZv andvS;V® thenthere is a w° suchthat wR5; w® and wZ v°

An H(@)bisimulation is a H-bisimulation Z satisfyingin addition
Nom If w2 V(i) andv 2 Vi) for somei 2 nom, thenwZv.

An H(E)-bisimulation is a total H-bisimulation, i.e., a H-bisimulation Z such
that 8w 2 W 9v 2 WewZv and 8v 2 W° 9w 2 W:wZv. Note that every H (E)-
bisimulation is a H (@) bisimulation.

Thesebisimulation notions capture, the indistinguishability relation for the lan-
guagesH, H(@)and H(E), in the sameway that potential isomorphismscapture
the indistinguishability relation for rst-order logic. Let L be oneofthe languages
H, H{@)and H(E). Giventwo modelsM ;N with points w;v, we sa that M ; w
and N; v are L-indistinguishable notation M;w | N;v, if for all L-formulas’ ,
M;wpFE "' i N;viE'. Wesa that M;w and N;v are L-bisimilar if there is
an L -bisimulation betweenM and N connectingw to v. When no ambiguity can
arise, we will often not specify the models explicitly, and say that two worlds, w

1The rst-order correspondencelanguagefor modal logic di ers from the rst-order corre-
spondencelanguagefor hybrid logic in that the latter hasa constart for eac nhominal.
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4.1.2. Theorem. Let M;N be madelsand w;v points in thesemadels. Let L
ke one of the languagesH, H(@) and H(E). If w and v are L-bisimilar then
M;w | N;v. Conversely,if M and N are! -saturated and M;w | N;v then
w and v are L-bisimilar.

The proof of Theorem 4.1.2 is a straightforward generalization of the one for
modal logic, and the nominals do not give rise to additional complications. Us-
ing a standard argumert, one obtains from this the following analogueof Theo-
rem2.2.3

4.1.3. Theorem. Let' (x) be an L*-formula with at mostone free variable. Let
L be one of the languagedH, H(@) and H(E). Then the following are equivalent:

1. ' (x) is equivalentto the standad translation of an L-formula

2. ' (x) is invariant under L-bisimulations.

In other words, Van Benthem's bisimulation characterization for the basicmodal
languagecan be adaptedwithout any problemsto the hybrid languagesH, H (@)
and H(E). If we considerframesrather than models, the situation will be quite
di erent. While Goldblatt and Thomason'scharacterization of the modally de-
nable elemenary frame classesdashybrid analoguespobtaining theseanalogues
requiresmore creativity, aswe will seein the next section.

Before we go on the discussframe de nabilit y, it is useful to introduce the
notion of a generatedsubmadel.

4.1.4. Definition (Genera ted submodel). M = (W;(R3)32mod;V) is a
generatedsubmadel of N = (W% (R3)32moq; VY if M is a submalel of N and
for all (w;v) 2 RY (3 2 mod), if w2 W thenv2 W.

In other words, a generatedsubmadel is a submadel whosedomainis closedunder
the relations (cf. Appendix A for a de nition of submadels). Clearly, if M is a
generatedsubmadel of N then M must cortain all elemerts of N that are named
by a nominal. For any model M and for any subsetX of the domain of M, the
submalel generted by X is the smallestgeneratedsubmadel of M whosedomain
cortains all elemerts of X . It is not hard to seethat this is well-de ned. In fact,
the submadel of M generatedby X is preciselythe submadel of M whosedomain
consistsof all worlds reatable from a world in X or from a world namedby a
nominal, in nitely many stepsalong the union of all relations. It is easyto see
that if M is ageneratedsubmadel of N, then the natural inclusionfunction, which
is the identity function on the domain of M, is a H(@)-bisirmulation between
M and N. It follows by Theorem 4.1.2 that H(@)-fornulas are invariant for
generatedsubmadels: for all worlds w of M and H(@)-fornulas' , M;wE " i
N;wiE " .
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4.2 Operations on frames and formulas they preserve

In this section, we review and introduce se\eral operations on frames, and we
discussto what extent they presene validity of hybrid formulas. We focus on

the three hybrid languagesH, H(@) and H(E). The frame operations discussed
herewill be put to usein the next sections,wherewe characterizethe elemerary

frame classegle nable in thesehybrid languages.

Bounded morphisms

Framevalidity of hybrid formulasis not presenedundertaking imagesof bounded
morphisms. Considerfor instancethe formulai ! : 3i, which de nes irre ex-
ivity, and let F = (f0;1g;f(0;1);(1;0)g) and G = (f0g;f(0;0)g). Then G is a
boundedmorphic imageof F and F is irre exiv e, but G is not.

Newertheless,in a restricted form bounded morphisms are of relevance for
hybrid logic, aswill becomeclearin Proposition 4.2.6

Generated subframes

It is well known that validity of modal formulas cortaining the global modality
is in generalnot presened under taking generatedsubframes.A typical example
is the formula E3 >, which de nes non-emptinessof the accessibiliy relation.
Clearly, validity of H(E)-formulas is also not presened under taking generated
subframes.Howeer, taking generatedsubframesdoespresene validity of H(@)-
formulas.

4.2.1. Pr oposition. H(@)de nable frame classesare closa under geneated
subframes.

Pro of: The proof is the analogousto the one for the basic modal language:
let F be a generatedsubframeof G, and let V be any valuation for F. V can
be conceied of as a valuation for G, by consideringall proposition letters and
nominals to be false at points outside of F. It is easily seenthat the identity
relation on F is an H(@)-bisirmulation betweenthe models (F;V) and (G; V). It

follows that whenewer a H(@)-forrrula is refuted on F, it is refuted on G under
the samevaluation and at the samepoint. 2

Disjoint unions

The formula 3 i, which de nes the classof framesin which 3 is the global modal-
ity, nicely exempli es the fact that validity of hybrid formulas is not presened
under taking disjoint unions. Newertheless,a weak form of presenation under
disjoint unions holds for the languageH : validity of H-formulasis presened un-
der taking disjoint unions of framesthat are not point generated. Generalizing
this a bit further, we obtain the following presenation result.
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4.2.2. Pr oposition. Let' be an H-formula, and F a frame such that every
point-genemated subflame of F is a proper geneated subfame of a frame on which
" isvalid. ThenFE ".

Pro of: Let V be any valuation on F, and let w any point in F. By assumption,
the point-generated subframeF,, is a proper generatedsubframe of a frame G
with G F '. Let v be any point in G that is not in F,, and let V° be the
valuation for G de ned as follows. For p 2 prop, let V{p) is the restriction of
V(p) to Fy. Fori 2 nom, if V(i) isin F, then let VYi) = V (i), otherwise let
Vi) = fvg. As is easily seen,the identity relation on F,, is an H-bisimulation
betweenthe models (F;V) and (G;V9. SinceG;V%w [ ', we concludethat
F,ViwE " . 2

While validity of H-formulas is in generalnot presened under taking disjoint
unions, there is a natural fragmert of H that doessatisfy this condition. Call an
H -formula nominal boundel if it is a conjunction of formulas of the form

(3 k;1 3 k;nkik) !

k=1;::;m
where 31.4;:::;3 mn, 2 mod (Ng;:::;Ny 0) and cortains no nominals
besided,;:::;in. Notice how the anteceden requiresthat all nominalsoccurring

in  denotea point within the generatedsubframe. It is not hard to show that
validity of nominal bounded formulas is presened under taking disjoint union
(cf. also Theorem2.1in [17]). In fact, somethingstronger holds. For any frame
F and world w of F, let F,, denotethe subframeof F generatedby F. F,, is called
a point-genemted subflame of F, becauseit is generatedby a single point. We
say that a frame classK re ects point-genemted subfamesif for all framesF, if
ewvery point-generatedsubframeof F is in K then F 2 K.

4.2.3. Pr oposition. Let' be a nominal boundel H-formula. Then the classof
framesde ned by ' re ects point-geneiated subfames.

Pro of: We reasonby cortraposition. SupposeF & ', i.e, one of the conjuncts
of ' is falsied on F at somepoint w under somevaluation. By the truth of its
anteceden, the nominalsinvolved all denotepoints in the generatedsubframeF,,.
Hence,the sameconjunct of * can be falsi ed on the point-generated subframe
Fu- 2

4.2.4, Cor ollar y. Let' beanominal bound@ H-formula andletfF;ji 2 1g
be a setof frames.If Fi ="' foralli2l, then ,, FifF".
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Ultra lter extensions and ultra lter morphisms

Unlike the frame operations discussedabove, ultra lter extensionsanti-preserve
validity of hybrid formulasin exactly the sameway asmodal formulas. If a H (E)-
formula ' is valid on the ultra lter extensionueF of a frame F, then ' is also
valid on F itself. In fact, somethingstrongerholds: hybrid formulas are presened
under taking ultra lter morphic images to be de ned below.

4.2.5. Definition.  Let F and G be frames. G is an ultra Iter morphic image of
F if there is a surjective boundal morphismf : F! ueGsuchthat jf (u)j = 1
for all principal ultra lters u 2 ueG

Sincethis construction will play an important role in the next section, we will
try to provide someintuition for it. First of all, note that whenewer G is an
ultra Iter morphic imageof a frame F, ueGis a bounded morphic imageof F. It
follows that the validity of modal formulas is presened under taking ultra lter
morphic images. The sameholds for H(E)-formulas, even though the latter are
not presened under taking bounded morphic images,as we noticed before.

4.2.6. Pr oposition. Validity of H(E)-formulas is preserve under taking ultra-
Iter morphic images.

Pro of: Let ' be an H(E)-formula, let f : F ! ueG be a surjective bounded
morphism that is injective with respect to principal ultra lters, and suppose
G 6 ' . Wewill shovthat F g ' .

Let V be a valuation and w a world sud that G;V;w 6 ' . De ne the
valuation V¢ on ueG sud that V'(p) = fu j V(p) 2 ug for all proposition
letters p and V(i) = fuj V(i) 2 ug for all nominalsi. It is easily seenthat V"¢
assignsto eat nominal a singleton set consisting of a principal ultra Iter, and
henceV“¢ is a well-de ned hybrid valuation. Moreover, a standard argumen [21,
Proposition 2.59] shows that for all worlds v and formulas , (G;V);v E |
(ueGV""S;  F ,where , isthe principal ultra lter generatedby v. It follows
that ueGV'; , § " .

Next, de ne the valuation V° for F such that VYp) = fvj f(v) 2 V'(p)g
for all proposition letters p and VYi) = fv j f(v) 2 V'(i)g for all nominals
i. Sincef is injective on principal ultra lters and nominals denote principal
ultra lters in ueG Vi) is a singleton, for all nominalsi, and hence(F;V9 is a
well-de ned hybrid model. Furthermore, a standard argumen shows that, since
f is a surjective bounded morphism, the graph of f is an H(E)-bisimulation
betweenueGand F. Sincef is surjective, thereisav 2 F sudh that f (v) = .
By invarianceunder H (E)-bisimulations, F; V% u & ' , and henceF &j ' 2

Next, obsene that ewvery frame is an ultra lter morphic image of its ultra Iter
extension. It follows that, in general,if a property of framesis presened under
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taking ultra Iter morphicimages,thenit is anti-preserved under taking ultra lter
extensions(i.e., its complemen is presened under taking ultra lter extensions).
The corverseof this fact doesnot hold, asis shavn by the following proposition.

4.2.7. Pr oposition. The frame condition 8x9y(R,xy * 9z:(Rixy 'y 6 z)) is
preservel under geneated subflamesand disjoint unions and anti-preserve un-
der ultra lter extensions,but it is not preserve under taking ultra lter morphic
images.

Pro of: It is easyto seethat the given frame condition ' is presened under
taking generatedsubframesand disjoint unions. That it is anti-preserved under
ultra Iter extensionscan be seenasfollows: the negationof ' is (modulo simple
syntactic manipulations) a p-serience, and is therefore,by Theorem 2.3.17], pre-
sened undertaking boundedmorphic images.Furthermore, every rst-order sen-
tence presened under taking boundedmorphic imagesis presened under taking
ultra Iter extensions[21, Theorem3.17]. It followsthat ' itself is anti-presened
under taking ultra lter extensions.

Next, we will showv that ' is not presened under taking ultra lter morphic
images. Considerthe frame F = (! ;I1d, ;! !). Asis not hard to see,ueF =
(Uf(P); Tdusy; UR(Y) - UR(Y)). Let G = (W,R;W W), whereW = fu 2
Uf(!' ) j uisprincipalg [ fhu;0i;hu; i j u2 Uf(!) is non-principalg and R =
ldw [ f(hu;0i;hu;di); (hu;dishu;0i) j u2 Uf(!) is non-principalg. As one can
easily see,the natural map from G to ueFis a surjective boundedmorphism and
is injective with respect to principal ultra lters. Howewer, G satises' whereas
F doesnot. 2

Finally, let us spend somewords on presenation under ultra lters (as opposed
to anti-presenation). It is known that validity of modal formulas that de ne
rst-order frame conditionsis presened under passagdrom a frame to its ultra-
lter extension[21, Corollary 3.18]. The question arisesif a similar result hold
for hybrid logic. The answer is negative. Considerthe formulai ! 2: i, which
expresseshe rst-order property of irre exivit y. The natural numberswith their
strict ordering clearly form an irre exiv e frame, and its ultra lter extensioncon-
tains re exive points (in fact, every non-principal ultra lter forms an re exive
point).

Bisimulation systems

If a modal formula cortains no proposition letters, its validity on a frame is
presened under total bisimulations. This fact is well-known, and follows imme-
diately from Theorem 2.2.3 Note that a bisimulation betweenframesF and G
is just what one could expect: a binary relation betweenthe domainsof F and G
satisfying the zig and zag clausesof De nition 4.1.1 Also recall that a bisimula-
tion is total if its domain includesewery point of F and its rangeincludesewery
point in G.
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A similar result can be obtained for hybrid logic. Recall that in hybrid logic,
pure formulas are the onesthat cortain no proposition letters, though possibly
nominals. In general, validity of pure hybrid formulas is clearly not presened
under total bisimulations. It is howewver presered under bisimulation systems as
de ned below.

4.2.8. Definition. Given a hisimulation Z between framesF and G, and a sub-
setX of thedomainof G, wesaythat Z respectsX if the followingtwo conditions
hold for all x 2 X:

1. There existsexactlyone w suchthat wZx.

2. For all w;v, if wZx andwZv thenv = X.

4.2.9. Definition. A bisimulation systemfrom F to G is a function Z that
assignsto each nite subsetX G atotal bisimulationZ(X) F G respcting
X.

4.2.10. Theorem. Validity of pure H (E)-formulasis preserve under taking im-
agesof bisimulation systems.

Pro of: Let Z be a bisimulation systembetweenF and G, and supposeG §j ',
for somepure H(E)-formula ' . We will shov that F 6 ' . Let iy;:::;i, be
the nominals occurring in ' . Let V be an assignmen for these nominals and
v 2 G aworld sudh that (G;V);v § ' . Let vy;:::;Vv, be the worlds named by

to the unique point wy sud that wyZvi. Then Z is easily seento be a total
bisimulation between(F;V9 and (G;V). Hence,' is falsied somewheran the
model (F; V9, and thereforeF & ' . 2

Bisimulation systemsare, intuitiv ely speaking, a cross-@er between bisimula-
tions and potertial isomorphisms. On the one hand, they can be viewed as
parametrized bisimulations, while on the other hand, they are families of nite
partial isomorphismssatisfying somefurther conditions.

Not every modally de nable frame classis closedunder imagesof bisimulation
systems.A typical exampleis the con uence property, de ned by the rst-order
formula 8xyz(xRy » xRz ! 9u:(yRu” zRu)), and also by the modal formula
32p! 23 p. It wasshovn by Gargor and Goranko [46] that con uence is
not de nable by meansof pure H(E)-formulas. Their proof can be modi ed to
show that the classof con uent framesis not closedunderimagesof bisimulation
systems.

4.2.11. Pr oposition. The classof con uent framesis not closel under images
of bisimulation systems.
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Figure 4.1: Con uence is not de nable by pure formulas

Pro of: Considerthe two framesdepictedin Figure 4.1 Noticethat F; isidentical
to F,, exceptfor the additional point u (and its incoming and outgoing arrows).
For any nite setX M F, let Z(X) = Idg, [ f(u;wg);(u;v)g, for wy;v; 62X
(note that sudh wy and v, exist). As is not hard to see,Z is a bisimulation system
from F; to F,. Howewer, F; is con uent, whereasF, doesnot.

Incidentally, the frameF, usedabove was rst introducedby Venema[98], and
the sameframe was usedby Gargos and Goranko [46] to shav that con uenceis
not de nable by meansof pure H (E)-formulas. 2

As it happens, con uence can be de ned by a pure H-formula using back-
ward looking modalities, namely by the formula 3i ! 233 1li. This raises
the question whether there are modally de nable frame conditions that are not
presened under bisimulation systemsewen in the presenceof badkward look-
ing modalities. Indeed there are such. Call a relation R atomic if it satis es
8x9y(Rxy N 8z(Ryz ! y = z)). Let K4 be the (elemerary) classof bimodal
framesF = (W;R1; Ry), in which R, is transitive and atomic and in which R,
is the corverseof R;. Then Ky is de ned by the conjunction of the transitiv-
ity axiom 313 :p! 31p, the McKinsey axiom 2,3 :p! 3:2p and the axioms
p! 2:3,pandp! 2,3.p.

4.2.12. Pr oposition. The classKj is not closel under imagesof bisimulation
systems.

Pro of: We will construct a bisimulation system from (N; ; ) to (Z; ; ).
Clearly, the former is atomic while the latter is not, and hencethe result follows.
Forany nite X Z,letZ(X)=fO;m)jm minXg[ f(n;n 1+ minX)j
n > Og. It is not hard to seethat for all nite X Z, Z(X) is a bisimulation
between(N; ; ) and (Z; ; ) respecting X, and henceZ is a bisimulation
system. 2
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It followsthat K is not de nable by pure H(E)-formulas, aswas shovn already
by [17].

Some lemmas

The following lemmasare of a more technical nature. They will be put to good
usein the next section.

4.2.13. Lemma. If G; is an ultra lter morphic image of F;, for i = 1;2, then
G1] G; is an ultra lter morphic imageof F;] F,.

Proof. Let f; : F; ! ueG be surjective ultralter morphisms(i = 1;2), and
denef : (F1] F) ! (ueG ] ue&) sud that f(w) = fij(w) for w 2 F;.
Then f is easily seento be a surjective bounded morphism. Moreover, f is
injective on principal ultra Iters, in the sensethat jf (u)j = 1 for all principal
u2 (ueG ] ueG,). Next, obsenethat ueG,] ueG; isisomorphicto ugG;] Gy).
Moreover, the natural isomorphismg : (ueG,] ueG) = ugG;] G,), which maps
every ultralter u 2 ueG to the ultralter fX ] Y j X 2 uandY Gs i0,
presenesprincipality of ultra Iters. Hencethe concatenationf g is a surjective
ultra Iter morphismfrom F;] F, to ugG;] Gy). 2

4.2.14. Lemma. If F; and G; are elementarily equivalentand F, and G, are
elementarily equivalentthen G; ] G, and F;] F, are elementarily equivalent.

Pro of: A simple Ehrenfeudit-Fralsse gameargumert establishesthe result: by
elemenary equivalence,Duplicator hasa winning strategy in every nite round
Ehrenfeudt-Fralsse gameon (F;; G;) and on (F;,; G,). Thesestrategiesnaturally
conbine into a winning strategy for any nite round gameon (F1] F2;G1] Gy):
wheneer Spoiler picks an elemen of someF; or G; (1 i 2), Duplicator
respondswith an elemen of G; respectively F;, using his winning strategy for the
gameon (F;i; Gj). In this way, Duplicator clearly maintains partial isomorphisms
betweenF; and G; and betweenF, and G,, and thereforealso betweenF; ] F;
and G;] G,. 2

4.2.15. Lemma. If there are bisimulation systemsfrom F; to G; and from F, to
G,, then there is a bisimulation systemfrom F;] F, to G;] G..

Pro of: Let f, and f, bethe given bisimulations, and for all nite X G;] Gy,
letf (X)="Tf1(X\ Gy)[ f20X\ Gy). It isnot hard to seethat f is a bisimulation
systemfrom F;] F,to G;] Go. 2
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4.3 Frame de nabilit y

In this section,we answer the questionwhich elemenary frame classesare de n-
able by a set of formulas of hybrid logic. The resultswill be stated in terms of the
operations on framesdiscussedn the previoussection. The proofsin this section
areinspired by Van Benthem's model theoretic proof of the Goldblatt-Thomason
theorem[12].

As a point of notation, recall that for a frame F = (W; (R3)32moq) and a set
X W, weusems(X) to denotethe setfw 2 W j9v 2 X:(WwR3V)g.

4.3.1. Theorem. An elementaryframe classK is de nable by a set of H(@})
formulasi K is closal under ultra Iter morphic imagesand geneated subfames.

Pro of: The left-to-right direction wasprovedalreadyin the previoussection. For
the right-to-left-direction, we proceedasfollows. Let Th(K) be the set of H(@)-
formulas valid on K, and supposeF E Th(K). It is our task to show that F 2 K.
For eadh subsetA W, whereW is the domain of F, introduce a proposition
letter pa. For every w 2 W, introducea nominali,,. Let be the setconsisting
of the following formulas, forall A W, v2 W and 3 2 mod.

PAS :pa
Pave S pa” pe
Pmsa) $ 3 Pa
iv$ Pryg

Let r=f@,2: 2, jv2W; 2 ;and34:::;3,2 mod withn2!gqg.
Intuitiv ely, ¢ providesafull descriptionof the frameF. Clearly, ¢ issatis able
on F, namely at any point, under the natural valuation that sendsp, to A and
iw to fwg.

Claim 1: r IS satis able on K.

Pro of of claim: By compactnesgqrecall that K is elemetary), it suces to
showv that ewvery nite conjunction of elemens of ¢ is satis able on K.
But this follows immediately: is satis able on F and F = Th(K), hence

62T h(K), i.e., is satis able on K. a

Let (G;V) F ¢ with G 2 K. SinceK is closedunder generatedsubframes,
we may assumethat G is generatedby the set of points that are namedby a
nominal. It then follows that the model (G; V) globally satises . Let (G ;V )
be an! -saturated elemenary extensionof (G;V). By elemenarity, G 2 K and
(G ;V ) globally satis es .

Claim 2: ueFis an ultra lter morphic imageof G .
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Proof of claim: Foranyv2 G ,letf(v)=fA W j(G;V);vF paQ
We claim that f is a boundedmorphism from G onto ueF, and jf *(u)j= 1
for all principal ultra lters u 2 ueF

f (v) is an ultra lter on F.

Follows immediately from the the fact that is globally satis ed in the model
(G;V).

f is surjective

Takeany u 2 ueF. To prove surjectivenesswe will show that that the setfpa |
A 2 ugissatisablein (G ;V ). By! -satuqatednessit Su ces to Sli-lON nitely
satis abiiit y. Take Ay;:::;Ay 2 u. Then | Ag 2 uandhence, Ay 6 ;.
Letv2 A. Then ¢F @,p', A, andhence(G ;V )F @,p", a,-

Forth-condition: If vR;V°then f (V)R5f (V9

By the de nition of RY®, it su ces to show that whenewer A 2 f (v9, mzA 2
f (v). SupposeA 2 f(v9. Then (G ;V );Vv°F pa, henceby the global truth
of , (G;V );VF Pmsa, and thereforemzA 2 f (v).

Back condition: If f (v)RYu, thereis av®2 G s.t. f (v9) = u and vR;V°

We have to nd a 3-successornof v that satises fpa j A 2 ug. By !-
saturatedness,jt su ces to show that this theory is nit%ly satis able in the
setolts-successorsf v. Takeany A;:::A, 2 u. Then ,A; 2 uand hence,
ms( ;A)2f(v). So,(G;V ), vF pma(TiAi), and hence,by global truth of
, Vv hasa successosatisfying pa,;:::;pa, -

if X(u)j = 1 for all principal ultra lters u 2 ueF

Supposef (x) = f (y) =  forsomex;y 2 G andw 2 F. Then by de nition,
x andy satisfy the proposition letter pr,4. By globaltruth of , x andy are
both namedby the nominal i,,. Hence,x = vy. a

SinceK is closedunder ultra lter morphic images,we concludethat F2 K. 2

4.3.2. Cor ollar y. An elementaryframe classis de nable by a set of H(E)-
formulasi it is close under ultra lter morphic images.

Pro of: The globalmodality is de nable by an H (@)-fornmula, namelythe formula
Ei (more precisely this formula expresseshat the accessibiliy relation of the
modality E is the total relation). It followsthat a frame classK is H (E)-de nable
i the classK® = f(W;(R3)32mod; Re) j (W;(R3)32mod) 2 K and Rg = W?2g is
H(@)-de nable. Clearly, K°is closedunder generatedsubframes. Furthermore,
onecan easily seethat K°is closedunder ultra Iter morphic imagesi K is. The
result follows. 2
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Gargov and Goranko [46] gave a similar characterization of the H(E)-de nable
elemertary frame classescf. Section11.1for a comparisonof the two.

Next, we investigate frame de nability in H. This casefor is a little more
complicated. We needthe following lemma. Recall that a H-formula is nominal
boundedif it is a conjunction of formulas of the form

N
Bk1 3Bkndk) !

k=1::m

4.3.3. Lemma. LetK be a classof frames,and let Thy (K) and Thyg)(K) be the
set of H-formulas and H (@)formulas, resgctively, valid on K, and let Th{’(K)
be the set of nominal boundal H-formulas valid on K. For all point-geneiated
framesFy, Fu F Tha@(K) i Fuw F Thy(K) i Fy F ThiP(K).

Pro of: The left-to-right-directions areimmediate. Now, supposeF,, i Th®(K).
Considerany ' 2 Thy@)(K). By Theorem 3.3.2 (and by prexing ' by @
(pr $ome new nominal i, if necessary),we may assumethat ' is of the form

m n@.." mn, Whereead ' ., is an H-formula. Fork 2 !, let  be the
following nominal boundedH -formula:

N N
3 Mimn) ' T 2 Mimn ! )

m;n m n

Clearly, ' implies , and therefore, 2 ThIP(K), for eacr k 2 ! . It follows
that F,  ( forall k 2 !. But thenF, F ' . For, supposenot. Then there
is a valuation V and a world v sud that (F,;V);v 6 ' . Since' is a Boolean
combination of @-pre xed formulas, its truth is not dependert on the world of
ewvaluation, and hence(F,,;V);w 6§ ' . Now, let k be the maximal distancefrom
the root w to a world namedby one of the ( nitely many) nominals occurring in
the formula. Then, clearly, (Fy;V);w 6 (. But this cortradicts the fact that

ij: k- 2

4.3.4. Theorem. An elementary frame class K is de nable by a set of H-
formulasi the following closure conditions hold.

1. K is closal under ultra Iter morphic images.
2. K is closal under geneated subflames.

3. For anyframeF, if everypoint genented subflameof F is a proper geneated
subfame of a framein K, thenF 2 K.
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Pro of: The left-to-right direction was proved already in the previous section.
For the right-to-left-direction, we proceedasfollows. Let Th(K) be the setof H-
formulas valid on K, and supposeF E Th(K). It is our task to show that F 2 K.
If Fis point-generated,then by Lemma4.3.3 in combination with Theorem4.3.1,
F 2 K, and we are done. In the remainder of this proof, we will assumethat F is
not point-generated. Take any point-generated subframeF,, = (W; (Rz3)32mod)
of F. In what follows, we will show that (F,, ] Fy) 2 K. It then follows by the
third closurecondition that F 2 K.

For ead subsetA W, introduce a proposition letter pa, and for every
w 2 W, introducea nominali,,. Furthermore, leti. adistinct nominal. Let be
the set consistingof the following formulas, forall A W,v2 W and 3 2 mod.

PaAS :pa
Pave $ Pa’ Ps
Pms(a) $ 3 Pa
iv$ Pryg

Let ¢, = fiwg[ f2, 2, ] 2 and34;:::;3, 2 mod with n 2 I'gJ
f27 24500 J31;::5;30 2 mod with n 2 1 g. Intuitively, g, providesa full
description of the frame F, from the perspective of w. Clearly, ¢, is satis able
on F, namely at w, under any valuation that sendseadt pa to A, ead i,, to fwg
andi. to somepoint not reaable from w in nitely many steps.

Claim 1: F, IS satis able on K.

Pro of of claim: By compactnesgqrecall that K is elemenary), it suces to
shav that ewery nite conjunction of elemerts of £, is satis able on K.
But this follows immediately: is satis able on F and F F Th(K), hence

62T h(K), i.e., is satis able on K. a

Let (G;V);vFE g, with G 2 K. Let G, be the subframeof G generatedby v.
By construction, G, is a proper generatedsubframeof G. Hence,by the third
closurecondition, (G, ] G,) 2 K.

By construction, all nominalsexcepti. denotea point in (G; V) that is readh-
ablefrom v. Hencewe canthink of V asa valuation for the frame G, by removing
i. from our vocabulary. In this way, we obtain a point-generatedmodel (G,; V)
that globally satises , and sud that (G,;V);v F pa for all A W with
w2 A.

Let (G,,;V ) bean! -saturated elemernary extensionof (G,;V). By elemen-
tarity, G,, 2 K, (G,,:V ) globally satises and (G,;V );wF pa foral A W
with w 2 A.

Claim 2: ueF, is anultralter morphic imageof G,,.
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Pro of of claim: Foranyu2 G,, letf(u) = fA W j(G,;V );uF pag.
One can show that f is an ultra lter morphism from G, onto ueF,, using
similar argumerts asfor Claim 2 in the proof of Theorem4.3.1 We will only
show surjectivenesssincethis part of the proof deviatesslightly from the case
for H(@).

Take any u 2 ueF,. To prove surjectiveness,we will shav that the setfp, j
A 2 ugissatis ablein (G,;V ). By! -sauflratednessit su ces tp show nitely
satisrabilit y. Take Ay;:::;Ap 2 u. Then [ A; 2 uandhence, ;A; 6 ;. Let

of steps. But then there are 3 ;;:::;3  sud that Fy;w F pm,, man(TiAi),
and henceG,;V ;VF Pm,, msn(TiAi). Hence,by global truth of , thereisa
point in (G,,;V ), that satis es p(TiAi), and hencesatis es pa,;:::;Pa,- a

We have shown that F,, is an ultra lter morphic image of G,,. It follows by
Lemma4.2.13that (F, ] Fy) is an ultra lter morphic imageof (G, ] G,). By
Lemma4.2.14 (G,,] G,,) is elemenarily equivalert to (G, ] Gy), which, aswe
saw earlier, is in K. We concludethat (F,,] Fy) 2 K. 2

Theorem4.3.4canbe simpli ed for the caseof nominal boundedH -formulas. By
Proposition 4.2.3 frame classesde ned by nominal bounded H -formulas re ect
point-generatedsubframes.

4.3.5. Theorem. An elementaryframe classK is de nable by a set of nominal
boundal H-formulasi K is closal under ultra Iter morphic imagesand geneated
subflamesand K re ects point-geneiated subfames.

Pro of: The left-to-right direction wasprovedalreadyin the previoussection. For
the right-to-left-direction, we proceedasfollows. Let Th(K) be the setof nominal
boundedH -formulas valid on K, and supposeF F Th(K). By presenation under
generatedsubframes,F,, £ Th(K) for all point-generatedsubframesF,, of F. It
follows from Lemmad4.3.3and Theorem4.3.1that F,, 2 K for all point-generated
subframesF,, of F. SinceK re ects point-generatedsubframes,we concludethat
F2 K. 2

4.4 Frame de nabilit y by pure formulas

In this section,we will characterizethe elemertary frame classeghat are de ned
by pure formulas. Recallthat a pure formula is onethat cortains no proposition
letters (but nominals are allowed). Every frame classde ned by pure formulas
is elemenary, as can be seenfrom the standard translation. It follows that
non-elemetary modal frame classessut asde ned by 23 p! 32 p cannot be
de ned by meansof pure formulas. Furthermore, we saw in Section4.2 that the
classof con uent frames,which is elemenary and de ned by the modal formula
32 p! 23 p, is not de nable by meansof pure formulas either.
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Pure formulas are interesting, since, as we will seein Section 5.4, there is
a generalcompletenesgesult for extensionsof the basic hybrid logic with pure
axioms, much like the caseof Sahlqvistaxiomsin the basicmodal language.The
guestionfor a model theoretic characterization of the frame classesde nable by
pure hybrid formulas hasbeenasked rst by [46].

Incidentally, another characterization of the pure formulas is given by Theo-
rem 5.2.1Q in terms of persistenceunder the passagerom a particular type of
generalframe to the underlying Kripk e frame.

4.4.1. Theorem. A frameclasskK is de nable by means of a pure H(@) formula
i K is elementary,closel under geneated subfamesand closal under imagesof
bisimulation systems.

Pro of: Let PTh(K) be the set of pure H(@) formulas valid on K. By compact-
ness,it su ces to show that for all framesF, if F = PTh(K) then F 2 K.

SupposeF F PTh(K). For every point w2 W, whereW is the domain of F,
introduce a nominal iy, and let V be the natural valuation with V(i,,) = fwg.
Let ¢ consistof all pure formulas of the form @' true in the model (F;V).
Intuitiv ely, ¢ providesa full descriptionof the frameF. Clearly, ¢ is satis able
on F, namely under the valuation V.

Claim 1: r IS satis able on K.

Pro of of claim: By compactnesgqrecall that K is elemetary), it suces to
showv that ewery nite conjunction of elements of ¢ is satis able on K.
But this follows immediately: is satis able on F and F £ PTh(K), hence

62P Th(K), i.e., is satis able on K. a

Let (G;U) g, with G 2 K. SinceK is closedunder generatedsubframes,
we may assumethat G is generatedby the set of points that are namedby a
nominal.

Claim 2: For all pure H(@)-fornulas' , (F;V)F ' i (G;U) E ' . Equiva-
lently, ' is satised at a point in (F;V) i ' issatised at a point in (G;U).

Pro of of claim: Suppose(F;V);w F '. Then (F;V) F @, ' . It follows
that @, 2 , andhence(G;U)F @, ' .
Conversely suppose(G; U);v E ' . Since(G; U) is generatedby points named

sudh that (G;U) F @3, 3, . It followsthat (F;V) F @3: 3, (for
if not, then @2, 2,:"' 2 ¢). a
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Let (F ;V )and(G ;U ) be! -saturatedelemenary extensions.By elemetarity,
G 2 K. In what follows, we will construct a bisimulation systemfrom G to F .
Fix any wq;:::;wy 2 F , and pick corresppndingnewnominalsj 1;::: ;] - We will

write (F Vo ,wg; i 'wn) for the expansionof (F ;V ) in which j;:::;j, denote
Wq; il Wy, respectively.
Claim 3 There arevy;iiiivp, 2 G such that the models(F ;V ;wq;:::;wy)

Pro of of claim: Let be the following setof rst-order formulas:

It is our task to showv that is satised in some expansionof (G ;U ).
Since (G ;U ) is ! -saturated, it suces to shov that is nitely realiz-

able, in the sensethat for all ' 1;:::;' m 2 , there arevy;:::;v, sud that
(G ;U ;vqiii;vp) satises' 15000 m.

Take any ' 4;::i'm 2 . By de nition, (F ;V ;wq;:::;w,) satises
"1, m. Since (F;V) is an elemetary submajel of (F;V ), there
are wd;:::;wl sudh that (F;V;wd;:::;wl) satises ' 1;:::;" m. Recall that
wy;:::;we are namedby the nomlnaIS|Wo """ ;iwe. Hence,for all formulas' ,
we havethat (F;V;wdoowl) F o (F V) F ' oDa=iwes i jn=ingl]. Let
Vi)V, bethe denotatlon of the nomlnaIS|Wo """ IWo in the model (G; U).
By Clalm 2, (FV)E" []1—|W0 """ Jn—|w0] | (G U) F []1—|Wo """ Jn:|wR]-
It follows that (F; le;:::;wn) F i1l (GUvg:ivn) F ',, for all
1 1 m. Hence,(G;V;vy;::i;vy) satises” 15:::5" m. a

Pro of of claim: By Theorem4.1.2 Z is a bisimulation betweenG and F .
To seethat Z is a total bisimulation, takeanys2 G ,andlet = fST(") ]
(G ;U ;vyiiisvn);s E g It follows from Claim 3 that every nite subset
of isrealizedin (F ;V ;wy;:::;w,). Hence,by ! -saturatednessthere is a
point t sudh that (F ;V ;wq;:::;wy);t E , and therefore sZt. The other
direction (i.e., 852 F 9t 2 G s.t. tZs) is proved symmetrically. Finally, that
Z respectswy;:::; W, is immediate from the construction. a

We have constructed a bisimulation systemfrom G to F . By closureunder
imagesof bisimulation systems,F 2 K and hence,by elemetarity, F 2 K. 2
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4.4.2. Cor ollar y. An frameclassis de nable by a pure H(E) formula i it is
elementaryand closeal under bisimulation systems.

Pro of: The global modality is de nable by a pure H(@)-fornula, namely the
formula Ei. Hence,aframeclassK is de nable by a pure H (E)-formulai the class
KO= f(W;(Rs)32mod; Re) j (W; (Rs)32mod) 2 K and Re = W2g is de nable by a
pure H (@)-fornula. KCis clearly closedunder generatedsubframes.Furthermore,
onecan easily seethat K°is closedunder imagesof bisimulation systemsi K is.
The result follows. 2

As before,the caseof H is slightly more complicated.

4.4.3. Lemma. Let K be a classof frames, and let PThy (K) and PThy @) (K)
be the set of pure H-formulas and pure H(@)formulas, resgctively, valid on K,
and let PTh®(K) be the set of nominal-toundel pure H-formulas valid on K.
For all point-geneiated framesF,, F, F PThy@(K) i Fy F PThy(K) i
Fw F PThIP(K).

Pro of: Analogousto the proof of Lemma4.3.3 2

4.4.4. Theorem. An frame classK is de nable by a pure H-formula i K is
elementaryand the following closure conditions hold.

1. K is closal under imagesof bisimulation systems.
2. K is closa under genented subfames.

3. For anyframeF, if everypoint genented subflameof F is a proper geneated
subfame of a framein K, thenF 2 K.

Pro of: Let PTh(K) bethe setof pure H-formulasvalid on K. . By compactness,
it su ces to shaw that for all framesF, if F E PTh(K) then F 2 K.

SupposeF £ PTh(K). If F is point-generated, then by Lemma 4.4.3 in
combination with Theorem4.4.1, F 2 K, and we are done. In the remainder
of this proof, we will assumethat F is not point-generated. Take any point-
generatedsubframeF,, = (W;(R3)32moq) Of F. In what follows, we will show
that (Fw ] Fw) 2 K. It then follows by the third closurecondition that F 2 K.

For ewery point w 2 W, introduce a nominal i,,. Furthermore, introduce a
distinct nominal i.. Let V be any valuation for F sud that V(i) = fwg and
V(i.) = fvg for somev not reahable from w in any nite number of steps. Let

F, consistof all pure H-formulas true at (F;V);w.

