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Chapter1

Intro duction

As an introduction, we will briey discusstwo themesthat illustrate the context
in which this thesisshould be understood.

1.1 Generalized correspondence theory
It is well-known that modal logic canbe viewed either asa fragment of �rst-order
logic (when it is interpreted on models) or as a fragment of second-orderlogic
(when it is interpreted on frames). In both cases,it is natural to ask exactly
how the expressive power of modal logic and �rst-order (or second-order)logic
compare.

From the �rst of the two perspectives,Van Benthem [11] provesthat a �rst-
order formula with one free variable is equivalent to (the standard translation
of) a modal formula i� it is invariant for bisimulations. Put in the form of an
equation:

modal logic = �rst-or der logic = bisimulations (1.1)

While this result answers an important question, it also raisesmany questions.
One set of questionsis generatedby �xing two parametersof the equation and
asking for the correct solution. For instance,

x = monadic second-order logic = bisimulations

has the solution x = modal � -calculus [67], and

tenselogic = �rst-or der logic = x

has the solution x = two-waybisimulations. Likewise,onecould ask for which x
other than �rst-or der logic the equation

modal logic = x = bisimulations

1



2 Chapter1. Introduction

holds. In Chapter 12 of this thesis, it is proved that this equation also holds for
x = second-order propositional modal logic (i.e., modal logic with propositional
quanti�ers).

A more interesting question,perhaps,is the following: just as(1.1) character-
izesmodal logic asa fragment of �rst-order logic, could wecharacterize�rst-order
logic in terms of modal logic? In other words, doesthe equation

�rst-or der logic = modal logic + x

have a natural solution? In this thesis, we give a positive answer. It is shown
that �rst-order logic is the smallestextensionof modal logic with nominals and
the global modality that has interpolation. In other words:

�rst-or der logic = modal logic + nominals + global modality + interpolation

Likewise,it is shown that

�rst-or der logic = modal logic + di�er ence operator + interpolation

It is worth comparingthesecharacterizationsof �rst-order logic with Lindstr•om's
characterization [77, 8], which statesthat no proper extensionof �rst-order logic
hasboth compactnessand the L•owenheim-Skolemproperty. Lindstr•om's theorem
characterizes�rst-order logic from above (i.e., asmaximal with respect to certain
properties), whereasour resultscharacterizesit from below (i.e., asminimal with
respect to certain properties). Onemay evencombine the two, showing that �rst-
order logic is the unique languagethat extendsmodal logic with nominals and
the global modality and that hasinterpolation, compactnessand the L•owenheim-
Skolem property! 1

A similar story can be told for modal formulas interpreted on frames. The
celebrated Goldblatt-Thomason theorem [50] states that a �rst-order formula
de�nes a modally de�nable frame class i� it is preserved under taking gener-
ated subframes,disjoint unions and bounded morphic images,and its negation
is preserved under taking ultra�lter extensions. Again, this result raisesmany
questions.To namea few:

Can the �rst-or der formulas preserved under theseframe constructions be
characterized syntactically?

Van Benthem [11] givesa partial positive answer. For instance,he givesa syn-
tactic characterization of the �rst-order formulas preserved under generatedsub-
frames, disjoint unions and bounded morphic images. However, an important

1Incidentally , the basic modal languageitself can also be given a Lindstr•om-style character-
ization, cf. [86].



1.2. Hybrid logic 3

question that has remainedunanswered so far is whether the �rst-order formu-
las preserved under ultra�lter extensionscan be syntactically characterized. In
Chapter 2 of this thesis,we give a negative answer by showing that the �rst-order
formulas preserved under ultra�lter extensionsare not recursively enumerable.

Can we give similar characterizations for the frame classesde�nable in
extensionsof the modal language,suchas with nominals or with propositional

quanti�ers?

Many results in this thesis can be seenas answers to this question. The frame
de�nable power of several hybrid languages(i.e., extensionsof the basic modal
languageinvolving nominals) is investigated,aswell as that secondorder propo-
sitional modal logic (modal logic extendedwith propositional quanti�ers). Oneof
our results is, for instance,that an elementary frame classis de�nable in second
order propositional modal logic i� it is closedunder generatedsubframesand it
reects point-generatd subframes.

Conversely, an interesting line of questionsis the following:

Can we �nd an extensionof the modal languagethat can de�ne precisely the
elementaryframe classesclosed under generated subframes?Or that reect

ultra�lter extensions?. . .

One answer is given in [56], where it is shown that the modal languagewith the
global modality can de�ne precisely the elementary frame classesclosedunder
boundedmorphic imagesthat reect ultra�lter extensions.

While this thesisdoesnot contain any further answers to this question,some
of its resultscanbeseenaspartial answers. In particular, our resultssuggestthat
H(E), the extensionof modal logic with nominalsand the global modality, comes
closeto de�ning all elementary frame classesthat reect ultra�lter extensions.
Similarly, the languageH(@; #) can de�ne almost all elementary frame classes
that are closedunder generatedsubframes.

1.2 Hybrid logic
Given that modal logic is the bisimulation invariant fragment of a relational
�rst-order language,onemight askwhat the bisimulation invariant fragment of a
�rst-order languagewith constants is. In other words: what is the modal analogue
of �rst-order constants? The answer is: nominals.

Nominals(denotedby i; j ; : : :) form a secondsort of proposition letters, whose
interpretation is requiredto bea singleton. In other words,nominalsnameworlds
of the model. An exampleof a formula involving nominals is 3 i ^ 2 i , which ex-
pressesthat the world namedby the nominal i is a successorof the current world,
and that it is the only successor.The languageobtained by adding nominals to
the basicmodal language,is called the minimal hybrid languageH.
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In the presenceof nominals, it is naturally to consideralso another addition
to the language,namely satisfaction operators. Satisfaction operators (denoted
by @i ; @j ; : : :) allow one to expressthat a formula holds at the world namedby
a nominal. For instance @i p expressesthat p holds at the world named i , and
@i 3 j expressesthat the world namedj is a successorof the world namedi . The
extensionof the basic modal languagewith nominals and satisfaction operators
is called the basic hybrid languageH(@). As promised,H(@) is the bisimulation
invariant fragment of a �rst-order languagewith constants. Of course,to make
this preciseone has to de�ne bisimulations for languagescontaining constants.
The details can be found in Chapter 4.

BesidesH and H(@), a number of other hybrid languageswill be studied in
this thesis,most importantly H(E) andH(@; #). The largestpart of this thesiscan
be seenas a detailed investigation into the model theory of theselanguages.We
investigate expressivity, frame de�nabilit y, axiomatizations, interpolation, and
complexity.

Which properties of modal logics are preserved whenthe languageis extended
with nominals, satisfaction operators, etc.? And which techniquesused for

proving resultsabout modal logics can stil l be used whenfacing hybrid logics?

We hope this thesisshedslight on thesequestions.

1.3 Overview of the thesis
With the exception of the �rst chapter, which discussesthe basic modal lan-
guage,the thesis is divided into two parts. Part I concernsthe hybrid languages
H; H(@) and H(E). Each chapter discussesa properties of theselanguages,such
as expressivity, axiomatization, interpolation and complexity. Part I I of the the-
sis discussesmore expressive extensionsof the basic modal language, namely
the boundedfragment, the guardedfragment, relation algebraand secondorder
propositional modal logic. Again, topics that are addressedinclude expressiv-
it y, axiomatization, interpolation and complexity. Figure 1.1 shows most of the
languages,and how they relate in terms of expressivity.

Important topics that are not discussedin this thesisare proof theory, imple-
mentations, and real world applications.
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Figure 1.1: Extensions of the basic modal language





Chapter2

Mo dal logic

This chapter servestwo purposes.Firstly, it reviewsthe basicnotions and results
of modal logic, from a model theoretic perspective. Secondly, weprove the follow-
ing new results: non-recursive enumerability of the �rst-order formulas preserved
under ultra�lter extensions,an improvement of a generalinterpolation result for
modal logics, and someresults concerningshallow modal formulas (i.e., modal
formulas in which no occurenceof a proposition letter is in the scope of more
than onemodal operator).

2.1 Syntax and semantics
Wewill assumea countably in�nite setof proposition letters pr op and a �nite set
of (unary) modalities mod.1 A Kripke frame is a pair F = (W; (R3 )3 2 mod), where
W is a set, called the domain of F, and each R3 is a binary relation over W. The
elements of the domain of a frame are often called worlds, states,points, nodes,
or simply elements. The relations R3 are often called accessibility relations. A
Kripk e model is a pair (F; V), whereF is a Kripk e frame, and V : pr op ! } (W)
is a valuation for F, i.e., a function that assignsto each proposition letter a subset
of the domain of F. We will often drop the quali�cation \ Kripke", and simply
talk about framesand models.

The basicmodal languageM is a languagethat is usedfor describingmodels
and frames. Its formulas are given by the following recursive de�nition.

' ::= > j p j : ' j ' ^  j 3 '

The other connectives,such as2 , will be consideredshorthand notations. Given
a model M = (W; (R3 )3 2 mod ; V ), a world w 2 W and a modal formula ' , truth
or falsity of ' at w in M is de�ned as follows, whereM ; w j= ' expressesthat '

1In most parts of this thesis, we restrict attention to a �nite set of unary modalities. This is
only for presentational reasons,and all results we present can be generalizedto in�nitely many
modalities and k-ary modalities (k � 0).

7



8 Chapter2. Modal logic

is true at w in M .

M ; w j= >
M ; w j= p i� w 2 V(p)
M ; w j= : ' i� M ; w 6j= '
M ; w j= ' ^  i� M ; w j= ' and M ; w j=  
M ; w j= 3 ' i� there is a v 2 W such that R3 (w; v) and M ; v j= '

We say that M globally satis�es ' (notation: M j= ' ) if M ; w j= ' for all
w 2 W. We say that ' is valid on a frame F (notation: F j= ' ) if (F; V) j= ' for
all valuations V for F. Dually, ' is satis�able on a frame F if there is a valuation
V and a world w such that F; V; w j= ' . The frameclassde�ned by ' is the class
of all frameson which ' is valid. Finally, ' is said to be valid (notation j= ' ) if
' is valid on all frames,and ' is said to be satis�able if it is satis�able on some
frame.

The modal depth of a formula ' , denotedby md(' ), is the maximal nesting
of modal operators in ' . One can alsogive a proper inductive de�nition:

md(> ) = 0
md(p) = 0
md(: ' ) = md(' )
md(' ^  ) = maxf md(' ); md( )g
md(3 ' ) = md(' ) + 1

In the remainderof this chapter, we review the model theory of the basicmodal
languageM , focusingon expressivity, frame de�nabilit y, axiomatizations, inter-
polation, and decidability and complexity.

2.2 Bisimulations and expressivity on models
Bisimulation allow us to tell when two worlds in modelscan be distinguishedby
a modal formula.

2.2.1. Definition. A bisimulation between modelsM = (W; (R3 )3 2 mod ; V ) and
N = (W 0; (R0

3 )3 2 mod ; V 0) is a binary relation Z � W � W 0 satisfyingthe following
conditions.

A tom If wZv then M ; w j= p i� N; v j= p for all p 2 pr op

Zig If wZv and wR3 w0, then there is a v0 2 W 0 suchthat vR0
3 v0 and w0Zv0.

Zag If wZv and vR0
3 v0, then there is a w0 2 W suchthat wR3 w0 and w0Zv0.

We say that M ; w and N; v are bisimilar (notation: M ; w $ N; v) if there is a
bisimulation Z between M and N suchthat wZv.
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Table 2.1: Standard translation from modal logic to L 1

STx (> ) = >
STx (p) = Pp(x)
STx (: ' ) = : STx (' )
STx (' ^  ) = STx (' ) ^ STx ( )
STx (3 ' ) = 9y(R(x; y) ^ STy(' )) for y a variable distinct from x

Modal formulas cannot distinguish bisimilar points. In other words, if two points
arebisimilar, they aremodally equivalent. The conversedoesnot hold in general,
but it hold on ! -saturated models(cf. Appendix A). Let us write M ; w � M N; v
if for all modal formulas ' , M ; w j= ' i� N; v j= ' .

2.2.2. Theorem. Let M ; N be modelsand w; v points in thesemodels. If w and
v are bisimilar then M ; w � M N; v. Conversely,if M and N are ! -saturated and
M ; w � M N; v then w and v are bisimilar.

A proof can be found in [21].
The �rst-or der correspondence languageL 1 is the �rst-order languagewith

equality that contains a unary predicatePp for each proposition letter p 2 pr op
and a binary relation R3 for each modality 3 2 mod. Any model M =
(W; (R3 )3 2 mod ; V ) can be regardedas a model for the �rst-order correspondence
language.The accessibility relations R3 are usedto interpret the binary relation
R3 and the unary predicatesPp are interpreted as the subsetsthat V assigns
to the corresponding proposition letter. In what follows, we will not distinguish
betweenKripk e models and models for the �rst-order correspondencelanguage,
and we will continue to usethe notation M = (W; (R3 )3 2 mod; V ).

Table 2.1 presents the standard translation STx from the modal language
to the �rst-order correspondencelanguageL 1. This translation preserves truth,
in the sensethat for all modal formulas ' , models M , and worlds w of M ,
M ; w j= ' i� M j= STx (' ) [x : w]. In this way, the standard translation shows
that modal logic is a fragment of �rst-order logic. Bisimulations allow one to
characterize exactly which fragment. Call an L 1-formula ' (x1; : : : ; xn ) bisimu-
lation invariant if for all bisimulations Z betweenmodels M and N and for all
(w1; v1); : : : ; (wn ; vn ) 2 Z , M j= ' [w1; : : : ; wn ] i� N j= ' [v1; : : : ; vn ].

2.2.3. Theorem ([ 11]). Let ' (x) be a formula of the �rst-or der correspondence
languagewith at most one free variable. Then the following are equivalent:

1. ' (x) is invariant under bisimulations
2. ' (x) is equivalent to the standard translation of a modal formula.

Rosen[87] proved that this result holds alsoon �nite structures.
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2.3 Frame de�nabilit y
When interpreted on frames,modal formulas expresssecondorder frame condi-
tions. For instance, the modal formula p ! 3 p expressesthe frame condition
8x:8P:(Px ! 9y:(Rxy ^ Py)). At it happens, this particular secondorder for-
mula is equivalent to the �rst-order formula 8x:Rxx. However, this is in general
not the case. For instance, the modal formula 23 p ! 32 p expressesa frame
condition that is not de�nable by �rst-order formulas.

To be a little more precise,given a set of modal formulas �, the frame class
de�ned by � is the classof all frames on which each formula in � is valid. A
frame classis modally de�nable if there is a set of modal formulas that de�nes it.
A frame classis elementary if it is de�ned by a sentenceof the �rst order frame
correspondence languageL 1

f r , which is the �rst-order languagewith equality and
binary relation symbol for each modality.2

In this section, we discussa number of result concerning the relationship
between modally de�nable frame classesand elementary frame classes. First,
we will considermodel theoretic characterizations. Then, we will review some
attempts at syntactic characterizations.

Mo del theoretic characterizations

A famousresult due to Goldblatt and Thomasoncharacterizesthe modally de-
�nable elementary frame classesin terms of four operations on frames.

2.3.1. Definition (Genera ted subframe). A frame F = (W; (R3 )3 2 mod) is
a generatedsubframeof a frame G = (W 0; (R0

3 )3 2 mod) if W � W 0 and for all
(w; v) 2 R0

3 (3 2 mod), if w 2 W then v 2 W.

2.3.2. Definition (Disjoint union). Let Fi = (Wi ; (Ri
3 )3 2 mod) (i 2 I ) be a

set of frameswith disjoint domains. The disjoint union of theseframes,denoted
by

U
i 2 I Fi is the frame (

S
i 2 I Wi ; (

S
i 2 I Ri

3 )3 2 mod).

2.3.3. Definition (Bounded morphism). A bounded morphismfrom a frame
F = (W; (R3 )3 2 mod) to a frame G = (W 0; (R0

3 )3 2 mod) is a function f : W ! W 0

satisfying the following conditions.

forth for all w; v 2 W and 3 2 mod, if R3 (w; v) then R0
3 (f (w); f (v))

back for all w 2 W, v 2 W 0 and 3 2 mod, if R0
3 (f (w); v) then there is a u 2 W

suchthat R3 (w; u) and f (u) = v.

If there is a surjective bounded morphism from F to G, then we say that G is a
boundedmorphic imageof F.

2Note that, in the literature, a classis sometimescalled elementary if it is de�ned by a set
of �rst-order formulas. Here, we call a classelementary if it is de�ned by a single �rst-order
sentence.
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In order to formulate the fourth operation on frames,weneedto introducea piece
of notation. Given a frame F = (W; (R3 )3 2 mod), X � W and 3 2 mod, we will
write m3 (X ) for the set f w 2 W j 9v 2 X :wR3 vg. In other words, m3 (X ) is the
set of 3 -predecessorsof elements of X .

2.3.4. Definition (Ul trafil ter extension). Given a frame F =
(W; (R3 )3 2 mod), the ultra�lter extension of F, denoted by ueF, is the frame
(Uf(W); (Rue

3 )3 2 mod), where Uf(W) is the set of ultra�lters over W (cf. Appendix
A), and for u; v 2 Uf(W), Rue

3 (u; v) i� for all X 2 v, m3 (X ) 2 u.

Every modally de�nable frame class is closedunder disjoint unions, generated
subframesand boundedmorphic images. Furthermore, modally de�nable frame
classesreect ultra�lter extensions,meaningthat whenever the ultra�lter exten-
sion of a frame is in the class, then the frame itself is in the class. Goldblatt
and Thomasonproved that the converseholds with respect to elementary frame
classes.

2.3.5. Theorem (Goldbla tt-Thomason[ 50]). An elementaryframeclassis
modally de�nable i� it is closed under generated subframes,disjoint unions and
bounded morphic images,and reects ultra�lter extensions.

This tells us which elementary frame classesare modally de�nable. The opposite
question,i.e., which modally de�nable frameclassesareelementary, wasanswered
by Van Benthem.

2.3.6. Theorem ([ 10]). Let K be any modally de�nable frame class. The fol-
lowing are equivalent:

1. K is elementary

2. K is de�ned by a set of �rst-or der sentences

3. K is closed under elementaryequivalence

4. K is closed under ultrapowers.

Syntactic characterizations

The above resultsdo not tell uswhich modal formulasde�ne an elementary frame
class,nor which �rst-order formulas de�ne a modally de�nable frame class.

As we will soon see(cf. Theorem 2.6.5), the problem whether a given modal
formula de�nes an elementary frameclassis highly undecidable.This implies that
a syntactic characterization of the form \ a modal formula de�nes an elementary
classi� it is equivalent to a formula of the form X " with X a decidableclassof
formulascannotbeobtained. However, this still leavesopenthe questionwhether
such a characterization exists if equivalent is replacedby frame-equivalent.

An important su�cien t condition for elementarit y was proved by Sahlqvist
[88] and Van Benthem [11].
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2.3.7. Definition (Sahlqvist f ormulas). A modal formula is positive
( negative) if every occurrence of a proposition letter is under the scope of an
even(odd) number of negation signs.

A Sahlqvist antecedent is a formula built up from > ; ? , boxed atoms of the
form 2 1 � � � 2 np (n � 0), and negative formulas using conjunction, disjunction
and diamonds.

A Sahlqvist implication is a formula of the form ' !  , where ' is a Sahlqvist
antecedent and  is positive.

A Sahlqvist formula is a formula that is obtained from Sahlvist implications
by applyingboxesand conjunction, and by applyingdisjunctions between formulas
that do not share any proposition letters.

2.3.8. Theorem ([ 88, 11]). Every Sahlqvist formula de�nes an elementary
classof frames.

Likewise,Van Benthem [11] hasshown that every modal formula that hasmodal
depth at most onede�nes an elementary classof frames. Axioms of modal depth
at most one were �rst consideredby Lewis [76]. Van Benthem's result may be
improved slightly, by consideringthe following classof formulas.

2.3.9. Definition (Shallo w f ormulas). A modal formula is shallow if ev-
ery occurrence of a proposition letter is in the scope of at mostonemodal operator.

2.3.10. Theorem. Every shallow formula de�nes an elementaryclassof frames.

Pro of: The proof will be given in Section2.4. 2

Typical examplesof shallow modal formulas are p ! 3 p, 3 p ! 2 p and 3 1p !
3 2p. Furthermore, every closedformula (i.e., formula containing no proposition
letters) is shallow. The formula 2 1(p_ q) ! 3 2(p^ q) is an exampleof a shallow
formula that is not a Sahlqvist formula.

Incidentally, correspondenceresults like thesemight alsobe obtained for lan-
guagesother than the �rst-order correspondencelanguage. Recently, [14] and
[57] have independently found a generalizationof the classof Sahlqvist formulas,
with the property that every generalizedSahlqvist formula has a correspondent
in LFP(FO), which is the extensionof �rst-order logic with least �xed point op-
erators. By results of [6], there are modal formulas that have no correspondent
in LFP(FO), not even with respect to �nite frames.

Next, let us addressthe questionwhich �rst-order formulas de�ne modally de�n-
able frame conditions. Again, no completesyntactic characterization is known.

Let a p-formula be a �rst-order formula obtained from atomic formulas (in-
cluding equality statements) using conjunction, disjunction, existential and uni-
versalquanti�ers, and boundeduniversalquanti�ers of the form 8x(Rtx ! �). A
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Table 2.2: Formula that characterizes(N; < )

8x8y(x < y ! 8z(y < z ! x < z)) (transitivit y)
8xy(x < y _ y < x _ x = y) (tric hotomy)
8x9y(x < y) (unboundednesson the right)
9x8y(y < x ! ? ) (boundednesson the left)
9x(x < x) ! 9xy(x < x ^ x < y ^ : (y < y))

p-sentence is a p-formula that is a sentence. An inductive argument shows that
p-sentencesare preserved under taking imagesof bounded morphisms. In fact,
the converseholds as well, modulo logical equivalence.

2.3.11. Theorem (Feferman [39]). A �rst-or der sentence ' is preserved un-
der surjective bounded morphismsi� ' is equivalent to a p-sentence.

It follows that if a �rst-order sentence de�nes a modally de�nable frame class,
then it is equivalent to a p-sentence. We can improve this a bit further. Let a
positive restricted formula be a �rst-order formula built up from ? and atomic
formulas,usingconjunction, disjunction, and restricted quanti�cation of the from
9y:(Rxy ^ �) and 8y:(Rxy ! �), wherex and y are distinct variables.

2.3.12. Theorem (Van Benthem [11]). A �rst-or der sentence ' is preserved
under surjective bounded morphisms,generated subframesand disjoint unions i�
' is equivalent to 8x: (x), for somepositive restricted formula  (x).

Again, it follows that if a �rst-order sentence de�nes a modally de�nable frame
class, it is equivalent to a sentence of the given form. What remains in order
to obtain a completecharacterization is to characterizeanti-preservation under
ultra�lter extensions. It is possibleto give a preservation result similar to the
above, that characterizesthe �rst-order sentences(anti-)preserved under ultra�l-
ter extensions?As we will now show, the answer is No.

Let #(N;< ) be the conjunction of the formulas given in Table 2.2. Surprisingly,
#(N;< ) characterizes(N; < ), in the sensethat it is preservedunder taking ultra�lter
extensionspreciselyin casethe original model is not isomorphic to (N; < ).

2.3.13. Pr oposition. For all models M , M �= (N; < ) i� M j= #(N;< ) and
ueM 6j= #(N;< ) .

Pro of: The left-to-right direction simply says that (N; < ) j= #(N;< ) and ue(N; <
) 6j= #(N;< ) . That (N; < ) j= #(N;< ) is clear. Now, considerthe ultra�lter extension
ue(N; < ) = (Uf(N); < ue). As pointed out in [21, Example 2.58], this model con-
sists of an isomorphic copy of the natural numbers, followed by an uncountable
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cluster containing all non-principal ultra�lters. In particular, for all non-principal
ultra�lter u, u < ue u. This implies that the antecedent of the �fth conjunct of
#(N;< ) is true in ue(N; < ). The consequent of this formula is clearly false (all
non-principal ultra�lters are to the right of the principal ultra�lters). Hence,
ue(N; < ) 6j= #(N;< ) .

As for the right-to-left direction, supposeM j= #(N;< ) and M 6�= (N; < ). The
�rst four conjuncts of #(N;< ) expressmodally de�nable elementary frame proper-
ties (de�nable using the global modality and conversemodalities, if needed),and
hence,by a result of Van Benthem [11], arepreservedunder ultra�lter extensions.
Hence,they are true in ueN. As for the �fth conjunct, we can distinguish two
cases.

1. M j= 9xy:(x < x ^ x < y ^ y 6< y). Since this formula has no universal
quanti�ers, it is preserved under extensions. As ueM is an extension of
M , it follows that ueM j= 9xy:(x < x ^ x < y ^ : (y < y)), and therefore
ueM j= #(N;< ) .

2. M 6j= 9x:(x < x). Then M = (D; < ) for someset D and strict total order
< that is boundedon the left but unboundedon the right. If it would be
the casethat every point hasonly �nitely many predecessors,M would be
isomorphic to (N; < ). By assumption,this is not the case.Hence,there is
a point w for which there are in�nitely many v such that v < w. Let S be
the set of all predecessorsof w.

Now, considerthe ultra�lter extensionueM = (Uf(D); < ue). Let � w be the
principal ultra�lter generatedby w, and let u be a non-principal ultra�lter
with S 2 u (such u exist since S is in�nite). By construction, u < ue � w

and � w 6< ue � w . Furthermore, u < ue u. To seethis, take any X 2 u, and
considerthe set Y = f v j 9x 2 X :(v < x)g It is easyto seethat at most one
element of X is not in Y, i.e., jX \ (D n Y)j � 1. Sinceu is non-principal,
it follows that D n Y 62u, and thereforeY 2 u.

Thus, we have shown that ueM j= 9xy:(x < x ^ x < y ^ : (y < y)), and
thereby ueM j= #(N;< ) . 2

We can still improve this result a bit. Considerthe formula

8x9y:Sxy ^ 8x8y(Sxy ! x < y) ^ 8x8y(Sxy ! 8z(x < z ! y = z_ y < z))

This formula is preserved under ultra�lter extensions,and, on the natural num-
bers, it de�nes the successorrelation (i.e., it expressesthat Smn holds i�
n = m + 1). Hence, if we let #(N;<;S uc) be the conjunction of #(N;< ) and this
formula, then we immediately obtain the following corollary and improvement of
Proposition 2.3.13.

2.3.14. Pr oposition. For all models M , M �= (N; <; Suc) i� M j= #(N;<;S uc)

and ueM 6j= #(N;<;S uc) .
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In fact, unary predicatesZero and One and ternary relations Plus and Times
(with the intended semantics) can be de�ned in a similar way, leading to a char-
acterization �a la Proposition 2.3.13of the structure (N; <; Suc;0; 1; + ; � ). We
will not give the details here. For present purposes,the following corollary of
Proposition 2.3.14is important.

2.3.15. Cor ollar y. Let ' by any relational �rst-or der formula preserved under
ultra�lter extensions(possiblycontaining relation symbols other than < and S).
The following are equivalent.

1. ' hasa model that is an expansion of (N; <; Suc)

2. ' ^ #(N;<;S uc) is not preserved under ultra�lter extensions

Again, wecanimprovethis result slighly. Let #N
(N;<;S uc) bethe result of relativising

all quanti�ers in #(N;<;S uc) with the unary predicateN (i.e., replacingsubformulas
of the form 9x: by 9x:(N x ^  ) and subformulas of the form 8: by 8x:(N x !
 )). It is not hard to seethat a formula ' is preservedunder ultra�lter extensions
i� the relativisation ' N is preserved under ultra�lter extensions,provided that
N does not occur in ' . Hence, we obtain the following relativized version of
Corollary 2.3.15.

2.3.16. Cor ollar y. Let ' by any relational �rst-or der formula preserved under
ultra�lter extensions(possiblycontaining relation symbols other than < , S and
N ). The following are equivalent.

1. ' has a model, of which the submodel de�ned by N is an expansion of
(N; <; Suc)

2. ' ^ #N
(N;<;S uc) is not preserved under ultra�lter extensions

Finally, we will useCorollary 2.3.16to prove that the set of �rst-order formulas
preserved under ultra�lter extensionsis � 1

1-hard.

2.3.17. Theorem. Preservationof �rst-or der formulas under ultra�lter exten-
sions is � 1

1-hard.

Pro of: We will make useof the � 1
1-completerecurrent tiling problem of Harel,

cf. Appendix B. For any set of tiles T = f t1; : : : ; tng and designatedtile t i 2 T,
let ' (T;t i ) be the conjunction of formulas in Table 2.3, whereP1; : : : ; Pn are unary
predicatesrepresenting the tiles t1; : : : ; tn , and Rh; Rv asbinary relation symbols.
The following are equivalent.

1. T1; : : : ; Tn tile N � N such that t i occurs in�nitely often on the �rst row

2. ' (T;t i ) hasa model, of which the submodel de�ned by N is an expansionof
(N; <; Suc)
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Table 2.3: Encoding the the recurrent tiling problem

Two dimensionalgrid (modulo unwinding)

8x9y:Rh(x; y) ^ 8x9y:Rv(x; y)

8x8y(Rh(x; y) ! 8z(Rh(x; z) ! y = z))

8x8y(Rv(x; y) ! 8z(Rv(x; z) ! y = z))

8x8y(Rh(x; y) ! 8z(Rv(x; z) ! 9u:(Rv(y; u) ^ Rh(z; u))))

Correct tiling

8x:
_

1� k� n

�
Pk x ^

^

1� ` � n
`6= k

: P` x
�

8x8y:
�

Rh(x; y) !
_

(tk ) r ig ht =( t ` ) r ig ht

(Pk x ^ P` y)
�

8x8y:
�

Rv(x; y) !
_

(tk ) top =( t ` )bottom

(Pk x ^ P` y)
�

Recurrence of tile t i in the submodel de�ned by N

8x8y(Rh(x; y) ! (N x ! (N y ^ Sxy)))

8x(N x ! 9y:(N y ^ x < y ^ Pi y))
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Table 2.4: Axioms and inferencerules of K M

(CT ) ` ' , for all classicaltautologies '
(Dual ) ` 3 p $ : 2 : p, for 2 2 mod
(K ) ` 2 (p ! q) ! 2 p ! 2 q, for 2 2 mod
(MP ) If ` ' !  and ` ' then `  
(Nec) If ` ' then ` 2 ' , for 2 2 mod
(Subst) If ` ' then ` '� , where � is a substitution that uniformly replaces

proposition letters by formulas.

3. ' (T;t i ) ^ #N
(N;<;S uc) is not preserved under ultra�lter extensions

The equivalenceof (1) and (2) is relatively easyto see,and the equivalencebe-
tween(2) and (3) follows from Corollary 2.3.16, since ' (T;t i ) is preserved under
ultra�lter extensions(by the samereasoningasbefore: they expressmodally de-
�nable elementary frame properties). It follows that preservation of �rst-order
formulas under ultra�lter extensionsis � 1

1-hard. 2

In particular, it follows that the �rst-order sentences(anti-)preserved under ul-
tra�lter extensionsare not recursively enumerable,and cannot be characterized
by meansof a preservation theorem.

2.4 Completeness via general frames
Givena frameclassK, onewould liketo describethe setof modal formulasvalid on
K (\the modal logic of K"). For the classof all frames,the axiomsand inferences
rulesgiven in Table2.4 constitute a soundand completeaxiomatization. We will
refer to this axiomatization asK M . We will write ` K M ' if ' is derivable in K M .

2.4.1. Theorem (Basic Completeness). For all modal formulas ' , j= ' i�
` K M ' .

Thus, K M axiomatizesthe set of modal formulas valid on the classof all frames.
In order to axiomatizemorerestricted frameclasses,extra axioms(or rules) must
be addedto K M . For any set � of modal formulas, we will useK M � to denote
the axiomatization obtained by adding all formulas in � as axioms to K M . One
might hope that K M � completely axiomatizesthe set of modal formulas valid
on the frame classde�ned by �. Unfortunately, this is in generalnot the case.
Nevertheless,there arenatural classesof modal formulas, for which such a general
completenessresult can be obtained.

In order to facilitate the study of completenessand incompleteness,it is con-
venient to introduce a generalizationof the notion of frames. A general frame
consistsa frameF = (W; (R3 )3 2 mod) togetherwith a setA � } (W) satisfyingcer-
tain regularity conditions, to be spelled out below. The elements of A are called
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admissiblesubsets. A modal formula ' containing proposition letters p1; : : : ; pn

is said to be valid on a such a general frame if it is valid under any valuation
that assignsadmissiblesubsetsto p1; : : : ; pn . Note that the ordinary frames,or
Kripke frames, aswe will refer to them in this section,are simply generalframes
for which the set of admissiblesubsetsis the set of all subsets.

Recall that, given a frame F = (W; (R3 )3 2 mod), X � W and 3 2 mod,
m3 (X ) = f w 2 W j 9v 2 X :wR3 vg.

2.4.2. Definition (General frames). A general frame is a pair (F; A),
where F = (W; (R3 )3 2 mod) is a frame and A � } (W), such that W 2 A and
A is closed under complement,�nite intersection and m3 for 3 2 mod.

In addition, the general frame (F; A) is

di�eren tiated if for all w; v 2 W with w 6= v there is an A 2 A suchthat w 2 A
and v 62A

tight if for all w; v 2 W and 3 2 mod suchthat (w; v) 62R3 there is an A 2 A
suchthat v 2 A and w 62m3 (A)

compact if every A0 � A with the �nite intersection property has a non-empty
intersection

re�ned if it is di�er entiated and tight

descriptive if it is di�er entiated, tight and compact

discrete if for all w 2 W, f wg 2 A

atomless if for no w 2 W, f wg 2 A

A valuation for a general frame F is admissibleif V(p) 2 A for all p 2 pr op.
Validit y with respect to general frames is de�nes as follows: F j= ' if for all
admissiblevaluations V and worlds w, (F; V); w j= ' . Every set � of modal
formulas de�nes a classof general frames, namely the classconsisting of those
generalframeson which each formula in � is valid.

Unlike Kripk e frames, general frames o�er a fully adequate semantics for
modal logics,in the sensethat for all sets� of modal formulas, K M � completely
axiomatizesthe set of modal formulas valid on the classof generalframesde�ned
by �. In fact, this holdseven if we restrict attention to descriptive frames. Given
a set of modal formulas � and a classK of generalframes,we say that K M � is
complete for K if K M � completely axiomatizesthe set of modal formulas valid
on K, i.e., for all ' , K j= ' i� ` K M � ' .

2.4.3. Theorem ([ 52]). Let � be any set of modal formulas. K M � is complete
for the classof descriptivegeneral framesde�ned by � .

Of course, our actual interest is not in general frames but in Kripk e frames.
Theorem 2.4.3 can be seenas an important �rst step towards proving Kripk e
completeness.The secondstep typically involvespersistence,a notion that will
be de�ned next.



2.4. Completenessvia generalframes 19

2.4.4. Definition. A modal formula ' is persistent with respect to a type of
general frames(such as descriptivegeneral frames,etc.) if for all general frames
F of the relevant type, if F j= ' then ' is valid on the underlying Kripke frame
of F.

Persistencewith respect to descriptive frameis alsocalledd-persistence, or canon-
icity . Persistencewith respect to discreteframesis often called di-persistence.

Recall the de�nition of Sahlqvist formulas on page12. An important result
in modal logic is the following.

2.4.5. Theorem ([ 88]). Every modal Sahlqvistformula is persistentwith respect
to descriptivegeneral frames.

If we put Theorem 2.4.3 and Theorem 2.4.5 together, we obtain the following
Kripk e completenessresult for Sahlqvist formulas.

2.4.6. Cor ollar y ([ 88]). If � is a setof Sahlqvistformulas, then K M � is com-
plete for the classof Kripke framesde�ned by � .

A similar result can be proved for shallow formulas. Recall that a modal formula
is shallow if every occurrenceof a proposition letter is under the scope of at most
onemodal operator.

2.4.7. Theorem. Every shallow formula is persistent with respect to re�ned
frames,and hence with respect to descriptive framesand with respect to discrete
frames.

Pro of sketch: The proof proceedsby contraposition. Let F be a re�ned general
frame and supposeF; V; w 6j= ' , where ' is a shallow modal formula, V a not
necessarilyadmissiblevaluation and w a world. We will construct an admissible
valuation V 0 such that F; V 0; w 6j= ' , thus showing that F 6j= ' .

Let � 1; : : : ; � n be the closedsubformulasof ' and let p1; : : : ; pm be the propo-
sition letters occurring in ' . In what follows, � will always refer to a complete
Booleancombination of � 1; : : : ; � n , i.e., a formula of the form (: )� 1 ^ � � � ^ (: )� n ,
and � will always refer to a completeBooleancombination of p1; : : : ; pm . We may
in fact assumethat ' is a Booleancombination of formulas of the form � ^ � or
3 (� ^ � ). Let W� , W� and W� � denote the subsetsof the domain of F de�ned
by � , � and � ^ � , respectively, under the valuation V. Also, for 3 one of the
(�nitely many) modalities occuring in ' , let Suc3

w denotethe set of 3 -successors
of w.

Fix any � , and considerthe set W� . Since� is a closedformula, W� is admis-
sible. The proposition letters p1; : : : ; pm partition W� into 2m disjoint (possibly
empty and not necessarilyadmissible)subsetsW� � (with � any completeBoolean
combination of p1; : : : ; pm ). For each such subsetW� � , and for each modality 3
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with W� � \ Suc3
w 6= ; , pick a witness of the non-emptynessof this intersection.

Furthermore, if w 2 W� � for some� , then add w as a witness. In this way, we
pick �nitely many witnessesfor each W� � . By the di�eren tiatednessof F, we can
�nd for each � and � 0 an admissibleset that separatesthe witnessesfor W� � from
the witnessesfor W� � 0. Also, by the tightnessof F, we can �nd for each � and for
each modality 3 such that W� � \ Suc3

w = ; an admissibleset that contains all
witnessesof W� � but that contains no 3 -successorof w. By taking appropriate
intersectionsand unions of theseadmissiblesets(and intersecting with W� ), we
obtain a newpartition of W� into admissiblesubsetsW 0

� � , such that each witness
for a W� � is still a member of W 0

� � . Hence,

� W� � \ Suc3
w = ; i� W 0

� � \ Suc3
w = ;

� w 2 W� � i� w 2 W 0
� �

Usingthesenewpartitions, wewill now de�ne a admissiblevaluation V 0. For each
proposition letter pk (k � m), let V 0(pk) be the union of all W 0

� � with � j= pk . By
construction, V 0 is an admissiblevaluation, and F; V; w and F; V 0; w agreeon ' .
It follows that F; V 0; w 6j= ' , and henceF 6j= ' . 2

Again, we obtain Kripk e completenessas a corollary.

2.4.8. Cor ollar y. If � is a set of shallow formulas, then K M � is completefor
the classof Kripke framesde�ned by � .

In fact, combining Theorem 2.4.3, 2.4.5 and 2.4.7, we obtain completenessof
K M � for all sets� consistingof shallow and/or Sahlqvist formulas.

Incidentally, every modal formula that is persistent with respect to re�ned
frames de�nes an elementary frame class [73]. Hence, this also proves Theo-
rem 2.3.10.

To �nish this section,we briey considerdiscretegeneralframes. Venema[98]
proved the following persistenceresult with respect to discretegeneralframes.

2.4.9. Definition (Ver y simple Sahlqvist f ormulas). A very simple
Sahlqvist antecedent is a modal formula built up from > ; ? and proposition
letters using conjunction and diamonds. A very simple Sahlqvist formula is
an implication ' !  , where ' is a very simple Sahlqvistantecedent and  is
positive.

2.4.10. Theorem ([ 98]). Every very simpleSahlqvistformula is persistentwith
respect to discrete frames.

This by itself doesnot imply completenessfor logicsaxiomatizedby very simple
Sahlqvist formulas (even though this follows from Theorem2.4.5). The reasonis
that K M � might not be completefor the classof discretegeneralframesde�ned
by �. In other words, there is no analogueof Theorem 2.4.3 for discretegeneral
frames. Indeed,Venema[98] proved the following strong incompletenessresult.
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2.4.11. Theorem ([ 98]). There is a modal formula ' suchthat K M f ' g is con-
sistent and every general frame on which ' is valid is atomless.

It follows that for the relevant formula ' , K M f ' g is incompletewith respect to
the classof discreteframesde�ned by ' . Incidentally, the formula ' usedby [98]
contains more than one modality. This is necessarilyso: an observation due to
Makinson implies that, for all uni-modal formulas ' , if K M f ' g is consistent then
it hasa generalframewhosedomain is a singletonset. Clearly every such general
frame is discrete.

2.5 Interp olation and Beth de�nabilit y
Analoguesof Craig's interpolation theorem have been proved for many modal
logics. For any modal formula ' , let pr op(' ) is the set of proposition letters
occurring in ' . Further, let us say that the basic modal languagehas interpo-
lation on a frame classK, if for all modal formulas ';  such that K j= ' !  ,
there is a modal formula # such that K j= ' ! # and K j= # !  , and
pr op(#) � pr op(' ) \ pr op( ). Note that no restriction is madeon the modali-
ties occurring in #. It would thereforebe moreappropriate to talk about interpo-
lation over proposition letters, indicating that it is only the proposition letters in
the interpolation that must occur both in the antecedent and in the consequent.

2.5.1. Definition. A bisimulation product of a set of framesf Fi j i 2 I g is a
subframe G of the cartesian product � i Fi such that for each i 2 I , the natural
projection function f i : G ! Fi is a surjective bounded morphism.

Bisimulation products are a special caseof subdirect products (for the de�nition
of cartesianproducts and subdirect products, seeAppendix A). Their name is
motivated by the following observation:

2.5.2. Pr oposition ([ 80]). Let H be a submodel of the product F � G. Then
H is a bisimulation product of F and G i� the domain of H is a total frame
bisimulation between F and G.

Here, with a total frame bisimulation between the frames F and G we mean a
binary relation Z between the domains of F and G satisfying the zig and zag
conditions of De�nition 2.2.1, and such that for each world w of F there is a
world v of G such that wZv, and vice versa.

We say that a classof framesK is closed under bisimulation products if for all
F; G 2 K, all bisimulation products of F and G are in K. It wasproved in [80] that
if a frame classK is de�ned by a set of d-persistent modal formulas and closed
under bisimulation products, then the basic modal languagehas interpolation
relative to K. Here,we will slightly strengthenthis result.3

3Strictly speaking, Theorem 2.5.3 is not a strengthening of the result of [80], sincethere are
canonical modal formulas that de�ne a non-elementary frame class[42].
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2.5.3. Theorem (Interpola tion f or modal logics). Let K be any ele-
mentary frameclassclosed under generated subframesand bisimulation products.
Then the basic modal languagehas interpolation relative to K.

Pro of: Let K be any elementary frame classclosedunder generatedsubframes
and bisimulation products, let K j= ' !  , and supposefor the sake of contra-
diction that there is no interpolant for this implication. Let Cons(' ) be the set
of modal formulas � such that K j= ' ! � and pr op(� ) � pr op(' ) \ pr op( ).

Claim 1: There is a model M basedon a frame in K, with a world w, such
that M ; w j= Cons(' ) [ f:  g.

Pro of of claim: By Compactness,it su�ces to show that every �nite subset
of Cons(' ) [ f:  g is satis�able on K. Consider any � 1; : : : ; � n 2 Cons(' ).
If f � 1; : : : ; � n ; :  g wouldn't be satis�able on K, then � 1 ^ � � � ^ � n would be
an interpolant for ' !  . By assumption, ' !  has no interpolant, and
therefore,f � 1; : : : ; � n ; :  g is satis�able on K. a

SinceK is closedunder generatedsubframes,we may assumethat M is generated
by w. Let Th(M ; w) be the set of all modal formulas � such that M ; w j= � and
pr op(� ) � pr op(' ) \ pr op( ).

Claim 2: There is a model N basedon a frame in K, with a world v, such
that N; v j= Th(M ; w) [ f ' g.

Pro of of claim: By Compactness,it su�ces to show that every �nite subset
of Th(M ; w) [ f ' g is satis�able on K. Considerany � 1; : : : ; � n 2 Th(M ; w).
Supposefor the sake of contradiction that f � 1; : : : ; � n ; ' g is not satis�able on
K. Then K j= ' ! : (� 1 ^ � � � ^ � n ). Hence,: (� 1 ^ � � � ^ � n ) 2 Cons(' ), and
therefore,M ; w j= : (� 1 ^ � � � ^ � n ). This contradicts the fact that � 1; : : : ; � n 2
Th(M ; w). a

Again, we may assumethat N is generatedby v. Let M + and N+ be ! -saturated
elementary extensionsof M and N. SinceK is elementary, the underlying frames
of M + and N+ are in K. De�ne the binary relation Z between the domains of
M + and N+ by letting dZe if M + ; d j= � , N+ ; e j= � for all modal formulas
� with pr op(� ) � pr op(' ) \ pr op( ). In other words, dZe if d and e cannot
be distinguishedby a modal formula in the commonlanguageof ' and  . Note
that, by construction, wZv.

Claim 3: Z is a total bisimulation betweenM + and N+ with respect to the
commonlanguageof ' and  .
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Pro of of claim: We will show that Z satis�es the zig condition of De�ni-
tion 2.2.1. The proof of the zag condition is similar, and that Z respects the
proposition letters in pr op(' ) \ pr op( ) is immediate from its de�nition.

Supposew0Zv0 and w0R3 w00. Let � = f STx (� ) j M + ; w00j= � and pr op(� ) �
pr op(' ) \ pr op( )g. We need to show that � is realized in N + by a 3 -
successorsof v0. By ! -saturatedness,it su�ces to show that every �nite subset
of � is realized in N + by a 3 -successorsof v0. But this is clearly the case:
considerany STx (� 1); : : : ; STx (� n ) 2 �. Then M + ; w0 j= 3 (� 1 ^ � � � ^ � n ), and
henceN+ ; v0 j= 3 (� 1 ^ � � � ^ � n ).

Finally, it needsto be shown that Z is a total bisimulation. Let w0 2 M + . Let
� = f STx (� ) j M + ; w0 j= � and pr op(� ) � pr op(' ) ^ pr op( )g. We need
to show that � is realizedin N + . By ! -saturatedness,it su�ces to show that
every �nite subsetof � is realizedin N + . Let STx (� 1); : : : ; STx (� n ) 2 �. Then
9x:(STx (� 1) ^ � � � ^ STx (� n )) is true in M + and thereforealsoin M (recall that
M + is an elementary extensionof M ). SinceM is generatedby w, there are
3 1; : : : ; 3 m 2 mod such that M ; w j= 3 1 � � � 3 m (� 1 ^ � � � ^ � n ). Hence,since
wZv, we have that N; v j= 3 1 � � � 3 m (� 1 ^ � � � ^ � n ). SinceN+ is an elementary
extensionof N, it follows that N + ; v j= 3 1 � � � 3 m (� 1 ^ � � � ^ � n ). We conclude
that there is a point v0 such that N+ ; v0 j= � 1 ^ � � � ^ � n . a

Let F and G be the underlying framesof M + and N+ . Then, in particular, Z
is a total frame bisimulation between F and G. Hence, by Proposition 2.5.2,
there is a bisimulation product H 2 K of F and G of which the domain is Z .
By the de�nition of bisimulation products, the natural projections f : H ! F
and g : H ! G are surjective bounded morphisms. For any proposition letter
p 2 pr op(' ), let V(p) = f u j M + ; f (u) j= pg, and for any proposition letter
p 2 pr op( ), let V(p) = f u j N + ; g(u) j= pg. The properties of Z guarantee
that this V is well-de�ned for p 2 pr op(' ) \ pr op( ). Finally, by a standard
argument, the graph of f is a bisimulation between(H; V) and M + with respect
to pr op(' ), and the graph of g is a bisimulation between(H; V) and N + with
respect to pr op( ). It follows that (H; V); hw; vi j= ' ^ :  . This contradicts our
initial assumptionthat K j= ' !  . 2

This result cannot easily be strengthened. An exampleof an elementary frame
classthat is not closedunder generatedsubframesbut not under bisimulation
products, on which the basicmodal languagelacks interpolation is the classde-
�ned by 32 p ! 23 p.4

An exampleof an elementary frame classclosedunder bisimulation products
but not closedundergeneratedsubframeson which the basicmodal languagelacks

4To seethat the basic modal languagelacks interpolation on this frame class,consider the
following implication.