Claim 1: F, IS satis able on K.
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Pro of of claim: By compactnesqrecall that K is elemetary), it suces to
showv that ewvery nite conjunction of elements of ¢, is satis able on K.
But this follows immediately: is satis able on F and F £ PTh(K), hence

62P Th(K), i.e., is satis able on K. a

Let (G;U);vFE g,, with G 2 K. Let G, be the subframeof G generatedby v.
By construction, G, is a proper generatedsubframeof G. Hence,by the third
closurecondition, (G, ] G,) 2 K.

By construction, all nominalsexcepti. denotea point in (G; U) that is read-
ablefrom v. Hencewe canthink of U asa valuation for the frame G, by removing
i. from our vocabulary. Similarly, we can conceie of V as a valuation for the
frame F,, by removing i. from our vocabulary. In this way, we obtain point-
generatedmodel (G,; U) and (Fy;V) sud that for every pure H-formula ' not
cortaining the nominali., (Fy;V);wE "' i (G, U);vE .

Claim 2: For all H-formulas' , (Fw;V)E " i (Gy;U) E ' . Equivalenly,
is satis ed at a point in (Fy,;V) 1 ' issatised at apoint in (G; U).

Pro of of claim: Suppose(F,;V);u F ' . SinceF,, is generatedby w, there
are 31;:::;3, 2 mod sud that (F,;V);w E 3; 3,'. It follows that
(Gw;V);wF 31 34", and hencethere is a point in (G,;V) satisfying "' .
The corversedirection is proved similarly. a

Let (F,;V ) and (G,;U ) be ! -saturated elemertary extensions. In what
follows, we will construct a bisimulation system from G, to F,. Fix any
wy; ;w2 F,, and pick correspnding new nominals ji;:::;jn.  We will

Pro of of claim: Analogousto Claim 3 in the proof of Theorem4.4.1 a

De ne the binary relation Z betweenthe domainsof G, and F,, sud that sZt
I (G, U svpsiinvp);sand (F,; VvV oswy; i wy); t agreeon all pure H-formulas

Theorem4.4.7).

Hence,we have constructeda bisimulation systemfrom G, to F,,. It follows
by Lemma4.2.15that there is a bisimulation systemfrom (G,,] G,) to (F,,] F,,)-
By Lemma4.2.14 (G,,] G,,) is elemetarily equivalert to (G, ] Gy ), which, as
we saw earlier, is in K. We concludethat (F, ] Fy) 2 K. 2
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For nominal boundedH -formulas, we again obtain a simpler result.

4.4.5. Theorem. An elementaryframe classK is de nable by a pure nominal
boundel H-formulai K is closal under imagesof bisimulation systemsand gen-
erated subflamesand K re ects point-geneiated subfames.

Pro of: Let PTh(K) be the set of nominal bounded H-formulas valid on K,
and supposeF £ PTh(K). By presenation under generatedsubframes,F,, F
PTh(K) for all point-generatedsubframesF,, of F. It follows from Lemma4.4.3
and Theorem4.4.1that F,, 2 K for all point-generatedsubframesF,, of F. Since
K re ects point-generatedsubframes,we concludethat F 2 K.

Hence,P Th(K) de nesK. By compactness&ndthe fact that every conjunction
of nominal boundedH -formulas is nominal bounded,it follows that K is de ned
by a single nominal boundedH -formula. 2

We end this sectionwith an open question?

4.4.6. Question. How do ultra lter morphisms and bisimulation systemsre-
late? It follows from the above results that wheneer an elemenary frame class
is closedunder imagesof bisimulation systems,it is also closedunder ultra Iter
morphic images. Is there a more direct proof of this fact, and doesit hold also
for non-elemetary frame classes?

2lan Hodkinson (p.c.) has found an interesting partial answer to this question. For frames
F; G, let us say that G is a pseudo-bisimulationimage of F if there exist elemenary extensions
F* and G*, and a total bisimulation Z betweenF* and G* that respectsthe domain of G.

By compactnessor ultrap owers, every bisimulation systemimageis alsoa pseudo-bisinulation
image. Furthermore, that all pure H(E)-formulas are presened under pseudo-bisimulation
images: let G be a pseudo-bisinulation image of F and assumefor cortradiction that F '
and G 6] ' , for somepure H(E)-formula ' . V is also a valuation for G*, and, sinceG G™,
we have that G*;V;w 6 ' . Let G;V;w 6 ' , and let Z be a bisimulation betweenelemeriary
extensionsF* and G* respecting the domain of G. We can \pull back" V and w along Z to
obtain a valuation U for F* and a world w® sudc that F*;U;w°6j ' . Hence,F* 6§ ', and it
follows by elemenarity that F & ' , a contradiction.

It follows that all results in the presen section could have be phrasedin terms of pseudo-
bisimulation images.

Next, it can be shawvn that ewvery ultralter morphic image is also a pseudo-bisimulation
image. For supposef : F! ueGis a surjective bounded morphism sud that jf *(u)j = 1 for
all principal u. By [21, Theorem 3.17], ueGis a bounded morphic image of some elemerary
extension G* of G. Let g : G* ! ueG be the relevant surjective bounded morphism. It is
easily chedked that for ead principal ultralter g *( ») = fwg for ead principal ultra lter

w. Finally, de ne a binary relation Z betweenthe domains of F and G* by letting xZy
i f(x) = g(y). Then Z is a total bisimulation respecting the domain of G. Hence (taking
F = F"), G is a pseudo-bisinulation image of F.
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4.5 Which classesde nable in hybrid logic are elementary?

In the previous sections,we characterizedthe elemernary frame classeghat are
de nable in hybrid logic. In the presen section, we ask the corversequestion:
which frame classesde nable in hybrid logic are elementary?

First, let ustakethe model theoretic perspective. Recallfrom Section2.3that
a modally de nable frame classis elemerary i it is closedunder elemenary
equivalencei it is closedunder ultrap owers. One might ask whether this also
holds for frame classede nable in our hybrid languages.The answer is No.

4.5.1. Pr oposition. There is a frame classK de nable in H suchthat K is
closal under elementary equivalene (and hene under ultrapowers) while K is
not -elementary(i.e., de ned by a setof rst-or der formulas).

Pro of: Considerthe classK of bi-modal framesconsistingthe nite strict total
orderings, with < and > relations. This classis de ned by the following H-
formulas.

p! (GPp”HFp) \< and> areeadt othersconverse”

G(Gp! p)! Gp \< istransitive and corverselywell-founded"
H(Hp! p)! Hp \> istransitive and converselywell-founded"
i _Fi_Pi \ < satis es trichotomy"

SinceK consistsonly of nite frames,it is clearly closedunder elemenary equiv-
alence. Newertheless,K is not -elementary, asa simple compactnessargumernt
establishes. 2

Incidentally, the standard proof of Theorem 2.3.6 still appliesto frame classes
de nably by bounded H formulas, since these classesare closedunder taking
disjoint unions and generatedsubframes. Also, sincethe hybrid languagesH,
H(@) and H(E) are all fragmerts of universal secondorder logic (on Kripke
frames), we still have that whene\er a de nable frame classis -elementary (i.e.,
de ned by a setof rst-order sertences),it is elemenary.

Next, let us considerthe syntactic approad to characterizingthe elemenary
classes. Clearly, we cannot expect a complete syntactic characterization of the
elemenary frame conditions. Howewer, there are natural ways to extend the
Sahlqvist-Van Benthem correspndencetheoremto hybrid languages. Here, we
will give a versionfor the languageH .

Call an H-formula ' positive (negative) if every occurrenceof a proposition
letter in ' occurspositively (negatively). Note that no requiremerns are madeon
the nominals. Let a boxed atom be a proposition letter pre xed by any number
of boxes. A hybrid Sahlqgvist anteceder is a formula built up from >, ?, boxed
atoms and negative formulas using”, _ and diamonds. A hybrid Sahlgvistim-
plication is an implication ' ! in which  is positive and ' is a hybrid
Sahlqgvist anteceden. A hybrid Sahlqvist formula is a formula that is built up
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from Sahlqgvist implications by freely applying boxes and conjunctions and by
applying disjunctions only betweenformulas that do not shareany proposition
letters.

In fact, the only di erence betweenmodal and hybrid Sahlgvistaxiomsis that
in the latter, nominals are allowed throughout the formula.

4.5.2. Theorem. Every hybrid Sahlgvistformula de nes an elementaryclassof
frames.

Pro of: The proof for modal logic given in [21] generalizesstraightforwardly to
the hybrid case.Howewer, sincethe proof is rather tedious, we will give a separate
argumert.

Let' beany hybrid Sahlqvistformula. De ne ' °to be the result of replacing
in ' ewvery nominal i by a new modal constart (i.e., nullary modality) ;, which
is temporarily addedto the language. Then it is easily seenthat ' °is a modal
Sahlqvist formula of the extended language,and hencecorrespndsto a rst-
order frame condition, say . Replacein all subfornmulas of the form R  x by
X = yi, wherey; is a new rst-order variable picked for the nominal i, and let °
be the universalclosureof the resulting rst-order formula. Then Cis easilyseen
to de ne the sameclassof framesasthe original formula ' . 2

In particular, ewvery pure formula, being positive in all proposition letters, is
equivalent to a hybrid Sahlqgvist formula > ! ', henceelemerary. Further
generalizationsof the classof hybrid Sahlqvist formulas are possible,and have
beendescrited by Goranko and Sahlqvist [59].3

In contrast to the above, the completenesstheorem for Sahlqvist formulas,
Corollary 2.4.6 doesnot generalizeto hybrid Sahlqvistformulasasde ned above,
aswe will seein the next chapter (cf. Theorem5.4.3.

Incidentally, obsene how, in the above proof, we reducedhybrid formulas to
modal formulas by replacing nominals by modal constarts. Similar reductions
will be usedin the next chapter to derive hybrid completenessesults from modal
completenessesuls.

30ne relatively simple extension the classof hybrid Sahlqvist formulas, pointed out to me
by Goranko (p.c.), is obtained by generalizing the notion of a boxed atom to formulas of the
form
21("1! 22( 2! i2a(C ! p)iid)
where ead ' ; is negative in all proposition letters, and further requiring that no head of such
a \generalized boxed atom" of the Sahlqvist formula (the head being the proposition letter p
in the above formula) occursin the body of a generalizedbox-formula.
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Axiomatizations and completeness

One of the most important results in modal logic is the Sahlqvist completeness
theorem. From the model theoretic perspective that we take in this dissertation,
this result is best summarizedas follows.

If a frame classK is de nable by a set of modal Sahlqvist formulas,
then the modal logic of K (i.e., the set of modal formulas valid on
K) is completely axiomatized by adding these Sahlqvist formulas as
axiomsto the basicmodal logic Ky .

While this result covers many interesting frame classesthere are natural proper-
ties sudh asirre exivit y cannotbe de ned by modal formulas. One of the reasons
why hybrid logics have becomepopular is that there is a generalcompleteness
result for hybrid logicsthat appliesto many frame classesiot de nable by modal
Sahlqvist formulas. Recall that a hybrid formula is pure if it cortains no propo-
sition letters (but possibly cortains nominals). The following analogueof the
Sahlgvist completenesgheorem can be obtained for hybrid logics?

If a frame classK is de nable by a set of pure hybrid formulas, then
the hybrid logic of K is completelyaxiomatizedby adding the relevant
formulas as axiomsto the basichybrid logic.

For the hybrid languageH, this fact, viz. the completenes®f logics axiomatized
by pure formulas, was already obsened in the 1980sby Gargov et al. [47].

Besidesthis, we still have that all hybrid logics axiomatized by modal
Sahlgvist formulas are complete:

If a frame classK is de nable by a set of modal Sahlqvist formulas,
then the hybrid logic of K is completely axiomatized by adding the
relevant formulas as axiomsto the basic hybrid logic.

IThis result appliesto any of the languagesH, H(@)and H (E). A preciseformulation will be
given later on, after the basic axioms and rules for the hybrid languageshave beenintro duced.

69
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This wasobsened for H(E) by Gargor and Goranko [46]. As we will show in this
chapter, it alsoholdsfor H and H(@).

In this chapter, we will prove the following new results. We will show in this
chapter that there is a pure formula ' and a modal Sahlgvist formula  sud
that the logic obtained by adding' and asaxiomsto the basichybrid logic is
incomplete. Secondly we will show that every axiomatization of the basichybrid
logic of which all extensionswith pure formulas are completemust contain either
inferencerules with syntactic side conditions, or in nitely many in nite rules.

A nal cortribution of this chapterisin the developmen of a theory of general
framesfor hybrid logics. Two-sorted generalframe are introduced and studied,
and it is shavn how the existing completenessproofs for hybrid logics can be
recastin terms of completenes&nd persistenceargumerts with respectto classes
of two-sortedgeneralframes.

Someof the results reported in this chapter are taken from [19, 30].

5.1 The axiomatizations

For ead of the hybrid languagesH, H(@) and H (E), we will now give two basic
axiomatizations. The di erence betweenthesetwo axiomatizationslies ead time
in the addition of two inferencerules.

5.1.1. Definition. For any setof H-formulas , Ky is the smalest set con-
taining all axiomsin Table5.1 and close under the rulesin Table5.1, exept
for the (Name) and (Paste) rule. K}, is de ned similarly, closingin addition
under the (Name) and (Paste) rules.

5.1.2. Definition.  For any setof H(@)}formulas , K@) is the smalestset
containing all axiomsin Table5.2 and closal under the rules in Table 5.2,
exept for the (Nameg) and (BG) rule. K;(@) is de ned similarly, closingin
addition under the (Name) and (BG) rule.

5.1.3. Definition.  For any setof H(E)-formulas , Ky is the smalest set
containing all axiomsin Table5.3 and closa& under the rules in Table 5.3,
exept for the (Name) and (BGg) rules. K;(E) is de ned similarly, closingin

addition under the (Name) and (BGg) rules.

It should be clear to the readerthat all basic axioms are sound, and that all
inferencerules presene validity with respect to any classof frames.

Onenote s in order concerningthe (NameLite) rule. This rule is peculiar, in
that it is admissiblein every consisten logic K . The only role of (NameLite)
is to render logics that derive : i, for somenominal i, inconsisten, re ecting
the fact that : i is not valid on any frame. As is not hard to see,without the
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Table 5.1: Axioms and inferencerules of K y
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Axioms and inferencerules of K y

(CT) * ', for all classicaltautologies'
(Dual) " 3p$ :2:p,for2 2 mod
(K) " 2(p! 9! 2p! 2q, for 2 2 mod
(Nom) 31 3l *p)! 2n41 2pem(i! p),
for24;:::;20em 2 mod (n;m 0)
(MP) If- ! and " ' then’
(Nec) If ~ ' then™ 2', for 2 2 mod
(Subst) If © ' then” ' , where is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals.
(NamelLite) If * :ithen™ ?

Additional inferencerules of K |,

(Name) If > i! ' then ', fori not occurring in"'
(Paste) If ~ 31:::3n(i*3ns2 (")) ! then® 37 3,(i"3n+1')!
for34;:::;3n41 2mod (n  0),j 6 i andj not occurring in ';

Table 5.2: Axioms and rules of K (@)

Axioms and inferencerules of K (@)
(CT) © ', for all classicaltautologies'
(Dual) " 3p$% :2:p, for2 2 mod
(K) " 2(pp! 9! 2p! 2q,for2 2 mod
(Ka) T@p! 9! @p! @qfori2nom
(Selfdual) "~ :@p$ @:p
(Ref) T @i
(Intro) ifrp!l o @p
(Back) T3@p! @p, for2 2 mod
(Agree) T @@p! @p
(MP) if- ! and " ' then"
(Nec) If ~ ' then™ 2',for 2 2 mod
(Nec@) If ~ ' then™ @', fori 2 nom
(Subst) If © ' then™ ' , where is a substitution that uniformly replaces
proposition letters by formulas and nominals by nominals.
" : +
Additional inferencerules of K |, @)
(Nameg) If ~ @' then ', fori not occurring in ' .
(BG) If> @3j! @' then” @2',fori6 j andj not occurring in ' .
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Table 5.3: Axioms and rules of K g,

Axioms and inferencerules of K (g

(CT)
(Dual)
(K)
(Dualp )
(Ka)
(Refg)
(Transe)
(Syme)
(Inclz )
(Incl;)
(Nomg )
(MP)
(Nec)
(Neca)
(Subst)

Additional inferencerules of K *

(Name)
(BGE)

© ', for all classicaltautologies'
" 3p$% :2:p, for2 2 mod
" 2(p! g! 2p! 2q,for2 2 mod

TEp$ I Ap

TA(p! g! Ap! Ag

" p! Ep

* EEp! Ep

" p! AEp

" 3p! Ep, for 3 2 mod

T Ei

TE(iMp) ! AG! p)

if- ! and " ' then’
If *' then™ 2',for 2 2 mod
If ' then” A’

If © ' then” ' , where is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals.

H (E)

If ~i! ' then ', fori not occurringin ' .
If > E((”~3j)! E(j~™'")then™ E(i"2"),
fori 6 j andj not occurring in ' .
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(NamelLite) rule, Ky f: ig would be a consisten logic. Incidentally, (NameLite)
is a special caseof the (Name) rule.

Another, perhapsmore elegan axiomatization for H wasgiven by [47], based
on the notion of necessi forms and possibility forms [51]. For a xed symbol $,
necessy forms are de ned as follows.

1. $is a necessy form.

2. If ' isanecessiy form and is an H-formula, then ! ' is a necessy
form.

3. If ' isanecessy form and2 2 mod then 2' is a necessi form.

Possibility forms are de ned similarly, replacingimplications by conjunctionsand
boxes by diamonds. Given a possibility form M and a formula , M ( ) will

denote the result of replacing the unique occurenceof $in M by . Likewise
for necessiy forms. Now, the (Nom) axiom schemeand the (Paste) rule may be
replacedby the following:

(Nom®) ~ M(@G~')! L@G! ")
whereM ($) is a possibility form and L($) is a necessiy form

(Cov) If " L(:i)then™ L(?),
whereL ($) a necessi form not cortaining the nominal i

It is not hard to seethat (Nom) and (Nom®) are interderivable, as well as the
rules (Paste) and (Cov). Moreover, (NameLite) can be seenas the simplest
possibleinstance of (Cov).

In what follows we will stick to the axiomatization givenin Table 5.1

5.2 General frames for hybrid logic

Recallthe de nition of generalframesin Section2.4. In the setting of hybrid logic,
it seemgnost natural to considergeneralframeswith two sorts of admissiblesets,
onefor arbitrary formulasand onefor nominals. The seconds naturally included
in the rst. This is re ected in the following de nition.

5.2.1. Definition. A two-sorted geneml frame is a structure F =
(W; (R3)32mod; A; B), where (W;(R3)32mod;A) is a genenl frame, B W is
non-emptyand for all w2 B, fwg 2 A.

Admissible valuations and validity are de ned in the expectedway: proposition
letters denotesetsin A and nominals denote points in B. Sincethe setB is only
usedfor the interpretation of the nominals, De nition 5.2.1collapsedo the more
traditional one for modal logic, except for one small but important di erence.
The non-emptinesscondition on B implies that A cortains at least onesingleton.
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There are generalframesthat do not contain any singleton admissibleset. We
might call such generalframesatomless’ Atomlessgeneralframestrivialize the
notion of validity for hybrid logic, sincethey admit no hybrid valuations. In par-
ticular, the hybrid formula ? is valid on atomlessframes,since,trivially , it holds
under every hybrid valuation. Surprisingly, there exist consistett normal modal
logicsthat have only atomlessgeneralframes[99. This has someconsequences
for hybrid logic, aswe will seelater in Corollary 5.3.4

Descriptive two-sorted general frames

Recall from Section 2.4 that every modal logic is strongly sound and complete
with respect to a class of descriptive general frames [21]. In order to obtain
a similar result to hybrid logics, we generalizethe notion of descriptivenessto
two-sortedgeneralframes.

5.2.2. Definition. A two-sorted geneal frame (W; (R3)32mod; A; B) is descrip-
tive if (W;(R3)s2mod;A) is descriptivein the traditional sense.

Call a formula d2-persistent if its validity is presened under the passagefrom
a descriptive two-sorted general frame to the underlying Kripke frame. One
would like to know which formulas are d2-persistent. Let us rst considermodal
formulas. Clearly, every d-persistert modal formula (i.e., modal formula that is
persistert with respect to descriptive generalframes,asde ned in Section2.4) is
d2-persistert. The conversedoesnot hold: [99] shovsthe existenceof a consister
modal formula that only hasatomlessgeneralframes. It followsthat this formula
is not d-persistent (every Kripk e frame hasatoms) but that it is d2-persistent (it
has no two-sortedgeneralframes).

Next, let us considerhybrid formulas. Nominalsenhancethe expressie power
of the languagenot only on the level of Kripk e frame but alsoon the level of de-
scriptive two-sortedgeneralframes. The simplestexampleis the formula i, which
de nes the classof two-sortedgeneralframesthat have exactly oneworld. This
formula is clearly d2-persistert. For another example, considerthe conjunction
"ofp! 3(i*"3p) and33 q! 3qg. Both with respectto descriptive two-sorted
generalframesand with respectto Kripk e frames," expresseshat the accessibil-
ity relation R3 is the universalrelation on the domain. Hence,' is d2-persistert.
Sincevalidity of ' is not presened under taking disjoint unions," is not equiv-
alent (on Kripk e framesor on descriptive two-sorted generalframes)to a modal
formula.

°Note that this terminology is a bit misleading: even if a general frame is atomless, the
corresponding Boolean algebrawith operators might still contain atoms (in the usual algebraic
sense),and might even be atomic.
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Strongly descriptive general frames

While we sav somed2-persistert hybrid formulas these casesare rather excep-
tional. In general,very few formulas involving nominals are d2-persisteni. This
suggestghat we look for another, more restricted type of generalframes. There
is another reasonto restrict the classof generalframesunder consideration: the
additional inferencerules of K{, , K, 5 andKy{ g donot presene validity
with respect to descriptive two-sortedgeneralframes,in general.

5.2.3. Definition. A two-sorted generl frame (W; (R3)32mod; A; B) is strongly
descriptive if it is descriptiveand it satis es the following further conditions:

() Forall X 2 A,if X6 ; thenX\ B6 ;.
(i) Forall X 2 Aandw?2 B, if fv2 X jwRvgé6 ; thenfv2 X jwRvg\ B 6

Note that in strongly descriptive two-sorted generalframe, we have that w 2 B
i fwg 2 A. For this reason,whentalking about strongly descriptive two-sorted
generalframes,we may leave out the quali cation ‘two-sorted'. The secondsort
B is already implicitly given by the underlying generalframe.

5.2.4. Remark. From an algebraic perspective (cf. [21, Chapter 5]), strongly
descriptive generalframes correspnd to Boolean algebraswith operators that
satisfy the following additional requiremerts:

1. For every elemen a6 ? of the algebra,thereis anatomi sudthati a.

2. For ewvery elemen a of the algebraand for every atom i, if i 3 a, then
thereisanatomj suchthatj aandi 3j.

The rst condition is known as atomicity, and the secondcondition is equivalernt
to completeadditivity, provided that the Booleanalgebrais atomic. It is an easy
exerciseto shav that whene\er F is strongly descriptive, then the correspnding
algebra F satis es these two conditions, and corversely whenewer a Boolean
algebra with operators A satis es these two conditions, the general ultra lter
frame A is strongly descriptive.

Call a formula sd-gersistent if its validity is presened under the passagefrom
strongly descriptive generalframesto the underlying Kripk e frame. Clearly, every
d2-persistent formula is sd-persistert. Howewer, many hybrid formulas that are
not d2-persistert are sd-persistent. Consider for instance the H-formula i !
3i. This formula is easily seennot to be d2-persistert. Newerthelessit is sd-
persistert: Supposea strongly descriptive generalframe is not re exive. Then,
by d-persistencep! 3p canbefalsied onit, i.e., thereis a valuation V suc
that p” : 3 pis satis able under V. By strong descriptiveness )V (p) cortains an
elemen of B, say w. It followsthat i : 31 is satis able under any valuation that
sendsi to fwg.
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Discrete general frames

The last classof two-sorted generalframesthat we will consideris the classof
discrete two-sortedgeneralframes.

5.2.5. Definition. A two-sorted geneal frame (W; (R3)z2mod; A; B) is discrete
if B= W.

As was the casewith strongly descriptive two-sorted general frames, discrete
two-sortedgeneralframesare not really two-sorted: sinceB = W, the admissible
valuations for the nominals are already implicit in the underlying generalframe.
Hence,we will simply refer to thesestructures as discrete genenl frames

An important sourceof discrete generalframesis the following.

5.2.6. Definition.  Given a strongly descriptive two-sorted geneal frame F =
(W; (R3)32mod; A; B), let dst = (B;(Rs \ (B B))samod;TX \ Bj X 2 Ag;B).

The notation dsf stands for discrete subfame a name that is justied by the
following proposition.

5.2.7. Pr oposition. For all strongly descriptive two-sorted geneal framesF,
dsf is a discrete two-sorted generl frame.

Pro of: Let F = (W;(R3)z32mod; A; B) be any strongly descriptive two-sortedgen-
eral frame. It is clear from the de nition that dsf is discrete. It remainsto be
shown that the set of admissiblesetsis closedunder the Booleanoperations and
under the operations correspnding to the modalities.

Complement
SupposeY 2 fX\ Bj X 2 Ag. Let X 2 A besud that Y = X\ B. Then
BnY = (WnX)\ B, and hence,sinceWnX 2 A, it followsthat BnY 2 fX \ B
X 2 Ag.

. Intersection

SupposeY;; Y, 2 fX\ Bj X 2 Ag. Let X1;X, 2 A besudt that Y; = X;\ B
andY, = X,\ B. ThenY;\ Yo, = X1\ X,\ B, and hence,sinceX;\ X, 2 A, it
followsthat Y;\ Y, 2 fX \ Bj X 2 Ag.

. Modalities
SupposeY 2 fX\ BjX 2 Ag,andlet3Y =fw2 Bj9v2 Y sud that wR3vg.
Let X 2 Abesudhthat X\ B=Y,andlet3X = fw2 W j9v2 X sud that
WR3vg. Weclaimthat 3Y = 3X \ B,andhence3Y 2fX \ BjX 2 Ag.

[ ]Supposew 2 3Y. SinceY X, it follows by monotonicity that w2 3 X.
Furthermore, since3Y B, we havethat w2 3 X \ B.

[ ]Supposew 2 3X \ B. Thenthereisav 2 X sud that wR3v. It follows
by the strong descriptivenessof F that thereisav 2 X\ B = Y sud that wR3 V.
Hence,w 2 3Y. 2
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5.2.8. Pr oposition. For all strongly descriptive two-sorted genernl frames F
and H(E)-formulas' , FF "' i dsFE"'.

) : We proceedby cortraposition. Let F = (W;(R3)32moq;A; B) be a strongly
descriptive two-sorted generalframe, and suppose(dsf;V);v 6 ' for somead-
missible valuation V and world v 2 B. Let V°be any admissiblevaluation for
F such that V(p) = V{p)\ B for p2 prop and V(i) = VYi) fori 2 nom. It
is clear from the de nition of dsf that sud valuations exist. A straightforward
inductive argumert establishesthat for all H(E) formulas , (F;VY;v E i
(dsF;V);v £ (the only non-trivial step in the induction argumert concerns
formulas of the form 3" , and herewe usethe fact the F is strongly descriptive).
It followsthat (F;V9;v 6 ', and henceF 6j ' .

[( ] Again, we proceedby contraposition. Let F = (W;(R3)32mod;A; B) be
a strongly descriptive two-sorted generalframe, and suppose(F;V);w & ' for
someadmissiblevaluation V and world w 2 W. It follows from the rst clause
of De nition 5.2.3that (F;V);v 6j ' for somev 2 B. Let V°be the valuation for
dsf givenby VYp) = V(p)\ B for p2 prop and Vi) = V(i) fori 2 nom. It is
clearfrom the de nition that V°is an admissiblevaluation for dsf~. Furthermore,
a straightforward induction argumen showsthat for all H(E)-formulas and for
all worldsu 2 B, (F;V);ufE ' i (dsF;V9;ujE ' (the only non-trivial stepin
the induction argumert concernsformulas of the form 3" , and here we usethe
fact that F is strongly descriptive). It follows that (dsf;V9;v & ', and hence
dsf- g ' . 2

5.2.9. Remark. As pointed out by T. Litak (p.c.), it is alsopossibleto turn a
discrete two-sorted generalframe into a strongly descriptive one. It su ces to
obsene that if F is a discrete two-sorted generalframe, then the correspnding
algebraF is atomic and completely additive, hencethe generalultra lter frame
(F ) is strongly descriptive, cf. Remark 5.2.4 It can even be shavn that for
strongly descriptive F, ((ds¥) ) = F, and for discreteF, dsf{(F ) ) = F. This
shawsthat discretetwo-sortedgeneralframesand strongly descriptive two-sorted
generalframesare atomic and completely additive BAOs in two Gestalts. This
duality can be pursuedfurther, but we will not do so here.

Call a formula di-persistent if its validity is presened under the passagdrom
a discrete generalframe to the underlying Kripk e frame. From Section 2.4 we
already know that every very simple modal Sahlqgvist formula is di-persisten, as
well as every shallov modal formula.

The most important class of di-persistent formulas is formed by the pure
formulas, i.e., formulas that do not cortain proposition letters, only nominals.
All pure formulas are di-persistert. Moreover, every di-persistert formula de nes
the sameclassof discrete generalframesas a pure formula.
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5.2.10. Theorem. Every pure H-formula is di-persistent. Conversely,everydi-
persistent H-formula de nes the sameclassof discrete geneal framesas a pure
H-formula. The sameholdsfor the languageH (@) and H(E).

Pro of: We will only prove the casefor the languageH. The rst part of the
result is obvious. Next, suppose' is a di-persistert H-formula, and let  be the
setconsistingof all pure instantiations of ' ,i.e., = f' | isasubstitution that
mapsevery proposition letter to a pure formulag. We will shav that  de nesthe
sameclassof discrete generalframesas’ . It then follows by compactnesghat
' is equivalert on discrete generalframesto a nite conjunction of elemens of

(note that compactnessnay be applied sincethe discretegeneralframesform
an elemetary class).

Let F be any discretetwo-sortedgeneralframe. If F = ' , thenclearly, F E .
Cornversely supposeF £ . Let G be the smallestdiscrete frame basedon the
underlying Kripk e frame of F. More precisely let V be any valuation for F under
which ewvery point in F is namedby a nominal, and let G be the discretegeneral
frame in which the admissiblesubsetsare preciselythose de nable under V by
meansof pure H formulas. Clearly, G F ' . By di-persistencewe obtain that '
is valid on the underlying Kripk e frame of G (which is alsothe underlying Kripk e
frame of F), and hence,F E ' . 2

In particular, it followsthat every very simple Sahlqvistformula de nes the same
classof Kripk e framesas a pure H-formula.

5.3 Completeness with respect to general frames

Wewill now prove completenes®f the axiomatizationsof H, H(@)and H (E) with
respect to the types of generalframesintroduced in the previous section. The
generalpattern will be asfollows: the axiomatizationswithout the extra inference
rules are completewith respectto descriptive two-sortedgeneralframes,whereas
the axiomatizations with the extra inferencerules are complete with respect to
strongly descriptive two-sorted generalframesand discrete generalframes.

Recall that an axiomatization is sound for a classof semartic structures if
ewery derivable formula is sematrtically valid, completeif every semartically valid
formula is derivable, and strongly complete if wheneer a set of formulas is
semartically unsatis able, there is a nite conjunction of elemens of sud
that : is derivable.

Finally, we say that a formula' de nes a classK of generalframesof some
type (e.g., descriptive) if for all generalframesF of the relevant type, F 2 K i

FE'.

Descriptive two-sorted general frames
First, let us considerthe axiomatization K 4 and its extensions.
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5.3.1. Theorem. Let be a setof H-formulas. Ky is sound and strongly
completefor the classof descriptivetwo-sorted generl framesde ned by

Pro of: We will only prove completeness.For the purposeof this proof, we will
temporarily adopt an alternative, purely modal semarics of the languageH,
by treating nominals as modal constarts (i.e, nullary modalities). Let a non-
standad frame be a structure F = (W; (R3)32mod; (Si)iznom), Whereeath R3 isa
binary relation on W and ead S is a subsetof W, interpreting the nominal i.
Non-standard generalframesand non-standard models are de ned similarly.

Now, suppose is a Ky -consistent set of H-formulas. Then by Theo-
rem 2.4.3 is satis able on a descriptive non-standard general frame F =
(W; (R3)32mod; (S)iznom; A) sudh that F F Ky . 3 Without loss of generality,
we may assumethat F is point-generated.

Now recall that Ky contains the following axiom scheme.

Eadh instance of (Nom) is a Sahlqgvist formula, and therefore d-persister.*
Hence,ead instance,being valid on F, is valid on its underlying (non-standard)
Kripk e frame. Using thesefacts, and consideringthe rst-order correspndens
of the formulas involved, it is easily seenthat ead jS;j 1 for all i 2 nom (for,
if jSjj 2 for somei 2 mod, then someinstance of (Nom) could be falsi ed at
the root of F).

We can now distinguish three cases:

1. jSj = 1for all i 2 nom. This is the simplest case. Let H be the (stan-
dard) two-sortedgeneralframe (W; (R3)32mod; A; B), whereB =, .., Si.
Clearly, is satis able on H. It is also an easy exerciseto shov (using
closure under substitution) that H £ . Finally, since descriptivenessis
presened under taking reducts of generalframes, H is a descriptive two-
sorted generalframe.

2. jSjj = 0 for somei 2 nom, but not for all.

Let j be a nominal such that S; 6 ;. Fori 2 nom, let S°= §; if S; = ;
and S°= ; otherwise. Let FO= (W; (R3)32mod; (S)iznom;A), and let G be
the disjoint union of F and F°° By construction, G is a descriptive general
non-standard H -frame. Furthermore, it is easilyseenthat G K, , and
that is satis able on G. Hence,we can proceedasin the rst case.

SActually, we use here a slightly more general version of Theorem 2.4.3 that applies to
languageswith modal constarts (seefor instance [21])

“Here, by an instance, we mean a particular choce of modalities 3 1;:::;3 p+m 2 mod
(n;m 2 ). Furthermore, we usehere the generalde nition of Sahlqvist formulas given in [21],
which appliesto multi-mo dal languageswith modalities that are not necessarilyunary.

SDisjoint unions of Kripk e frameswere de ned on page10. The disjoint union of two general

frames, (F;A)] (G;A9), isde ned as(F] G;A%, whereA®%=fX ] YjX 2AandY 2 A%).
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3.jSjj = O0for all i 2 nom. By the rule (NameLite), and the fact that
Ky 6 ?, the formula i is consistet, and hencesatis able on a point-
generateddescriptive non-standardH -frame G with G £ K . By closure
under disjoint union, F] G F Ky, and by bisimulation invariance, is
satis able on F] G. Hence,we can proceedasin the secondcase. 2

It isimportant for this resultthat the logicincludesthe inferencerule (NameLite).
In fact, there are modal formulas' sud that Kyf' g without this rule is not
complete for any classof descriptive frames. This follows from a more general
result. For a setof H-formulas, de ne K, to be the axiomatization K y
minus the (NameLite) rule. Then the following consenativity result holds.

5.3.2. Pr oposition. For everyset of maodal formulas and modal formula ',
Ky F'i Ku F
Pro of: We will only prove the left-to-right direction, sincethe other direction
follows immediately from the fact that K, extendsKy . The proof will pro-
ceedby cortraposition, and we will make useof the non-standardsemarics of H
introducedin the proof of Theorem5.3.1

Suppose Ky 6 '. Then there is a descriptive general frame F =
(W; (R3)32mod; A) with an admissible valuation V and a world w 2 W sud
that F and F;V;w 8 '. Let F° be the non-standard general H-frame
(W; (R3)32mod; (Si)iznom; A) whereS; = ; for all i 2 nom. It is easily seenthat
FOE K, andF°gj ' . It followsthat K, &' . 2

5.3.3. Proposition. There is a modal formula' suchthat K ,f' g is not com-
plete for any classof two-sorted geneal frames.

Pro of: From [99], we know that there is a modal formula’ sud that the modal
logicK y f' gis consistem, and sudh that every generalframe on which ' is valid
is atomless(i.e., has no singleton admissibles). It follows that there is no two-
sorted generalframe on which ' is valid (every two-sortedgeneralframe cortains
an admissiblesingletonset). Hence,if K ,f' g would be completefor any classof
two-sorted generalframes, it would have to be inconsisten. Howewer, it follows
from Proposition 5.3.2that K ,f' g is consister. 2

5.3.4. Cor ollar y. For asetof modal formulas, Ky is in geneal not con-
servativeover K, or Ky

Next, let us considerthe languagesH (@) and H (E).

5.3.5. Theorem. Let be a set of H(@)formulas. K@ is soundand
strongly complete for the class of descriptive two-sorted geneanl framesde ned

by
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Pro of: We will only prove completeness. For the purpose of this proof, we
will temporarily adopt an alternative, purely modal semartics of the lan-
guage H(@), by treating nominals as modal constarts and satisfaction oper-
ators as unary modalities. Let a non-standard frame be a structure F =
(W; (RS )32mod; (Ri)iZnom; (Si)iZnom)1 where eat R3 is a binary relation on W,
eath R; is a binary relation on W interpreting the the satisfaction operator @,
andS; W interprets the nominal i, taken as a modal constart. Non-standard
generalframe and non-standardmodels are de ned similarly.

Now, suppose is a Ky g) -consistent set of H(@)-fornulas. Then by
Theorem 2.4.3 is satis able on a descriptive non-standard general frame
F = (W;(R3s)32mod; (Ri)iznom; (Si)iznom; A) sudh that F F K@) . Without
lossof generality, we may assumethat F is point-generated.

Recallthat K@) cortains the distribution axiom for satisfaction operators
(K@), the necessitationrule for satisfaction operators, and the following axiom
schemes.

Q@p! @p 8xyz(Rjxy * Riyz! R;jxz)
3@p! @p 8xyz(Rzxy * Riyz! R;jxz)
i"p! @p 8X(Six! Rjxx)

Q@i 8x9y(Rixy " Siy)

Qp$ :@:p 8xyz(Rixy N Rixz! y= 2)

Eadh of the axiomsis in Sahlqvist form (taken as a modal formula). Their rst-
order correspnderts are indicated as well.® By d-persistence ead of thesefor-
mulasis valid on the underlying (non-standard) Kripk e frame of F. Togetherwith
the fact that F is point-generated,this impliesthat jS;j = 1andR; = W §; for
eadh i 2 nom. S

Let FO= (W;(R3)32moa; A;B) with B =, 'Si. It is an easyexerciseto
shav (using closureunder substitution) that F°F  andthat s satis able on
FC Finally, F°is a descriptive two-sorted generalframe. 2

5.3.6. Theorem. Let beasetofH(E)-formulas. Ky is soundandstrongly
completefor the classof descriptivetwo-sorted geneal framesde ned by

Pro of: We will only prove completeness.For the purposeof this proof, we will
temporarily adopt an alternative, purely modal semaunics of the languageH (E),
by treating nominals as modal constarts and interpreting the global modality
as an ordinary unary modalities. Let a non-standard frame be a structure F =
(W; (R3)32mod; RE; (Si)i2nom), Whereead R; is a binary relation on W, Rg is a
binary relation on W interpreting the modality E, and §; W interprets the
nominal i, taken as a modal constart. Non-standard general frame and non-
standard models can be de ned similarly.

SHere, we exploit the fact that in the presenceof the (Selfdual) axiom @p $ : @: p, the
satisfaction operators may be interpreted not only as boxesbut also as diamonds.
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Now, suppose is a K@) -consistent set of H(E)-formulas. Then by
Theorem 2.4.3 is satis able on a descriptive non-standard general frame
F = (W, (R3)32m0d; RE;(Si)iZnom;A) sud that F F KH(@) . Without loss of
generality, we may assumethat F is point-generated.

Recallthat Ky cortains the distribution axiom and necessitationrule for
E, aswell asthe following axiom sthemes.

p! Ep 8X:Rgxx

EEp! Ep 8xyz:(Rexy ® Reyz! Rgxz)

p! AEp 8xy:(Rexy ! REgyx)

3p! Ep 8xy:(Rsxy ! REgxy)

Ei 8x9y:(Rexy ™ Siy)

E@G~p! Al! p 8xyz:(Rexy ® Rexz M Sy™ Siz! y= 2)

Ead of the axiomsis in Sahlqgvist form (taken asa modal formula). Their rst-
order correspnderts areindicated aswell. By d-persistencegad of theseformu-
las is valid on the underlying (non-standard) Kripk e frame of F. Togetherwith
the fact that F is point-generated,this impliesthat Re = W W and |Sjj =1
and for eath i 2 nom. S

Let FO= (W;(Rs)s2moa; A;B) with B =, . 'Si. It is an easyexerciseto
shaw (using closureunder substitution) that F°= andthat is satis able on
FO Finally, F°is a descriptive two-sortedgeneralframe. 2

Strongly descriptive two-sorted general frames

Descriptive two-sorted generalframesdo not provide an adequatesemarics for
Ki, Kii@ and Ky, g, sincethe additional inferencerules of theselogics do not
presene validity on sud frames. Strongly descriptive two-sortedgeneralframes
do provide an adequatesemartics.

5.3.7. Proposition. Al inference rules of Ky, K}, 5, and K}, ¢, preserveva-
lidity on strongly descriptive genearl frames.
Pro of: By way of example,we discussthe (Name) rule of K, . Let K beaclass
of strongly descriptive frames. We proceedby cortraposition: supposeK 6j '
and supposethat the nominal i doesnot occurin ' . Then: ' is satis able on
a (strongly descriptive) F 2 K under somevaluation V. Let [: ' ] be the set of
points in K satisfying: ' under the valuation V. Note that [: ' ] 6 ;, and hence
by strong descriptiveness|[: ' ]\ B 6 ;. Then by extendingthe valuation V suc
that i denotesa point in [: ' J\ B, wecansatisfyi”~ :',andhenceK & i! .
2

5.3.8. Cor ollar y. For any set of H-formulas, K}, is soundfor the class

of strongly descriptiveframesde ned by . Similarly for K :{(@) and K;(E)
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As we will now show, theselogicsare not only soundbut also strongly complete
with respect to the relevant classof strongly descriptive frames. First, let us
considerthe languageH .

5.3.9. Lemma. Let be any set of H-formulas. Every K}, -consistent set
can be extende to a maximal K;, -consistentset * suchthat

1. One of the elementsof * is a nominal

2. For all 3; 3,(i™ 3pu1"') 2 * there is a nominal j such that
31 3.(i"*"3pua(j™r)2 °

Pro of: By expanding the languagewith new nominals, we can ensurethat a
courtably in nite number of nominalsdo not occurin , while preservingconsis-
tency. Let (in)n2n be an enumeration of a courtably in nite set of nominals not
occurringin , andlet (" ,)n2n be an enumeration all H-formulas of the extended
language.

Let °denote [ fiog. The (Name) rule guararteesthat isK |, -consistent,
for supposenot. Then thereare' 4;:::;' , 2 sud that ° K, o ! ("
N h). Sinceig doesnot occur in gt ,, by the (Name) rule, * K,

("1™ ~',), andhence isalready K7, -inconsistent.
For k 2 N, dene *1 asfollows. If k[ f',gis K}, -inconsistent, then
k+l =k Otherwise:

1. ¥ = K[ f' ,gif' cisnotoftheform3; 3,(i" 3n1').

2. K= Kf';31 3,("3na(im”))gif' (isoftheform3, 3 ,(i"
341" ), Wherein, isthe rst newnominal that doesnot occurin ¥ or'

Eadh step presenes consistency:if ¥ is K}, -consistent, then sois “*1. The
only non-trivial caseconcernsthe secondclause,and we will prove alsoin this
case,consistencyis presened.

Let X[ f' ygbeK}, -consistent, let' y beoftheform3; 3,(i"3na'),

and supposefor the sake of cortradiction that k** = kK [ f'e;31 3.7

3ns1(im” ' ))gis K;, -inconsistent. Thenthereare' 4;:::;' 12 ¥ sudh that
o M8 3n3palim® ) 1 (N A

It followsby the rule (Paste) that ° K, ! (™ N')). But this contradicts

the fact that *[ f' «gis K}, -consistent. We concludethat *! is consiste.
Since K, -consistency is presened at eah stage, it follows that * =
n " is consisten. It is easyto seethat * alsosatis es the other require-

merts. 2
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5.3.10. Theorem. Let be a setof H-formulas. K, is strongly sound and
completefor the classof strongly descriptivetwo-sorted geneal framesde ned by

Pro of: Let beany K}, -consistent set of formulas. Let * be the maximal
consisten setextending obtained from Lemma5.3.9 Applying Theorem5.3.],
we obtain a descriptive two-sortedgeneralframe F suchh that FF  and * is
satis able on F. It follows from the properties of * and the construction of F
that F is in fact strongly descriptive.’ 2

Next, let us considerthe languageH (@).

+

H(@)

If* @3j" Q" ! then” @3"' ! , provided i 6 j and | does
not occur in ' or

5.3.11. Lemma. The following rule is derivablein K

Pro of: SupposeK;(@) T @3j7"@' ! . Letkbeanewnominal. Then by

the Necessitationrule for the satisfactionoperators, K ;(@) Ta@3irtqg' !

). Then latter formula is semartically equivalert to @3j ! @( ! @ ).

By Theorem 5.3.5 this equivalenceis provable in K @) and hencein K;(@) :

It followsthat K}, o) ~ @3j! @( ! @ ). By therule (BG), K} g,
@2(' ' @ ). The latter formula is sematically equivalert to @(@3' ! ).

By Theorem5.3.5 this equivalenceis provablein K @) and hencein K ;(@) Lt

foIIowsthatK:'(@) T@(@3'! ). Bythe namerule,K;(@) @3 .
2
+

H@) -consistentset can be extendel to a maximal
-consistentset * suchthat

5.3.12. Lemma. Every K
K+
H(@)

1. One of the elementsof * is a nominal

2. Forall @3' 2 thereis anominalj suchthat @3j 2 and@' 2

Pro of: By expanding the languagewith new nominals, we can ensurethat a
courtably in nite  number of nominals do not occur in , while preservingcon-
sistency Let (in)n2n be an enumeration of a courtably in nite set of nominals
not occurring in , andlet (" n)n2n be an enumeration all H (@)-formulas of the
extendedlanguage.

"Here, we assumewithout loss of generality that the non-standard general frame F used
in the proof of Theorem 5.3.1is a point-generated subframesof the canonical (non-standard)
general frame. Furthermore, we use the fact that strong descriptivenessis presened under
taking disjoint unions of nitely many generalframes.
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Let °denote [ fipg. The rule (Nameg) guararteesthat  is consisten, for
supposenot. Thenthereare' 1;:::;' ,, suct that ° K@ lo! (1" AL,
By the Necessitationrule and the K axiom for the satisfactionoperators, it follows
that ° K@ @,io! @, (1" At). Since” K} @ @,lo, it follows that
Tk @,: ("1™ "~ 'n), and hence,by the (Nameg) rule, ~ + (L

:1(@) H (@)
A ' h). But this cortradicts the fact that  is consister.

Fork 2 N, dene **' asfollows. If [ ' gis K}, g, -inconsistent, then
k+l =k Otherwise:

1. Kkt KT f' gif ' « is not of the form @3

2 k+1

K[ ' ;@3im; @, gif' isofthe form @3 ,
wherei, isthe rst newnominal that doesnot occurin ¥ or' .

Each step presenesconsistency:if K is K;(@) -consistent, then sois **'. The
only non-trivial caseconcernsthe secondclause,and we will prove that alsoin
this case,consistencyis presened.

Let K[ f' g be K;(@) -consistent, let ' ¢ be of the form @3 , and sup-

pose for the sale of cortradiction that ¥ = k[ f' ;@3in, " @, 9 is

not K;(@) -consistent. Then there are ' 1;:::;' , 2 X sud that ° K@

(k"@3imp;@, )! (1" A ty). It follows by Lemma 5.3.11 that
) oo (N A ' ). But this cortradicts the fact that X[ f' g
is K7,

L@ ~consistent. We concludethat **! is consistet.

SinceK

S H(@) -consistency is presened at ead stage, it follows that =
Nis K}

nel H(@) -Consistent. It is easyto seethat * alsosatis es the other
requiremens. 2

.
Ki @

+ -

5.3.13. Theorem. Let be a setof H(@)formulas. K;(@) is strongly sound

and completefor the classof strongly descriptivetwo-sorted geneal framesde ned
by

Proof: Let beany K}, g, -consistent setof formulas. Let * be the maximal
consisten setextending obtainedfrom Lemmab5.3.12 Applying Theorem5.3.5
we obtain a descriptive two-sortedgeneralframe F sudh that FE  and * is
satis able on F. It follows from the properties of * and the construction of F
that F is in fact strongly descriptive 8 2

Finally, let us considerthe languageH (E).

8Here, we assumewithout loss of generality that the non-standard general frame F used
in the proof of Theorem 5.3.5is a point-generated subframesof the canonical (non-standard)
generalframe.
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5.3.14. Lemma. Every K}, ., -consistentset can ke extende to a maximal

Ki@g -consistentset * suchthat

1. One of the elementsof * is a nominal

2. Forall E(i™” 3'") 2 thereis a nominal j suchthat E(i~ 3j) 2 and
EG™")2

Pro of: Analogousto the proof of Lemma5.3.12 2

5.3.15. Theorem. Let be a setof H(E)-formulas. K;(E) Is strongly sound

and completefor the classof strongly descriptivetwo-sortad geneal framesde ned
by

Pro of: Analogousto the proof of Theorem5.3.13 using Lemma5.3.14 2

Discrete two-sorted general frames

We will now shaw that, besidesstrongly descriptive frames, discrete framesalso

o er an suitable semartics for Ky, K{; g, andK{, g, in the sensehat for all sets

of formulas of the relevant language Ky, , K, 5 andK} . aresoundand
strongly completewith respect to the classof discreteframesde ned by .

There are two routes for constructing discrete frames from consisten sets

of formulas: either directly by a Henkin-style construction, or using our earlier

results by transforming a strongly descriptive frame into a discreteone. We have

opted for the latter.

5.3.16. Theorem. Ky}, , K{ g andKy g arestrongly soundand complete
for the classof discrete two-sorted geneal framesde ned by , whee is any

setof H-, H(@) or H(E)-formulas, respectively.

Pro of: We will prove the casefor H, sincethe other casesare similar. Let be
any K|, -consistent setof formulas. Pick a newnominali. By the (Name) rule,

[ figisalsoKj, -consistent. Hence,by Theorem5.3.1Q [ fig is satis able
on a strongly descriptive two-sortedgeneralframe F = (W; (R3 )3 2mod; A; B) with
FE . LetV bean admissiblevaluation for F and let w be a world sud that
(F;V);wE [ fig. Notethat w2 B. Let V?be the valuation for dsf given by
Vqp) = V(p)\ B for p2 prop and Vi) = V(i) fori 2 nom. It is clear from
the de nition of dsf that V°is admissible.

A straightforward induction argumen showsthat for all H (E)-formulas’ and
for all worldsv 2 B, (F;V);vE ' i (dsF;V9;vE ' . The only non-trivial step
in the induction argumert concernsformulas of the form 3' , and here we use
the fact the F is strongly descriptive.

It followsthat (dsF;V9;wF . By Proposition5.2.8 dsfF F . Hence, is
satis able on the classof discretetwo-sortedgeneralframesde ned by . 2
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5.4 Completeness with respect to Kripke frames

As corollariesof the results of the previoussection,we obtain a number of results
on completeneswvith respect to Kripk e frames. In this section,we will again call
Kripk e framessimply frames.

Firstly, recallfrom Section5.2that pure formulas, very simplemodal Sahlqgvist
formulas and shallov modal formulas are di-persistert. By Theorem5.3.16 we
obtain the following.

5.4.1. Cor ollar y. Let be any setof pure H(@)formulas, very simple modal

Sahlgvistformulas and/or shalow modal formulas. ThenK ;(@) is strongly com-

plete for the classof framesde ned by . Similar for Ky, and K}, g,

Completenesgesults for hybrid logics axiomatized by pure formulas have been
around for a long time, cf. [25, 46].

Next, recall that modal Sahlqgvist formulas and shallov modal formulas are
d2-persistert. By Theorem5.3.], 5.3.5and 5.3.6 we obtain the following.

5.4.2. Cor ollar y. Let be a setof modal Sahlqvistformulas and/or shalow
modal formulas. ThenKy , K@ andKyg are strongly completefor the
classof framesde ned by

As animmediate corollary, we obtain completenessor K, , K}, 5 andKy g
in the casewhere is a set of modal Sahlqvist formulas. In [46], this result was
already obtained for H (E).

Corollary 5.4.2 may still be generalized. Recall from Section 5.2 that the
hybrid formulasi and(p! 3(i”*3p))” (33 q! 30 arealsod2-persister, and
that they de ne the classof frameswith oneelemen and the classof frameswith
the universalrelation, respectively. Corollary 5.4.2holds alsofor axiomatizations
that include besidesmodal Sahlqgvist formulas and shallov modal formulas also
theseformulas.

It is natural to ask whether Corollary 5.4.1and 5.4.2 can be conmbined. The
following result statesthat this is not possible.

5.4.3. Theorem. There is a pure H-formula * and a madal Sahlqgvistformula
suchthat the hybrid logics K {f"; g, K}, of's g and Kjgf" g are not
completefor any classof frames.

Pro of: Consider the following axioms. The rst-order frame conditions they
de ne are given aswell.

(Conuence) 32p! 23p 8xyz(Rxy * Rxz! 9u(Ryu” Rzu))
(NoGrid ) 3@{™3j)! 23! i) 8xyzu(Rxy " Rxz™ Ryu™ Rzu! y=2)
(Func) 3p! 2p 8xyz(Rxy " Rxz! y= 2)
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(Con uence) is a Sahlgvist formula and (NoGrid) is pure. As can be easily
seenfrom the rst-order correspnderts, every frame validating (Con uence) and
(NoGrid) validates (Func). Howewer, (Func) is not derivable from the axioms
(Con uence) and (NoGrid). To seethis, considerthe courtably branching tree
of in nite depth. Let F be the discrete two-sorted generalframe basedon this
structure in which the admissiblesetsare exactly the nite and co- nite sets[21]].
Then F £ (Con uence). For supposeF;V;w 32 p. SinceV (p) admissible,it
must be either nite or co- nite. Sincew satis es 32 p, there must be a point
with only successorsatisfyingp. Sinceewvery point hasin nitely many successors,
it follows that V(p) must be in nite, henceco- nite. It follows that ewery world
has a successosatisfying p, and therefore,F;V;w F 23 p.

Finally, obsene that F = (NoGrid) and F 6] (Func). 2

It wasshawvn in [98] that if attention is restricted to versatile frames(i.e., frames
containing for eat modality alsoits cornverse),all modal Sahlgvist formulas are
di-persistert.® It follows that Corollary 5.4.2and 5.4.1 can be conbined in the
caseof tenselogics. In connectionto this, it is alsoworth mertioning Goranko
and Vakarelov [59], who proved, in the cortext of reversive hybrid polyadic modal
logic, that every Sahlqgvistformula is provably frame equivalent to a pure formula.

Con uence seemdo bethe mostnatural frame condition that is de nable by a
Sahlqgvistformula but not by a pure formula (cf. Section4.2). Onemight therefore
askif there is still a systematicway to obtain completeaxiomatizationsfor frame
classede nable by a set of pure formulas together with the con uence formula.
One possibility is to replacethe con uence axiom by the following inferencerule.

If ~ @3j"@3k! @31 @3I! then™
provide i; j; k; | are distinct and | does not occur in

Read from bottom to top, this rule says that in order to prove a formula' , one
may introducea newnominal |, and assumethat @3] * @3 k! @31 @3 1.
It wasprovedin [19] that for all sets of pure H(@)-fornulas, the axiomatization
K@ extendedwith the above rule is completefor the classof con uent frames
de ned by . In fact, the authors show that this strategy for obtaining complete
axiomatizationscanbe applied not only to the con uenceproperty, but to awider
classof properties not de nable by pure formulas. Goranko and Vakarelov [58]
provide similar resultsfor M (D), the extensionof the basicmodal languagewith
the di erence operator.

The completenesgesults mertioned so far only apply to elemertary, or at
least canonicallogics. There are a number of non-elemetary complete modal
logics. Examplesinclude GL, Grz and PDL . One might wonder whether the

%It is more commonto speak about versatile languagesthan versatile languages. However,
in order to prevert any further proliferation of hybrid languages,and since all languageswe
treat are already multi-mo dal in general,we have chosento de ne versatility in terms of frames.
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correspnding hybrid logics are also complete. In Chapter 8, we will shav that
this is indeed the case. In fact, we will shaov for a reasonableclass of modal
formulas ' that completenessof Ky f' g implies completenessof K f' g and
Ku@f' 9. In connectionto this, it is worth noting that generalcompleteness
resultsfor non-elemetary hybrid logicshave beenproved [83, 69, but that these
resultscrucially involve the useof! -rules,i.e., inferenceruleswith in nitely many
antecederts.

5.5 On the status of the non-ortho dox rules

Corollary 5.4.1crucially dependson the additional inferencerulesof K |, K ;(@)

and K}, g . Theserulesarenon-orthodox, in the sensehat they involve syrtactic
sideconditions. Sud kinds of rules, sometimescalled Gabbay-Burgess-syle rules,
were rst introducedby Burgess[26] and Gabbay [44] around 1980,in the context
of temporal logic. It is natural to askif a result alongthe lines of Corollary 5.4.1
could be obtained without the useof sud rules. A number of things can be said
in this respect.

Recallthat a frame classK is called versatile if for eady modality 3 there is
a modality 3 sud that the accessibiliy relation of 3 is the corverseof the
accessibiliy relation of 3 for all framesin K. A typical example of a versatile
frame classis the classof symmetric frames, as the corverse of a symmetric
relation is the samerelation. In can be shown that, on versatile frame classes,
the rules (Paste), (BG) and (BGg) are derivable 1°

In the remainder of this section, we will de ne the notion of an orthodox in-
ference rule, and we will shav that every axiomatization for H(@) that complete-
for-pure-extensionsin the senseof Corollary 5.4.2 cortains either non-orthodox

0Here, we will give a derivation of the (BG) rule as an example. The other rules can be
derived in a similar way.

1. @3j! @' (Assumption)

2.0 @23 '} (Tenseaxiom)

3.°@3 li! @3 (i”~3k) (From2 by (K), (Kg), (Nec) and (Necg))
4.0 i73j1 @3j ((Intro))

5.° @3 Yi”"3j)! @3 '@3j (From4,by(K) (Kg) (Nec) and (Necg))
6. @3 '@3j! @3] (By (Back) and (Agree))

7. @3 ! @3j (From3,5and6 by (MP))

8. @3 ! @ (From7and1by (MP))

9. @@ ti! ') (From8by (Kg) and (Selfdual)

10. ° 3 %! ' (From 9 by (Name))

11. > @23 li! @2 (From 10, by (K), (K@), (Nec) and (Necg))

12. > @23 i (From 2 by (Subst)

13. " @2 (From 11 and 12, by (MP))

Cf. Goranko [54] for a more general discussionof the derivability of such rules in versatile
languages.
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rules or in nitely many rules.
By an orthodox inferencerule we meana rule of the form

T i on) & & Tk aiinon)

Here, 1;:::; n arevariablesranging over arbitrary formulas, and are implicitly
universallyquarti ed. As usual,the formulasabovethe line indicate the premises
of the rule, and the formula below the line indicates the conclusion. In the
presenceof a modus ponensrule (together with enough propositional axioms),
we can assumewithout lossof generality that there is only a singleanteceden (a
big conjunction), henceall orthodox rules can be assumedo be of the form

In fact, we may assumethat ' and do not cortain any proposition letters (any
proposition letter p occurring in * or may be safely replacedby a variable

n+1). In other words, we may assumethat * and arebuilt up from q;:::; |
and nominals, using the Boolean connectives, modal operators and satisfaction
operators. The rank of sud a rule will be n. For example,the rank of the Nec
rule is 1. A rule preservesvalidity on a classof framesF, if for all formulas
desiredresult: no nite collection of orthodox rules can be completefor all pure
extensions,even if we take as axiomsall validities of H(@).

5.5.1. Theorem. Let be any axiomatic systemthat contains as axioms all
H (@)formulas that are valid on every frame, and that contains a nite numkler
of orthodox inference rules, plus madus ponensand substitution rule. Then there
is a set of H({@)formulas suchthat extende with the formulasin as
axiomsis not sound and completewith respct to the classof framesde ned by

Pro of: Let n be the maximal rank of the orthodox rulesof | this information
is all we needto construct a pure extensionthat is incomplete with respect to
the frame classit de nes. Dene to be the set consisting of the S5 axioms,

together with the following pure formula:
N

3i| ! - 3(ik/\i|):
11 2"+2 1 k<l 2"+2

Let + bethe axiomatic system enriched by the axiomsin  (closedunder
modus ponens,substitution and the other rulesof ). Let F bethe classof frames
de ned by , i.e.,the classof all S5framesin which ead world hasat most2"+ 1
successorsEither the rulesof presene validity on F or they do not. If they do
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not, soundnesss lost and there is nothing to prove, so assumethat the rules of
do presene validity on F. We shall now shav that + is not completefor F.
Let M be the classof models basedon framesin F. Let F = (W;R) be the

MC= MJ f(F;V)jV isavaluation for F sud that V(i) = V(j) for all nominals
i;jg. Weshall shav that + is soundfor the classof models M°

Claim 1: All axiomsof + arevalid on M% Moreover, validity on M°
is closedunder modus ponensand under uniform substitution of formulas for
proposition letters and nominals for nominals.

Pro of of claim: The proof of Claim 1 is straightforward and is left to the
reader. a

Claim 2: All formulasvalid on F with at most n proposition letters are valid
on MC°

Pro of of claim: Let' be aformula with at most n proposition letters, and
supposefor the sake of cortradiction that Fi= ' and M°&j ' . Then thereis a
valuation V and a world w sudh that F;V;w : ', and sud that V assigns
the sameworld to ead nominal. Consider the bisimulation cortraction of
(F; V) with respect to the proposition letters and nominalsoccurringin ' , i.e.,
the quotient of (F; V) with respect to the largestauto-bisimulation, alsocalled
strongly extensionalquotient [1]. Sinceonly n proposition letters occur in ',
and all nominals are true at the sameworld, the bisimulation cortraction of
(F; V) (over this restricted vocabulary) has at most 2" + 1 worlds; hence,its
underlying frame is in F. It followsthat F & ' , which cortradicts our initial

assumption. a

Claim 3: All inferencerulesof presene validity on M°

Pro of of claim: Considerany rule of of the form

with m  n, and supposethat M° 1;::1; m) for particular formulas

in 1;:::; m. We then obtain pure formulas 1;:::; m, and by Claim 1 it
follows that M ' ( 1;:::; m). Let pi;i:i:;pm be new, distinct proposition
letters. Then it follows that

MPE " ((pr 2" (PuiisiPm)  1iini(Pm 2" (PiiiiPm)  m))
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where (' ) is shorthandfor ( ~')_(: ” ). Hence

FE'((Pr 2" (Py:i5Pm)  1)ii5(Pm 2 (P55 Pm)  m))

FE ((p1 2" (Pu:iitipm) )i (Pm 2" (PuiiiiPm)  m))

Sincethis formula contains at most n proposition letters, it follows by Claim 2
that

ME (1 2 (ot m) oiinCm 2°Cuis m) m)
Recallthat MO ' ( 1;::1; ). It followsthat MO (i 2" ( 1;::55 m)
)$ . Hence, M°F  ( 1;::: m). a

It followsthat + is soundwith respectto M But now considerthe following
formula A

= 3p ! - 3(Mp)

10 2n+2 1 igj 2n+2

Notice that M°6j . By Claim 1{3, it followsthat + 6 . HowewerFgE . It
followsthat + is not completefor F. 2
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Interp olation and Beth de nabilit y

In this chapter, we study interpolation and Beth de nabilit y properties of hybrid
logics. Recallthe interpolation property from Section2.5. In the setting of hybrid
logic, there is a choiceto be made concerningthe de nition of the interpolation
property. The rst, and moreconsenative option is to requirethat the interpolant
of a valid implication must cortain only proposition letters occurring both in the
antecedenm and in the consequet No restriction is made on the occurrenceof
nominalsin the interpolant. The more daring option would be to require that
both the proposition letters and the nominals occurring in the interpolant occur
both in the anteceden and the consequeth We will refer to these options as
interpolation over proposition letters and interpolation over proposition letters
and nominals. Note that we only considerlocal interpolation.

Areces,Blackburn and Marx [5] werethe rst to considerinterpolation in the
context of hybrid languages.They proved that H (@) doesnot have interpolation
over proposition letters and nominals, with respect to the classof all frames,but
that interpolation may be regainedby extendingthe languageof H (@) with state
variables and a #-binder. The languageobtained in this way, H(@, #), will be
discussedn detail in Chapter 9 of this thesis.

Subsequen results were proved by Conradie in his Masters thesis [34]. He
shoved that H (@) lacks interpolation over proposition letters and nominals even
with respect to the classof S5 frames, but that it hasthe Beth property with
respect to this classof frames.

This chapter preserns the following new results. First, we will show that the
languagesH, H(@) and H(E) have interpolation over proposition letters with
respect to many frame classesjncluding the classof all frames. As a corollary,
we will obtain the Beth property for H(@)and H(E). On the other hand, we will
seethat the Beth property fails for H.

Next, we will show that H, H(@) and H(E) lack interpolation over nominals
in a strong sense. In fact, we will showv that the least expressie extension of
H (@) with interpolation over proposition letters and nominalsis H (@ #), and

93
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that the least expressie extensionof H(E) with interpolation over proposition
letters and nominalsis the rst order correspndencelanguagel .
The results preserted in this chapter are basedon [30] and [2§].

6.1 Motivations for studying interp olation

Before we plunge into technical details, let us briey discussdi erent types of
interpolation, and motivations for studying them.

The rst questionto be addresseds probably why interpolation is important.
One answver to this questionis that interpolation is important as a modularity
principal. Supposethere are two system speci cations, knowledge bases,or in
general,setsof formulas, and . Now, suppose and cortradict ead other.
Then the interpolation property (in combination with compactness}ells us that
there is a sertence' in the commonlanguage,on which and disagree. In
other words, there are no unexpected interactions.

Other reasonswhy interpolation is important include the fact that it can be
usedas a lemmafor proving the Beth property and other presenation theorems
(cf. Craig's original article [39)), and that interpolation has beenconsideredan
indicator for the existenceof nice, cut-free sequenm calculi for the logicin question,
cf. for instance|[8, pagel7].

A more detailed discussionof interpolation and motivations for studying it
can be found in Hoogland's dissertation [65].

Apart from the general motivation for studying interpolation, there is the
following issue.

What type of interpolation should a good hybrid logic have? Inter-
polation over nominals, or only over proposition letters? And, what
about modalities?

It is hard to giveageneralanswer, but afewthings canbesaid. In orderto beable
to derive the Beth property, it is enoughto have interpolation over proposition
letters. On the other hand, when interpolation is usedas a modularity principle,
interpolation over nominals is desirableaswell. In tenselogics, wherethere are
two modal operators, there is no obvious needfor interpolation over modalities.
On the other hand, from the viewpoint of descriptionlogics wheremodalities are
considerednon-logical operators, just like proposition letters, interpolation over
modalities is desirable.

Finally, it shouldbe mertioned that, besideshe type of interpolation studied
in this thesis,which is sometimescalledlocal interpolation or arrow interpolation,
there is anothertype of interpolation called glokal interpolation or turnstile inter-
polation. More information about the latter type of interpolation and its relation
to the local interpolation property can be found in [65].
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6.2 Interp olation over proposition letters and the Beth prop-
erty

We saw in Section2.5that the basicmodal languagehasinterpolation relative to
any elemenary classof framesclosedunder bisimulation products and generated
subframes. As we will now shaw, this result generalizeso hybrid logic, in the
sensethat the languagesH, H(@) and H(E) have interpolation over proposition
letters relative to sudh frame classes.

For any formula' , let prop(' ) denotethe setof proposition letters occurring
in ' . We say that a hybrid L hasinterpolation over proposition letters relative
to a frame classK if the following holds: for all L-formulas’;, ,if K ' !
then thereisa L-formula # sudhthat KF ' ! # KF #! and pr op(#)

prop(* )\ prop( ).

6.2.1. Theorem. Let K be any elementaryframe classclosal under geneated
subframesand bisimulation products. Then H(@) hasinterpolation over proposi-
tion letters relative to K.

Pro of: Let K be any elemenary frame classclosedunder generatedsubframes

and bisimulation products,let K= " ! | and supposefor the sake of cortradic-
tion that there is no interpolant for this implication. Let Cons(' ) be the set of
H(@)-formulas sudthat K ' ! andprop( ) prop(')\ prop( ). By

the sameargumert usedin the proof of Theorem2.5.3 we can construct models
M ;N basedon framesin K, with corresppnding worlds w; v, sud that

aQ) M;wE Cons(")[ 1 g
(2) N;vE Cons(" ) [ f' g,

(3.) For all H(@)-formulas# with prop(#) prop(' )\ prop( ), M;wE #,
N;vE #.

SinceK is closedunder generatedsubframes,we may assumethat M and N are
generatedby w respectively v, together with all points namedby nominals.

Let M* and N* be! -saturated elemeniary extensionsof M and N. SinceK
is elemenary, the underlying framesof M* and N* arein K. De ne the binary
relation Z betweenthe domainsof M* and N* by letting dZe if for all H(@)-
formulas with prop( ) prop(')\ prop( )thenM*;dE , N¥;ef
In other words, dZe if d and e cannot be distinguished by a H(@)-fornula in
the commonvocabulary of * and . With the common vocabulary of ' and
we meanthe vocabulary that contains all nominals, but that cortains only the
proposition letters that occur both in ' and in . Note that, by construction,
WZVv.

Claim 1: Z is atotal H(@)-bisinulation betweenM ™ and N*, with respect
to the commonvocabulary of* and
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Pro of of claim: It follows from Theorem 4.1.2 that Z is an H(@)-
bisimulation betweenM* and N*, with respect to the common vocabulary
of' and . It only remainsto shaw that Z is a total H(@)-bisirulation. Let
d be any point of M*, andlet = fST,(')jM*";dF ' g. We will show that

is realized by somepoint e of N*, and hencedZe. By ! -saturatednessof
N*, it suces to shav that every nite subsetof isrealizedin N*.

Let STy( 1);:::;STx( n) 2 . SinceM™* is an elemenary extensionof M
and M* F 9X:(STy( )" N STye( n)), we have that M F 9x:(STy( ) "
N STy( n)). SinceM is generatedby w together with all points namedby
constarts, eitherM;wE 3;  3,( 1" NyporMwE @37 30( N
AN ) for somenominal i and sequenceof modalities 3; 3. In either
case,it follows by (3.) that ;~ N, is true at somepoint in N, henceis
true at that point in N*.

A symmetric argumert shows that for every point e of N* there is a point d
of M™ sud that dZe. a

Let F and G be the underlying framesof M*™ and N*. Then, in particular, Z
is a total frame bisimulation betweenF and G. Hence, by Proposition 2.5.2
there is a bisimulation product H 2 K of F and G of which the domain is Z.
By the de nition of bisimulation products, the natural projectionsf : H! F
and g : H! G are surjective bounded morphisms. For any proposition letter
p2prop('), let V(p) = fuj M*;f(u) F pg, and for any proposition letter
p2prop( ), let V(p) = fuj N*;g(u) F pg. The properties of Z guarartee
that this V is well-de ned for p 2 prop(" )\ prop( ). For any nominal i, let
V(@i)=fujM*;f(u) F ig= fuj N";g(u) F ig. Again, the properties of Z
guararteethat V(i) is well-de ned, and that it is a singletonsetfor ea¢ nominal
i.

Finally, by a standard argumert, the graph of f is a H(@)-bisinulation be-
tween(H;V) and M* with respect to the proposition letters and nominals oc-
curing in ' , and the graph of g is a bisimulation between(H;V) and N* with
respect to the proposition letters and nominals occuring in . It follows that
(H;V);hw;vi ' ~: . This cortradicts our initial assumptionthat K = ' ! :
2
6.2.2. Cor ollar y. Let K be any elementaryframe class closel under bisimu-
lation products. Then H(E) hasinterpolation over proposition letters relative to
K.

Pro of: Given a frame class K, let K° be the class f(W;(R3)32mod; Re) |
(W;(R3)32mod) 2 K and Re = W?2g. Clearly, every H(E)-formula, when inter-
preted on K, can be seenasan H-formula interpreted on K° This, together with
the fact that @-operators are de nable in terms of E, implies that H(E) hasin-
terpolation on K if H(@) hasinterpolation on K°. Now, K is trivially closedunder
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generatedsubframesandit is not hard to seethat Kis closedunder bisimulation
productsi K is. Finally, K°is elemenary i K is. Combining theseobsenations,
the result follows. 2

The casefor H turns out to be more complicated.

6.2.3. Theorem. Let K be any elementaryframe class satisfying the following
conditions.

1. K is closal under geneated subfamesand bisimulation products

2. For any frameF, if everypoint-geneiated subfameof F is a proper geneated
subflame of a framein K, thenF 2 K.

Then H hasinterpolation over proposition letters relative to K.

Pro of: Let K be any elemerary frame classsatisfying the given conditions, let
KgE " !, andsupposefor the sake of cortradiction that thereis no interpolant
for this implication. Let Cons(' ) bethe setof H-formulas sudthat K ' !
andprop( ) prop(")\ prop( ). By the sameargumert usedin the proof
of Theorem 2.5.3 we can construct models M ;N basedon framesin K, with
correspnding worlds w; v, sud that

@) M;wE Cons(")[ 1 g
(2) N;vE Cons(" ) [ f' g,

(3.) For all H-formulas # with prop(#) prop(')\ prop( ), M;w E #,
N;VvE #.

We can distinguish two cases.

(a) Supposeewery point of M namedby a nominal is readablefrom w. It follows
from (3.) that alsoewery point of N namedby a nominal is reacable from
v. Let M, and N, be the submadels of M and N generatedby w and
v respectively, and let M ;, and N be! -saturated elemenary extensionsof
these. Note that, sinceK is elemeniary and closedunder generatedsubframes,
the underlying framesof M}, and N} are in K. De ne the binary relation
Z betweenthe domainsof M, and N, by letting dZe if d and e cannot be
distinguished by a H-formula in the commonvocabulary of ' and . With
the common vocabulary of © and  we mean the vocabulary that consists
of all nominals, plus those proposition letters that occur both in * and in

. By construction, wZv. A similar argumert as for Claim 1 in the proof
of Theorem6.2.1that Z is a total H(@)-bisirulation betweenM ;, and N7,
with respect to the commonvocabulary of ' and . We may now proceedas
in the proof of Theorem6.2.1to shov that * ~ : is satis able on a frame
in K, which cortradicts out initial assumptionthat K * !
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(b) Suppose not ewvery point of M named by a nominal is readable from w.
It follows from (3.) that alsonot every point of N namedby a nominal is
reachable from v. Let M = (F;V) and N = (G;V9, and let F, and G, be
the subframesof F and G generatedby w and v, respectively. Let FS, be a
disjoint isomorphiccopy of F,,, and considerthe framesF,,] F, and G,] F2.
It follows from the closureconditions of K that theseframesare in K.

De ne respective valuations V; and V, for F,,] F% and G, ] F?, asfollows,
wherex is a xed elemen of F2.

Va(p) = M (P)\ Fu
. fug if V(i) = fugwith u2 F
Vi(i) = f .
Xg otherwise

Vo(p) = VAP \ Gy
. fug if VYi) = fugwith u2 G,
Vo(i) = ; .
Xg otherwise

A simple argument using H-bisimulations shows that (F,, ] F%;Vi);w and
(Gy] F%;V,);v still agreeon all H-formulas in the common vocabulary of
' and , andthat it is still the casethat (F, ] F%;Vi);w E ' and (G, ]
FO:VL);v E : . Finally, we proceedasin (a) using! -saturated elemertary
extensionsof (Fy, ] F9; V1) and (G, ] F2; V). 2

As a corollary of these interpolation results, we obtain the Beth property for
hybrid logicsof elemenary frame classeslosedunder bisimulation products. Let

. - . . qal
usbrie y recallthe de nition of the Beth property. Wewill usef= ° to referto the

global ertailment relation, relative to the frame classk, i.e., j:gKIO ' meansthat
for all modelsM basedon a framein K, if M globally satis es all formulasin
then M globally satis es' . For a setof formulas ( p) cortaining the proposition
letter p (and possibly other proposition letters and nominals), we say that ( p)
implicitly de nes p, relativeto aframeclassK, if ( p)[ ( pPYF%°p$ p° Here,
p?is a proposition letter not occurring in , and ( pY is the result of replacing
all occurrencesof p by p°in ( p). A languagel is saidto have the Beth property
relative to a frame classK if whene\er a set of L-formulas ( p) implicitly de nes
a proposition letter p, relative to K, then there is a formula # in which p does
not occur, sud that f ﬂ'o p$ #. The relevant formula ' is called an explicit
de nition of p, relativeto and K.

6.2.4. Theorem. If K is a elementaryframe classclosa under geneated sub-
framesand bisimulation products, then H (@) hasthe Beth property relative to K.
If K is a elementaryframe classclosal under bisimulation products, then H(E)
hasthe Beth property relative to K.
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Pro of: The basicargumern is the sameasin the proof of Theorem2.5.4 We will
only prove the result for H(@), sincethe argumen for H(E) is similar. Further-
more, for easeof presemnation we restrict attention to the uni-modal case. The
proof generalizesasily to languagescortaining more modalities.