�
2 (s ! 2 (: p ! r )) ^ 2 (t ! 2 (: p ! : r ))

�
!

�
3 (s ^ 2 (p ! q)) ! 2 (t ! 3 (p ^ q))

�
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interpolation is the classde�ned by 8x:(8y9z:R1yz ! R1xx)^ 8x:(9y8z:(R1yz !
? ) ! R2xx). It follows from Theorem 2.5.5below that this �rst-order sentence
is preserved under taking bisimulation products. Again, an easy bisimulation
argument shows that there is no interpolant for the valid implication p^ : 3 1p !
(q ! 3 2q). Note that this implication has an interpolant with global modality,
namely E2 1? . Indeed, a relatively straightforward adaptation of the proof of
Theorem 2.5.3shows that the modal languagewith global modality, M (E), has
interpolation on any elementary frame classclosedunder bisimulation products.

The Beth property

Let j= glo denote the global entailment relation on models, i.e., � j= glo ' means
that for all models M , if M globally satis�es all formulas in � then M globally
satis�es ' . Global entailment relative to a classof frames, denoted by j= glo

K , is
de�ned similarly. For a set of formulas �( p) containing the proposition letter p
(and possibly other proposition letters), we say that �( p) implicitly de�nes p,
relative to a frame classK, if �( p) [ �( p0) j= glo

K p $ p0. Here, p0 is a proposition
letter not occurring in �, and �( p0) is the result of replacing all occurrencesof
p by p0 in �( p). The basicmodal languageM is said to have the Beth property
relative to a frame classK if whenever a set of modal formulas �( p) implicitly
de�nes a proposition letter p relative to K, then there is a modal formula # in
which p doesnot occur, such that � j= glo

K p $ #. The relevant formula # is called
an explicit de�nition of p, relative to � and K.

The Beth property is an important property. Intuitiv ely, if a logic has it, this
can be seenas evidencethat its syntax and semantics match well. Tarski refers
to the Beth property as completenessin the theory of de�nitions (as opposedto
the theory of deductions).

By a standard argument, we obtain as a corollary of the above interpolation
results the Beth property for the basicmodal language,relative to every elemen-
tary frame classclosedunder bisimulation products and generatedsubframes.

2.5.4. Theorem. If K is a elementaryframe classclosed under generated sub-
frames and bisimulation products, then the basic modal languagehas the Beth
property relative to K.

Pro of: For easeof presentation we restrict attention to the uni-modal case.The
proof generalizeseasily to languagescontaining more modalities.

Let �( p) be any setof modal formulascontaining the proposition letter p (and
possibly other proposition letters and nominals), and suppose �( p) implicitly
de�nes the proposition letter p, relative to K. Let p0 be a new proposition letter,

This formula is valid on the given frame class,but a simple bisimulation argument shows that
there is no interpolant. Note that, intuitiv ely, an interpolant would have to expressthe fact
that for every successorx satisfying s and for every successory satisfying t, x and y have a
common successorsatisfying p.
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and let �( p0) be the result of replacing all occurrencesof p in � by p0. Then,
by the de�nition of implicit de�nabilit y, �( p) [ �( p0) j= glo

K p $ p0. Let �( p) =
f 2 n ' j ' 2 �( p); n 2 ! g, and de�ne �( p0) similarly.

Claim 1: �( p) [ �( p0) j= K p $ p0.

Pro of of claim: SupposeM ; w j= �( p) [ �( p0) for somemodel M basedon
a frame in K. Let M w be the submodel of M generatedby w. By closure
under generatedsubframes, the underlying frame of M w is also in K. By
construction, M w globally satis�es �( p) and �( p0). It follows that M w globally
satis�es p $ p0, hence,M w ; w j= p $ p0, henceM ; w j= p $ p0. a

By compactness,there is a �nite subset� 0 � � such that � 0(p)[ � 0(p0) j= K p $ p0.
It follows that j= K (p ^

V
� 0(p)) ! (

V
� 0(p0) ! p0). Let # be an interpolant for

this implication. Then the following facts hold.

1. The proposition letters p and p0 do not occur in #.

2. j= K (p ^
V

� 0(p)) ! #.

3. j= K # ! (
V

� 0(p0) ! p0), and hence,by uniform substitution, j= K # !
(
V

� 0(p) ! p).

We concludethat � 0(p) j= K p $ #, and hence�( p) j= glo
K p $ #. 2

Here is a simple example of an elementary frame classon which the basic
modal languagelacks the Beth property. Let K be the classof framessatisfying
9x8yz:(Ryz $ y = x), and let � = f p ! 2 q; : p ! 2 : qg. Clearly, in models
that are basedon a frame in K and that globally satisfy �, q holds at a state
i� p holds at the root, and hence,� implicitly de�nes q in terms of p, relative
to K. However, a simple bisimulation argument shows that there is no explicit
de�nition of q in terms of p, relative to � and K, in the basicmodal language.

Preservation results for bisimulation products

One might ask for a syntactic characterization of the elementary frame proper-
ties that are preserved under taking bisimulation products. Such a preservation
theorem can indeed be given. In what follows, we will characterize the �rst-
order formulas that are preserved under bisimulation products, in the form of a
preservation theorem. Recall the de�nition of p-formulas on page12.

In the following proof we will refer to framesas models (models of the �rst-
order frame correspondencelanguageL 1

f r , to be precise). This seemsthe more
natural choice in the present context, sincethe theorem concerns�rst-order for-
mulas.
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2.5.5. Theorem. A �rst-or der sentence ' is preserved under bisimulation prod-
ucts i� ' is equivalent to a conjunction of sentences of the form 8~x( ! � ),
where  is a p-formula and � is either an atomic formula or ? .

Pro of: [( ] The right-to-left direction is easyto prove: considerany formula of
the form 8~x( ! � ) with  and � asspeci�ed above, and let G be a bisimulation
product of frames (Fi ) i 2 I . For each i 2 I , let f i : G ! Fi be the natural pro-
jection. By de�nition, each f i is a surjective boundedmorphism. Next, suppose
by contraposition that G 6j= 8~x( ! � ). Then there are d1; : : : ; dn such that
G j=  ^ : � [d1; : : : ; dn ]. Since� is an atomic formula, and by the de�nition of
bisimulation products, Fi j= : � [f i (d1); : : : ; f i (di )] for somei 2 I . Furthermore,
by preservation under surjective boundedmorphisms,Fi j=  [f i (d1); : : : ; f i (dn )].
It follows that Fi 6j= 8~x( ! � ).

[) ] Call an basic p-Horn sentence a sentenceof the form 8~x( ! � ), where
 is a p-formulas and � is an atom or ? . Let L 0 be the vocabulary of ' , and
for any vocabulary L, let PConsL (' ) be the set of basic p-Horn sentencesin L
entailed by ' . SupposeM 0 j= PConsL 0 (' ). We will show that M 0 j= ' . It then
follows by compactnessthat ' is equivalent to a conjunction of �nitely many
basicp-Horn sentences.

We will perform a sort of step by step construction. Call an approximation a
triple A = (L; M ; S), whereL � L 0 is a (not necessarilycountable) vocabulary,
M is an L-model satisfying PConsL (' ) and S is a set of L-models satisfying ' ,
such that every p-sentencetrue in M is true in all models in S. In particular, let
A0 be the approximation (L 0; M 0; ; ). We call an approximation A = (L; M ; S)
perfect if it satis�es the following additional properties.

1. Every element of M or of somemodel N 2 S is namedby a constant.

2. For constant c and every point w in somemodel N 2 S, if N j= Rcx [w]
then there is a constant kcw naming w such that M j= Rckcw.

3. For every atomic sentence� (including equality statements), if M 6j= � then
there is an N 2 S such that N 6j= �

We are interestedin a perfect approximation, for the following reason.

Claim 1: If (L; M ; S) is a perfect approximation, then M is isomorphic to a
bisimulation product of the models in S, and henceM j= ' .

Pro of of claim: For each N 2 S, let f N : M ! N be the natural function in-
ducedby the constants, and let g : M ! � N 2 SN such that g(x) = hf N (x)i N 2 S.
From the fact that (L; M ; S) is a perfect approximation, it follows that f N is
a surjective boundedmorphism for each N 2 S, and that g is an embedding,
i.e., an injection that preservestruth and falsity of atomic formulas (note that,
sinceevery atomic sentence � is a p-formula, M j= � i� each N 2 S satis�es
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� ). It follows that N is isomorphicto a bisimulation product of the models in
S. a

We alsoneedsomeother lemmason approximations. In what follows, we will use
the notation M � L N to say that N is an elementary extensionof M , relative
to the vocabulary L. We write (L; M ; S) � (L 0; M 0; S0) if the following holds:
L � L0, M � L M 0 and there is an injection f : S ! S0 such that for all N 2 S,
N � L f (N). We will write (L; M ; S) � f (L0; M 0; S0) if we wish to indicate the
injection.

Claim 2: For each approximation (L; M ; S) there is an approximation
(L0; M 0; S0) such that (L; M ; S) � (L 0; M 0; S0) and every element of M 0 is
namedby a constant.

Pro of of claim: Let L 0 extend L with a constant cw for each world w of
M , and let M 0 be the natural L 0-expansionof M . Then M 0 j= PConsL 0(' ).
This holds, for considerany  2 PConsL 0(' ), let c1; : : : ; cn be the constants
of L 0 n L occurring in  , and let x1; : : : ; xn be corresponding new variables.
Then 8x1; : : : ; xn : [~x=~c] 2 PConsL (' ), henceM j= 8x1; : : : ; xn : [~x=~c], hence,
M 0 j= 8x1; : : : ; xn : [~x=~c], henceM 0 j=  .

Let PTh(M 0) for the set of p-sentencestrue in M 0.

Next, consider any N 2 S. Every �nite set of p-sentences  1; : : : ;  n 2
PTh(M 0) is true in some expansionof N. For, let c1; : : : ; cm be the con-
stants of L 0 n L occurring in  1; : : : ;  n , and let x1; : : : ; xm be corresponding
newvariables. Then the p-sentence9x1 � � � xm :

V
k=1 :::n  k [~c=~x] is true in M and

hencealso in N. In other words, N hasan expansionsatisfying  1; : : : ;  n . It
follows by a well-known model theoretic argument that N 0 j= PTh(M 0) for
someL0-model N 0, with N � L N0. It follows that N 0 j= ' .

Finally, let S0 = f N 0 j N 2 Sg. Then, by the above considerations,(L 0; M 0; S0)
is an approximation, and (L; M ; S) � (L 0; M 0; S0). Moreover, every element of
M 0 is namedby a constant. a

Claim 3: For each approximation (L; M ; S) there is an approximation
(L0; M 0; S0) such that (L; M ; S) � f (L0; M 0; S0) for somef and such that the
following holds for each N 2 S:

1. For every element w of N there is a constant cw that namesw in f (N).

2. If N j= Rcx [w] for someconstant c 2 L and element w, then there is a
constant kcw 2 L 0 that namesw in f (N), such that M 0 j= Rckcw.

Pro of of claim: For each N 2 S, let the extensionL (N ) of L be de�ned as
follows. For each element w of N pick a new constant cw . Furthermore,
for each constant c 2 L and element w of N such that N j= Rcx [w],
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pick a new constant kcw. Let L (N ) be the extension of L with these con-
stants, and let N 1 be the natural expansionof N to L (N ) . Let � N 1 = f: ' j
' is a p-sentenceof L (N ) and N1 6j= ' g [ f Rckcw j c 2 L and kcw 2 L (N ) n Lg.

As a �rst step,we claim that, for each N 2 S, every �nite subsetof � N 1 is true
in someexpansionof M . For, let  1; : : : ;  n ; Rc1kc1w1 ; : : : ; Rcmkcm wm 2 � N 1 ,
where  1; : : : ;  n are negatedp-sentences. Let cw1 ; : : : ; cwk be the constants
of L (N ) n L occurring in  1; : : : ;  n , other than kc1w1 ; : : : ; kcm wm . Let � be the
L-sentence

9cw1 : : : cwn 9kc1w1 (Rc1kc1w1 ^ � � � 9kcm wm (Rcmkcm wm ^
^

i � n

 i ) � � � )

Then N j= � , and hence, since the negation of � is equivalent to a
p-sentence, M j= � . It follows that some expansion of M satis�es
 1; : : : ;  n ; Rc1kc1w1 ; : : : ; Rcmkcm wm 2 � N 1 .

Next, let L 0 =
S

N 2 S L (N ) , and let � be the setof L 0 formulas
S

N 2 S � N 1 . Since
L (N ) n L is disjoint from L (K) n L for N 6= K (N; K 2 S), it follows from the
above considerationsthat every �nite subsetof � is true in someexpansionof
M , and hence,by a familiar model theoretic argument, � hasmodel M 0 such
that M � L M 0. By construction, every p-sentence of L (N ) true in M 0 is true
in N1, for N 2 S.

Next, we claim that M 0 j= PConsL 0(' ). This is quite easily seen: let  2
PConsL 0(' ), and let c1; : : : ; cm be the constants of L 0nL occurring in  . Pick
corresponding variables x1; : : : ; xm . Then 8x1 : : : xn : [c1=x1; : : : ; cm=xm ] 2
PConsL (' ), hence M j= 8x1 : : : xn : [c1=x1; : : : ; cm=xm ], hence M 0 j=
8x1 : : : xn : [c1=x1; : : : ; cm=xm ], henceM j=  .

Finally, we apply the sametechnique as in the proof of Claim 2 to obtain an
L0-model N 0 with N 1 � L ( N ) N0, and we set S0 = f N 0 j N 2 Sg, and take
f : S ! S0 such that f (N) = N 0. Then (L 0; M 0; S0) is an approximation,
(L; M ; S) � f (L0; M 0; S0) and all other requirements are ful�lled. a

Claim 4: For each approximation (L; M ; S) there is an approximation
(L0; M 0; S0) such that (L; M ; S) � (L 0; M 0; S0) and for each atomic L 0-sentence
� with M 0 6j= � (including equality statements), there is a model N 2 S0 such
that N 6j= � .

Pro of of claim: For each atomic L-sentence� with M 6j= � , there is a model
N : � such that N : � j= PTh(M ) [ f '; : � g, where PTh(M ) is the set of p-
sentences true in M 0. For, suppose not. Then by compactness,there are
 1; : : : ;  n 2 PTh(M ) such that  1 ^ � � � ^  n ^ ' ^ : � is not satis�able, and
hence( 1 ^ � � � ^  n ! � ) 2 PConsL (' ). This contradicts the assumption
that M j= PConsL (' ).
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Let S0 = S [ f N : � j M 6j= � g. Then (L; M ; S0) is an approximation, and,
by construction, for each atomic L-sentence � with M 6j= � there is a model
N 2 S0 such that N 6j= � . a

We will now construct an in�nite sequenceof approximations and, as the limit
of that sequence,a perfect approximation. Recall that A0 is the approximation
= (L 0; M 0; ; ). Now, for given Ak , apply oneof the Claims 2, 3, 4 (depending on
k mod 3) to obtain Ak+1 . In this way, we obtain a sequenceof approximations
A0 � f 0 A1 � f 1 A2 � f 2 : : : as in Figure 2.1. The limit of this sequenceis a
perfect approximation. More precisely, let L ! =

S
k L k , let M ! =

S
k M k be

the union of the elementary chain M 0 � L 0 M 1 � L 1 : : :, and, �nally , let S! be
de�ned asfollows. Each model N 2 Sk (k 2 ! ) is the start of an elementary chain
N � L k f k(N) � L k +1 f k+1 (f k(N)) � L k +2 � � � . Let S! be the set of unions of such
elementary chains. By construction, (L ! ; M ! ; S! ) is a perfectapproximation, and
hence,by Claim 1, M ! j= ' . SinceM 0 � L 0 M ! , we obtain that M 0 j= ' . 2

Incidentally, the above proof is somewhatreminiscent to that of Van Benthem
[14] for �rst-order formulas preserved under predicate intersection.

A similar characterization can be given for the �rst-order sentencesthat are
preserved under bisimulation products and generatedsubframes. Call a strict
p-sentenceonethat contains no unboundeduniversalquanti�ers. In other words:
boundeduniversalquanti�ers, unboundedexistential quanti�ers, positive atoms.

2.5.6. Theorem. A �rst-or der sentence is preserved underbisimulation products
and generated subframes i� it is equivalent to a conjunction of formulas of the
form 8~x(' !  ) where ' is a strict p-formula and  is atomic or ? .

2.6 Decidabilit y and complexit y
Many decisionproblems can be formulated in the context of modal logic. We
will mention a few. The model checking problem: given M ; w and ' , check if
M ; w j= ' .

2.6.1. Theorem ([ 61]). The model checking problemfor modal formulas can be
solved in polynomial time.

The frame checking problem: given F and ' , check if F j= ' .

2.6.2. Theorem. The frame checking problem for modal formulas is co-NP -
complete.

The modal equivalence problem: given M ; w and N; v, check if there is a modal
formula that distinguishesw from v.

2.6.3. Theorem ([ 82]). The modal equivalence problemcan be solved in poly-
nomial time.
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Figure 2.1: Sequenceof approximations, with as its limit a perfect approximation
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The frame satis�ability problem: given a formula ' , check if there is a frame on
which ' is valid.

2.6.4. Theorem. The frame satis�ability problemfor modal formulas is highly
undecidable, in fact not analytical.

Pro of: By Theorem B.0.3, the satis�abilit y problem for monadic secondorder
formulas in one binary relation is non-analytical. Thomason [95] reduced this
problem to the following problem:

Givenuni-modal formulas ';  of the basicmodal language,such that
 is closed(i.e., contains no proposition letters). Does' entail  on
frames(i.e., is  valid on every frame on which ' is valid)?

This problem can againbe reducedto the frame satis�abilit y problem: it su�ces
to note that, for a modal operator 3 not occurring in ' and  , ' entails  on
framesi� ' ^ 3 :  hasno frame(here,we usethe fact that  is a closedformula).

2

Incidentally, the frame satis�abilit y problem for uni-modal formulas is trivially
decidable in co-non-deterministic polynomial time, due to the fact that every
frame satis�able uni-modal formula hasa singleton frame.

The elementarity problem: given a formula ' , does ' de�ne an elementary
frame class?

2.6.5. Theorem. The problem whether a given modal formula de�nes an ele-
mentary frame classis highly undecidable, in fact not analytical.

Pro of: Let ' be a modal formula, and let 3 be a modal operator not occurring
in ' . Then ' is frame satis�able i� ' ^ (23 p ! 32 p) is not elementary. It
follows by Theorem2.6.4that the elementarit y problem is not analytical. 2

Finally, the decisionproblem that will receive most attention in this thesis is the
satis�ability problem. For a given frame classK, the problem is to test if a modal
formula is satis�able on K or not. For di�eren t classesK, and for di�eren t exten-
sionsof the basicmodal language,we will addressthe questionif this problem is
decidable,and if so, what is its complexity.

Let us say that a frame classK has the �nite model property if whenever
a modal formula is satis�able on a frame in K, then it is satis�able on a �nite
frame in K. If K hasthe �nite model property, and if membershipof a frame with
respect to K canbe testede�ectiv ely, then the modal formulas that aresatis�able
on K can be enumerated: simply enumerate all triples (M ; w; ' ), where M is a
�nite model, w is a world of M and ' is a modal formula, and check for each
such triple if M ; w j= ' and if the underlying frame of M is in K.
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Dually, if K M f ' g is completewith respect to K, for some' , then we can use
this in order to enumerate the formulas that are not satis�able with respect to
K: simply enumerateall negationsof formulas derivable in K M f ' g.

If both the satis�able and the non-satis�able formulascanbeenumerated,then
the satis�abilit y problem is decidable: the decisionproceduresimply performs
both enumerations in parallel, and stops as soon as the input formula occurs in
one of the two enumerations. Since every formula is either satis�able or non-
satis�able, the algorithm will stop after a �nite amount of time. Note that while
decidability might be shown in this way, no concretebounds on the amount of
time, or space,neededto solve the problem can be derived.

A usefulmethod for proving the decidability and the �nite model property is
using �ltr ations. Let M be a model basedon a frame F = (W; R) and let � be a
set of formulas closedunder subformulas. De�ne an equivalencerelation � � on
W such that for every w; v 2 W:

w � � v i� for every  2 �, M ; w j=  i� M ; v j=  

Denote by [w] the � � -equivalenceclasscontaining w and let W=� � be the set
of all � � -equivalenceclassesof W. De�ne a valuation V� on W=� � such that
V� (p) = f [w] j w 2 V(p)g. The model M =� � = (W=� � ; R� ; V� ) is called a
�ltr ation of M through � if R� is a binary relation on W=� � such that for any
 2 � and w 2 W, M ; w j=  i� M =� � ; [w] j=  . This notion can be generalized
to multi-modal languagesas well.

2.6.6. Definition (Fil tra tions). A frame classK admits �ltration if for ev-
ery modal formula ' there is a �nite setof formulas � ' containing all subformulas
of ' , such that wheneverM ; w j= ' and M based on a frame in K, there is a
�ltr ation of M over � ' whoseunderlying frame is in K.

We say that K admits polynomial �ltration if it admits �ltr ation and the size
of � ' is polynomial in the length of ' . We say that K admits simple �ltr ation if
it admits �ltr ation and for every formula ' , � ' is the set of subformulasof ' .

SincejW=� � j � 2j � j , if K admits �ltration then it hasthe �nite model property.
Sincethe number of subformulas of ' is polynomial in the length of ' , every

frame classthat admits simple �ltration admits polynomial �ltration.

2.6.7. Theorem. Let K be any elementaryframe class. If K admits polynomial
�ltr ation then satis�ability of modal formulas with respect to K can be decided in
NExpTime .

Pro of: This can be considereda folklore result.
If K admits polynomial �ltration, then every satis�able formula ' hasa model

whosesize can be bounded by an exponential in the length of ' . It therefore
su�ces to guesssuch a model and check if it satis�es ' and if the underlying
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frame is in K. Both of thesechecks can be performed in polynomial time (note
that the model checking problem for a �xed �rst order formula can be solved in
polynomial time). 2

Frame classesde�ned by shallow formulas give us a nice examplefor the useof
the �ltration method.

2.6.8. Theorem. Every frameclassde�ned by a �nite set of shallow modal for-
mulasadmits polynomial �ltr ation, hence hasthe �nite model property and hasa
satis�ability problemthat can be solved in NExpTime .

Pro of: Lewis [76] proved a restricted version of this result, for frame classes
de�ned by modal formulas with modal depth at most 1. The sameproof can
be usedto prove our more generalresult, with a small modi�cation. Let K be a
frame classde�ned by a �nite set � of shallow modal formulas. For any modal
formula ' , de�ne � ' to be the union of the set of subformulasof ' with the set of
closedsubformulas of formulas in � (recall that a formula is closedif it contains
no proposition letters). Proceedingas in [76] using � ' as the �ltration set for ' ,
onecan construct for every model M basedon a frame in K a �ltration M 0 with
respect to � ' , such that the underlying frame of M 0 is in K, and ' is satis�ed at
someworld in M 0.

Alternativ ely, a proof of this result can be extracted from the proof of Theo-
rem 7.4.2. 2
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Chapter3

Intro duction to hybrid languages

Part I of this thesisconcernshybrid languages. Theseare extensionsof the basic
modal languageinvolving nominals. Syntactically, nominalsact as a secondsort
of proposition letters. However, semantically, their interpretation is restricted to
singletonsets. In other words, nominalsact as namesfor elements of the model,
much like constants in �rst-order logic. Examplesof modal formulas containing
nominalsare i ^ : 3 i (\the current world is namedby the nominal i , and it not a
successorof itself") and 3 i ^ 2 i (\the world namedi is a successorof the current
world, and it is the only successor").

Hybrid languageshave a long history: the useof nominalscan be traced back
Prior and Bull's work in the sixties [84, 25]. Nominals werereinvented at several
occasions.The history of hybrid languagesand the many motivations for studying
them will not be discussedfurther here,but the reader is referred to [83, 18] for
two excellent expositions.

This chapter introducethree hybrid languages,H , H(@) and H(E). Di�eren t
apects of these languages,including expressivity, axiomatizations, interpolation
and complexity, will be studied in Chapter 4{ 8. Besidesgiving the syntax and
semantics of H , H(@) and H(E), the present chapter also contains a number of
syntactic normal form results that will be usedlater on.

Incidentally, onehybrid languagehasnot yet beenmentioned, namelyH(@; #).
For reasonsthat will becomeclearlater on, the study of H(@; #) will bepostponed
until Chapter 9 of this thesis. For now, it su�ces to say that, in many respects,
H (@; #) is more similar to �rst-order logic than to the languagesstudied here.

3.1 Syntax and semantics of H , H(@) and H(E)
As was mentioned already, nominals are simply proposition letters whoseinter-
pretation is always a singleton set. In other words, nominals name elements of
the domain.
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Besidesnominals, we will also consider satisfaction operators. Satisfaction
operators are operators that make it possibleto expressthat a formula holds at
a world named by a nominal. An example of a formula containing a nominal
and a satisfaction operator is @i 3 p, which states that the world named i has a
successorsatisfying p.

The last addition to the languagethat we will consideris the global modality,
E. It is a special modal operator that has as its accessibility relation the total
relation. In other words, E' holds at a world if there is a world (any world) in
the model satisfying ' . The dual of E, denotedby A expressesglobal truth: A'
holds at a world if ' holds at every world in the model. Note that satisfaction
operatorscan be de�ned using the global modality: @i ' is equivalent to E(i ^ ' )
and A(i ! ' ).

Formally, let pr op be a countably in�nite set of proposition letters, nom a
countably in�nite set of nominals,and let mod be a �nite set of unary modalities
(most of our resultsgeneralizeto the casewith in�nitely many modalities, and to
modality with arbitrary arity). Then the syntax of the languagesH, H(@) and
H(E) is de�ned as follows.

' ::= > j p j i j : ' j ' ^  j 3 ' (H )

' ::= > j p j i j : ' j ' ^  j 3 ' j @i ' (H (@))

' ::= > j p j i j : ' j ' ^  j 3 ' j E' (H (E))

wherep 2 pr op, i 2 nom and 3 2 mod. We usenom(' ), mod(' ) and pr op(' )
to refer to the respective symbols occurring in ' . We employ the usual abbrevia-
tions. In particular, 2 ' is shorthand for : 3 : ' and A' is shorthand for : E: ' .

The frameswe work with are the sameas for plain modal logic: they are of
the form F = (W; (R3 )3 2 mod), whereW is a set of worlds and each R3 is a binary
relation over W. Modelsfor hybrid languagesarepairs (F; V), whereF is a frame
and V is a valuation function for the proposition letters and nominals,such that
jV(i )j = 1 for i 2 nom. In other words, nominals are true at exactly one point
in the model. Relative to such models, the formulas of our hybrid languagesare
evaluated as follows.

(M ; w) j= >
(M ; w) j= p i� w 2 V(p)
(M ; w) j= i i� w 2 V(i )
(M ; w) j= : ' i� (M ; w) 6j= '
(M ; w) j= ' ^  i� (M ; w) j= ' and (M ; w) j=  
(M ; w) j= 3 ' i� there is a v 2 W such that wR3 v and (M ; v) j= '
(M ; w) j= @i ' i� (M ; v) j= ' whereV(i ) = f vg
(M ; w) j= E' i� there is a v 2 W such that (M ; v) j= '

wherep 2 pr op, i 2 nom and 3 2 mod.
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Validit y and satis�abilit y with respect to a frame or classof framesis de�ned
asfor modal formulas. The frame classde�ned by a hybrid formula is simply the
classconsistingof the frameson which the formula is valid.

The modal depth of a hybrid formula ' is de�ned as on page8, not count-
ing occurencesof satisfaction operators or the global modality, i.e., md(@i ' ) =
md(E' ) = md(' ).

A hybrid formula is said to be pure if it contains no proposition letters (nom-
inals are allowed).

3.2 First-order correspondence languages
The �rst-or der correspondence languagefor our hybrid languages,L 1, is the �rst-
order languagewith equality over the vocabulary containing a constant ci for each
i 2 nom, a unary predicate symbol Pp for each p 2 pr op, and a binary relation
symbol R3 for each 3 2 mod. A model M = (W; (R3 )3 2 mod ; V ) can be seenas
a model for the �rst-order languageL 1: the interpretation of the constants ci is
given by V(i ), the interpretation of the unary predicate symbols Pp is given by
V(p) and the interpretation of the binary relation symbols R3 is the relations R3

of M .
Note that we usethe samenotation, L 1, to refer to the correspondencelan-

guagefor the basicmodal language,and the correspondencelanguagefor hybrid
languages.Thesetwo languagesdi�er, in that the latter contains a constant for
each nominal. It will always beclearfrom context which languagewearereferring
to.

3.2.1. Definition. The standard translation STx (�) mapsformulas of H , H(@)
and H(E) to formulasof L 1 with at mostonefree variable. It is de�ned asfollows,
where x and y are distinct �rst-or der variables.

STx (> ) = >
STx (p) = Pp x
STx (i ) = x = ci

STx (: ' ) = : STx (' )
STx (' ^  ) = STx (' ) ^ STx ( )
STx (3 ' ) = 9y:(R3 xy ^ STy(' ))
STx (@i ' ) = 9y:(y = ci ^ STy(' ))
STx (E' ) = 9y:STy(' )

3.2.2. Theorem ([ 47, 46, 16]). For all hybrid formulas ' , models M and
worlds w, M ; w j= ' i� M j= STx (' ) [x : w].

When interpreted on frames,hybrid formulas expresssecondorder properties of
frames. In this case,it is moreappropriateto considera �rst-order correspondence
languagethat contains only the relation symbols interpreted by the frame, not
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the unary predicatesand constants that are interpreted by the valuation function.
Recall that the �rst-or der frame correspondence language, L 1

f r , is the �rst-order
languagewith equality over the vocabulary containing a binary relation symbol
R3 for each 3 2 mod. Also recall that a frame F = (W; (R3 )3 2 mod) can be
seenas a model for L 1

f r : the interpretation of the binary relation symbols R3

is the relations R3 of the frame. While not every hybrid formula has an L 1
f r -

correspondent, someformulas do. For instance,p ! 3 p de�nes the sameclassof
framesas8x:R3 xx, and i ! : 3 i de�nes the sameclassof framesas8x:: R3 xx.
The next chapter is devoted to a comparisonof the expressivity of hybrid formulas
on the onehand and L 1-formulas and L 1

f r -formulas on the other hand.

3.3 Syntactic normal forms for hybrid formulas
This sectioncontains resultson syntactic normal forms for formulas of H(@)and
H(E). Theseresults will be usedin later parts of this thesis.

3.3.1. Definition. An H(@) formula ' is in @-normalform if no satisfaction
operator occurs in the scope of a modal operator or of another satisfaction oper-
ator. If, in addition, ' is a Boolean combination of @-pre�xed formulas, then '
is in strong @-normalform.

With an @-pre�xed formula, we mean a formula of the form @i  . It is easyto
seethat the H(@)-formulas in (strong) @-normalform are preciselythe formulas
generatedby the following recursive de�nition, where � is an H-formula, and
i 2 nom.

' ::= � j @i � j ' 1 ^ ' 2 j : ' (@-normalform)

' ::= > j @i � j ' 1 ^ ' 2 j : ' (strong @-normalform)

3.3.2. Theorem. Every H(@)-formula is equivalent to an H(@)-formula in @-
normal form. Moreover, everyH(@)-formula of the form @i  is equivalent to an
H(@)-formula in strong @-normal form.

Pro of: If ' is a H(@)-formula containing a subformula of the form @i  , then '
is equivalent to (@j  ^ ' [@j  => ]) _ (: @j  ^ ' [@j  =? ]). By repeatedapplication
of this equivalence,any H(@) formula may be turned into a formula that is in
@-normalform. Moreover, if the original formula was itself of the form @i  then
the resulting formula will be in strong @-normalfrom. 2

The exponential blowup involvedin the proof of Theorem3.3.2cannotbeavoided.

3.3.3. Pr oposition. There is no polynomial translation from H(@)-formulas to
H(@)-formulas in @-normalform.
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Pro of: Consider the sequenceof H(@)-formulas ' n = 3
V

k=1 ;:::;n (pk $ @i pk),
with n 2 ! . Each ' n haslength polynomial in n, even if the bi-implication sign is
treated as a de�ned connective. Now, take any sequence n (n 2 ! ) of formulas
in @-normalform, such that the length of  n is boundedby a polynomial in n.
We will show that ' n 6�  n for somen 2 ! .

For n 2 ! , let Fn be the set of all functions f : f 1: : : ; ng ! f 0; 1g. For
each subsetG � Fn , de�ne a model M G = (W; R; V) as follows. The domain
W consistsof all f 2 G, together with two extra worlds, w; v. The relation
R connectsw to each function f 2 G. The valuation function V is such that
V(pk) = f f 2 G j f (k) = 1g, for k = 1; : : : ; n, and V(i ) = f vg.

Sincethe number of subsetsof Fn is doubly exponential in n, and the number
of subformulas of  n is polynomial in n, for large enough n there must exist
G1; G2 � Fn such that G1 6= G2 and such that (M G1 ; w) and (M G2 ; w) agreeon
the truth of all subformulas of  n . Without loss of generality, we may assume
that G1 nG2 6= ; . Let g 2 G1 nG2. As a �nal step, let the modelsM 1 and M 2 be
identical to M G1 and M G2 , respectively, except that in both casesv 2 V(pk) for
all k � n with g(k) = 1. A simple inductive argument shows that M 1; w j=  n i�
M 2; w j=  n . However, by construction, M 1 j= ' n and M 2 6j= ' n . We conclude
that  n 6= ' n . 2

For many purposes,rather than having a truth preservingtranslation from H(@)-
formulas to H(@)-formulas in @-normalform, it is enoughto have a translation
that preservessatis�abilit y with respect to arbitrary frame classes.Translations
of the latter kind are often enoughfor deriving complexity results or frame de-
�nabilit y results. Fortunately, there is a polynomial time satis�abilit y preserving
translation from H(@)-formulas to H(@)-formulas in @-normalform.

3.3.4. Theorem. There is a polynomial time translation from H(@)-formulas
to H(@)-formulas in strong @-normal form that preservessatis�ability on any
frame class.

Pro of: Let any H(@)-formula ' be given. Pick a new nominal i , and for every
subformula of ' of the form @j  introducea new proposition letter p@j  . Now,
de�ne the mapping (:) � on subformulas of ' as follows:

p� = p

i � = i

( 1 ^  2)� =  �
1 ^  �

2

( 1 _  2)� =  �
1 _  �

2

(:  ) � = :  �

(3  ) � = 3  �

(@j  )� = p@j  
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Note that (:) � mapssubformulas of ' to formulas (of the extendedlanguage)in
which no satisfaction operator occurs. Finally, we translate ' as ' 0 =

@i (' � ) ^
^

@j  2 Sub(' )

m� md(' )
k2 nom(' )[f i g

(: @j ( � ) ! @k2 m : p@j  ) ^ (@j ( � ) ! @k2 mp@j  )

wheremd(' ) is the modal depth of ' . Note that ' 0 is in strong @-normalform,
and that the length of ' 0 is polynomial in the length of ' . We claim that ' is
satis�able on a frame F i� ' 0 is satis�able on F. We prove both directions.

[) ] Suppose(F; V); w  ' . Let V 0 be the valuation that extends V such
that V 0(i ) = f wg and such that v 2 V 0(p@j  ) i� (F; V); v  @j  , for all v 2 F
and subformulas @j  of ' . A straightforward induction argument shows that
M ; v j=  i� M ; v j=  � for all worlds v and subformulas  of ' . From this,
it follows that M ; w j= @i ' � and also (by de�nition of V 0) that all the other
conjuncts of ' 0 are true at w. Hence,M ; w j= ' 0.

[( ] Suppose (F; V); w  ' 0. Let V(i ) = f vg. Our task is to show that
(F; V); v  ' .

For any point u 2 F, let d(u) be the minimal number of transitions needed
to reach u from v or from someother point of F denotedby oneof the nominals
occurring in ' (let d(u) = 1 if u is not reachablefrom v nor from any other point
denotedby a nominal occurring in ' ). By construction (cf. the secondconjunct
of ' 0), we have the following:

for all u 2 F and for all subformulas @j  of ' , if d(u) � md(' � ) then
M ; u  p@j  i� M ; u  @j ( � ).

It follows by induction on  that

for all u 2 F and for all subformulas of ' , if d(u)+ md( � ) � md(' ),
then M ; u j=  � i� M ; u j=  .

Finally, we concludethat M ; v  ' . 2

It follows that the satis�abilit y problem for H(@)-formulas, relative to any frame
class, is polynomially reducible to the satis�abilit y problem of H(@)-formulas
in @-normal form, with respect to the sameframe class. It also follows that
every frame classde�nable by H(@)-formulas is de�nable by H(@)-formulas in
@-normalform.

Next, let us considerthe languageH(E).

3.3.5. Definition. An H(E) formula ' is in E-normal form if no occurrence
of E is in the scope of a modal operator or of another occurrence of E. If, in
addition, ' is a Boolean combination of E-pre�xed formulas, then ' is in strong
E-normal form.
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Again, with an E-pre�xed formula, we mean a formula of the form E . Keep
in mind that A is shorthand for : E:  . It is easyto seethat the E-formulas
in (strong) @-normalform are preciselythe formulas generatedby the following
recursive de�nition, where� is an H-formula.

' ::= � j E� j ' 1 ^ ' 2 j : ' (E-normal form)

' ::= > j E� j ' 1 ^ ' 2 j : ' (strong E-normal form)

By similar arguments as in the proof of Theorem3.3.2, we obtain the following.

3.3.6. Theorem ([ 56]). Every H(E)-formula is equivalent to an H(E)-formula
in E-normal form. Moreover, every H(E)-formula of the form @i  is equivalent
to an H(E)-formula in strong E-normal form.

Again, the polynomial translation can be found that turns every formula into an
equisatis�able formula in normal form.

3.3.7. Theorem. There is a polynomial time translation from H(E)-formulas to
H(E)-formulas in strong E-normal form that preservessatis�ability on any frame
class.

Pro of: Let any H(E)-formula ' be given. For every subformula of ' of the form
E introduce a new proposition letter pE . Now, de�ne the mapping (:) � on
subformulas of ' as follows:

p� = p

i � = i

( 1 ^  2)� =  �
1 ^  �

2

( 1 _  2)� =  �
1 _  �

2

(:  ) � = :  �

(3  ) � = 3  �

(E ) � = pE 

Note that (:) � mapssubformulas of ' to formulas (of the extendedlanguage)in
which no satisfaction operator occurs. Finally, we translate ' as ' 0 =

E' � ^
^

E 2 Sub(' )

(E � ! ApE ) ^ (: E � ! A: pE )

Note that ' 0 is in strong E-normal form, and that its length is polynomial in the
lenght of ' . A similar argument as in the proof of Theorem3.3.4shows that ' is
satis�able on a frame F i� ' 0 is satis�able on F. 2

Here �nishes the introductory chapter of Part I. The following chapters will
study di�eren t aspectsof the languagesH, H(@) and H(E).
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Expressivity and de�nabilit y

One of the main reasonswhy hybrid languageshave gainedpopularity in the last
decadesis that many properties of framesthat are not modally de�nable can be
de�ned using nominals. Typical examplesinclude irreexivit y (i ! : 3 i ) and
anti-symmetry (( i ^ 3 (j ^ 3 i )) ! j ). These formulas are pure, meaning that
they do not contain any proposition letters. A secondimportant reasonfor the
growing popularity of hybrid languagesis a generalcompletenessresult for logics
axiomatizedby pure formulas.

Surprisingly little is known about the preciseexpressivity of hybrid languages.
Ideally, one would like to have a Goldblatt-Thomason-style characterization of
the frame classesde�nable by (sets of) (pure) formulas of H , H(@) and H(E).
The only known result in this direction is a characterization of the elementary
frame classesde�nable in H(E), due to Gargov and Goranko [46]. Their proof is
essentially algebraicin nature, andrelieson a connectionbetweenH(E) andM (D)
(i.e., the extension of the basic modal languagewith the di�erence operator,
cf. Chapter 11). It is not clear how to generalizethe proof to other hybrid
languages.

In this chapter, we will characterize the elementary frame classesde�nable
in H(@), H(@) and H(E), as well as the elementary frame classesde�nable by
pure formulas of these languages. Our proofs will be basedon Van Benthem's
model theoretic proof of the Goldblatt Thomasontheorem [12] In order to state
the characterizations, we will introduce two new types of morphisms between
frames, which we will call ultra�lter morphisms and bisimulation systems. Our
main results are summarizedin Table 4.1.

Beforewe start, we would like to take note of the following curious fact con-
cerning frame classesde�nable in H(@), the proof of which is straightforward.
This result will not play any role in the remainderof this chapter but is interest-
ing in its own right. Note that a similar result doesnot hold for the basicmodal
language.
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Table 4.1: Elementary frame classesde�nable in H , H(@) and H(E)

frame classesde�ned by arbitrary
formulas

frame classesde�ned by pure for-
mulas

H closed under ultra�lter morphic
images, generated subframes, and
(*)

closed under images of bisimula-
tion systems,generatedsubframes,
and (*)

H(@) closed under ultra�lter morphic
imagesand generatedsubframes

closed under images of bisimula-
tion systems and generated sub-
frames

H(E) closed under ultra�lter morphic
images

closed under images of bisimula-
tion systems

(*) If every point-generated subframeof F is a proper generatedsubframe
of a frame in the class,then F is in the class.

For nominal bounded H-formulas (a notion that will be de�ned in Section 4.2), the
condition (*) can be simpli�ed to

(* 0) If every point-generated subframe of F is in the class,then F is in the
class.
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4.0.8. Pr oposition. For all H (@) formulas ';  that do not share any proposi-
tion letters, and for all distinct nominals i; j not occurring in ' and  , @i ' _ @j  
de�nes the union of the frame classesde�ned by ' and  .

4.1 Bisimulations and expressivity on models
Recall Theorem 2.2.3, which states that a formula ' (x) of the �rst-order corre-
spondencelanguagefor modal logic1 with at most one free variable is equivalent
to the standard translation of a modal formula i� ' (x) is invariant under bisimu-
lations. This result can be extendedwithout much e�ort to the hybrid languages
H, H(@) and H(E), by slightly varying the de�nition of bisimulations.

4.1.1. Definition. An H-bisimulation between modelsM = (W; (R3 )3 2 mod ; V )
and N = (W 0; (S3 )3 2 mod; V 0) is a binary relation Z � W � V satisfying the
following conditions:

A tom If wZv then w 2 V(p) i� v 2 V 0(p), for all p 2 pr op [ nom.

Zig If wZv and wR3 w0, then there is a v0 suchthat vS3 v0 and w0Zv0

Zag If wZv and vS3 v0, then there is a w0 suchthat wR3 w0 and w0Zv0

An H(@)-bisimulation is a H-bisimulation Z satisfying in addition

Nom If w 2 V(i ) and v 2 V 0(i ) for somei 2 nom, then wZv.

An H(E)-bisimulation is a total H -bisimulation, i.e., a H-bisimulation Z such
that 8w 2 W 9v 2 W 0:wZv and 8v 2 W 0 9w 2 W:wZv. Note that every H(E)-
bisimulation is a H(@)-bisimulation.

Thesebisimulation notions capture, the indistinguishability relation for the lan-
guagesH, H(@)and H(E), in the sameway that potential isomorphismscapture
the indistinguishability relation for �rst-order logic. Let L beoneof the languages
H, H(@) and H(E). Given two modelsM ; N with points w; v, we say that M ; w
and N; v are L -indistinguishable, notation M ; w � L N; v, if for all L -formulas ' ,
M ; w j= ' i� N; v j= ' . We say that M ; w and N; v are L -bisimilar if there is
an L -bisimulation betweenM and N connectingw to v. When no ambiguity can
arise,we will often not specify the modelsexplicitly, and say that two worlds, w
and v, are L -bisimilar. A formula ' (x1; : : : ; xn ) of the �rst-order correspondence
languageis said to be invariant under L -bisimulations, if for all models M ; N,
elements d1; : : : ; dn of the domain of M and elements e1; : : : ; en of the domain
of N, if di and ei are L -bisimilar for i = 1: : : n, then M j= ' [d1; : : : ; dn ] i�
N j= ' [e1; : : : ; en ].

1The �rst-order correspondencelanguagefor modal logic di�ers from the �rst-order corre-
spondencelanguagefor hybrid logic in that the latter has a constant for each nominal.
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4.1.2. Theorem. Let M ; N be models and w; v points in thesemodels. Let L
be one of the languagesH, H(@) and H(E). If w and v are L -bisimilar then
M ; w � L N; v. Conversely,if M and N are ! -saturated and M ; w � L N; v then
w and v are L -bisimilar.

The proof of Theorem 4.1.2 is a straightforward generalization of the one for
modal logic, and the nominals do not give rise to additional complications. Us-
ing a standard argument, one obtains from this the following analogueof Theo-
rem 2.2.3.

4.1.3. Theorem. Let ' (x) be an L 1-formula with at most one free variable. Let
L be one of the languagesH, H(@) and H(E). Then the following are equivalent:

1. ' (x) is equivalent to the standard translation of an L -formula

2. ' (x) is invariant under L -bisimulations.

In other words, Van Benthem's bisimulation characterization for the basicmodal
languagecan be adaptedwithout any problemsto the hybrid languagesH, H(@)
and H(E). If we considerframesrather than models, the situation will be quite
di�eren t. While Goldblatt and Thomason'scharacterization of the modally de-
�nable elementary frame classeshashybrid analogues,obtaining theseanalogues
requiresmore creativity, as we will seein the next section.

Before we go on the discussframe de�nabilit y, it is useful to introduce the
notion of a generatedsubmodel.

4.1.4. Definition (Genera ted submodel). M = (W; (R3 )3 2 mod ; V ) is a
generatedsubmodel of N = (W 0; (R0

3 )3 2 mod ; V 0) if M is a submodel of N and
for all (w; v) 2 R0

3 (3 2 mod), if w 2 W then v 2 W.

In other words,a generatedsubmodel is a submodel whosedomain is closedunder
the relations (cf. Appendix A for a de�nition of submodels). Clearly, if M is a
generatedsubmodel of N then M must contain all elements of N that are named
by a nominal. For any model M and for any subsetX of the domain of M , the
submodel generated by X is the smallestgeneratedsubmodel of M whosedomain
contains all elements of X . It is not hard to seethat this is well-de�ned. In fact,
the submodel of M generatedby X is preciselythe submodel of M whosedomain
consistsof all worlds reachable from a world in X or from a world named by a
nominal, in �nitely many stepsalong the union of all relations. It is easyto see
that if M is a generatedsubmodel of N, then the natural inclusionfunction, which
is the identit y function on the domain of M , is a H(@)-bisimulation between
M and N. It follows by Theorem 4.1.2 that H(@)-formulas are invariant for
generatedsubmodels: for all worlds w of M and H(@)-formulas ' , M ; w j= ' i�
N; w j= ' .
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4.2 Operations on frames and formulas they preserve
In this section, we review and introduce several operations on frames, and we
discussto what extent they preserve validit y of hybrid formulas. We focus on
the three hybrid languagesH, H(@) and H(E). The frame operations discussed
herewill be put to usein the next sections,wherewe characterizethe elementary
frame classesde�nable in thesehybrid languages.

Bounded morphisms

Framevalidit y of hybrid formulasis not preservedunder taking imagesof bounded
morphisms. Consider for instance the formula i ! : 3 i , which de�nes irreex-
ivit y, and let F = (f 0; 1g; f (0; 1); (1; 0)g) and G = (f 0g; f (0; 0)g). Then G is a
boundedmorphic imageof F and F is irreexiv e, but G is not.

Nevertheless,in a restricted form bounded morphisms are of relevance for
hybrid logic, as will becomeclear in Proposition 4.2.6.

Generated subframes

It is well known that validit y of modal formulas containing the global modality
is in generalnot preserved under taking generatedsubframes.A typical example
is the formula E3 > , which de�nes non-emptinessof the accessibility relation.
Clearly, validit y of H(E)-formulas is also not preserved under taking generated
subframes.However, taking generatedsubframesdoespreserve validit y of H(@)-
formulas.

4.2.1. Pr oposition. H(@)-de�nable frame classesare closed under generated
subframes.

Pro of: The proof is the analogousto the one for the basic modal language:
let F be a generatedsubframeof G, and let V be any valuation for F. V can
be conceived of as a valuation for G, by consideringall proposition letters and
nominals to be false at points outside of F. It is easily seenthat the identit y
relation on F is an H(@)-bisimulation betweenthe models (F; V) and (G; V). It
follows that whenever a H(@)-formula is refuted on F, it is refuted on G under
the samevaluation and at the samepoint. 2

Disjoint unions

The formula 3 i , which de�nes the classof framesin which 3 is the global modal-
it y, nicely exempli�es the fact that validit y of hybrid formulas is not preserved
under taking disjoint unions. Nevertheless,a weak form of preservation under
disjoint unions holds for the languageH: validit y of H-formulas is preserved un-
der taking disjoint unions of framesthat are not point generated. Generalizing
this a bit further, we obtain the following preservation result.
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4.2.2. Pr oposition. Let ' be an H-formula, and F a frame such that every
point-generated subframeof F is a proper generated subframeof a frameon which
' is valid. Then F j= ' .

Pro of: Let V be any valuation on F, and let w any point in F. By assumption,
the point-generatedsubframeFw is a proper generatedsubframeof a frame G
with G j= ' . Let v be any point in G that is not in Fw , and let V 0 be the
valuation for G de�ned as follows. For p 2 pr op, let V 0(p) is the restriction of
V(p) to Fw . For i 2 nom, if V(i ) is in Fw then let V 0(i ) = V(i ), otherwise let
V 0(i ) = f vg. As is easily seen,the identit y relation on Fw is an H-bisimulation
between the models (F; V) and (G; V 0). SinceG; V 0; w j= ' , we concludethat
F; V; w j= ' . 2

While validit y of H-formulas is in general not preserved under taking disjoint
unions, there is a natural fragment of H that doessatisfy this condition. Call an
H-formula nominal bounded if it is a conjunction of formulas of the form

� ^

k=1 ;:::;m

(3 k;1 � � � 3 k;nk i k)
�

!  

where 3 1;1; : : : ; 3 m;n m 2 mod (n1; : : : ; nm � 0) and  contains no nominals
besidesi 1; : : : ; i m . Notice how the antecedent requiresthat all nominalsoccurring
in  denotea point within the generatedsubframe. It is not hard to show that
validit y of nominal bounded formulas is preserved under taking disjoint union
(cf. also Theorem 2.1 in [17]). In fact, somethingstronger holds. For any frame
F and world w of F, let Fw denotethe subframeof F generatedby F. Fw is called
a point-generated subframe of F, becauseit is generatedby a single point. We
say that a frame classK reects point-generated subframes if for all framesF, if
every point-generatedsubframeof F is in K then F 2 K.

4.2.3. Pr oposition. Let ' be a nominal bounded H-formula. Then the classof
framesde�ned by ' reects point-generated subframes.

Pro of: We reasonby contraposition. SupposeF 6j= ' , i.e, one of the conjuncts
of ' is falsi�ed on F at somepoint w under somevaluation. By the truth of its
antecedent, the nominalsinvolvedall denotepoints in the generatedsubframeFw .
Hence,the sameconjunct of ' can be falsi�ed on the point-generatedsubframe
Fw . 2

4.2.4. Cor ollar y. Let ' be a nominal bounded H-formula and let f Fi j i 2 I g
be a set of frames. If Fi j= ' for all i 2 I , then

U
i 2 I Fi j= ' .
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Ultra�lter extensions and ultra�lter morphisms

Unlike the frame operations discussedabove, ultra�lter extensionsanti-preserve
validit y of hybrid formulas in exactly the sameway asmodal formulas. If a H(E)-
formula ' is valid on the ultra�lter extensionueF of a frame F, then ' is also
valid on F itself. In fact, somethingstrongerholds: hybrid formulasarepreserved
under taking ultra�lter morphic images, to be de�ned below.

4.2.5. Definition. Let F and G be frames. G is an ultra�lter morphic imageof
F if there is a surjective bounded morphism f : F ! ueG such that jf � 1(u)j = 1
for all principal ultra�lters u 2 ueG.

Since this construction will play an important role in the next section, we will
try to provide someintuition for it. First of all, note that whenever G is an
ultra�lter morphic imageof a frame F, ueGis a boundedmorphic imageof F. It
follows that the validit y of modal formulas is preserved under taking ultra�lter
morphic images. The sameholds for H(E)-formulas, even though the latter are
not preserved under taking boundedmorphic images,as we noticed before.

4.2.6. Pr oposition. Validity of H(E)-formulas is preserved under taking ultra-
�lter morphic images.

Pro of: Let ' be an H(E)-formula, let f : F ! ueG be a surjective bounded
morphism that is injective with respect to principal ultra�lters, and suppose
G 6j= ' . We will show that F 6j= ' .

Let V be a valuation and w a world such that G; V; w 6j= ' . De�ne the
valuation V ue on ueG such that V ue(p) = f u j V(p) 2 ug for all proposition
letters p and V ue(i ) = f u j V(i ) 2 ug for all nominals i . It is easily seenthat V ue

assignsto each nominal a singleton set consistingof a principal ultra�lter, and
henceV ue is a well-de�ned hybrid valuation. Moreover, a standard argument [21,
Proposition 2.59] shows that for all worlds v and formulas  , (G; V); v j=  i�
(ueG; V ue); � v j=  , where� v is the principal ultra�lter generatedby v. It follows
that ueG; V ue; � w 6j= ' .

Next, de�ne the valuation V 0 for F such that V 0(p) = f v j f (v) 2 V ue(p)g
for all proposition letters p and V 0(i ) = f v j f (v) 2 V ue(i )g for all nominals
i . Since f is injective on principal ultra�lters and nominals denote principal
ultra�lters in ueG, V 0(i ) is a singleton, for all nominals i , and hence(F; V 0) is a
well-de�ned hybrid model. Furthermore, a standard argument shows that, since
f is a surjective bounded morphism, the graph of f is an H(E)-bisimulation
betweenueG and F. Sincef is surjective, there is a v 2 F such that f (v) = � w .
By invarianceunder H(E)-bisimulations, F; V 0; u 6j= ' , and henceF 6j= ' 2

Next, observe that every frame is an ultra�lter morphic image of its ultra�lter
extension. It follows that, in general,if a property of framesis preserved under



52 Chapter4. Expressivity andde�nability

taking ultra�lter morphic images,then it is anti-preservedunder taking ultra�lter
extensions(i.e., its complement is preserved under taking ultra�lter extensions).
The converseof this fact doesnot hold, as is shown by the following proposition.

4.2.7. Pr oposition. The frame condition 8x9y(R2xy ^ 9z:(R1xy ^ y 6= z)) is
preserved under generated subframesand disjoint unions and anti-preserved un-
der ultra�lter extensions,but it is not preserved under taking ultra�lter morphic
images.

Pro of: It is easy to seethat the given frame condition ' is preserved under
taking generatedsubframesand disjoint unions. That it is anti-preserved under
ultra�lter extensionscan be seenas follows: the negationof ' is (modulo simple
syntactic manipulations) a p-sentence,and is therefore,by Theorem 2.3.11, pre-
servedunder taking boundedmorphic images.Furthermore, every �rst-order sen-
tencepreserved under taking boundedmorphic imagesis preserved under taking
ultra�lter extensions[21, Theorem3.17]. It follows that ' itself is anti -preserved
under taking ultra�lter extensions.

Next, we will show that ' is not preserved under taking ultra�lter morphic
images. Consider the frame F = (! ; I d! ; ! � ! ). As is not hard to see,ueF =
(Uf( ! ); I dUf( ! ) ; Uf(! ) � Uf(! )). Let G = (W; R; W � W), where W = f u 2
Uf(! ) j u is principalg [ fhu; 0i ; hu; 1i j u 2 Uf(! ) is non-principalg and R =
I dW [ f (hu; 0i ; hu; 1i ); (hu; 1i ; hu; 0i ) j u 2 Uf(! ) is non-principalg. As one can
easilysee,the natural map from G to ueFis a surjective boundedmorphism and
is injective with respect to principal ultra�lters. However, G satis�es ' whereas
F doesnot. 2

Finally, let us spend somewords on preservation under ultra�lters (as opposed
to anti-preservation). It is known that validit y of modal formulas that de�ne
�rst-order frame conditions is preserved under passagefrom a frame to its ultra-
�lter extension[21, Corollary 3.18]. The question arisesif a similar result hold
for hybrid logic. The answer is negative. Consider the formula i ! 2 : i , which
expressesthe �rst-order property of irreexivit y. The natural numberswith their
strict ordering clearly form an irreexiv e frame, and its ultra�lter extensioncon-
tains reexiv e points (in fact, every non-principal ultra�lter forms an reexiv e
point).

Bisimulation systems

If a modal formula contains no proposition letters, its validit y on a frame is
preserved under total bisimulations. This fact is well-known, and follows imme-
diately from Theorem 2.2.3. Note that a bisimulation betweenframesF and G
is just what onecould expect: a binary relation betweenthe domainsof F and G
satisfying the zig and zagclausesof De�nition 4.1.1. Also recall that a bisimula-
tion is total if its domain includesevery point of F and its range includesevery
point in G.
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A similar result can be obtained for hybrid logic. Recall that in hybrid logic,
pure formulas are the onesthat contain no proposition letters, though possibly
nominals. In general, validit y of pure hybrid formulas is clearly not preserved
under total bisimulations. It is however preserved under bisimulation systems, as
de�ned below.

4.2.8. Definition. Given a bisimulation Z between framesF and G, and a sub-
setX of the domainof G, wesaythat Z respectsX if the following two conditions
hold for all x 2 X :

1. There existsexactlyone w suchthat wZx.

2. For all w; v, if wZx and wZv then v = x.

4.2.9. Definition. A bisimulation system from F to G is a function Z that
assignsto each �nite subsetX � G a total bisimulation Z (X ) � F � G respecting
X .

4.2.10. Theorem. Validity of pure H(E)-formulas is preserved under taking im-
agesof bisimulation systems.

Pro of: Let Z be a bisimulation systembetweenF and G, and supposeG 6j= ' ,
for somepure H(E)-formula ' . We will show that F 6j= ' . Let i 1; : : : ; i n be
the nominals occurring in ' . Let V be an assignment for these nominals and
v 2 G a world such that (G; V); v 6j= ' . Let v1; : : : ; vn be the worlds namedby
the nominals i 1; : : : ; i n . Let Z = Z (f v1; : : : ; vng) be a bisimulation respecting
v1; : : : ; vn , and de�ne V 0 to be the valuation for F that sendsevery nominal i k

to the unique point wk such that wkZvk . Then Z is easily seento be a total
bisimulation between(F; V 0) and (G; V). Hence,' is falsi�ed somewherein the
model (F; V 0), and thereforeF 6j= ' . 2

Bisimulation systemsare, intuitiv ely speaking, a cross-over between bisimula-
tions and potential isomorphisms. On the one hand, they can be viewed as
parametrized bisimulations, while on the other hand, they are families of �nite
partial isomorphismssatisfying somefurther conditions.

Not every modally de�nable frameclassis closedunder imagesof bisimulation
systems.A typical exampleis the conuence property, de�ned by the �rst-order
formula 8xyz(xRy ^ xRz ! 9u:(yRu ^ zRu)), and also by the modal formula
32 p ! 23 p. It was shown by Gargov and Goranko [46] that conuence is
not de�nable by meansof pure H(E)-formulas. Their proof can be modi�ed to
show that the classof conuent framesis not closedunder imagesof bisimulation
systems.

4.2.11. Pr oposition. The classof conuent framesis not closed under images
of bisimulation systems.
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Figure 4.1: Conuence is not de�nable by pure formulas

Pro of: Considerthe two framesdepictedin Figure 4.1. Notice that F1 is identical
to F2, except for the additional point u (and its incoming and outgoing arrows).
For any �nite set X � f in F2, let Z (X ) = I dF2 [ f (u; wk); (u; vl )g, for wk ; vl 62X
(note that such wk and vl exist). As is not hard to see,Z is a bisimulation system
from F1 to F2. However, F1 is conuent, whereasF2 doesnot.

Incidentally, the frameF2 usedabovewas�rst introducedby Venema[98], and
the sameframe wasusedby Gargov and Goranko [46] to show that conuence is
not de�nable by meansof pure H(E)-formulas. 2

As it happens, conuence can be de�ned by a pure H-formula using back-
ward looking modalities, namely by the formula 3 i ! 233 � 1i . This raises
the question whether there are modally de�nable frame conditions that are not
preserved under bisimulation systemseven in the presenceof backward look-
ing modalities. Indeed there are such. Call a relation R atomic if it satis�es
8x9y(Rxy ^ 8z(Ryz ! y = z)). Let Kat be the (elementary) classof bimodal
frames F = (W; R1; R2), in which R1 is transitiv e and atomic and in which R2

is the converseof R1. Then Kat is de�ned by the conjunction of the transitiv-
it y axiom 3 13 1p ! 3 1p, the McKinsey axiom 2 13 1p ! 3 12 p and the axioms
p ! 2 13 2p and p ! 2 23 1p.

4.2.12. Pr oposition. The classKat is not closed under imagesof bisimulation
systems.

Pro of: We will construct a bisimulation system from (N; � ; � ) to (Z; � ; � ).
Clearly, the former is atomic while the latter is not, and hencethe result follows.
For any �nite X � Z, let Z (X ) = f (0; m) j m � min X g [ f (n; n � 1 + min X ) j
n > 0g. It is not hard to seethat for all �nite X � Z, Z (X ) is a bisimulation
between (N; � ; � ) and (Z; � ; � ) respecting X , and henceZ is a bisimulation
system. 2
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It follows that Kat is not de�nable by pure H(E)-formulas, as was shown already
by [17].

Some lemmas

The following lemmasare of a more technical nature. They will be put to good
usein the next section.

4.2.13. Lemma. If Gi is an ultra�lter morphic image of Fi , for i = 1; 2, then
G1 ] G2 is an ultra�lter morphic imageof F1 ] F2.

Pro of: Let f i : Fi ! ueGi be surjective ultra�lter morphisms (i = 1; 2), and
de�ne f : (F1 ] F2) ! (ueG1 ] ueG2) such that f (w) = f i (w) for w 2 Fi .
Then f is easily seento be a surjective bounded morphism. Moreover, f is
injective on principal ultra�lters, in the sensethat jf � 1(u)j = 1 for all principal
u 2 (ueG1 ] ueG2). Next, observe that ueG1 ] ueG2 is isomorphicto ue(G1 ] G2).
Moreover, the natural isomorphismg : (ueG1 ] ueG2) �= ue(G1 ] G2), which maps
every ultra�lter u 2 ueGi to the ultra�lter f X ] Y j X 2 u and Y � G3� i g,
preservesprincipalit y of ultra�lters. Hencethe concatenationf � g is a surjective
ultra�lter morphism from F1 ] F2 to ue(G1 ] G2). 2

4.2.14. Lemma. If F1 and G1 are elementarily equivalent and F2 and G2 are
elementarily equivalent then G1 ] G2 and F1 ] F2 are elementarily equivalent.

Pro of: A simple Ehrenfeucht-Fra•iss�e gameargument establishesthe result: by
elementary equivalence,Duplicator has a winning strategy in every �nite round
Ehrenfeucht-Fra•iss�e gameon (F1; G1) and on (F2; G2). Thesestrategiesnaturally
combine into a winning strategy for any �nite round gameon (F1 ] F2; G1 ] G2):
whenever Spoiler picks an element of someFi or Gi (1 � i � 2), Duplicator
respondswith an element of Gi respectively Fi , usinghis winning strategy for the
gameon (Fi ; Gi ). In this way, Duplicator clearly maintains partial isomorphisms
betweenF1 and G1 and betweenF2 and G2, and thereforealso betweenF1 ] F2

and G1 ] G2. 2

4.2.15. Lemma. If there are bisimulation systemsfrom F1 to G1 and from F2 to
G2, then there is a bisimulation systemfrom F1 ] F2 to G1 ] G2.

Pro of: Let f 1 and f 2 be the given bisimulations, and for all �nite X � G1 ] G2,
let f (X ) = f 1(X \ G1) [ f 2(X \ G2). It is not hard to seethat f is a bisimulation
systemfrom F1 ] F2 to G1 ] G2. 2
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4.3 Frame de�nabilit y
In this section,we answer the questionwhich elementary frame classesare de�n-
ableby a setof formulasof hybrid logic. The resultswill be stated in terms of the
operationson framesdiscussedin the previoussection. The proofs in this section
are inspired by Van Benthem's model theoretic proof of the Goldblatt-Thomason
theorem[12].

As a point of notation, recall that for a frame F = (W; (R3 )3 2 mod) and a set
X � W, we usem3 (X ) to denotethe set f w 2 W j 9v 2 X :(wR3 v)g.

4.3.1. Theorem. An elementary frame classK is de�nable by a set of H(@)-
formulas i� K is closed under ultra�lter morphic imagesand generated subframes.

Pro of: The left-to-right direction wasprovedalreadyin the previoussection. For
the right-to-left-direction, we proceedas follows. Let Th(K) be the set of H(@)-
formulas valid on K, and supposeF j= Th(K). It is our task to show that F 2 K.
For each subsetA � W, where W is the domain of F, introduce a proposition
letter pA . For every w 2 W, introducea nominal i w . Let � be the set consisting
of the following formulas, for all A � W, v 2 W and 3 2 mod.

p� A $ : pA

pA\ B $ pA ^ pB

pm3 (A ) $ 3 pA

i v $ pf vg

Let � F = f @i v 2 1 � � � 2 n � j v 2 W; � 2 � ; and 3 1; : : : ; 3 n 2 mod with n 2 ! g.
Intuitiv ely, � F providesa full descriptionof the frameF. Clearly, � F is satis�able
on F, namely at any point, under the natural valuation that sendspA to A and
iw to f wg.

Claim 1: � F is satis�able on K.

Pro of of claim: By compactness(recall that K is elementary), it su�ces to
show that every �nite conjunction � of elements of � F is satis�able on K.
But this follows immediately: � is satis�able on F and F j= Th(K), hence
: � 62Th(K), i.e., � is satis�able on K. a

Let (G; V) j= � F with G 2 K. Since K is closedunder generatedsubframes,
we may assumethat G is generatedby the set of points that are named by a
nominal. It then follows that the model (G; V) globally satis�es �. Let (G� ; V � )
be an ! -saturated elementary extensionof (G; V). By elementarit y, G� 2 K and
(G� ; V � ) globally satis�es �.

Claim 2: ueF is an ultra�lter morphic imageof G� .
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Pro of of claim: For any v 2 G� , let f (v) = f A � W j (G� ; V � ); v j= pA g.
We claim that f is a boundedmorphism from G� onto ueF, and jf � 1(u)j = 1
for all principal ultra�lters u 2 ueF.

. f (v) is an ultra�lter on F.

Follows immediately from the the fact that � is globally satis�ed in the model
(G� ; V � ).

. f is surjective

Take any u 2 ueF. To prove surjectiveness,we will show that that the set f pA j
A 2 ug is satis�able in (G� ; V � ). By ! -saturatedness,it su�ces to show �nitely
satis�abilit y. Take A1; : : : ; An 2 u. Then

T
k Ak 2 u and hence,

T
k Ak 6= ; .

Let v 2
T

k Ak . Then � F j= @i v pT
k A k , and hence(G� ; V � ) j= @i v pT

k A k .

. Forth-condition: If vR�
3 v0 then f (v)Rue

3 f (v0)

By the de�nition of Rue
3 , it su�ces to show that whenever A 2 f (v0), m3 A 2

f (v). SupposeA 2 f (v0). Then (G� ; V � ); v0 j= pA , henceby the global truth
of �, (G� ; V � ); v j= pm3 A , and thereforem3 A 2 f (v).

. Back condition: If f (v)Rue
3 u, there is a v0 2 G� s.t. f (v0) = u and vR�

3 v0

We have to �nd a 3 -successorof v that satis�es f pA j A 2 ug. By ! -
saturatedness,it su�ces to show that this theory is �nitely satis�able in the
set of 3 -successorsof v. Take any A1 : : : An 2 u. Then

T
i A i 2 u and hence,

m3 (
T

i A i ) 2 f (v). So, (G� ; V � ); v j= pm3 (
T

i A i ) , and hence,by global truth of
�, v hasa successorsatisfying pA 1 ; : : : ; pA n .

. jf � 1(u)j = 1 for all principal ultra�lters u 2 ueF

Supposef (x) = f (y) = � w for somex; y 2 G� and w 2 F. Then by de�nition,
x and y satisfy the proposition letter pf wg. By global truth of �, x and y are
both namedby the nominal i w . Hence,x = y. a

SinceK is closedunder ultra�lter morphic images,we concludethat F 2 K. 2

4.3.2. Cor ollar y. An elementary frame class is de�nable by a set of H(E)-
formulas i� it is closed under ultra�lter morphic images.

Pro of: The globalmodality is de�nable by an H(@)-formula, namelythe formula
Ei (more precisely, this formula expressesthat the accessibility relation of the
modality E is the total relation). It follows that a frame classK is H(E)-de�nable
i� the class K0 = f (W; (R3 )3 2 mod; RE) j (W; (R3 )3 2 mod) 2 K and RE = W 2g is
H(@)-de�nable. Clearly, K0 is closedunder generatedsubframes. Furthermore,
onecan easilyseethat K0 is closedunder ultra�lter morphic imagesi� K is. The
result follows. 2
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Gargov and Goranko [46] gave a similar characterization of the H(E)-de�nable
elementary frame classes,cf. Section11.1 for a comparisonof the two.

Next, we investigate frame de�nabilit y in H . This casefor is a little more
complicated. We needthe following lemma. Recall that a H-formula is nominal
boundedif it is a conjunction of formulas of the form

� ^

k=1 :::m

(3 k;1 � � � 3 k;nk i k)
�

! '

where3 1;1; : : : ; 3 m;n m 2 mod and ' contains no nominalsbesidesi 1; : : : ; i m .

4.3.3. Lemma. Let K be a classof frames,and let ThH (K) and ThH (@)(K) be the
set of H-formulas and H(@)-formulas, respectively, valid on K, and let Thnb

H (K)
be the set of nominal bounded H-formulas valid on K. For all point-generated
framesFw , Fw j= ThH (@)(K) i� Fw j= ThH (K) i� Fw j= Thnb

H (K).

Pro of: The left-to-right-directions are immediate. Now, supposeFw j= Thnb
H (K).

Consider any ' 2 ThH (@)(K). By Theorem 3.3.2 (and by pre�xing ' by @i

for some new nominal i , if necessary),we may assumethat ' is of the formV
m

W
n @i m;n ' m;n , where each ' m;n is an H-formula. For k 2 ! , let  k be the

following nominal boundedH-formula:

� ^

m;n

3 � k(im;n )
�

!
^

m

_

n

2 � k(im;n ! ' m;n )

Clearly, ' implies  k , and therefore,  k 2 Thnb
H (K), for each k 2 ! . It follows

that Fw j=  k for all k 2 ! . But then Fw j= ' . For, supposenot. Then there
is a valuation V and a world v such that (Fw ; V ); v 6j= ' . Since' is a Boolean
combination of @-pre�xed formulas, its truth is not dependent on the world of
evaluation, and hence(Fw ; V); w 6j= ' . Now, let k be the maximal distancefrom
the root w to a world namedby oneof the (�nitely many) nominalsoccurring in
the formula. Then, clearly, (Fw ; V ); w 6j=  k . But this contradicts the fact that
Fw j=  k . 2

4.3.4. Theorem. An elementary frame class K is de�nable by a set of H-
formulas i� the following closure conditions hold.

1. K is closed under ultra�lter morphic images.

2. K is closed under generated subframes.

3. For any frameF, if everypoint generated subframeof F is a proper generated
subframe of a frame in K, then F 2 K.
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Pro of: The left-to-right direction was proved already in the previous section.
For the right-to-left-direction, we proceedas follows. Let Th(K) be the set of H-
formulas valid on K, and supposeF j= Th(K). It is our task to show that F 2 K.
If F is point-generated,then by Lemma4.3.3, in combination with Theorem4.3.1,
F 2 K, and we are done. In the remainderof this proof, we will assumethat F is
not point-generated. Take any point-generatedsubframeFw = (W; (R3 )3 2 mod)
of F. In what follows, we will show that (Fw ] Fw) 2 K. It then follows by the
third closurecondition that F 2 K.

For each subset A � W, introduce a proposition letter pA , and for every
w 2 W, introducea nominal i w . Furthermore, let i ; a distinct nominal. Let � be
the set consistingof the following formulas, for all A � W, v 2 W and 3 2 mod.

p� A $ : pA

pA\ B $ pA ^ pB

pm3 (A ) $ 3 pA

i v $ pf vg

Let � Fw = f iwg [ f 2 1 � � � 2 n � j � 2 � and 3 1; : : : ; 3 n 2 mod with n 2 ! g [
f 2 1 � � � 2 n : i ; j 3 1; : : : ; 3 n 2 mod with n 2 ! g. Intuitiv ely, � Fw provides a full
description of the frame F, from the perspective of w. Clearly, � Fw is satis�able
on F, namely at w, under any valuation that sendseach pA to A, each i w to f wg
and i ; to somepoint not reachable from w in �nitely many steps.

Claim 1: � Fw is satis�able on K.

Pro of of claim: By compactness(recall that K is elementary), it su�ces to
show that every �nite conjunction � of elements of � Fw is satis�able on K.
But this follows immediately: � is satis�able on F and F j= Th(K), hence
: � 62Th(K), i.e., � is satis�able on K. a

Let (G; V); v j= � Fw , with G 2 K. Let Gv be the subframeof G generatedby v.
By construction, Gv is a proper generatedsubframeof G. Hence,by the third
closurecondition, (Gv ] Gv) 2 K.

By construction, all nominalsexcepti ; denotea point in (G; V) that is reach-
ablefrom v. Hencewecanthink of V asa valuation for the frameGv by removing
i ; from our vocabulary. In this way, we obtain a point-generatedmodel (Gv; V )
that globally satis�es �, and such that (Gv; V ); v j= pA for all A � W with
w 2 A.

Let (G�
w ; V � ) be an ! -saturated elementary extensionof (Gw ; V ). By elemen-

tarit y, G�
w 2 K, (G�

w :V � ) globally satis�es � and (G�
w ; V � ); w j= pA for all A � W

with w 2 A.

Claim 2: ueFw is an ultra�lter morphic imageof G�
w .
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Pro of of claim: For any u 2 G�
w , let f (u) = f A � W j (G�

w ; V � ); u j= pA g.
One can show that f is an ultra�lter morphism from G�

w onto ueFw , using
similar arguments as for Claim 2 in the proof of Theorem 4.3.1. We will only
show surjectiveness,sincethis part of the proof deviatesslightly from the case
for H(@).

Take any u 2 ueFw . To prove surjectiveness,we will show that the set f pA j
A 2 ug is satis�able in (G�

w ; V � ). By ! -saturatedness,it su�ces to show �nitely
satis�abilit y. Take A1; : : : ; An 2 u. Then

T
i A i 2 u and hence,

T
i A i 6= ; . Let

s 2
T

i A i . By point-generatedness,s is reachable from w in a �nite number
of steps. But then there are 3 1; : : : ; 3 n such that Fw ; w j= pm3 1 ���m3 n (

T
i A i ) ,

and henceG�
v; V � ; v j= pm3 1 ���m3 n (

T
i A i ) . Hence,by global truth of �, there is a

point in (G�
w ; V � ), that satis�es p(

T
i A i ) , and hencesatis�es pA 1 ; : : : ; pA n . a

We have shown that Fw is an ultra�lter morphic image of G�
w . It follows by

Lemma 4.2.13that (Fw ] Fw) is an ultra�lter morphic imageof (G�
w ] G�

w). By
Lemma 4.2.14, (G�

w ] G�
w) is elementarily equivalent to (Gw ] Gw), which, as we

saw earlier, is in K. We concludethat (Fw ] Fw) 2 K. 2

Theorem4.3.4can be simpli�ed for the caseof nominal boundedH-formulas. By
Proposition 4.2.3, frame classesde�ned by nominal boundedH-formulas reect
point-generatedsubframes.

4.3.5. Theorem. An elementaryframe classK is de�nable by a set of nominal
bounded H-formulas i� K is closed under ultra�lter morphic imagesand generated
subframesand K reects point-generated subframes.

Pro of: The left-to-right direction wasprovedalreadyin the previoussection. For
the right-to-left-direction, we proceedasfollows. Let Th(K) be the setof nominal
boundedH-formulas valid on K, and supposeF j= Th(K). By preservation under
generatedsubframes,Fw j= Th(K) for all point-generatedsubframesFw of F. It
follows from Lemma4.3.3and Theorem4.3.1that Fw 2 K for all point-generated
subframesFw of F. SinceK reects point-generatedsubframes,we concludethat
F 2 K. 2

4.4 Frame de�nabilit y by pure formulas
In this section,we will characterizethe elementary frame classesthat are de�ned
by pure formulas. Recall that a pure formula is onethat contains no proposition
letters (but nominals are allowed). Every frame classde�ned by pure formulas
is elementary, as can be seenfrom the standard translation. It follows that
non-elementary modal frame classessuch as de�ned by 23 p ! 32 p cannot be
de�ned by meansof pure formulas. Furthermore, we saw in Section4.2 that the
classof conuent frames,which is elementary and de�ned by the modal formula
32 p ! 23 p, is not de�nable by meansof pure formulas either.
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Pure formulas are interesting, since, as we will seein Section 5.4, there is
a generalcompletenessresult for extensionsof the basic hybrid logic with pure
axioms,much like the caseof Sahlqvist axiomsin the basicmodal language.The
question for a model theoretic characterization of the frame classesde�nable by
pure hybrid formulas hasbeenasked �rst by [46].

Incidentally, another characterization of the pure formulas is given by Theo-
rem 5.2.10, in terms of persistenceunder the passagefrom a particular type of
generalframe to the underlying Kripk e frame.

4.4.1. Theorem. A frameclassK is de�nable by meansof a pure H(@) formula
i� K is elementary,closed under generated subframesand closed under imagesof
bisimulation systems.

Pro of: Let PTh(K) be the set of pure H(@) formulas valid on K. By compact-
ness,it su�ces to show that for all framesF, if F j= PTh(K) then F 2 K.

SupposeF j= PTh(K). For every point w 2 W, whereW is the domain of F,
introduce a nominal i w , and let V be the natural valuation with V(i w) = f wg.
Let � F consist of all pure formulas of the form @i w ' true in the model (F; V).
Intuitiv ely, � F providesa full descriptionof the frameF. Clearly, � F is satis�able
on F, namely under the valuation V.

Claim 1: � F is satis�able on K.

Pro of of claim: By compactness(recall that K is elementary), it su�ces to
show that every �nite conjunction � of elements of � F is satis�able on K.
But this follows immediately: � is satis�able on F and F j= PTh(K), hence
: � 62PTh(K), i.e., � is satis�able on K. a

Let (G; U) j= � F, with G 2 K. Since K is closedunder generatedsubframes,
we may assumethat G is generatedby the set of points that are named by a
nominal.

Claim 2: For all pure H(@)-formulas ' , (F; V) j= ' i� (G; U) j= ' . Equiva-
lently, ' is satis�ed at a point in (F; V) i� ' is satis�ed at a point in (G; U).

Pro of of claim: Suppose(F; V); w j= ' . Then (F; V) j= @i w ' . It follows
that @i w ' 2 � F, and hence(G; U) j= @i w ' .

Conversely, suppose(G; U); v j= ' . Since(G; U) is generatedby points named
by nominals, there is a nominal i and modalities 3 1; : : : ; 3 n 2 mod (n 2 ! )
such that (G; U) j= @i 3 1 � � � 3 n ' . It follows that (F; V) j= @i 3 1 � � � 3 n ' (for
if not, then @i 2 1 � � � 2 n : ' 2 � F). a
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Let (F� ; V � ) and (G� ; U� ) be ! -saturatedelementary extensions.By elementarit y,
G� 2 K. In what follows, we will construct a bisimulation systemfrom G� to F� .
Fix any w1; : : : ; wn 2 F� , and pick correspondingnewnominalsj 1; : : : ; j n . Wewill
write (F� ; V � ; w1; : : : ; wn ) for the expansionof (F� ; V � ) in which j 1; : : : ; j n denote
w1; : : : ; wn , respectively.

Claim 3: There are v1; : : : ; vn 2 G� such that the models(F� ; V � ; w1; : : : ; wn )
and (G� ; U� ; v1; : : : ; vn ) globally satisfy exactly the samepure H(@)-formulas
of the extendedlanguage(i.e., including nominals j 1; : : : ; j n ).

Pro of of claim: Let � be the following set of �rst-order formulas:

f 8x:STx (' ) j (F� ; V � ; w1; : : : ; wn ) j= ' g [
f:8 x:STx (' ) j (F� ; V � ; w1; : : : ; wn ) 6j= ' g

It is our task to show that � is satis�ed in some expansion of (G� ; U� ).
Since (G� ; U� ) is ! -saturated, it su�ces to show that � is �nitely realiz-
able, in the sensethat for all ' 1; : : : ; ' m 2 �, there are v1; : : : ; vn such that
(G� ; U� ; v1; : : : ; vn ) satis�es ' 1; : : : ; ' m .

Take any ' 1; : : : ; ' m 2 �. By de�nition, (F� ; V � ; w1; : : : ; wn ) satis�es
' 1; : : : ; ' m . Since (F; V) is an elementary submodel of (F� ; V � ), there
are w0

1; : : : ; w0
n such that (F; V; w0

1; : : : ; w0
n ) satis�es ' 1; : : : ; ' m . Recall that

w0
1; : : : ; w0

n are namedby the nominals i w0
1
; : : : ; i w0

n
. Hence,for all formulas ' ,

we have that (F; V; w0
1; : : : ; w0

n ) j= ' i� (F; V) j= ' [j 1=iw0
1
; : : : ; j n=iw0

n
]. Let

v1; : : : ; vn be the denotation of the nominals i w0
1
; : : : ; i w0

n
in the model (G; U).

By claim 2, (F; V) j= ' [j 1=iw0
1
; : : : ; j n=iw0

n
] i� (G; U) j= ' [j 1=iw0

1
; : : : ; j n=iw0

n
].

It follows that (F; V; w1; : : : ; wn ) j= ' i i� (G; U; v1; : : : ; vn ) j= ' i , for all
1 � i � m. Hence,(G; V; v1; : : : ; vn ) satis�es ' 1; : : : ; ' m . a

De�ne the binary relation Z betweenthe domainsof G� and F� such that sZt i�
(G� ; U� ; v1; : : : ; vn ); s and (F� ; V � ; w1; : : : ; wn ); t agreeon all pure H(@)-formulas
of the extendedlanguage.

Claim 4: Z is a total bisimulation betweenG� and F� respecting w1; : : : ; wn .

Pro of of claim: By Theorem 4.1.2, Z is a bisimulation betweenG� and F� .
To seethat Z is a total bisimulation, take any s 2 G� , and let � = f STx (' ) j
(G� ; U� ; v1; : : : ; vn ); s j= ' g. It follows from Claim 3 that every �nite subset
of � is realized in (F� ; V � ; w1; : : : ; wn ). Hence,by ! -saturatedness,there is a
point t such that (F� ; V � ; w1; : : : ; wn ); t j= �, and therefore sZt. The other
direction (i.e., 8s 2 F� 9t 2 G� s.t. tZ s) is proved symmetrically. Finally, that
Z respectsw1; : : : ; wn is immediate from the construction. a

We have constructed a bisimulation system from G� to F� . By closure under
imagesof bisimulation systems,F� 2 K and hence,by elementarit y, F 2 K. 2
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4.4.2. Cor ollar y. An frame classis de�nable by a pure H(E) formula i� it is
elementaryand closed under bisimulation systems.

Pro of: The global modality is de�nable by a pure H(@)-formula, namely the
formula Ei . Hence,a frameclassK is de�nable by a pureH(E)-formula i� the class
K0 = f (W; (R3 )3 2 mod; RE) j (W; (R3 )3 2 mod) 2 K and RE = W 2g is de�nable by a
pure H(@)-formula. K0 is clearly closedunder generatedsubframes.Furthermore,
onecan easilyseethat K0 is closedunder imagesof bisimulation systemsi� K is.
The result follows. 2

As before,the caseof H is slightly more complicated.

4.4.3. Lemma. Let K be a classof frames, and let PThH (K) and PThH (@)(K)
be the set of pure H-formulas and pure H(@)-formulas, respectively, valid on K,
and let PThnb

H (K) be the set of nominal-bounded pure H-formulas valid on K.
For all point-generated frames Fw , Fw j= PThH (@)(K) i� Fw j= PThH (K) i�
Fw j= PThnb

H (K).

Pro of: Analogousto the proof of Lemma 4.3.3. 2

4.4.4. Theorem. An frame class K is de�nable by a pure H-formula i� K is
elementaryand the following closure conditions hold.

1. K is closed under imagesof bisimulation systems.

2. K is closed under generated subframes.

3. For any frameF, if everypoint generated subframeof F is a proper generated
subframe of a frame in K, then F 2 K.

Pro of: Let PTh(K) be the setof pure H-formulasvalid on K. . By compactness,
it su�ces to show that for all framesF, if F j= PTh(K) then F 2 K.

Suppose F j= PTh(K). If F is point-generated, then by Lemma 4.4.3, in
combination with Theorem 4.4.1, F 2 K, and we are done. In the remainder
of this proof, we will assumethat F is not point-generated. Take any point-
generatedsubframeFw = (W; (R3 )3 2 mod) of F. In what follows, we will show
that (Fw ] Fw) 2 K. It then follows by the third closurecondition that F 2 K.

For every point w 2 W, introduce a nominal i w . Furthermore, introduce a
distinct nominal i ; . Let V be any valuation for F such that V(i w) = f wg and
V(i ; ) = f vg for somev not reachable from w in any �nite number of steps. Let
� Fw consistof all pure H-formulas true at (F; V); w.

Claim 1: � Fw is satis�able on K.
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Pro of of claim: By compactness(recall that K is elementary), it su�ces to
show that every �nite conjunction � of elements of � Fw is satis�able on K.
But this follows immediately: � is satis�able on F and F j= PTh(K), hence
: � 62PTh(K), i.e., � is satis�able on K. a

Let (G; U); v j= � Fw , with G 2 K. Let Gv be the subframeof G generatedby v.
By construction, Gv is a proper generatedsubframeof G. Hence,by the third
closurecondition, (Gv ] Gv) 2 K.

By construction, all nominalsexcepti ; denotea point in (G; U) that is reach-
ablefrom v. Hencewecanthink of U asa valuation for the frameGv by removing
i ; from our vocabulary. Similarly, we can conceive of V as a valuation for the
frame Fw by removing i ; from our vocabulary. In this way, we obtain point-
generatedmodel (Gv; U) and (Fw ; V ) such that for every pure H-formula ' not
containing the nominal i ; , (Fw ; V ); w j= ' i� (Gv; U); v j= ' .

Claim 2: For all H -formulas ' , (Fw ; V ) j= ' i� (Gv; U) j= ' . Equivalently, '
is satis�ed at a point in (Fw ; V ) i� ' is satis�ed at a point in (Gv; U).

Pro of of claim: Suppose(Fw ; V ); u j= ' . SinceFw is generatedby w, there
are 3 1; : : : ; 3 n 2 mod such that (Fw ; V ); w j= 3 1 � � � 3 n ' . It follows that
(Gw ; V ); w j= 3 1 � � � 3 n ' , and hencethere is a point in (Gv; V ) satisfying ' .
The conversedirection is proved similarly. a

Let (F�
w ; V � ) and (G�

v; U� ) be ! -saturated elementary extensions. In what
follows, we will construct a bisimulation system from G�

v to F�
w . Fix any

w1; : : : ; wn 2 F�
w , and pick corresponding new nominals j 1; : : : ; j n . We will

write (F�
w ; V � ; w1; : : : ; wn ) for the expansionof (F�

w ; V � ) in which j 1; : : : ; j n de-
note w1; : : : ; wn , respectively.

Claim 3: There arev1; : : : ; vn 2 G�
w such that the models(F�

w ; V � ; w1; : : : ; wn )
and (G�

w ; U� ; v1; : : : ; vn ) globally satisfy exactly the samepure H-formulas of
the extendedlanguage(i.e., including nominals j 1; : : : ; j n but not i ; ).

Pro of of claim: Analogousto Claim 3 in the proof of Theorem4.4.1. a

De�ne the binary relation Z betweenthe domainsof G�
v and F�

w such that sZt
i� (G�

v; U� ; v1; : : : ; vn ); s and (F�
w ; V � ; w1; : : : ; wn ); t agreeon all pure H-formulas

of the extended language. Then Z is a total bisimulation between G�
w and F�

w
respecting w1; : : : ; wn (the proof is analogousto that of Claim 4 in the proof of
Theorem4.4.1).

Hence,we have constructeda bisimulation systemfrom G�
w to F�

w . It follows
by Lemma4.2.15that there is a bisimulation systemfrom (G�

w ] G�
w) to (F�

w ] F�
w).

By Lemma 4.2.14, (G�
w ] G�

w) is elementarily equivalent to (Gw ] Gw), which, as
we saw earlier, is in K. We concludethat (Fw ] Fw) 2 K. 2
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For nominal boundedH-formulas, we again obtain a simpler result.

4.4.5. Theorem. An elementary frame classK is de�nable by a pure nominal
bounded H-formula i� K is closed under imagesof bisimulation systemsand gen-
erated subframesand K reects point-generated subframes.

Pro of: Let PTh(K) be the set of nominal bounded H-formulas valid on K,
and supposeF j= PTh(K). By preservation under generatedsubframes,Fw j=
PTh(K) for all point-generatedsubframesFw of F. It follows from Lemma 4.4.3
and Theorem4.4.1that Fw 2 K for all point-generatedsubframesFw of F. Since
K reects point-generatedsubframes,we concludethat F 2 K.

Hence,PTh(K) de�nesK. By compactnessand the fact that every conjunction
of nominal boundedH-formulas is nominal bounded,it follows that K is de�ned
by a singlenominal boundedH-formula. 2

We end this sectionwith an open question.2

4.4.6. Question. How do ultra�lter morphisms and bisimulation systemsre-
late? It follows from the above results that whenever an elementary frame class
is closedunder imagesof bisimulation systems,it is also closedunder ultra�lter
morphic images. Is there a more direct proof of this fact, and does it hold also
for non-elementary frame classes?

2Ian Hodkinson (p.c.) has found an interesting partial answer to this question. For frames
F; G, let us say that G is a pseudo-bisimulationimage of F if there exist elementary extensions
F+ and G+ , and a total bisimulation Z betweenF+ and G+ that respects the domain of G.

By compactnessor ultrap owers,every bisimulation systemimageis alsoa pseudo-bisimulation
image. Furthermore, that all pure H(E)-formulas are preserved under pseudo-bisimulation
images: let G be a pseudo-bisimulation image of F and assumefor contradiction that F j= '
and G 6j= ' , for somepure H(E)-formula ' . V is also a valuation for G+ , and, sinceG � G+ ,
we have that G+ ; V; w 6j= ' . Let G; V; w 6j= ' , and let Z be a bisimulation betweenelementary
extensionsF+ and G+ respecting the domain of G. We can \pull back" V and w along Z to
obtain a valuation U for F+ and a world w0, such that F+ ; U; w0 6j= ' . Hence,F+ 6j= ' , and it
follows by elementarit y that F 6j= ' , a contradiction.

It follows that all results in the present section could have be phrased in terms of pseudo-
bisimulation images.

Next, it can be shown that every ultra�lter morphic image is also a pseudo-bisimulation
image. For supposef : F ! ueG is a surjective bounded morphism such that jf � 1(u)j = 1 for
all principal u. By [21, Theorem 3.17], ueG is a bounded morphic image of someelementary
extension G+ of G. Let g : G+ ! ueG be the relevant surjective bounded morphism. It is
easily checked that for each principal ultra�lter g� 1(� w ) = f wg for each principal ultra�lter
� w . Finally, de�ne a binary relation Z between the domains of F and G+ by letting xZ y
i� f (x) = g(y). Then Z is a total bisimulation respecting the domain of G. Hence (taking
F = F+ ), G is a pseudo-bisimulation image of F.



66 Chapter4. Expressivity andde�nability

4.5 Which classesde�nable in hybrid logic are elementary?
In the previous sections,we characterizedthe elementary frame classesthat are
de�nable in hybrid logic. In the present section, we ask the conversequestion:
which frame classesde�nable in hybrid logic are elementary?

First, let us take the model theoretic perspective. Recall from Section2.3 that
a modally de�nable frame class is elementary i� it is closedunder elementary
equivalencei� it is closedunder ultrapowers. One might ask whether this also
holds for frame classesde�nable in our hybrid languages.The answer is No.

4.5.1. Pr oposition. There is a frame class K de�nable in H such that K is
closed under elementary equivalence (and hence under ultrapowers) while K is
not � -elementary(i.e., de�ned by a set of �rst-or der formulas).

Pro of: Considerthe classK of bi-modal framesconsistingthe �nite strict total
orderings, with < and > relations. This class is de�ned by the following H-
formulas.

p ! (GPp ^ H F p) \ < and > are each others converse"
G(Gp ! p) ! Gp \ < is transitiv e and converselywell-founded"
H (H p ! p) ! H p \ > is transitiv e and converselywell-founded"
i _ F i _ Pi \ < satis�es trichotomy"

SinceK consistsonly of �nite frames,it is clearly closedunder elementary equiv-
alence. Nevertheless,K is not �-elemen tary, as a simple compactnessargument
establishes. 2

Incidentally, the standard proof of Theorem 2.3.6 still applies to frame classes
de�nably by bounded H formulas, since these classesare closedunder taking
disjoint unions and generatedsubframes. Also, since the hybrid languagesH,
H(@) and H(E) are all fragments of universal secondorder logic (on Kripk e
frames),we still have that whenever a de�nable frame classis �-elemen tary (i.e.,
de�ned by a set of �rst-order sentences),it is elementary.

Next, let us considerthe syntactic approach to characterizing the elementary
classes.Clearly, we cannot expect a complete syntactic characterization of the
elementary frame conditions. However, there are natural ways to extend the
Sahlqvist-Van Benthem correspondencetheorem to hybrid languages.Here, we
will give a versionfor the languageH.