Let ( p) be any set of H(@)-setencescortaining the proposition letter p
(and possibly other proposition letters and nominals), and suppose implicitly
de nes the proposition letter p, relative to K. Let p° be a new proposition letter,
and let ( p% be the result of replacing all occurrencesof pin by p° Then,
by the de nition of implicit de nability, (p)[ (pP) FZ°p$ p° Let (p) =
f2" @2 j' 2 (p);n2!;i 2 nomg, anddene ( p% similarly.

Clam 1: (p)[ (P)Fxp$ P

Pro of of claim: SupposeM;wE (p)[ ( pY for somemodel M basedon a
framein K. Let M, be the submadel of M generatedby w. By closureunder
generatedsubframesthe underlying frame of M %is alsoin K. By construction
of , M, globally satis es ( p) and ( p9. It followsthat M ; w globally satis es
p$ p° andhenceM;wiE p$ p° a

By compactnessthereis\p nite subsgt 0 sudthat o(P)[ o(PYExkP$ P°
It followsthat Fx (P~  oP) ! (  o(P)! pY. Let # be an interpolant for
this implication. Then the following facts hold.

1. The proposition letters p and p°® do not occur in #.

, v
2. Fk (P op)! #

\Y
3R # ! ( o) ! p%, and hence,by uniform substitution, Fx # !
( oP! p).

We concludethat o(p) Fx p$ #, andhence ( p) F%°p$ #. 2

Surprisingly, the samedoesnot hold for H. Call a frame F n-cyclic (n 2 !) if
FE p! 23 "p, ie.,if every transition (w;Vv) in in F is part of a directed cycle
of length at most n + 1. Call a frame cyclic if it is n-cyclic for somen 2 !.
Cyclicity is a rather strong condition. For instance, re exiv e transitive frames
are in generalnot cyclic, although symmetric framesare.

6.2.5. Pr oposition. Let K be any frame classthat contains a non-cyclic frame.
Then H lacksthe Beth property relative to K.

Proof: Let =fp! i;j~q! 3(@{"*p);j~:q! 3(i":p)g. Then implicitly
de nes p, sincein any model that globally satises , p holds nowhere besides
possibly at the point namedi, and it holdstherei q holds at the point named
j - Now, assumefor the sale of cortradiction that there is an explicit de nition
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of p, i.e., aH-formula' not containing p sud that j:fi'o p$ '. Letnbethe
modal depth of ' .

SinceK conains a non-cyclic frame, we can nd a frame F 2 K with worlds
w; Vv sud that wRv and w is not reacable from v in n or lesssteps. Let V; be
the valuation for F that sendsi to v, j to w, pto fvg and qto fwg. Let V, be
the valuation that sendsi to v, j to w and that sendsp and g to ;. Note that
(F; V1) and (F;V,) both globally satisfy . A straightforward argumert shows
that (F;Vy1);v and (F; V,); v cannot be distinguishedby any H-formula of modal
depth n. It followsthat ' cannot distinguish thesepoints. This cortradicts the
fact that (F;Vi);vFE ' and (F;Vo);vE @' . 2

6.3 Interp olation over nominals

We will now considerinterpolation over nominals. What follows now canbe seen
asa warming up for Section6.4, wherea strong negative interpolation result will
be giventhat generalizeghe results of this section.

Recall that for a formula ' , prop(' ) denotesthe set of proposition letters
occurring in ' . Likewise,let nom(' ) denotethe set of nominals occurring in ' .
For L one of the languagesH, H(@) and H(E), and for K a classof frames, we
sa&y that L hasinterpolation over nominals relative to K if the following holds:
for all L-formulas’; ,ifKE ' I then there is a L-formula # sud that
KF' ! # K #! ,andnom(#) nom(' )\ nom( ).

It is quite easyto seethat this version of interpolation fails for H, H(@)
and H(E), relative to the classof all frames. Consider for instance the valid
implication i ~ 3i ! (j ' 3j). An interpolant for this implication has to
expressthat the current world is related to itself, without using any nominals.
An easybisimulation argumert shows that this is not possible,not even in the
languageH (E).

Two strategiescan be usedin order to repair this failure of interpolation: one
can either restrict attention to a speci ¢ classof frames, or extend the expres-
sivity of the languagesothat the relevant interpolants can be expressed.In the
remainder of this section, we follows the rst strategy, and in the next section,
we follow the secondone. Our results will be formulated in terms of the hybrid
languageH (@, #), that will beintroducedin detail in Chapter 9, whereits syntax
and semarics are given, and also interpolation for this languageis studied. To
appreciate the following theorem, it is worth noting that H(@; #) is a very ex-
pressie, undecidablelanguage,and that it hasinterpolation over nominals and
proposition letters (relative to many frame classes).

6.3.1. Theorem. Let K be any frame class. If H(@) has interpolation over
nominals on K thenit is as expressiveas H (@, #) on K.

Pro of: Supposethat H (@) hasinterpolation over nominalson K. We will show
that every H(@;#) sertence’ is equivalert (on K) to an H(@) formula. We
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proceedby induction on the length of ' . The only interesting caseis where'

is of the form #x: (x). Let i andj be nominals not occurring in #x: (x). By

induction, we know that (i) and (j) areequivalert to H(@)formulas i) and
qj) respectively. Now, the following implication is valid:

KEir %) G 4

Let # be any interpolant for this valid implication. We will shawv that # is equiv-
alert to #x: (x).

Considerany model M and world w suc that M ;w | #x: (x). Let M [i=w]
bethe modelthat di ers from M only in the fact that i denotesw. Sincei doesnot
occurin #x: (x), we havethat M [i=w];w E #X: (x), henceM [i=w];w F i (i).
It follows that M [i=w];w F #. Sincei doesnot occur in #, it follows that
M;w F #. Conversely supposeM;w F #. Let M[j=w] be the model that
diers from M only in the fact that j denotesw. Sincej does not occur in

#, we have that M[j=w];w E #. It follows that M[j=w];w F | ! (1), and
henceM [j =w];w F #x: (x). Sincej doesnot occurin #x: (x), it follows that
M;wE #: (X). 2

6.3.2. Theorem. Let K be any frame class. If H(E) has interpolation over
nominals on K then it is expessivelycompletefor L! on K.

Pro of: The proofis similar to that for Theorem6.3.1, usingthe fact that H (E; #)
is expressiely equivalert to the rst-order correspndencelanguagel . 2

Theseresults canbe interpreted asvery strong negative interpolation results. For
instance,as a corollary of Theorem6.3.2, we obtain the following.

6.3.3. Cor ollar y. H(E) lacksinterpolation over nominals on any non-empty
madally de nable frame class.

Pro of: Let K beany non-empty modally de nable frameclass,andlet F 2 K. Let
G bethe disjoint union of three isomorphiccopiesof F. By closureunder disjoint
unions,G 2 K. Let w 2 F, and let wy; w,; ws denotethe disjoint copiesof w in G.
Let V and V° be valuations for G suc that V(p) = fwig and VYp) = fwy; w.g.
One can easily seethat the models (G;V) and (G;V9 are H (E)-bisimilar. It
follows that the L*-formula 9xy:(x 6 y”* Px” Py) is not expressiblein H(E) on
K. 2

We leave it as an open question whether there is an analogueof Theorem 6.3.1
and 6.3.2for H. At any rate, it is clearthat interpolation over nominalsfails also
for H on many frame classes.
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6.4 Repairing interp olation

In this sectionwe are again concernedwith interpolation over nominals. As we
mertioned in the previous section,oneway to repair the failure of interpolation
for H, H(@) and H(E), is to increasethe expressiviy of the language,sud that
the requiredinterpolants can be expressed.n this section,we shaw that H (@, #)
is the least expressie extensionof H(@) with interpolation, and that the rst-
order correspndencelanguagel ! is the least expressie extensionof H (E) with
interpolation. With interpolation, we will mean interpolation over proposition
letters and nominals.

In orderto state theseresults precisely we needto give an abstract de nition
of what courts asa language.We will now give such a de nition. We will assume
a xed setof (unary) modalities mod. A signatureis a pair = (prop ;nom )
of disjoint setscortaining proposition letters and nominals respectively. We will
often be sloppy by using to denotethe union prop [ nom . For instance,we
will write instead of pr op prop & nom nom .

Givena signature , a (pointed, but not necessarilypoint-generated) -model
is a structure M = (F;V;w) whereF = (W;R3)32moq iS a frame,V : prop [
nom ! } (W) a valuation and w 2 W a world. As usual, we require that
jV(i)j = 1for all i 2 nom . The classof all -modelsis denoted by St ].
Furthermore, for any classof framesF, Stre[ ] will denotethe classof -models
of which the underlying frame belongsto F.

Two operationson modelswill be usefullater on. Firstly, arenaming : !
is a mapping from to that respectsthe sorting: it mapselemerts of pr op
to elemerts of pr op and elemens of nom to elemerts of nom . For any model
M = (F;V;w) 2 Strff Jandrenaming : ! ,letM bethe -model(F; V;w).
Secondlyif M 2 Str[ ] and , then M denotesthe -reduct of M, i.e.,
the -model that is obtained from M by \forgetting" the interpretation of n .
We write K for fM iM 2 Kag.

6.4.1. Definition (Hybrid langua ges). A hybrid languageis a pair (L;E
), whee L is a map from signatures to setsof formulas, and F is a relation
betwesn formulas and madels satisfying the following conditions.

1. Expansion Prop erty. If thenL[ ] L[ ]. Furthermore, for all
"2L[]andM 2 St ], M EFEL" I M FL'. ForM 2 St ], the
statementM E ' is de ned (i.e., true or false) if andonly if * 2 L[ ].
Otherwise, it is unde ned.

2. Renaming Prop erty Forall' 2 L[ Jandrenamings : ! | thereis
a 2L[]suchthatforallM2Stf],MF I M E".

De nition 6.4.1is inspired by similar onesoccurring in the literature on abstract
model theory [8]. Sincethe de nition is rather general,one might ask what is
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still madal, or hybrid, about theselanguages.The two main distinctively modal
featuresin De nition 6.4.1are (1) the fact that that the structures we work with
are pointed, re ecting the fact that modal formulas are always evaluated locally,
and (2) the strict distinction betweenmodalities on the onehand and proposition
letters and nominals on the other hand. The importance of this distinction will
becomeclear later on, whenwe'll considerspeci ¢ classeof frames.

Some shorthand notation will be corveniert. Firstly, by a slight abuse of
notation, we will useL alsoto referto the pair (L;F ). Secondly givena model
M = (F;V;w) and an elemen v of the domain of F, we will use(M ;v) to denote
the model (F;V;v). Thus, with M;v F ' we mean (F;V;v) F '. Next, for
"2L[ ] letMod (")=fM 2St] ]]MF_"'g. ForM 2 Stf Jand" 2 L[ ],
let [ M = fvjM;viE g, ie., the subsetof the domain of M de ned by ' .
Finally, the symbol = will be usednot only to refer to the satisfaction relation,
but alsoto the local conse@uene relation: for [f g L[ J,wesaythat F. '
i forallM 2 St ], it holdsthat if M . ' for' 2 thenM F_

Often, we will restrict attention to a speci ¢ frame classF. In thesecaseswe
will write Mod,_ (" ) fortrl\/l 2 Streg[ ]JM FL ' 0. Likewise,for [ f g L[],
wesay that Fo ' 1 ., Mod (') Mod ().

6.4.2. Definition (Extensions of hybrid langua ges). LetL;L°behybrid
languages.Then L° extendsL relative to a frame classF (notation: L ¢ L9 if
the following holdsfor all signatures and proposition letters py;:::;pn (n 0).

Note that De nition 6.4.2 concernsexpressiveextensionsrather than axiomatic
extensions. As a special case(take n = 0), we have that wheneer L ¢ L%and

2 L[] thereisa 2 L9 ] suc that Mod, (' ) = Mod oe( ). Howewer,
De nition 6.4.2 provides more information: it ensuresthat L° is closedunder
the basic operations of L, sud as negation. For, supposeL ¢ L%and L has
negation. Then for any ' 2 LC (: p)P~ 1 expresseshe negationof ' . De nitions
like De nition 6.4.2are quite commonin the literature on abstract model theory.
Incidentally, sudh de nitions makes senseonly for languagesL that are closed
under substitution of formulas for proposition letters, since otherwiseit might
happenthat L 6 L. All languagesthat we will be concernedwith are closed
under substitution.

The languagesH, H(@)and H (E) are hybrid languagesn the senseof De ni-
tion 6.4.1 Similarly, H(@#) is a hybrid languageif we consideronly serences,
not formulas with free variables. Finally, the rst-order correspndencelanguage
L! constitutes a hybrid language,if we consideronly formulas with at most one
free variable.
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Finally, let us de ne interpolation, by which we will meaninterpolation over
proposition letters and nominals. Using the terminology of this section,interpo-
lation can be de ned asfollows.

6.4.3. Definition (Interpola tion). A hybrid languagelL has interpolation
on a frameclassF if forall' 2 L[ Jand 2 L[ ]suchthat' F_ . , thereis
a#2L[ \ ]suchthat' F .g# and#F ¢

The readershould keepin mind that = . denotesthe local ertailment relation.
Now for the main result of this section.

6.4.4. Theorem. Then the following hold for any frame classF.

(i) For all hybrid languaged., if H(@) ¢ L andL hasinterpolation on F then
H(@#) rL

(i) For all hybrid languaged., if H(E) ¢ L andL hasinterpolation on F then
LT FL

Theseresultscanbe interpreted asgeneralnegative interpolation results, or, from
another perspective, as characterizations. For instance, sinceH (@, #) hasinter-
polation (aswill be shavn in Chapter 9), Theorem6.4.4i) characterizesH (@, #)
as the smallestextensionof H(@) that hasinterpolation. Similarly, when com-
bined with Lindstrom's characterizationof rst-order logic[77], Theorem®6.4.4ii)
singlesout rst-order logic as the unique extensionof H(E) with interpolation,
compactnessand the Lowenheim-Slkolem property.

Note that Theorem6.3.1and 6.3.2are special casesof Theorem6.4.4

The remainderof this sectionis dewted to the proof of Theorem6.4.4 First,
we prove an adapted version of well-known lemma relating interpolation with
projective classes[8].

6.4.5. Definition  (Pr ojective classes). Let be a signature, and let K
Stre[ ]. Then K is a projective classof a hybrid languageL relative to a frame
classF if thereisa"' 2 L[ ] with , suchthat K = Mod,_ (" )

6.4.6. Definition  (Negation). A hybrid languagelL hasnegationon F if for
each' 2 L[ ] thereis an formula of L[ ], whichwe will denoteby: ' , suchthat
Mod, () = Stre[ [nMod, (" ).

6.4.7. Lemma. Let L be a hybrid languagewith negation that has interpolation
on a frame classF, and let K  Stre[ ], for somesignature . If both K and
Stre[ ]nK are projective classesof L relativeto F, thenthereisa' 2 L[ ] such
that K = I\/|0d|_;|:(I )
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Pro of: SinceK is a projective class,there is a formula ' 2 L[ ], with ,
sud that K = Mod,.((' ) . Likewise, since Stre[ ]nK is a projective class,
thereis aformula 2 L[ 9, with 9 such that Stre[ JnK = Mody.¢( )
Without loss of generality, we may assumethat \ °=  (by the Renaming
property of L). It followsthat ' F_.r: . SinceL hasinterpolation, there must
bea#2 L[ Jsuththat' F e#and# FL.r: . As alast step, we will show
that MOdL;F(#) = K.

SupposeM 2 K. ThenM = N for someN 2 Mod,_ (' ). Since' F L #,
it followsthat N F #. By the Expansionproperty, M E #. Cornversely suppose
M 6. ThenM = N for someN 2 Mod, .¢( ). Since# F_¢: , it follows
that N 6 #. By the Expansionproperty, M 6j #. 2

The property expressedin Lemma 6.4.7 may be called -interpolation, by
analogyto the notion of -in terpolation in [8]. It is a slightly wealker condition
than interpolation, and arguably more natural from a model theoretic perspective.
Incidentally, it should be mertioned that Theorem6.4.4may be strengthenedby
replacingthe condition of interpolation by that of -in terpolation.

Using Lemma 6.4.7, we can show that if the #-binder is added to a hybrid
languagewith interpolation extendingH (@), then the expressiviy of the language
in questiondoesnot increase.This is expressedn the following lemma.

6.4.8. Lemma. Let L be a hybrid languagewith interpolation on a frame class
F, suchthat H(@) fL. Thenforall' 2 L[ Jandi 2 nom , thereis a formula
of L[ nfig], which we will denoteby #:' , suchthat Mod, .r(#:' ) = f(F;V;w) 2
Stre[ nfig]j (F;VI7TTwalw) ' g.

Proof: Let Ky = f(F;V;w) 2 Stre[ nfig] j (F;VI7"™Wad:w) F 'g. Ky is
projectively de ned by i # ' and its complemen is projectively de ned by i »
: ' . SincelL hasnegation and has interpolation on F, by Lemma 6.4.7 K. =
Mod, .r( ) for some 2 L[ nfig]. 2

We are now ready to prove Theorems6.4.4i) and 6.4.4i) .

Pro of of Theorem 6.4.4(i): Let L be any hybrid languagewith interpolation
on a frame classF, sudh that H{@) ¢ L. Let' 2 H@#[ [ fps;:::;pnd]
and 4;:::; o 2 L[ ]. Wewill show that thereis a formula 2 L[ ] that is
[p="]-equivalert to ' on F, meaningthat

foralM 2 Stre] [, M EL i M7 Y spe 7 n]”YI]j:H(@)'

The proof proceedsby induction on the length of ' . The basecase(where' is a
proposition letter or nominal from , or' is> or' isp; for somei n) follows
immediately from the fact that H(@) ¢ L. For the inductive step, we will only
prove the casedor negationand for the #-binder, sincethe other casesare similar
to the one for negation.
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Let ' be of the form : . By induction hypothesis, is [p="]-equivalert
onFtosome 2 L[] Letqbeany proposition letter not in and distinct
from py;:::;pn. SinceH(@) ¢ L and (: g 2 H@)[ [ fqg], De nition 6.4.2
guararteesthe existenceof a formula (: p)P= 12 L[ ]that expresseshe negation
of onF. It followsthat (: p)iP=1is [p="]-equivalert on Fto ' .

Let ' be of the form #x: . Let i be any nominal not in . By the induction
hypothesis, we know that there is some 2 L[ [ fig] that is [p="]-equivalert
on Fto [x=i]. By Lemma6.4.8it follows that #x: is [p="]-equivalert on F to
#i: 2 L[] 2

Pro of of Theorem 6.4.4(ii) : Similar to the proof of Theorem6.4.4i). We will
only discussthe inductive step for formulas of the form 9y: .

Let' 2 L[ ] be of the form 9y: . By the de nition of L1, ' cortains at
most one free variable, say x (in case' cornains no free variables, let x be any
variable distinct from y). Let i;j be distinct nominals (constarts) not in . By
induction hypothesis,' [x=i;y=j]2 L[ [ fi;jqd]is [p="]-equivalert on F to some

2 L[ [ fi;jg]. By Lemma6.4.8and by the fact that H(E) ¢ L, we obtain a
formula#i:B#: 2 L[ ]that iseasilyshovn to be[p="]-equivalent to' onF 2

6.4.9. Remark. It should be noted that, while the results in this section have
beenformulated for languageswith unary modalities only, the proof can easily
be adaptedto the generalcasewhere modal operators can have any arity.

Secondly while we have chosento formulate the resultsin this sectionin terms
of interpolation over proposition letters and nominals, inspection of the proofs
shaws that the results hold even if we would replacethis notion of interpolation
by the wealer interpolation over nominals.



Chapter7
Translations from hybrid to modal logics

In this chapter, we will show that for certain frame classe<, thereis a translation
from hybrid formulasto modal formulasthat presenessatis abilit y with respect
to K. There are at least two reasonsto be interestedin sud translation. One
reasonis that they allow usto apply theorem provers deweloped for modal logics
to hybrid logics. The secondreasonis that sud translations make it possibleto
derive resultson hybrid logicsfrom resultson modal logics. The translations that
will be provided in this chapter allow usto do both.

One of the results we will prove is the following.

If a frame classK admits polynomial ltration (cf. Section2.6), then
there is a polynomial translation from H(E) to M (E) preservingsat-
is abilit y with respect to K.

Similar resultsare proved for H and H(@). The translations are modular enough
to giveriseto transfer results concerningcomplexity, (uniform) interpolation and
axiomatizations. Thesetransfer results will be preserted in the next chapter.

All proofs in this chapter make use of ltrations. It has beenobsened by
seweral authorsthat if the basicmodal languageM admits ltration with respect
to aframeclassk, then H, H(@)and H (E) alsoadmit lItration with respectto K
(seefor instance[17, 46]). It followsthat if decidability of a modal logicis proved
using ltrations, the correspndinghybrid logicis alsodecidable. The translations
preserted in this chapter, howewer, allow for a much more ne-grained analysis.
As will be shovn in the next chapter, the translations give rise to transfer of
complexity bounds, aswell as other properties sud asinterpolation.

The resultsreported in this chapter are partly taken from [15)].

7.1 From H(E) to M (E)

The rst casethat we will consideris the simplestcase:we will translate formulas
of H(E) to M (E), which is the extensionof the basic modal languagewith the

107
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global modality. Recall the de nition of Itration in Section2.6. For an H(E)-

replacing eady nominal iy by distinct new proposition letter p;, .

7.1.1. Theorem. LetK be a frameclassthat admits Itr ation. Let"' (iy;:::;ip)
ke any H(E)-formula. Then' is satis able on K i the M (E)-formula
N

N

N (= + 1 I Epi, » E(p, * ) ! Al ! )
1 k n 1 kn

2 r=py]

is satis able on K, whee . ;_,, is the Itr ation setof ' [(=p].

Pro of:

) ] Suppose(F;V);w F ' with F 2 K. Let V°be any valuation that agrees
with V on all proposition letters occurring in ' , and suc that V{p,,) = V(ix)
for eathh nominal iy. Clearly, (F;V9;w [ ' [i=p]. The truth of the remaining
conjuncts of * at w under V° follows directly from the fact that Vqp; ) is a

[( ] Suppose(F;V);wE "' with F= (W;R) 2 K. Our task is to construct a
hybrid model satisfying ' .

Wewill Itrate (F;V). Let = ..., SinceK admits ltration, there exists
amodelM = (W= ;R ;V ) sud that (W= ;R ) 2 K and sud that for all
v2Wand 2, M;[vl]g i (F;V);vFE . In particular, M;[w]E ' [F=p].

Pro of of claim: V (p;,) is easily seento be non-empty: by the secondcon-
junct of' , M ;v E p;, for somev. By the de nition of ltration, [v]2 V (p;,).

Next, suppose[v];[V] 2 V (pi.). Then v;v°2 V(p,), by the de nition of
V. Since(F;V),w F E(p, * ) ! A(p, ! ) forall 2 , it follows
that v;v° agreeon formulasin . Indeed,if v thenw E E(p, * ), SO
wiE A(p, ! ) andthereforev®= . Thus,v  vPandso[v] = [V9. a

Replacingead p;, by the correspnding iy, we therefore obtain a hybrid model
again, which furthermore satis es' at [w]. We concludethat ' is satis able on

K. 2
7.1.2. Corollar y. Let K be a frame class that admits Itr ation. Let
"(ig;:::;in) beany H(E)-formula. Then' is valid on Ki the modal formula
N N
Epik N E(pik N ) ! A(pik ! ) e U':ﬁ]
1 kn 1 kn

2 .

is valid on K, whee ..., is the Itr ation setof : ' [F=pi].
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In the rest of this chapter, we will give similar results for the hybrid languages
H and H(@). Howewer, the situation for theselanguagesis substartially more
complicated,for the following reason. By Proposition 8.1.2 there canbe no poly-
nomial reduction from H or H(@) to modal logic that presenessatis abilit y on
symmetric frames. Newertheless,the classof symmetric framesadmits Itration
[31]. Hence, Theorem 7.1.1 cannot be adaptedto H or H(@) without further
restrictions.

Wewill considertwo classe®f modal logics,namelylogicsthat admit Itration
and have a master modality, and logicsthat are axiomatized by modal formulas
in which ewvery occurrenceof a proposition letter is in the scope of at most one
modal operator. Note that the logic of symmetric framesdoesnot fall in either
class.

7.2 From H to M in case of a master modality

We say that a frameclasskK hasa mastermaodality, if thereis a modal formula’ (p)
cortaining no proposition letter besidesp, sud that for all modelsM basedon a
framein K, andworldsw, M;w F ' (p) i p holdssomewheren the submadel of
M generatedby w. It followsthat, if * ( ) is obtained by uniformly replacingp
by in'* M;wiE"'()I holds somewherdan the submadel of M generated
by w. We will use3 to denotethe master modality.

from ' by uniformly replacingead nominal iy by distinct new proposition letter
Piy -

7.2.1. Theorem. Let K be any frame classclosel under geneated subfames,
disjoint unions and isomorphic copiesthat admits Iltr ation and that hasa master
moaodality. Let ' (iq;:::;i,) be any H-formula. Then' is satis able on K i the

maodal formula
N

B L= I e ) 2! )
1 kn
2 g

is satis able on K, whele 3 is the mastermodality of K and
setof ' [i=p].

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

D ] Suppose(F;V);w E ' with F 2 K. Let V°be any valuation that agrees
with V on all proposition letters occurringin ' , and suc that VYp;, ) = V(i) for
ead nominal i,. Clearly, (F;V9;w F ' [i=p]. The truth of the secondconjunct
of ' at w under VP follows directly from the fact that VY{p;, ) is a singleton set

 ir=p;] IS the Itr ation
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[( ]Suppose(F;V);wfF "' with F= (W;R) 2 K. Without lossof generality,
we canassumethat F is generatedby w (note that ' is a purely modal formula).
Our task is to construct a hybrid model satisfying ' .

First, we will ltrate (F;V). Let ' f=pr - Since K admits ltration,
there existsa model M = (W= ;R ;V ) sudh that (W= ;R ) 2 K and suct

that forallv2 Wand 2 , M;[v]E i (F;V);vE . In particular,
MWl " [=pil.
Claim 1: V (pi,) cortains at most one point (for k = 1;:::;n)

Pro of of claim: Suppose[v];[V] 2 V (p;,). Thenv;v°2 V(p, ), by the def-
inition of V . Since(F;V);wF 3(p, ~ )! 2(p, ! ) forall 2 , it
followsthat v;vPagreeon formulasin . Indeed,if viE thenw i 3(pi » ),
sowj 2(p, ! ) andthereforev’E . Thus,v  Vlandso[v]= V9. a

If every pi, is true at exactly one point, then the proof is nished, sincewe can
consider(W= ;R ) to be a hybrid model for ' . In general,howewer, this need
not be the case: p;, could be true nowhere. So, we needto ensurethat for
ewery p;, thereis indeeda point wherep;, is true. Let G be the disjoint union
of two isomorphic copiesof (W= ;R ). For corvenience,we will use[v]; and
[v]; to referto the two distinct copiesof a world [v] 2 W= . SinceK is closed
under disjoint unions, G 2 K. De ne the valuation V°for (W= ;R ) by putting
VYp) = fvijVv2V (p)g for eat proposition letter p occurringin ' , and for eat
nominalk = 1;:::;n,

(
fivlhg itV (p,) = flvlg
flwlg itV (p,)=;

Intuitiv ely speaking,the only role of the seconddisjoint copy of (W= ;R )is
to provide enoughpoints sothat we can make eah p;, true somewherewithout
a ecting the truth of * at [w]. Indeed, a simple bisimulation argumert shavs
that (G;V9;[w] F ' [F=p].

By construction, V°assignsto eat p;, a singletonset. Replacingead p;, by
the correspndingiy, wethereforeobtain a hybrid model again, which furthermore
satises' at [w];. We concludethat ' is satis able on K. 2

Vo(pik) =

7.2.2. Cor ollar y. Let K be any frame classclosel under geneated subflames,
disjoint unions and isomorphic copiesthat admits Itr ation and that hasa master
modality. Let' (iq;:::;iy) be any H-formula. Then' is valid on K i the modal
formula A
I, )P 2t ) ! Rl
1 kn
2 e

is valid on K, whee 3 is the master modality of K and .. ., is the Itr ation
setof : ' [=p;].
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7.3 From H({@)to M in case of a master modality

In order to translate H (@)-formulas into modal formulas, we will needto make
use of an extra modality. Let 3 be a new modality. For every frame classK,
let Exp,(K) be the result of expanding the framesin K with an extra binary
relation. More precisely let Exp,(K) = f(W; (R3)32mod; RP j (W; (R3)32mod) 2
KandRp W Wag.

obtainedfrom ' by uniformly replacingead nominal iy by distinct new proposi-
tion letter p;,, and replacing eat satisfaction operator @, ( ) by F(pi, * ). We
will use® ! asashorthandfor _ 3 and? ! asashorthandfor " 2 .

7.3.1. Theorem. LetK be a frame classclosel under geneated subfamesthat
admits Itr ation and that hasa master modality. Let' be any H(@)formula in
@normal form (cf. De nition 3.3.1). Then' is satisable on K i the maodal
formula
N
o=t Ea@et ) Y Fp N

1 k n

3)lg(pik/\ ) ! z:):Inz(pik! )

N

1 n

k
2
is satis able on Exp (K), where 3- is the master modality of K and s the Itr a-
tion setof the formula f [f=p]j] 2 Sub(' ) and contains no @operatorsg.

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

) ] Suppose (W;R3;V);w E ' with (W;R3) 2 K. Let Ry be the total
relation on the domain of F, and let V° be any valuation that agreeswith V
on all proposition letters occurring in ' , and such that VYp;, ) = V(ix) for eath
nominal ix. Then, clearly, (W;R3 ;R VO);w E ' [i=pi; @=3F(p;, * )]- The truth
of the remainderof ' follows directly from the construction of the model.

[( ]1SupposeM;wiE ' with M = (F;V) andF = (W;R;R9 2 Exp/(K). Let
FO= (W;R) and let M%°= (F%V). Note that F°2 K. Next, let N be submadel
of M 9generatedby fwg[ fv2 W j wR%g. By the truth of the secondconjunct
of ' at (M;w), ewry p, is true somewherein N. By the truth of the third
conjunctof ' at (M;w), any two points in N that satisfy the samep;, agreeon
all formulasin (recall that no formula in this set cortains any 3-modality).
SinceN is a generatedsubmadel of M % we alsohave that N is basedon a frame
in K.

SinceK admits ltration, there existsamodelN = (W ;R ;V ) basedona
frame in K, sud that for all points vin N and formulas 2 , N ;[v]F i
N;vF
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Claim 1: p, istrue at preciselyoneworld in N (for k= 1;:::;n).

Pro of of claim: Asweobsenedabove,p;, istrue at someworld v of N. Since
pi, 2 , it followsthat N ;[v]F pi,. As for uniquenesssupposeN ;[Vv] F pi,
andN ;[V9E pi,. ThenN;v E p, and N;Vv° p;, . As we noted above, this
impliesthat (N;v) and (N;Vv9 agreeon all formulasin . Thus, by de nition,

vl = V9. a
By the above claim, we can considerN to be a hybrid model. We extend the
valuation of N to the nominalsiy;:::;in, by letting N ;[V]F ixi N ;[V]F p,.

Claim 2: The following holds for all 2 Sub(' ) not containing any @-
operators,and for k = 1:::n.

1N ;wWEF i MwE [=p]
22N ;wWE@ i M;wE Pp, " [=p))

Pro of of claim: 1. By construction, N ;[w] F I N ;[w] F [=p]
By the de nition of lItration, N ;[w]F [E=p]i N;w FE  [=p]. By
invarianceunder generatedsubmadels,N;w F  [i=p]i M;wfF [i=p].

2. First, supposeN ;[w] F @, . Then there is a point [v] sud that
N ;[vl F ik™ , henceN ;[v] F p, * [=p]. Sincep, 2 and
[=p] 2 , it followsthat N;v F p, * [=p]. By invariance under
generatedsubmadels, M ;v F pi * [=p]. By the truth of the sec-
ond conjunct of ' at (M ;w), there is an R%successou of w sud that
M;u F p,. By the truth of the third conjunctof' at (M;w), and the
fact that v and u are both elemens of the generatedsubmadel N, we
havethat M;uE [=p;]. Hence, M ;w E F(p, * [=p]).
Cornversely suppose M ;w F F(p, » [=p]). Then there is an R
successomu of w sudh that M;u F p, * [F=p]. By invariance under
generatedsubmadels, it follows that N;u F pi, © [F=pi]. Hence,by the
de nition of Itration, N ;[u]F p,~ [=p]. HenceN ;[w]lF @, . a

Since' isin @-normalform, it is a Booleanconbination of formulas of the form
or @ , where isasubformula of' not containing any satisfaction operators.

Hence,Claim 2 togetherwith a simpleinduction argumert yield that N ;[w] F '

i M;wiE " [=p;@=3(p; * )]. Hence,N ;[w]fF ' . 2

7.3.2. Cor ollar y. Let K be a frame class closel under geneated subflames
that admits Itr ation and that hasa master modality. Let' be any hybrid H(@)

formula in @normal form. Then' is valid on Ki the modal formula
N N

3)pik n F 13_(pik n ) ! .3 12_(pik ! )

1k n 1

N X

L Eps@=3F(p N )]
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is valid on Exp,(K), \Whele 3 is the master modality of K and is the Itr ation
setof theformula: f [F=p]j] 2 Sub(’ ) and contains no @-operatorsg.

7.4 From H to M in case of shallow axioms

Not many frame classeshave a master modality. In particular, the classof all
frames does not have the master modality. In this section, we will provide a
translation that worksfor frame classegle ned by shallov modal formulas. Recall
that a modal formula is shallov if every occurrenceof a proposition letter is in
the scope of at most one modal operator.

Before we give the proof in full generality, we will rst considerthe most
simple case,namely the classof all frames. In what folloyys, we will assumethat
mod is nite, and we will uggh[i asa shorthandfor ., ,3 and we will
use[[] asashorthandfor ,,..,2 . Furthermore, we will useh[i " asa
shorthandfor _ h[i _h[ihi _  _h[i" , andwewill use[[] " asa
shorthandfor ~[[ 1 ~[[ ][] ~ ~I]1" .

7.4.1. Theorem. AnH-formula’' (i1;:::;i,) is satis ablei the modal formula
N
= 'f=pl " i ™O@r )1 [ ™M@ )
1 k n
2Sub(’ [=pi])
is satis able.

Pro of: The left to right implication is easyto prove. Now supposethat ' is
satis able. Let M;wiE " ,with M = (F;V) and F = (W;(R3)32mod)- Without
lossof generality, we canassumethat Fé's generatedby w. For every pointv2 W,
let de(v) be the minimal number of ., R3 -stepsin which v is reathable
from the root w. Considerthe equivalencerelation . =p;- TWO worlds stand

in this equivalencerelation if they satisfy the samesubfornulas of ' [r=p;]. For
any  gupe =p-€duiralenceclass[v], choosea represemative f [v] 2 [v] sud that
for any v 2 [v] we have de(f[v])  de(V9. Note that while f [w] = w, these
represematives are in generalnot unique. Also note that for every v 2 W and
2 sub(’ f=p]), M;vE i MV

Let WO= ff[v]j v 2 Wg. De ne the relation R (3 2 mod) on W° by
putting f [ulR4f [v] i thereisav®2 [v] with f [u]JR3z V% De ne a valuation V°on
Wby letting f[w] 2 VYp)i w2 V(p) forall p2 Sub(' [i=p]). Let F°= (W%R9
and M %= (F% V9,

Claim 1: For any 2 Sub(' f=p]) and a point v 2 W, M;f[v] F
i MSTV]F

Pro of of claim: By the induction on the complexity of . If is a propo-
sition letter, then the claim holds by the de nition of V° The Booleancases
are obvious. Finally, let =3
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[) ] Supposethat M;f[v] E 3 . Then there is a point u 2 W sud that
fl[VIRsuand M;u F . Since 2 Sub(’ [=p]) andu g =py T U,
we have that M ;f[u] E . By the induction hypothesis,it follows that
MCf[u]l F . Finally, we have that f [V]R#f [u], by the de nition of Ra.
Hence,M%f [v] E°3

[( ] Supposethat M%f[v] E 3 . Then thereis an f[u] 2 WP° sud that
f [VIR#f [uland M%f [u] E . By the induction hypothesis,M ;f [u]
Also, by the de nition of R, there must bea u®2 [u] sud that f [V]R3 u®
Since 2 Sub(’ [r=p]) and Uu® g, pepy T (U], it follows that M u® =
We concludethat M ;f[v]F 3 . a

Let usde ne dro similar to d-. Note that F°neednot be point-generatedanymore.
For worlds f [v] 2 W°that are not readable from f [w] = w, let deo(f [V]) = 1 .

Claim 2: de(f[V])  dro(f [V]), for all v2 W

Pro of of claim: If dro(f [V]) = 1 , the claim obviously holds. Otherwise, the
proof proceedsby induction on dro(f [V]). The basecase,with dro(f [V]) = O,
only appliesif f [v] = w, in which casethe claim clearly holds. Next, suppose
dro(f [V]) = n+ 1. By de nition, there must be a path of the form

TSR S LRI BRI

It followsthat dro(f [u])  n, and henceby the induction hypothesis,d:(f [u])

deo(f [ul)  n. Sincef [ulRY . f[v], by the de nition of RS _, we have that
thereis av®2 [v] such that f [u]Rs, ., V2 This impliesthat d=(v9 n+ 1. By
the de nition of f , weknow that d=(f [v])  de(V9, because®2 [v]. Therefore,
de(f[v]) n+ 1. a

Claim 3: For all k = 1:::n, thereis at most oneworld f [v] 2 W°sud that
dro(f[V])  md(" ) and M Sf [V] = pi,.

Pro of of claim: Suppose M%f[v] F p, and M%f[u] F p,, with
deo(f [V]); deo(f [u])  md(' ). By Claim 2, de(f [V]); de(f [u]) md(" ). Further-
more, M ;f [Vl F pi, andM ;f [u] F p;,. By ourinitial assumption,M ;w '

hencef [v] sup ) f [u], which implies that f [v] = f [u]. a

From Claim 1, we immediately deducethat M%w ' [i=g;]. The valuation of
pi, :::pi, canbe restricted to the worlds with depth  md(' ) without a ecting
the truth of ' [=p;] at w. In this way, by Claim 3, we make surethat ewery p;, is
true at at most oneworld. Finally, applying the sameargumert asin the proof of
Theorem7.2.1 we concludethat the original hybrid formula ' is satis able. 2
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We will now proceedto the generalcase,for frame classeshat are de ned
by nitely many shallov formulas, or, equivalertly by a single shallov formula.
Recallthat a modal formula is closedif it cortains no proposition letters.

7.4.2. Theorem. LetK be aframeclassde ned by a shalow modal formula .
Then an H-formula ' (iq;:::;iy) is satis able on K i the modal formula

o= el t hi ™MO,~ )t I ™M@t )
1k n

2

is satis able on K, whee consistsof all subformulasof ' [i=p;] plus all closel
subformulasof .

Pro of: We usethe sameconstruction asin the proof of Theorem7.4.1, but now
we usea richer ltration set, that includesalsoall closedsubfornulas of . It
su ces to shaw that the constructedframe FPis in K. Let V be a valuation for
FC and let x 2 W9sud that (F®V);x F ' . Dene V%sud that v 2 VY{p) i
flv] 2 V(p). We claim that for all shallov axioms of L and for all v 2 W,
(FVYTVIE 0 (FSV) TV F

This, we prove by induction on . Note that is shallov, and hencewe may
assumethat is generatedby the following recursive de nition:

=>jpj: j 1™ 2]3 ,where isany Booleanconbination
of proposition letters and closedformulas (i.e., formulas cortaining no
proposition letters).

The only non-trivial casein the induction is when is of the form 3  where
is a Booleancombination of proposition letters and closedformulas. In this case,
we reasonas follows.

) ] Suppose(F;V9;f[v] F 3 . Then thereis au 2 W sud that f[v]Rzu
and (F;V9;u F . By the de nition of V° and the fact that all closed
subfornmulas of arein the Itration set, it follows that (F%V);f [u] E
By de nition of Ry, f [V]R#f [u]. Hence,(F%V);f[v]E 3

[( ] Suppose (F%V);f[v] F 3 . Then thereis an f[u] 2 W? sud that
(FCV);f[ulF andf[v]Raf [u]. By de nition of Ry, thereis a u®2 [u]
sudh that f [V]R;u® By the de nition of V° and the fact that all closed
subformulas of  are in the ltration set, it follows that (F;V9;u®
Hence,(F;V9;f[v]E 3 . 2

Note that the length of ' is in general exponertial in the length of ', but
polynomial in caseof uni-modal languages.
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7.4.3. Cor ollar y. LetK be a frame classde ned by a shalow maodal formulas

N
= hi MO~ ) [ ™O@ ) =]
1 kn
2
is valid on K, where consists of all subformulasof : ' [i=p] plus all closel
subformulasof .

7.5 From H({@)to M in case of shallow axioms

In order to translate H (@)-fornulas to modal formulas, we again needto make
use of an extra modality. We follow the same notation corvertions as in the
previoustwo sections.

7.5.1. Theorem. LetK be aframeclassde ned by a shalow modal formula .
Let' beany H(@)formula in @-normalform. Then' is satis able on Ki the

maodal formula
N

o= Em@=F(p )N Fpi, »

1k n

P i ™MO@ )t 2] ™O@, )

AN

1 n

k
2
is satis able on Exp,(K), whee consistsof the subformulasof * [i=p;] containing
no satisfaction operators plus the closa subformulasof .

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

D ] Suppose (W;R3;V);w F ' with (W;R3) 2 K. Let R be the total
relation on the domain of F, and let V° be any valuation that agreeswith V
on all proposition letters occurring in ', and sud that VYp;,) = V(i) for eat
nominal i. Then, clearly, (W;R3z;R£VY;w ' [i=p; @=3F(p;, * )]. The truth
of the remainderof ' follows directly from the construction of the model.

[( ]SupposeM;wiE ' with M = (F;V) andF = (W;R;R9 2 Exp/(K). Let
FO= (W;R) and let M%°= (F%V). Note that F°2 K. Next, let N be submadel
of M %generatedby fwg[ fv2 W jwR%g. By the truth of the secondconjunct
of ' at (M;w), ewery p, is true somewherein N. By the truth of the third
conjunctof ' at (M;w), any two points in N that satisfy the samep;, agreeon
all formulasin  (recall that no formula in this set cortains any 3-modality).
SinceN is a generatedsubmadel of M ©, we also have that N is basedon a frame
in K. From here,we proceedasin the proof of Theorem7.4.2 2
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7.5.2. Cor ollar y. Let K be a frame classde ned by a shalow modal formula
k. Let" be any H(@)formula in @-normalform. Then' is valid on Ki the
modal formula
N N
P, " P i ™O@ A )t P MO, )

1 k n 1

N X

LR @=F(p N )]

is valid on Exp,(K), whee oonsistsof the subformulasof : ' [f=p;] containing
no satisfaction operators plus the closal subformulasof .

This concludesthe chapter. The translations that were introduced in this
chapter will be put to usein the next chapter.
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Transfer

It is a natural questionto ask which properties of modal logics are presened
when nominals, satisfaction operators and/or the global modality are addedto
the language. For example, given that the basic modal languagehas uniform
interpolation with respect to the classof all frames, doesit follow that H and
H (@) have uniform interpolation with respect to the classof all frames? Given
that PDL has an ExpTime -complete satis abilit y problem, doesit follow that
PDL with nominalsalsohasan ExpTime -completesatis abilit y problem? Suc
guestionsare addressedn this chapter.

As far as the author is aware, Gargos and Goranko [46] were the rst this
guestion explicitly. They ask, for instance, whether the nite model property
and decidability transfer.

Areceset al. [5] shoved that whennominalsare addedto the basictenselogic,
the complexity of the satis abilit y problemincreasefrom PSpace to ExpTime .
This can be seenasa rst negative transfer results. In Chapter 6 of this thesis,
we saw that H doesnot have the Beth property relative to the classof all frames.
Since the basic modal languagesdoes have the Beth property relative to the
classof all frames, and hencethis givesus a secondnegative transfer result. In
Section 8.1, we will show that, likewise,decidability, the nite model property,
complexity and Kripk e completenesslo not transfer.

Somepositive resultsare obtainedin Section8.2, wherewe shawv that complex-
ity, (uniform) interpolation over proposition letters, and completenessransfer for
a particular classof logics. The proofs make use of the translations provided in
the previous chapter.

Someof the results reported in this chapter are taken from [15].

8.1 Negative results

Areces,Blackburn and Marx [5] shav that complexity doesnot transferin general
(under the usual complexity-theoretic assumptions). Let K; be the classof bi-
modal frames(W; R;; R,) onwhich R; and R, are ead others corverse(asin the

119
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basictenselogic).
8.1.1. Pr oposition ([5]). H(@)satis ability for K; is ExpTime -complete.

Note that the correspnding modal problem is only PSpace-complete [21]. A
uni-modal exampleof non-transfer of complexity is the following. Let Kg be the
classof symmetric uni-modal frames.

8.1.2. Pr oposition. H-satis ability for Kg is ExpTime -complete.

Pro of: For any modal formula' ,let' °=i~2:i722 (:i! 3i)~2' ‘! where
i is any nominal and ' ‘' is obtained from ' by relativising all modalities with
. i. One can easily seethat ' °holds at a world w in a symmetric modelM i
holds globally in the submadel of M generatedby w, minus the world w itself. It
followsthat, on symmetricframes,' ®is satis ablei ' is globally satis able. The
global satis abilit y problem for modal formulas on the classof symmetric frames
is ExpTime -complete[33]. Hence,the satis abilit y problem for H on the class
of symmetric framesis ExpTime -hard. That the problem is inside ExpTime
follows from the fact that corversePDL with nominalsis in ExpTime [36] 2

Again, the corresppnding modal problemis only PSpace-complete[33].

Next, we will showv that decidability and the nite model property do not
transfer either. Considerthe bi-modal languagewith modalities 3 ; and 3 ,, and
let consistof the following modal Sahlgvist axioms.

w
V1 k 33 1Pk ! 1W< 33 1(p pr) (at most 2 R;-successors)
1k 2313 1Pk ! 1 kel 4313 1(pk ™ p) (at most 3 two-step R;-successors)
p! 2,3,p (R, is symmetric)

8.1.3. Pr oposition. K\ hasthe nite madel property and is decidable.

Pro of: First, considerthe uni-modal logic axiomatized by the rst two axioms.
This logic is completefor a classof framesthat is closedunder taking subframes,
and it hasthe boundedwidth property: no point has more than two successors.
It follows that this logic hasthe nite model property and is decidable. Second,
considerthe uni-modal logic given by the last axiom. This logic, which is complete
for the class of symmetric frames, has the nite model property [31] and its
satis abilit y problem is complete for PSpace [33. Since decidability and the
nite model property are presened under taking fusions[45], the result follows.

2

8.1.4. Pr oposition. Ky is undecidableand lacksthe nite madel property.
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Table 8.1: Axioms of usedto disprove transfer of completeness.

3131p! 31p

31p" 319! 34(p" 3109)_31(q™ 31p) _31(p" 9
3ip! 31(p":31p

32p! 25p

33p! 23p

p! 2531p
3132p_3231p! p_3p
33p! 31p

23237

2321237

3133p”" 330! 3133(p” 30)

Pro of: For any uni-modal formula ' with modality 34, let' = i”" 2,1 "
2,213, " 2, "1, One can easily seethat ' °holds at a world w in a model M

i " holds globally in the submadel of M generatedby the set of R,-successors
of w along Ry, minus the world w itself. It follows that ' ©is satis able i

is globally satis able. Global satis abilit y of modal formulas on the classK ,3
is undecidable[9]]. It follows that K, is undecidable,and hence,sinceit is
nitely axiomatizable,that it lacks the nite model property. 2

Via the Thomasonsimulation [70, Chapter 6], this canbeturned into a uni-modal
example. We leave out the technical details. Incidentally, Proposition 8.1.4 also
shaws that the nite model property and decidability do not transfer under tak-
ing fusionsof hybrid logics, sincethe sameargumerts asin the proof of Proposi-
tion 8.1.3shaw that the correspnding hybrid logics have the nite model prop-
erty and are decidable. Transfer of complexity under fusions of hybrid logicsis
actually an interesting topic by itself, and has beeninvestigatedin [48].

Finally, we will show that Kripk e completenessioesnot transfer in general
from a modal logic Ky to the hybrid logicsKy, , K andKy g .

8.1.5. Theorem. Thereis a setof modal formulas suchthat Ky, is Kripke

completebut Ky, , K{; g, andKy, g arenot.

Pro of: Let Dbe the setof axiomsgivenin Table 8.1 Kracht [70, Section9.6]
proves the following, in order to establish that Kripke completenessdoes not
transfer under addition of a global modality.

1. Ky is Kripke complete.

2. Fr() FA(33>| 3233>)! :33>
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3. A(83>! 3,33>)" 33> issatis able on a discretegeneral -frame

We introduce a fourth modality. Let °= [ fp! 2,3.pg. SinceKripke
completenesdransfers under fusions, Ky is Kripke complete. Let  be the

formula
N

in3iA (2k34) " 24(335> 1 3,35>)! 24(33>)
1k 3

Let F°be the expansionof F with a fourth relation, viz. the total relation on the
domain of F (it is clearthat F°satis es the requiremerns of a generalframe with

respect to the fourth relation). Also, it is easilyseenthat Fr( 9 ,that : is
satis able on F°and that F°=  © It follows by Theorem5.3.16that K;, & ,
Khe@ & andKjg 6 . 2

8.2 Positive results for logics admitting Itration
A note on the complexity of fusions

In Chapter 7, we shaved that the satis abilit y problem of H(@)-fornulas on
certain frame classesK can be reducedto the satis ability problem of modal
formulas on the classExp,(K), which is the fusion of K with the classof all uni-
modal frames. While many propertiesof logicsare presened undertaking fusions,
complexity is in generalnot presened. Howeer, the translation in questionuses
only a very restricted classof fusion formulas. Call a modal formula of the fusion
language(i.e., possibly cortaining the modality 3) very simple if no occurrence
of 3 is in the scope of any other modal operator, including 2 itself (and 2,
which is shorthand for : 3 ). We will shav that satis ability of very simple
fusion formulas on Exp,(K) is reducible to satis ability of modal formulas on
K. To make this precise,we use non-deterministic polynomial time conjunctive
reductions asde ned in Appendix B.

8.2.1. Lemma. Let K be a classof frames. Then satis ability of very simple
fusion formulas on Exp,(K) is non-deterministic polynomial time conjunctive re-
ducibleto satis ability of modal formulas on K.

Pro of: Let averysimpleformula’ of the fusionlanguagebe given. By de nition,
' is generatedby the following recursive de nition:

I I L N AP
where is any formula not cortaining the 3 modality.

Let be the set of all subformulas of ' that cortain no occurrencesof 3.
In order to test whether' is satis able on Exp,(K), we perform the following
procedure.
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1. Non-deterministically choosesubsetsS;; S, . Intuitiv ely, the formulas
in S; are supposedto bethe onesthat aretrue in the actual world, whereas
the formulasin S, are supposedto be the onesthat are true in someR
successopf the actual world.

2. Ched in polynomial time whether ' holds under the choseninterpreta-
tion of the subformulas of ' given by S;;S,. This can be done using any
polynomial model cheding algorithm for propositional logic.

3. Che if the ch0|c9$of Sl,Szvare consisten with respect to K: (1) Chedk
K-satis ability of ~ ,5 { nSl , and (2) for eatr 2 S,, chedk
the K-satis ability of ~ = o o : % All in all, the number of tests is
polynomial in the length of ' , and ead test involves a formula of length
polynomial in the length of ' .

If ' is satis able on Exp,(K), then clearly, S; and S, can be picked in sud a way
that all testsin 2 and 3. succeed.Conversely if thesetests all succeedthen a
model for * basedon a frame in Exp,(K) is easily constructed. 2

The usual complexity classedNP, PSPace, (N) k-ExpTime and k-ExpSpace
(k > 0), are closedunder non-deterministic polynomial time conjunctive reduc-
tions.

Complexity

As immediate corollary of simulations intro ducedin the previoussection(together
with Lemma 8.2.1), we obtain the following.

8.2.2. Theorem. Let K be any frame classthat satis es one of the following
conditions.

1. K admits polynomial Itr ation and hasa master madality.
2. K is uni-modal and de ned by a shalow modal formula.

Then the satis ability problemfor H on K is polynomially reducibleto the satis-
ability problemfor madal logic on K, and the satis ability problemfor H(@) on
K is non-deterministic polynomial time conjunctive reducible to the satis ability
problemfor modal logic on K.

8.2.3. Theorem. Let K be any frame class that admits polynomial ltr ation.
Then the satis ability problemfor H(E) is polynomially reducibleto the satis a-
bility problemfor M (E) on K.
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Interp olation

Recall that a modal logic admits simple lItration if it admits Itration and for
ewvery formula' we have - = Sub(' ). For logics admitting simple ltration,
interpolation transfers.

8.2.4. Theorem. Let K be any frame classsatisfying one of the following con-
ditions:

(a) K hasa master modality and admits simple Itr ation.
(b) K is de ned by a shalow modal formula.

If modal logic has interpolation on K, then H and H (@) haveinterpolation over
proposition letters on K.

8.2.5. Theorem. LetK beanyframeclassthat admitssimple Itr ation. If M (E)
has interpolation on K, then H(E) has interpolation over proposition letters on
K.

Pro of: By way of example,we prove Theorem 8.2.4a) for the languageH. All
other casesare proved similarly (using the fact that interpolation trawfersunder
fusionand replacingoccurrencesf 3 in the obtainedinterpolart by, ., @()
where necessary).

SupposeK F ' ! , Wwhere" ! is a H-formula containing nominals
ig;::0in. Let = Sub(: (" ! )[=p]) By Corollary 7.2.2
N
KF e ) 2@ ! ) P (=]t =)
1 kn

2

The anteceden of this formula says that for all 1  k n, if two worldsw and
w?in the madel both satisfy p;,, then w and wP satisfy exactly the sameformulas
in . Note that every formula in is a Boolean conbination of subfornulas of
' [i=p] and [t=p;]. Hence,to say that w and wP satisfy the sameformulasin s
equivalent to saying that they satisfy the samesubfornulasof ' [r=p;] and [r=p;].
Therefore,

KF et )t 2! )t (]! [
1 kn
2Sub(’ [=pi])[ Sub( [=pi])
By somesimple syrtactic manipulations, we obtain from this that
N

KF P ) 2t ) N =Rl

1 k n
2Sub(* [r=pi])

I ) 2(m! ) U [=ml
1 kn
2sub( [=pi])
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Let # be the modal interpolant for this implication. Note that, apart from
pi,;:iipi,, # only cortains proposition letters that occur both in ' and in
By uniform substitution of formulas for proposition letters, we obtain that

N

K 3™ ) 23! ) At #p
1 k n
2Sub(' )
and A
K E #[pi=f]! (™ ) 203! ) !
1k n
2Sub( )

Since3(i* )! 2(i! )isvalidforanyiand ,it followsthat K ' ! #[p;=T]

and K F #[p =] ! . Finally, as we mertioned above, all proposition letters
occurring in #[p;=f] occur both in ' and in . We concludethat #[p;=] is an
interpolant for' I . 2

Uniform interp olation

Let us de ne uniform interpolation for hybrid logicsas follows.

8.2.6. Definition.  LetL beoneof thelanguageH ;H(@)H(E), andletK be a
frameclass. L hasuniform interpolation over proposition letters on K if for each
formula’ and nite setof proposition letters P prop(' ), there is a formula
' p suchthat

prop(' p) P, and

For all formulas , if prop( )\ prop(') P andnom( ) nom( ),
theanK' ! | j:K'p!

When restricted to modal formulas, this de nition becomeshe usual de nition

of uniform interpolation for modal logics[10Q 49]. Note that, in cortrast to what
one might expect, accordingto this de nition the uniform interpolant ' p does
not apply in casethe consequenh cortains nominalsnot occurring in ' .

8.2.7. Theorem. Let K be any frame classsatisfying one of the following con-
ditions:

(a) K hasa master modality and admits simple Itr ation.

(b) K is de ned by a shalow modal formula.

If madal logic has uniform interpolation on K then H and H(@) have uniform
interpolation over proposition letters on K
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8.2.8. Theorem. LetK beanyframeclassthat admitssimple Itr ation. If M (E)
has uniform interpolation on K then H(E) has uniform interpolation over propo-
sition letters on K.

Pro of: By way of example,we prove Theorem 8.2.1a) for the languageH. All
other casesare proved similarly (using the fact that uniform interpolation trans-
fers underWsion and replacing occurrencesof 3 in the obtained uniform inter-
polant by , .n @() wherenecessary).

Let ' be an H-formula with nominalsiy;:::;i,, andlet P  prop(' ). Let
P°= P[ fpy,;:::;p,0 Let # be a uniform interpolant over P° of the modal
formula

N
o= ' [Eelt P ) 2! )
1 kn
2Sub(* [=pi])

We claim that #[p;=] is a uniform interpolant of the H-formula' overP. Consider
any hybrid formula  with prop( )\ prop(") P andnom( ) nom(' ). We

will shav that K * ! i KF #[p=]!
) ] SupposeK F ' ! . Let = Sub(: (" ! )[T=pi]), By Corollary 7.2.2
we have that
N
KF FpE "t ) 2! ) v T Em]! [m
1 kn
2

The sameargumern asin the proof of Theorem 8.2.4 shows that
N

KF ' [=pl" " ) 2(p !t ) !

1 k n

2Sub(" [m =)
3P, ) 2@t ) Y [=w
ZStb; [rl]fh=T])
or, equivalenly,
A
KF" | 3P, ) 2t )Y [=w
23;13{ [;=T])

Since# is a uniform interpolant for ' over P? it follows that
N
KF #! I ) 2(p ! ) Y [=pl

1 k n
2Sub( [pi=t])
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By uniform substitution of formulas for proposition letters, we obtain that

AN

KE #[p=]! (™ ) 2! ) !
1 k n
2Sub( )
Since3(i~ )! 2(! )isvalid foranyi and , it followsthat K F
#[pi =] !
[( ] SupposeK E #[p=T] ! . Since# is a uniform interpolant for ' , K

"I #. It follows bu uniform substitution that
N
KF ' ~» (™ ) 23! ) ! #p=]

1 kn
2Sub(' )

SinceE 3(i~ )! 2(i! )foranyi and , it followsthat K ' !
#[pi =], and therefore,K " ! . 2

It is known that the modal logicsK , GL, S5 and Grz have uniform interpolation
(see[10q4 and [49]). From Theorem 8.2.7 and the fact that GL and S5 admit
simple Itration, it followsimmediately that the correspnding H-logicsK , S54
and GL 4 have uniform interpolation over proposition letters, aswell asthe H(@)-
logics K (@), S5H @) and GL (@) (here, with S5, we mean the H-logic of the
frame classde ned by S5, and similar for other logics). Grz does not admit
simple ltration. Newertheless,we will now show that the construction usedin
the proof of Theorem8.2.7 can be applied to Grz 4 and Grz yg) aswell.

8.2.9. Theorem. Grzy and Grz ) haveuniform interpolation over proposi-
tion letters.

Pro of: Grz admits Itration in the following manner[23]:

Forany formula’ ,let - = Sub(f' g[ f3(: ~3 ):3 2 Sub(" )g).
For any model M = (W;R;V) basedon a Grz -frameF, let M . =
(W= ;R .;V.), where[w]R . [v] if [w] = [v] or the following two
conditions hold:

1. forevery3d 2 .,vE _ 3 impleswgF 3 ,and
2. thereexists3 2 . withwpE 3 andv§ 3

Then M . is againbasedon a ( nite) Grz -frame, and for all w2 W
and 2 .M ;[wWlF i M;wF
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Now consideragainthe proof of Theorem8.2.7. The crux of the proof liesin the
fact that the Itration set Sub(: (" ! )) can be split up in two disjoint sets,
sud that ewvery formula in the rst set contains only symbols that occurin ',
and ewery formula in the secondset cortains only synmbols that occurin . As
we will now show, the sameholds for the Itration setof Grz. To seethis, note
that

1) Sub(f: (! )9l 3¢ "3 )j3 2Sub:( ! )9

Sub(f: (" !' )|
f3¢:C ~3 )j3 2Sub")g[ f3(¢: ~3 )j3 2 Sub )g)
= ¢t o)yt gl Sub(")[ Suf3(: ~3 )j3 2Subl)g)

[ Sub( )[ Subf3(: ~3 )j3 2 Sub( )g)
= £ ¢t Nt ogl

Hence,every formulain ., is aBooleancombination of formulasin . and

. The sameargumernt asin the proof of Theorem8.2.7shonvsthat H and H (@)
have uniform interpolation over proposition letters on the frame classde ned by
Grz. 2

Completeness

The last topic that we will addressis transfer of Kripk e completeness:if K y

is Kripke complete, doesit follow that K}, , K{, 4 and K} g areKripke
complete?In Section8.1, we saw already that the answer is negative. Howewer,
for the classof logicsthat we are consideringin this section, a positive answer
can be given. First, we needthree lemmas.

8.2.10. Lemma. For everyH(@)formula ' thereis an H(@)}formula in @-
normal form, suchthat K@ = ' $

Pro of: Follows from Theorem 3.3.2together with Corollary 5.4.2 2

handfor ;| , ,@, . Semartically, @ () canbe seenasa modality, and more
preciselyasa box. Indeed, asthe following lemmashows, the distribution axiom
and necessitationrule for this compound modality are derivable in K  (g).

8.2.11. Lemma. The following are derivablein K (@), for any sequene of nom-

1. @' 9! @p!' @q
2. 1f ° ' then” @'

Pro of: The rst claim followsfrom Corollary 5.4.2sinceF @ (p! 9! @p!
@ q. Asfor the secondjf = ' , thenby the Necgrule,” @," fork n. It follows
that = @' . 2



8.2. Positiveresultsfor logicsadmitting ltration 129

8.2.12. Lemma. If a modal logic Ky, is completewith resgect to a frame class
K that hasa master madality 3-, thenKy ~ 3(i! p)! 2@(! p).

Pro of: Recallfrom the de nition of having a mastermodality that 3- is short-
hand for ' ( ), for some xed formula ' (p) corntaining no proposition letters
besidesp. Let n be the modal depth of * , and let mod be the ( nite) set of
modalities occurring in ' . Then the following is holds.

KFE 3p $ 31 3yp
31;::3k2mod
k n

SinceKy, iscompletefor Kand Ky extendsKy , it follows that

ke 3FIPp S 31 3p
31;::3k2mod
k md(")

By de nition, Ky | (Nom). It follows by somesimple modal reasoningthat
Ky F3(@{2p)! 23! p). 2

We are now ready to prove our transfer result for completenessWith Kripke
completenesswe will mean weak completeness:a formula is consisten in the
logici it is satis able on a frame in the frame classde ned by the logic.

8.2.13. Theorem. If Ky is completewith respgct to a frame classK that
admits Itr ation and hasa master modality, thenKy  and K @) are complete
with respect to K.

8.2.14. Theorem. Let be any setof modal formulas. If Ky g is Kripke
completeand admits Itr ation, then K g is Kripke complete.

Pro of: We will give the proof Theorem 8.2.13for the languagesH and H(@).
The proof of Theorem 8.2.14is similar.

First, let us prove Theorem 8.2.13for H. Let K be the classof frames
de ned by , and supposeK E ', for someH-formula ' (iy;:::;i,). Let
= .. p=p- BY Corollary 7.2.2
N
K 3, ) 2@t ) ! Rl
1 kn
2
and hence,by Kripk e completeness,
N

KM ) 3_(pik A ) ' 2_(pik I ) I I rr:pi]
1 kn
2
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SinceKy extendsKy , we have that
N

Kn ° I ) 2t ) ! T [Epld
1 kn
2

By closureunder substitution,

AN

Ky F(i™ ) 2(! ) v
1 kn
2
By Lemma 8.2.12and closure under uniform substitution, Ky~ 3(i »
)! 2(i! )foralliand , hencewe concludethat Ky '

The proof of Theorem 8.2.13 for H(@) is more involved. Let K be the
classof framesde ned by , and supposeK F ', for someH (@)-formula

"(iy;::0;0n). By Lemma8.2.1Q we may assumehat ' isin @-normalform.
By Corollary 7.3.2
N N
Exp (K) F Fp, " @)@ ) P 2E, ! )
1 kn 1 kn
2
L =p@=F(p N )]
Sincecompletenesgransfersunder fusionand K,  is complete,the fusion
logic K K is frame complete,and hence
N N
KM KM ) 3:)pik N (3)) 3_(pik/\ ) ! (ZJ) 2_(pik! )
1 k n 1 kn
2
L e @=F(p N )]

Replacingthe proposition letters of the form p;, by the correspnding nom-
inal ix and replacing subfornmulas of the form 3 by @ , we obtain via
Lemma8.2.11that

Khe - Qi " @)3@i"~ ) ! @:)2(@! )
1 kn 1 kn
2
L @=a@ in )]
From this, it easilyfollowsthat K@ ' . 2

Transfer of completenesdor logics axiomatized by shallov modal formulas can
be obtained in the sameway, but already follows from Corollary 5.4.2
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The bounded fragment and H(@ #)

The boundedfragmert is a fragmert of rst-order logic containing formulas that
useonly a restricted form of quarti cation. More precisely a rst-order formula
is boundedif it is built up from atomic formulas using the Boolean connectives
and boundedquarti ation of the form 9x:(Rtx * ' ) and 8x:(Rtx ! '), with t a
term not cortaining the variable x.

Bounded formulas have been consideredin the literature already for a long
time. In set theory, where bounded quarti ers are of the form 9x:(x 2 y™ ')
and8x:(x 2 y! '), the boundedfragmert wasintroducedin 1965by Levy [75)],
underthe name . o-formulasofsettheory havethe desirableproperty of being
set-theoreticallyabsolute,meaningthat whethera o-formula’ (x1;:::;X,) holds

reside(cf. for instance[7]).

Bounded formulas have also been consideredin the cortext of arithmetic,
whereboundedquarti ers are of the form 9x:(x y”~"')and8x:i(x y! ").
In fact, there is a separate eld of researt called boundel arithmetic, which is
connectedto complexity theory (in particular, to the polynomial hierarchy) and
to propositional proof theory [27].

Around 1966, Fefermanand Kreisel [40, 39 characterizedthe boundedfrag-
ment as the generatedsubmadel invariant fragmert of rst-order logic. More
precisely they shoved that a rst-order formula is equivalernt to a bounded for-
mula i it is invariant under generatedsubmadels. Moreover, it was shavn in
[39] by meansof a cut-free sequen calculusthat the boundedfragmert hasin-
terpolation.

The boundedfragmert is alsonatural to considerfrom a modal logic perspec-
tive. In the prefaceof their book, Blackburn et al. [21] write:

Slogan2: Modal languagesprovide an internal, local perspective on
relational structures.

It seemghat the invariance under generatedsubmadelsis preciselywhat makes
modal formulas local. The boundedfragmert can therefore be seenas a natural

133
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generalizationof the modal language.Indeed,in the late ninetieshybrid logicians
independenly inverted a languagecalled H (@; #), that was subsequetty proved
to be a notational variant of the boundedfragmert [55, 5]. Unaware of Feferman
and Kreisel's early results, Areces,Blackburn and Marx [5, 20] characterizedthe
expressiviy of H(@; #) and proved that it hasinterpolation.

We already mertioned that the bounded fragmert, and henceH (@ #), is
the generatedsubmadel invariant fragmert of rst-order logic. In Chapter 6,
another characterization was given: H (@ #) is the smallest extension of H(@)
with interpolation. A third characterization will be given in Chapter 12, where
it will be shown that H(@; #) is preciselythe intersectionof rst-order logic with
secondorder propositional modal logic.

In this chapter, we will improve known results concerningframe de nabilit y,
interpolation, and Beth de nabilit y for H (@, #). We alsosimplify the existing ax-
iomatizations of H (@; #), thus obtaining the rst axiomatization of H (@, #) that
does not cortain non-orthodox rules (i.e., rules with syntactic side conditions).
Finally, we provide a number of complexity results, which shav that H (@, #) has
computational advantagesover L! . The completenessesultsin Section9.4 are
taken from [19]. The complexity resultsin Section9.6 are taken from [29].

9.1 Syntax and semantics

The hybrid languageH (@, #) extendsH (@) with state variablesand the #-binder.
Intuitiv ely speaking, the state variablesrelate to rst-order variablesin the same
way that nominal relate to rst-order constarts. The #-binder, like the rst-
order quarti ers, binds variables. It binds variablesto the current world. For
example, the formula #x:3 x, which should read as \bind the variable x to the
current world and ewvaluate 3 x", expresseghat the current world is re exive,
e, M;wfFE #:3x 1 (w;w) 2 Rz. Similarly, #x:3 #y:@2y expresseshat the
current world hasexactly one R3 -successor.

Formally, let disjoint setspr op;nom;mod be given as before,and let svar
be a courtably in nite set of state variables. Then the formulas of H(@; #) are
given by the following recursive de nition.

CnE>gpiti it 3@ jw

wherep 2 prop,t 2 nom|[ svar, 3 2 mod and x 2 svar . The interpretation
of a state variableswill is an elemen of the domain of the model, and the #-
binder binds a variable to the world of evaluation. Formally, given a model
M = (W;(R3)s32mod; V), an assignmen for M is a function g : svar ! W.
Truth of a H(@; #)-formula is de ned relative to a model, assignmeh and world,
asfollows.
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Table 9.1: Standard translation and hybrid translation

STx(>) = > HT(>) - S

STX( ) _ = ! HT(Rzst) = @3t
D Terg HT(s= 1) = @t

STX( ) - . STX( ) HT( [ ) - . HT(I )

STX(I " ) = STX(' )A STX( ) HT(I N ) = HT(' )A HT( )

STX(B‘ ) = 9y(R3 Xy A STY(‘ )) HT(9X(RtX Al )) — @3 #xH T(- )

ST (@, = ST,(" . B _ .

ST(#y:') = ST )ly=] A7) AHTC)

wheret is a term of the form ¢ or x, and t° denotesi or x, respectively.

M;gwpF >

M;g;wpF p i w2V(p

M;gwF i i w2 V(i)

M;g;wF X i w=g(x)

Migwi @ i M;gwé’

M;ggwpE ' " i M;gwfF' andM;gwF

M;gwpE 3' I thereisav2 W sud that wRzvandM;qg;,vE '
M;gWF @ i M;gVvFE"' whereV(i) = fvg

MigwF @ I M;ggXx)F"

M;g,wF #:' I M;gx:=wwpg'

If ' is asertenceof H(@ #) (i.e., a formula without free variables), then we will
simply leave out the assignmehandsay M ;w E ' .

The modal depth of a H(@; #)-formula ' , denoted by md(' ), is de ned as
on page 8, not courting satisfaction operators or #-binders (i.e., md(@' ) =
md(#x:' ) = md(' )). For instance,md(@3#y:@?2Yy) is 2. It can be shown that,
roughly speaking, a H (@ #)-sertence of modal depth k, when ewaluated at a
world w, can only seethe points in the model that are readable from w or from
a node namedby a nominal, in at most k steps.

Recallthe rst-order correspndencelanguagel ! de ned in Section3.2 As
the standard translation ST givenin Table 9.1 shavs, H (@ #) is still a fragmert
of L. In fact, this translation tells us a little bit more. Recall that a formula of
L! bounde if it is built up from atomic formulas using the Boolean connectives
and bounded quarti cation of the form 9x:(Rtx ~ ") or 8x:(Rtx ! '), where
t is a term distinct from the variable x. Then the translation ST, maps ewery
H (@, #)-sertenceto a boundedformula of L! that hasx asits only free variable.
A straightforward induction shavsthat for all H (@; #)-sertence’ , modelsM and
worldsw, M;wFE " i M F ST,(") [w] [53 16.
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Not only doesevery H (@, #)-sertencecorrespnd to a boundedformula of L 1,
the corverseholds aswell. In fact, the translation HT, givenin Table 9.1 maps
every boundedL -formula with x asits only freevariable to an H (@, #)-sertence.
Again, a simpleinductive argumert shows that the translation presene truth, in
the sensethat M F  (x) w]i M;wfE HT,( (X)).

In other words, H(@;#) can be seenas a notational variant of the bounded
fragment of L! (given that we restrict attention to formulas with at most one
freevariable). In the remainder of this section,we will discussa model theoretic
characterization of this fragmert.

9.2 Expressivity

Recallthe notion of a geneated submalel that wasde ned on page48. A simple
inductive argumen shavsthat serntencesof H (@, #) areinvariant under generated
submadels, in the following sense.

9.2.1. Pr oposition. Let M be a geneated submalel of N, let w be a world of
M, andlet' beany H(@ #)-sentene. ThenM;wfF "' i N;wfF '.

This implies that properties such as 9x:Rxx or 9y:Ryx, which are not invariant
under generatedsubmadels, are not expressiblein H (@, #).

If we combine this obsenation with the fact that rst-order formulas are
invariant under potential isomorphisms(cf. Appendix A), we obtain the following
result, where =, denotesthe relation of potential isomorphism, @ denotes
the relation of indistinguishability with respect to H (@, #)-sertencesand M,
denotesthe submadel of M generatedby w.

9.2.2. Proposition. If My;w =, Ny;vthenM;w y@s N;V.

This givesus a su cient condition for H(@; #)-indistinguishability. One might
hope that it is also a necessarycondition. Unfortunately, it is not the case,as
the following proposition shows.

9.2.3. Pr oposition. There exist point-geneiated modelsM ,, and N, suchthat
Mw;W H@»n Nv;vandM ;w6 ,N,;v.

Pro of: Considerthe framesdepictedin Figure 9.1 Let M, = (F;V) and N, =
(G;U), whereV and U are valuations that make all proposition letters false
everywhereand that make all nominalstrue at the root. We will usew and v to
referto the roots of theseframes. We will show that M ,; w and N ; v satisfy the
sameH (@, #)-sertences,but that they can be distinguishedin rst-order logic.
Let' beany H(@ #)-sertence,and let n be its modal depth. Let M, , and
N, , bethe submalelsof M,, and N, cortaining all points that are reacable
from the root in at most n steps. Clearly, My;wE ' i M, ,;wFE ' and
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Figure 9.1: Counterexample to the corverseof Proposition 9.2.2

Ny;vE ' 1 Ny v E '. Furthermore, it is not hard to seethat M, ,
and N, , are isomorphic, and that the isomorphismconnectsw to v. Hence,
Mw n;iWE'" i Ny n;vVE ' . Weconcludethat My;wiE " i Ny VE'.
Finally, note that the rst-order sertence 8x9y:(Rxy * 8z:(Rzy ! z = X))
distinguishesM , from N,. It followsthat M ;w 6, Ny; V. 2

Newertheless,the converseof Proposition 9.2.2holds on ! -saturated models.

9.2.4. Pr oposition. LetM andN be! -saturated models, with worldsw and v.
ThenM;w  p@n N;vi My;w=pNy;v.

Pro of: We will prove the result for uni-modal language. The generalizationto
formulas with multiple modalities is straightforward.

Proposition 9.2.2 gives the right-to-left direction. For the other direc-
tion, we proceedas follows. Call a nite partial isomorphismf betweenM

all ug;:::;u, 2 dom(f) it holds that My;w E ' [ug;::i;un] ., Nyv F
" [fug;::i;fu,]. Dene F to be the set of all H(@; #)-preserving nite par-
tial isomorphisms.Clearly, F is non-empty (in particular, f(w;v)g belongsto it).
Furthermore, F is a potential isomorphism. We will only prove the rst of the
two symmetric extensionconditions, sincethe proof for the other is analogous.
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Pro of of claim: By ! -saturatednessof N, it suces to prove nite satis -
ability, i.e., it suces to prove that for ead conjunction of elemens of
thereisal®2 N sudthat N;viE  [fag;:::;fa,; .

By assumptionM ,;w F  [a;;:::;ay;0. Sinceb 2 M,, there is a nom-
inal i and an > 2 ! sud that either M,;w E #z:3 #y:@ [ai;:::;a,] or
M.;WF #:@3 #y:@ [ai;:::;a,], wherez is a fresh variable, not occur-
ring in . By invariance under generatedsubmadels and the fact that f is
H (@, #)-preserving, we obtain that either N;v F #2:3 #y:@ [fay;:::;fa,]
or N;vF #:@3 #y:@ [fas;:::;fa,]. Hence,thereis a point i’ sud that
N;viE [fag:::;fay . a

Sinceb2 M, thereisanominali andan” 2! ,sudvthat 3 y2 or@3 y?2
, and hence,® 2 N,. By invariance under generatedsubmadels, N,;v F

f[f(b;Pg2F. 2

As a corollary of this, we obtain the following characterization, which was rst
proved by Feferman[39] using proof theoretic techniques,and later rediscoered
by [5]. Below, we include another, very short proof by compactness.

9.2.5. Theorem ([39, 5]). Let' (x) be an L!-formula with at most one free
variable. Then the following are equivalent.

1. ' (x) is equivalentto the standad translation of a H (@, #)-sentene
2. ' (x) is invariant under geneated submalels.

Pro of: We will prove the result for uni-modal language. The generalizationto
formulas with multiple modalities is straightforward.