Call an H-formula ' positive (negative) if every occurrenceof a proposition
letter in ' occurspositively (negatively). Note that no requirements are madeon
the nominals. Let a boxed atom be a proposition letter pre�xed by any number
of boxes. A hybrid Sahlqvist antecedent is a formula built up from > , ? , boxed
atoms and negative formulas using ^ , _ and diamonds. A hybrid Sahlqvist im-
plication is an implication ' !  in which  is positive and ' is a hybrid
Sahlqvist antecedent. A hybrid Sahlqvist formula is a formula that is built up
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from Sahlqvist implications by freely applying boxes and conjunctions and by
applying disjunctions only between formulas that do not shareany proposition
letters.

In fact, the only di�erence betweenmodal and hybrid Sahlqvistaxiomsis that
in the latter, nominalsare allowed throughout the formula.

4.5.2. Theorem. Every hybrid Sahlqvistformula de�nes an elementaryclassof
frames.

Pro of: The proof for modal logic given in [21] generalizesstraightforwardly to
the hybrid case.However, sincethe proof is rather tedious,wewill givea separate
argument.

Let ' be any hybrid Sahlqvist formula. De�ne ' 0 to be the result of replacing
in ' every nominal i by a new modal constant (i.e., nullary modality) � i , which
is temporarily added to the language. Then it is easily seenthat ' 0 is a modal
Sahlqvist formula of the extended language,and hencecorresponds to a �rst-
order frame condition, say � . Replacein � all subformulas of the form R � i x by
x = yi , whereyi is a new �rst-order variable picked for the nominal i , and let � 0

be the universalclosureof the resulting �rst-order formula. Then � 0 is easilyseen
to de�ne the sameclassof framesas the original formula ' . 2

In particular, every pure formula, being positive in all proposition letters, is
equivalent to a hybrid Sahlqvist formula > ! ' , henceelementary. Further
generalizationsof the classof hybrid Sahlqvist formulas are possible,and have
beendescribed by Goranko and Sahlqvist [59].3

In contrast to the above, the completenesstheorem for Sahlqvist formulas,
Corollary 2.4.6, doesnot generalizeto hybrid Sahlqvist formulasasde�ned above,
as we will seein the next chapter (cf. Theorem5.4.3).

Incidentally, observe how, in the above proof, we reducedhybrid formulas to
modal formulas by replacing nominals by modal constants. Similar reductions
will be usedin the next chapter to derive hybrid completenessresults from modal
completenessresuls.

3One relatively simple extension the classof hybrid Sahlqvist formulas, pointed out to me
by Goranko (p.c.), is obtained by generalizing the notion of a boxed atom to formulas of the
form

2 1(' 1 ! 2 2(' 2 ! : : : 2 n (' n ! p) : : :))

where each ' i is negative in all proposition letters, and further requiring that no head of such
a \generalized boxed atom" of the Sahlqvist formula (the head being the proposition letter p
in the above formula) occurs in the body of a generalizedbox-formula.
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Axiomatizations and completeness

One of the most important results in modal logic is the Sahlqvist completeness
theorem. From the model theoretic perspective that we take in this dissertation,
this result is best summarizedas follows.

If a frame classK is de�nable by a set of modal Sahlqvist formulas,
then the modal logic of K (i.e., the set of modal formulas valid on
K) is completely axiomatized by adding theseSahlqvist formulas as
axiomsto the basicmodal logic K M .

While this result coversmany interesting frame classes,there are natural proper-
ties such asirreexivit y cannot be de�ned by modal formulas. Oneof the reasons
why hybrid logics have becomepopular is that there is a generalcompleteness
result for hybrid logicsthat appliesto many frame classesnot de�nable by modal
Sahlqvist formulas. Recall that a hybrid formula is pure if it contains no propo-
sition letters (but possibly contains nominals). The following analogueof the
Sahlqvist completenesstheoremcan be obtained for hybrid logics.1

If a frame classK is de�nable by a set of pure hybrid formulas, then
the hybrid logic of K is completelyaxiomatizedby adding the relevant
formulas as axiomsto the basichybrid logic.

For the hybrid languageH, this fact, viz. the completenessof logicsaxiomatized
by pure formulas, was already observed in the 1980sby Gargov et al. [47].

Besides this, we still have that all hybrid logics axiomatized by modal
Sahlqvist formulas are complete:

If a frame classK is de�nable by a set of modal Sahlqvist formulas,
then the hybrid logic of K is completely axiomatized by adding the
relevant formulas as axiomsto the basichybrid logic.

1This result appliesto any of the languagesH, H(@)and H(E). A preciseformulation will be
given later on, after the basic axioms and rules for the hybrid languageshave beenintro duced.

69
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This wasobserved for H(E) by Gargov and Goranko [46]. As we will show in this
chapter, it alsoholds for H and H(@).

In this chapter, we will prove the following new results. We will show in this
chapter that there is a pure formula ' and a modal Sahlqvist formula  such
that the logic obtained by adding ' and  as axiomsto the basichybrid logic is
incomplete. Secondly, we will show that every axiomatization of the basichybrid
logic of which all extensionswith pure formulas are completemust contain either
inferencerules with syntactic sideconditions, or in�nitely many in�nite rules.

A �nal contribution of this chapter is in the development of a theory of general
framesfor hybrid logics. Two-sortedgeneralframe are introduced and studied,
and it is shown how the existing completenessproofs for hybrid logics can be
recastin terms of completenessand persistencearguments with respect to classes
of two-sortedgeneralframes.

Someof the results reported in this chapter are taken from [19, 30].

5.1 The axiomatizations
For each of the hybrid languagesH, H(@) and H(E), we will now give two basic
axiomatizations. The di�erence betweenthesetwo axiomatizationslies each time
in the addition of two inferencerules.

5.1.1. Definition. For any set of H-formulas � , K H � is the smallest set con-
taining all axioms in Table5.1 and � closed under the rules in Table5.1, except
for the (Name) and (Paste) rule. K +

H � is de�ned similarly, closing in addition
under the (Name) and (Paste) rules.

5.1.2. Definition. For any set of H(@)-formulas � , K H (@)� is the smallest set
containing all axioms in Table 5.2 and � closed under the rules in Table 5.2,
except for the (Name@) and (BG ) rule. K +

H (@)� is de�ned similarly, closing in
addition under the (Name) and (BG ) rule.

5.1.3. Definition. For any set of H(E)-formulas � , K H (E) � is the smallest set
containing all axioms in Table 5.3 and � closed under the rules in Table 5.3,
except for the (Name) and (BGE ) rules. K +

H (E) � is de�ned similarly, closing in
addition under the (Name) and (BGE ) rules.

It should be clear to the reader that all basic axioms are sound, and that all
inferencerules preserve validit y with respect to any classof frames.

One note is in order concerningthe (NameLite) rule. This rule is peculiar, in
that it is admissiblein every consistent logic K H �. The only role of (NameLite)
is to render logics that derive : i , for some nominal i , inconsistent, reecting
the fact that : i is not valid on any frame. As is not hard to see,without the
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Table 5.1: Axioms and inferencerules of K H

Axioms and inferencerules of K H

(CT ) ` ' , for all classicaltautologies '
(Dual ) ` 3 p $ : 2 : p, for 2 2 mod
(K ) ` 2 (p ! q) ! 2 p ! 2 q, for 2 2 mod
(Nom) ` 3 1 � � � 3 n (i ^ p) ! 2 n+1 � � � 2 n+ m (i ! p),

for 2 1; : : : ; 2 n+ m 2 mod (n; m � 0)
(MP ) If ` ' !  and ` ' then `  
(Nec) If ` ' then ` 2 ' , for 2 2 mod
(Subst) If ` ' then ` '� , where � is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals.
(NameLite ) If ` : i then ` ?

Additional inferencerules of K +
H

(Name) If ` i ! ' then ` ' , for i not occurring in '
(Paste) If ` 3 1 : : : 3 n (i ^ 3 n+1 (j ^ ' )) !  then ` 3 1 � � � 3 n (i ^ 3 n+1 ' ) !  ,

for 3 1; : : : ; 3 n+1 2 mod (n � 0), j 6= i and j not occurring in ';  

Table 5.2: Axioms and rules of K H (@)

Axioms and inferencerules of K H (@)

(CT ) ` ' , for all classicaltautologies '
(Dual ) ` 3 p $ : 2 : p, for 2 2 mod
(K ) ` 2 (p ! q) ! 2 p ! 2 q, for 2 2 mod
(K@) ` @i (p ! q) ! @i p ! @i q for i 2 nom
(Selfdual) ` : @i p $ @i : p
(Ref) ` @i i
(Intr o ) ` i ^ p ! @i p
(Back) ` 3 @i p ! @i p, for 2 2 mod
(Agree) ` @i @j p ! @j p
(MP ) If ` ' !  and ` ' then `  
(Nec) If ` ' then ` 2 ' , for 2 2 mod
(Nec@) If ` ' then ` @i ' , for i 2 nom
(Subst) If ` ' then ` '� , where � is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals.

Additional inferencerules of K +
H (@)

(Name@) If ` @i ' then ` ' , for i not occurring in ' .
(BG ) If ` @i 3 j ! @j ' then ` @i 2 ' , for i 6= j and j not occurring in ' .
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Table 5.3: Axioms and rules of K H (E)

Axioms and inferencerules of K H (E)

(CT ) ` ' , for all classicaltautologies '
(Dual ) ` 3 p $ : 2 : p, for 2 2 mod
(K ) ` 2 (p ! q) ! 2 p ! 2 q, for 2 2 mod
(DualA ) ` Ep $ : A: p
(KA ) ` A(p ! q) ! Ap ! Aq
(RefE ) ` p ! Ep
(TransE ) ` EEp ! Ep
(SymE ) ` p ! AEp
(Incl3 ) ` 3 p ! Ep, for 3 2 mod
(Incl i ) ` Ei
(NomE ) ` E(i ^ p) ! A(i ! p)
(MP ) If ` ' !  and ` ' then `  
(Nec) If ` ' then ` 2 ' , for 2 2 mod
(NecA ) If ` ' then ` A'
(Subst) If ` ' then ` '� , where � is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals.

Additional inferencerules of K +
H (E)

(Name) If ` i ! ' then ` ' , for i not occurring in ' .
(BGE ) If ` E(i ^ 3 j ) ! E(j ^ ' ) then ` E(i ^ 2 ' ),

for i 6= j and j not occurring in ' .
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(NameLite) rule, K H f: ig would be a consistent logic. Incidentally, (NameLite)
is a special caseof the (Name) rule.

Another, perhapsmore elegant axiomatization for H wasgiven by [47], based
on the notion of necessity forms and possibility forms [51]. For a �xed symbol $,
necessity forms are de�ned as follows.

1. $ is a necessity form.

2. If ' is a necessity form and  is an H-formula, then  ! ' is a necessity
form.

3. If ' is a necessity form and 2 2 mod then 2 ' is a necessity form.

Possibility formsarede�ned similarly, replacingimplications by conjunctionsand
boxes by diamonds. Given a possibility form M and a formula  , M ( ) will
denote the result of replacing the unique occurenceof $ in M by  . Likewise
for necessity forms. Now, the (Nom) axiom schemeand the (Paste) rule may be
replacedby the following:

(Nom0) ` M (i ^ ' ) ! L(i ! ' )
whereM ($) is a possibility form and L($) is a necessity form

(Cov) If ` L(: i ) then ` L(? ),
whereL($) a necessity form not containing the nominal i

It is not hard to seethat (Nom) and (Nom0) are interderivable, as well as the
rules (Paste) and (Cov). Moreover, (NameLite) can be seenas the simplest
possibleinstanceof (Cov).

In what follows we will stick to the axiomatization given in Table 5.1.

5.2 General frames for hybrid logic
Recallthe de�nition of generalframesin Section2.4. In the setting of hybrid logic,
it seemsmost natural to considergeneralframeswith two sortsof admissiblesets,
onefor arbitrary formulasand onefor nominals. The secondis naturally included
in the �rst. This is reected in the following de�nition.

5.2.1. Definition. A two-sorted general frame is a structure F =
(W; (R3 )3 2 mod ; A; B), where (W; (R3 )3 2 mod; A) is a general frame, B � W is
non-emptyand for all w 2 B, f wg 2 A.

Admissible valuations and validit y are de�ned in the expectedway: proposition
letters denotesetsin A and nominalsdenotepoints in B. Sincethe set B is only
usedfor the interpretation of the nominals,De�nition 5.2.1collapsesto the more
traditional one for modal logic, except for one small but important di�erence.
The non-emptinesscondition on B implies that A contains at least onesingleton.
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There are generalframes that do not contain any singleton admissibleset. We
might call such generalframesatomless.2 Atomlessgeneralframestrivialize the
notion of validit y for hybrid logic, sincethey admit no hybrid valuations. In par-
ticular, the hybrid formula ? is valid on atomlessframes,since,trivially , it holds
under every hybrid valuation. Surprisingly, there exist consistent normal modal
logics that have only atomlessgeneralframes[99]. This has someconsequences
for hybrid logic, as we will seelater in Corollary 5.3.4.

Descriptive two-sorted general frames

Recall from Section 2.4 that every modal logic is strongly sound and complete
with respect to a class of descriptive general frames [21]. In order to obtain
a similar result to hybrid logics, we generalizethe notion of descriptivenessto
two-sortedgeneralframes.

5.2.2. Definition. A two-sorted general frame(W; (R3 )3 2 mod ; A; B) is descrip-
tive if (W; (R3 )3 2 mod; A) is descriptivein the traditional sense.

Call a formula d2-persistent if its validit y is preserved under the passagefrom
a descriptive two-sorted general frame to the underlying Kripk e frame. One
would like to know which formulas are d2-persistent. Let us �rst considermodal
formulas. Clearly, every d-persistent modal formula (i.e., modal formula that is
persistent with respect to descriptive generalframes,asde�ned in Section2.4) is
d2-persistent. The conversedoesnot hold: [99] showsthe existenceof a consistent
modal formula that only hasatomlessgeneralframes. It follows that this formula
is not d-persistent (every Kripk e frame hasatoms) but that it is d2-persistent (it
hasno two-sortedgeneralframes).

Next, let usconsiderhybrid formulas. Nominalsenhancethe expressive power
of the languagenot only on the level of Kripk e frame but alsoon the level of de-
scriptive two-sortedgeneralframes. The simplestexampleis the formula i , which
de�nes the classof two-sortedgeneralframesthat have exactly one world. This
formula is clearly d2-persistent. For another example,considerthe conjunction
' of p ! 3 (i ^ 3 p) and 33 q ! 3 q. Both with respect to descriptive two-sorted
generalframesand with respect to Kripk e frames,' expressesthat the accessibil-
it y relation R3 is the universalrelation on the domain. Hence,' is d2-persistent.
Sincevalidit y of ' is not preserved under taking disjoint unions, ' is not equiv-
alent (on Kripk e framesor on descriptive two-sortedgeneralframes) to a modal
formula.

2Note that this terminology is a bit misleading: even if a general frame is atomless, the
corresponding Boolean algebra with operators might still contain atoms (in the usual algebraic
sense),and might even be atomic.
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Strongly descriptive general frames

While we saw somed2-persistent hybrid formulas thesecasesare rather excep-
tional. In general,very few formulas involving nominals are d2-persistent. This
suggeststhat we look for another, more restricted type of generalframes. There
is another reasonto restrict the classof generalframesunder consideration: the
additional inferencerules of K +

H �, K +
H (@)� and K +

H (E) � do not preserve validit y
with respect to descriptive two-sortedgeneralframes,in general.

5.2.3. Definition. A two-sorted general frame(W; (R3 )3 2 mod ; A; B) is strongly
descriptive if it is descriptiveand it satis�es the following further conditions:

(i) For all X 2 A, if X 6= ; then X \ B 6= ; .

(ii) For all X 2 A and w 2 B, if f v 2 X j wRvg 6= ; then f v 2 X j wRvg\ B 6=
; .

Note that in strongly descriptive two-sortedgeneralframe, we have that w 2 B
i� f wg 2 A. For this reason,when talking about strongly descriptive two-sorted
generalframes,we may leave out the quali�cation `two-sorted'. The secondsort
B is already implicitly given by the underlying generalframe.

5.2.4. Remark. From an algebraic perspective (cf. [21, Chapter 5]), strongly
descriptive general frames correspond to Boolean algebraswith operators that
satisfy the following additional requirements:

1. For every element a 6= ? of the algebra,there is an atom i such that i � a.

2. For every element a of the algebra and for every atom i , if i � 3 a, then
there is an atom j such that j � a and i � 3 j .

The �rst condition is known asatomicity, and the secondcondition is equivalent
to completeadditivity, provided that the Booleanalgebrais atomic. It is an easy
exerciseto show that whenever F is strongly descriptive, then the corresponding
algebra F� satis�es these two conditions, and conversely, whenever a Boolean
algebra with operators A satis�es these two conditions, the general ultra�lter
frame A � is strongly descriptive.

Call a formula sd-persistent if its validit y is preserved under the passagefrom
strongly descriptivegeneralframesto the underlying Kripk e frame. Clearly, every
d2-persistent formula is sd-persistent. However, many hybrid formulas that are
not d2-persistent are sd-persistent. Consider for instance the H-formula i !
3 i . This formula is easily seennot to be d2-persistent. Neverthelessit is sd-
persistent: Supposea strongly descriptive generalframe is not reexiv e. Then,
by d-persistence,p ! 3 p can be falsi�ed on it, i.e., there is a valuation V such
that p ^ : 3 p is satis�able under V. By strong descriptiveness,V(p) contains an
element of B, say w. It follows that i ^ : 3 i is satis�able under any valuation that
sendsi to f wg.
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Discrete general frames

The last classof two-sorted generalframes that we will consideris the classof
discrete two-sortedgeneralframes.

5.2.5. Definition. A two-sorted general frame(W; (R3 )3 2 mod; A; B) is discrete
if B = W.

As was the casewith strongly descriptive two-sorted general frames, discrete
two-sortedgeneralframesare not really two-sorted: sinceB = W, the admissible
valuations for the nominalsare already implicit in the underlying generalframe.
Hence,we will simply refer to thesestructures as discrete general frames.

An important sourceof discretegeneralframesis the following.

5.2.6. Definition. Given a strongly descriptive two-sorted general frame F =
(W; (R3 )3 2 mod ; A; B), let dsfF = (B; (R3 \ (B � B))3 2 mod; f X \ B j X 2 Ag; B).

The notation dsf stands for discrete subframe, a name that is justi�ed by the
following proposition.

5.2.7. Pr oposition. For all strongly descriptive two-sorted general frames F,
dsfF is a discrete two-sorted general frame.

Pro of: Let F = (W; (R3 )3 2 mod ; A; B) be any strongly descriptive two-sortedgen-
eral frame. It is clear from the de�nition that dsfF is discrete. It remains to be
shown that the set of admissiblesetsis closedunder the Booleanoperationsand
under the operations corresponding to the modalities.

. Complement
SupposeY 2 f X \ B j X 2 Ag. Let X 2 A be such that Y = X \ B. Then
BnY = (WnX ) \ B, and hence,sinceWnX 2 A, it follows that BnY 2 f X \ B j
X 2 Ag.

. Intersection
SupposeY1; Y2 2 f X \ B j X 2 Ag. Let X 1; X 2 2 A be such that Y1 = X 1 \ B
and Y2 = X 2 \ B. Then Y1 \ Y2 = X 1 \ X 2 \ B, and hence,sinceX 1 \ X 2 2 A, it
follows that Y1 \ Y2 2 f X \ B j X 2 Ag.

. Modalities
SupposeY 2 f X \ B j X 2 Ag, and let 3 Y = f w 2 B j 9v 2 Y such that wR3 vg.
Let X 2 A be such that X \ B = Y, and let 3 X = f w 2 W j 9v 2 X such that
wR3 vg. We claim that 3 Y = 3 X \ B, and hence3 Y 2 f X \ B j X 2 Ag.

[� ] Supposew 2 3 Y. SinceY � X , it follows by monotonicity that w 2 3 X .
Furthermore, since3 Y � B, we have that w 2 3 X \ B.

[� ] Supposew 2 3 X \ B. Then there is a v 2 X such that wR3 v. It follows
by the strong descriptivenessof F that there is a v 2 X \ B = Y such that wR3 v.
Hence,w 2 3 Y. 2
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5.2.8. Pr oposition. For all strongly descriptive two-sorted general frames F
and H(E)-formulas ' , F j= ' i� dsfF j= ' .

) : We proceedby contraposition. Let F = (W; (R3 )3 2 mod ; A; B) be a strongly
descriptive two-sortedgeneralframe, and suppose(dsfF; V); v 6j= ' for somead-
missible valuation V and world v 2 B. Let V 0 be any admissiblevaluation for
F such that V(p) = V 0(p) \ B for p 2 pr op and V(i ) = V 0(i ) for i 2 nom. It
is clear from the de�nition of dsfF that such valuations exist. A straightforward
inductive argument establishesthat for all H (E) formulas  , (F; V 0); v j=  i�
(dsfF; V); v j=  (the only non-trivial step in the induction argument concerns
formulas of the form 3 ' , and herewe usethe fact the F is strongly descriptive).
It follows that (F; V 0); v 6j= ' , and henceF 6j= ' .

[( ] Again, we proceedby contraposition. Let F = (W; (R3 )3 2 mod; A; B) be
a strongly descriptive two-sorted general frame, and suppose(F; V); w 6j= ' for
someadmissiblevaluation V and world w 2 W. It follows from the �rst clause
of De�nition 5.2.3that (F; V); v 6j= ' for somev 2 B. Let V 0 be the valuation for
dsfF given by V 0(p) = V(p) \ B for p 2 pr op and V 0(i ) = V(i ) for i 2 nom. It is
clear from the de�nition that V 0 is an admissiblevaluation for dsfF. Furthermore,
a straightforward induction argument shows that for all H (E)-formulas  and for
all worlds u 2 B, (F; V); u j= ' i� (dsfF; V 0); u j= ' (the only non-trivial step in
the induction argument concernsformulas of the form 3 ' , and here we usethe
fact that F is strongly descriptive). It follows that (dsfF; V 0); v 6j= ' , and hence
dsfF 6j= ' . 2

5.2.9. Remark. As pointed out by T. Litak (p.c.), it is also possibleto turn a
discrete two-sorted general frame into a strongly descriptive one. It su�ces to
observe that if F is a discrete two-sortedgeneralframe, then the corresponding
algebraF� is atomic and completely additive, hencethe generalultra�lter frame
(F� )� is strongly descriptive, cf. Remark 5.2.4. It can even be shown that for
strongly descriptive F, ((dsfF) � )� = F, and for discrete F, dsf((F� )� ) = F. This
shows that discretetwo-sortedgeneralframesand strongly descriptive two-sorted
generalframesare atomic and completely additive BAOs in two Gestalts. This
duality can be pursuedfurther, but we will not do so here.

Call a formula di-persistent if its validit y is preserved under the passagefrom
a discrete general frame to the underlying Kripk e frame. From Section 2.4 we
already know that every very simple modal Sahlqvist formula is di-persistent, as
well as every shallow modal formula.

The most important class of di-persistent formulas is formed by the pure
formulas, i.e., formulas that do not contain proposition letters, only nominals.
All pure formulas are di-persistent. Moreover, every di-persistent formula de�nes
the sameclassof discretegeneralframesas a pure formula.
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5.2.10. Theorem. Every pure H-formula is di-persistent. Conversely,everydi-
persistent H-formula de�nes the sameclassof discrete general framesas a pure
H-formula. The sameholdsfor the languagesH(@) and H(E).

Pro of: We will only prove the casefor the languageH. The �rst part of the
result is obvious. Next, suppose' is a di-persistent H-formula, and let � be the
setconsistingof all pure instantiations of ' , i.e., � = f ' � j � is a substitution that
mapsevery proposition letter to a pure formulag. Wewill show that � de�nes the
sameclassof discretegeneralframesas ' . It then follows by compactnessthat
' is equivalent on discrete generalframesto a �nite conjunction of elements of
� (note that compactnessmay be applied sincethe discretegeneralframesform
an elementary class).

Let F be any discretetwo-sortedgeneralframe. If F j= ' , then clearly, F j= �.
Conversely, supposeF j= �. Let G be the smallestdiscrete frame basedon the
underlying Kripk e frame of F. More precisely, let V be any valuation for F under
which every point in F is namedby a nominal, and let G be the discretegeneral
frame in which the admissiblesubsetsare precisely those de�nable under V by
meansof pure H formulas. Clearly, G j= ' . By di-persistence,we obtain that '
is valid on the underlying Kripk e frame of G (which is alsothe underlying Kripk e
frame of F), and hence,F j= ' . 2

In particular, it follows that every very simpleSahlqvist formula de�nes the same
classof Kripk e framesas a pure H-formula.

5.3 Completeness with respect to general frames
Wewill now provecompletenessof the axiomatizationsof H , H(@)and H(E) with
respect to the types of general frames introduced in the previous section. The
generalpattern will beasfollows: the axiomatizationswithout the extra inference
rules are completewith respect to descriptive two-sortedgeneralframes,whereas
the axiomatizations with the extra inferencerules are completewith respect to
strongly descriptive two-sortedgeneralframesand discretegeneralframes.

Recall that an axiomatization is sound for a classof semantic structures if
every derivable formula is semantically valid, completeif every semantically valid
formula is derivable, and strongly complete if whenever a set of formulas � is
semantically unsatis�able, there is a �nite conjunction  of elements of � such
that :  is derivable.

Finally, we say that a formula ' de�nes a classK of generalframesof some
type (e.g., descriptive) if for all generalframesF of the relevant type, F 2 K i�
F j= ' .

Descriptive two-sorted general frames

First, let us considerthe axiomatization K H and its extensions.
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5.3.1. Theorem. Let � be a set of H-formulas. K H � is sound and strongly
completefor the classof descriptivetwo-sorted general framesde�ned by � .

Pro of: We will only prove completeness.For the purposeof this proof, we will
temporarily adopt an alternative, purely modal semantics of the languageH,
by treating nominals as modal constants (i.e, nullary modalities). Let a non-
standard frame be a structure F = (W; (R3 )3 2 mod ; (Si ) i 2 nom), whereeach R3 is a
binary relation on W and each Si is a subsetof W, interpreting the nominal i .
Non-standardgeneralframesand non-standardmodelsare de�ned similarly.

Now, suppose � is a K H �-consistent set of H-formulas. Then by Theo-
rem 2.4.3, � is satis�able on a descriptive non-standard general frame F =
(W; (R3 )3 2 mod ; (Si ) i 2 nom; A) such that F j= K H �. 3 Without loss of generality,
we may assumethat F is point-generated.

Now recall that K H � contains the following axiom scheme.

(Nom) ` 3 1 � � � 3 n (i ^ p) ! 2 n+1 � � � 2 n+ m (i ! p)

Each instance of (Nom) is a Sahlqvist formula, and therefore d-persistent.4

Hence,each instance,being valid on F, is valid on its underlying (non-standard)
Kripk e frame. Using thesefacts, and consideringthe �rst-order correspondents
of the formulas involved, it is easily seenthat each jSi j � 1 for all i 2 nom (for,
if jSi j � 2 for somei 2 mod, then someinstanceof (Nom) could be falsi�ed at
the root of F).

We can now distinguish three cases:

1. jSi j = 1 for all i 2 nom. This is the simplest case. Let H be the (stan-
dard) two-sortedgeneralframe (W; (R3 )3 2 mod ; A; B), whereB =

S
i 2 nom Si .

Clearly, � is satis�able on H. It is also an easy exerciseto show (using
closureunder substitution) that H j= �. Finally, since descriptivenessis
preserved under taking reducts of general frames, H is a descriptive two-
sorted generalframe.

2. jSi j = 0 for somei 2 nom, but not for all.

Let j be a nominal such that Sj 6= ; . For i 2 nom, let S0
i = Sj if Si = ;

and S0
i = ; otherwise. Let F0 = (W; (R3 )3 2 mod ; (S0

i ) i 2 nom; A), and let G be
the disjoint union of F and F0.5 By construction, G is a descriptive general
non-standardH-frame. Furthermore, it is easily seenthat G j= K H �, and
that � is satis�able on G. Hence,we can proceedas in the �rst case.

3Actually , we use here a slightly more general version of Theorem 2.4.3, that applies to
languageswith modal constants (seefor instance [21])

4Here, by an instance, we mean a particular choce of modalities 3 1; : : : ; 3 n + m 2 mod
(n; m 2 ! ). Furthermore, we usehere the generalde�nition of Sahlqvist formulas given in [21],
which applies to multi-mo dal languageswith modalities that are not necessarilyunary.

5Disjoint unions of Kripk e frameswerede�ned on page10. The disjoint union of two general
frames, (F; A) ] (G; A0), is de�ned as (F ] G; A00), where A00= f X ] Y j X 2 A and Y 2 A0g).
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3. jSi j = 0 for all i 2 nom. By the rule (NameLite), and the fact that
K H � 6` ? , the formula i is consistent, and hencesatis�able on a point-
generateddescriptive non-standardH-frame G with G j= K H �. By closure
under disjoint union, F ] G j= K H �, and by bisimulation invariance, � is
satis�able on F ] G. Hence,we can proceedas in the secondcase. 2

It is important for this result that the logic includesthe inferencerule (NameLite).
In fact, there are modal formulas ' such that K H f ' g without this rule is not
complete for any classof descriptive frames. This follows from a more general
result. For � a set of H-formulas, de�ne K �

H � to be the axiomatization K H �
minus the (NameLite) rule. Then the following conservativit y result holds.

5.3.2. Pr oposition. For every set of modal formulas � and modal formula ' ,
K �

H � j= ' i� K M � j= ' .

Pro of: We will only prove the left-to-right direction, since the other direction
follows immediately from the fact that K �

H � extendsK M �. The proof will pro-
ceedby contraposition, and we will make useof the non-standardsemantics of H
introducedin the proof of Theorem5.3.1.

Suppose K M � 6j= ' . Then there is a descriptive general frame F =
(W; (R3 )3 2 mod ; A) with an admissible valuation V and a world w 2 W such
that F j= � and F; V; w 6j= ' . Let F0 be the non-standard general H -frame
(W; (R3 )3 2 mod ; (Si ) i 2 nom; A) whereSi = ; for all i 2 nom. It is easily seenthat
F0 j= K �

H � and F0 6j= ' . It follows that K �
H � 6j= ' . 2

5.3.3. Pr oposition. There is a modal formula ' suchthat K �
H f ' g is not com-

plete for any classof two-sorted general frames.

Pro of: From [99], we know that there is a modal formula ' such that the modal
logic K M f ' g is consistent, and such that every generalframe on which ' is valid
is atomless(i.e., has no singleton admissibles). It follows that there is no two-
sortedgeneralframe on which ' is valid (every two-sortedgeneralframe contains
an admissiblesingletonset). Hence,if K �

H f ' g would be completefor any classof
two-sortedgeneralframes, it would have to be inconsistent. However, it follows
from Proposition 5.3.2 that K �

H f ' g is consistent. 2

5.3.4. Cor ollar y. For � a set of modal formulas, K H � is in general not con-
servativeover K �

H � or K M � .

Next, let us considerthe languagesH(@) and H(E).

5.3.5. Theorem. Let � be a set of H(@)-formulas. K H (@)� is sound and
strongly complete for the class of descriptive two-sorted general frames de�ned
by � .
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Pro of: We will only prove completeness. For the purpose of this proof, we
will temporarily adopt an alternative, purely modal semantics of the lan-
guage H(@), by treating nominals as modal constants and satisfaction oper-
ators as unary modalities. Let a non-standard frame be a structure F =
(W; (R3 )3 2 mod ; (Ri ) i 2 nom; (Si ) i 2 nom), where each R3 is a binary relation on W,
each Ri is a binary relation on W interpreting the the satisfaction operator @i ,
and Si � W interprets the nominal i , taken as a modal constant. Non-standard
generalframe and non-standardmodelsare de�ned similarly.

Now, suppose � is a K H (@)�-consistent set of H(@)-formulas. Then by
Theorem 2.4.3, � is satis�able on a descriptive non-standard general frame
F = (W; (R3 )3 2 mod ; (Ri ) i 2 nom; (Si ) i 2 nom; A) such that F j= K H (@)�. Without
lossof generality, we may assumethat F is point-generated.

Recall that K H (@)� contains the distribution axiom for satisfactionoperators
(K@), the necessitationrule for satisfaction operators, and the following axiom
schemes.

@j @i p ! @i p 8xyz(Rj xy ^ Ri yz ! Ri xz)
3 @i p ! @i p 8xyz(R3 xy ^ Ri yz ! Ri xz)
i ^ p ! @i p 8x(Si x ! Ri xx)
@i i 8x9y(Ri xy ^ Si y)
@i p $ : @i : p 8xyz(Ri xy ^ Ri xz ! y = z)

Each of the axioms is in Sahlqvist form (taken as a modal formula). Their �rst-
order correspondents are indicated as well.6 By d-persistence,each of thesefor-
mulas is valid on the underlying (non-standard)Kripk e frameof F. Togetherwith
the fact that F is point-generated,this implies that jSi j = 1 and Ri = W � Si for
each i 2 nom.

Let F0 = (W; (R3 )3 2 mod ; A; B) with B =
S

i 2 nom Si . It is an easyexerciseto
show (using closureunder substitution) that F0 j= � and that � is satis�able on
F0. Finally, F0 is a descriptive two-sortedgeneralframe. 2

5.3.6. Theorem. Let � be a setof H(E)-formulas. K H (E) � is soundandstrongly
completefor the classof descriptivetwo-sorted general framesde�ned by � .

Pro of: We will only prove completeness.For the purposeof this proof, we will
temporarily adopt an alternative, purely modal semantics of the languageH(E),
by treating nominals as modal constants and interpreting the global modality
as an ordinary unary modalities. Let a non-standard frame be a structure F =
(W; (R3 )3 2 mod ; RE; (Si ) i 2 nom), whereeach R3 is a binary relation on W, RE is a
binary relation on W interpreting the modality E, and Si � W interprets the
nominal i , taken as a modal constant. Non-standard general frame and non-
standard modelscan be de�ned similarly.

6Here, we exploit the fact that in the presenceof the (Selfdual) axiom @i p $ : @i : p, the
satisfaction operators may be interpreted not only as boxes but also as diamonds.
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Now, suppose � is a K H (@)�-consistent set of H(E)-formulas. Then by
Theorem 2.4.3, � is satis�able on a descriptive non-standard general frame
F = (W; (R3 )3 2 mod ; RE; (Si ) i 2 nom; A) such that F j= K H (@)�. Without loss of
generality, we may assumethat F is point-generated.

Recall that K H (E) � contains the distribution axiom and necessitationrule for
E, as well as the following axiom schemes.

p ! Ep 8x:RExx
EEp ! Ep 8xyz:(RExy ^ REyz ! RExz)
p ! AEp 8xy:(RExy ! REyx)
3 p ! Ep 8xy:(R3 xy ! RExy)
Ei 8x9y:(RExy ^ Si y)
E(i ^ p) ! A(i ! p) 8xyz:(RExy ^ RExz ^ Si y ^ Si z ! y = z)

Each of the axioms is in Sahlqvist form (taken as a modal formula). Their �rst-
order correspondents are indicated aswell. By d-persistence,each of theseformu-
las is valid on the underlying (non-standard) Kripk e frame of F. Togetherwith
the fact that F is point-generated,this implies that RE = W � W and jSi j = 1
and for each i 2 nom.

Let F0 = (W; (R3 )3 2 mod ; A; B) with B =
S

i 2 nom Si . It is an easyexerciseto
show (using closureunder substitution) that F0 j= � and that � is satis�able on
F0. Finally, F0 is a descriptive two-sortedgeneralframe. 2

Strongly descriptive two-sorted general frames

Descriptive two-sortedgeneralframesdo not provide an adequatesemantics for
K +

H , K +
H (@) and K +

H (E) , sincethe additional inferencerules of theselogicsdo not
preserve validit y on such frames. Strongly descriptive two-sortedgeneralframes
do provide an adequatesemantics.

5.3.7. Pr oposition. All inference rules of K +
H , K +

H (@) and K +
H (E) preserveva-

lidity on strongly descriptivegeneral frames.

Pro of: By way of example,we discussthe (Name) rule of K +
H �. Let K be a class

of strongly descriptive frames. We proceedby contraposition: supposeK 6j= '
and supposethat the nominal i doesnot occur in ' . Then : ' is satis�able on
a (strongly descriptive) F 2 K under somevaluation V. Let [[: ' ]] be the set of
points in K satisfying : ' under the valuation V. Note that [[: ' ]] 6= ; , and hence
by strong descriptiveness,[[: ' ]] \ B 6= ; . Then by extendingthe valuation V such
that i denotesa point in [[: ' ]] \ B, we can satisfy i ^ : ' , and henceK 6j= i ! ' .

2

5.3.8. Cor ollar y. For any set � of H -formulas, K +
H � is sound for the class

of strongly descriptiveframesde�ned by � . Similarly for K +
H (@)� and K +

H (E) � .
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As we will now show, theselogicsare not only soundbut alsostrongly complete
with respect to the relevant classof strongly descriptive frames. First, let us
considerthe languageH.

5.3.9. Lemma. Let � be any set of H-formulas. Every K +
H � -consistent set �

can be extended to a maximal K +
H � -consistent set � + suchthat

1. One of the elementsof � + is a nominal

2. For all 3 1 � � � 3 n (i ^ 3 n+1 ' ) 2 � + there is a nominal j such that
3 1 � � � 3 n (i ^ 3 n+1 (j ^ ' )) 2 � +

Pro of: By expanding the languagewith new nominals, we can ensurethat a
countably in�nite number of nominalsdo not occur in �, while preservingconsis-
tency. Let (i n )n2 N be an enumeration of a countably in�nite set of nominals not
occurring in �, and let (' n )n2 N be an enumeration all H -formulasof the extended
language.

Let � 0 denote� [ f i 0g. The (Name) rule guaranteesthat � 0 is K +
H �-consistent,

for supposenot. Then there are ' 1; : : : ; ' n 2 � such that ` K +
H � i 0 ! : (' 1 ^

� � � ^ ' n ). Since i 0 does not occur in ' 1; : : : ; ' n , by the (Name) rule, ` K +
H �

: (' 1 ^ � � � ^ ' n ), and hence� is already K +
H �-inconsistent.

For k 2 N, de�ne � k+1 as follows. If � k [ f ' kg is K +
H �-inconsistent, then

� k+1 = � k . Otherwise:

1. � k+1 = � k [ f ' kg if ' k is not of the form 3 1 � � � 3 n (i ^ 3 n+1 ' ).

2. � k+1 = � k [ f ' k ; 3 1 � � � 3 n (i ^ 3 n+1 (im^ ' ))g if ' k is of the form 3 1 � � � 3 n (i ^
3 n+1 ' ), wherei m is the �rst new nominal that doesnot occur in � k or ' k .

Each step preserves consistency: if � k is K +
H �-consistent, then so is � k+1 . The

only non-trivial caseconcernsthe secondclause,and we will prove also in this
case,consistencyis preserved.

Let � k [ f ' kg be K +
H �-consistent, let ' k be of the form 3 1 � � � 3 n (i ^ 3 n+1 ' ),

and suppose for the sake of contradiction that � k+1 = � k [ f ' k ; 3 1 � � � 3 n (i ^
3 n+1 (im ^ ' ))g is K +

H �-inconsistent. Then there are ' 1; : : : ; ' l 2 � k such that

` K +
H �

�
' k ^ 3 1 � � � 3 n3 n+1 (im ^ ' )

�
! : (' 1 ^ � � � ^ ' l )

It followsby the rule (Paste) that ` K +
H � ' k ! : (' 1^ � � �^ ' l ). But this contradicts

the fact that � k [ f ' kg is K +
H �-consistent. We concludethat � k+1 is consistent.

Since K +
H �-consistency is preserved at each stage, it follows that � + =S

n<! � n is consistent. It is easyto seethat � + also satis�es the other require-
ments. 2
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5.3.10. Theorem. Let � be a set of H-formulas. K +
H � is strongly sound and

completefor the classof strongly descriptivetwo-sorted general framesde�ned by
� .

Pro of: Let � be any K +
H �-consistent set of formulas. Let � + be the maximal

consistent set extending � obtained from Lemma5.3.9. Applying Theorem5.3.1,
we obtain a descriptive two-sorted generalframe F such that F j= � and � + is
satis�able on F. It follows from the properties of � + and the construction of F
that F is in fact strongly descriptive.7 2

Next, let us considerthe languageH(@).

5.3.11. Lemma. The following rule is derivablein K +
H (@)� :

If ` @i 3 j ^ @j ' !  then ` @i 3 ' !  , provided i 6= j and j does
not occur in ' or  .

Pro of: SupposeK +
H (@)� ` @i 3 j ^ @j ' !  . Let k be a new nominal. Then by

the Necessitationrule for the satisfactionoperators,K +
H (@)� ` @k(@i 3 j ^ @j ' !

 ). Then latter formula is semantically equivalent to @i 3 j ! @j (' ! @k  ).
By Theorem 5.3.5, this equivalenceis provable in K H (@) and hencein K +

H (@)�.
It follows that K +

H (@)� ` @i 3 j ! @j (' ! @k  ). By the rule (BG ), K +
H (@)� `

@i 2 (' ! @k  ). The latter formula is semantically equivalent to @k(@i 3 ' !  ).
By Theorem5.3.5, this equivalenceis provable in K H (@) and hencein K +

H (@)�. It
follows that K +

H (@)� ` @k(@i 3 ' !  ). By the namerule, K +
H (@)� ` @i 3 ' !  .

2

5.3.12. Lemma. Every K +
H (@)� -consistent set � can be extended to a maximal

K +
H (@)� -consistent set � + suchthat

1. One of the elementsof � + is a nominal

2. For all @i 3 ' 2 � there is a nominal j suchthat @i 3 j 2 � and @j ' 2 � .

Pro of: By expanding the languagewith new nominals, we can ensurethat a
countably in�nite number of nominals do not occur in �, while preservingcon-
sistency. Let (i n )n2 N be an enumeration of a countably in�nite set of nominals
not occurring in �, and let (' n )n2 N be an enumeration all H (@)-formulas of the
extendedlanguage.

7Here, we assumewithout loss of generality that the non-standard general frame F used
in the proof of Theorem 5.3.1 is a point-generated subframesof the canonical (non-standard)
general frame. Furthermore, we use the fact that strong descriptivenessis preserved under
taking disjoint unions of �nitely many general frames.
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Let � 0 denote� [ f i 0g. The rule (Name@) guaranteesthat � 0 is consistent, for
supposenot. Then there are ' 1; : : : ; ' n such that ` K +

H (@) � i 0 ! : (' 1 ^ � � � ^ ' n ).
By the Necessitationrule and the K axiom for the satisfactionoperators,it follows
that ` K +

H (@) � @i 0 i 0 ! @i 0 : (' 1 ^ � � � ^ ' n ). Since` K +
H (@) � @i 0 i 0, it follows that

` K +
H (@) � @i 0 : (' 1 ^ � � � ^ ' n ), and hence,by the (Name@) rule, ` K +

H (@) � : (' 1 ^

� � � ^ ' n ). But this contradicts the fact that � is consistent.
For k 2 N, de�ne � k+1 as follows. If � k [ f ' kg is K +

H (@)�-inconsistent, then
� k+1 = � k . Otherwise:

1. � k+1 = � k [ f ' kg if ' k is not of the form @i 3  .

2. � k+1 = � k [ f ' k ; @i 3 im ; @i m  g if ' k is of the form @i 3  ,
whereim is the �rst new nominal that doesnot occur in � k or ' k .

Each step preservesconsistency:if � k is K +
H (@)�-consistent, then so is � k+1 . The

only non-trivial caseconcernsthe secondclause,and we will prove that also in
this case,consistencyis preserved.

Let � k [ f ' kg be K +
H (@)�-consistent, let ' k be of the form @i 3  , and sup-

pose for the sake of contradiction that � k+1 = � k [ f ' k ; @i 3 im ^ @i m  g is
not K +

H (@)�-consistent. Then there are ' 1; : : : ; ' n 2 � k such that ` K +
H (@) �

(' k ^ @i 3 im ; @i m  ) ! : (' 1 ^ � � � ^ ' n ). It follows by Lemma 5.3.11 that
` K +

H (@) � ' k ! : (' 1 ^ � � � ^ ' n ). But this contradicts the fact that � k [ f ' kg

is K +
H (@)�-consistent. We concludethat � k+1 is consistent.

Since K +
H (@)�-consistency is preserved at each stage, it follows that � + =

S
n<! � n is K +

H (@)�-consistent. It is easyto seethat � + also satis�es the other
requirements. 2

5.3.13. Theorem. Let � be a set of H(@)-formulas. K +
H (@)� is strongly sound

and completefor the classof stronglydescriptivetwo-sorted general framesde�ned
by � .

Pro of: Let � be any K +
H (@)�-consistent set of formulas. Let � + be the maximal

consistent setextending� obtainedfrom Lemma5.3.12. Applying Theorem5.3.5,
we obtain a descriptive two-sorted generalframe F such that F j= � and � + is
satis�able on F. It follows from the properties of � + and the construction of F
that F is in fact strongly descriptive.8 2

Finally, let us considerthe languageH(E).

8Here, we assumewithout loss of generality that the non-standard general frame F used
in the proof of Theorem 5.3.5 is a point-generated subframesof the canonical (non-standard)
general frame.
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5.3.14. Lemma. Every K +
H (E) � -consistent set � can be extended to a maximal

K +
H (E) � -consistent set � + suchthat

1. One of the elementsof � + is a nominal

2. For all E(i ^ 3 ' ) 2 � there is a nominal j such that E(i ^ 3 j ) 2 � and
E(j ^ ' ) 2 � .

Pro of: Analogousto the proof of Lemma 5.3.12. 2

5.3.15. Theorem. Let � be a set of H(E)-formulas. K +
H (E) � is strongly sound

and completefor the classof stronglydescriptivetwo-sorted general framesde�ned
by � .

Pro of: Analogousto the proof of Theorem5.3.13, using Lemma 5.3.14. 2

Discrete two-sorted general frames

We will now show that, besidesstrongly descriptive frames,discreteframesalso
o�er an suitable semantics for K +

H , K +
H (@) and K +

H (E) , in the sensethat for all sets
� of formulas of the relevant language,K +

H �, K +
H (@)� and K +

H (E) � are soundand
strongly completewith respect to the classof discreteframesde�ned by �.

There are two routes for constructing discrete frames from consistent sets
of formulas: either directly by a Henkin-style construction, or using our earlier
resultsby transforming a strongly descriptive frame into a discreteone. We have
opted for the latter.

5.3.16. Theorem. K +
H � , K +

H (@)� and K +
H (E) � are strongly soundand complete

for the classof discrete two-sorted general framesde�ned by � , where � is any
set of H-, H (@) or H(E)-formulas, respectively.

Pro of: We will prove the casefor H , sincethe other casesare similar. Let � be
any K +

H �-consistent set of formulas. Pick a new nominal i . By the (Name) rule,
� [ f ig is also K +

H �-consistent. Hence,by Theorem 5.3.10, � [ f ig is satis�able
on a strongly descriptive two-sortedgeneralframe F = (W; (R3 )3 2 mod; A; B) with
F j= �. Let V be an admissiblevaluation for F and let w be a world such that
(F; V); w j= � [ f ig. Note that w 2 B. Let V 0 be the valuation for dsfF given by
V 0(p) = V(p) \ B for p 2 pr op and V 0(i ) = V(i ) for i 2 nom. It is clear from
the de�nition of dsfF that V 0 is admissible.

A straightforward induction argument shows that for all H (E)-formulas ' and
for all worlds v 2 B, (F; V); v j= ' i� (dsfF; V 0); v j= ' . The only non-trivial step
in the induction argument concernsformulas of the form 3 ' , and here we use
the fact the F is strongly descriptive.

It follows that (dsfF; V 0); w j= �. By Proposition 5.2.8, dsfF j= �. Hence,� is
satis�able on the classof discretetwo-sortedgeneralframesde�ned by �. 2
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5.4 Completeness with respect to Kripk e frames
As corollariesof the resultsof the previoussection,we obtain a number of results
on completenesswith respect to Kripk e frames. In this section,we will againcall
Kripk e framessimply frames.

Firstly, recall from Section5.2that pure formulas,very simplemodal Sahlqvist
formulas and shallow modal formulas are di-persistent. By Theorem 5.3.16, we
obtain the following.

5.4.1. Cor ollar y. Let � be any set of pure H(@)-formulas, very simplemodal
Sahlqvistformulasand/or shallow modal formulas. Then K +

H (@)� is stronglycom-
plete for the classof framesde�ned by � . Similar for K +

H � and K +
H (E) � .

Completenessresults for hybrid logics axiomatized by pure formulas have been
around for a long time, cf. [25, 46].

Next, recall that modal Sahlqvist formulas and shallow modal formulas are
d2-persistent. By Theorem5.3.1, 5.3.5and 5.3.6, we obtain the following.

5.4.2. Cor ollar y. Let � be a set of modal Sahlqvistformulas and/or shallow
modal formulas. Then K H � , K H (@)� and K H (E) � are strongly completefor the
classof framesde�ned by � .

As an immediatecorollary, weobtain completenessfor K +
H �, K +

H (@)� and K +
H (E) �

in the casewhere� is a set of modal Sahlqvist formulas. In [46], this result was
already obtained for H(E).

Corollary 5.4.2 may still be generalized. Recall from Section 5.2 that the
hybrid formulas i and (p ! 3 (i ^ 3 p)) ^ (33 q ! 3 q) are alsod2-persistent, and
that they de�ne the classof frameswith oneelement and the classof frameswith
the universalrelation, respectively. Corollary 5.4.2holdsalsofor axiomatizations
that include besidesmodal Sahlqvist formulas and shallow modal formulas also
theseformulas.

It is natural to ask whether Corollary 5.4.1and 5.4.2can be combined. The
following result states that this is not possible.

5.4.3. Theorem. There is a pure H-formula ' and a modal Sahlqvistformula
 such that the hybrid logics K +

H f ';  g, K +
H (@)f ';  g and K +

H (E) f ';  g are not
completefor any classof frames.

Pro of: Consider the following axioms. The �rst-order frame conditions they
de�ne are given as well.

(Conuence) 32 p ! 23 p 8xyz(Rxy ^ Rxz ! 9u(Ryu ^ Rzu))
(NoGrid ) 3 (i ^ 3 j ) ! 2 (3 j ! i ) 8xyzu(Rxy ^ Rxz ^ Ryu ^ Rzu ! y = z)
(Func) 3 p ! 2 p 8xyz(Rxy ^ Rxz ! y = z)
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(Conuence) is a Sahlqvist formula and (NoGrid ) is pure. As can be easily
seenfrom the �rst-order correspondents, every framevalidating (Conuence) and
(NoGrid ) validates (Func). However, (Func) is not derivable from the axioms
(Conuence) and (NoGrid ). To seethis, considerthe countably branching tree
of in�nite depth. Let F be the discrete two-sorted general frame basedon this
structure in which the admissiblesetsareexactly the �nite and co-�nite sets[21].
Then F j= (Conuence). For supposeF; V; w  32 p. SinceV(p) admissible,it
must be either �nite or co-�nite. Sincew satis�es 32 p, there must be a point
with only successorssatisfyingp. Sinceevery point hasin�nitely many successors,
it follows that V(p) must be in�nite, henceco-�nite. It follows that every world
hasa successorsatisfying p, and therefore,F; V; w j= 23 p.

Finally, observe that F j= (NoGrid ) and F 6j= (Func). 2

It wasshown in [98] that if attention is restricted to versatile frames(i.e., frames
containing for each modality also its converse),all modal Sahlqvist formulas are
di-persistent.9 It follows that Corollary 5.4.2 and 5.4.1 can be combined in the
caseof tenselogics. In connectionto this, it is also worth mentioning Goranko
and Vakarelov [59], who proved, in the context of reversive hybrid polyadic modal
logic, that every Sahlqvist formula is provably frameequivalent to a pure formula.

Conuenceseemsto be the most natural framecondition that is de�nable by a
Sahlqvist formula but not by a pure formula (cf. Section4.2). Onemight therefore
ask if there is still a systematicway to obtain completeaxiomatizationsfor frame
classesde�nable by a set of pure formulas together with the conuence formula.
One possibility is to replacethe conuenceaxiom by the following inferencerule.

If ` @i 3 j ^ @i 3 k ! @j 3 l ^ @k3 l !  then `  ,
provided i; j ; k; l are distinct and l does not occur in  .

Read from bottom to top, this rule says that in order to prove a formula ' , one
may introducea new nominal l , and assumethat @i 3 j ^ @i 3 k ! @j 3 l ^ @k3 l.
It wasproved in [19] that for all sets� of pure H(@)-formulas, the axiomatization
K +

H (@)� extendedwith the above rule is completefor the classof conuent frames
de�ned by �. In fact, the authors show that this strategy for obtaining complete
axiomatizationscanbeappliednot only to the conuenceproperty, but to a wider
classof properties not de�nable by pure formulas. Goranko and Vakarelov [58]
provide similar results for M (D), the extensionof the basicmodal languagewith
the di�erence operator.

The completenessresults mentioned so far only apply to elementary, or at
least canonical logics. There are a number of non-elementary complete modal
logics. Examples include GL , Grz and PDL . One might wonder whether the

9It is more common to speak about versatile languagesthan versatile languages.However,
in order to prevent any further proliferation of hybrid languages,and since all languageswe
treat are already multi-mo dal in general,we have chosento de�ne versatilit y in terms of frames.
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corresponding hybrid logics are also complete. In Chapter 8, we will show that
this is indeed the case. In fact, we will show for a reasonableclassof modal
formulas ' that completenessof K M f ' g implies completenessof K H f ' g and
K H (@)f ' g. In connection to this, it is worth noting that generalcompleteness
results for non-elementary hybrid logicshave beenproved [83, 69], but that these
resultscrucially involve the useof ! -rules, i.e., inferenceruleswith in�nitely many
antecedents.

5.5 On the status of the non-ortho dox rules
Corollary 5.4.1crucially dependson the additional inferencerules of K +

H , K +
H (@)

and K +
H (E) . Theserulesarenon-orthodox, in the sensethat they involve syntactic

sideconditions. Such kinds of rules,sometimescalledGabbay-Burgess-style rules,
were�rst introducedby Burgess[26] and Gabbay [44] around1980,in the context
of temporal logic. It is natural to ask if a result along the lines of Corollary 5.4.1
could be obtained without the useof such rules. A number of things can be said
in this respect.

Recall that a frame classK is called versatile if for each modality 3 there is
a modality 3 � such that the accessibility relation of 3 � is the converseof the
accessibility relation of 3 for all frames in K. A typical exampleof a versatile
frame class is the class of symmetric frames, as the converse of a symmetric
relation is the samerelation. In can be shown that, on versatile frame classes,
the rules (Paste), (BG ) and (BGE ) are derivable.10

In the remainder of this section,we will de�ne the notion of an orthodox in-
ference rule, and we will show that every axiomatization for H(@)that complete-
for-pure-extensionsin the senseof Corollary 5.4.2 contains either non-orthodox

10Here, we will give a derivation of the (BG ) rule as an example. The other rules can be
derived in a similar way.

1. ` @i 3 j ! @j ' (Assumption)
2. ` @j 23 � 1j (Tenseaxiom)
3. ` @j 3 � 1i ! @j 3 � 1(i ^ 3 k) (From 2, by (K ), (K@ ), (Nec) and (Nec@ ))
4. ` i ^ 3 j ! @i 3 j (( Intr o ))
5. ` @j 3 � 1(i ^ 3 j ) ! @j 3 � 1@i 3 j (From 4, by (K ), (K@ ), (Nec) and (Nec@ ))
6. ` @j 3 � 1@i 3 j ! @i 3 j (By (Back) and (Agree))
7. ` @j 3 � 1i ! @i 3 j (From 3, 5 and 6 by (MP ))
8. ` @j 3 � 1i ! @j ' (From 7 and 1 by (MP ))
9. ` @j (3 � 1i ! ' ) (From 8 by (K@ ) and (Selfdual))

10. ` 3 � 1i ! ' (From 9 by (Name))
11. ` @i 23 � 1i ! @i 2 ' (From 10, by (K ), (K@ ), (Nec) and (Nec@ ))
12. ` @i 23 � 1i (From 2 by (Subst))
13. ` @i 2 ' (From 11 and 12, by (MP ))

Cf. Goranko [54] for a more general discussionof the derivabilit y of such rules in versatile
languages.
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rules or in�nitely many rules.
By an orthodox inferencerule we meana rule of the form

` ' 1(� 1; : : : ; � n ) & � � � & ` ' k(� 1; : : : ; � n )
`  (� 1; : : : ; � n )

Here, � 1; : : : ; � n are variablesranging over arbitrary formulas, and are implicitly
universallyquanti�ed. As usual, the formulasabove the line indicate the premises
of the rule, and the formula below the line indicates the conclusion. In the
presenceof a modus ponensrule (together with enoughpropositional axioms),
we can assumewithout lossof generality that there is only a singleantecedent (a
big conjunction), henceall orthodox rules can be assumedto be of the form

` ' (� 1; : : : ; � n )
`  (� 1; : : : ; � n )

In fact, we may assumethat ' and  do not contain any proposition letters (any
proposition letter p occurring in ' or  may be safely replaced by a variable
� n+1 ). In other words, we may assumethat ' and  are built up from � 1; : : : ; � n

and nominals, using the Boolean connectives, modal operators and satisfaction
operators. The rank of such a rule will be n. For example,the rank of the Nec
rule is 1. A rule preservesvalidity on a class of frames F, if for all formulas
� 1; : : : ; � n , F j= ' (� 1; : : : ; � n ) implies F j=  (� 1; : : : ; � n ). We can now prove the
desiredresult: no �nite collection of orthodox rules can be completefor all pure
extensions,even if we take as axiomsall validities of H(@).

5.5.1. Theorem. Let � be any axiomatic system that contains as axioms all
H (@)-formulas that are valid on every frame, and that contains a �nite number
of orthodox inference rules, plus modus ponensand substitution rule. Then there
is a set of H(@)-formulas � such that � extended with the formulas in � as
axioms is not sound and completewith respect to the classof framesde�ned by
� .

Pro of: Let n be the maximal rank of the orthodox rulesof � | this information
is all we need to construct a pure extensionthat is incomplete with respect to
the frame classit de�nes. De�ne � to be the set consisting of the S5 axioms,
together with the following pure formula:

^

1� l � 2n +2

3 i l !
_

1� k<l � 2n +2

3 (i k ^ i l ):

Let � + � be the axiomatic system� enriched by the axiomsin � (closedunder
modusponens,substitution and the other rulesof �). Let F be the classof frames
de�ned by �, i.e., the classof all S5framesin which each world hasat most 2n + 1
successors.Either the rules of � preserve validit y on F or they do not. If they do
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not, soundnessis lost and there is nothing to prove, so assumethat the rules of
� do preserve validit y on F. We shall now show that � + � is not completefor F.

Let M be the classof models basedon frames in F. Let F = (W; R) be the
frame with W = f 1; : : : ; 2n + 2g and R = W 2. Clearly, F 62F. Finally, let
M0 = M [ f (F ; V) j V is a valuation for F such that V(i ) = V(j ) for all nominals
i; j g. We shall show that � + � is soundfor the classof modelsM0.

Claim 1: All axioms of � + � are valid on M0. Moreover, validit y on M0

is closedunder modus ponensand under uniform substitution of formulas for
proposition letters and nominals for nominals.

Pro of of claim: The proof of Claim 1 is straightforward and is left to the
reader. a

Claim 2: All formulas valid on F with at most n proposition letters are valid
on M0.

Pro of of claim: Let ' be a formula with at most n proposition letters, and
supposefor the sake of contradiction that F j= ' and M0 6j= ' . Then there is a
valuation V and a world w such that F ; V; w  : ' , and such that V assigns
the same world to each nominal. Consider the bisimulation contraction of
(F; V) with respect to the proposition letters and nominalsoccurring in ' , i.e.,
the quotient of (F; V) with respect to the largestauto-bisimulation, alsocalled
strongly extensionalquotient [1]. Sinceonly n proposition letters occur in ' ,
and all nominals are true at the sameworld, the bisimulation contraction of
(F; V) (over this restricted vocabulary) has at most 2n + 1 worlds; hence,its
underlying frame is in F. It follows that F 6j= ' , which contradicts our initial
assumption. a

Claim 3: All inferencerules of � preserve validit y on M0.

Pro of of claim: Considerany rule � of � of the form

` ' (� 1; : : : ; � m )
`  (� 1; : : : ; � m )

with m � n, and suppose that M0 j= ' (� 1; : : : ; � m ) for particular formulas
� 1; : : : ; � m . Uniformly substitute > for each of the proposition letters occurring
in � 1; : : : ; � m . We then obtain pure formulas � 1; : : : ; � m , and by Claim 1 it
follows that M0 j= ' (� 1; : : : ; � m ). Let p1; : : : ; pm be new, distinct proposition
letters. Then it follows that

M0 j= ' ((p1 � 2 ' (p1; : : : ; pm ) � � 1); : : : ; (pm � 2 ' (p1; : : : ; pm ) � � m ))
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where(' �  � � ) is shorthand for ( ^ ' ) _ (:  ^ � ). Hence

F j= ' ((p1 � 2 ' (p1; : : : ; pm ) � � 1); : : : ; (pm � 2 ' (p1; : : : ; pm ) � � m ))

Since� preservesvalidit y on F,

F j=  ((p1 � 2 ' (p1; : : : ; pm ) � � 1); : : : ; (pm � 2 ' (p1; : : : ; pm ) � � m ))

Sincethis formula contains at most n proposition letters, it follows by Claim 2
that

M0 j=  ((p1 � 2 ' (p1; : : : ; pm ) � � 1); : : : ; (pm � 2 ' (p1; : : : ; pm ) � � m ))

By closureunder uniform substitution (Claim 1), it follows that

M0 j=  (( � 1 � 2 ' (� 1; : : : ; � m ) � � 1); : : : ; (� m � 2 ' (� 1; : : : ; � m ) � � m ))

Recall that M0 j= ' (� 1; : : : ; � m ). It follows that M0 j= (� i � 2 ' (� 1; : : : ; � m ) �
� i ) $ � i . Hence,M0 j=  (� 1; : : : ; � m ). a

It follows that � + � is soundwith respect to M0. But now considerthe following
formula

� =
^

1� i � 2n +2

3 pi !
_

1� i<j � 2n +2

3 (pi ^ pj )

Notice that M0 6j= � . By Claim 1{ 3, it follows that � + � 6`� . However F j= � . It
follows that � + � is not completefor F. 2



Chapter6

Interp olation and Beth de�nabilit y

In this chapter, we study interpolation and Beth de�nabilit y propertiesof hybrid
logics. Recall the interpolation property from Section2.5. In the setting of hybrid
logic, there is a choice to be madeconcerningthe de�nition of the interpolation
property. The �rst, andmoreconservativeoption is to requirethat the interpolant
of a valid implication must contain only proposition letters occurring both in the
antecedent and in the consequent. No restriction is made on the occurrenceof
nominals in the interpolant. The more daring option would be to require that
both the proposition letters and the nominals occurring in the interpolant occur
both in the antecedent and the consequent. We will refer to these options as
interpolation over proposition letters and interpolation over proposition letters
and nominals. Note that we only considerlocal interpolation.

Areces,Blackburn and Marx [5] werethe �rst to considerinterpolation in the
context of hybrid languages.They proved that H(@)doesnot have interpolation
over proposition letters and nominals,with respect to the classof all frames,but
that interpolation may be regainedby extendingthe languageof H(@)with state
variables and a #-binder. The languageobtained in this way, H(@; #), will be
discussedin detail in Chapter 9 of this thesis.

Subsequent results were proved by Conradie in his Masters thesis [34]. He
showed that H(@) lacks interpolation over proposition letters and nominalseven
with respect to the classof S5 frames, but that it has the Beth property with
respect to this classof frames.

This chapter presents the following new results. First, we will show that the
languagesH, H(@) and H(E) have interpolation over proposition letters with
respect to many frame classes,including the classof all frames. As a corollary,
we will obtain the Beth property for H(@)and H(E). On the other hand, we will
seethat the Beth property fails for H .

Next, we will show that H , H(@) and H(E) lack interpolation over nominals
in a strong sense. In fact, we will show that the least expressive extension of
H(@) with interpolation over proposition letters and nominals is H(@; #), and

93
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that the least expressive extensionof H(E) with interpolation over proposition
letters and nominals is the �rst order correspondencelanguageL 1.

The results presented in this chapter are basedon [30] and [28].

6.1 Motivations for studying interp olation

Before we plunge into technical details, let us briey discussdi�eren t types of
interpolation, and motivations for studying them.

The �rst questionto be addressedis probably why interpolation is important.
One answer to this question is that interpolation is important as a modularit y
principal. Supposethere are two system speci�cations, knowledgebases,or in
general,setsof formulas, � and �. Now, suppose� and � contradict each other.
Then the interpolation property (in combination with compactness)tells us that
there is a sentence ' in the common language,on which � and � disagree. In
other words, there are no unexpectedinteractions.

Other reasonswhy interpolation is important include the fact that it can be
usedas a lemma for proving the Beth property and other preservation theorems
(cf. Craig's original article [35]), and that interpolation has beenconsideredan
indicator for the existenceof nice,cut-freesequent calculi for the logic in question,
cf. for instance[8, page17].

A more detailed discussionof interpolation and motivations for studying it
can be found in Hoogland'sdissertation [65].

Apart from the general motivation for studying interpolation, there is the
following issue.

What type of interpolation should a good hybrid logic have? Inter-
polation over nominals, or only over proposition letters? And, what
about modalities?

It is hard to givea generalanswer, but a fewthings canbesaid. In order to beable
to derive the Beth property, it is enoughto have interpolation over proposition
letters. On the other hand, when interpolation is usedasa modularit y principle,
interpolation over nominals is desirableas well. In tenselogics, where there are
two modal operators, there is no obvious needfor interpolation over modalities.
On the other hand, from the viewpoint of description logics, wheremodalities are
considerednon-logical operators, just like proposition letters, interpolation over
modalities is desirable.

Finally, it shouldbe mentioned that, besidesthe type of interpolation studied
in this thesis,which is sometimescalledlocal interpolation or arrow interpolation,
there is another type of interpolation calledglobal interpolation or turnstile inter-
polation. More information about the latter type of interpolation and its relation
to the local interpolation property can be found in [65].
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6.2 Interp olation over proposition letters and the Beth prop-
erty

We saw in Section2.5 that the basicmodal languagehasinterpolation relative to
any elementary classof framesclosedunder bisimulation products and generated
subframes. As we will now show, this result generalizesto hybrid logic, in the
sensethat the languagesH, H(@) and H(E) have interpolation over proposition
letters relative to such frame classes.

For any formula ' , let pr op(' ) denotethe set of proposition letters occurring
in ' . We say that a hybrid L has interpolation over proposition letters relative
to a frame classK if the following holds: for all L -formulas ';  , if K j= ' !  
then there is a L -formula # such that K j= ' ! #, K j= # !  and pr op(#) �
pr op(' ) \ pr op( ).

6.2.1. Theorem. Let K be any elementary frame classclosed under generated
subframesand bisimulation products. Then H(@) has interpolation over proposi-
tion letters relative to K.

Pro of: Let K be any elementary frame classclosedunder generatedsubframes
and bisimulation products, let K j= ' !  , and supposefor the sake of contradic-
tion that there is no interpolant for this implication. Let Cons(' ) be the set of
H(@)-formulas � such that K j= ' ! � and pr op(� ) � pr op(' ) \ pr op( ). By
the sameargument usedin the proof of Theorem2.5.3, we can construct models
M ; N basedon framesin K, with corresponding worlds w; v, such that

(1.) M ; w j= Cons(' ) [ f:  g

(2.) N; v j= Cons(' ) [ f ' g,

(3.) For all H (@)-formulas # with pr op(#) � pr op(' ) \ pr op( ), M ; w j= # ,
N; v j= #.

SinceK is closedunder generatedsubframes,we may assumethat M and N are
generatedby w respectively v, together with all points namedby nominals.

Let M + and N+ be ! -saturated elementary extensionsof M and N. SinceK
is elementary, the underlying framesof M + and N+ are in K. De�ne the binary
relation Z betweenthe domains of M + and N+ by letting dZe if for all H (@)-
formulas � with pr op(� ) � pr op(' ) \ pr op( ) then M + ; d j= � , N+ ; e j= � .
In other words, dZe if d and e cannot be distinguished by a H(@)-formula in
the commonvocabulary of ' and  . With the common vocabulary of ' and  
we mean the vocabulary that contains all nominals, but that contains only the
proposition letters that occur both in ' and in  . Note that, by construction,
wZv.

Claim 1: Z is a total H (@)-bisimulation betweenM + and N+ , with respect
to the commonvocabulary of ' and  .
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Pro of of claim: It follows from Theorem 4.1.2 that Z is an H(@)-
bisimulation between M + and N+ , with respect to the common vocabulary
of ' and  . It only remainsto show that Z is a total H (@)-bisimulation. Let
d be any point of M + , and let � = f STx (' ) j M + ; d j= ' g. We will show that
� is realized by somepoint e of N + , and hencedZe. By ! -saturatednessof
N+ , it su�ces to show that every �nite subsetof � is realizedin N + .

Let STx ( 1); : : : ; STx ( n ) 2 �. Since M + is an elementary extension of M
and M + j= 9x:(STx ( 1) ^ � � � ^ STx ( n )), we have that M j= 9x:(STx ( 1) ^
� � � ^ STx ( n )). SinceM is generatedby w together with all points namedby
constants, either M ; w j= 3 1 � � � 3 n ( 1 ^ � � � ^  n ) or M ; w j= @i 3 1 � � � 3 n ( 1 ^
� � � ^  n ) for somenominal i and sequenceof modalities 3 1 � � � 3 n . In either
case,it follows by (3.) that  1 ^ � � � ^  n is true at somepoint in N, henceis
true at that point in N + .

A symmetric argument shows that for every point e of N + there is a point d
of M + such that dZe. a

Let F and G be the underlying framesof M + and N+ . Then, in particular, Z
is a total frame bisimulation between F and G. Hence, by Proposition 2.5.2,
there is a bisimulation product H 2 K of F and G of which the domain is Z .
By the de�nition of bisimulation products, the natural projections f : H ! F
and g : H ! G are surjective bounded morphisms. For any proposition letter
p 2 pr op(' ), let V(p) = f u j M + ; f (u) j= pg, and for any proposition letter
p 2 pr op( ), let V(p) = f u j N + ; g(u) j= pg. The properties of Z guarantee
that this V is well-de�ned for p 2 pr op(' ) \ pr op( ). For any nominal i , let
V(i ) = f u j M + ; f (u) j= ig = f u j N + ; g(u) j= ig. Again, the properties of Z
guarantee that V(i ) is well-de�ned, and that it is a singletonset for each nominal
i .

Finally, by a standard argument, the graph of f is a H(@)-bisimulation be-
tween (H; V) and M + with respect to the proposition letters and nominals oc-
curing in ' , and the graph of g is a bisimulation between (H; V) and N + with
respect to the proposition letters and nominals occuring in  . It follows that
(H; V); hw; vi j= ' ^ :  . This contradicts our initial assumptionthat K j= ' !  .

2

6.2.2. Cor ollar y. Let K be any elementary frame classclosed under bisimu-
lation products. Then H(E) has interpolation over proposition letters relative to
K.

Pro of: Given a frame class K, let K0 be the class f (W; (R3 )3 2 mod ; RE) j
(W; (R3 )3 2 mod) 2 K and RE = W 2g. Clearly, every H(E)-formula, when inter-
preted on K, can be seenasan H-formula interpreted on K0. This, together with
the fact that @-operators are de�nable in terms of E, implies that H(E) has in-
terpolation on K if H (@)hasinterpolation on K0. Now, K is trivially closedunder
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generatedsubframes,and it is not hard to seethat K0 is closedunder bisimulation
products i� K is. Finally, K0 is elementary i� K is. Combining theseobservations,
the result follows. 2

The casefor H turns out to be more complicated.

6.2.3. Theorem. Let K be any elementary frame classsatisfying the following
conditions.

1. K is closed under generated subframesand bisimulation products

2. For any frameF, if everypoint-generated subframeof F is a proper generated
subframe of a frame in K, then F 2 K.

Then H has interpolation over proposition letters relative to K.

Pro of: Let K be any elementary frame classsatisfying the given conditions, let
K j= ' !  , and supposefor the sakeof contradiction that there is no interpolant
for this implication. Let Cons(' ) bethe setof H-formulas� such that K j= ' ! �
and pr op(� ) � pr op(' ) \ pr op( ). By the sameargument used in the proof
of Theorem 2.5.3, we can construct models M ; N basedon frames in K, with
corresponding worlds w; v, such that

(1.) M ; w j= Cons(' ) [ f:  g

(2.) N; v j= Cons(' ) [ f ' g,

(3.) For all H -formulas # with pr op(#) � pr op(' ) \ pr op( ), M ; w j= # ,
N; v j= #.

We can distinguish two cases.

(a) Supposeevery point of M namedby a nominal is reachablefrom w. It follows
from (3.) that also every point of N namedby a nominal is reachable from
v. Let M w and N v be the submodels of M and N generatedby w and
v respectively, and let M +

w and N+
v be ! -saturated elementary extensionsof

these.Note that, sinceK is elementary and closedundergeneratedsubframes,
the underlying frames of M +

w and N+
v are in K. De�ne the binary relation

Z betweenthe domainsof M �
w and N �

v by letting dZe if d and e cannot be
distinguishedby a H-formula in the commonvocabulary of ' and  . With
the common vocabulary of ' and  we mean the vocabulary that consists
of all nominals, plus those proposition letters that occur both in ' and in
 . By construction, wZv. A similar argument as for Claim 1 in the proof
of Theorem 6.2.1 that Z is a total H (@)-bisimulation betweenM +

w and N+
v ,

with respect to the commonvocabulary of ' and  . We may now proceedas
in the proof of Theorem 6.2.1 to show that ' ^ :  is satis�able on a frame
in K, which contradicts out initial assumptionthat K j= ' !  .
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(b) Suppose not every point of M named by a nominal is reachable from w.
It follows from (3.) that also not every point of N named by a nominal is
reachable from v. Let M = (F; V) and N = (G; V 0), and let Fw and Gv be
the subframesof F and G generatedby w and v, respectively. Let F0

w be a
disjoint isomorphiccopy of Fw , and considerthe framesFw ] F0

w and Gv ] F0
w .

It follows from the closureconditions of K that theseframesare in K.

De�ne respective valuations V1 and V2 for Fw ] F0
w and Gv ] F0

w , as follows,
wherex is a �xed element of F0

w .

V1(p) = V(p) \ Fw

V1(i ) =

(
f ug if V(i ) = f ug with u 2 Fw

f xg otherwise
V2(p) = V 0(p) \ Gv

V2(i ) =

(
f ug if V 0(i ) = f ug with u 2 Gw

f xg otherwise

A simple argument using H-bisimulations shows that (Fw ] F0
w ; V1); w and

(Gv ] F0
w ; V2); v still agreeon all H -formulas in the common vocabulary of

' and  , and that it is still the casethat (Fw ] F0
w ; V1); w j= ' and (Gv ]

F0
w ; V2); v j= :  . Finally, we proceedas in (a) using ! -saturated elementary

extensionsof (Fw ] F0
w ; V1) and (Gv ] F0

w ; V2). 2

As a corollary of these interpolation results, we obtain the Beth property for
hybrid logicsof elementary frame classesclosedunder bisimulation products. Let
usbriey recall the de�nition of the Beth property. Wewill usej= glo

K to refer to the
global entailment relation, relative to the frame classK, i.e., � j= glo

K ' meansthat
for all modelsM basedon a frame in K, if M globally satis�es all formulas in �
then M globally satis�es ' . For a set of formulas �( p) containing the proposition
letter p (and possibly other proposition letters and nominals), we say that �( p)
implicitly de�nes p, relative to a frame classK, if �( p) [ �( p0) j= glo

K p $ p0. Here,
p0 is a proposition letter not occurring in �, and �( p0) is the result of replacing
all occurrencesof p by p0 in �( p). A languageL is said to have the Beth property
relative to a frame classK if whenever a set of L -formulas �( p) implicitly de�nes
a proposition letter p, relative to K, then there is a formula # in which p does
not occur, such that � j= glo

K p $ #. The relevant formula ' is called an explicit
de�nition of p, relative to � and K.

6.2.4. Theorem. If K is a elementaryframe classclosed under generated sub-
framesand bisimulation products, then H(@) hasthe Beth property relative to K.
If K is a elementary frame classclosed under bisimulation products, then H(E)
has the Beth property relative to K.
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Pro of: The basicargument is the sameasin the proof of Theorem2.5.4. We will
only prove the result for H(@), sincethe argument for H(E) is similar. Further-
more, for easeof presentation we restrict attention to the uni-modal case. The
proof generalizeseasily to languagescontaining more modalities.

Let �( p) be any set of H(@)-sentencescontaining the proposition letter p
(and possibly other proposition letters and nominals), and suppose� implicitly
de�nes the proposition letter p, relative to K. Let p0 be a new proposition letter,
and let �( p0) be the result of replacing all occurrencesof p in � by p0. Then,
by the de�nition of implicit de�nabilit y, �( p) [ �( p0) j= glo

K p $ p0. Let �( p) =
f 2 n '; @i 2 n ' j ' 2 �( p); n 2 ! ; i 2 nomg, and de�ne �( p0) similarly.

Claim 1: �( p) [ �( p0) j= K p $ p0.

Pro of of claim: SupposeM ; w j= �( p) [ �( p0) for somemodel M basedon a
frame in K. Let M w be the submodel of M generatedby w. By closureunder
generatedsubframes,the underlying frame of M 0 is alsoin K. By construction
of �, M w globally satis�es �( p) and �( p0). It followsthat M ; w globally satis�es
p $ p0, and hence,M ; w j= p $ p0. a

By compactness,there is a �nite subset� 0 � � such that � 0(p)[ � 0(p0) j= K p $ p0.
It follows that j= K (p ^

V
� 0(p)) ! (

V
� 0(p0) ! p0). Let # be an interpolant for

this implication. Then the following facts hold.

1. The proposition letters p and p0 do not occur in #.

2. j= K (p ^
V

� 0(p)) ! #.

3. j= K # ! (
V

� 0(p0) ! p0), and hence,by uniform substitution, j= K # !
(
V

� 0(p) ! p).

We concludethat � 0(p) j= K p $ #, and hence�( p) j= glo
K p $ #. 2

Surprisingly, the samedoes not hold for H . Call a frame F n-cyclic (n 2 ! ) if
F j= p ! 23 � np, i.e., if every transition (w; v) in in F is part of a directed cycle
of length at most n + 1. Call a frame cyclic if it is n-cyclic for somen 2 ! .
Cyclicity is a rather strong condition. For instance, reexiv e transitiv e frames
are in generalnot cyclic, although symmetric framesare.

6.2.5. Pr oposition. Let K be any frameclassthat contains a non-cyclic frame.
Then H lacks the Beth property relative to K.

Pro of: Let � = f p ! i; j ^ q ! 3 (i ^ p); j ^ : q ! 3 (i ^ : p)g. Then � implicitly
de�nes p, since in any model that globally satis�es �, p holds nowhere besides
possibly at the point namedi , and it holds there i� q holds at the point named
j . Now, assumefor the sake of contradiction that there is an explicit de�nition
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of p, i.e., a H-formula ' not containing p such that � j= glo
K p $ ' . Let n be the

modal depth of ' .
SinceK contains a non-cyclic frame, we can �nd a frame F 2 K with worlds

w; v such that wRv and w is not reachable from v in n or lesssteps. Let V1 be
the valuation for F that sendsi to v, j to w, p to f vg and q to f wg. Let V2 be
the valuation that sendsi to v, j to w and that sendsp and q to ; . Note that
(F; V1) and (F; V2) both globally satisfy �. A straightforward argument shows
that (F; V1); v and (F; V2); v cannot be distinguishedby any H-formula of modal
depth n. It follows that ' cannot distinguish thesepoints. This contradicts the
fact that (F; V1); v j= ' and (F; V2); v j= : ' . 2

6.3 Interp olation over nominals
We will now considerinterpolation over nominals. What follows now can be seen
asa warming up for Section6.4, wherea strong negative interpolation result will
be given that generalizesthe results of this section.

Recall that for a formula ' , pr op(' ) denotesthe set of proposition letters
occurring in ' . Likewise,let nom(' ) denotethe set of nominals occurring in ' .
For L one of the languagesH, H(@) and H(E), and for K a classof frames,we
say that L has interpolation over nominals relative to K if the following holds:
for all L -formulas ';  , if K j= ' !  then there is a L -formula # such that
K j= ' ! #, K j= # !  , and nom(#) � nom(' ) \ nom( ).

It is quite easy to seethat this version of interpolation fails for H , H(@)
and H(E), relative to the class of all frames. Consider for instance the valid
implication i ^ 3 i ! (j ! 3 j ). An interpolant for this implication has to
expressthat the current world is related to itself, without using any nominals.
An easybisimulation argument shows that this is not possible,not even in the
languageH(E).

Two strategiescan be usedin order to repair this failure of interpolation: one
can either restrict attention to a speci�c classof frames, or extend the expres-
sivity of the languageso that the relevant interpolants can be expressed.In the
remainder of this section, we follows the �rst strategy, and in the next section,
we follow the secondone. Our results will be formulated in terms of the hybrid
languageH(@; #), that will be introducedin detail in Chapter 9, whereits syntax
and semantics are given, and also interpolation for this languageis studied. To
appreciate the following theorem, it is worth noting that H(@; #) is a very ex-
pressive, undecidablelanguage,and that it has interpolation over nominals and
proposition letters (relative to many frame classes).

6.3.1. Theorem. Let K be any frame class. If H (@) has interpolation over
nominals on K then it is as expressiveas H(@; #) on K.

Pro of: Supposethat H(@) has interpolation over nominals on K. We will show
that every H(@; #) sentence ' is equivalent (on K) to an H(@) formula. We
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proceedby induction on the length of ' . The only interesting caseis where '
is of the form #x: (x). Let i and j be nominals not occurring in #x: (x). By
induction, we know that  (i ) and  (j ) areequivalent to H(@)formulas  0(i ) and
 0(j ) respectively. Now, the following implication is valid:

K j= i ^  0(i ) ! (j !  0(j ))

Let # be any interpolant for this valid implication. We will show that # is equiv-
alent to #x: (x).

Considerany model M and world w such that M ; w j= #x: (x). Let M [i=w]
bethe model that di�ers from M only in the fact that i denotesw. Sincei doesnot
occur in #x: (x), we have that M [i=w]; w j= #x: (x), henceM [i=w]; w j= i ^  (i ).
It follows that M [i=w]; w j= #. Since i does not occur in #, it follows that
M ; w j= #. Conversely, suppose M ; w j= #. Let M [j =w] be the model that
di�ers from M only in the fact that j denotesw. Since j does not occur in
#, we have that M [j =w]; w j= #. It follows that M [j =w]; w j= j !  (j ), and
henceM [j =w]; w j= #x: (x). Sincej does not occur in #x: (x), it follows that
M ; w j= #x: (x). 2

6.3.2. Theorem. Let K be any frame class. If H (E) has interpolation over
nominals on K then it is expressivelycompletefor L 1 on K.

Pro of: The proof is similar to that for Theorem6.3.1, usingthe fact that H(E; #)
is expressively equivalent to the �rst-order correspondencelanguageL 1. 2

Theseresultscanbe interpreted asvery strong negative interpolation results. For
instance,as a corollary of Theorem6.3.2, we obtain the following.

6.3.3. Cor ollar y. H (E) lacks interpolation over nominals on any non-empty
modally de�nable frame class.

Pro of: Let K beany non-empty modally de�nable frameclass,and let F 2 K. Let
G be the disjoint union of three isomorphiccopiesof F. By closureunder disjoint
unions,G 2 K. Let w 2 F, and let w1; w2; w3 denotethe disjoint copiesof w in G.
Let V and V 0 be valuations for G such that V(p) = f w1g and V 0(p) = f w1; w2g.
One can easily seethat the models (G; V) and (G; V 0) are H(E)-bisimilar. It
follows that the L 1-formula 9xy:(x 6= y ^ Px ^ Py) is not expressiblein H(E) on
K. 2

We leave it as an open question whether there is an analogueof Theorem 6.3.1
and 6.3.2for H . At any rate, it is clear that interpolation over nominalsfails also
for H on many frame classes.
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6.4 Repairing interp olation
In this sectionwe are again concernedwith interpolation over nominals. As we
mentioned in the previoussection,one way to repair the failure of interpolation
for H , H(@) and H(E), is to increasethe expressivity of the language,such that
the required interpolants can be expressed.In this section,we show that H(@; #)
is the least expressive extensionof H(@) with interpolation, and that the �rst-
order correspondencelanguageL 1 is the least expressive extensionof H(E) with
interpolation. With interpolation, we will mean interpolation over proposition
letters and nominals.

In order to state theseresultsprecisely, we needto give an abstract de�nition
of what counts asa language.We will now give such a de�nition. We will assume
a �xed set of (unary) modalities mod. A signature is a pair � = (pr op � ; nom � )
of disjoint setscontaining proposition letters and nominals respectively. We will
often be sloppy by using � to denotethe union pr op � [ nom � . For instance,we
will write � � � instead of pr op � � pr op � & nom � � nom � .

Given a signature� , a (pointed, but not necessarilypoint-generated)� -model
is a structure M = (F; V; w) where F = (W; R3 )3 2 mod is a frame, V : pr op � [
nom � ! } (W) a valuation and w 2 W a world. As usual, we require that
jV(i )j = 1 for all i 2 nom � . The class of all � -models is denoted by Str[� ].
Furthermore, for any classof framesF, StrF[� ] will denote the classof � -models
of which the underlying frame belongsto F.

Two operationson modelswill beusefullater on. Firstly, a renaming� : � ! �
is a mapping from � to � that respects the sorting: it maps elements of pr op �

to elements of pr op � and elements of nom � to elements of nom � . For any model
M = (F; V; w) 2 Str[� ] and renaming� : � ! � , let M � bethe � -model (F; � �V; w).
Secondly, if M 2 Str[� ] and � � � , then M � � denotesthe � -reduct of M , i.e.,
the � -model that is obtained from M by \forgetting" the interpretation of � n� .
We write K � � for f M � � j M 2 Kg.

6.4.1. Definition (Hybrid langua ges). A hybrid languageis a pair (L ; j= L

), where L is a map from signatures to sets of formulas, and j= L is a relation
between formulas and modelssatisfying the following conditions.

1. Expansion Prop ert y. If � � � then L [� ] � L [� ]. Furthermore, for all
' 2 L [� ] and M 2 Str[� ], M j= L ' i� M � � j= L ' . For M 2 Str[� ], the
statement M j= ' is de�ned (i.e., true or false) if and only if ' 2 L [� ].
Otherwise, it is unde�ned.

2. Renaming Prop ert y For all ' 2 L [� ] and renamings� : � ! � , there is
a  2 L [� ] suchthat for all M 2 Str[� ], M j=  i� M � j= ' .

De�nition 6.4.1is inspired by similar onesoccurring in the literature on abstract
model theory [8]. Since the de�nition is rather general,one might ask what is
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still modal, or hybrid, about theselanguages.The two main distinctively modal
featuresin De�nition 6.4.1are (1) the fact that that the structures we work with
are pointed, reecting the fact that modal formulas are always evaluated locally,
and (2) the strict distinction betweenmodalities on the onehand and proposition
letters and nominals on the other hand. The importance of this distinction will
becomeclear later on, when we'll considerspeci�c classesof frames.

Someshorthand notation will be convenient. Firstly, by a slight abuseof
notation, we will useL alsoto refer to the pair (L ; j= L ). Secondly, given a model
M = (F; V; w) and an element v of the domain of F, we will use(M ; v) to denote
the model (F; V; v). Thus, with M ; v j= ' we mean (F; V; v) j= ' . Next, for
' 2 L [� ], let Mod�

L (' ) = f M 2 Str[� ] j M j= L ' g. For M 2 Str[� ] and ' 2 L [� ],
let [[' ]]ML = f v j M ; v j= ' g, i.e., the subsetof the domain of M de�ned by ' .
Finally, the symbol j= will be usednot only to refer to the satisfaction relation,
but alsoto the local consequence relation: for � [ f  g � L [� ], wesay that � j= L '
i� for all M 2 Str[� ], it holds that if M j= L ' for ' 2 � then M j= L  .

Often, we will restrict attention to a speci�c frame classF. In thesecases,we
will write Mod�

L ;F(' ) for f M 2 StrF[� ] j M j= L ' g. Likewise,for � [ f  g � L [� ],
we say that � j= L ;F ' i�

T
' 2 � Mod�

L ;F(' ) � Mod�
L ;F( ).

6.4.2. Definition (Extensions of hybrid langua ges). Let L ; L 0be hybrid
languages.Then L 0 extendsL relative to a frame classF (notation: L � F L 0) if
the following holdsfor all signatures � and proposition letters p1; : : : ; pn (n � 0).

� For each ' 2 L [� [ f p1; : : : ; png] and  1; : : : ;  n 2 L 0[� ], there is a formula
of L 0[� ], which we will denote by ' [~p=~ ], such that for all M 2 StrF[� ],
M j= L 0 ' [~p=~ ] i� M [p17! [[ 1 ]]M

L 0;:::;pn 7! [[ n ]]M
L 0] j= L ' .

Note that De�nition 6.4.2 concernsexpressiveextensionsrather than axiomatic
extensions.As a special case(take n = 0), we have that whenever L � F L 0 and
' 2 L [� ], there is a  2 L 0[� ] such that Mod�

L ;F(' ) = Mod�
L 0;F( ). However,

De�nition 6.4.2 provides more information: it ensuresthat L 0 is closedunder
the basic operations of L , such as negation. For, supposeL � F L 0 and L has
negation. Then for any ' 2 L 0, (: p)[p=' ] expressesthe negationof ' . De�nitions
like De�nition 6.4.2are quite commonin the literature on abstract model theory.
Incidentally, such de�nitions makes senseonly for languagesL that are closed
under substitution of formulas for proposition letters, since otherwise it might
happen that L 6� L . All languagesthat we will be concernedwith are closed
under substitution.

The languagesH, H(@)and H(E) arehybrid languagesin the senseof De�ni-
tion 6.4.1. Similarly, H (@; #) is a hybrid languageif we consideronly sentences,
not formulas with freevariables. Finally, the �rst-order correspondencelanguage
L 1 constitutes a hybrid language,if we consideronly formulas with at most one
free variable.



104 Chapter6. Interpolation andBeth de�nability

Finally, let us de�ne interpolation, by which we will mean interpolation over
proposition letters and nominals. Using the terminology of this section, interpo-
lation can be de�ned as follows.

6.4.3. Definition (Interpola tion). A hybrid languageL has interpolation
on a frame classF if for all ' 2 L [� ] and  2 L [� ] such that ' j= L ;F  , there is
a # 2 L [� \ � ] suchthat ' j= L ;F #, and # j= L ;F  .

The readershould keepin mind that j= L ;F denotesthe local entailment relation.
Now for the main result of this section.

6.4.4. Theorem. Then the following hold for any frame classF.

(i) For all hybrid languagesL , if H (@) � F L and L hasinterpolation on F then
H(@; #) � F L

(ii) For all hybrid languagesL , if H (E) � F L and L hasinterpolation on F then
L 1 � F L

Theseresultscanbe interpreted asgeneralnegative interpolation results,or, from
another perspective, as characterizations. For instance,sinceH(@; #) has inter-
polation (as will be shown in Chapter 9), Theorem6.4.4(i) characterizesH(@; #)
as the smallestextensionof H(@) that has interpolation. Similarly, when com-
bined with Lindstr•om's characterizationof �rst-order logic [77], Theorem6.4.4(ii)
singlesout �rst-order logic as the unique extensionof H(E) with interpolation,
compactnessand the L•owenheim-Skolem property.

Note that Theorem6.3.1and 6.3.2are special casesof Theorem6.4.4.
The remainderof this sectionis devoted to the proof of Theorem6.4.4. First,

we prove an adapted version of well-known lemma relating interpolation with
projective classes[8].

6.4.5. Definition (Pr ojective classes). Let � be a signature, and let K �
StrF[� ]. Then K is a projective classof a hybrid languageL relative to a frame
classF if there is a ' 2 L [� ] with � � � , suchthat K = Mod�

L ;F(' ) � � .

6.4.6. Definition (Nega tion). A hybrid languageL has negation on F if for
each ' 2 L [� ] there is an formula of L [� ], which we will denoteby : ' , suchthat
ModL ;F( ) = StrF[� ]nModL ;F(' ).

6.4.7. Lemma. Let L be a hybrid languagewith negation that has interpolation
on a frame class F, and let K � StrF[� ], for somesignature � . If both K and
StrF[� ]nK are projective classesof L relative to F, then there is a ' 2 L [� ] such
that K = ModL ;F(' ).
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Pro of: SinceK is a projective class,there is a formula ' 2 L [� ], with � � � ,
such that K = ModL ;F(' ) � � . Likewise,since StrF[� ]nK is a projective class,
there is a formula  2 L [� 0], with � � � 0, such that StrF[� ]nK = ModL ;F( ) � � .
Without loss of generality, we may assumethat � \ � 0 = � (by the Renaming
property of L ). It follows that ' j= L ;F :  . SinceL has interpolation, there must
be a # 2 L [� ] such that ' j= L ;F # and # j= L ;F :  . As a last step, we will show
that ModL ;F(#) = K.

SupposeM 2 K. Then M = N � � for someN 2 ModL ;F(' ). Since' j= L ;F #,
it follows that N j= #. By the Expansionproperty, M j= #. Conversely, suppose
M 62K. Then M = N � � for someN 2 ModL ;F( ). Since# j= L ;F :  , it follows
that N 6j= #. By the Expansionproperty, M 6j= #. 2

The property expressedin Lemma 6.4.7 may be called � -interpolation, by
analogy to the notion of �-in terpolation in [8]. It is a slightly weaker condition
than interpolation, andarguablymorenatural from a model theoretic perspective.
Incidentally, it shouldbe mentioned that Theorem6.4.4may be strengthenedby
replacing the condition of interpolation by that of �-in terpolation.

Using Lemma 6.4.7, we can show that if the #-binder is added to a hybrid
languagewith interpolation extendingH(@),then the expressivity of the language
in questiondoesnot increase.This is expressedin the following lemma.

6.4.8. Lemma. Let L be a hybrid languagewith interpolation on a frame class
F, suchthat H(@)� F L . Then for all ' 2 L [� ] and i 2 nom � , there is a formula
of L [� nf ig], which we will denoteby #i:' , suchthat ModL ;F(#i:' ) = f (F; V; w) 2
StrF[� nf ig] j (F; V [i 7!f wg]; w) j= ' g.

Pro of: Let K#i:' = f (F; V; w) 2 StrF[� nf ig] j (F; V [i 7!f wg]; w) j= ' g. K#i:' is
projectively de�ned by i ^ ' and its complement is projectively de�ned by i ^
: ' . SinceL has negation and has interpolation on F, by Lemma 6.4.7 K#i:' =
ModL ;F( ) for some 2 L [� nf ig]. 2

We are now ready to prove Theorems6.4.4(i) and 6.4.4(ii) .