Supposea rst-order formula ' (x) is invariant under generatedsubmadels.
Without loss of generality, we may assumethat x does not occur as a bound
variablein ' . Let cons bethe setof constarts occurringin' , andlet P beanew
predicate. Then the following holds (by invariance under generatedsubmadels,
2X).

f8y:(tR"y! Py)jt2cons()[ fxgandn2!gF"' $ 'PF

where' P is the result of relativising all quarti ers in ' by P. By compactness,

it follows that thereisanm 2 ! sud that
N

8x:(tR ™x! Px)E"' $ 'P

t2cons[f xg

Let V\? be the result of relativising all quartiers in ' by the predicate
X\ taconst xg(GR MX) . It follows that F ' $ ' Finally, modulo some
simple syntactic manipulations,’ is a boundedserience. Hence,it is equivalent
to a sertenceof H(@; #). 2
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9.3 Frame de nabilit y

Like formulasof H and H(@), H (@, #)-sertencesare presened under taking gen-
erated subframes. This follows from Proposition 9.2.1 by the sameargumernt
usedin the proof of Proposition 4.2.1 On the other hand, they are no longer
presened under taking ultra lter morphic images. For example, considerthe
classK of framesin which every point hasa re exive successorlt is well known
that K doesnot re ect ultra Iter extensiong[21], and henceit is not closedunder
ultra lter morphic images. Newertheless,the H (@ #)-sertence 3 #x:3 x de nes
K.

In order to characterizethe elemenary frame classesle nable in H(@; #), we
needonemoremotion. Fork 2 ! , wewill say that aframeclassK re ects k-point
genented subflamesif the following holds for all framesF: if every subframe of
F generatedby at most k points is in K then F 2 K. Similarly, we say that K
re ects nitely geneated subfamesif for all framesF, if every subframeof F
generatedby nitely many points is in K, then F 2 K. It is not hard to seethat
ewvery frame classde ned by a set of H(@, #)-sertencesre ects nitely generated
subframes. Likewise, every frame classde ned by a set of H(@, #)-sertences
cortaining in total at most k nominalsre ects k + 1-point generatedsubframes.
Theseobsenation can be strengthenedinto the following characterization.

9.3.1. Theorem. A frameclassK is de nable by a pure H (@, #)-sentene with k
nominalsi K is elementaryand clos&l under geneated subfamesand K re ects
k + 1-point genented subfames.

H(@ #) formulas with these nominals valid on K. Let F £ PTh(K). We will
shov that F 2 K. In this way, we shov that PTh(K) de nes K, and hence,
by compactnessK is de ned by a single pure H(@, #) formula with at most k
nominals.

Let F* be an ! -saturated elemertary extensionof F. SinceF and F* are
elemenary equivalert, in order to shov that F 2 K it suces to show that
F* 2 K. In fact, by the closure properties of K, it suces to shav that ewery
k + 1-point generatedsubframeof F* isin K.

valuation, wg.; is not necessarilynamedby a nominal. Also note that (F*;V)
is an! -saturated model (expandingan ! -saturated structure with nitely many
constarts always resultsis an ! -saturated structure). Let be the set of pure
H(@ #) sertences' (in the languagewith the nominalsiy;:::;ix) sud that

(Fovwe, s V)i Wkt F

Claim 1: is satis able on K.
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Pro of of claim: By compactnesqrecall that K is elemetary), it suces to
shaw that ewvery nite conjunction of elemens of is satis able on K. But
this follows immediately: is satis able on F and F g PTh(K), hence: 62
PTh(K), i.e., is satis able on K. a

Let (G;U);viE with G2 K. Let (G*;U) bean! -saturated elemenary exten-
sionof (G;U). Then, clearly, (G*;U);vE and G* 2 K. Let vy;:::;v bethe

generatedby vi;::: Vs Clearly, (Gy ..., 1 U)iVks1 F - and Gy, ... 2 K.
. are elemenarily equivalert. It
2 K. 2

As special casesof this result, we obtain the following known result.

9.3.2. Cor ollar y ([5]). The following are equivalent for elementary frame
classesK.

1. K is de nable by a set of nominal-free H (@, #)-sentenes
2. K is de ned by a single pure nominal-free H (@ #)-sentene

3. K is closal under geneated subflames and re ects point-geneiated sub-
frames.

(The direction of proof is, of course,1) 3) 2) 1.) Similarly, we obtain the
following, which may be also seenas a characterization of the expressie power
of universal closuresof bounded rst-order formula (in other words, of bounded
rst-order formulas with parameters).

9.3.3. Cor ollar y. The following are equivalent for elementary frame classes
K.

1. K is de nable by a set of H (@, #)-sentenes
2. K is de ned by a single pure H (@, #)-sentene

3. K is closal under genented subfamesand re ects nitely genented sub-
frames.

Pro of: Follows from Theorem9.3.1 We only needto show that if a frame class
K is closedunder generatedsubframesand re ects nitely generatedsubframes,
then thereisa k 2 ! sud that K re ects k-point generatedsubframes. This is
establishedby a compactnessargumern.

SupposeK is closedunder generatedsubframesand re ects nitely, generated
subframes. Let S be a new binary predicate,and forn 2 !, let ' 1 x nSC«)
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be the result of relativising all quantiers in ' by the given predicate. Then the
following ertailment is valid:

W
f8xy:(R"xy ! S(;y)jn2!g[ f8xy::::%Xn: 1k nSX)in21gEk"

For, supposethe anteceden of the ertailment holdsin aframeF. Then, wheneer
aworld v isreatablefrom aworld w, S(w; v) holds. Hence by presenation under
generatedsubframes,the secondpart of the anteceden implies that ' holds in
ewvery nitely generatedsubframeof F. Hence,by re ection of nitely generated
subframes,F F ' .

Applying compactnesswe infer that thereisa k 2 ! sud that

\W
f8xy:(R"xy ! S(:y)jn2!g[ f8xy::::Xn: 1k nS&)in kgEk'
In other words, K re ects k-point generatedsubframes. 2

The following three resultsindicate, ead in their own way, that the above results
cannot be easily generalized.

9.3.4. Pr oposition. Thereis an elementaryframe classK that is close under
genented subflames, but not de nable by a setof H(@, #) sentenes.

Pro of. Let K bethe frame classde ned by the rst-order condition 8x9y:(Rxy "
8z:(Rzy! =z = x)) (\every point hasa successowith in-degreel"). This class
is easily seento be closedunder generatedsubframes. Now considerthe frames
givenin Figure 9.1 We will show that every pure H(@; #)-sertencevalid on F is
alsovalid on G. SinceF 2 K and G 62, it follows that K cannot be de ned by
a pure H(@; #)-sertence, and hence,by Corollary 9.3.3 K cannot be de ned by
a set of H (@, #)-sertenceseither.

Let ' (iy;:::;in) be any pure H(@;#)-sertence sudh that F = ' . Let V be
any valuation for G, and let u be any world of G. Viewing G as a submadel of
F, we can think of V also as a valuation for F (it simply makesall proposition
letters and nominals false at the extra points). Let m be the modal depth of '
and let k be the length of the longestpath from the root to u or to a world named
by one of the nominalsiy;:::;i,. Let F xi+m and G .+ be the subframesof
F and G cortaining all points readable from the root in at most k + m steps.
An inductive argument shavsthat (F;V);uiF ' i (F x+m;V);ufFE ', andthat
GV uE'" 1 (G xsim;V);ufF ' . Furthermore, (F; x+m;V) and (G xim;V)
are easily seento be isomorphic, and the isomorphismconnectsw and v. Since
FE ', it follows by the above considerationsthat (G;V);u E ' . Sincewe made
no assumptionson V or u, we concludethat G F ' . 2

9.3.5. Pr oposition. Consider nite modelsonly. There is a rst-or der frame
condition that is is closal under geneated submalelsand re ects point-geneiated
subflames(with respect to nite madels), but that is not de nable by a pure nom-
inal free H(@; #)-sentene (with respgct to nite models).
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Pro of: Let K be the classof nite framesthat are disjoint unions of directed
cycles. It is easily seenthat K is closedunder generatedsubmadels, re ects
point-generated submadels (in the nite), and is de ned (in the nite) by the
rst-order formula 8x:(97!y:Rxy * 91 y:Ryx).

Suppose for the sake of cortradiction that K is de ned (in the nite) by
a pure nominal-free H(@; #)-formula ' with modal depth k. Considerthe fol-
lowing two frames: F = (f0;:::;kg;f(n;n+ 1) j n < kg[ f(k;0)g) and
G = (f 10::7kgf(nin+ 1) j n < kg[ f(k;0)g). A straightforward
Ehrenfeudt-Frasse style argumert shows that ' cannot distinguish between
thesetwo frames. Howewer, F 2 K and G 62K. This cortradicts the fact that '
de nes K.

Note that K can be de ned using nominals: it is dened by (3i ! 2i)"

(@3k*@3k! @j). 2

9.3.6. Pr oposition. There is a monadic }-de nable frame class K that is
closel under genented subflames and re ects point-geneiated subfiames, such
that K is not de ned by a set of H(@; #)-sentenes.

Pro of: Let K be the classof (possibly in nite) disjoint unions of directed cy-
cles. This classis closedunder generatedsubframes e ects point-generatedsub-
framesand is de ned by the monadic }-sertence 8x:(971y:Rxy * 971y:Ryx) »
8P:(Oxy:(Px ™ Rxy M : Py) ! 9xy:(: Px ™ Rxy » Py)). Consider any set
of H(@ #)-sertence sud that K ' forall' 2 . We will shov that
(N;sucg ' forall' 2 . Since(N;sucg 6, it then followsthat doesnot
de ne K.

Let V b§ any valuation for (N;sucg, letn 2 Nandlet' 2 . Letm =
max(fng[  iznomey V(i)), wherenom(' ) is the set of nominals occurring in * .
< m+ kg[ f(m+ k;0)g), and let V°be the restriction of V to G. SinceG 2 K,
we havethat G;V%n ' . It follows by aninductive argumert that F;V;n | ' .

2

9.4 Axiomatizations and completeness

In this section, we give two axiomatizations for H (@; #). We showv these axiom-
atizations, as well as extensionsof them by meansof pure axioms, are strongly
completefor the relevant frame classes.The rst axiomatization is obtained by
extending K :{(@) with a simple axiom stheme. The secondaxiomatization im-

proveson the rst one,sinceit doesnot cortain any non-orthodox rules (besides

the substitution rule).

9.4.1. Definition.  For any setof H(@ #)-formulas , K}, g is the smalest
setcontaining all axiomsin Table9.2 and , closeal under the rulesin Table9.2.
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Table 9.2: Axioms and inferencerules of K !

H(@#
All axioms and inferencerules of K :{(@), plus
(DA) "~ @(#s!' $ '"[s:=i])

C A : I
Table 9.3: Axioms and inferencerules of K H (@)

All axioms of K;(@), plus

(DA) TQ@Q#st s T [si=))

(Namey) =~ #s:@' ! ', provided s doesnot occurin '
(BG#) T @2#x:@3 X

(MP) if- ! and " ' then’

(Subst) If ' then™ ' | provided that is safefor '
(Nec) If ~ ' then™ 2',for 2 2 mod

(Necg) If ' then”™ @'

(Necy) If ~ ' then  #s:'

KH@# IS the smalest set containing all axiomsin Table 9.3 and , closel
under the rules in Table9.3

Both K}, @ @nd K} 4. have a substitution rule, which allows replacemen of
terms (i.e., nominalsor variables) by terms and formulas by formulas. The usual
restrictions apply, to prevent free variablesfrom becomingaccidenally bound.

: , |
First, we will prove completenesof K, g, -

9.4.2. Lemma. Every K, o -cOnsistentset can be extende to a maximal
I -

Ki@# -cOnsistentset * suchthat

1. One of the elementsof * is a nominal

2. Forall @3' 2 thereis anominalj suchthat @3j 2 and@' 2
Pro of: Analogousto the proof of Lemma5.3.12 2

9.4.3. Theorem. Let beanysetofpureH (@ #)-sentenes. K }4(@;#) is sound
and strongly completefor the classof framesde ned by

Pro of: First, note that, by Corollary 5.4.2and the fact that K}, 4., extends
K 1 (@), the following validities are derivablein K |

H@#"
@ @k @ $ @)
(b) @( 1" 2% @ 1"@ >
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© '@ $:@
d "~ Q@ $ @
€ " @3k @ ! @3

Now, let be any Kh(@;#) consistenn set of H(@; #)-formulas. Let * be a

maximal K }4(@;#) -consistent set of H(@; #)-formulas extending that satis es

the conditions of Lemma9.4.2 For all nominalsi, let[i]=fj j@j 2 *g. Let
M = (W; (Rs)32mod; V), Where

W = fJ[i]ji isanominal occurringin *g
Rs = f(ijiDi@3j2 *g

V(p) = flilj@p2 *g

V() = flilg

We will shav that is satis ed at a point in M and that the underlying frame
of M validates .

Claim 1. Forall H(@ #)-formulas' andnominalsi, M;[i]F ' i @' 2 *.

Pro of of claim: A straightforward induction on ' , using the properties of
* and (a) { (e). For the inductive step for formulas of the form #x: , we use
the fact that * cortains all instancesof the the (DA ) axiom scheme. a

It followsthat M;[i]F *,fori2 * (recall that oneof the elements of * isa
nominal). SinceM is a named model (i.e., every point is namedby a nominal)
and * cortains all substitution instancesof elemens of , all formulasin are
valid on the underlying frame of M. We concludethat s satis able on the class
of framesde ned by . 2

Next, let us considerthe secondaxiomatization, K} 4. Note that K.
di ers from K'H(@;#) only in that the (Nameg) and (BG) rules are replacedby
correspnding axioms (Name;) and (BGy), and the rule (Nec#) is added.

9.4.4. Theorem. Let beany setof pure H(@ #)-sentenes. K/ 4., is sound
and strongly completefor the classof framesde ned by

Pro of: Wewill shov that the (Nameg) and (BG ) rule arederivablein K g, -
It then follows that K g4 extendsK} . , and henceis strongly complete.
F_irst,_let us considerth_e (Nameg) rule. SupposeK 'H'(@;#) @ , Wherethe
nominal i doesnot occurin ' . Let s be a variable not occurring in ' . By the
rules (Subsf) and (Necy), Kij g4 ~ #5:@' . Hence by the (Name;) axiom and
the rule (MP), Ku(@;#) e ) \ |
Next, let us considerthe (BG) rule. SupposeK g @3j! @',

wherej is a nominal distinct from i, andj doesnot occurin ' . By the (Agree)
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axiom, Ku(@;#) T @@3j! @'. By somesimple modal reasoningusing the
(Selfdua) axiom, we obtain that K} 5., ~ @(@3j ! '). By (DA) andthe
(Nameg) rule, which we already shaved to be derivable, K 'H'(@;#) T #X@3x !

"). By (Nec) and (K), we obtain from this that K'H'(@;#) T 2#@3x! 2.
Similarly, by (Necg) and (Kg), Ki(gs ~ @2#@3x ! @2' . Finally, by
the (BG4 ) axiom, KH(@;#) @2 . 2

Results similar to Theorem 9.4.3 and 9.4.4 have beenproved for a di erent ax-
iomatization in [22]. As far as we know, however, K'H'(@;#) is the rst complete
axiomatization of H(@; #) without non-orthodox rules.

Interestingly, Corollary 9.3.3hasthe following surprising consequenceegard-
ing nite axiomatizability. If K is an elemeniary frame classde nable by a set
of H(@; #)-sertences,then there is a single pure H(@, #)-sertence' sud that '
de nes K, and hence,by Theorem9.4.3and 9.4.4 K, 5.,f' g and K{j g.,f' g
are completefor K! We do not beliewe that similar general nite axiomatizability
results can be obtained for every elemettary class. In particular, we conjecture
that the H (@, #)-logic of the frame classde ned by 8x9y(Rxy” 8z:(Rzy ! z = Xx)
is not nitely axiomatizable.

In connectionto the discussionin Section5.4 about the con uence property,
it may be obsened that, while con uenceis not de nable by pure H(E) formu-
las, it is de ned by the pure H(@, #)-sertence #x:2 #y:@,23 #z:@,3 z. Hence,
the completenessabove results for pure extensionsof K }4(@;#) and K 'H'(@;#) apply
equally well to classesf con uent frames.

To concludethis section, consideragain Theorem 8.2.13 which shows that
under certain conditions, completenesof Ky,  implies completenessof K y
and Ky @) - One might askif a similar result could be obtained for H(@, #).
The answer is negative: considerthe classK of transitiv e, corverselywell-founded
uni-modal frames. This classadmits lItration and has a master modality, and
its modal logicis Ky f2(2p! p)! 2pg. It follows by Theorem 8.2.13that
Kuf2(2p! p)! 2pgand Ky@f2(2p! p) ! 2pg are complete for K.
Ne\prtheless,KL(@;#)fZ(Zp ! p ! 2pgand KH(@;#)fZ(_Zp ' p! 2pg
are incomplete. This follows from the following theorem, which shaws that the
H (@, #)-logic of K is not recursiwely axiomatizable.

9.4.5. Theorem. The satis ability problemfor H(@; #)-sentenes on the class
of transitive converselywel-founded framesis  1-hard.

Pro of: Considerthe model (N;>). By Theorem B.0.1, the existertial second
order theory of this structure is 1-complete. We will reducethis problemto the
satis abilit y problem for H(@; #) on transitive corversely well-founded frames,
thus establishing i-hardnessof the latter problem.

Let us use9g,y:" asa shorthand for #x:3 #y.@x:' , and 84,.y:' asits dual.
Furthermore, let ususe3 ,m ' asashorthandfor @3 (' " #y:@: 33 y). Let
be the conjunction of the following formulas.
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3p

2(p! 2p)

Z(p,\ 3>! 3 imm >) 8schSSUCY(@<pA @/pl @<3y_ @/BX_ @(Y)
BsucX(@p ! sucy:@(p" 3x))

Suppose(F;V);w E , whereF is a transitive corversely well-founded frame.
Then the subframeof F consistingof the successorsf w that satisfy p (under the
valuation V) constitutes an isomorphiccopy of (N;>).

Next, considerany }-formula 9R;:::R,: . Foreah k 2 ! , introducea new
proposition letter py, and for ead relation Ry (1  k  n), pick a newproposition
letter og, . Finally, de ne inductively asfollows.

(x=y) = @y

(x>y) = @3y v

Re(X1;:i5Xm) = 91Y1iiiYmZ: @R, " 21 n @ (P " imm X 3imm 2)
¢ ) = ()

(1" 2) = 1"

(9x: ) = 9queX(@p” )

We will now shawv that (N;>) F 9R;:::R,: i~ s satis able on the class

of transitiv e corverselywell-foundedframes.

[ ] Suppose(N;>; Ry;:::;Ry) E . Construct a new uni-modal model M =
(W;R; V) asfollows:

w = NJ froog [
fhRy;dy;::i;dm; 1] Rk(dg;:::;dn) and0 ©  mg
R = f(root;d)jd2 Wg|[

f(m;n) 2 N2jm> nig |

V(p) = N
V(pm) = fhRy;dg;:iidm;ijm="g
V(pr,) = fhRy;dy;:::;dm; i jm=kand = Og

The readermay ched that the relation R is indeedtransitive and corversely
well-founded,and that M ;root = . Furthermore, an inductive argumen
shows that M ;rootfF

[( ] Suppose M;w F A . Then, as discussedabove, the submadel
of M consisting of all successorsof w that satisfy p is isomorphic to
(N;<). A model (N;<; Ry;:::;R,) for  may now be Q}atained by let-
ting (dy;:::dm) 2 Rkl MW FE 91y1iiiymz @k, " 2., @ (p 7
imm X 3imm 2) [di;:115dm].
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It is not hard to seethat if M;w F , then holds of the submadel of M
consistingof all successoref w that satisfy p. Conversely if M £, then M is
easilyextendedto a model M °such that M%w = for someworld w. It follows
that (N;>) F 9R;: iRy i ! is satis able on the classof transitive
converselywell-foundedframes. 2

9.5 Interpolation and Beth de nabilit y

It was proved in the 1960sby Feferman[39 that the boundedfragmen satis es
the usual, rst-order version of interpolation (cf. Appendix A). In other words,
H (@, #) has interpolation, not only over proposition letters and nominals, but
alsoover modalities. This was proved in [39] on the basisof a complete, cut-free
sequem calculusfor the boundedfragmert. Being unaware of Feferman'sarticle,
Areces,Blackburn and Marx [5, 20], rediscovered theseresults.

9.5.1. Theorem ([39, 5, 20]). H(@,#) has interpolation over proposition let-
ters, nominals and maodalities, with respect the classof all frames.

Furthermore, it wasshown by [20] that H (@ #) hasinterpolation over proposition
letters and nominalsrelativeto many frame classes Here,we include a short proof
of the latter result.

9.5.2. Theorem ([20]). H(@ #) hasinterpolation over proposition letters and
nominals relative to any elementaryframe classde ned by a set of nominal free
H (@ #)-sentenes.

Pro of: SupposeK is an elemenary frame classde nable by meansof a set of
nominal free H (@; #)-sertences. By Corollary 9.3.2 K is closedunder generated
subframesand re ects point-generated subframes,and K is de ned by a single
pure nominal free H (@, #)-sertence .

Next, supposefFg ' ! . Let nom and mod be the setsof nominals and
moq,zllities, respectively, occurring in the formula’ ! . Let[[] be shorthand
for ,,.0q2 - It follows from the invarianceof ' and under generatedsub-
modelsthat f[[]"; @[[]" ji2 nomyn 2 ! gF " ! . By compactnessthere
isanm 2! suhthat F [[]™ * Lem@II™ ! (! ). It follows
that n A

Foooalrmro@r1™ ot (o @ftlm™)t o)

i2nom(' ) i2nom( )

By Theorem9.5.1 there is an interpolant # sud that

\Y,
1-j: I/\[[\]/m " i2nom(')@[[] " bo#
2F#0 ((C iapom(, @1 ™)L )

3. All nominalsand proposition letters occurring in # occur both in ' andin
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Since isvalid onK, it followsthat Fx "' ! #andpEg #! . 2

One might askif Theorem9.5.2 could be generalizedto frame classesle ned by
H (@, #)-sertencescortaining nominals. The answer is negative, as shavn by the
following result.

9.5.3. Pr oposition. Thereis an elementaryframe classde ned by an H(@, #)-
sentene, on which H(@; #) doesnot haveinterpolation over nominals.

Pro of: Let K be the classof frames satisfying 9x:Rxx ! 8yz:(Ryz ! y =
z). ThenfFx @3i! @2j. In fact, this formula de nes K. Supposefor the
sake of cortradiction that this implication had an interpolant #. Not that #
must be a formula in the empty vocabulary. Now considerthe following models:
M= (fw;vg f(v;v)g f(i; v);(j;v)g) and M = (fw;vg; f(v;w)g; f(i; v); (1 Vv)9).
Clearly, (M 1; w) and (M ,; w) cannotbe distinguishedby a H (@; #)-formula in the
empty vocabulary. Howewer, # must be true in (M ;; w) and falsein (M ,;w). 2

Newertheless,Theorem9.5.2can be improved if oneis interestedonly in interpo-
lation over proposition letters.

9.5.4. Theorem. H(@;#) has interpolation over proposition letters on any
H (@ #)-de nable elementaryframe class.

Pro of: SupposeK is an elemenary frame classde nable by meansof a set of
H (@ #)-sertences. By Corollary 9.3.3 K is de ned by a single pure H (@, #)-

SupposefFk ' ! . Let nom and mod be the set of nominals and modal-
'\y'es, respectively, occurring in the formula ' ! . Let[[] be shorthand for
22mog 2 andlet @[] " beashorthandfor ., ¢ yq@I[ 1" , wWhereyisa
fresh variable. The generatedsubmadel invariance of H (@; #)-sertencesimplies
that

fty:@[] "#a@[] . @[] “#a:@[] " (xaiiiiixa)jn2 ! gF " !
By compactnessthereisak 2 ! sud that

F#:@[] '"¥.@[] ", @[] “¥™n:@[1" (xuiitixa) ! (! )
and hence

F @[] @[] ‘% @[] @[] " (xiiix)) ™' !

Applying Theorem 9.5.1 on this, we obtain an interpolant # with the following
properties.
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1.F yel] 'u@[] ¥ @[] '#.@[]" (xyiixa))" | #
2. F #!
3. All proposition letters occurring in # occur both in ' andin

Since isvalid onK, it followsthat Fx ' ! #andfFg #! . 2

9.5.5. Cor ollar y. H(@ #) hasthe Beth property relative to every elementary
H (@, #)-de nable classof frames.

Pro of: Similar to the proof of Theorem6.2.4 2

Here is a simple example of an elemenary frame classon which H(@; #) lacks
the Beth property. Let K be the classof framessatisfying 9x8yz:(Ryz $ y = x),
andlet =fp! 2q:p! 2:qgClearly, in modelsthat are basedon a frame
in K and that globally satisfy , q holds at a statei p holds at the root, and
hence, implicitly de nes q in terms of p, relative to K. In Section 2.5 we
already obsened that g cannot be de ned explicitly in terms of p in the basic
modal language,relative to  and K. In fact, it is not hard to seethat also
H (@, #) fails provide an explicit de nition, and hencethe Beth property fails also
for this language,relative to K. We leave it as an open problem whether there
is an elemenary classclosedunder generatedsubframes,with respect to which
H (@ #) lacks the Beth property.

9.6 Decidability and complexity

In this section, we investigate the complexity of deciding whether a formula of
H (@ #) is satis able. It wasshaovn by Areces,Blackburn and Marx [4] that this
problem is undecidable,and in fact they mertion that H(@,#) is a conservative
reduction class Following [24] we call a fragmert of rst-order logic a consera-
tive reduction classif there is a recursive function mapping arbitrary rst-order

formulas to formulas in the fragmert, sud that for all formulas , ( ) is satis-
able i is, and ( ) hasa nite modeli has. Clearly, every consenrative
reduction classhas an undecidable(in fact 9-complete) satis abilit y problem,
aswell asan undecidable(in fact $-complete) nite satis abilit y problem [24].

9.6.1. Theorem. H(@;#) is a conservativereduction class.

Pro of: It is known that the relational rst-order formulas with a single, binary,
relation symbol form a consenrative reduction class[24]. Considerthe following
embedding from rst-order logic with one binary relation to H(@; #), wherei
be a xed nominal:

(Rxy) = @a3y
x=y) = @y
")y = :0)
¢~ )= C)yr ()
') = @3#&: ()
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Table 9.4: Complexity of the satis abilit y problem on -models

H(@ #) Lt
=1 NP -complete NExpTime -complete
=2 NP -complete Decidable but not elemenary
3 < ! NExpTime -complete 9-complete (co-r.e., not decidable)
! 9-complete (r.e., not decidable) 1-complete (highly undecidable)
!

AV

9-complete (co-r.e., not decidable)  $-complete (co-r.e., not decidable)

Clearly, is a recursiwe function. We claim that for ead rst-order serience’
' ishasa (nite) modeli (') ishasa (nite) model.

First, supposeM ' . Let the model M ° be obtained from M by adding a
new state w, labeledwith nominal i, and by extending the relation R sud that
(w;Vv) 2 R for all statesv of M. ThenM%w E (' ). Moreover, MPis nite if
M is. Corversely supposeM ;w = (' ). Let v be the statein M labeled by the
nominal s. Let M °be the submadel of M consistingof all successorsf v. Then
MOE ' . Moreover, M%is nite if M is. 2

In what follows, we will givea number of decidability resultsfor morerestricted
classeof models. We will useour resultsto compareH (@; #) with the rst-order
correspndencelanguagel . For any cardinal , let K be the classof uni-modal
modelsin which for every node d there are strictly lessthan nodese sud that
(d;e) 2 R. In particular, K, is the classof modelsin which ewery points has
at most one R-successorand K, is the classof modelsin which every node has
only nitely many R-successors.We will refer to elemens of K as -models
for short. In what follows we will considerthe satis abilit y problem of H (@ #)
and of the rst-order correspndenceanguageon -models,for particular . Our
resultsaresummarizedin Table9.4. All resultsgeneralizeto to casewith multiple

modalities, exceptfor the decidability of the rst-order correspndencelanguage
on Ko.

9.6.2. Theorem. The satis ability problemof H(@;#) on the classof modelsK
is

1. NP-complete,for = 1;2

2. NExpTime -complete,for 3 <!,
3. 9-complete,for =!

4. 9-complete,for > !

Pro of: 1. The lower bound follows from the NP -hardnessof propositional

satis ability. The upper bound is proved by establishingthe polynomial
sizemodel property.
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For = 1;2, ewery -satis able H(@;#)-formula is satis able in a -model
with at most O(j' j?) nodes. For, supposeM ;w E ' for some -model
M = (W;R;V). Let W® W consistof all worlds that are reacable
from w or from a world named by one of the nominals occurring in '
in at most md("' ) steps, where md(' ) is the modal depth of ' . Let M©°
be the submadel of M with domain W% Clearly, M%is a -model and
M © satis es the cardinality requiremens. Furthermore, a straightforward
induction argumen shovsthat MCw ' .

This leadsto a non-deterministic polynomial time algorithm for testing sat-
is abilit y of an H(@; #)-formula’ on -models,for = 1;2. The algorithm
rst non-deterministically choosesa candidatemodel (M ; w) of sizeO(j' j?),
and then it testswhetherM;w ' and M 2 K . The latter tests can be
performedin polynomial time using a top down model cheding algorithm.

2. [Upp er bound] For 3 < I, ewery formula satis able ona -model is
satis able on a -model with at most O(j' j ™)) nodes. For, suppose
M;w E ' for some -modelM = (W;R;V). Let W°® W consistof all
worlds that are reacable from w or from a world named by one of the
nominals occurring in ' in at most md(* ) steps. Let M ° be the submadel
of M with domain W? Note that the cardinality of M%is O(j' j 1'1), and
MOis still a -model. Furthermore, a straightforward induction argumert
shavsthat M%w = ' .

This leadsto a non-deterministic ExpTime algorithm for testing satis -
ability of an H(@; #)-formula ' on -models. The algorithm rst non-
deterministically choosesa candidatemodel (M ; w) of sizeO(j' j 1)), and
then tests whether M;w F ' . The latter test can be performedin time
O(jM ")) [43, which is O((j' j 1)'l)= o' ji'1 1),

[Lower bound] Consider monadic rst-order formulas without equality,
i.e., rst-order formulas containing unary predicatesonly, without equal-
ity. Any sud satis able formula ' of length n has a model with at most
2" nodes, and the satis abilit y problem for such formulas is NExpTime -
complete[24, Section6.2.1]. We will reducethis problemto the satis abilit y
problem for H(@; #)-formulas on -models (for 3 < 1), thus shawing
that the latter problemis NExpTime -hard.

Fix anominali, and for any monadic rst-order formula' without equality,
de ne ' * inductively, sud that (x = y)™ = @y, (Px)" = @p, ()" com-
muteswith the Booleanconnectivesand (9x: )* = @31 #x: *. In words,
' * statesthat ' holds in the submadel consisting of all points reacable
from the point namedi in exactly j' ] many steps. In general,there can be
upto ( 1)"J many points reacdablefrom the point namedi in exactlyj' j
many steps(in particular, this will be the caseif the submadel generated
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byiisa( 1)-arytree). It followsthat ' issatisablei ' issatis able in
amodel with at most2' | nodesi ' * is satis able in a -model, for 3.

. We will provide polynomial reductions betweenthis problem and the nite

satis abilit y problemfor rst-order logic, which is 9-complete,evenin the
casewith only a single, binary relation [24, Section3.2].

Trivially, if an H(@; #)-formula is satis able in a nite model, it is satis-
able in a! -model. Conversely if an H(@;#)-formula is satis able in an
I -model then it is satis able in a nite model, sincethe modal depth of the
formula providesa bound on the depth of the model. Hence,the satis abil-
ity problem of H(@;#) on ! -models reduces(by the standard translation)
to the satis abilit y problem for rst-order logic on nite models.

Conversely the nite satis abilit y problem for rst-order logic can be re-
ducedto satis ability of H(@, #) on ! -models. Fix a nominal i, and for
any rst-order formula ', dene ' * inductively, such that (x = y)* =
Qy, (Rxy)" = @3y, ()" commrutes with the Boolean connectives and
(9%x: )" = @3#x: . In words, ' * statesthat ' holds in the submadel
consistingof the successorsf the point namedi. It followsthat ' is satis -
ablein a nite modeli the H(@; #)-formula’ * is satis able on an nitely
branching ! -model.

. By the Lowenheim-Sklemtheorem,a rst-order formula is satis able if and

only if it is satis able ona nite or courtably in nite model. SinceH (@ #) is
a fragmen of rst-order logic, the Lowenheim-Sklem theoremalsoapplies
to H(@; #)-formulas. It followsthat the satis abilit y problemfor H (@; #) on
courtably branching modelscoincideswith the generalsatis abilit y problem
of H(@ #), which is 2-completeby Theorem9.6.1 2

9.6.3. Theorem. The satis ability problem for the rst-or der correspndene
languageL! on K is

1.

2.

3.

4.

5.

NExpTime complete,for =1
decidablebut not elementary,for = 2
9-complete, for 3 < |
l.complete,for =!
O-complete,for > !

Pro of: 1. This casecoincideswith the satis abilit y problemfor monadic rst-

order logic (on 1-maodels, every formula of the form Rst is equivalert to ?),
which is known to be NExpTime complete[24].
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2. Considerthe satis abilit y problemfor rst-order logic with oneunary func-
tion symbol, an arbitrary number of unary relation symbols and equality
(\the Rabin class"). This problem is decidable, but not elemetary [24].
We will provide polynomial reductions betweenthis problem and the satis-
abilit y problem for rst-order logic on 2-madels.

Let' beany rst-order formula cortaining oneunary function symbol
f and any number of unary relation symbols and equality. Let R bea
binary relation symbol, and let ' g be obtained from * by repeatedly
applying the rewrite rules

{ replaceatomic formulas of the form Pf (t) by 9x:(Rtx * Px)

{ replace atomic formulas of the form f(s) = t ort = f(s) by
IX:(Rsx™ x = t)
until the function symbol f does not occur in the formula anymore
(in caseof nestedfunction symbols, the above rules might needto be
applied seweral times). It is not hard to seethat ' is satis able i
"' R N 8x9y:Rxy is satis able on a 2-model.

Let ' be any rst-order formula with one binary relation symbol R
and any number of unary relation symbols. Let f be a unary function
symbol and let P be a new unary relation, and let ' ; be the result of
replacingall subformulasof ' of the form Rst by Ps” (t = f s). Intu-
itiv ely, the unary predicate P represefs the existenceof a successor,
and the unary function f encalesthe successopof a node, if it exists.
Onecaneasilyseethat ' is satis able ona2-modeli ' ; is satis able
(simply let R denotethe the graph of f, or vice versa).

It follows that the satis abilit y problem of rst-order logic on 2-modelsis
decidablebut not elemenary recursiwe.

3. It is known that the satis abilit y problem for rst-order serienceswith a
singlebinary relation R is  -complete[24]. For any sud rst-order formula
' dene' asfollows:

(x=y) = x=y
(ny) = 9)(%/0'( Rx%O0A - Ry%/o’\ R)(%/O/\ Rx% A Ry(y)
¢y =
(~) =" "
(9x:') = 9X(Rxx"')
Weclaim that ' is satis able inamodelM i ' is satis able on a 3-maodel

M © Intuitiv ely, the re exiv e nodesof M °will correspnd to the nodesof M,
and the irre exiv e nodesof M ° will be usedto encale the binary relation
of M: we think of re exive points d;e as standing in the binary relation



154

Chapter9. The boundedfragmentandH (@, #)

i there are irre exiv e points d%e° such that (d®d) 2 R, (d%€’) 2 R and
(e%e) 2 R. More precisely the argumert can be spelled out as follows.

D ] SupposeM E ', with M = (D;R). Let D°bea setof objects obtained
from D by adding by adding newobjects(d;e); and (d;e), for all d;e 2
D. Let R%= f(d;d); ((d;€)1;d); ((d;€)2;€) j d 2 Dg[ f((d;€)1;(d;€)2) |
(d;e) 2 Rg. The model (D% RY is a 3-model, and by induction on can
easily shov that M

[( ] SupposeM [ ' for some3-model M = (D;l). Let D°= fd 2
D j(d;d) 2 Rg. Let R°= f(d;e) 2 (DY?j (d%d%) 62R and (€% ") 62
Rand(d%d) 2 Rand(e’¢e) 2 R and (d%€%) 2 R, for somed®e® 2
Dg. Let M°= (D%R9. A straightforward induction shavsthat M °f

For 3 < < I, it follows that a rst-order formulas' with one binary
relation R is satisable i ' " 8x9 2y:Rxy is satis able on a -model.
Hence,satis abilit y of rst-order formulason -modelsis 9-hard. Finally,
menbership of ? follows from the fact that the satis abilit y problem for
rst-order formulasis in 9, since' is satisable on a -modeli '
8x9 y:Rxy is satis able.

. We will provide reductionsbetweenthat the satis abilit y problem for rst-

order formulas on ! -models and the problem of deciding whether an exis-
tential secondorder sertence holds in the model (N;<). This provesthe
result, sincethe latter problemis 1-complete(cf. TheoremB.0.1).

Let' (v;>) bea rst-order sertenceexpressinghat R is a strict linear order
and 8x9y:Ryx. Then a nitely branching model satis es ' (n.>) preciselyif
the modelisisomorphicto (N;>). For any existertial secondorder sertence

" = 9R;:Rn: (Rypiii;Rp;>), let ' be the de ned as follows, where
P1;:::;Pn; N are new, distinct unary predicates.

(x=1y) = X=Yy

(x>y) = Rxy

(RkX1:::Xn) = 9y1:iiVa: szl:::n(Pkym N RyYmXm) N

m=1::n 1(Rymym+1)

') = o

(") = oA

(9%x:") = OX(Nx~™'" )
Weclaimthat (N;>)F "1 * M (NN;>) is satis able in a nitely branching

model, where' ?IN;>) is the result of relativising all quartiers in' (.- by N.
The argumert is similar to the one usedin the proof of Theorem 9.6.33).
The submadel consistingof the points satisfyingN is the \in tendedmodel”,
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while the elements satisfying one of the unary predicatesPy are only used
to encale which tuples stand in the Ry relation. More speci cally, a tuple

enRen+1 for all m < n. We will omit the details of the proof here.

Now for the other direction. First, obsene that whenewer a rst-order
formula has a nitely branching model M, then it has a courtable suct
model (indeed, it su ces to take any courtable elemertary submadelof M).

secondordersertence9R; Py; 1 Py:(" 2 8x9y8z:(Rxz! z<y)). Obsene
how, on the natural numbers, the secondconjunct enforcesthat ead point
has only nite many R-successors).It follows that ' is satis able in a
courtable ! -modeli ' %is true in a submadel of (N;<). The latter in turn
holdsi 9Q:(" 9Q is true in (N; <), where(* 99 is the result of relativising
all quartiers in' °by Q.