Pro of of Theorem 6.4.4(i) : Let L be any hybrid languagewith interpolation
on a frame classF, such that H(@) � F L . Let ' 2 H(@; #)[� [ f p1; : : : ; png]
and  1; : : : ;  n 2 L [� ]. We will show that there is a formula � 2 L [� ] that is
[~p=~ ]-equivalent to ' on F, meaningthat

for all M 2 StrF[� ], M j= L � i� M [p17! [[ 1 ]]ML ;:::;pn 7! [[ n ]]ML ] j= H (@) '

The proof proceedsby induction on the length of ' . The basecase(where ' is a
proposition letter or nominal from � , or ' is > or ' is pi for somei � n) follows
immediately from the fact that H(@) � F L . For the inductive step, we will only
prove the casesfor negationand for the #-binder, sincethe other casesaresimilar
to the one for negation.
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Let ' be of the form :  . By induction hypothesis,  is [~p=~ ]-equivalent
on F to some� 2 L [� ]. Let q be any proposition letter not in � and distinct
from p1; : : : ; pn . SinceH(@) � F L and (: q) 2 H(@)[� [ f qg], De�nition 6.4.2
guaranteesthe existenceof a formula (: p) [p=� ] 2 L [� ] that expressesthe negation
of  on F. It follows that (: p) [p=� ] is [~p=~ ]-equivalent on F to ' .

Let ' be of the form #x: . Let i be any nominal not in � . By the induction
hypothesis,we know that there is some� 2 L [� [ f ig] that is [~p=~ ]-equivalent
on F to  [x=i]. By Lemma 6.4.8 it follows that #x: is [~p=~ ]-equivalent on F to
#i:� 2 L [� ]. 2

Pro of of Theorem 6.4.4(ii) : Similar to the proof of Theorem6.4.4(i) . We will
only discussthe inductive step for formulas of the form 9y: .

Let ' 2 L 1[� ] be of the form 9y: . By the de�nition of L 1, ' contains at
most one free variable, say x (in case' contains no free variables, let x be any
variable distinct from y). Let i; j be distinct nominals (constants) not in � . By
induction hypothesis,' [x=i; y=j ] 2 L 1[� [ f i; j g] is [~p=~ ]-equivalent on F to some
� 2 L [� [ f i; j g]. By Lemma 6.4.8and by the fact that H(E) � F L , we obtain a
formula #i:E#j :� 2 L [� ] that is easilyshown to be [~p=~ ]-equivalent to ' on F 2

6.4.9. Remark. It should be noted that, while the results in this sectionhave
been formulated for languageswith unary modalities only, the proof can easily
be adapted to the generalcasewheremodal operators can have any arity.

Secondly, while wehavechosento formulate the resultsin this sectionin terms
of interpolation over proposition letters and nominals, inspection of the proofs
shows that the results hold even if we would replacethis notion of interpolation
by the weaker interpolation over nominals.
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Translations from hybrid to modal logics

In this chapter, wewill show that for certain frameclassesK, there is a translation
from hybrid formulas to modal formulas that preservessatis�abilit y with respect
to K. There are at least two reasonsto be interested in such translation. One
reasonis that they allow us to apply theoremproversdeveloped for modal logics
to hybrid logics. The secondreasonis that such translations make it possibleto
derive resultson hybrid logicsfrom resultson modal logics. The translations that
will be provided in this chapter allow us to do both.

One of the results we will prove is the following.

If a frame classK admits polynomial �ltration (cf. Section2.6), then
there is a polynomial translation from H(E) to M (E) preservingsat-
is�abilit y with respect to K.

Similar resultsare proved for H and H(@). The translations are modular enough
to give rise to transfer resultsconcerningcomplexity, (uniform) interpolation and
axiomatizations. Thesetransfer results will be presented in the next chapter.

All proofs in this chapter make use of �ltrations. It has been observed by
several authors that if the basicmodal languageM admits �ltration with respect
to a frameclassK, then H, H(@)and H(E) alsoadmit �ltration with respect to K
(seefor instance[17; 46]). It follows that if decidability of a modal logic is proved
using�ltrations, the correspondinghybrid logic is alsodecidable.The translations
presented in this chapter, however, allow for a much more �ne-grained analysis.
As will be shown in the next chapter, the translations give rise to transfer of
complexity bounds,as well as other properties such as interpolation.

The results reported in this chapter are partly taken from [15].

7.1 From H(E) to M (E)
The �rst casethat we will consideris the simplestcase:we will translate formulas
of H(E) to M (E), which is the extensionof the basic modal languagewith the
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global modality. Recall the de�nition of �ltration in Section2.6. For an H(E)-
formula ' (i 1; : : : ; i n ) let ' [~i=~pi ] denotethe M (E)-formula obtained by uniformly
replacingeach nominal i k by distinct new proposition letter pi k .

7.1.1. Theorem. Let K be a frameclassthat admits �ltr ation. Let ' (i 1; : : : ; i n )
be any H(E)-formula. Then ' is satis�able on K i� the M (E)-formula

' � = ' [~i=~pi ] ^
^

1� k� n

Epi k ^
^

1� k� n
 2 � ' [~i = ~pi ]

E(pi k ^  ) ! A(pi k !  )

is satis�able on K, where � ' [~i =~pi ]
is the �ltr ation set of ' [~i=~pi ].

Pro of:
[) ] Suppose(F; V); w j= ' with F 2 K. Let V 0 be any valuation that agrees

with V on all proposition letters occurring in ' , and such that V 0(pi k ) = V(i k)
for each nominal i k . Clearly, (F; V 0); w j= ' [~i=~pi ]. The truth of the remaining
conjuncts of ' � at w under V 0 follows directly from the fact that V 0(pi k ) is a
singletonset for each k = 1; : : : ; n.

[( ] Suppose(F; V); w j= ' � with F = (W; R) 2 K. Our task is to construct a
hybrid model satisfying ' .

We will �ltrate (F; V). Let � = � ' [~i =~pi ]
. SinceK admits �ltration, there exists

a model M = (W=� � ; R� ; V� ) such that (W=� � ; R� ) 2 K and such that for all
v 2 W and  2 �, M ; [v] j=  i� (F; V); v j=  . In particular, M ; [w] j= ' [~i=~pi ].

Claim 1: V� (pi k ) contains exactly onepoint (for k = 1; : : : ; n).

Pro of of claim: V� (pi k ) is easily seento be non-empty: by the secondcon-
junct of ' � , M ; v j= pi k for somev. By the de�nition of �ltration, [v] 2 V� (pi k ).

Next, suppose [v]; [v0] 2 V� (pi k ). Then v; v0 2 V(pi k ), by the de�nition of
V� . Since (F; V); w j= E(pi k ^  ) ! A(pi k !  ) for all  2 �, it follows
that v; v0 agreeon formulas in �. Indeed, if v j=  then w j= E(pi k ^  ), so
w j= A(pi k !  ) and thereforev0 j=  . Thus, v � � v0 and so [v] = [v0]. a

Replacingeach pi k by the corresponding i k , we thereforeobtain a hybrid model
again, which furthermore satis�es ' at [w]. We concludethat ' is satis�able on
K. 2

7.1.2. Cor ollar y. Let K be a frame class that admits �ltr ation. Let
' (i 1; : : : ; i n ) be any H(E)-formula. Then ' is valid on K i� the modal formula

� ^

1� k� n

Epi k ^
^

1� k� n
 2 � : '

E(pi k ^  ) ! A(pi k !  )
�

! ' [~i=~pi ]

is valid on K, where � : ' [~i =~pi ]
is the �ltr ation set of : ' [~i=~pi ].
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In the rest of this chapter, we will give similar results for the hybrid languages
H and H(@). However, the situation for these languagesis substantially more
complicated,for the following reason.By Proposition 8.1.2, there canbe no poly-
nomial reduction from H or H(@) to modal logic that preservessatis�abilit y on
symmetric frames. Nevertheless,the classof symmetric framesadmits �ltration
[31]. Hence,Theorem 7.1.1 cannot be adapted to H or H(@) without further
restrictions.

Wewill considertwo classesof modal logics,namelylogicsthat admit �ltration
and have a master modality, and logics that are axiomatized by modal formulas
in which every occurrenceof a proposition letter is in the scope of at most one
modal operator. Note that the logic of symmetric framesdoesnot fall in either
class.

7.2 From H to M in case of a master modalit y
Wesay that a frameclassK hasa mastermodality, if there is a modal formula ' (p)
containing no proposition letter besidesp, such that for all modelsM basedon a
frame in K, and worlds w, M ; w j= ' (p) i� p holds somewherein the submodel of
M generatedby w. It follows that, if ' ( ) is obtained by uniformly replacing p
by  in ' , M ; w j= ' ( ) i�  holds somewherein the submodel of M generated
by w. We will use3 to denotethe master modality.

For a H-formula ' (i 1; : : : ; i n ) let ' [~i=~pi ] denote the modal formula obtained
from ' by uniformly replacingeach nominal i k by distinct new proposition letter
pi k .

7.2.1. Theorem. Let K be any frame class closed under generated subframes,
disjoint unions and isomorphiccopiesthat admits �ltr ation and that hasa master
modality. Let ' (i 1; : : : ; i n ) be any H-formula. Then ' is satis�able on K i� the
modal formula

' � = ' [~i=~pi ] ^
^

1� k� n
 2 � ' [~i = ~pi ]

3 (pi k ^  ) ! 2 (pi k !  )

is satis�able on K, where 3 is the mastermodality of K and � ' [~i =~pi ]
is the �ltr ation

set of ' [~i=~pi ].

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

[) ] Suppose(F; V); w j= ' with F 2 K. Let V 0 be any valuation that agrees
with V on all proposition letters occurring in ' , and such that V 0(pi k ) = V(i k) for
each nominal i k . Clearly, (F; V 0); w j= ' [~i=~pi ]. The truth of the secondconjunct
of ' � at w under V 0 follows directly from the fact that V 0(pi k ) is a singleton set
for each k = 1; : : : ; n.
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[( ] Suppose(F; V); w j= ' � with F = (W; R) 2 K. Without lossof generality,
we canassumethat F is generatedby w (note that ' � is a purely modal formula).
Our task is to construct a hybrid model satisfying ' .

First, we will �ltrate (F; V). Let � = � ' [~i =~pi ]
. Since K admits �ltration,

there exists a model M = (W=� � ; R� ; V� ) such that (W=� � ; R� ) 2 K and such
that for all v 2 W and  2 �, M ; [v] j=  i� (F; V); v j=  . In particular,
M ; [w] j= ' [~i=~pi ].

Claim 1: V� (pi k ) contains at most onepoint (for k = 1; : : : ; n).

Pro of of claim: Suppose[v]; [v0] 2 V� (pi k ). Then v; v0 2 V(pi k ), by the def-
inition of V� . Since(F; V); w j= 3 (pi k ^  ) ! 2 (pi k !  ) for all  2 �, it
follows that v; v0 agreeon formulas in �. Indeed,if v j=  then w j= 3 (pi k ^  ),
sow j= 2 (pi k !  ) and thereforev0 j=  . Thus, v � � v0 and so [v] = [v0]. a

If every pi k is true at exactly one point, then the proof is �nished, sincewe can
consider(W=� � ; R� ) to be a hybrid model for ' . In general,however, this need
not be the case: pi k could be true nowhere. So, we need to ensure that for
every pi k there is indeed a point where pi k is true. Let G be the disjoint union
of two isomorphic copiesof (W=� � ; R� ). For convenience,we will use [v]1 and
[v]2 to refer to the two distinct copiesof a world [v] 2 W=� � . SinceK is closed
under disjoint unions,G 2 K. De�ne the valuation V 0 for (W=� � ; R� ) by putting
V 0(p) = f v1 j v 2 V� (p)g for each proposition letter p occurring in ' , and for each
nominal k = 1; : : : ; n,

V 0(pi k ) =

(
f [v]1g if V� (pi k ) = f [v]g

f [w]2g if V� (pi k ) = ;

Intuitiv ely speaking,the only role of the seconddisjoint copy of (W=� � ; R� ) is
to provide enoughpoints so that we can make each pi k true somewhere,without
a�ecting the truth of ' at [w]. Indeed, a simple bisimulation argument shows
that (G; V 0); [w] j= ' [~i=~pi ].

By construction, V 0 assignsto each pi k a singletonset. Replacingeach pi k by
the correspondingi k , wethereforeobtain a hybrid modelagain,which furthermore
satis�es ' at [w]1. We concludethat ' is satis�able on K. 2

7.2.2. Cor ollar y. Let K be any frameclassclosed under generated subframes,
disjoint unions and isomorphiccopiesthat admits �ltr ation and that hasa master
modality. Let ' (i 1; : : : ; i n ) be any H-formula. Then ' is valid on K i� the modal
formula � ^

1� k� n
 2 � : ' [~i= ~pi ]

3 (pi k ^  ) ! 2 (pi k !  )
�

! ' [~i=~pi ]

is valid on K, where 3 is the master modality of K and � : ' [~i =~pi ]
is the �ltr ation

set of : ' [~i=~pi ].
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7.3 From H(@) to M in case of a master modalit y
In order to translate H(@)-formulas into modal formulas, we will needto make
use of an extra modality. Let p3 be a new modality. For every frame classK,
let Exp1(K) be the result of expanding the frames in K with an extra binary
relation. More precisely, let Exp1(K) = f (W; (R3 )3 2 mod ; R p3 ) j (W; (R3 )3 2 mod) 2
K and R p3 � W � Wg.

For an H(@)-formula ' (i 1; : : : ; i n ), let ' [~i=~pi ; @i = p3 (pi ^ �)] denotethe formula
obtained from ' by uniformly replacingeach nominal i k by distinct new proposi-
tion letter pi k , and replacing each satisfaction operator @i k (�) by p3 (pi k ^ �). We
will use p3 � 1 as a shorthand for  _ p3  and p2 � 1 as a shorthand for  ^ p2  .

7.3.1. Theorem. Let K be a frame classclosed under generated subframesthat
admits �ltr ation and that has a master modality. Let ' be any H(@)-formula in
@-normal form (cf. De�nition 3.3.1). Then ' is satis�able on K i� the modal
formula

' � = ' [~i=~pi ; @i = p3 (pi ^ �)] ^
^

1� k� n

p3 pi k ^

^

1� k� n
 2 �

�
p3 � 1 3 (pi k ^  ) ! p2 � 1 2 (pi k !  )

�

is satis�able on Exp1(K), where 3 is the master modality of K and � is the �ltr a-
tion set of the formula

V
f � [~i=~pi ] j � 2 Sub(' ) and � contains no @-operatorsg.

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

[) ] Suppose (W; R3 ; V ); w j= ' with (W; R3 ) 2 K. Let R p3 be the total
relation on the domain of F, and let V 0 be any valuation that agreeswith V
on all proposition letters occurring in ' , and such that V 0(pi k ) = V(i k) for each
nominal i k . Then, clearly, (W; R3 ; R p3 ; V 0); w j= ' [~i=~pi ; @i = p3 (pi k ^ �)]. The truth
of the remainderof ' � follows directly from the construction of the model.

[( ] SupposeM ; w j= ' � with M = (F; V) and F = (W; R; R0) 2 Exp1(K). Let
F0 = (W; R) and let M 0 = (F0; V ). Note that F0 2 K. Next, let N be submodel
of M 0 generatedby f wg [ f v 2 W j wR0vg. By the truth of the secondconjunct
of ' � at (M ; w), every pi k is true somewherein N. By the truth of the third
conjunct of ' � at (M ; w), any two points in N that satisfy the samepi k agreeon
all formulas in � (recall that no formula in this set contains any p3 -modality).
SinceN is a generatedsubmodel of M 0, we alsohave that N is basedon a frame
in K.

SinceK admits �ltration, there existsa model N � = (W� ; R� ; V� ) basedon a
frame in K, such that for all points v in N and formulas  2 �, N � ; [v] j=  i�
N; v j=  .
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Claim 1: pi k is true at preciselyoneworld in N � (for k = 1; : : : ; n).

Pro of of claim: As weobservedabove,pi k is true at someworld v of N. Since
pi k 2 �, it follows that N � ; [v] j= pi k . As for uniqueness,supposeN � ; [v] j= pi k

and N � ; [v0] j= pi k . Then N; v j= pi k and N; v0 j= pi k . As we noted above, this
implies that (N; v) and (N; v0) agreeon all formulas in �. Thus, by de�nition,
[v] = [v0]. a

By the above claim, we can considerN � to be a hybrid model. We extend the
valuation of N � to the nominalsi 1; : : : ; i n , by letting N � ; [v] j= i k i� N � ; [v] j= pi k .

Claim 2: The following holds for all � 2 Sub(' ) not containing any @-
operators, and for k = 1: : : n.

1. N � ; [w] j= � i� M ; w j= � [~i=~pi ]

2. N � ; [w] j= @i k � i� M ; w j= p3 (pi k ^ � [~i=~pi ])

Pro of of claim: 1. By construction, N � ; [w] j= � i� N � ; [w] j= � [~i=~pi ].
By the de�nition of �ltration, N � ; [w] j= � [~i=~pi ] i� N; w j= � [~i=~pi ]. By
invarianceunder generatedsubmodels,N; w j= � [~i=~pi ] i� M ; w j= � [~i=~pi ].

2. First, suppose N � ; [w] j= @i k � . Then there is a point [v] such that
N � ; [v] j= i k ^ � , hence N � ; [v] j= pi k ^ � [~i=~pi ]. Since pi k 2 � and
� [~i=~pi ] 2 �, it follows that N; v j= pi k ^ � [~i=~pi ]. By invariance under
generatedsubmodels, M ; v j= pi k ^ � [~i=~pi ]. By the truth of the sec-
ond conjunct of ' � at (M ; w), there is an R0-successoru of w such that
M ; u j= pi k . By the truth of the third conjunct of ' � at (M ; w), and the
fact that v and u are both elements of the generatedsubmodel N, we
have that M ; u j= � [~i=~pi ]. Hence,M ; w j= p3 (pi k ^ � [~i=~pi ]).
Conversely, suppose M ; w j= p3 (pi k ^ � [~i=~pi ]). Then there is an R0-
successoru of w such that M ; u j= pi k ^ � [~i=~pi ]. By invariance under
generatedsubmodels, it follows that N; u j= pi k ^ � [~i=~pi ]. Hence,by the
de�nition of �ltration, N � ; [u] j= pi k ^ � [~i=~pi ]. Hence,N � ; [w] j= @i k � . a

Since' is in @-normalform, it is a Booleancombination of formulas of the form
� or @i � , where� is a subformula of ' not containing any satisfactionoperators.
Hence,Claim 2 togetherwith a simpleinduction argument yield that N � ; [w] j= '
i� M ; w j= ' [~i=~pi ; @i = p3 (pi ^ �)]. Hence,N � ; [w] j= ' . 2

7.3.2. Cor ollar y. Let K be a frame class closed under generated subframes
that admits �ltr ation and that hasa master modality. Let ' be any hybrid H(@)-
formula in @-normal form. Then ' is valid on K i� the modal formula

� ^

1� k� n

p3 pi k ^
^

1� k� n
 2 �

� p3 � 1 3 (pi k ^  ) ! p2 � 1 2 (pi k !  )
� �

! ' [~i=~pi ; @i = p3 (pi ^ �)]
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is valid on Exp1(K), where 3 is the master modality of K and � is the �ltr ation
set of the formula :

V
f � [~i=~pi ] j � 2 Sub(' ) and � contains no @-operatorsg.

7.4 From H to M in case of shallow axioms
Not many frame classeshave a master modality. In particular, the classof all
frames does not have the master modality. In this section, we will provide a
translation that works for frameclassesde�ned by shallow modal formulas. Recall
that a modal formula is shallow if every occurrenceof a proposition letter is in
the scope of at most onemodal operator.

Before we give the proof in full generality, we will �rst consider the most
simple case,namely the classof all frames. In what follows, we will assumethat
mod is �nite, and we will useh[i  as a shorthand for

W
3 2 mod 3  and we will

use [[ ] as a shorthand for
V

3 2 mod 2  . Furthermore, we will useh[i � n  as a
shorthand for  _ h[i  _ h[ih[i  _ � � � _ h[i n  , and we will use [[ ]� n  as a
shorthand for  ^ [[ ] ^ [[ ][[ ] ^ � � � ^ [[ ]n  .

7.4.1. Theorem. An H-formula ' (i 1; : : : ; i n ) is satis�able i� the modal formula

' � = ' [~i=~pi ] ^
^

1� k� n

 2 Sub(' [~i= ~pi ])

�
h[i � md(' )(pi k ^  ) ! [[ ]� md(' )(pi k !  )

�

is satis�able.

Pro of: The left to right implication is easyto prove. Now supposethat ' � is
satis�able. Let M ; w j= ' � , with M = (F; V) and F = (W; (R3 )3 2 mod). Without
lossof generality, wecanassumethat F is generatedby w. For every point v 2 W,
let dF(v) be the minimal number of

� S
3 2 mod R3

�
-steps in which v is reachable

from the root w. Considerthe equivalencerelation � Sub(' [~i= ~pi ])
. Two worlds stand

in this equivalencerelation if they satisfy the samesubformulas of ' [~i=~pi ]. For
any � Sub(' [~i= ~pi ])

-equivalenceclass[v], choosea representativ e f [v] 2 [v] such that
for any v0 2 [v] we have dF(f [v]) � dF(v0). Note that while f [w] = w, these
representativ es are in generalnot unique. Also note that for every v 2 W and
 2 Sub(' [~i=~pi ]), M ; v j=  i� M ; f [v] j=  .

Let W 0 = f f [v] j v 2 Wg. De�ne the relation R p3 (3 2 mod) on W 0 by
putting f [u]R p3 f [v] i� there is a v0 2 [v] with f [u]R3 v0. De�ne a valuation V 0 on
W 0by letting f [w] 2 V 0(p) i� w 2 V(p) for all p 2 Sub(' [~i=~pi ]). Let F0 = (W 0; R0)
and M 0 = (F0; V 0).

Claim 1: For any  2 Sub(' [~i=~pi ]) and a point v 2 W, M ; f [v] j=
 i� M 0; f [v] j=  

Pro of of claim: By the induction on the complexity of  . If  is a propo-
sition letter, then the claim holds by the de�nition of V 0. The Booleancases
are obvious. Finally, let  = 3 � .
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[) ] Supposethat M ; f [v] j= 3 � . Then there is a point u 2 W such that
f [v]R3 u and M ; u j= � . Since� 2 Sub(' [~i=~pi ]) and u � Sub(' [~i= ~pi ])

f [u],
we have that M ; f [u] j= � . By the induction hypothesis, it follows that
M 0; f [u] j= � . Finally, we have that f [v]R p3 f [u], by the de�nition of R p3 .
Hence,M 0; f [v] j= 0 3 � .

[( ] Suppose that M 0; f [v] j= 3 � . Then there is an f [u] 2 W 0 such that
f [v]R p3 f [u] and M 0; f [u] j= � . By the induction hypothesis,M ; f [u] j= � .
Also, by the de�nition of R p3 , there must be a u0 2 [u] such that f [v]R3 u0.
Since� 2 Sub(' [~i=~pi ]) and u0 � Sub(' [~i= ~pi ])

f [u], it follows that M ; u0 j= � .
We concludethat M ; f [v] j= 3 � . a

Let usde�ne dF0 similar to dF. Note that F0neednot bepoint-generatedanymore.
For worlds f [v] 2 W 0 that are not reachable from f [w] = w, let dF0(f [v]) = 1 .

Claim 2: dF(f [v]) � dF0(f [v]), for all v 2 W

Pro of of claim: If dF0(f [v]) = 1 , the claim obviously holds. Otherwise, the
proof proceedsby induction on dF0(f [v]). The basecase,with dF0(f [v]) = 0,
only applies if f [v] = w, in which casethe claim clearly holds. Next, suppose
dF0(f [v]) = n + 1. By de�nition, there must be a path of the form

f [w] = w
R0

3 1� ! � � �
R0

3 n� ! f [u]
R0

3 n +1� ! f [v]

It followsthat dF0(f [u]) � n, andhenceby the induction hypothesis,dF(f [u]) �
dF0(f [u]) � n. Since f [u]R0

3 n +1
f [v], by the de�nition of R0

3 n +1
we have that

there is a v0 2 [v] such that f [u]R3 n +1 v0. This implies that dF(v0) � n + 1. By
the de�nition of f , weknow that dF(f [v]) � dF(v0), becausev0 2 [v]. Therefore,
dF(f [v]) � n + 1. a

Claim 3: For all k = 1: : : n, there is at most one world f [v] 2 W 0 such that
dF0(f [v]) � md(' ) and M 0; f [v] j= pi k .

Pro of of claim: Suppose M 0; f [v] j= pi k and M 0; f [u] j= pi k , with
dF0(f [v]); dF0(f [u]) � md(' ). By Claim 2, dF(f [v]); dF(f [u]) � md(' ). Further-
more,M ; f [v] j= pi k and M ; f [u] j= pi k . By our initial assumption,M ; w j= ' � ,
hencef [v] � Sub(' ) f [u], which implies that f [v] = f [u]. a

From Claim 1, we immediately deducethat M 0; w j= ' [~i=~pi ]. The valuation of
pi 1 : : : pi n can be restricted to the worlds with depth � md(' ) without a�ecting
the truth of ' [~i=~pi ] at w. In this way, by Claim 3, we make surethat every pi k is
true at at most oneworld. Finally, applying the sameargument asin the proof of
Theorem7.2.1, we concludethat the original hybrid formula ' is satis�able. 2
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We will now proceedto the generalcase,for frame classesthat are de�ned
by �nitely many shallow formulas, or, equivalently by a single shallow formula.
Recall that a modal formula is closedif it contains no proposition letters.

7.4.2. Theorem. Let K be a frameclassde�ned by a shallow modal formula  K .
Then an H-formula ' (i 1; : : : ; i n ) is satis�able on K i� the modal formula

' � = ' [~i=~pi ] ^
^

1� k� n
 2 �

�
h[i � md(' )(pi k ^  ) ! [[ ]� md(' )(pi k !  )

�

is satis�able on K, where � consists of all subformulasof ' [~i=~pi ] plus all closed
subformulasof  K .

Pro of: We usethe sameconstruction as in the proof of Theorem7.4.1, but now
we usea richer �ltration set, that includesalso all closedsubformulas of  K . It
su�ces to show that the constructed frame F0 is in K. Let V be a valuation for
F0, and let x 2 W 0 such that (F0; V ); x j= ' . De�ne V 0 such that v 2 V 0(p) i�
f [v] 2 V(p). We claim that for all shallow axioms � of L and for all v 2 W,
(F; V 0); f [v] j= � i� (F0; V ); f [v] j= � .

This, we prove by induction on � . Note that � is shallow, and hencewe may
assumethat � is generatedby the following recursive de�nition:

� ::= > j p j : � j � 1 ^ � 2 j 3  , where is any Booleancombination
of proposition letters and closedformulas (i.e., formulascontaining no
proposition letters).

The only non-trivial casein the induction is when � is of the form 3  where  
is a Booleancombination of proposition letters and closedformulas. In this case,
we reasonas follows.

[) ] Suppose(F; V 0); f [v] j= 3  . Then there is a u 2 W such that f [v]R3 u
and (F; V 0); u j=  . By the de�nition of V 0 and the fact that all closed
subformulas of  are in the �ltration set, it follows that (F0; V ); f [u] j=  .
By de�nition of R p3 , f [v]R p3 f [u]. Hence,(F0; V ); f [v] j= 3  .

[( ] Suppose (F0; V ); f [v] j= 3  . Then there is an f [u] 2 W 0 such that
(F0; V ); f [u] j=  and f [v]R p3 f [u]. By de�nition of R p3 , there is a u0 2 [u]
such that f [v]R3 u0. By the de�nition of V 0 and the fact that all closed
subformulas of  are in the �ltration set, it follows that (F; V 0); u0 j=  .
Hence,(F; V 0); f [v] j= 3  . 2

Note that the length of ' � is in general exponential in the length of ' , but
polynomial in caseof uni-modal languages.
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7.4.3. Cor ollar y. Let K be a frame classde�ned by a shallow modal formulas
 K . Then a H-formula ' (i 1; : : : ; i n ) is valid on K i�

' � =
^

1� k� n
 2 �

�
h[i � md(' )(pi k ^  ) ! [[ ]� md(' )(pi k !  )

�
! ' [~i=~pi ]

is valid on K, where � consists of all subformulasof : ' [~i=~pi ] plus all closed
subformulasof  K .

7.5 From H(@) to M in case of shallow axioms
In order to translate H(@)-formulas to modal formulas, we again needto make
use of an extra modality. We follow the samenotation conventions as in the
previoustwo sections.

7.5.1. Theorem. Let K be a frameclassde�ned by a shallow modal formula  K .
Let ' be any H(@)-formula in @-normalform. Then ' is satis�able on K i� the
modal formula

' � = ' [~i=~pi ; @i = p3 (pi ^ �)] ^
^

1� k� n

p3 pi k ^

^

1� k� n
 2 �

�
p3 � 1h[i � md(' )(pi k ^  ) ! p2 � 1[[ ]� md(' )(pi k !  )

�

is satis�able on Exp1(K), where � consistsof the subformulasof ' [~i=~pi ] containing
no satisfaction operators plus the closed subformulasof  K .

Pro of: For simplicity, we only prove the casefor uni-modal logics. The proof
generalizesstraightforwardly to the generalcase.

[) ] Suppose (W; R3 ; V ); w j= ' with (W; R3 ) 2 K. Let R p3 be the total
relation on the domain of F, and let V 0 be any valuation that agreeswith V
on all proposition letters occurring in ' , and such that V 0(pi k ) = V(i k) for each
nominal i k . Then, clearly, (W; R3 ; R p3 ; V 0); w j= ' [~i=~pi ; @i = p3 (pi k ^ �)]. The truth
of the remainderof ' � follows directly from the construction of the model.

[( ] SupposeM ; w j= ' � with M = (F; V) and F = (W; R; R0) 2 Exp1(K). Let
F0 = (W; R) and let M 0 = (F0; V ). Note that F0 2 K. Next, let N be submodel
of M 0 generatedby f wg [ f v 2 W j wR0vg. By the truth of the secondconjunct
of ' � at (M ; w), every pi k is true somewherein N. By the truth of the third
conjunct of ' � at (M ; w), any two points in N that satisfy the samepi k agreeon
all formulas in � (recall that no formula in this set contains any p3 -modality).
SinceN is a generatedsubmodel of M 0, we alsohave that N is basedon a frame
in K. From here,we proceedas in the proof of Theorem7.4.2. 2
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7.5.2. Cor ollar y. Let K be a frame classde�ned by a shallow modal formula
 K . Let ' be any H(@)-formula in @-normalform. Then ' is valid on K i� the
modal formula

� ^

1� k� n

p3 pi k ^
^

1� k� n
 2 �

� p3 � 1h[i � md(' )(pi k ^  ) ! p2 � 1[[ ]� md(' )(pi k !  )
� �

! ' [~i=~pi ; @i = p3 (pi ^ �)]

is valid on Exp1(K), where � consists of the subformulasof : ' [~i=~pi ] containing
no satisfaction operators plus the closed subformulasof  K .

This concludesthe chapter. The translations that were introduced in this
chapter will be put to usein the next chapter.





Chapter8

Transfer

It is a natural question to ask which properties of modal logics are preserved
when nominals, satisfaction operators and/or the global modality are added to
the language. For example, given that the basic modal languagehas uniform
interpolation with respect to the classof all frames, does it follow that H and
H(@) have uniform interpolation with respect to the classof all frames? Given
that PDL has an ExpTime -completesatis�abilit y problem, does it follow that
PDL with nominalsalsohasan ExpTime -completesatis�abilit y problem? Such
questionsare addressedin this chapter.

As far as the author is aware, Gargov and Goranko [46] were the �rst this
question explicitly. They ask, for instance, whether the �nite model property
and decidability transfer.

Areceset al. [5] showed that whennominalsareaddedto the basictenselogic,
the complexity of the satis�abilit y problem increasesfrom PSpace to ExpTime .
This can be seenas a �rst negative transfer results. In Chapter 6 of this thesis,
we saw that H doesnot have the Beth property relative to the classof all frames.
Since the basic modal languagesdoes have the Beth property relative to the
classof all frames,and hencethis givesus a secondnegative transfer result. In
Section 8.1, we will show that, likewise,decidability, the �nite model property,
complexity and Kripk e completenessdo not transfer.

Somepositiveresultsareobtainedin Section8.2, whereweshow that complex-
it y, (uniform) interpolation over proposition letters, and completenesstransfer for
a particular classof logics. The proofs make useof the translations provided in
the previouschapter.

Someof the results reported in this chapter are taken from [15].

8.1 Negative results
Areces,Blackburn and Marx [5] show that complexity doesnot transfer in general
(under the usual complexity-theoretic assumptions). Let Kt be the classof bi-
modal frames(W; R1; R2) on which R1 and R2 are each othersconverse(as in the
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basic tenselogic).

8.1.1. Pr oposition ([ 5]). H (@)-satis�ability for Kt is ExpTime -complete.

Note that the corresponding modal problem is only PSpace-complete [21]. A
uni-modal exampleof non-transferof complexity is the following. Let KB be the
classof symmetric uni-modal frames.

8.1.2. Pr oposition. H-satis�ability for KB is ExpTime -complete.

Pro of: For any modal formula ' , let ' 0 = i ^ 2 : i ^ 22 (: i ! 3 i ) ^ 2 ' : i , where
i is any nominal and ' : i is obtained from ' by relativising all modalities with
: i . One can easily seethat ' 0 holds at a world w in a symmetric model M i� '
holds globally in the submodel of M generatedby w, minus the world w itself. It
follows that, on symmetric frames,' 0 is satis�able i� ' is globally satis�able. The
global satis�abilit y problem for modal formulas on the classof symmetric frames
is ExpTime -complete[33]. Hence,the satis�abilit y problem for H on the class
of symmetric frames is ExpTime -hard. That the problem is inside ExpTime
follows from the fact that conversePDL with nominals is in ExpTime [36] 2

Again, the corresponding modal problem is only PSpace-complete[33].
Next, we will show that decidability and the �nite model property do not

transfer either. Considerthe bi-modal languagewith modalities 3 1 and 3 2, and
let � consistof the following modal Sahlqvist axioms.

V
1� k� 3 3 1pk !

W
1� k<l � 3 3 1(pk ^ pl ) (at most 2 R1-successors)V

1� k� 4 3 13 1pk !
W

1� k<l � 4 3 13 1(pk ^ pl ) (at most 3 two-stepR1-successors)
p ! 2 23 2p (R2 is symmetric)

8.1.3. Pr oposition. K M � has the �nite model property and is decidable.

Pro of: First, considerthe uni-modal logic axiomatized by the �rst two axioms.
This logic is completefor a classof framesthat is closedunder taking subframes,
and it has the boundedwidth property: no point has more than two successors.
It follows that this logic has the �nite model property and is decidable. Second,
considerthe uni-modal logicgivenby the last axiom. This logic, which is complete
for the class of symmetric frames, has the �nite model property [31] and its
satis�abilit y problem is complete for PSpace [33]. Since decidability and the
�nite model property are preserved under taking fusions[45], the result follows.

2

8.1.4. Pr oposition. K H � is undecidableand lacks the �nite model property.
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Table 8.1: Axioms of � usedto disprove transfer of completeness.

3 13 1p ! 3 1p
3 1p ^ 3 1q ! 3 1(p ^ 3 1q) _ 3 1(q^ 3 1p) _ 3 1(p ^ q)
3 1p ! 3 1(p ^ : 3 1p)
3 2p ! 2 2p
3 3p ! 2 3p
p ! 2 23 1p
3 13 2p _ 3 23 1p ! p _ 3 p
3 3p ! 3 1p
2 32 3?
2 32 12 3?
3 13 3p ^ 3 3q ! 3 13 3(p ^ 3 q)

Pro of: For any uni-modal formula ' with modality 3 1, let ' � = i ^ 2 2: i ^
2 22 13 2i ^ 2 2' : i . One can easily seethat ' 0 holds at a world w in a model M
i� ' holds globally in the submodel of M generatedby the set of R2-successors
of w along R1, minus the world w itself. It follows that ' 0 is satis�able i� '
is globally satis�able. Global satis�abilit y of modal formulas on the classK 23

is undecidable[91]. It follows that K H � is undecidable,and hence,since it is
�nitely axiomatizable, that it lacks the �nite model property. 2

Via the Thomasonsimulation [70, Chapter 6], this canbe turned into a uni-modal
example. We leave out the technical details. Incidentally, Proposition 8.1.4also
shows that the �nite model property and decidability do not transfer under tak-
ing fusionsof hybrid logics,sincethe samearguments as in the proof of Proposi-
tion 8.1.3show that the corresponding hybrid logicshave the �nite model prop-
erty and are decidable. Transfer of complexity under fusionsof hybrid logics is
actually an interesting topic by itself, and hasbeeninvestigatedin [48].

Finally, we will show that Kripk e completenessdoes not transfer in general
from a modal logic K M � to the hybrid logicsK +

H �, K +
H (@)� and K +

H (E) �.

8.1.5. Theorem. There is a set of modal formulas � suchthat K M � is Kripke
completebut K +

H � , K +
H (@)� and K +

H (E) � are not.

Pro of: Let � be the set of axioms given in Table 8.1. Kracht [70, Section9.6]
proves the following, in order to establish that Kripk e completenessdoes not
transfer under addition of a global modality.

1. K M � is Kripk e complete.

2. Fr(�) j= A(3 3> ! 3 23 3> ) ! : 3 3>
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3. A(3 3> ! 3 23 3> ) ^ 3 3> is satis�able on a discretegeneral�-frame

We introduce a fourth modality. Let � 0 = � [ f p ! 2 43 4pg. Since Kripk e
completenesstransfers under fusions, K M � 0 is Kripk e complete. Let � be the
formula

i ^ 3 i ^
^

1� k� 3

(2 k3 4i ) ^ 2 4(3 3> ! 3 23 3> ) ! 2 4(: 3 3> )

Let F0 be the expansionof F with a fourth relation, viz. the total relation on the
domain of F (it is clear that F0 satis�es the requirements of a generalframe with
respect to the fourth relation). Also, it is easilyseenthat Fr(� 0) j= � , that : � is
satis�able on F0 and that F0 j= � 0. It follows by Theorem5.3.16that K +

H � 6j= � ,
K +

H (@)� 6j= � and K +
H (E) � 6j= � . 2

8.2 Positive results for logics admitting �ltration
A note on the complexit y of fusions

In Chapter 7, we showed that the satis�abilit y problem of H(@)-formulas on
certain frame classesK can be reduced to the satis�abilit y problem of modal
formulas on the classExp1(K), which is the fusion of K with the classof all uni-
modal frames. While many propertiesof logicsarepreservedunder taking fusions,
complexity is in generalnot preserved. However, the translation in questionuses
only a very restricted classof fusion formulas. Call a modal formula of the fusion
language(i.e., possibly containing the modality p3 ) very simple if no occurrence
of p3 is in the scope of any other modal operator, including p3 itself (and p2 ,
which is shorthand for : p3 : ). We will show that satis�abilit y of very simple
fusion formulas on Exp1(K) is reducible to satis�abilit y of modal formulas on
K. To make this precise,we usenon-deterministic polynomial time conjunctive
reductions, as de�ned in Appendix B.

8.2.1. Lemma. Let K be a class of frames. Then satis�ability of very simple
fusion formulas on Exp1(K) is non-deterministic polynomial time conjunctive re-
ducibleto satis�ability of modal formulas on K.

Pro of: Let a very simpleformula ' of the fusionlanguagebegiven. By de�nition,
' is generatedby the following recursive de�nition:

 ::= � j p3 � j :  j  1 ^  2,
where� is any formula not containing the p3 modality.

Let � be the set of all subformulas � of ' that contain no occurrencesof p3 .
In order to test whether ' is satis�able on Exp1(K), we perform the following
procedure.



8.2. Positiveresultsfor logicsadmitting �ltration 123

1. Non-deterministically choosesubsetsS1; S2 � �. Intuitiv ely, the formulas
in S1 are supposedto be the onesthat are true in the actual world, whereas
the formulas in S2 are supposedto be the onesthat are true in someR p3 -
successorof the actual world.

2. Check in polynomial time whether ' holds under the chosen interpreta-
tion of the subformulas of ' given by S1; S2. This can be done using any
polynomial model checking algorithm for propositional logic.

3. Check if the choicesof S1; S2 are consistent with respect to K: (1) Check
K-satis�abilit y of

V
� 2 S1

� ^
V

� 2 � nS1
: � , and (2) for each � 2 S2, check

the K-satis�abilit y of � ^
V

� 02 � nS2
: � 0. All in all, the number of tests is

polynomial in the length of ' , and each test involves a formula of length
polynomial in the length of ' .

If ' is satis�able on Exp1(K), then clearly, S1 and S2 can be picked in such a way
that all tests in 2 and 3. succeed.Conversely, if thesetests all succeed,then a
model for ' basedon a frame in Exp1(K) is easily constructed. 2

The usual complexity classesNP , PSPace, (N) k-ExpTime and k-ExpSpace
(k > 0), are closedunder non-deterministic polynomial time conjunctive reduc-
tions.

Complexit y

As immediatecorollary of simulations introducedin the previoussection(together
with Lemma 8.2.1), we obtain the following.

8.2.2. Theorem. Let K be any frame class that satis�es one of the following
conditions.

1. K admits polynomial �ltr ation and hasa master modality.

2. K is uni-modal and de�ned by a shallow modal formula.

Then the satis�ability problemfor H on K is polynomially reducible to the satis-
�ability problemfor modal logic on K, and the satis�ability problemfor H(@) on
K is non-deterministic polynomial time conjunctive reducible to the satis�ability
problemfor modal logic on K.

8.2.3. Theorem. Let K be any frame class that admits polynomial �ltr ation.
Then the satis�ability problemfor H(E) is polynomially reducible to the satis�a-
bility problemfor M (E) on K.
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Interp olation

Recall that a modal logic admits simple �ltration if it admits �ltration and for
every formula ' we have � ' = Sub(' ). For logics admitting simple �ltration,
interpolation transfers.

8.2.4. Theorem. Let K be any frame classsatisfying one of the following con-
ditions:

(a) K hasa master modality and admits simple �ltr ation.
(b) K is de�ned by a shallow modal formula.

If modal logic has interpolation on K, then H and H(@) haveinterpolation over
proposition letters on K.

8.2.5. Theorem. Let K be any frameclassthat admitssimple�ltr ation. If M (E)
has interpolation on K, then H(E) has interpolation over proposition letters on
K.

Pro of: By way of example,we prove Theorem 8.2.4(a) for the languageH. All
other casesare proved similarly (using the fact that interpolation transfersunder
fusion and replacingoccurrencesof p3 in the obtained interpolant by

W
i 2 nom @i (�)

wherenecessary).
Suppose K j= ' !  , where ' !  is a H-formula containing nominals

i 1; : : : ; i n . Let � = Sub(: (' !  )[~i=~pi ]) By Corollary 7.2.2,

K j=
� ^

1� k� n
� 2 �

�
3 (pi k ^ � ) ! 2 (pi k ! � )

� �
! (' [~i=~pi ] !  [~i=~pi ])

The antecedent of this formula says that for all 1 � k � n, if two worlds w and
w0 in the model both satisfy pi k , then w and w0 satisfy exactly the sameformulas
in � . Note that every formula in � is a Booleancombination of subformulas of
' [~i=~pi ] and  [~i=~pi ]. Hence,to say that w and w0 satisfy the sameformulas in � is
equivalent to saying that they satisfy the samesubformulasof ' [~i=~pi ] and  [~i=~pi ].
Therefore,

K j=
� ^

1� k� n

� 2 Sub(' [~i= ~pi ]) [ Sub( [~i= ~pi ])

�
3 (pi k ^ � ) ! 2 (pi k ! � )

� �
! (' [~i=~pi ] !  [~i=~pi ])

By somesimple syntactic manipulations, we obtain from this that

K j=
� ^

1� k� n

� 2 Sub(' [~i =~pi ])

3 (pi k ^ � ) ! 2 (pi k ! � )
�

^ ' [~i=~pi ] !

� ^

1� k� n

� 2 Sub( [~i= ~pi ])

3 (pi k ^ � ) ! 2 (pi k ! � )
�

!  [~i=~pi ]
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Let # be the modal interpolant for this implication. Note that, apart from
pi 1 ; : : : pi n , # only contains proposition letters that occur both in ' and in  .
By uniform substitution of formulas for proposition letters, we obtain that

K j=
� ^

1� k� n
� 2 Sub(' )

3 (i k ^ � ) ! 2 (i k ! � )
�

^ ' ! #[~pi =~i ]

and
K j= #[~pi =~i ] !

� ^

1� k� n
� 2 Sub( )

3 (i k ^ � ) ! 2 (i k ! � )
�

!  

Since3 (i ^ � ) ! 2 (i ! � ) is valid for any i and � , it followsthat K j= ' ! #[~pi =~i ]
and K j= #[~pi =~i ] !  . Finally, as we mentioned above, all proposition letters
occurring in #[~pi =~i ] occur both in ' and in  . We concludethat #[~pi =~i ] is an
interpolant for ' !  . 2

Uniform interp olation

Let us de�ne uniform interpolation for hybrid logicsas follows.

8.2.6. Definition. Let L be oneof the languagesH; H(@); H(E), and let K be a
frameclass. L hasuniform interpolation over proposition letters on K if for each
formula ' and �nite set of proposition letters P � pr op(' ), there is a formula
' P suchthat

� pr op(' P ) � P, and

� For all formulas  , if pr op( ) \ pr op(' ) � P and nom( ) � nom(' ),
then j= K ' !  i� j= K ' P !  .

When restricted to modal formulas, this de�nition becomesthe usual de�nition
of uniform interpolation for modal logics[100, 49]. Note that, in contrast to what
one might expect, according to this de�nition the uniform interpolant ' P does
not apply in casethe consequent  contains nominalsnot occurring in ' .

8.2.7. Theorem. Let K be any frame classsatisfying one of the following con-
ditions:

(a) K hasa master modality and admits simple �ltr ation.

(b) K is de�ned by a shallow modal formula.

If modal logic has uniform interpolation on K then H and H(@) have uniform
interpolation over proposition letters on K
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8.2.8. Theorem. Let K be any frameclassthat admitssimple�ltr ation. If M (E)
hasuniform interpolation on K then H(E) hasuniform interpolation over propo-
sition letters on K.

Pro of: By way of example,we prove Theorem 8.2.7(a) for the languageH. All
other casesare proved similarly (using the fact that uniform interpolation trans-
fers under fusion and replacing occurrencesof p3 in the obtained uniform inter-
polant by

W
i 2 nom @i (�) wherenecessary).

Let ' be an H-formula with nominals i 1; : : : ; i n , and let P � pr op(' ). Let
P0 = P [ f pi 1 ; : : : ; pi k g. Let # be a uniform interpolant over P 0 of the modal
formula

' � = ' [~i=~pi ] ^
^

1� k� n

� 2 Sub(' [~i= ~pi ])

�
3 (pi k ^ � ) ! 2 (pi k ! � )

�

Weclaim that #[~pi =~i ] is a uniform interpolant of the H-formula ' over P. Consider
any hybrid formula  with pr op( ) \ pr op(' ) � P and nom( ) � nom(' ). We
will show that K j= ' !  i� K j= #[~pi =~i ] !  .

[) ] SupposeK j= ' !  . Let � = Sub(: (' !  )[~i=~pi ]), By Corollary 7.2.2,
we have that

K j=
� ^

1� k� n
� 2 �

�
3 (pi k ^ � ) ! 2 (pi k ! � )

� �
!

�
' [~i=~pi ] !  [~i=~pi ]

�

The sameargument as in the proof of Theorem8.2.4shows that

K j=
�

' [~i=~pi ] ^
^

1� k � n

� 2 Sub(' [ ~pi =~i ])

3 (pi k ^ � ) ! 2 (pi k ! � )
�

!

� ^

1� k � n

� 2 Sub( [ ~pi =~i ])

3 (pi k ^ � ) ! 2 (pi k ! � )
�

!  [~i=~pi ]

or, equivalently,

K j= ' � !
� ^

1� k � n

� 2 Sub( [ ~pi =~i ])

�
3 (pi k ^ � ) ! 2 (pi k ! � )

�
!  [~i=~pi ]

�

Since# is a uniform interpolant for ' � over P0, it follows that

K j= # !
� ^

1� k � n

� 2 Sub( [ ~pi =~i ])

�
3 (pi k ^ � ) ! 2 (pi k ! � )

�
!  [~i=~pi ]

�
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By uniform substitution of formulas for proposition letters, we obtain that

K j= #[~pi =~i ] !
� ^

1� k� n
� 2 Sub( )

�
3 (i k ^ � ) ! 2 (i k ! � )

�
!  

�

Since3 (i ^ � ) ! 2 (i ! � ) is valid for any i and � , it follows that K j=
#[~pi =~i ] !  .

[( ] SupposeK j= #[~pi =~i ] !  . Since# is a uniform interpolant for ' � , K j=
' � ! #. It follows bu uniform substitution that

K j=
�

' ^
^

1� k� n
� 2 Sub(' )

3 (i k ^ � ) ! 2 (i k ! � )
�

! #[~pi =~i ]

Sincej= 3 (i ^ � ) ! 2 (i ! � ) for any i and � , it follows that K j= ' !
#[~pi =~i ], and therefore,K j= ' !  . 2

It is known that the modal logicsK , GL , S5 and Grz have uniform interpolation
(see[100] and [49]). From Theorem 8.2.7 and the fact that GL and S5 admit
simple�ltration, it follows immediately that the correspondingH-logicsK H , S5H

and GL H haveuniform interpolation over proposition letters, aswell asthe H(@)-
logics K H (@), S5H (@) and GL H (@) (here, with S5H we mean the H-logic of the
frame classde�ned by S5, and similar for other logics). Grz does not admit
simple �ltration. Nevertheless,we will now show that the construction used in
the proof of Theorem8.2.7can be applied to Grz H and Grz H (@) as well.

8.2.9. Theorem. Grz H and Grz H (@) haveuniform interpolation over proposi-
tion letters.

Pro of: Grz admits �ltration in the following manner [23]:

For any formula ' , let � ' = Sub(f ' g[ f 3 (:  ^ 3  ) : 3  2 Sub(' )g).
For any model M = (W; R; V) basedon a Grz -frame F, let M � ' =
(W=� � '

; R� ' ; V� ' ), where [w]R� ' [v] if [w] = [v] or the following two
conditions hold:

1. for every 3  2 � ' , v j=  _ 3  implies w j= 3  , and

2. there exists 3  2 � ' with w j= 3  and v 6j= 3  .

Then M � ' is again basedon a (�nite) Grz -frame, and for all w 2 W
and  2 � ' , M � ' ; [w] j=  i� M ; w j=  .
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Now consideragain the proof of Theorem8.2.7. The crux of the proof lies in the
fact that the �ltration set Sub(: (' !  )) can be split up in two disjoint sets,
such that every formula in the �rst set contains only symbols that occur in ' ,
and every formula in the secondset contains only symbols that occur in  . As
we will now show, the sameholds for the �ltration set of Grz . To seethis, note
that

� : ( ' !  ) = Sub(f: (' !  )g [ f 3 (: � ^ 3 � ) j 3 � 2 Sub(: (' !  ))g)
= Sub(f: (' !  )g[

f 3 (: � ^ 3 � ) j 3 � 2 Sub(' )g [ f 3 (: � ^ 3 � ) j 3 � 2 Sub( )g)
= f: (' !  ); ' !  g [ Sub(' ) [ Sub(f 3 (: � ^ 3 � ) j 3 � 2 Sub(' )g)

[ Sub( ) [ Sub(f 3 (: � ^ 3 � ) j 3 � 2 Sub( )g)
= f: (' !  ); ' !  g [ � ' [ �  

Hence,every formula in � : ( ' !  ) is a Booleancombination of formulas in � ' and
�  . The sameargument asin the proof of Theorem8.2.7shows that H and H(@)
have uniform interpolation over proposition letters on the frame classde�ned by
Grz . 2

Completeness

The last topic that we will addressis transfer of Kripk e completeness:if K M �
is Kripk e complete, does it follow that K +

H �, K +
H (@)� and K +

H (E) � are Kripk e
complete? In Section8.1, we saw already that the answer is negative. However,
for the classof logics that we are consideringin this section, a positive answer
can be given. First, we needthree lemmas.

8.2.10. Lemma. For every H(@)-formula ' there is an H(@)-formula  in @-
normal form, suchthat K H (@) ` ' $  .

Pro of: Follows from Theorem3.3.2together with Corollary 5.4.2. 2

For a given sequenceof nominals i 1; : : : ; i n 2 nom, we will use@~i (�) as a short-
hand for

V
1� k� n @i k  . Semantically, @~i (�) can be seenas a modality, and more

preciselyasa box. Indeed,as the following lemmashows, the distribution axiom
and necessitationrule for this compound modality are derivable in K H (@).

8.2.11. Lemma. The following are derivablein K H (@), for any sequence of nom-
inals i 1; : : : ; i n 2 nom.

1. ` @~i (p ! q) ! @~i p ! @~i q

2. If ` ' then ` @~i ' .

Pro of: The �rst claim follows from Corollary 5.4.2sincej= @~i (p ! q) ! @~i p !
@~i q. As for the second,if ` ' , then by the Nec@ rule, ` @i k ' for k � n. It follows
that ` @~i ' . 2
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8.2.12. Lemma. If a modal logic K M � is completewith respect to a frameclass
K that hasa master modality 3 , then K H � ` 3 (i ! p) ! 2 (i ! p).

Pro of: Recall from the de�nition of having a mastermodality that 3  is short-
hand for ' ( ), for some �xed formula ' (p) containing no proposition letters
besidesp. Let n be the modal depth of ' , and let mod be the (�nite) set of
modalities occurring in ' . Then the following is holds.

K j= 3 p $
_

3 1 ;:::3 k 2 mod
k� n

3 1 � � � 3 kp

SinceK M � is completefor K and K H � extendsK M �, it follows that

` K H � 3 p $
_

3 1 ;:::3 k 2 mod
k� md(' )

3 1 � � � 3 kp

By de�nition, K H � j= (Nom). It follows by somesimple modal reasoningthat
K H � j= 3 (i ^ p) ! 2 (i ! p). 2

We are now ready to prove our transfer result for completeness.With Kripk e
completeness,we will mean weak completeness:a formula is consistent in the
logic i� it is satis�able on a frame in the frame classde�ned by the logic.

8.2.13. Theorem. If K M � is complete with respect to a frame class K that
admits �ltr ation and hasa master modality, then K H � and K H (@)� are complete
with respect to K.

8.2.14. Theorem. Let � be any set of modal formulas. If K M (E) � is Kripke
completeand admits �ltr ation, then K H (E) � is Kripke complete.

Pro of: We will give the proof Theorem 8.2.13for the languagesH and H(@).
The proof of Theorem8.2.14is similar.

� First, let us prove Theorem 8.2.13 for H . Let K be the classof frames
de�ned by �, and supposeK j= ' , for someH-formula ' (i 1; : : : ; i n ). Let
� = � : ' [~i =~pi ]

. By Corollary 7.2.2,

K j=
� ^

1� k� n
 2 �

3 (pi k ^  ) ! 2 (pi k !  )
�

! ' [~i=~pi ]

and hence,by Kripk e completeness,

K M � `
� ^

1� k� n
 2 �

3 (pi k ^  ) ! 2 (pi k !  )
�

! ' [~i=~pi ]
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SinceK H � extendsK M �, we have that

K H � `
� ^

1� k� n
 2 �

3 (pi k ^  ) ! 2 (pi k !  )
�

! ' [~i=~pi ]

By closureunder substitution,

K H � `
� ^

1� k� n
 2 �

3 (i k ^  ) ! 2 (i k !  )
�

! '

By Lemma 8.2.12and closureunder uniform substitution, K H � ` 3 (i ^
� ) ! 2 (i ! � ) for all i and � , hencewe concludethat K H � ` ' .

� The proof of Theorem 8.2.13 for H(@) is more involved. Let K be the
classof framesde�ned by �, and supposeK j= ' , for someH(@)-formula
' (i 1; : : : ; i n ). By Lemma8.2.10, wemay assumethat ' is in @-normalform.
By Corollary 7.3.2,

Exp1(K) j=
� ^

1� k� n

p3 pi k ^
^

1� k� n
 2 �

�
( p3 ) 3 (pi k ^  ) ! ( p2 ) 2 (pi k !  )

� �

! ' [~i=~pi ; @i = p3 (pi ^ �)]

Sincecompletenesstransfersunder fusion and K M � is complete,the fusion
logic K M � � K M is frame complete,and hence

K M � � K M `
� ^

1� k� n

p3 pi k ^
^

1� k� n
 2 �

�
( p3 ) 3 (pi k ^  ) ! ( p2 ) 2 (pi k !  )

� �

! ' [~i=~pi ; @i = p3 (pi ^ �)]

Replacingthe proposition letters of the form pi k by the corresponding nom-
inal i k and replacing subformulas of the form p3  by @~i  , we obtain via
Lemma 8.2.11that

K H (@)� `
� ^

1� k� n

@~i i k ^
^

1� k� n
 2 �

�
(@~i ) 3 (i k ^  ) ! (: @~i : ) 2 (i k !  )

� �

! ' [@i =@~i (i ^ �)]

From this, it easily follows that K H (@)� ` ' . 2

Transfer of completenessfor logics axiomatized by shallow modal formulas can
be obtained in the sameway, but already follows from Corollary 5.4.2.



Part II

More expressive languages

131





Chapter9

The bounded fragment and H(@; #)

The boundedfragment is a fragment of �rst-order logic containing formulas that
useonly a restricted form of quanti�cation. More precisely, a �rst-order formula
is bounded if it is built up from atomic formulas using the Boolean connectives
and boundedquanti�ation of the form 9x:(Rtx ^ ' ) and 8x:(Rtx ! ' ), with t a
term not containing the variable x.

Bounded formulas have been consideredin the literature already for a long
time. In set theory, where bounded quanti�ers are of the form 9x:(x 2 y ^ ' )
and 8x:(x 2 y ! ' ), the boundedfragment was introducedin 1965by Levy [75],
under the name� 0. � 0-formulasof settheory havethe desirableproperty of being
set-theoreticallyabsolute,meaningthat whethera � 0-formula ' (x1; : : : ; xn ) holds
of setsa1; : : : ; an is independent of the universeof set theory in which a1; : : : ; an

reside(cf. for instance[7]).
Bounded formulas have also been consideredin the context of arithmetic,

whereboundedquanti�ers are of the form 9x:(x � y ^ ' ) and 8x:(x � y ! ' ).
In fact, there is a separate�eld of research called bounded arithmetic, which is
connectedto complexity theory (in particular, to the polynomial hierarchy) and
to propositional proof theory [27].

Around 1966,Fefermanand Kreisel [40, 39] characterizedthe boundedfrag-
ment as the generatedsubmodel invariant fragment of �rst-order logic. More
precisely, they showed that a �rst-order formula is equivalent to a boundedfor-
mula i� it is invariant under generatedsubmodels. Moreover, it was shown in
[39] by meansof a cut-free sequent calculus that the bounded fragment has in-
terpolation.

The boundedfragment is alsonatural to considerfrom a modal logic perspec-
tiv e. In the prefaceof their book, Blackburn et al. [21] write:

Slogan2: Modal languagesprovide an internal, local perspective on
relational structures.

It seemsthat the invarianceunder generatedsubmodels is preciselywhat makes
modal formulas local. The boundedfragment can thereforebe seenas a natural

133
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generalizationof the modal language.Indeed,in the late ninetieshybrid logicians
independently invented a languagecalled H(@; #), that wassubsequently proved
to be a notational variant of the boundedfragment [55, 5]. Unaware of Feferman
and Kreisel's early results, Areces,Blackburn and Marx [5, 20] characterizedthe
expressivity of H(@; #) and proved that it has interpolation.

We already mentioned that the bounded fragment, and hence H(@; #), is
the generatedsubmodel invariant fragment of �rst-order logic. In Chapter 6,
another characterization was given: H(@; #) is the smallest extensionof H(@)
with interpolation. A third characterization will be given in Chapter 12, where
it will be shown that H(@; #) is preciselythe intersectionof �rst-order logic with
secondorder propositional modal logic.

In this chapter, we will improve known results concerningframe de�nabilit y,
interpolation, and Beth de�nabilit y for H(@; #). We alsosimplify the existing ax-
iomatizations of H(@; #), thus obtaining the �rst axiomatization of H(@; #) that
does not contain non-orthodox rules (i.e., rules with syntactic side conditions).
Finally, we provide a number of complexity results,which show that H(@; #) has
computational advantagesover L 1 . The completenessresults in Section9.4 are
taken from [19]. The complexity results in Section9.6 are taken from [29].

9.1 Syntax and semantics

The hybrid languageH(@; #) extendsH(@)with state variablesand the #-binder.
Intuitiv ely speaking,the state variablesrelate to �rst-order variablesin the same
way that nominal relate to �rst-order constants. The #-binder, like the �rst-
order quanti�ers, binds variables. It binds variables to the current world. For
example, the formula #x:3 x, which should read as \bind the variable x to the
current world and evaluate 3 x", expressesthat the current world is reexiv e,
i.e., M ; w j= #x:3 x i� (w; w) 2 R3 . Similarly, #x:3 #y:@x2 y expressesthat the
current world hasexactly oneR3 -successor.

Formally, let disjoint setspr op; nom; mod be given as before,and let svar
be a countably in�nite set of state variables. Then the formulas of H(@; #) are
given by the following recursive de�nition.

' ::= > j p j t j : ' j ' ^  j 3 ' j @t ' j #x:'

wherep 2 pr op, t 2 nom [ svar , 3 2 mod and x 2 svar . The interpretation
of a state variables will is an element of the domain of the model, and the #-
binder binds a variable to the world of evaluation. Formally, given a model
M = (W; (R3 )3 2 mod ; V ), an assignment for M is a function g : svar ! W.
Truth of a H(@; #)-formula is de�ned relative to a model, assignment and world,
as follows.
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Table 9.1: Standard translation and hybrid translation

STx (> ) = >
STx (p) = Pp x
STx (i ) = x = ci

STx (y) = x = y
STx (: ' ) = : STx (' )
STx (' ^  ) = STx (' ) ^ STx ( )
STx (3 ' ) = 9y:(R3 xy ^ STy(' ))
STx (@i ' ) = STy(' )[y=i]
STx (@y ' ) = STy(' )
STx (#y:' ) = STx (' )[y=x]

H T(> ) = >
H T(Ppt) = @t p
H T(R3 st) = @s3 t
H T(s = t) = @st
H T(: ' ) = : H T(' )
H T(' ^  ) = H T(' ) ^ H T( )
H T(9x:(Rtx ^ ' )) = @t 3 #x:H T(' )

H Tx (' ) = #x:H T(' )

where t is a term of the form ci or x, and t0 denotesi or x, respectively.

M ; g; w j= >
M ; g; w j= p i� w 2 V(p)
M ; g; w j= i i� w 2 V(i )
M ; g; w j= x i� w = g(x)
M ; g; w j= : ' i� M ; g; w 6j= '
M ; g; w j= ' ^  i� M ; g; w j= ' and M ; g; w j=  
M ; g; w j= 3 ' i� there is a v 2 W such that wR3 v and M ; g; v j= '
M ; g; w j= @i ' i� M ; g; v j= ' whereV(i ) = f vg
M ; g; w j= @x ' i� M ; g; g(x) j= '
M ; g; w j= #x:' i� M ; g[x := w]; w j= '

If ' is a sentenceof H(@; #) (i.e., a formula without free variables), then we will
simply leave out the assignment and say M ; w j= ' .

The modal depth of a H(@; #)-formula ' , denoted by md(' ), is de�ned as
on page 8, not counting satisfaction operators or #-binders (i.e., md(@i ' ) =
md(#x:' ) = md(' )). For instance,md(@i 3 #y:@i 2 y) is 2. It can be shown that,
roughly speaking, a H(@; #)-sentence of modal depth k, when evaluated at a
world w, can only seethe points in the model that are reachable from w or from
a node namedby a nominal, in at most k steps.

Recall the �rst-order correspondencelanguageL 1 de�ned in Section3.2. As
the standard translation ST given in Table 9.1 shows, H(@; #) is still a fragment
of L 1. In fact, this translation tells us a little bit more. Recall that a formula of
L 1 bounded if it is built up from atomic formulas using the Booleanconnectives
and bounded quanti�cation of the form 9x:(Rtx ^ ' ) or 8x:(Rtx ! ' ), where
t is a term distinct from the variable x. Then the translation STx maps every
H(@; #)-sentenceto a boundedformula of L 1 that hasx as its only freevariable.
A straightforward induction shows that for all H (@; #)-sentence' , modelsM and
worlds w, M ; w j= ' i� M j= STx (' ) [w] [53, 16].
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Not only doesevery H(@; #)-sentencecorrespond to a boundedformula of L 1,
the converseholds as well. In fact, the translation H Tx given in Table 9.1 maps
every boundedL 1-formula with x asits only freevariable to an H(@; #)-sentence.
Again, a simple inductive argument shows that the translation preserve truth, in
the sensethat M j=  (x) [w] i� M ; w j= H Tx ( (x)).

In other words, H(@; #) can be seenas a notational variant of the bounded
fragment of L 1 (given that we restrict attention to formulas with at most one
free variable). In the remainderof this section,we will discussa model theoretic
characterization of this fragment.

9.2 Expressivity
Recall the notion of a generated submodel that wasde�ned on page48. A simple
inductiveargument showsthat sentencesof H(@; #) areinvariant undergenerated
submodels, in the following sense.

9.2.1. Pr oposition. Let M be a generated submodel of N, let w be a world of
M , and let ' be any H(@; #)-sentence. Then M ; w j= ' i� N; w j= ' .

This implies that properties such as 9x:Rxx or 9y:Ryx, which are not invariant
under generatedsubmodels,are not expressiblein H(@; #).

If we combine this observation with the fact that �rst-order formulas are
invariant under potential isomorphisms(cf. Appendix A), we obtain the following
result, where �= p denotesthe relation of potential isomorphism,� H (@;#) denotes
the relation of indistinguishability with respect to H(@; #)-sentencesand M w

denotesthe submodel of M generatedby w.

9.2.2. Pr oposition. If M w ; w �= p N v; v then M ; w � H (@;#) N; v.

This gives us a su�cien t condition for H(@; #)-indistinguishabilit y. One might
hope that it is also a necessarycondition. Unfortunately, it is not the case,as
the following proposition shows.

9.2.3. Pr oposition. There exist point-generated modelsM w and N v such that
M w ; w � H (@;#) N v; v and M w ; w 6�= p N v; v.

Pro of: Considerthe framesdepicted in Figure 9.1. Let M w = (F; V) and N v =
(G; U), where V and U are valuations that make all proposition letters false
everywhereand that make all nominals true at the root. We will usew and v to
refer to the roots of theseframes. We will show that M w ; w and N v; v satisfy the
sameH(@; #)-sentences,but that they can be distinguishedin �rst-order logic.

Let ' be any H(@; #)-sentence,and let n be its modal depth. Let M w � n and
N v � n be the submodels of M w and N v containing all points that are reachable
from the root in at most n steps. Clearly, M w ; w j= ' i� M w � n ; w j= ' and
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F G

Figure 9.1: Counterexample to the converseof Proposition 9.2.2

N v; v j= ' i� N v � n ; v j= ' . Furthermore, it is not hard to seethat M w � n

and N v � n are isomorphic, and that the isomorphismconnectsw to v. Hence,
M w � n ; w j= ' i� N v � n ; v j= ' . We concludethat M w ; w j= ' i� N v; v j= ' .

Finally, note that the �rst-order sentence 8x9y:(Rxy ^ 8z:(Rzy ! z = x))
distinguishesM w from N v. It follows that M w ; w 6�= p N v; v. 2

Nevertheless,the converseof Proposition 9.2.2holds on ! -saturated models.

9.2.4. Pr oposition. Let M and N be ! -saturated models,with worldsw and v.
Then M ; w � H (@;#) N; v i� M w ; w �= p N v; v.

Pro of: We will prove the result for uni-modal language. The generalizationto
formulas with multiple modalities is straightforward.

Proposition 9.2.2 gives the right-to-left direction. For the other direc-
tion, we proceedas follows. Call a �nite partial isomorphism f between M w

and N v H(@; #)-preserving, if for all H (@; #)-formulas ' (x1; : : : ; xn ) and for
all u1; : : : ; un 2 dom(f ) it holds that M w ; w j= ' [u1; : : : ; un ] , N v; v j=
' [f u1; : : : ; f un ]. De�ne F to be the set of all H (@; #)-preserving �nite par-
tial isomorphisms.Clearly, F is non-empty (in particular, f (w; v)g belongsto it).
Furthermore, F is a potential isomorphism. We will only prove the �rst of the
two symmetric extensionconditions, sincethe proof for the other is analogous.

Let f 2 F with dom(f ) = f a1; : : : ; ang, and let b 2 M w . Then b is reachable
either from w or from somepoint named by a nominal i , in a �nite number of
steps,say l steps. Let � be the set of all H (@; #)-formulas ' (x1; : : : ; xn ; y) such
that M w ; w j= ' [a1; : : : ; an ; b].

Claim 1: There is a b0 2 N such that N; v j= � [f (a1); : : : ; f (an ); b0].
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Pro of of claim: By ! -saturatednessof N, it su�ces to prove �nite satis�-
abilit y, i.e., it su�ces to prove that for each conjunction � of elements of �
there is a b0 2 N such that N; v j= � [f a1; : : : ; f an ; b0].

By assumption M w ; w j= � [a1; : : : ; an ; b]. Since b 2 M w , there is a nom-
inal i and an ` 2 ! such that either M w ; w j= #z:3 `#y:@z� [a1; : : : ; an ] or
M w ; w j= #z:@i 3 `#y:@z� [a1; : : : ; an ], where z is a fresh variable, not occur-
ring in � . By invariance under generatedsubmodels and the fact that f is
H(@; #)-preserving,we obtain that either N; v j= #z:3 `#y:@z� [f a1; : : : ; f an ]
or N; v j= #z:@i 3 `#y:@z� [f a1; : : : ; f an ]. Hence,there is a point b0 such that
N; v j= � [f a1; : : : ; f an ; b0]. a

Sinceb 2 M w , there is a nominal i and an ` 2 ! , such that 3 `y 2 � or @i 3 `y 2
�, and hence, b0 2 N v. By invariance under generatedsubmodels, N v; v j=
� [f a1; : : : ; f an ]. It follows that f [ f (b;b0)g is a partial isomorphismand that
f [ f (b;b0)g 2 F . 2

As a corollary of this, we obtain the following characterization, which was �rst
proved by Feferman[39] using proof theoretic techniques,and later rediscovered
by [5]. Below, we include another, very short proof by compactness.

9.2.5. Theorem ([ 39, 5]). Let ' (x) be an L 1-formula with at most one free
variable. Then the following are equivalent.

1. ' (x) is equivalent to the standard translation of a H(@; #)-sentence

2. ' (x) is invariant under generated submodels.

Pro of: We will prove the result for uni-modal language. The generalizationto
formulas with multiple modalities is straightforward.

Supposea �rst-order formula ' (x) is invariant under generatedsubmodels.
Without loss of generality, we may assumethat x does not occur as a bound
variable in ' . Let cons be the setof constants occurring in ' , and let P be a new
predicate. Then the following holds (by invariance under generatedsubmodels,
2x).

f8 y:(tRny ! Py) j t 2 cons (' ) [ f xg and n 2 ! g j= ' $ ' P

where ' P is the result of relativising all quanti�ers in ' by P. By compactness,
it follows that there is an m 2 ! such that

^

t2 cons [f xg

8x:(tR � mx ! Px) j= ' $ ' P

Let ' 0 be the result of relativising all quanti�ers in ' by the predicate
�x:

� W
t2 cons [f xg(clR� mx)

�
. It follows that j= ' $ ' � Finally, modulo some

simplesyntactic manipulations, ' � is a boundedsentence. Hence,it is equivalent
to a sentenceof H(@; #). 2
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9.3 Frame de�nabilit y
Like formulas of H and H(@),H(@; #)-sentencesare preserved under taking gen-
erated subframes. This follows from Proposition 9.2.1 by the sameargument
used in the proof of Proposition 4.2.1. On the other hand, they are no longer
preserved under taking ultra�lter morphic images. For example, consider the
classK of framesin which every point hasa reexiv e successor.It is well known
that K doesnot reect ultra�lter extensions[21], and henceit is not closedunder
ultra�lter morphic images. Nevertheless,the H(@; #)-sentence 3 #x:3 x de�nes
K.

In order to characterizethe elementary frame classesde�nable in H(@; #), we
needonemoremotion. For k 2 ! , wewill say that a frameclassK reects k-point
generated subframes if the following holds for all framesF: if every subframeof
F generatedby at most k points is in K then F 2 K. Similarly, we say that K
reects �nitely generated subframes if for all frames F, if every subframe of F
generatedby �nitely many points is in K, then F 2 K. It is not hard to seethat
every frame classde�ned by a set of H(@; #)-sentencesreects �nitely generated
subframes. Likewise, every frame class de�ned by a set of H(@; #)-sentences
containing in total at most k nominals reects k + 1-point generatedsubframes.
Theseobservation can be strengthenedinto the following characterization.

9.3.1. Theorem. A frameclassK is de�nable by a pure H (@; #)-sentence with k
nominals i� K is elementaryand closed under generated subframesand K reects
k + 1-point generated subframes.

Pro of: Fix distinct nominals, i 1; : : : ; i k , and let PTh(K) be the set of pure
H (@; #) formulas with these nominals valid on K. Let F j= PTh(K). We will
show that F 2 K. In this way, we show that PTh(K) de�nes K, and hence,
by compactness,K is de�ned by a single pure H(@; #) formula with at most k
nominals.

Let F+ be an ! -saturated elementary extension of F. Since F and F+ are
elementary equivalent, in order to show that F 2 K it su�ces to show that
F+ 2 K. In fact, by the closureproperties of K, it su�ces to show that every
k + 1-point generatedsubframeof F+ is in K.

Fix worlds w1; : : : ; wk+1 of F+ , and let F+
w1 ;:::;wk +1

be the subframeof F+ gen-
erated by w1; : : : ; wk+1 . Note that F+

w1 ;:::;wk +1
j= PTh(K). Let V be the valuation

that assignsthe worlds w1; : : : ; wk to the nominalsi 1; : : : ; i k . Note that under this
valuation, wk+1 is not necessarilynamed by a nominal. Also note that (F+ ; V )
is an ! -saturated model (expandingan ! -saturated structure with �nitely many
constants always results is an ! -saturated structure). Let � be the set of pure
H(@; #) sentences ' (in the languagewith the nominals i 1; : : : ; i k) such that
(F+

w1 ;:::;wk +1
; V ); wk+1 j= ' .

Claim 1: � is satis�able on K.



140 Chapter9. The boundedfragmentandH(@; #)

Pro of of claim: By compactness(recall that K is elementary), it su�ces to
show that every �nite conjunction � of elements of � is satis�able on K. But
this follows immediately: � is satis�able on F and F j= PTh(K), hence: � 62
PTh(K), i.e., � is satis�able on K. a

Let (G; U); v j= � with G 2 K. Let (G+ ; U) be an ! -saturated elementary exten-
sion of (G; U). Then, clearly, (G+ ; U); v j= � and G+ 2 K. Let v1; : : : ; vk be the
worlds namedby the nominals i 1; : : : ; i k under the valuation U. For convenience,
we will use vk+1 to refer to the world v. Let G+

v1 ;:::;vk +1
be the subframeof G+

generatedby v1; : : : ; vk+1 . Clearly, (G+
v1 ;:::;vk +1

; U); vk+1 j= � and G+
v1 ;:::;vk +1

2 K.
By Proposition 9.2.4, F+

w1 ;:::;wk +1
and G+

v1 ;:::;vk +1
are elementarily equivalent. It

follows that F+
w1 ;:::;wk +1

2 K. 2

As special casesof this result, we obtain the following known result.

9.3.2. Cor ollar y ([ 5]). The following are equivalent for elementary frame
classesK.

1. K is de�nable by a set of nominal-free H (@; #)-sentences

2. K is de�ned by a singlepure nominal-free H (@; #)-sentence

3. K is closed under generated subframes and reects point-generated sub-
frames.

(The direction of proof is, of course,1 ) 3 ) 2 ) 1.) Similarly, we obtain the
following, which may be also seenas a characterization of the expressive power
of universal closuresof bounded�rst-order formula (in other words, of bounded
�rst-order formulas with parameters).

9.3.3. Cor ollar y. The following are equivalent for elementary frame classes
K.

1. K is de�nable by a set of H (@; #)-sentences

2. K is de�ned by a singlepure H (@; #)-sentence

3. K is closed under generated subframesand reects �nitely generated sub-
frames.

Pro of: Follows from Theorem9.3.1. We only needto show that if a frame class
K is closedunder generatedsubframesand reects �nitely generatedsubframes,
then there is a k 2 ! such that K reects k-point generatedsubframes. This is
establishedby a compactnessargument.

SupposeK is closedunder generatedsubframesand reects �nitely generated
subframes. Let S be a new binary predicate, and for n 2 ! , let '

W
1� k � n S(xk ;�)
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be the result of relativising all quanti�ers in ' by the given predicate. Then the
following entailment is valid:

f8 xy:(Rnxy ! S(x; y)) j n 2 ! g [ f8 x1; : : : ; xn :'
W

1� k � n S(xk ;�) j n 2 ! g j= K '

For, supposethe antecedent of the entailment holdsin a frameF. Then, whenever
a world v is reachablefrom a world w, S(w; v) holds. Hence,by preservation under
generatedsubframes,the secondpart of the antecedent implies that ' holds in
every �nitely generatedsubframeof F. Hence,by reection of �nitely generated
subframes,F j= ' .

Applying compactness,we infer that there is a k 2 ! such that

f8 xy:(Rnxy ! S(x; y)) j n 2 ! g [ f8 x1; : : : ; xn :'
W

1� k � n S(xk ;�) j n � kg j= K '

In other words, K reects k-point generatedsubframes. 2

The following three results indicate, each in their own way, that the above results
cannot be easily generalized.

9.3.4. Pr oposition. There is an elementaryframeclassK that is closed under
generated subframes,but not de�nable by a set of H(@; #) sentences.

Pro of: Let K be the frameclassde�ned by the �rst-order condition 8x9y:(Rxy ^
8z:(Rzy ! z = x)) (\every point has a successorwith in-degree1"). This class
is easily seento be closedunder generatedsubframes.Now considerthe frames
given in Figure 9.1. We will show that every pure H(@; #)-sentencevalid on F is
also valid on G. SinceF 2 K and G 62K, it follows that K cannot be de�ned by
a pure H(@; #)-sentence, and hence,by Corollary 9.3.3, K cannot be de�ned by
a set of H(@; #)-sentenceseither.

Let ' (i 1; : : : ; i n ) be any pure H(@; #)-sentence such that F j= ' . Let V be
any valuation for G, and let u be any world of G. Viewing G as a submodel of
F, we can think of V also as a valuation for F (it simply makes all proposition
letters and nominals falseat the extra points). Let m be the modal depth of '
and let k be the length of the longestpath from the root to u or to a world named
by one of the nominals i 1; : : : ; i n . Let F � k+ m and G � k+ m be the subframesof
F and G containing all points reachable from the root in at most k + m steps.
An inductive argument shows that (F; V); u j= ' i� (F � k+ m ; V ); u j= ' , and that
(G; V); u j= ' i� (G � k+ m ; V ); u j= ' . Furthermore, (F; � k+ m ; V ) and (G � k+ m ; V )
are easily seento be isomorphic, and the isomorphismconnectsw and v. Since
F j= ' , it follows by the above considerationsthat (G; V); u j= ' . Sincewe made
no assumptionson V or u, we concludethat G j= ' . 2

9.3.5. Pr oposition. Consider �nite models only. There is a �rst-or der frame
condition that is is closed under generated submodelsand reects point-generated
subframes(with respect to �nite models), but that is not de�nable by a pure nom-
inal free H(@; #)-sentence (with respect to �nite models).
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Pro of: Let K be the classof �nite frames that are disjoint unions of directed
cycles. It is easily seenthat K is closed under generatedsubmodels, reects
point-generated submodels (in the �nite), and is de�ned (in the �nite) by the
�rst-order formula 8x:(9=1 y:Rxy ^ 9=1 y:Ryx).

Suppose for the sake of contradiction that K is de�ned (in the �nite) by
a pure nominal-free H(@; #)-formula ' with modal depth k. Consider the fol-
lowing two frames: F = (f 0; : : : ; kg; f (n; n + 1) j n < kg [ f (k; 0)g) and
G = (f� 1; 0; : : : ; kg; f (n; n + 1) j n < kg [ f (k; 0)g). A straightforward
Ehrenfeucht-Fra•�ss�e style argument shows that ' cannot distinguish between
thesetwo frames. However, F 2 K and G 62K. This contradicts the fact that '
de�nes K.

Note that K can be de�ned using nominals: it is de�ned by (3 i ! 2 i ) ^
(@i 3 k ^ @j 3 k ! @i j ). 2

9.3.6. Pr oposition. There is a monadic � 1
1-de�nable frame class K that is

closed under generated subframes and reects point-generated subframes, such
that K is not de�ned by a set of H(@; #)-sentences.

Pro of: Let K be the classof (possibly in�nite) disjoint unions of directed cy-
cles. This classis closedunder generatedsubframes,reects point-generatedsub-
framesand is de�ned by the monadic � 1

1-sentence 8x:(9=1 y:Rxy ^ 9=1 y:Ryx) ^
8P:(9xy:(Px ^ Rxy ^ : Py) ! 9xy:(: Px ^ Rxy ^ Py)). Consider any set
of H(@; #)-sentence � such that K j= ' for all ' 2 �. We will show that
(N; succ) j= ' for all ' 2 �. Since(N; succ) 62K, it then follows that � doesnot
de�ne K.

Let V be any valuation for (N; succ), let n 2 N and let ' 2 �. Let m =
max(f ng [

S
i 2 nom(' ) V(i )), wherenom(' ) is the set of nominals occurring in ' .

Let k be the modal depth of ' . Considerframe G = (f 0; : : : ; m + kg; f (`; ` + 1) j
` < m + kg[ f (m + k; 0)g), and let V 0 be the restriction of V to G. SinceG 2 K,
we have that G; V 0; n j= ' . It follows by an inductive argument that F; V; n j= ' .

2

9.4 Axiomatizations and completeness
In this section,we give two axiomatizations for H(@; #). We show theseaxiom-
atizations, as well as extensionsof them by meansof pure axioms, are strongly
completefor the relevant frame classes.The �rst axiomatization is obtained by
extending K +

H (@) with a simple axiom scheme. The secondaxiomatization im-
proveson the �rst one,sinceit doesnot contain any non-orthodox rules (besides
the substitution rule).

9.4.1. Definition. For any set of H(@; #)-formulas � , K I
H (@;#) � is the smallest

set containing all axiomsin Table9.2 and � , closed under the rules in Table9.2.
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Table 9.2: Axioms and inferencerules of K I
H (@;#)

All axioms and inferencerules of K +
H (@), plus

(DA ) ` @i (#s:' $ ' [s := i ])

Table 9.3: Axioms and inferencerules of K I I
H (@;#)

All axioms of K +
H (@), plus

(DA ) ` @i (#s:' $ ' [s := i ])
(Name# ) ` #s:@s' ! ' , provided s doesnot occur in '
(BG# ) ` @i 2 #x:@i 3 x
(MP ) If ` ' !  and ` ' then `  
(Subst) If ` ' then ` ' � , provided that � is safefor '
(Nec) If ` ' then ` 2 ' , for 2 2 mod
(Nec@) If ` ' then ` @i '
(Nec# ) If ` ' then ` #s:'

K I I
H (@;#) � is the smallest set containing all axioms in Table 9.3 and � , closed

under the rules in Table9.3

Both K I
H (@;#) and K I I

H (@;#) have a substitution rule, which allows replacement of
terms (i.e., nominalsor variables)by terms and formulas by formulas. The usual
restrictions apply, to prevent free variablesfrom becomingaccidentally bound.

First, we will prove completenessof K I
H (@;#) .

9.4.2. Lemma. Every K I
H (@;#) � -consistent set � can be extended to a maximal

K I
H (@;#) � -consistent set � + suchthat

1. One of the elementsof � + is a nominal

2. For all @i 3 ' 2 � there is a nominal j suchthat @i 3 j 2 � and @j ' 2 � .

Pro of: Analogousto the proof of Lemma 5.3.12. 2

9.4.3. Theorem. Let � be any setof pure H(@; #)-sentences. K I
H (@;#) � is sound

and strongly completefor the classof framesde�ned by � .

Pro of: First, note that, by Corollary 5.4.2 and the fact that K I
H (@;#) � extends

K H (@), the following validities are derivable in K I
H (@;#) .

(a) ` @j k ! (@j  $ @k  )
(b) ` @j ( 1 ^  2) $ @j  1 ^ @j  2
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(c) ` @j :  $ : @j  
(d) ` @j @k  $ @k  
(e) ` @j 3 k ^ @k  ! @j 3  

Now, let � be any K I
H (@;#) � consistent set of H(@; #)-formulas. Let � + be a

maximal K I
H (@;#) �-consistent set of H(@; #)-formulas extending � that satis�es

the conditions of Lemma 9.4.2. For all nominals i , let [i ] = f j j @i j 2 � + g. Let
M = (W; (R3 )3 2 mod; V ), where

W = f [i ] j i is a nominal occurring in � + g
R3 = f ([i ]; [j ]) j @i 3 j 2 � + g
V(p) = f [i ] j @i p 2 � + g
V(i ) = f [i ]g

We will show that � is satis�ed at a point in M and that the underlying frame
of M validates �.

Claim 1: For all H (@; #)-formulas ' and nominalsi , M ; [i ] j= ' i� @i ' 2 � + .

Pro of of claim: A straightforward induction on ' , using the properties of
� + and (a) { (e). For the inductive step for formulas of the form #x: , we use
the fact that � + contains all instancesof the the (DA ) axiom scheme. a

It follows that M ; [i ] j= � + , for i 2 � + (recall that oneof the elements of � + is a
nominal). SinceM is a namedmodel (i.e., every point is namedby a nominal)
and � + contains all substitution instancesof elements of �, all formulas in � are
valid on the underlying frameof M . We concludethat � is satis�able on the class
of framesde�ned by �. 2

Next, let us consider the secondaxiomatization, K I I
H (@;#) . Note that K I I

H (@;#)

di�ers from K I
H (@;#) only in that the (Name@) and (BG ) rules are replacedby

corresponding axioms(Name# ) and (BG# ), and the rule (Nec#) is added.

9.4.4. Theorem. Let � be any setof pure H(@; #)-sentences. K I I
H (@;#) � is sound

and strongly completefor the classof framesde�ned by � .

Pro of: Wewill show that the (Name@) and (BG ) rule arederivable in K I I
H (@;#) �.

It then follows that K I I
H (@;#) � extendsK I

H (@;#) �, and henceis strongly complete.
First, let us considerthe (Name@) rule. SupposeK I I

H (@;#) � ` @i ' , wherethe
nominal i does not occur in ' . Let s be a variable not occurring in ' . By the
rules (Subst) and (Nec# ), K I I

H (@;#) � ` #s:@s' . Hence,by the (Name# ) axiom and
the rule (MP ), K I I

H (@;#) � ` '
Next, let us consider the (BG ) rule. Suppose K I I

H (@;#) � ` @i 3 j ! @j ' ,
where j is a nominal distinct from i , and j doesnot occur in ' . By the (Agree)
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axiom, K I I
H (@;#) � ` @j @i 3 j ! @j ' . By somesimple modal reasoningusing the

(Selfdual) axiom, we obtain that K I I
H (@;#) � ` @j (@i 3 j ! ' ). By (DA ) and the

(Name@) rule, which we already showed to be derivable, K I I
H (@;#) � ` #x@i 3 x !

' ). By (Nec) and (K ), we obtain from this that K I I
H (@;#) � ` 2 #x@i 3 x ! 2 ' .

Similarly, by (Nec@) and (K@), K I I
H (@;#) � ` @i 2 #x@i 3 x ! @i 2 ' . Finally, by

the (BG# ) axiom, K I I
H (@;#) � ` @i 2 ' . 2

Results similar to Theorem 9.4.3 and 9.4.4 have beenproved for a di�eren t ax-
iomatization in [22]. As far as we know, however, K I I

H (@;#) is the �rst complete
axiomatization of H(@; #) without non-orthodox rules.

Interestingly, Corollary 9.3.3hasthe following surprising consequenceregard-
ing �nite axiomatizability. If K is an elementary frame classde�nable by a set
of H(@; #)-sentences,then there is a singlepure H(@; #)-sentence ' such that '
de�nes K, and hence,by Theorem 9.4.3 and 9.4.4, K I

H (@;#) f ' g and K I I
H (@;#) f ' g

are completefor K! We do not believe that similar general�nite axiomatizability
results can be obtained for every elementary class. In particular, we conjecture
that the H(@; #)-logic of the frameclassde�ned by 8x9y(Rxy^ 8z:(Rzy ! z = x)
is not �nitely axiomatizable.

In connectionto the discussionin Section5.4 about the conuence property,
it may be observed that, while conuence is not de�nable by pure H(E) formu-
las, it is de�ned by the pure H(@; #)-sentence #x:2 #y:@x23 #z:@y3 z. Hence,
the completenessabove results for pure extensionsof K I

H (@;#) and K I I
H (@;#) apply

equally well to classesof conuent frames.
To concludethis section, consideragain Theorem 8.2.13, which shows that

under certain conditions, completenessof K M � implies completenessof K H �
and K H (@)�. One might ask if a similar result could be obtained for H(@; #).
The answer is negative: considerthe classK of transitiv e, converselywell-founded
uni-modal frames. This classadmits �ltration and has a master modality, and
its modal logic is K M f 2 (2 p ! p) ! 2 pg. It follows by Theorem 8.2.13that
K H f 2 (2 p ! p) ! 2 pg and K H (@)f 2 (2 p ! p) ! 2 pg are complete for K.
Nevertheless,K I

H (@;#) f 2 (2 p ! p) ! 2 pg and K I I
H (@;#) f 2 (2 p ! p) ! 2 pg

are incomplete. This follows from the following theorem, which shows that the
H(@; #)-logic of K is not recursively axiomatizable.

9.4.5. Theorem. The satis�ability problem for H(@; #)-sentences on the class
of transitive converselywell-founded framesis � 1

1-hard.

Pro of: Consider the model (N; > ). By Theorem B.0.1, the existential second
order theory of this structure is � 1

1-complete. We will reducethis problem to the
satis�abilit y problem for H(@; #) on transitiv e conversely well-founded frames,
thus establishing� 1

1-hardnessof the latter problem.
Let us use9sucy:' as a shorthand for #x:3 #y:@x :' , and 8sucy:' as its dual.

Furthermore, let us use3 imm ' asa shorthand for @x3 (' ^ #y:@x : 33 y). Let �
be the conjunction of the following formulas.
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3 p
2 (p ! 2 p)
2 (p ^ 3 > ! 3 imm > ) 8sucx8sucy(@xp ^ @yp ! @x3 y _ @y3 x _ @xy)
8sucx(@xp ! 9sucy:@y(p ^ 3 x))

Suppose(F; V); w j= � , where F is a transitiv e conversely well-founded frame.
Then the subframeof F consistingof the successorsof w that satisfy p (under the
valuation V) constitutes an isomorphiccopy of (N; > ).

Next, considerany � 1
1-formula 9R1 : : : Rn : . For each k 2 ! , introducea new

proposition letter pk , and for each relation Rk (1 � k � n), pick a newproposition
letter qRk . Finally, de�ne  � inductively as follows.

(x = y) � = @xy
(x > y) � = @x3 y
Rk(x1; : : : ; xm )� = 91y1 : : : ymz:

�
@zqRk ^

V
`=1 :::n @y` (p` ^ 3 imm x` ^ 3 imm z)

�

(:  ) � = : ( � )
( 1 ^  2)� =  �

1 ^  �
2

(9x: ) � = 9sucx:(@xp ^  � )

We will now show that (N; > ) j= 9R1 : : : Rn : i� � ^  � is satis�able on the class
of transitiv e converselywell-foundedframes.

[) ] Suppose(N; >; R1; : : : ; Rn ) j=  . Construct a new uni-modal model M =
(W; R; V) as follows:

W = N [ f rootg [
fhRk ; d1; : : : ; dm ; `i j Rk(d1; : : : ; dm ) and 0 � ` � mg

R = f (root;d) j d 2 Wg [
f (m; n) 2 N2 j m > nig [
f (hRk ; d1; : : : ; dm ; `i ; e) j ` > 0 and e � d`g [
f (hRk ; d1; : : : ; dm ; `i ; hRk ; d1; : : : ; dm ; 0i ) j ` > 0g

V(p) = N
V(pm ) = fhRk ; d1; : : : ; dm ; `i j m = `g
V(pRm ) = fhRk ; d1; : : : ; dm ; `i j m = k and ` = 0g

The readermay check that the relation R is indeedtransitiv eand conversely
well-founded,and that M ; root j= � . Furthermore, an inductive argument
shows that M ; root j=  � .

[( ] Suppose M ; w j= � ^  � . Then, as discussedabove, the submodel
of M consisting of all successorsof w that satisfy p is isomorphic to
(N; < ). A model (N; <; R1; : : : ; Rn ) for  may now be obtained by let-
ting (d1; : : : ; dm ) 2 Rk i� M ; w j= 91y1 : : : ymz:

�
@zqRk ^

V
`=1 :::n @y` (p` ^

3 imm x` ^ 3 imm z)
�

[d1; : : : ; dm ].
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It is not hard to seethat if M ; w j=  � , then  holds of the submodel of M
consistingof all successorsof w that satisfy p. Conversely, if M j=  , then M is
easilyextendedto a model M 0 such that M 0; w j=  � for someworld w. It follows
that (N; > ) j= 9R1 : : : Rn : i� � !  � is satis�able on the classof transitiv e
converselywell-foundedframes. 2

9.5 Interp olation and Beth de�nabilit y
It was proved in the 1960sby Feferman[39] that the boundedfragment satis�es
the usual, �rst-order version of interpolation (cf. Appendix A). In other words,
H(@; #) has interpolation, not only over proposition letters and nominals, but
alsoover modalities. This was proved in [39] on the basisof a complete,cut-free
sequent calculusfor the boundedfragment. Being unaware of Feferman'sarticle,
Areces,Blackburn and Marx [5, 20], rediscoveredtheseresults.

9.5.1. Theorem ([ 39, 5, 20]). H (@; #) has interpolation over proposition let-
ters, nominals and modalities, with respect the classof all frames.

Furthermore, it wasshown by [20] that H(@; #) hasinterpolation over proposition
letters and nominalsrelativeto many frameclasses.Here,weincludea short proof
of the latter result.

9.5.2. Theorem ([ 20]). H (@; #) has interpolation over proposition letters and
nominals relative to any elementaryframe classde�ned by a set of nominal free
H(@; #)-sentences.

Pro of: SupposeK is an elementary frame classde�nable by meansof a set of
nominal free H(@; #)-sentences. By Corollary 9.3.2, K is closedunder generated
subframesand reects point-generatedsubframes,and K is de�ned by a single
pure nominal free H(@; #)-sentence� .