5. By the Lowenheim-Sklem theorem, a rst-order formula is satis able if
and only if it is satis able on a nite or courtably in nite model. Hence,
the satis abilit y problem on courtably branching modelscoincideswith the
generalsatis abilit y problem, which is known to be 9-complete[24]. 2

We can concludefrom Table 9.4that H (@, #) hascomputational advantagesover
L1, asleaston structures with a boundedout-degree.
In [29], a fragmert of H(@; #) is identied for which the satis abilit y is de-
cidable. The fragmert consistsof all H (@ #)-sertencesthat are not of the form
2( #( 2 ) ) .ltisshowvnthat this resultis optimal, in the sense
that the fragmert cannot be easily extendedwithout losing decidability.
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Guarded fragments

The guardedfragmert is a fragmert of relational rst-order logicthat extendsthe
modal fragmert. It wasintroducedby Andreka, van Benthem and Nemeti in the
90s[2] in order to understandwhy the modal languageis so well behared, com-
putationally and model theoretically. The guardedfragmert inherits many good
properties from the modal language. For instance, is decidable, has the nite
model property, and admits a Los-Tarski-style presenation theorem [2]. It was
showvn by Hooglandand Marx [6€] that, while the guardedfragmernt lacksinterpo-
lation, it hasthe Beth property. In [13], the guardedfragmen wasextendedeven
further, obtaining the looselyguarded fragment which is slightly more expressie
than the guardedfragmert, but it still satis es the above properties.

Concrete complexity results for the satis abilit y problem for guarded and
loosely guardedformulas were establishedby Gradel [60]. To be precise,Gradel
generalizedthe guardedand loosely guardedfragmerts by allowing constarts to
occur in the formulas (but not function symbols of positive arity), and by allowing
identit y statemernts of the form x = x or x = y asguards,and subsequetly proved
the following:

10.0.4. Theorem (Gr adel [60]). The satis ability problem for loosely
guadeal formulas is 2ExpTime -complete. The sameproblemis only ExpTime -
complete for loosely guarded relational formulas with a bounde&l numter of
variables, and for guaded relational formulas with a bound on the arity of the
relation symiwls.

With a relational formula, we mean a formula that cortains no constarts
(function symbols of positive arity were already excluded).

Furthermore, Gradel suggestsin his paper that his results also work for
(loosely)8-guardedformulas, i.e., formulas of which only the universalquarti ers
are (loosely) guarded. Howe\er, the details are not completely spelled out.?

IMarx [79] does explicitly state and prove the decidability of the satis abilit y problem for
loosely 8-guarded formulas.

157
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This chapter senesthree purposes. Firstly, it formulates the preciseresults
for universally guardedformulas that may be obtained with Gradel'stechniques,
and it corntains the details of the proofs. Secondly and more importantly, we
improve Gradel'sresultsby shaving that the quali cation “relational' in the above
theoremmay bedropped. Finally, we shov how guardedfragmerts with constarts
are related to hybrid logics,and we usethis connectionto prove a strong negative
interpolation result for guardedfragmerts.

Concretely we prove the following the following complexity result.

10.0.5. Theorem. The satis ability problemfor loosely 8-guarded formulas is
2ExpTime -complete. The sameproblemis only ExpTime -completefor loosely
8-guarddal formulas with a boundeal numker of variablesand for guaded formulas
with a bounde arity.

To appreciatethe additional value of Theorem 10.0.5 we must return to the
original motivation behind the guardedfragmert. The guardedfragmert wasin-
verted in orderto explain and generalizethe large number of decidability and low
complexity results in modal logic. The key obsenation is that modal operators
expressa guardedform of quarti cation, wherethe accessibiliy relations are the
guards.

For explaining decidability results in modal logic, the rst part of Theorem
10.0.40ften su ces. Howewer, in order to explain low complexity, a more re ned
analysisis needed. Consider for instance the global consequenceroblem for
modal formulas (dces every madel that glolally satises ' glokally satisfy ?).
This is an ExpTime -complete problem. To understand why this problem is in
ExpTime , it suces to obsene that global truth of a modal formula ' can be
expressedby meansof a guarded rst-order formula with only two variables,
namely 8x:(x = x ! ST,(' )). 2 This shows the importance of boundedvariable
guardedfragmerts.

The standard translation for H(E) produces rst-order formulas in the two-
variable guardedfragmert with an unlimited number of constarts. Clearly, The-
orem 10.0.4will not allow usto prove, sa, that the global consequenc@roblem
for H({@) is in ExpTime . Theorem 10.0.5does, and it thereby broadensthe
application of guarded fragmerts to the eld of hybrid logic. A concrete ex-
ample of a complexity result from the literature that follows immediately from
Theorem 10.0.5is the ExpTime -menbership of the satis abilit y problem for the
hybrid languageH (E) [5].

The resultsin this chapter are taken from [94] and [2§].

10.1 Normal forms for (loosely) guarded formulas

We will consider rst-order languageswith arbitrarily many relation symbols of
any arity, constarts and equality, but without function symbols of arity greater

2Here, we usethe Vardi-style standard translation that usesonly two variables.
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than zero. A rst-order formula' of sud alanguageis calledguarded if it is built
up from atomic formulas using the Boolean connectivesand guardedquarti ers
of the form 9xy i :xn:( » ) or8xy:::Xn:( ! ), where is an atomic formula
and the free variablesof all occurin . A formula is called 8-guaded if it is
built up from atomic formulas and negatedatomic formulas using conjunction,
disjunction, ordinary existertial quarti ers and guarded universal quanti ers.
Note that the guards may be atomic equality statemerts. In particular, if
a guarded formula ' has only one free variable x, then 9x:(x = x”~ ') and
8x:(x = x I ') are guardedformulas. Theseformulas are equivalert to 9x:'

and 8x:' , respectively.

The looselyguardedfragmert is an extensionof the guardedfragmenrt. A rst-
orderformula’ iscalledlooselyguade if it is built up from atomic formulasusing
the Booleanconnectivesand looselyguardedquarti ers ofthe form 9xq @ :x,:(

) or 8Xy:iiXp:( ! ), where is conjunction of atomic formulas, sud that
ewvery quarti ed variable x; co-accurswith ewvery freevariabley 6 x; of in some
conjunct of . A formula is called loosely8-guarded if it is built up from atomic
formulas and negated atomic formulas using conjunction, disjunction, ordinary
existertial quarti ers and loosely guarded universal quarti ers. Note that if a
loosely guarded formula * has only one free variable x, then 9x:(> ~ ') and
8x:(> ! ') arelooselyguarded.

Gradel [60] proved his main complexity results for guardedformulas usingthe
following normal form.

10.1.1. Definition. A (loosely)8-guarded formula is in normal form if it is of
the form A
MxPx”  8%(i(®)! 9y i(*w)
i21
whee, for eachi 2 |, the variablesx; y are distinct, ; is a (loose) guad and
"i(%;y) is a quanti er-fr ee formula.

Gradelshonvedthat ewvery (loosely)guardedformula canbetranslated in poly-
nomial time into an equisatis able (loosely) 8-guardedformula in normal form.
A slight variation of Gradel's proof works for (loosely) 8-guardedsertences,thus
turning it into a true normal form theorem for (loosely) 8-guarded formulas.
To be sure, we will spell out the proof here for the caseof (loosely) 8-guarded
formulas.

For any formula ' , let width (* ) be the maximal number of free variables of
a subfornmula of ' , i.e., width (') is the largest natural number n sud that
has a subfornmula with n free variables.

10.1.2. Pr oposition. Every (loosely) 8-guarded formula ' can be transformel
in polynomialtime into an equisatis able (loosely)8-guarded sentene in normal
form. Moreover, width ( ) width (*).
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Pro of: We rst give the proof for 8-guardedformulas, and then shonv how the
proof generalizego loosely8-guardedformulas. Let ' be 8-guarded,and assume
without lossof generality that no equality sign occursinside a guardin ' . Note
furthermore that, by the de nition of 8-guardedformulas, the negation symbol
only occursin ' at the atomic level.

If ' is quarti er-free, then we are already done. Otherwise, there are two
possibilities.

1. ' corntains a subformula of the form (%) = 9y: (%;y), where s
quarti er-free. Pick a new predicate R of the appropriate arity, and let
" [=R ] bethe result of replacing (x) in' by R (x). Finally, let

‘0= [=R JM8x(R () ! 9y: (1Y)

Then' %is equi-satis ableto ' , and onestep closerto being of the required
form.

2. ' conains a subformula of the form (%) = 8y:( (%) !  (%;¥), where
Is quarti er-free. Pick a new relation symbol R with the appropriate
arity, andlet' [ =R ] betheresult of replacing (%) in' by R (). Finally,
let
0= [=R 178y (6y)! (R () ! (%Y)
Then' %is equi-satis ableto ' , and onestep closerto being of the required
form.

Repeating these steps, we evertually obtain a formula of the form ' %x) ~ |
where ' %%) is quarti er-free, and is a conjunction of formulas of the form
8x( () ! 9y: (*;y)). As a nal step, pick a new predicate P and let # =
%P (%) " 8x(P(x)! ' %x)) " . Then# isin normal form and equi-satis able
to the original formula ' .

A slight variation of this argumert works for loosely 8-guarded formulas.
Suppose’ is loosely 8-guarded and contains a subformula of the form (%) =
8y:( (%) ! (%¥), where is quantier-free. As before,we pick a new re-
lation symbol R with the appropriate arity, but now we also pick a new binary
relation symbol Z. Also, the conjunct we add to ' is slightly g,i erent: instead
of 8xy:( (x¥) ! (R (¥)! (x¥), weadd8xy:(( (%) " L0 ngzzfﬁ !
(R (%) ! (%;%). This ensuresthat ead two variablesin x co-cccur in some
atom of the guard, to guarartee that the universalquarti er is properly loosely
guarded. Finally, to ensurethat the newformula is equi-satis gbleto the original
one,insteadof replacing (x) in' by R (x), weit by R (%) 0 44 222" The
rest of the proof remainsthe same. 2

In the caseof looselyguardedformulas, one can furthermore ensurethat the
arity of the relation symbols occuring in the formula is bounded by the width.
For any formula' , let maxarity (' ) denotethe highestarity of a relation symbol
occuringin ' .
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10.1.3. Pr oposition. Every loosely 8-guadeal formula * can be transformel
in polynomial time into an equisatis able loosely 8-guaded formula in nor-
mal form, such that width ( ) maxfwidth (' );2g and maxarity ( )
maxt width (' ); 2g.

Pro of: The proof proceedsin two steps. First, we will reducethe arity of the
relation symbols occuringin ' to two. Then, we will write the resulting formula
in normal form. The latter step might increasethe arity of the relation symbols
again, but it will still be boundedby the width of the formula.

Let ' be any loosely 8-guarded formula. For ead n-ary relation symbol
R occurring in ', with n > 2, introduce n + 1 new binary relation symbols,

eadt pair hd-; d,i standsin the Rq relation (1  ;m n), and there existsis an
elemen e suct that he;di 2 R- forl =~ n.
Replaceead subformula of ' of the form R(ty;:::;t,) that is not inside a
guard by A A
Ro(t;tm) N 9u: R-(u;t)
1 m n 1 n
If * has a subformula of the form 8x( ! ), where the guard con-

@ins a conjunct of the form R(tl;:::;\t,n), then replace that conjunct by
1 *m nRo(t;tm), andreplace by Ou:( ; . | R-(u;t:)" >)!

The resulting formula cortains no relation symbols of arity greaterthan 2, and
it is satis able i the original formula ' is satis able. Furthermore, the width of
the resulting formula is at most max(width (' ); 2g.

Finally, we apply Proposition 10.1.2to bring the resulting formula into normal
form. Inspection of the proof of Proposition 10.1.2shows that the arity of the
relation symbols added during the normal form translation is bounded by the
width of the input formula. Hence,we end up with a formula with the desired
properties. 2

Incidentally, the constraints of boundedwidth and of boundednumber of vari-
ablesin a rst-order formula are equivalert, asproved in the following theorem.

10.1.4. Pr oposition. For k 2 N, every rst-or der formula ' of width k can be
transformed in polynomial time into an equivalentformula containing k variables.

Pro of: The proof is by structural induction on the input formula ' . If ' is an
atomic formula, then its width equalsthe number of variables occurring in it,
hencethe claim holds. If ' is of the form :  or 9x: , then the claim follows
immediately from the induction hypothesis (note that, in the secondcase,we
may assumethat x occursin ). This leavesus with the casein which ' is a
conjunction.
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Let ' be of the form ~ . By induction hypothesis,we may assumethat

and ead have at most k variables. We may also assumethat the only
variables occurring both in  and in  are the onesthat occur freely in  and
in . It follows that the set of all variables occurring in * can be partitioned
into disjoint subsetsX;Y;Z;U;V sucdh that freq )= X[ Y,freq )=Y][ Z,
bound )nfreq )= U andbound )nfregq )= V. In other words,

(X5Y2) = (X;Y) n (Y:2)
(additional (additional
bound variables bound variables
U) V)

Let W be a new set of variables, disjoint from X;Y;Z;U;V, sud that jWj =
k jX[ Y[ Zj. By disjointnessof the setsinvolved, (W[ Zj=k jX[ Y] jUj
and W[ Xj =k jJY][ Zj jVj. This meansthat we can safely replace
the (bound) variablesU in by the variablesW [ Z, and replacethe (bound)
variablesV in by the variablesX [ W. The resulting formula is equivalernt to
the original, but only cortains variablesin X [ Y[ Z [ W, of which there are
only k many. 2

10.2 Eliminating constants

Most results on guardedformulas have beenstated only for relational rst-order
languagesj.e., languageswithout constarts. The resultsdiscussedn this section
shov how the sametechniquescan be applied to formulas corntaining constarts.

Let ncons (' ) be the number of constarts occurring in ' . Gradel [60] proved
the following.3

10.2.1. Pr oposition. Every (loosely) 8-guaded formula ' can be transformel
in polynomial time into an equisatis able relational (loosely) 8-guarded formula
, suchthat width ( ) width (" )+ ncons (' ).

For complexity reasonswe have a particular interestin formulas with a bounded
width. Unfortunately, for sud formulas ' , Proposition 10.2.1 does not imply
a bound on the width of . We will now presen another method to eliminate
constarts, that allows usto circumvert this problem.

10.2.2. Pr oposition. Fix a natural numbker k 2. Every loosely 8-guarded
formula ' of width at most k can be transformel in polynomial time into an
equisatis able relational loosely8-guarded formula  of width at most k.

3Strictly speaking, Gradel's proof for this proposition is awed, since his translation does
not correctly handle formulas containing equality. Howewer, this problem can easily be xed.
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Pro of: Considerany loosely8-guardedformula’ of width at mostk. By Propo-
sition 10.1.3 we may assumethat ' isin normal form and that maxarity (')
K.

Let cons be the set of constarts occurring in ' . For ead n-place rela-
tion symbol R occurring in ', except for equality, and for ead partial func-
tion f : f1,:::;ng ! cons, introduce a new relation symbol Ry with arity
n jdom(f)j, wheredom(f ) is the setof all k 2 f1;:::;ng for which f (k) is de-
ned. For example,if R is a ternary relation symbol andf = f(1;¢);(3;d)g, then
R is a unary relation symbol, which we will alsodenoteby R. 4. The intended
interpretation of R 4(x) will be the sameas R(c;x; d). Also, for eat pair of
constarts c;d, introducea nullary relation symbol E .

We will now eliminate all constarts, with the help of thesenew relation sym-
bols. For any sequenceof variables %, let T (%) be the set of all partial func-
tions from fxg to cons (including the empty function). Note that there are
(ncons + 1) sud functions. For eahr 2 T(%) and formula , let  be the
result of replacing eat occurrenceof a variable x 2 dom( ) by (x). Finally, let
' beobtained from ' by meansof the following procedure.

Vv
1. Replaceead subforrmula of the form\ﬁx: by .1 8% , and replace
ead subformula of the form 9y: by, 9y . 4

3. Replaceead atomic formulas of the form ¢ = d by E4, and replaceead
atomic formula of the form x = corc= x by ?.

Let bethe conjunction of ' with
N N N

EccA Ecd! Edc/\ Ech Ede! Ece

c2cons c;d2 cons c;d;e2cons

and all formulas of the form

Clearly, doesnot cortain any constarts, and is loosely8-guarded. Further-
more, the length of is polynomialin the length of ' , andthat canbe obtained
from ' %in polynomial time.

“Note that this will only polynomially increasethe length of the formula, due to the fact
that both the width and the quanti er depth of' is bounded (keepin mind that ' isin normal
form).

5The number of such formulas is approximately nrel (") (ncons (' )™@aity () where
nrel (') is the number of relation symbols occurring in ' . This is polynomial in the length of
', giventhat maxarity (') k.
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Finally, we claim that s satis able i is satis able. One direction of
this claim is easy: a model for ' is easily turned into a model for . As for
the other direction, every model M satisfying can be turned into a model M °
for ' in the following way: de ne an equivalencerelation on the set cons by
putting ¢ di M E E., extendthe domain of M with one elemen for eah
equivalenceclass, and extend the relations to the new elemeits in the obvious
way: ([ci];:::s[enlieniiisem) 2 R (enyiii;en) 2 Ry, - » and likewisefor
other permutations. It is easilyseenthat the resulting model M °satises' . 2

Note that the translation usedin the above proof is polynomial only provided
that the width of the input formula is boundedby a constart. Unlike Gradel's
translation, it is in generalexponertial.

We will now proceedwith the proof of Theorem 10.0.5 using the help of
the above results. As we already mertioned, Gradel [60] states his main results
only in terms of guardedor loosely guardedformulas. Newertheless,the certral
argumert on which theseresults are basedis formulated in terms of relational
loosely 8-guarded formulas in normal form, cf. De nition 10.1.1 Speci cally,
Greadel shaws that the satis abilit y problem for sud formulas is 2ExpTime -
complete, and that it becomesExpTime -completeif there is a bound on the
width of the (normal form) formula. Togetherwith our above results, this allows
usto prove Theorem10.0.5

Pro of of Theorem 10.0.5: The 2ExpTime -menbership of the satis abilit y
problem for loosely 8-guarded formulas follows from Gradel's result by Propo-
sition 10.2.1and Proposition 10.1.2 The ExpTime -membership of the satis a-
bility problem for loosely8-guardedformulas with a boundednumber of variables
follows from Greadel'sresult by Proposition 10.2.2and Proposition 10.1.2(if a for-
mula ' cortains at most k variables,then, trivially , width (') k).

Finally, it is easyto seethat the width of a guardedformula is bounded by
the arity of the relation symbols occuring in it. Note that, in general,this does
not hold for 8-guardedformulas, nor for loosely guarded formulas. Indeed, by
a similar argumert as usedin the proof of Proposition 10.1.3 the satis abilit y
problem for loosely guarded formulas with arity at most 2 is already as hard as
the satis abilit y problemfor looselyguardedformulasin general,i.e., 2ExpTime -
complete. 2

10.3 Connections with hybrid logic, and interp olation

As we already mertioned in the introduction of this chapter, guardedfragmerts
with constarts have important applications in the area of hybrid logic. Con-
versely results from the hybrid logic literature may have applicationsto guarded
fragmerts with constarts. Here, we will discussone sud application, which con-
cernsthe interpolation property. When the guardedfragmert wasintroducedin
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[2], it was hoped that it hasinterpolation. Unfortunately, it was shovn in [66]
that this is not the case. This negative interpolation result can be strengthened
for guardedfragmerts with constarts asfollows:

10.3.1. Theorem. Let F be any fragment of rst-or der logic with constants
that contains all atomic formulas, is close& under the Boolean connectives and
is closal under guaded quanti cation (i.e., if ' (¥y) 2 F and (*y) is atomic
then 9x( (xy" ' (xy) 2 F 8%( (xy! ' (xy) 2 F). Furthermore supmsethat F
satis es the following form of interpolation:

For all formulas' (x); (x) 2 F with at most one free variable X,
if F ' (x) ! (x) then there is a formula #(x) 2 F suchthat
"(X)! #(xX), F #(x)!  (x), and all relation symiwls and constants
occurring in # occur both in * and in

Then every rst-or der formula’ with at most one free variable is equivalentto a
formulain F.

Pro of: As was noted in Remark 6.4.9 the proof of Theorem 6.4.4ii) doesnot
dependson the assumptionthat all modalities are unary. The result also holds
if hybrid languageswould be de ned relative to a set of modalities mod that
includes k-ary modalities with k 6 1. For presen purposes,we may therefore
assumethat modalities can have any arity.

Having noted this, considerany fragmert F satisfying the requiremens men-
tioned in the statemert of the theorem. Then F constitutes a hybrid languagein
the following sense.For any signature = (prop;nom), let  bethe rst-order
signature that haspr op asits unary predicates,nom asits constarts, and that
hasa relation R, of arity n(4 ) + 1 for eadh 4 2 mod (here we assumeagain a
xed, givensetof modalities mod). Fix a rst-order variable x, and for all signa-
tures , let Lg[ ] be the collection of rst-order formulas' (x) in the rst-order
signature  that are in the fragmert F. Furthermore, let M;w F . ' (X) i
" (x) holdsin M conceiedof asa rst-order structure, interpreting x asw. Then
(Le;FL.) isahybrid language,accordingto De nition 6.4.1

In fact, we will show that it follows from the requiremerns on F, that L¢
extendsH (E). It is easilyseenthat L hasinterpolation on the classof all frames.
Consequetly, Theorem 6.4.4ii) appliesand we can concludethat L* Lg. In
other words, every rst-order formula with at mostonefreevariablex is equivalert
to a formula in the fragmert F.

[p="1-equivalert to ' , meaningthat

forall M 2 St] |, M E_, " 0j Ml N [igmerl U4 Y Eue '
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The proof proceedsby induction on' . The basecase(where' is a proposition
letter or nominal from , or' is> or"' isp; for somei n) follows from the
assumptionson F. The inductive inductive stepsfor formulas of the form : ,

1™ 2,3 or@ alsofollows from the assumptionson F (cf. the Standard
Translation for H(E)). 2

In other words, it is not possibleto repair interpolation for the guardedfragmert
by increasingits expressiviy without ending up with full rst-order logic. Note
the modal character of interpolation property usedin Theorem10.3.1 it applies
to formulas with at most one free variable. Also note that, while this result
appliesto the looselyguardedfragmert, it doesnot cover the universally guarded
fragmert, or other fragmerts that are not closedunder negation.

Without proof, we state two straightforward generalization of this result.
Firstly, [66] shawv that, while interpolation fails for the Gradel-syle guardedfrag-
mert, the purely relational guardedfragmert (i.e., without constarts) doessatisfy
a weak versionof interpolation that is strong enoughto entail the Beth property.
Theorem 10.3.1canbe shown to apply alsoto this weak versionof interpolation,
provided that constarts are allowed again.

Secondly in the original de nition of the guarded fragmert by [2], identity
statemens are not allowed as guards (i.e., all quantiers must be guarded by
atomic formulas of the form Rt; :::t,). Assumingthat constarts are allowed, the
least expressie extensionof this versionof the guardedfragmern with interpola-
tion is preciselywhat [2] refer to asthe fragmert F 3.

10.4 Discussion

We nish by discussingtwo open questions. The rst questionis the following:

What is the complexity of the satis ability problemfor 8-guarded for-
mulas with boundel arity?

Note that the answer to this question does not depend on the presenceof con-
stants. Our conjectureis that this problemis ExpTime -complete.
A secondinteresting questionwould be the following question:

Classify, in the style of Berger et al. [24], the quanti er patterns for
which the satis ability problemfor sentenes consisting of a sequene
of quanti ers conform followel by a guarded formula, is decidable.

The satis abilit y problemfor = 9 8isstill decidable,ascanbe seenby replacing
the existertially quarti ed variables by constarts and guarding the universal
quarti er by anidertity statemert of the form x = x. On the other hand, = 83
is already a consenative reduction class, as follows from results of Gradel [60].
What about = 9 82?
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Relation algebra and M (D)

Someof the typical featuresof modal formulas are (1) their local nature, which
shows up in the fact that they are invariant under generatedsubmadels, (2) the
decidability of the satis abilit y problem, and (3) their variable free notation. For
ead of theseproperties, one may ask to what externt the basic modal language
could be extendedwhile preservingthe property.

This questionhasbeenansweredpartly in the previouschapters. In particular,
Theorem9.2.5tells us that the boundedfragmert is the largestfragmen of rst-
order logic that is invariant under generatedsubmadels. Unfortunately. the
boundedfragmen is undecidableand doesnot have a variable free notation.

Likewise,the guardedfragmerts discussedn Chapter 10 form large, but still
decidable,extensionsthe modal language.Unfortunately, they lack interpolation
and a variable free notation.

Relation algebra,which we will discussin this chapter, can be seenasa large
fragmert of rst-order logicthat extendsthe modal fragmert andthat (unlikethe
boundedfragmert and the guardedfragmert) presenesthe variable free nature
of modal formulas. Unfortunately, it lacks interpolation, and is undecidable.

Relation algebra nds its originsin the work of Augustus De Morgan, Charles
SandersPeirce and Ernst Schreder in the nineteerth certury. It was further de-
veloped and systematizedby Tarski and others. For a recen overview, cf. Hirsch
and Hodkinson [63]. The expressionof relation algebradenote binary relations.
Formally, given a courtably in nite setof atomic relations symbols, R;S;:::, the
terms of relation algebraare given by the following inductive de nition:

=RV [
Here,> isthe total relation (over the givendomain), denotesthe complemern
of the relation , \ denotesthe intersectionof and , denotesthe
relational composition of and , denotesthe converseof the relation , and
is aconstart that denotesthe identit y relation. Thus, ead relation algebraterm

denotesa binary relation, and the relation denotedby a term can be computed
on the basisof the denotation of the atomic relation symbols occurring in it.

167
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Table 11.1: Translation from modal logic to relation algebra

Relation algebrais a fragmert of rst-order logic, in the following sense:eadt
term of relation algebracorrespndsto a rst-order formula in two freevariables.
For instance,the term R S correspndsto the rst-order formula 9z:(Rx,z »
Szx5,). In fact, it hasbeenshown that every term of relation algebracorrespnds
to a rst-order formula in two free variables containing at most three variables,
and vice versa[93).

The basicmodal languageis again a fragmert of relation algebra. Sincerela-
tion algebraicterms denotebinary relations, it is corveniert to assaiate with ead
proposition letter p a subrelationR,, of the idertit y relation, where(w;w) 2 Ry i
w satis es p). Then, Table 11.1 provides a translation from the modal language
into the languageof relation algebra. It is not hard to seethat a world w satis es

i w standsin the relation ' to itself.

In this chapter, we will shav that the only way to repair interpolation for
relation algebrais to the extendthe languagesud that every rst-order operation
on binary relations becomesde nable. Roughly speaking, this meansthat rst-
order logic is the smallest extension of relation algebra with interpolation. In
orderto provethis, wewill rst considerM (D), which is the extensionof the basic
modal languagewith the di erence operator. We will showv that the rst-order
correspndencdanguagel ! is the smallestextensionof M (D) with interpolation.
Next, we usea well known connectionbetweenM (D) andrelation algebrain order
to derive the above mertioned result. Theseresults are taken from [2§].

11.1 M (D) and its relation to H(E)

The languageof di erence logic, denotedby M (D), is obtained by extendingthe
basic modal languagewith a logical modality D, whereD' is interpreted as\'
holds somewhereelse." More precisely the formulas of M (D) are given by

=pjit N (3D
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wherep 2 prop and3 2 mod. The truth de nition for the basicmodal language
is extendedby letting M;wE D' i M;vE "' for someworld v distinct from w.
In other words, the accessibiliy relation for D is the inequality relation.

The expressiviy of M (D) with respect to models has beenstudied by [85)].
In [46], the elemenary frame properties de nable in M (D) are characterized.
Completenesgesults for M (D) can be found in [90, 9§].

In this chapter, we use our results on hybrid logic to derive some further
results for di erence logic, and alsorelation algebraand rst-order logic.

There is a strong connectionbetweenM (D) and the hybrid languageH (E).
On the onehand, nominalsare de nable in M (D), in the sensethat E(p” : Dp)
is true in a model preciselyif p has a singleton denotation. On the other hand,
D' holds at the world namedby the nominal i preciselyif E(: i ' ) is true. In
fact, the following has beenshown.?

11.1.1. Theorem ([3]). There are polynomial translations between H(E) and
M (D) that preservevalidity with respgct to any frame.

It follows that for all frame classeK, K is de nable in H(E) i K is de nable
in M (D), and it also follows that the satis abilit y problem for M (D)-formulas
with respect to K has the same complexity (up to a polynomial) as that for
H (E)-formulas. In conbination with Corollary 4.3.2 this givesus the following
result.

11.1.2. Cor ollar y. An elementaryframe classis de nablein M (D) i it is
closal under ultra Iter morphic images.

Gargov and Goranko give a similar characterization of the elemenary frame
classede nable in M (D). Their result states:

11.1.3. Theorem ([46]). An elementaryclassK is de nablein M (D) i the
following closure condition holds, where we use 6,y to denotethe inequality rela-
tion on the setW:

If (W;R) 2 K, and ugW?%R%60) is a boundel morphic image of
(W;R;6), then (W%RY 2 K.

While the two characterizationsare quite similar, we have not beenableto derive
our result from Gargov and Goranko's. Incidertally, the proofs are also quite
di erent. The proof of [46] usesalgebraictechniquesand is not easilyadaptedto
other hybrid languagessut asH (@). On the other hand, our result was proved
purely model theoretically and the sametechnique was usedto characterizethe
frame de nable power of H and H(@).

Another result on di erence logic that we obtain asa corollary of our results
on hybrid logicsis the following:

1Gargov and Goranko [46] proved a similar result, but involving an exponertial translation.
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11.1.4. Cor ollar y. LetK be any frame classthat admits polynomial Itr ation.
Satis ability of M (D)-formulas on K is polynomially reducibleto satis ability of
M (E)-formulas on K.

This follows immediately from Theorem 8.2.3

11.2 Repairing interp olation for M (D)

Recallthe characterizationof H(@,#) and L in terms of interpolation presened
by Theorem6.4.4 In this section,we give a similar result, usingM (D) instead of
H(E). More precisely we shaw that the least expressie extensionof M (D) with
interpolation is the rst-order correspndencelanguage. The proof is similar to
that of Theorem6.4.4ii) , but a number of small modi cations needto be made.
In particular, the abstract notion of a hybrid languageusedthere needsto be
replaced by that of a modal language,by removing all referenceto nominals.
Howewer, sincethe main line of the proof remainsthe same,in what follows, we
will be slightly more concisethan in Section6.4.
We will assumea xed setof (unary) modalities mod. A signature is simply
a set of proposition letters. Given a signature , a (pointed, but not necessarily
point-generated) -model is a structure M = (F;V;w) whereF = (W; R3)32mod
isaframe,V : ! } (W) avaluation and w 2 W a world. The classof all
-modelsis denotedby Str[ ]. Furthermore, for any classof framesF, Strg[ ] will
denotethe classof -modelsof which the underlying frame belongsto F.
For any modelM = (F;V;w) 2 Stri[ ] and function : ! ,let M bethe
-model (F; V;w). Secondlyif M 2 Str[ ] and , then M denotes
the -reductof M, i.e.,the -modelthat is obtainedfrom M by \forgetting" the
interpretation of n . We write K for fM | M 2 Kg.

11.2.1. Definition  (Mod al langua ges). A modal languageis a pair (L;E
), where L is a map from signatures to sets of formulas, and F is a relation
between formulas and models satisfying the following conditions.

1. Expansion Prop erty. If thenL[ ] L[ ]. Furthermore, for all
"2L[]andM 2 St [ M EL" T M FL'. ForM 2 St |, the
statementM E ' is de ned (i.e., true or false)if andonly if * 2 L[ ].
Otherwise, it is unde ned.

2. Renaming Property Forall' 2 L[ Jand : ! ,thereisa 2LJ[]
suchthatforallM 2 St [, M F 1 M E".

We will uselL alsoto referto the pair (L;FL).
GivenamodelM = (F;V;w) and an elemen v of the domain of F, we will use
(M ;v) to denotethe model (F; V;v). Thus,with M ;v ' wemean(F;V;v) F ' .
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For' 2 L[], letMod (")=fM 2Str{ ]jM FL"g. ForM 2 Strf ] and
"2L[ Llet[ M =fvjM;vE " g, ie.,the subsetof the domainof M de ned
by ' .

Finally, the symbol = will be usednot only to referto the satisfactionrelation,
but alsoto the local conse@uene relation: for [f g L[ J,wesa that '
i forallM 2 St ], it holdsthat if M . ' for' 2 thenM F_

When restricting attention to a speci ¢ frame classF, we will write Mod, ..(" )
for-lf-M 2Strg[ ]JM FL ' 0. Likewisejfor [f g L[ ],wesaythat F ¢’
i, Mod_ (") Mod_ ().

11.2.2. Definition  (Extensions of modal langua ges). Let L;L° be
maodal languages. Then L° extendsL relative to a frame class F (notation:
L ¢ L9 if the following holds for all signatures and proposition letters

Pyiipe (N 0).

Foreach' 2 L[ [ fps;:::;pngland 4;:::; o2 L9 ], thereis a formula
of LY ], which we will denoteby ' P71 suchthat for all M 2 Stre[ ],
M Lot =T M7 allosm 7l = o

The basic modal languagelanguageM and its extensionM (D) are modal lan-
guagesin the senseof De nition 11.2.1 The rst-order correspndencelanguage
L! also constitutes a modal language,if we consideronly formulas with at most
onefree variable?

11.2.3. Definition (Interpola tion). A modal languageL has interpolation
on a frameclassFif forall' 2 L[ Jand 2 L[ ]suchthat' F_ . , thereis
a#2L[ \ ]Jsuchthat' F_.g# and# F ¢

The readershould keepin mind that | .r denotesthe local ertailment relation.
Now for the main result of this section.

11.2.4. Theorem. LetL be any madal language,and let F be any frame class.
If M (D) gL andL hasinterpolation on FthenL! L.

The remainder of this sectionis dewted to the proof of Theorem11.2.4
11.2.5. Definition  (Pr ojective classes). Let bea signature, andlet K

Stre[ ]. Then K is a projective classof a modal languagelL relative to a frame
classF if thereisa' 2 L[ ] with , suchthat K = Mod, (" )

2In this chapter, we use L! to refer to the rst-order correspndencelanguage of modal
logic, as opposedto the rst-order correspondencelanguagefor hybrid logic (which contains in
addition constarts).
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11.2.6. Definition  (Negation). A madal languagel hasnegationon F if for
each' 2 L[ ] thereis an formula of L[ ], which we will denoteby: ' , suchthat
MOdL;F( ) = Stﬁ:[ ]nMOdL;F(' )

11.2.7. Lemma. Let L be a modal languagewith negation that hasinterpolation
on a frame classF, and let K  Strg[ ], for somesignature . If both K and
Stre[ ]nK are projective classesof L relativeto F, thenthereisa' 2 L[ ] such
that K = |\/|Od|_;|:(I )

Pro of: SinceK is a projective class,there is a formula® 2 L[ ], with ,
sud that K = Mod, (' ) . Likewise, since Stre[ ]nK is a projective class,
thereis aformula 2 L[ 9, with 9 such that Stre[ JnK = Mody.¢( )
Without loss of generality, we may assumethat \ °=  (by the Renaming
property of L). It followsthat * F_.r: . SinceL hasinterpolation, there must
bea#2 L[ Jsuththat' F e#and# FL.r: . As alast step, we will show
that MOdL;F(#) = K.

SupposeM 2 K. ThenM = N for someN 2 Mod, (' ). Since' F . #,
it followsthat N F #. By the Expansionproperty, M E #. Cornversely suppose
M 6. ThenM = N for someN 2 Mod, .¢( ). Since# F_¢: , it follows
that N 6§ #. By the Expansionproperty, M 6j #. 2

11.2.8. Lemma. Let L be a madal languagewith interpolation on a frame class
F, suchthat M (D) gL. Thenforall' 2 L[ Jandp?2 , thereis a formula of
L[ nfpg], which we will denoteby #p:' , suchthat Mod, r(#p:") = f(F;V;w) 2
Stre[ nfpg]j (F; VP wd-w) ' g.

Pro of: Let Kupr = f(F;V;w) 2 Stre[ nfpg] j (F; VP Wdiw) E ' g Kepe s
projectively de ned by p” : Dp” ' andits complemer is projectively de ned by
p”~: Dp”: ' . SinceL hasnegationand hasinterpolation on F, by Lemma6.4.7
Kyp: = Mod.¢( ) forsome 2 L[ nfpg]. 2

Pro of of Theorem 11.2.4: Let L be any modal languagewith interpolation
over nominals on a frame classF, suc that M (D) ¢ L. Let' 2 LY |

that is [p="]-equivalert to ' on F, meaningthat
foralM 2 Stre] [, M EL i M7 R | n]IE"]j:H(@)'

The proof proceedsby induction on the length of ' . To simplify the induction,
we will temporarily extend the syntax of L!, by allowing unary predicatesto
occur as argumerns of other predicates. For instance, R(y; P) is allowed as an
atomic formula, and it is interpreted as 9x:(Px ~ Ryx). This changeclearly does
not a ect the expressie power of L%, but it will make the inductive argumen
simpler.
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It is not hard to seethat in the basecase,where' is an atomic formula, the
claim holds. Also the inductive step for formulas of the form : or 7~ 5 is
straightforward (cf. alsothe proof of Theorem 6.4.4i)). Finally, let ' be of the
form 9y: . By the de nition of LY, ' cortains at most one free variable, say
X (in case' corntains no free variables, let x be any variable distinct from vy).
Let p;q be distinct proposition letters (unary predicates)not occurring in . By
induction hypothesis,' [x=i;y=j]2 L[ [ fi;]jg]is[p="]-equivalert on F to some

2 L[ [ fp;qg]. By Lemmall.2.8and by the fact that M (D) ¢ L, we obtain
a formula #p:E#q: 2 L[ ] that is easily shovn to be [p="]-equivalert to ' on
F. 2

11.3 An application to relation algebra

In the introduction of this chapter, we menioned that the basic modal language
canbe seenasa fragmert of relation algebra. As it happens,relation algebracan
itself be thought of as an instance of the basic modal language,with a specic
set of modalities, and interpreted on a speci ¢ classof frames.

We will considerthe basic modal languageover a collection of three modali-
ties: a binary modality , a unary modality , and a null-ary modality (modal
constart) . Thus, the formulas of this languageare given by

S ) I AR R B
The correspnding frameshave three accessibiliy relations, onefor eat modality.
Let SQ be the classof such framesF = (W;R ;R ;R ) for which there is a set

U suchthat W=U U, and

f((w;Vv); (w;u);(u;v)) jw;v;u 2 Ug (i.e., R denotescomposition)
f((w;v); (v;w)) jw;v 2 Ug (i.e.,, R denotesinverse)

R
R
R f(w;w) j w2 Ug (i.e., R denotesthe idertity relation on U)

The basic modal languageinterpreted on the frame classSQ is known as arrow
logic. In fact, it is relation algebrain disguise.Arrow logic is known not to have
interpolation. Theorem 11.2.4tells us what it takesto repair interpolation: it
tells us that the rst-order correspndencelanguageis the smallestextensionof
the basicmodal logic that hasinterpolation on SQ.

Note that while Theorem 11.2.4was only proved for languageswith unary
modalities, the proof generalizedto languagessud as that of arrow logic, that
have modalities with other arities (cf. alsoRemark 6.4.9.

11.3.1. Theorem. L1 is the least expressiveextensionof the basic madal lan-
guagewith interpolation on SQ
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Pro of: The di erence operator is de nable relative to SQ for any formula ' ,
D' is equivalent to (: " >)_(> ' :)[96]. Hence,in terms of Def-
inition 11.2.2 the basic modal languageM extendsM (D) relative to SQ. It
follows by Theorem 11.2.4that every modal languageextending M relative to
SQthat hasinterpolation on SQextendsL ! relative to SQ Finally, that L?! itself
hasinterpolation relative to SQ follows immediately from the fact that SQis an
elemertary frame class. 2

In fact, in orderto repair interpolation, an extensionof the languageof arrow
logic was proposed,called RL# [7§. In the samepaper, it is showvn that RL# is
equally expressie asL! (on SQ. Hence,Theorem 11.3.1tells us that, in some
sensethe results of [78] are optimal.

We canrephraseTheorem11.3.1in relation algebraicterms by observingthat
ewery elemerary operation on binary relations is de nable in L over SQ To
make this precise,we needto introduce someterminology. Every rst-order for-

Operations on binary relations that are de ned by a rst-order formula in this
way are calledelementary Examplesareintersection(Ryxy” R,Xxy), complemen
(: Rxy) and composition (9z:(R1xz * Rjzy)).

11.3.2. Pr oposition. Let O be any n-ary elementaryoperation on binary rela-
tions (n  0). Thenthereis aformula (pi;:::;pn) 2 LY[fps;:::;pad] (involving
the modalities , and ), suchthat for all modelsM baseal on a framein SQ,
[ (puiiisip)ls = O(padth;c: o IoaIih).

(Rkxy) = 9z:(Px(2)» R zxz ™ R zzy)
(x=y) = x=y

> = >

(~ ) ="'~

") = ()

Ox') = X(RX™" )

Finally, let (x) 2 L[ ] bethe formula9yz:(" (y;z)* R xyx” R xxz). Then for

Algebraically speaking, we can concludefrom this that the only way to restore
interpolation for the classof represemable relation algebraby expansionis to add
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the entire clone of elemertary operations on binary relations. In particular, it
doesnot su ce to add only nitely many elemenary operations, or to add only

Jonsson'sQ-operators [97].






Chapterl2
Second order propositional modal logic

In this chapter, we considerthe extensionof the basic modal logic with proposi-
tional quarti ers introducedin 1970by Fine [41]. The formulas of this languages
are generatedby the following recursive de nition:

DEppit gt 37 j9pr j8pr

The propositional quarti ers are interpreted in the expectedway: 9p:' is true
if there is a subsetX of the domain sudh that * holds when the valuation is
changedsud that p denotesX, and similar for the universal quarti er.

In what follows, we will refer to this languageas second order propositional
modal logic (SOPML). This namethat is justi ed by the fact that many formulas
of SOPML expressnon-elemetary properties, even on the level of models. Con-
sider for instancethe formula 8p:(23 p! 32 p). If this formula would have a
rst-order equivalert (x), then 8x: (x) would de ne the classof framesde ned
by the McKinsey formula, which is known to be non-elemertary. It follows that
8p:(23 p! 32 p) doesnot have a rst-order equivalert. In other words, the
standard translation cannot be extendedto the full SOPML.

A formula of SOPML is in pre x form if it is of the form Qip;  Qnpn:' .,

It was showvn by Fine [4]] that second-orderarithmetic can be interpreted in
SOPML. This result was strengthenedby Kaminski and Tiomkin [68], whereit
was shown that there is a satis abilit y preservingtranslation from full second
order logic to SOPML.! It followsimmediately that the satis abilit y problem for
SOPML is not decidable,and in fact not analytical.

Newertheless,not every secondorder formula is equivalert to a formula of
SOPML. This follows from the fact that SOPML formulas are invariant under

IKremer [71, 72] further strengthened this result by showing that sud translation from
secondorder logic exists already for the extension of seweral intuitionistic and relevance logics
with propositional quarti ers.

177
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generatedsubframes,as was obsened by Van Benthem [11]. The preciseexpres-
sive power of SOPML has not been characterized. In particular, the following
guestionsasked by Van Benthem [11] have not beenansweredsofar:

1. Is every SOPML formula equivalert to onein pre x form?

2. Is every boundedL *-formula equivalert to a formula of SOPML?

In what follows, we will answer these questionspositively. Furthermore, we will
show that the basic modal languageis the bisimulation invariant fragmert of
SOPML, and we will shov that H(@;#) hasthe sameexpressie power as the
rst-order de nable part of SOPML.

12.0.1. Pr oposition. Every formula of SOPML is equivalentto onein pre x
form.

Pro of: We will prove the result for uni-modal languages.The proof generalizes
straightforwardly to the multi-modal case.Let"' ;(p) bethe formula 3 p” 8q(3 (p*
Q! 2(p! ), which holdsi thereis exactly one successosatisfying p. Now,
given a secondorder modal formula ' , one can move all quarti ers to the front
of the formula using the following equivalences.

9 p: = 8p: 8 p: = 9p:
Op: )" = 9p( » ) | (Bp: )™ = 8p( ")
39p: = 9p3 3 8p: = 9g8p:(" (™ 2(q! )

where p doesnot occurin  and g doesnot occur in . The resulting formula
might still not bein pre x form dueto the newly introduced’ ;-subfornulas, but
it can easily be transformedin pre x form. Furthermore, it is equivalernt to the
original formula ' . 2

The following analogueof Theorem 2.2.3 holds for secondorder modal logic.

12.0.2. Theorem. Bothon nite modelsandin geneal: aformula’ of SOPML
is invariant under bisimulationsi ' is equivalentto a formula of the basic madal
language.

Pro of: One direction follows simply from the bisimulation of modal formulas.
For the other direction, we will usethe notion of n-bisimulation [21]. Letn 2 !,
let M ;N be models and let w and v statesof M and N, respectively. We say
that w is n-bisimilar to w® (notation: M;w $ ,, N;w9 if there exists a sequence

(i) wZow°

(i) If vZ;vPthen v and v® agreeon all proposition letters
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(iii) If vZ;vOfori < n and vR3u then there existsa u® with voRS u®and uz;.; u°

(iv) If vZ;v°fori < n and vR$ u®then there existsa u with vRz u and uZ;.; u°

Considerany formula ' of SOPML that is invariant under bisimulations Let k
be the modal depth of ' (i.e., the maximal nesting degreeof modal operators).
As a rst step, we will showv that * is invariant under k-bisimulations. Suppose
(M;w) $  (N;v). Let (M ;w) bethe tree-unraveling of (M ; w) and let M, bethe
submadel of M consistingof all points readablefrom w in at mostk steps(along
the union of all accessibiliy relations). By construction, (M ;w) $ (M ;w), and
(M;w) satises’ i (M ;w) does.De ne R and R similarly. Then (f1,;w) $
(I‘Qk;v). Combining theseobsenations, and using the bisimulation invariance of
", we concludethat (M ;w) and (N;v) agreeon"' .

It is known that, if we restrict attention to the ( nitely many) proposition
letters occurring in ', every model (M;w) is described completely up to k-
bisimulation by a singlemodal formula '(‘M w) of modal depth k (e.g., seePropo-
sition 2.29and Proposition 2.30in [21]).

Finally, considerthe set = f: ., j (M;w) 6 " g. It follows from the
invarianceunder k-bisimulations that forallM 2 K, (M;w)F 1 (M;w) F .
Since there are only nitely many mutually non-equinalert modal formulas of
modal depth k [21, Proposition 2.29], cortains only nitely many formulas,
modulo logical equivalence,and ' is equivalent their conjunction.

A similar argumert appliesto nite models, where the tree unraveling con-
struction must be replacedby a partial unraveling, cf. [81]. 2

In other words, the Van Benthem-Rosencharacterization of modal logic as the
bisimulation invariant fragmert of rst-order logic holdsalsoif rst-order logicis
replacedby secondorder modal logic.

Note that the proof of Theorem12.0.2crucially dependson the useof (partial)
tree unravellings, and that the result might not hold on frame classeghat are not
closedunder this operation. In particular, considerthe classof bi-modal frames
(W;Ry1;Ry) in which R5 is the re exiv e transitive closureof R; (note that this
classis de nable by a single modal formula). As obsened by [92], results of [67]
imply that, on sud frames,the bisimulation invariant fragmert of SOPML is the
modal -calculus!

Secondorder modal logic itself canbe characterizeditself in terms of invariance
under generatedsubmadels. This follows from the following surprising connection
betweensecondorder modal logic and H (@; #).

12.0.3. Theorem. Every nominal free H(@; #)-sentene is equivalentto a for-
mula of SOPML. Conversely,if a formula of SOPML hasa rst-or der equivalent,
then it is equivalentto a nominal free H (@; #)-sentene.
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Before we will prove Theorem 12.0.3 we will list a number of its consequences.
First of all, Theorem12.0.3shavsthat H(@; #) is, in somesensethe intersection
of SOPML and rst-order logic. In order to formulate this more precisely let a
pointed model be a pair (M ;w), whereM is a model and w is an elemen of M.
Note that M neednot be generatedby w. Modal formulas, aswell as rst-order
formulas with one free variable, naturally de ne classesof pointed models. As
with frame classeswe call a classof pointed models elementary if it is de ned
by a rst-order formula with onefree variable.

12.0.4. Cor ollar y. A classK of pointed madelsis de nable by a nominal free
H(@ #)-sentenei K is both elementaryand de nable by a formula of SOPML.

By Theorem9.2.5 we obtain the following.

12.0.5. Cor ollar y. An elementaryclassK of pointed modelsis de ned by a
formula of SOPML i K it is invariant under geneated submalels.

Theorem 12.0.3in conbination with Corollary 9.3.2also givesrise to the follow-
ing analogueof the Goldblatt-Thomason theoremfor secondorder propositional
modal logic.

12.0.6. Cor ollar y. LetK bean elementaryclassof frames. Then the following
are equivalent.

1. K is de nable by a set of formulas of SOPML
2. K is de ned by a single formula of SOPML

3. Kis closa under generted subfamesandre ects point-geneiated subfames

In particular, if a frame classis de ned by a rst-order formula of the form
8x:" (x), with ' (x) bounded,then it is alsode ned by a formula of SOPML.

It seemsnot unreasonableo expect that Corollary 12.0.6can be generalized
to frame classede nable in monadic secondorder logic. Howeer, inspection of
the proof shows that Proposition 9.3.6 appliesalsoto secondorder modal logic.
In other words, there is amonadic 1-de nable frame classK that is closedunder
generatedsubframesand re ects point-generated subframes,sud that K is not
de nable in SOPML. Similarly, Proposition 9.3.5shownsthat Corollary 12.0.6does
not hold on nite models.

In orderto prove Theorem12.0.3 we will extend the hybrid languageH with
a new kind of quarti ers, denotedby 9, and 8. Formally, for every formula
and natural number k, we admit 9, x:' and 8 x:" as formulas, and we extend
the truth de nition in sud away that M ;g;w F 9¢x:' i thereisapoint v suth
that M;g[x := v];w F ', and v is reacdhable from w in at most k stepsalong
the union of all accessibiliy relations (similarly for the universalquarti er). Let
H(9n) be the extensionof H with the quartiers 9, and 8 forallk 2 ! .
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12.0.7. Lemma. Every H(9,)-formula is equivalentto a H (@, #)-sentene, and
conversely, every nominal free H(@, #)-sentene is equivalent to an H(9,)-
formula.

Pro of: We will prove the result for uni-modal languages.The generalizationto
formulas cortaining seeral modalities is straightforward.

The rst part of the statemert is easyto prove: let 3 " is shorthand for

« n3% . Then9,x:' isequivalert to #y:(3 "#x:@’' ), for y a variable distinct
from x that doesnot occurin ' .

As for the secondpart, let ' be any nominal free H (@; #)-sertence,and let m
beits modal depth. Considerits standardtranslation ST, (' ), which is a bounded
formula of the rst-order correspndencelanguagewith no free variablesbesides
x. For any bounded rst-order formula , de ne the H(9,)-formula  asfollows.

(Ryz) = 3 M(y"32z)

(Py) = 3 "(y*p

(y=2) = 3 ™(y"2)

) = ()

( ) = N

9z:(Ryz™ ) = 9,z:(3 ™(y*"32)™ )

An inductiveargumern showvsthat the H(9,)-sertence9ox: (ST« (' )) isequivalert
to ST«(' ), and henceto ' . 2

Armed with Lemma 12.0.7 we can proceedwith the proof of Theorem 12.0.3

Pro of of Theorem 12.0.3: Let ' be any nominal free H(@, #)-formula. By
Lemma12.0.7 ' is equivalert to an H(9 ")-formula . We may assumewith-

out lossof generality that  is of the form Qix; QX , whereQq;:::;Qn 2
f8h;9,jn2!gand isquarier free.Let bethe largestnatural number suc
that a quarti er of the fgrm 9- or 8- occursin , andlet m 5,” + md( ). Let

3 ™ beshorthandfor |, 3% ,let2 ™ beshorthandfor , . 2',andlet
# be the formula of SOPML obtained from by replacing every subforrmula of
the form 9 "x: by 9p:(3 "p” 8a:(3 ™(pr g ! 2 M™(p! g "' [x=p]) and
replacing every subformula of the form 8 "x: by 8p:(3 "p” 8qg:(3 ™(p” g) !
2 "(p! 9! " [x=p]). A simpleinductive argumert showsthat # is equivalent
to the H(9 ")-formula , and henceto the H(@; #)-formula ' .

For the cornversedirection, by Theorem9.2.5it su ces to obsene that second
order modal formulas are invariant under generatedsubmadels. 2
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Conclusions

Roughly speaking, this thesis cortains two types of results. Results of the rst
type can be seenasaddressingspeci ¢ cellsin a big table along the following two
dimensions.

Extensionsof the basic modal language

The basic modal language,the hybrid languagesH, H(@) and H(E), the
bounded fragmert and H(@; #), guarded fragmerts, relation algebra and
secondorder propositional modal logic

Model theoretic and computational properties

Expressivity, frame de nabilit y, axiomatization, interpolation, the Beth
property and complexity

The secondtype of results establish cross-connectiondetween languages. In
particular, a number of truth- or satis abilit y-preserving translations between
di erent languagesare descriked, and certain languagesare characterizedin terms
of others (for instance,as being a model theoretically interesting fragmen, or as
being the smallestextensionsatisfying certain properties).

Resultsof the rst type reported in this thesisinclude the following.

We gave Goldblatt-Thomason-siyle characterizations of the elemen-
tary frame classegle nable in H, H(@), H (E), and H (@; #), both for
pure formulas and for arbitrary formulas. The characterizationsare
basedon two new operations on frames: ultra Iter morphic images
and bisimulation systems.

We characterizedthe expressiviyy and frame de nable power of second
order propositional modal logic (SOPML). The proofs are basedon
the obsenation that the rst-order de nable part of SOPML coincides
with the boundedfragmert.
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We showed that either in nitely many rules or non-orthodox rules
are neededin the axiomatizations of H, H(@) and H(E) in order to
obtain a generalcompletenessesult for pure extensions.On the other
hand, we showved that there is an axiomatization for H(@;#) that
cortains only nitely many, orthodox rules, that satis es a general
completenessesult for pure extensions.

Results of the secondtype include the following.

We showed that H(@, #) is the smallest extensionof H (@) with in-
terpolation (i.e., interpolation over proposition letters and nominals).
Likewise,we shaved that L! is the smallestextensionof H (E) with
interpolation, and that L?! is the smallest extensionof M (D) with
interpolation. The proofs are basedon the simple obsenation that
ewery interpolant for i~ ') ! (G ! '[i=]) (with j a nominal not
occuringin ') is equivalert to #x:" [i=x].

We shaved that, while most propertiesdo not transferin generalfrom
a modal logic to the correspnding H- or H(@)-logic,there is a large
classof modal logicsfor which complexity, interpolation, uniform in-
terpolation and nite axiomatization do transfer. The proof is based
on a seriesof translations from H and H(@) to the basic modal lan-
guage,ead of which presenes satis abilit y with respect to certain
frame classes.

A few cells of the big table described above are still blank (in particular, which
elemenary frame classesare de nable by guarded rst-order formulas?). Also,
there might still be interesting model theoretic cross-connectiondetween frag-
merts of rst-order logic, waiting to be discovered. In fact, | hope that this thesis
will cortribute to the emergenceof a new area of researt that might be called
\abstract model theory below rst-order logic".



Appendix A

Basics of model theory

This sectionreviewsa number of important results on the model theory of rst

order logic that are usedin proofs throughout this thesis. For a more detailed
treatment, cf. [64, 37]. We assumethat the readeris familiar with the syntax and
semartics of rst-order logic. We will only consider rst-order languageswith

constarts and relation symbols but without function symbols of arity greater
than zero. We will denote rst-order models(or, structures) aspairsM = (D;1)
consistingof a domain D and an interpretation function | that assignsrelations
of the appropriate arity to the relation symbols and that assignselemens of D

The rst three results are easily stated.

A.0.1. Theorem (Compactness). Let be a setof rst-or der formulas. If
every nite subsetof hasa model,then hasa madel.

A.0.2. Theorem (L ewenheim-Sk olem). Let be a countable set of rst-
order formulas. If hasa madelthen hasa countablemaodel.

A.0.3. Theorem (Craig Interpola tion). Let'; be rst-or der formulas,
suchthat F ' ! . Then there is a formula # suchthat ' | #, F #!
and all constants, relation symiwls and function symiwls occurring in # occur both
in' andin

For the remaining results we needto introduce someterminology. A model M
is a submalel of a model N if the domain of M is a subsetof the domain of N
and the interpretations of every non-logicalsymbol in M is simply the restriction
of its interpretation in N with respect to the domain of M. It follows that if an
elemen of the domain of N is namedby a constart, then it is alsoin the domain
of M. We say that M is an elementarysubmalel of N if it is a submadel, and
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an elementaryextensionif M.

Givenasetof modelstfM; ji 2 1 gfor agelational language(i.e., without con-
stants or function symbols), the unionN = ,,, M; is de ned in the natural way:
the domain of N is the union of the domainsof M; (i 2 1), and the sameholds
for the interpretation of the relation symbols. In general, this notion can only
be applied to modelsfor relational languages.Howeer, there are circumstances
in which it canalsobe applied to modelsfor languagescortaining constarts and
function symbols. An exampleof this is the following situation.

A.0.4. Theorem (Unions of element ary chains). Let (My)k2: be a se-
guene of models,suchthaéM k Is an elementarysubmalel of M ,; forallk 2 !,
and let M, be the union ,,, M. Then for eachk 2 ! , M is an elementary
submalel of M, .

S
NB: ;,, M; should not be confusedwith the disjoint union of the models M
(i 2 1). In fact, for the above result crucially relieson the non-disjointnessof the
modelsin question.

An ultralter overasetW isasetU } (W) satisfying three conditions:

1. W2U
2. Forall X W, X2Ui (WnX)62
3.Foral X 2UandY 2 U, X\Y2U

An ultra Iter is principal if hasa singleton elemer.

A.0.5. Definition (Ul trapr oducts). Given a collection of modelsfM , =
(Dajla) j @2 Ag and an ultra lter U over the set A, the following de nes the
ultraproduct yM, = (D;l).

Let bethe equivalene relation on the product ,,AD, givenby

f gi fa2Ajf(a)=9(@g2U
Let D be the quotient( .»aDa)= . For eachconstantc, let

1(c) = [Na(C)iazal

If all factor models M , are the same,then (M is called an ultrapower. Every
model M is isomorphicto a submadel of the ultrapower (M, the isomorphism
beingthe function that sendsevery elemen d to the equivalenceclass[hd; d;:::i] .
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A.0.6. Theorem (Los). For all madels M, ultralters U and rst-or der sen-
tenes', JME'I MFE"'

Relatedto ultraproducts are the simpler notions of products and subdirect prod-
ucts, which will alsoplay a role in this thesis.

A.0.7. Definition  (Pr oducts and subdirect products). The product of
a collection of madelsfM , = (Dga;l,) j a2 Ag, (also called cartesianproduct or
direct product, notation: ,,AM,) is the madel (D;1), whee D is the cartesian
product ,,aD,, and for each n-ary relation R,

A subdirect product of fM , j a2 Agis any submalel N of the product ,aM 4
for which it holdsthat the natural projection functions from the domain of N to
the domainsof the modelsM , (a2 A) are surjective.

The next notion we introduceis that of ! -saturatedness A 1-type is a set of
formulas in onefreevariable. A 1-type ( x) is realized in a model M if there is
an elemen d of the domain of M sudh that M F  [x : d]. A modelis said to
be 1-saturated if for all 1-types ( x), if every nite subsetof ( x) is realizedin
M, then ( x) itself is realizedin M. One can think of 1-saturatednessas a sort
of compactnesswithin a maodel

Note that we use! and N interchangablyto denotethe set of non-negatiwe inte-
gers.

A.0.8. Theorem (! -Satura tion). Every model M has an ! -saturated ele-
mentary extensionM * . In fact, M* can be constructed suchthat it is isomorphic
to an ultrapower of M .

It should be noted that this result holds regardlessof the cardinality of the lan-
guage(i.e., the number of non-logicalsymbols) [32, Theorem6.1.4and 6.1.8].

We say that two models,M ; N are elementarily equivalent (notation: M (o
N) if they satisfy the same rst-order sertences.

One, rather trivial, su cient condition for elemenary equivalenceis the ex-
istenceof an isomorphism An isomorphismbetweenmodels M and N is a bi-
jection f betweenthe domainsof M and N sud that for all atomic formulas



188 AppendixA. Basicsof model theay

i N FE " [f(dy);:::;f(dy)]. If anisomorphismbetweenM and N exists, then
we s&y that M and N are isomorphic, and that N is an isomorphic copy of N.
Clearly isomorphicmodels satisfy the same rst-order formulas. A moreinterest-
ing su cien t condition for elemenary equivalenceis the existenceof a potential
isomorphism a notion that will be de ned next.

A nite partial isomorphism between models M ;N is a nite relation

statemerts are atomic formulas, every nite partial isomorphismis (the graph of)
an injective partial function.

A.0.9. Definition  (Potential isomorphisms). A potential isomorphismbe-
tween two modelsM and N is a non-empty collection F of nite partial isomor-
phismsbetween M and N that satis es the following conditions:

For all nite partial isomorphismsZ 2 F and for eachw 2 M, thereis a
v2 N suchthat Z [ f(w;v)g2 F.

For all nite partial isomorphismsZ 2 F and for eachv 2 N, there is a
w2 M suchthat Z [ f(w;v)g2 F.

It is well known that rst-order formulas are invariant under potential isomor-
phisms. In other words, the existenceof a potential isomorphismimplies ele-
mertary equivalence. The cornversedoes not hold in general, but it holds for
I -saturated models.

A.0.10. Theorem. If M =, N thenM (o N. Conversely,if M go N and
M and N are! -saturated, thenM =, N.

An exact characterization of elemenary equivalencecan be given in terms of
Ehrenfeucht-Fassse games which can be seenas nite approximations of poten-
tial isomorphisms. The Ehrenfeudit-Frassse gameof length n on modelsM and
N (notation: EF(M;N;n)) is as follows. There are two players, Spoiler and
Duplicator. The gamehasn rounds, eat of which consistsof a move of Spoiler
followed by a move of Duplicator. Spoiler's moves consistof picking an elemen
from one of the two models, and Duplicators responseconsistsof picking an ele-
mert of the opposite model. In this way, Spoiler and Duplicator build up a ( nite)

binary relation betweenthe domainsof the two models: initially , the relation is
empty; ead round, it is extendedwith another pair. The winning conditions are
as follows: if at somepoint of the gamethe constructed binary relation is not
a nite partial isomorphism,then Spoiler wins immediately. If after ead round
the relation is a nite partial isomorphism,then the gameis won by Duplicator.
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A.0.11. Theorem (Ehrenfeucht-Fra  °sse). Assume a rst-or der language
with only nitely many relation symiols and function symiols. M o N i
Duplicator hasa winning strategy in the gameEF (M ;N;n) for eachn 2 ! .

Obserne that, sincethese gamesare nite zero-sumperfect information games
betweentwo-players, by Zermelo'stheorem one of the two players always has a
winning strategy.

In fact, TheoremA.0.11canbe strengthened:equivalencewith respectto rst-
order formulas of quarti er depth n correspndsto Duplicator having a winning
strategy in the gameof n rounds. Moreover, a winning strategy for spoiler may
be constructedfrom the distinguishing formula, and vice versa[9].






Appendix B

Basics of computabilit y theory

We brie y review somenotions from complexity theory and recursiontheory that
are usedin this thesis. More information can be found in [24], [89] and [62].

A decision problem may be identi ed either with a set of strings over the
alphabet f 0; 1g, or with a set of natural numbers. In fact, theseviews can be
identied by consideringnatural numbers as written down in binary notation.
Thus, while the length of a string s is simply the number of elemerts of the se-
guence the length of a natural number n will bethe length of its binary encading,
which is approximately logn. We will usejsj to referto the length of s, wheres
is either a bit-string or a natural number.

Given sudh a set L of bitstrings, or of natural numbers, the task is then to
decidefor a given string, or natural number, s whethers 2 L. A problem L
is called decidable (or, recursive) if there is a deterministic Turing madine that
solvesthis problemin nite amourt of time (i.e., for ead input s it terminates
after nitely many stepsand correctly answers the questionwhethers 2 L). A
problem L is called recursively enumegrble (r.e.) if there is a (not necessarily
halting) deterministic Turing madine that erumeratesthe elemerts of L. A
problemis co-recursively enumerbleif its complemen is recursively enumerable.
Any problemthat is neither recursively enumerablenor co-recursiely enumerable
is called highly undecidable

Complexity classes

Complexity theory classi esdecisionproblemswith respectto the amourt of time
and spacea Turing macdine needsto solve them.

Considera function f : N! N. We say that a problem L in dtime (f) if
there is a deterministic Turing machine M and natural numbers c;d sud that
on any input s with jsj > d, M terminates after at most ¢ f (jsj) many steps
and correctly answersthe questionwhethers 2 L. ntime (f ) is de ned similarly,
using non-deterministic Turing madines. A problem L in space(f) if there is
a deterministic Turing machine M and natural numbers c;d sud that, on any

191



192 AppendixB. Basicsof computabiliy theay

Table B.1: Someimportant complexity classes

PTime = dtime (n*)
2N

NP = ntime (n*)
2N

PSpace = space (n¥)
2N

ExpTime = dtime (2™)
2N

NExpTime = ntime (2")
2N

ExpSpace = space (2")
2N

2-ExpTime = dtime (22”k)
2N

ONExpTime =  ntime (22)
2N

2-ExpSpace = space(2?")
k2N

Element ary = k-ExpTime
k2N

input s with jsj > d, M decidesin nite amourt of time whethers 2 L, using at
most ¢ f (jsj) many cellsof the tape.

Thesenotions can be usedto de ne a number of important classe®f decision
problemsthat play a role in this thesis,which arelisted Table B.1. Eacd of these
classeds cortained in the classesappearing below it in the list.

Reductions and completeness

A polynomial reduction from a problem L to a problem L° (more precisely a
polynomial time many-one reduction) is a deterministic Turing madine that,
given input s, terminates after at most f (jsj) many stepsand producesoutput
tsudhthat s2 Li t 2 L% for somepolynomial function f : N ! N. All
complexity classedlisted in Table B.1 are closedunder polynomial reductions.
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For C a classof decisionproblemsand L a decisionproblem, L is said to be C-
hard (more precisely C-hard under polynomial reductions) if every problemin C
canbe polynomially reducedto L. A decisionproblemL is saidto be C-complete
if L2 C andL is C-hard.

We will alsomake useof other typesof reductionsin this thesis. A computable
reduction from a problem L to a problem L°is a deterministic Turing machine
that, given input s, terminates after nitely many stepsand producesoutput t
suhthat s2 L i t2 L% Clearly, the classof decidabledecisionproblemsis
closedunder computable reductions. On the other hand, the classedlisted in
Table B.1 are not closedunder computable reductions.

Finally, a non-deterministic polynomial conjunctive reduction of a problem L
to a problemL %is a polynomial time non-deterministic Turing macine that, given

s producesa sequencd;,;:::;t, sud that eat t; isin L°(i n). Clearly, non-
deterministic polynomial conjunctive reduction generalizethe usual polynomial
time many-onereductions. With the exceptionof PTime , all complexity classes
listed in Table B.1 are closedunder non-deterministic polynomial conjunctive
reductions(the classPTime is not closedunder sud reductions,unlessPTime =
NP) [74].

Arithmetical and analytical hierarchy

While complexity theory providesthe toolsto classifythe complexity of decidable
problems,recursiontheory is the proper framework for the studying and classify-
ing undecidableproblems. Recursiontheory studies decisionproblemsfrom the
perspective of de nabilit y in rst-order or second-ordemarithmetic.

The languageof rst-or der Peano arithmetic, L1 ,, is the rst-order language
over the vocabulary that consistsof binary relation , function symbols+ and
and equality. Formulas of this languageare interpreted over the natural numbers.
A set L of natural numbersis called arithmetical if it is de nable in rst-order
Peanoarithmetic, i.e., if thereis a formula ' (x) of L}, sud that for all n 2 N,
n2Li (N; ;+; )F ' [n]. Arithmetical setsmay be further classied in
terms of the quarti er patterns occuring in the formulasthat de ne them. More
speci cally, a set of natural numbersis said to bein 2 (with k 1) if it is
de ned by a L} ,-formula of the form Qix;  QnXn:', with Qq;:::;Q, 2 f9;8g
and' quarti er-free, sud that Q; = 9 and the number of quarti er alternations
(i.e., universal quarti ers following existertial quarti ers or vice versa)in the
sequence; :::Q, isat mostk 1. A setof natural numbersis saidto bein 2
if its complemen isin ¢, andin {if it isbothin {andin 2. A remarkable
result in recursiontheory statesthat the decidablesets of natural numbers are
preciselythe onesthat are in 2, and the recursiwely enumerable sets are the
onesin 9.
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Table B.2: Someimportant classesof problemsin recursiontheory

Arithmetical  hierarc hy

0 0
1 2
decidg\ble 9 9
= 3
0 0
1 2
Analytical hierarc hy
1 1
1 2
aritmetical 3 E
= « E)
1 1
1 2

The languageof second-order Peano arithmetic, L2 ,, is the second-ordettan-
guageover the vocabulary that consistsof binary relation , function symbols +
and , and equality. A setof natural numbersis called analytical if it is de ned
by a formula of L3,. Again, the analytical setscan be classi ed with respect
to the quarti er patterns occuring in the de ning formulas. A set of natural
numbersis said to be in ! (with k 1) if it is de ned by a L2 ,-formula of
the form QX1 QnX,:", whereQq;:::;Q, 2 f9;8g are quarti ers over sets
and' cortains only rst-order quarti ers, sud that Q; = 9 and the number of
qguarti er alternations (i.e., universal quarti ers following existertial quarti ers
or vice versa)in the sequence&); ::: Q, isat mostk 1. A setof natural numbers
is saidto bein } if its complemenisin }, andin }ifit isbothin P andin

1
-

Table B.2 summarizessomeof the above classesand indicatestheir relation-
ships. Eadh of the indicated inclusionsis strict. Ead of the classedlisted in
Table B.2 is closedunder computablereductions. A set A of natural numbersis
saidto be X-hard (more precisely X-hard under computablereductions) if for
every setB in ¥ there is a computablereduction from B to A. A setof natural
numbersis ¥-completeif it is both in % and ¥-hard. Likewisefor % and

k. When onespeaksof an arbitrary decisionproblem asbeing, for instance, 1-
hard, then it is implicitly understood that the instancesof the decisionproblem
are coded into natural numbers (using a computable encaling).

The set of (codings of) true 1 sertencesof arithmetic isitself a 1-complete
set. In fact, this can be strengthenedslightly, sincethe intended interpretation
of + and in (N; ) canbe de ned using rst-order senences.In this way, we
obtain the following.
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B.0.1. Theorem. The existential second order theory of (N; ) is i-complete.

Another example of a 1-hard decision problem, due to Harel [62 is the
recurrert tiling problem, which can be de ned as follows. A tile isatuple t =
Mieft; tright; toop; thoomi OF €lemerts of someset C. A tiling of N N using a set
of tles T isafunctionf :N N! T sud that for all n;m 2 N, f (n;m),igh =
f(n+ 1, M)potom and f (N;m)ip = f(N; M+ L)poom. Now, the recurrert tiling
problem is the following problem:

givena nite setoftiles T anda designatétile t 2 T, is there a tiling
f of N N usingT suchthat f (n;0) = t for in nitely manyn 2 N?

B.0.2. Theorem ([62]). The recurrent tiling problemis }-complete.
Hereis an exampleof a decisionproblem that is not analytical.

B.0.3. Theorem. Satis ability of monadic second order formulas over the sig-
nature consisting of a single binary relation is highly undecidable,and in fact not
analytical.

Pro of: Thereis a computablesatis abilit y-preservingtranslation from arbitrary
second-orderformulas to monadic secondorder formulas in one binary relation
symbol [68]. By a standard recursiontheoretic argumert, usingthe fact that the
model (N; ;+; ) is de ned up to isomorphismby a secondorder formula, the
classof satis able second-orderformulas is not analytical (cf. [38]). The result
follows. 2
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Samenvatting

In dit proefsdirift worden versdillende uitbreidingen van de basis modale taal
bestudeerd. Modeltheoretishie en computationele eigensbappen van deze uit-
breidingenworden onderzaht. Het proefsdirift bevat grofwegtweetypen resul-
taten. De resultaten van het eerstetype behandelenspeci eke cellen van een
grote tabel met de volgendedimensies.

Uitbreidingenvan de basis modale taal

De basis modale taal, de hybride talen H, H(@) en H(E), het bounded
fragmert en H(@, #), guarded fragmerten, relatie algebraen tweedeorde
propositionele modale logica.

Modeltheretischeen computationeleeigenschapgn

Expressiviteit, frame de nieerbaarheid, axiomatizering, interpolatie, de
Beth eigensbap en complexiteit

Resultatenvan het tweedetype tonen kruisverbandenaantussentalen. In het bij-

zonderwordenversdillende waarheid- of vervulbaarheid-behoudendevertalingen
tussenversaillende talen besdreven, en worden bepaaldetalen gekarakteriseerd
in termen van anderetalen (bijv oorbeeldals zijnde eenmodeltheoretist interes-
sart fragmen, of alszijnde de kleinste uitbreiding die aanbepaaldeeigensbappen
voldoet).

Hoofdstuk 1 geefteenalgemenentroductie tot het proefsdirift.

Hoofdstuk 2 neent belangrijke noties en resultaten in modale logica door va-
nuit eenmodeltheoretist perspectief. Het bevat tevensenkele nieuwe resultaten:
de niet-recursiee opsonbaarheid van de eersteorde formules die behoudenblij-
ven onder ultra lter extensies,een algemeeninterpolatie-resultaat voor modale
logica's, en enigeresultaten betre ende modale logica's die geaxiomatizeerdzijn
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door ondiepe formules (i.e., formules waarin geenvoorkomenvan eenpropositie-
letter in het bereik is van meerdan een modale operator).

De hoofdstukken die op Hoofdstuk 2 volgenzijn ondenerdeeldin tweedelen.
In Deell, dat bestaat uit Hoofdstuk 3{8, worden de hybride talen H, H(@) and
H(E) in detail bestudeerd.Dezetalen kunnen worden besdouwd als besdeiden
uitbreidingen van de basismodale taal. Hoofdstuk 3 introduceert de talen met
hun syntax en sematiiek. In Hoofdstuk 4 wordt de expressiviteit bestudeerd,
zonel op het niveau van modellen als op het niveau van frames. In Hoofd-
stuk 5 worden axiomatizeringenen volledigheid bestudeerd. Hoofdstuk 6 bevat
resultaten betre ende interpolatie en de Beth eigensbap. Hoofdstuk 7 behan-
delt vervulbaarheid-tehoudendevertalingenvan H, H(@) en H(E) naar de basis
modale taal. Hoofdstuk 8 behandelt de algemenevraag naar de overdract van
eigensbappen van modale logica's naar corresppnderendelogica’sin de rijkere
talen H, H(@) and H (E).

In Deel Il, dat bestaat uit Hoofdstuk 9{ 12, worden enige meer expressiee
uitbreidingen van de basismodale taal bestudeerd. Hoofdstuk 9 bestudeerthet
bounded fragmert, en de daaraan gerelateerdehybride taal H(@;#). Hoofd-
stuk 10 bestudeertguardedfragmerten met constarten. Hoofdstuk 11 bestudeert
relatie algebra. Tot slot betreft Hoofdstuk 12 tweedeorde propositionele modale
logica, de uitbreiding van de basismodale taal met propositionelekwantoren.



Abstract

In this thesis, seweral extensionsof the basic modal languageare studied. Model
theoretic and computational properties of these extensions are investigated.
Roughly speaking, the thesis cortains two types of results. The rst type of
results can be seenas addressingspeci ¢ cellsin a big table along the following
two dimensions.

Extensionsof the basic modal language

The basic modal language,the hybrid languagesH, H(@) and H(E), the
bounded fragment and H(@; #), guarded fragmerts, relation algebra and
secondorder propositional modal logic

Model theoretic and computational properties

Expressivity, frame de nabilit y, axiomatization, interpolation, the Beth
property and complexity

The secondtype of results establish cross-connectiondetween languages. In
particular, a number of truth- or satis abilit y-preserving translations between
di erent languagesare descriked, and certain languagesare characterizedin terms
of others (for instance,as being a model theoretically interesting fragmert, or as
being the smallestextensionsatisfying certain properties).

Chapter 1 provides a generalintroduction to the thesis.

Chapter 2 reviews basic notions and results of modal logic from a model
theoretic perspective. It also cortains seweral new results: the non-recursive
erumerability of the rst-order formulas presened under ultra lter extensions,a
generalinterpolation result for modal logics, and someresults concerningmodal
logicsaxiomatized by shallov formulas (i.e., formulas in which no occurenceof a
proposition letter is in the scope of more than one modal operator).
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The chapters that follow Chapter 2 are divided in two parts. In Part I,
which consists of Chapter 3{8, the hybrid languagesH, H(@) and H(E) are
studied in detail. Theselanguagescan be consideredmodest extensionsof the
basicmodal language.Chapter 3 introducesthe languageswith their syntax and
semartics. In Chapter 4, their expressiviy is studied, both on the level of models
and on the level of frames. In Chapter 5, axiomatizations and completeness
results are discussed. Chapter 6 contains results concerninginterpolation and
the Beth property. Chapter 7 discussesatis abilit y preservingtranslations from
H, H(@)and H (E) to the basicmodal language.Chapter 8 discusseshe general
guestionwhich properties transfer from modal logicsto the correspnding logics
in the richer languagesH, H(@) and H (E).

In Part 11, consisting of Chapter {12, somemore expressie extensionsof
the basic modal languageare studied. Chapter 9 studiesthe boundedfragmen,
and the related hybrid languageH (@; #). Chapter 10 studiesguardedfragmernts
with constarts. Chapter 11 studiesrelation algebra. Finally, Chapter 12 concerns
secondorder propositional modal logic, which is the extensionof the basicmodal
languagewith propositional quarti ers.
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