Next, supposej= K ' !  . Let nom and mod be the sets of nominals and
modalities, respectively, occurring in the formula ' !  . Let [[ ]� be shorthand
for

V
2 2 mod 2 � . It follows from the invarianceof ' and  under generatedsub-

models that f [[ ]n �; @i [[ ]n � j i 2 nom; n 2 ! g j= ' !  . By compactness,there
is an m 2 ! such that j=

�
[[ ]� m � ^

V
i 2 nom @i [[ ]� m �

�
! (' !  ). It follows

that
j=

�
' ^ [[ ]� m � ^

^

i 2 nom(' )

@i [[ ]� m �
�

! ((
^

i 2 nom( )

@i [[ ]� m � ) !  )

By Theorem9.5.1, there is an interpolant # such that

1. j=
�
' ^ [[ ]� m � ^

V
i 2 nom(' ) @i [[ ]� m �

�
! #

2. j= # ! ((
V

i 2 nom( ) @i [[ ]� m � ) !  )

3. All nominalsand proposition letters occurring in # occur both in ' and in
 .
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Since� is valid on K, it follows that j= K ' ! # and j= K # !  . 2

One might ask if Theorem9.5.2could be generalizedto frame classesde�ned by
H(@; #)-sentencescontaining nominals. The answer is negative, as shown by the
following result.

9.5.3. Pr oposition. There is an elementaryframeclassde�ned by an H(@; #)-
sentence, on which H(@; #) does not haveinterpolation over nominals.

Pro of: Let K be the class of frames satisfying 9x:Rxx ! 8yz:(Ryz ! y =
z). Then j= K @i 3 i ! @j 2 j . In fact, this formula de�nes K. Supposefor the
sake of contradiction that this implication had an interpolant #. Not that #
must be a formula in the empty vocabulary. Now considerthe following models:
M 1 = (f w; vg; f (v; v)g; f (i; v); (j ; v)g) and M 2 = (f w; vg; f (v; w)g; f (i; v); (j ; v)g).
Clearly, (M 1; w) and (M 2; w) cannotbedistinguishedby a H(@; #)-formula in the
empty vocabulary. However, # must be true in (M 1; w) and falsein (M 2; w). 2

Nevertheless,Theorem9.5.2can be improved if oneis interestedonly in interpo-
lation over proposition letters.

9.5.4. Theorem. H(@; #) has interpolation over proposition letters on any
H(@; #)-de�nable elementaryframe class.

Pro of: SupposeK is an elementary frame classde�nable by meansof a set of
H(@; #)-sentences. By Corollary 9.3.3, K is de�ned by a single pure H(@; #)-
sentence� (i 1; : : : ; i n ).

Supposej= K ' !  . Let nom and mod be the set of nominals and modal-
ities, respectively, occurring in the formula ' !  . Let [[ ]� be shorthand forV

2 2 mod 2 � and let @[[ ]� n � be a shorthand for
V

t2 nom[f yg @t [[ ]� n � , wherey is a
fresh variable. The generatedsubmodel invarianceof H(@; #)-sentencesimplies
that

f# y:@[[ ]� k#x1@[[ ]� k#x2 � � � @[[ ]� k#xn :@[[ ]� k � (x1; : : : ; xn ) j n 2 ! g j= ' !  

By compactness,there is a k 2 ! such that

j= #y:@[[ ]� k#x1@[[ ]� k#x2 � � � @[[ ]� k#xn :@[[ ]� k � (x1; : : : ; xn ) ! (' !  )

and hence

j=
�

(#y:@[[ ]� k#x1@[[ ]� k#x2 � � � @[[ ]� k#xn :@[[ ]� k � (x1; : : : ; xn )) ^ '
�

!  

Applying Theorem 9.5.1 on this, we obtain an interpolant # with the following
properties.
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1. j=
�

(#y:@[[ ]� k#x1@[[ ]� k#x2 � � � @[[ ]� k#xn :@[[ ]� k � (x1; : : : ; xn )) ^ '
�

! #

2. j= # !  
3. All proposition letters occurring in # occur both in ' and in  .

Since� is valid on K, it follows that j= K ' ! # and j= K # !  . 2

9.5.5. Cor ollar y. H (@; #) has the Beth property relative to every elementary
H(@; #)-de�nable classof frames.

Pro of: Similar to the proof of Theorem6.2.4. 2

Here is a simple exampleof an elementary frame classon which H(@; #) lacks
the Beth property. Let K be the classof framessatisfying 9x8yz:(Ryz $ y = x),
and let � = f p ! 2 q; : p ! 2 : qg Clearly, in models that are basedon a frame
in K and that globally satisfy �, q holds at a state i� p holds at the root, and
hence, � implicitly de�nes q in terms of p, relative to K. In Section 2.5, we
already observed that q cannot be de�ned explicitly in terms of p in the basic
modal language,relative to � and K. In fact, it is not hard to seethat also
H(@; #) fails provide an explicit de�nition, and hencethe Beth property fails also
for this language,relative to K. We leave it as an open problem whether there
is an elementary classclosedunder generatedsubframes,with respect to which
H(@; #) lacks the Beth property.

9.6 Decidabilit y and complexit y
In this section, we investigate the complexity of deciding whether a formula of
H(@; #) is satis�able. It wasshown by Areces,Blackburn and Marx [4] that this
problem is undecidable,and in fact they mention that H(@; #) is a conservative
reduction class. Following [24] we call a fragment of �rst-order logic a conserva-
tiv e reduction classif there is a recursive function � mapping arbitrary �rst-order
formulas to formulas in the fragment, such that for all formulas � , � (� ) is satis-
�able i� � is, and � (� ) has a �nite model i� � has. Clearly, every conservative
reduction classhas an undecidable(in fact � 0

1-complete) satis�abilit y problem,
as well as an undecidable(in fact � 0

1-complete) �nite satis�abilit y problem [24].

9.6.1. Theorem. H(@; #) is a conservativereduction class.

Pro of: It is known that the relational �rst-order formulas with a single,binary,
relation symbol form a conservative reduction class[24]. Consider the following
embedding � from �rst-order logic with one binary relation to H(@; #), where i
be a �xed nominal:

� (Rxy) = @x3 y
� (x = y) = @xy
� (: ' ) = : � (' )
� (' ^  ) = � (' ) ^ � ( )
� (9x:' ) = @i 3 #x: � (' )
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Table 9.4: Complexity of the satis�abilit y problem on � -models

H(@; #) L 1

� = 1 NP -complete NExpTime -complete
� = 2 NP -complete Decidable but not elementary
3 � � < ! NExpTime -complete � 0

1-complete (co-r.e., not decidable)
� = ! � 0

1-complete (r.e., not decidable) � 1
1-complete (highly undecidable)

� > ! � 0
1-complete (co-r.e., not decidable) � 0

1-complete (co-r.e., not decidable)

Clearly, � is a recursive function. We claim that for each �rst-order sentence ' ,
' is hasa (�nite) model i� � (' ) is hasa (�nite) model.

First, supposeM j= ' . Let the model M 0 be obtained from M by adding a
new state w, labeled with nominal i , and by extending the relation R such that
(w; v) 2 R for all states v of M . Then M 0; w j= � (' ). Moreover, M 0 is �nite if
M is. Conversely, supposeM ; w j= � (' ). Let v be the state in M labeledby the
nominal s. Let M 0 be the submodel of M consistingof all successorsof v. Then
M 0 j= ' . Moreover, M 0 is �nite if M is. 2

In what follows,wewill givea number of decidability resultsfor morerestricted
classesof models. We will useour results to compareH(@; #) with the �rst-order
correspondencelanguageL 1. For any cardinal � , let K� be the classof uni-modal
models in which for every node d there are strictly lessthan � nodese such that
(d;e) 2 R. In particular, K2 is the classof models in which every points has
at most one R-successor,and K! is the classof models in which every node has
only �nitely many R-successors.We will refer to elements of K� as � -models
for short. In what follows we will considerthe satis�abilit y problem of H(@; #)
and of the �rst-order correspondencelanguageon � -models,for particular � . Our
resultsaresummarizedin Table9.4. All resultsgeneralizeto to casewith multiple
modalities, except for the decidability of the �rst-order correspondencelanguage
on K2.

9.6.2. Theorem. The satis�ability problemof H(@; #) on the classof modelsK�

is

1. NP -complete,for � = 1; 2

2. NExpTime -complete,for 3 � � < ! .

3. � 0
1-complete,for � = !

4. � 0
1-complete,for � > !

Pro of: 1. The lower bound follows from the NP -hardnessof propositional
satis�abilit y. The upper bound is proved by establishing the polynomial
sizemodel property.
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For � = 1; 2, every � -satis�able H(@; #)-formula is satis�able in a � -model
with at most O(j' j2) nodes. For, suppose M ; w j= ' for some� -model
M = (W; R; V). Let W 0 � W consist of all worlds that are reachable
from w or from a world named by one of the nominals occurring in '
in at most md(' ) steps, where md(' ) is the modal depth of ' . Let M 0

be the submodel of M with domain W 0. Clearly, M 0 is a � -model and
M 0 satis�es the cardinality requirements. Furthermore, a straightforward
induction argument shows that M 0; w j= ' .

This leadsto a non-deterministicpolynomial time algorithm for testing sat-
is�abilit y of an H(@; #)-formula ' on � -models,for � = 1; 2. The algorithm
�rst non-deterministicallychoosesa candidatemodel (M ; w) of sizeO(j' j2),
and then it tests whether M ; w j= ' and M 2 K� . The latter tests can be
performedin polynomial time using a top down model checking algorithm.

2. [Upp er bound] For 3 � � < ! , every formula satis�able on a � -model is
satis�able on a � -model with at most O(j' j � � md(' )) nodes. For, suppose
M ; w j= ' for some� -model M = (W; R; V). Let W 0 � W consist of all
worlds that are reachable from w or from a world named by one of the
nominals occurring in ' in at most md(' ) steps. Let M 0 be the submodel
of M with domain W 0. Note that the cardinality of M 0 is O(j' j � � j ' j), and
M 0 is still a � -model. Furthermore, a straightforward induction argument
shows that M 0; w j= ' .

This leads to a non-deterministic ExpTime algorithm for testing satis�-
abilit y of an H(@; #)-formula ' on � -models. The algorithm �rst non-
deterministically choosesa candidatemodel (M ; w) of sizeO(j' j � � j ' j), and
then tests whether M ; w j= ' . The latter test can be performed in time
O(jM j j ' j) [43], which is O(( j' j � � j ' j) j ' j) = O(j' j j ' j � � (j ' j2 )).

[Lower bound] Consider monadic �rst-order formulas without equality,
i.e., �rst-order formulas containing unary predicatesonly, without equal-
it y. Any such satis�able formula ' of length n has a model with at most
2n nodes, and the satis�abilit y problem for such formulas is NExpTime -
complete[24, Section6.2.1]. Wewill reducethis problemto the satis�abilit y
problem for H(@; #)-formulas on � -models (for 3 � � < ! ), thus showing
that the latter problem is NExpTime -hard.

Fix a nominal i , and for any monadic�rst-order formula ' without equality,
de�ne ' + inductively, such that (x = y)+ = @xy, (Px)+ = @xp, (�)+ com-
muteswith the Booleanconnectivesand (9x: )+ = @i 3 j ' j#x: + . In words,
' + states that ' holds in the submodel consisting of all points reachable
from the point namedi in exactly j' j many steps. In general,there can be
up to (� � 1)j ' j many points reachablefrom the point namedi in exactly j' j
many steps(in particular, this will be the caseif the submodel generated
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by i is a (� � 1)-ary tree). It follows that ' is satis�able i� ' is satis�able in
a model with at most 2j ' j nodesi� ' + is satis�able in a � -model, for � � 3.

3. We will provide polynomial reductionsbetweenthis problem and the �nite
satis�abilit y problem for �rst-order logic, which is � 0

1-complete,even in the
casewith only a single,binary relation [24, Section3.2].

Trivially , if an H(@; #)-formula is satis�able in a �nite model, it is satis-
�able in a ! -model. Conversely, if an H(@; #)-formula is satis�able in an
! -model then it is satis�able in a �nite model, sincethe modal depth of the
formula providesa bound on the depth of the model. Hence,the satis�abil-
it y problem of H(@; #) on ! -models reduces(by the standard translation)
to the satis�abilit y problem for �rst-order logic on �nite models.

Conversely, the �nite satis�abilit y problem for �rst-order logic can be re-
duced to satis�abilit y of H(@; #) on ! -models. Fix a nominal i , and for
any �rst-order formula ' , de�ne ' + inductively, such that (x = y)+ =
@xy, (Rxy)+ = @x3 y, (�)+ commutes with the Boolean connectives and
(9x: )+ = @i 3 #x: + . In words, ' + states that ' holds in the submodel
consistingof the successorsof the point namedi . It follows that ' is satis�-
able in a �nite model i� the H(@; #)-formula ' + is satis�able on an �nitely
branching ! -model.

4. By the L•owenheim-Skolemtheorem,a �rst-order formula is satis�able if and
only if it is satis�able on a �nite or countably in�nite model. SinceH(@; #) is
a fragment of �rst-order logic, the L•owenheim-Skolem theoremalsoapplies
to H(@; #)-formulas. It followsthat the satis�abilit y problemfor H(@; #) on
countably branching modelscoincideswith the generalsatis�abilit y problem
of H(@; #), which is � 0

1-completeby Theorem9.6.1. 2

9.6.3. Theorem. The satis�ability problem for the �rst-or der correspondence
languageL 1 on K� is

1. NExpTime complete,for � = 1

2. decidablebut not elementary,for � = 2

3. � 0
1-complete,for 3 � � < !

4. � 1
1-complete,for � = !

5. � 0
1-complete,for � > !

Pro of: 1. This casecoincideswith the satis�abilit y problemfor monadic�rst-
order logic (on 1-models,every formula of the form Rst is equivalent to ? ),
which is known to be NExpTime complete[24].
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2. Considerthe satis�abilit y problem for �rst-order logic with oneunary func-
tion symbol, an arbitrary number of unary relation symbols and equality
(\the Rabin class"). This problem is decidable,but not elementary [24].
We will provide polynomial reductionsbetweenthis problem and the satis-
�abilit y problem for �rst-order logic on 2-models.

� Let ' be any �rst-order formula containing oneunary function symbol
f and any number of unary relation symbols and equality. Let R be a
binary relation symbol, and let ' R be obtained from ' by repeatedly
applying the rewrite rules

{ replaceatomic formulas of the form Pf (t) by 9x:(Rtx ^ Px)
{ replace atomic formulas of the form f (s) = t or t = f (s) by

9x:(Rsx ^ x = t)

until the function symbol f does not occur in the formula anymore
(in caseof nestedfunction symbols, the above rules might needto be
applied several times). It is not hard to seethat ' is satis�able i�
' R ^ 8x9y:Rxy is satis�able on a 2-model.

� Let ' be any �rst-order formula with one binary relation symbol R
and any number of unary relation symbols. Let f be a unary function
symbol and let P be a new unary relation, and let ' f be the result of
replacingall subformulas of ' of the form Rst by Ps ^ (t = f s). Intu-
itiv ely, the unary predicate P represents the existenceof a successor,
and the unary function f encodesthe successorof a node, if it exists.
Onecaneasilyseethat ' is satis�able on a 2-model i� ' f is satis�able
(simply let R denotethe the graph of f , or vice versa).

It follows that the satis�abilit y problem of �rst-order logic on 2-models is
decidablebut not elementary recursive.

3. It is known that the satis�abilit y problem for �rst-order sentenceswith a
singlebinary relation R is � 0

1-complete[24]. For any such �rst-order formula
' de�ne ' � as follows:

(x = y) � = x = y
(Rxy)� = 9x0y0:(: Rx0x0^ : Ry0y0^ Rx0y0^ Rx0x ^ Ry0y)
(: ' ) � = : ' �

(' ^  ) � = ' � ^  �

(9x:' ) � = 9x(Rxx ^ ' � )

We claim that ' is satis�able in a model M i� ' � is satis�able on a 3-model
M 0. Intuitiv ely, the reexiv enodesof M 0 will correspond to the nodesof M ,
and the irreexiv e nodesof M 0 will be usedto encode the binary relation
of M : we think of reexiv e points d;e as standing in the binary relation
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i� there are irreexiv e points d0; e0 such that (d0; d) 2 R, (d0; e0) 2 R and
(e0; e) 2 R. More precisely, the argument can be spelled out as follows.

[) ] SupposeM j= ' , with M = (D; R). Let D 0bea setof objectsobtained
from D by addingby addingnewobjects (d;e)1 and (d;e)2 for all d;e 2
D. Let R0 = f (d;d); ((d;e)1; d); ((d;e)2; e) j d 2 Dg[ f ((d;e)1; (d;e)2) j
(d;e) 2 Rg. The model (D 0; R0) is a 3-model, and by induction on can
easily show that M 0 j= ' � .

[( ] Suppose M j= ' � for some3-model M = (D; I ). Let D 0 = f d 2
D j (d;d) 2 Rg. Let R0 = f (d;e) 2 (D 0)2 j (d0; d0) 62R and (e0; e0) 62
R and (d0; d) 2 R and (e0; e) 2 R and (d0; e0) 2 R, for somed0; e0 2
Dg. Let M 0 = (D 0; R0). A straightforward induction shows that M 0 j=
' .

For 3 < � < ! , it follows that a �rst-order formulas ' with one binary
relation R is satis�able i� ' � ^ 8x9� 2y:Rxy is satis�able on a � -model.
Hence,satis�abilit y of �rst-order formulas on � -modelsis � 0

1-hard. Finally,
membership of � 0

1 follows from the fact that the satis�abilit y problem for
�rst-order formulas is in � 0

1, since ' is satis�able on a � -model i� ' ^
8x9� � y:Rxy is satis�able.

4. We will provide reductionsbetweenthat the satis�abilit y problem for �rst-
order formulas on ! -models and the problem of deciding whether an exis-
tential secondorder sentence holds in the model (N; < ). This proves the
result, sincethe latter problem is � 1

1-complete(cf. TheoremB.0.1).

Let ' (N;> ) be a �rst-order sentenceexpressingthat R is a strict linear order
and 8x9y:Ryx. Then a �nitely branching model satis�es ' (N;> ) preciselyif
the model is isomorphicto (N; > ). For any existential secondorder sentence
' = 9R1 : : : Rn : (R1; : : : ; Rn ; > ), let ' � be the de�ned as follows, where
P1; : : : ; Pn ; N are new, distinct unary predicates.

(x = y) � = x = y
(x > y) � = Rxy
(Rkx1 : : : xn )� = 9y1 : : : yn :

� V
m=1 :::n (Pkym ^ Rymxm ) ^V
m=1 :::n� 1(Rymym+1 )

�

(: ' ) � = : ' �

(' ^  ) � = ' � ^  �

(9x:' ) � = 9x(N x ^ ' � )

We claim that (N; > ) j= ' i� ' � ^ ' N
(N;> ) is satis�able in a �nitely branching

model, where' N
(N;> ) is the result of relativising all quanti�ers in ' (N;> ) by N .

The argument is similar to the one usedin the proof of Theorem 9.6.3(3).
The submodel consistingof the points satisfyingN is the \in tendedmodel",
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while the elements satisfying one of the unary predicatesPk are only used
to encode which tuples stand in the Rk relation. More speci�cally, a tuple
(d1; : : : ; dn ) of points satisfying N is thought to stand in the Rk relation i�
there are points e1; : : : ; en satisfying Pk such that emRdm for all m � n and
emRem+1 for all m < n. We will omit the details of the proof here.

Now for the other direction. First, observe that whenever a �rst-order
formula has a �nitely branching model M , then it has a countable such
model (indeed,it su�ces to takeany countable elementary submodel of M ).
Now, for any �rst-order formula ' (R; P1; : : : ; Pn ), let ' 0 be the existential
secondordersentence9R; P1; : : : ; Pn :(' ^ 8x9y8z:(Rxz ! z < y)). Observe
how, on the natural numbers, the secondconjunct enforcesthat each point
has only �nite many R-successors). It follows that ' is satis�able in a
countable ! -model i� ' 0 is true in a submodel of (N; < ). The latter in turn
holds i� 9Q:(' 0)Q is true in (N; < ), where(' 0)Q is the result of relativising
all quanti�ers in ' 0 by Q.

5. By the L•owenheim-Skolem theorem, a �rst-order formula is satis�able if
and only if it is satis�able on a �nite or countably in�nite model. Hence,
the satis�abilit y problem on countably branching modelscoincideswith the
generalsatis�abilit y problem, which is known to be � 0

1-complete[24]. 2

We can concludefrom Table9.4 that H(@; #) hascomputational advantagesover
L 1, as least on structures with a boundedout-degree.

In [29], a fragment of H(@; #) is identi�ed for which the satis�abilit y is de-
cidable. The fragment consistsof all H (@; #)-sentencesthat are not of the form
� � � 2 (� � � #x:(� � � 2 � � � ) � � � ) � � � . It is shown that this result is optimal, in the sense
that the fragment cannot be easily extendedwithout losing decidability.
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Guarded fragments

The guardedfragment is a fragment of relational �rst-order logic that extendsthe
modal fragment. It was introducedby Andr�eka, van Benthem and N�emeti in the
90s[2] in order to understandwhy the modal languageis so well behaved, com-
putationally and model theoretically. The guardedfragment inherits many good
properties from the modal language. For instance, is decidable,has the �nite
model property, and admits a  Los-Tarski-style preservation theorem [2]. It was
shown by Hooglandand Marx [66] that, while the guardedfragment lacks interpo-
lation, it hasthe Beth property. In [13], the guardedfragment wasextendedeven
further, obtaining the looselyguarded fragment, which is slightly more expressive
than the guardedfragment, but it still satis�es the above properties.

Concrete complexity results for the satis�abilit y problem for guarded and
looselyguardedformulas were establishedby Gr•adel [60]. To be precise,Gr•adel
generalizedthe guardedand looselyguardedfragments by allowing constants to
occur in the formulas(but not function symbolsof positivearity), and by allowing
identit y statements of the form x = x or x = y asguards,and subsequently proved
the following:

10.0.4. Theorem (Gr •adel [60]). The satis�ability problem for loosely
guarded formulas is 2ExpTime -complete. The sameproblemis only ExpTime -
complete for loosely guarded relational formulas with a bounded number of
variables, and for guarded relational formulas with a bound on the arity of the
relation symbols.

With a relational formula, we mean a formula that contains no constants
(function symbols of positive arity werealready excluded).

Furthermore, Gr•adel suggestsin his paper that his results also work for
(loosely)8-guardedformulas, i.e., formulasof which only the universalquanti�ers
are (loosely)guarded. However, the details are not completely spelled out.1

1Marx [79] does explicitly state and prove the decidability of the satis�abilit y problem for
loosely 8-guarded formulas.

157



158 Chapter10. Guardedfragments

This chapter serves three purposes. Firstly, it formulates the preciseresults
for universally guardedformulas that may be obtained with Gr•adel's techniques,
and it contains the details of the proofs. Secondly, and more importantly, we
improveGr•adel'sresultsby showing that the quali�cation `relational' in the above
theoremmay bedropped. Finally, weshow how guardedfragments with constants
are related to hybrid logics,and we usethis connectionto prove a strong negative
interpolation result for guardedfragments.

Concretely, we prove the following the following complexity result.

10.0.5. Theorem. The satis�ability problem for loosely 8-guarded formulas is
2ExpTime -complete. The sameproblemis only ExpTime -completefor loosely
8-guarded formulas with a bounded number of variablesand for guarded formulas
with a bounded arity.

To appreciatethe additional value of Theorem 10.0.5, we must return to the
original motivation behind the guardedfragment. The guardedfragment was in-
vented in order to explain and generalizethe largenumber of decidability and low
complexity results in modal logic. The key observation is that modal operators
expressa guardedform of quanti�cation, wherethe accessibility relations are the
guards.

For explaining decidability results in modal logic, the �rst part of Theorem
10.0.4often su�ces. However, in order to explain low complexity, a more re�ned
analysis is needed. Consider for instance the global consequenceproblem for
modal formulas (does every model that globally satis�es ' globally satisfy  ?).
This is an ExpTime -completeproblem. To understand why this problem is in
ExpTime , it su�ces to observe that global truth of a modal formula ' can be
expressedby means of a guarded �rst-order formula with only two variables,
namely 8x:(x = x ! STx (' )). 2 This shows the importanceof boundedvariable
guardedfragments.

The standard translation for H(E) produces�rst-order formulas in the two-
variable guardedfragment with an unlimited number of constants. Clearly, The-
orem 10.0.4will not allow us to prove, say, that the global consequenceproblem
for H(@) is in ExpTime . Theorem 10.0.5 does, and it thereby broadensthe
application of guarded fragments to the �eld of hybrid logic. A concrete ex-
ample of a complexity result from the literature that follows immediately from
Theorem10.0.5is the ExpTime -membershipof the satis�abilit y problem for the
hybrid languageH(E) [5].

The results in this chapter are taken from [94] and [28].

10.1 Normal forms for (lo osely) guarded formulas
We will consider�rst-order languageswith arbitrarily many relation symbols of
any arity, constants and equality, but without function symbols of arity greater

2Here, we usethe Vardi-style standard translation that usesonly two variables.
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than zero. A �rst-order formula ' of such a languageis calledguarded if it is built
up from atomic formulas using the Booleanconnectivesand guardedquanti�ers
of the form 9x1 : : : xn :(� ^  ) or 8x1 : : : xn :(� !  ), where� is an atomic formula
and the free variablesof  all occur in � . A formula is called 8-guarded if it is
built up from atomic formulas and negatedatomic formulas using conjunction,
disjunction, ordinary existential quanti�ers and guarded universal quanti�ers.
Note that the guards � may be atomic equality statements. In particular, if
a guarded formula ' has only one free variable x, then 9x:(x = x ^ ' ) and
8x:(x = x ! ' ) are guarded formulas. These formulas are equivalent to 9x:'
and 8x:' , respectively.

The looselyguardedfragment is an extensionof the guardedfragment. A �rst-
order formula ' is calledlooselyguarded if it is built up from atomic formulasusing
the Booleanconnectivesand looselyguardedquanti�ers of the form 9x1 : : : xn :(� ^
 ) or 8x1 : : : xn :(� !  ), where � is conjunction of atomic formulas, such that
every quanti�ed variable x i co-occurswith every freevariable y 6= x i of  in some
conjunct of � . A formula is called loosely8-guarded if it is built up from atomic
formulas and negatedatomic formulas using conjunction, disjunction, ordinary
existential quanti�ers and loosely guarded universal quanti�ers. Note that if a
loosely guarded formula ' has only one free variable x, then 9x:(> ^ ' ) and
8x:(> ! ' ) are looselyguarded.

Gr•adel [60] proved his main complexity results for guardedformulasusing the
following normal form.

10.1.1. Definition. A (loosely) 8-guarded formula is in normal form if it is of
the form

9~x:P~x ^
^

i 2 I

8~x:(� i (~x) ! 9~y:' i (~x; ~y))

where, for each i 2 I , the variables~x; ~y are distinct, � i is a (loose) guard and
' i (~x; ~y) is a quanti�er-fr ee formula.

Gr•adelshowedthat every (loosely)guardedformula canbe translated in poly-
nomial time into an equisatis�able (loosely) 8-guardedformula in normal form.
A slight variation of Gr•adel'sproof works for (loosely)8-guardedsentences,thus
turning it into a true normal form theorem for (loosely) 8-guarded formulas.
To be sure, we will spell out the proof here for the caseof (loosely) 8-guarded
formulas.

For any formula ' , let width (' ) be the maximal number of free variablesof
a subformula of ' , i.e., width (' ) is the largest natural number n such that '
hasa subformula with n free variables.

10.1.2. Pr oposition. Every (loosely) 8-guarded formula ' can be transformed
in polynomial time into an equisatis�able (loosely)8-guarded sentence � in normal
form. Moreover, width (� ) � width (' ).
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Pro of: We �rst give the proof for 8-guardedformulas, and then show how the
proof generalizesto loosely8-guardedformulas. Let ' be 8-guarded,and assume
without lossof generality that no equality sign occurs inside a guard in ' . Note
furthermore that, by the de�nition of 8-guarded formulas, the negation symbol
only occurs in ' at the atomic level.

If ' is quanti�er-free, then we are already done. Otherwise, there are two
possibilities.

1. ' contains a subformula of the form � (~x) = 9y: (~x; y), where  is
quanti�er-free. Pick a new predicate R� of the appropriate arity, and let
' [�=R � ] be the result of replacing � (~x) in ' by R� (~x). Finally, let

' 0 = ' [�=R � ] ^ 8~x:(R� (~x) ! 9y: (~x; y))

Then ' 0 is equi-satis�able to ' , and onestep closerto being of the required
form.

2. ' contains a subformula of the form � (~x) = 8~y:(� (~x; ~y) !  (~x; ~y)), where
 is quanti�er-free. Pick a new relation symbol R� with the appropriate
arity, and let ' [�=R � ] be the result of replacing� (~x) in ' by R� (~x). Finally,
let

' 0 = ' [�=R � ] ^ 8~x~y:(� (~x; ~y) ! (R� (~x)) !  (~x; ~y))

Then ' 0 is equi-satis�able to ' , and onestep closerto being of the required
form.

Repeating these steps, we eventually obtain a formula of the form ' 00(~x) ^ � ,
where ' 00(~x) is quanti�er-free, and � is a conjunction of formulas of the form
8~x(� (~x) ! 9y: (~x; y)). As a �nal step, pick a new predicate P and let # =
9~x:P (~x) ^ 8~x(P(~x) ! ' 00(~x))) ^ � . Then # is in normal form and equi-satis�able
to the original formula ' .

A slight variation of this argument works for loosely 8-guarded formulas.
Suppose' is loosely 8-guarded and contains a subformula of the form � (~x) =
8~y:(� (~x; ~y) !  (~x; ~y)), where  is quanti�er-free. As before,we pick a new re-
lation symbol R� with the appropriate arity, but now we alsopick a new binary
relation symbol Z . Also, the conjunct we add to ' is slightly di�eren t: instead
of 8~x~y:(� (~x; ~y) ! (R� (~x)) !  (~x; ~y)), we add 8~x~y:(( � (~x; ~y) ^

V
z;z02f ~xg Zzz0) !

(R� (~x)) !  (~x; ~y)). This ensuresthat each two variables in ~x co-occur in some
atom of the guard, to guarantee that the universal quanti�er is properly loosely
guarded. Finally, to ensurethat the newformula is equi-satis�able to the original
one,insteadof replacing� (~x) in ' by R� (~x), we it by R� (~x) ^

V
z;z02f ~xg Zzz0. The

rest of the proof remainsthe same. 2

In the caseof looselyguardedformulas, onecan furthermore ensurethat the
arity of the relation symbols occuring in the formula is bounded by the width.
For any formula ' , let maxarity (' ) denotethe highestarity of a relation symbol
occuring in ' .
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10.1.3. Pr oposition. Every loosely 8-guarded formula ' can be transformed
in polynomial time into an equisatis�able loosely 8-guarded formula � in nor-
mal form, such that width (� ) � maxf width (' ); 2g and maxarity (� ) �
maxf width (' ); 2g.

Pro of: The proof proceedsin two steps. First, we will reducethe arity of the
relation symbols occuring in ' to two. Then, we will write the resulting formula
in normal form. The latter step might increasethe arity of the relation symbols
again, but it will still be boundedby the width of the formula.

Let ' be any loosely 8-guarded formula. For each n-ary relation symbol
R occurring in ' , with n > 2, introduce n + 1 new binary relation symbols,
R0; : : : ; Rn . Theserelation symbols will be usedto encode the tuples that stand
in the relation R: a tuple hd1; : : : ; dn i will be thought to stand in the relation if
each pair hd` ; dm i standsin the R0 relation (1 � `; m � n), and there exists is an
element e such that he;d` i 2 R` for 1 � ` � n.

Replaceeach subformula of ' of the form R(t1; : : : ; tn ) that is not inside a
guard by ^

1� `;m � n

R0(t ` ; tm ) ^ 9u:
^

1� ` � n

R` (u; t ` )

If ' has a subformula of the form 8~x(� !  ), where the guard � con-
tains a conjunct of the form R(t1; : : : ; tn ), then replace that conjunct byV

1� `;m � n R0(t ` ; tm ), and replace by 9u:(
V

1� ` � n R` (u; t ` ) ^ > ) !  .
The resulting formula contains no relation symbolsof arity greaterthan 2, and

it is satis�able i� the original formula ' is satis�able. Furthermore, the width of
the resulting formula is at most max(width (' ); 2g.

Finally, weapply Proposition 10.1.2to bring the resulting formula into normal
form. Inspection of the proof of Proposition 10.1.2shows that the arity of the
relation symbols added during the normal form translation is bounded by the
width of the input formula. Hence,we end up with a formula with the desired
properties. 2

Incidentally, the constraints of boundedwidth and of boundednumber of vari-
ablesin a �rst-order formula are equivalent, as proved in the following theorem.

10.1.4. Pr oposition. For k 2 N, every �rst-or der formula ' of width k can be
transformed in polynomial time into an equivalentformula containing k variables.

Pro of: The proof is by structural induction on the input formula ' . If ' is an
atomic formula, then its width equals the number of variables occurring in it,
hencethe claim holds. If ' is of the form :  or 9x: , then the claim follows
immediately from the induction hypothesis (note that, in the secondcase,we
may assumethat x occurs in  ). This leaves us with the casein which ' is a
conjunction.
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Let ' be of the form  ^ � . By induction hypothesis,we may assumethat
 and � each have at most k variables. We may also assumethat the only
variables occurring both in  and in � are the onesthat occur freely in  and
in � . It follows that the set of all variables occurring in ' can be partitioned
into disjoint subsetsX ; Y; Z; U; V such that f r ee( ) = X [ Y, f r ee(� ) = Y [ Z ,
bound( ) n f ree( ) = U and bound(� ) n f ree(� ) = V. In other words,

' (X ; Y; Z ) =  (X ; Y) ^ � (Y; Z )

(additional
bound variables

U)

(additional
bound variables

V )

Let W be a new set of variables, disjoint from X ; Y; Z; U; V , such that jWj =
k � jX [ Y [ Z j. By disjointnessof the setsinvolved, jW [ Z j = k � jX [ Y j � jUj
and jW [ X j = k � jY [ Z j � jV j. This means that we can safely replace
the (bound) variablesU in  by the variablesW [ Z , and replacethe (bound)
variablesV in � by the variablesX [ W. The resulting formula is equivalent to
the original, but only contains variables in X [ Y [ Z [ W, of which there are
only k many. 2

10.2 Eliminating constants
Most results on guardedformulas have beenstated only for relational �rst-order
languages,i.e., languageswithout constants. The resultsdiscussedin this section
show how the sametechniquescan be applied to formulas containing constants.

Let ncons (' ) be the number of constants occurring in ' . Gr•adel [60] proved
the following.3

10.2.1. Pr oposition. Every (loosely) 8-guarded formula ' can be transformed
in polynomial time into an equisatis�able relational (loosely) 8-guarded formula
� , suchthat width (� ) � width (' ) + ncons (' ).

For complexity reasons,we have a particular interest in formulas with a bounded
width. Unfortunately, for such formulas ' , Proposition 10.2.1 does not imply
a bound on the width of � . We will now present another method to eliminate
constants, that allows us to circumvent this problem.

10.2.2. Pr oposition. Fix a natural number k � 2. Every loosely 8-guarded
formula ' of width at most k can be transformed in polynomial time into an
equisatis�able relational loosely8-guarded formula � of width at most k.

3Strictly speaking, Gr•adel's proof for this proposition is a wed, since his translation does
not correctly handle formulas containing equality. However, this problem can easily be �xed.
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Pro of: Considerany loosely8-guardedformula ' of width at most k. By Propo-
sition 10.1.3, we may assumethat ' is in normal form and that maxarity (' ) �
k.

Let cons be the set of constants occurring in ' . For each n-place rela-
tion symbol R occurring in ' , except for equality, and for each partial func-
tion f : f 1; : : : ; ng ,! cons , introduce a new relation symbol Rf with arity
n � jdom(f )j, wheredom(f ) is the set of all k 2 f 1; : : : ; ng for which f (k) is de-
�ned. For example,if R is a ternary relation symbol and f = f (1; c); (3; d)g, then
Rf is a unary relation symbol, which we will also denoteby Rc� d. The intended
interpretation of Rc� d(x) will be the sameas R(c;x; d). Also, for each pair of
constants c;d, introducea nullary relation symbol Ecd.

We will now eliminate all constants, with the help of thesenew relation sym-
bols. For any sequenceof variables ~x, let T(~x) be the set of all partial func-
tions from f ~xg to cons (including the empty function). Note that there are
(ncons + 1)j~xj such functions. For each � 2 T(~x) and formula  , let  � be the
result of replacingeach occurrenceof a variable x 2 dom(� ) by � (x). Finally, let
' � be obtained from ' by meansof the following procedure.

1. Replaceeach subformula of the form 8~x: by
V

� 2 T (~x) 8~x: � , and replace
each subformula of the form 9~y: by

W
� 2 T (~y) 9~y: � . 4

2. Replace each atomic formula of the form R(c1; : : : ; cn ; x1; : : : ; xm ) by
Rc1 :::cn � :::� (x1; : : : ; xm ) (and similarly for other permutations)

3. Replaceeach atomic formulas of the form c = d by Ecd, and replaceeach
atomic formula of the form x = c or c = x by ? .

Let � be the conjunction of ' � with
^

c2 cons

Ecc ^
^

c;d2 cons

Ecd ! Edc ^
^

c;d;e2 cons

Ecd ^ Ede ! Ece

and all formulas of the form

8x1 : : : xm :(Rc1 :::c` :::cn � :::� (x1; : : : ; xm ) ! (Ec` d ! Rc1 :::d:::cn � :::� (x1; : : : ; xm )))

(including all permutations the sequencec1; : : : ; cnx1; : : : ; xm ). 5

Clearly, � doesnot contain any constants, and is loosely8-guarded. Further-
more, the length of � is polynomial in the length of ' , and that � canbe obtained
from ' 0 in polynomial time.

4Note that this will only polynomially increasethe length of the formula, due to the fact
that both the width and the quanti�er depth of ' is bounded(keepin mind that ' is in normal
form).

5The number of such formulas is approximately nrel (' ) � (ncons (' )maxarity ( ' ) ), where
nrel (' ) is the number of relation symbols occurring in ' . This is polynomial in the length of
' , given that maxarity (' ) � k.
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Finally, we claim that � is satis�able i� ' is satis�able. One direction of
this claim is easy: a model for ' is easily turned into a model for � . As for
the other direction, every model M satisfying � can be turned into a model M 0

for ' in the following way: de�ne an equivalencerelation on the set cons by
putting c � d i� M j= Ecd, extend the domain of M with one element for each
equivalenceclass,and extend the relations to the new elements in the obvious
way: ([c1]; : : : ; [cn ]; e1; : : : ; em ) 2 R i� (e1; : : : ; em ) 2 Rc1 :::cn � :::� , and likewisefor
other permutations. It is easilyseenthat the resulting model M 0 satis�es ' . 2

Note that the translation usedin the above proof is polynomial only provided
that the width of the input formula is boundedby a constant. Unlike Gr•adel's
translation, it is in generalexponential.

We will now proceed with the proof of Theorem 10.0.5, using the help of
the above results. As we already mentioned, Gr•adel [60] states his main results
only in terms of guardedor looselyguardedformulas. Nevertheless,the central
argument on which these results are basedis formulated in terms of relational
loosely 8-guarded formulas in normal form, cf. De�nition 10.1.1. Speci�cally,
Gr•adel shows that the satis�abilit y problem for such formulas is 2ExpTime -
complete, and that it becomesExpTime -complete if there is a bound on the
width of the (normal form) formula. Togetherwith our above results, this allows
us to prove Theorem10.0.5.

Pro of of Theorem 10.0.5: The 2ExpTime -membership of the satis�abilit y
problem for loosely 8-guarded formulas follows from Gr•adel's result by Propo-
sition 10.2.1and Proposition 10.1.2. The ExpTime -membership of the satis�a-
bilit y problemfor loosely8-guardedformulaswith a boundednumber of variables
follows from Gr•adel'sresult by Proposition 10.2.2and Proposition 10.1.2(if a for-
mula ' contains at most k variables,then, trivially , width (' ) � k).

Finally, it is easyto seethat the width of a guarded formula is boundedby
the arity of the relation symbols occuring in it. Note that, in general,this does
not hold for 8-guarded formulas, nor for loosely guarded formulas. Indeed, by
a similar argument as used in the proof of Proposition 10.1.3, the satis�abilit y
problem for looselyguardedformulas with arity at most 2 is already as hard as
the satis�abilit y problemfor looselyguardedformulasin general,i.e., 2ExpTime -
complete. 2

10.3 Connections with hybrid logic, and interp olation
As we already mentioned in the introduction of this chapter, guardedfragments
with constants have important applications in the area of hybrid logic. Con-
versely, results from the hybrid logic literature may have applications to guarded
fragments with constants. Here,we will discussonesuch application, which con-
cernsthe interpolation property. When the guardedfragment was introducedin
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[2], it was hoped that it has interpolation. Unfortunately, it was shown in [66]
that this is not the case.This negative interpolation result can be strengthened
for guardedfragments with constants as follows:

10.3.1. Theorem. Let F be any fragment of �rst-or der logic with constants
that contains all atomic formulas, is closed under the Boolean connectives and
is closed under guarded quanti�cation (i.e., if ' (~x~y) 2 F and � (~x~y) is atomic
then 9~x(� (~x~y ^ ' (~x~y) 2 F 8~x(� (~x~y ! ' (~x~y) 2 F ). Furthermore supposethat F
satis�es the following form of interpolation:

For all formulas ' (x);  (x) 2 F with at most one free variable x,
if j= ' (x) !  (x) then there is a formula #(x) 2 F such that j=
' (x) ! #(x), j= #(x) !  (x), and all relation symbols and constants
occurring in # occur both in ' and in  .

Then every �rst-or der formula ' with at most one free variable is equivalent to a
formula in F .

Pro of: As was noted in Remark 6.4.9, the proof of Theorem 6.4.4(ii) does not
dependson the assumptionthat all modalities are unary. The result also holds
if hybrid languageswould be de�ned relative to a set of modalities mod that
includes k-ary modalities with k 6= 1. For present purposes,we may therefore
assumethat modalities can have any arity.

Having noted this, considerany fragment F satisfying the requirements men-
tioned in the statement of the theorem. Then F constitutes a hybrid languagein
the following sense.For any signature � = (pr op; nom), let � � be the �rst-order
signature that has pr op as its unary predicates,nom as its constants, and that
has a relation R4 of arity n(4 ) + 1 for each 4 2 mod (here we assumeagain a
�xed, given set of modalities mod). Fix a �rst-order variable x, and for all signa-
tures � , let L F [� ] be the collection of �rst-order formulas ' (x) in the �rst-order
signature � � that are in the fragment F . Furthermore, let M ; w j= L F ' (x) i�
' (x) holds in M conceived of asa �rst-order structure, interpreting x asw. Then
(L F ; j= L F ) is a hybrid language,accordingto De�nition 6.4.1.

In fact, we will show that it follows from the requirements on F , that L F

extendsH(E). It is easilyseenthat L F hasinterpolation on the classof all frames.
Consequently, Theorem 6.4.4(ii) appliesand we can concludethat L 1 � L F . In
other words,every �rst-order formula with at mostonefreevariablex is equivalent
to a formula in the fragment F .

To seethat L F extendsH(E), considerany ' 2 H(E)[� [ f p1; : : : ; png]. and
 1; : : : ;  n 2 L F [� ]. We will show that there is a formula ' 0 2 L F [� ] that is
[~p=~ ]-equivalent to ' , meaningthat

for all M 2 Str[� ], M j= L F ' 0 i� M [p17! [[ 1 ]]ML F
;:::;pn 7! [[ n ]]ML F

] j= H (E) '
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The proof proceedsby induction on ' . The basecase(where ' is a proposition
letter or nominal from � , or ' is > or ' is pi for somei � n) follows from the
assumptionson F . The inductive inductive steps for formulas of the form : � ,
� 1 ^ � 2, 3 � or @i � also follows from the assumptionson F (cf. the Standard
Translation for H(E)). 2

In other words, it is not possibleto repair interpolation for the guardedfragment
by increasingits expressivity without ending up with full �rst-order logic. Note
the modal character of interpolation property usedin Theorem10.3.1: it applies
to formulas with at most one free variable. Also note that, while this result
appliesto the looselyguardedfragment, it doesnot cover the universallyguarded
fragment, or other fragments that are not closedunder negation.

Without proof, we state two straightforward generalization of this result.
Firstly, [66] show that, while interpolation fails for the Gr•adel-style guardedfrag-
ment, the purely relational guardedfragment (i.e., without constants) doessatisfy
a weakversionof interpolation that is strong enoughto entail the Beth property.
Theorem10.3.1can be shown to apply alsoto this weakversionof interpolation,
provided that constants are allowed again.

Secondly, in the original de�nition of the guarded fragment by [2], identit y
statements are not allowed as guards (i.e., all quanti�ers must be guarded by
atomic formulasof the form Rt1 : : : tn ). Assumingthat constants areallowed, the
least expressive extensionof this versionof the guardedfragment with interpola-
tion is preciselywhat [2] refer to as the fragment F 3.

10.4 Discussion
We �nish by discussingtwo open questions.The �rst question is the following:

What is the complexity of the satis�ability problemfor 8-guarded for-
mulas with bounded arity?

Note that the answer to this question does not depend on the presenceof con-
stants. Our conjectureis that this problem is ExpTime -complete.

A secondinteresting questionwould be the following question:

Classify, in the style of B•orger et al. [24], the quanti�er patterns � for
which the satis�ability problemfor sentences consisting of a sequence
of quanti�ers conform � followed by a guarded formula, is decidable.

The satis�abilit y problemfor � = 9� 8 is still decidable,ascanbeseenby replacing
the existentially quanti�ed variables by constants and guarding the universal
quanti�er by an identit y statement of the form x = x. On the other hand, � = 83

is already a conservative reduction class,as follows from results of Gr•adel [60].
What about � = 9� 82?



Chapter11

Relation algebra and M (D)

Someof the typical featuresof modal formulas are (1) their local nature, which
shows up in the fact that they are invariant under generatedsubmodels, (2) the
decidability of the satis�abilit y problem, and (3) their variable freenotation. For
each of theseproperties, one may ask to what extent the basic modal language
could be extendedwhile preservingthe property.

This questionhasbeenansweredpartly in the previouschapters. In particular,
Theorem9.2.5tells us that the boundedfragment is the largest fragment of �rst-
order logic that is invariant under generatedsubmodels. Unfortunately. the
boundedfragment is undecidableand doesnot have a variable free notation.

Likewise,the guardedfragments discussedin Chapter 10 form large, but still
decidable,extensionsthe modal language.Unfortunately, they lack interpolation
and a variable free notation.

Relation algebra,which we will discussin this chapter, can be seenasa large
fragment of �rst-order logic that extendsthe modal fragment and that (unlike the
boundedfragment and the guardedfragment) preservesthe variable free nature
of modal formulas. Unfortunately, it lacks interpolation, and is undecidable.

Relation algebra�nds its origins in the work of AugustusDe Morgan, Charles
SandersPeirceand Ernst Schr•oder in the nineteenth century. It was further de-
veloped and systematizedby Tarski and others. For a recent overview, cf. Hirsch
and Hodkinson [63]. The expressionsof relation algebradenotebinary relations.
Formally, given a countably in�nite set of atomic relations symbols, R; S; : : :, the
terms of relation algebraare given by the following inductive de�nition:

� ::= R j > j � � j � \ � j � � � j 
 � j �

Here,> is the total relation (over the givendomain), � � denotesthe complement
of the relation � , � \ � denotesthe intersection of � and � , � � � denotesthe
relational composition of � and � , 
 � denotesthe converseof the relation � , and
� is a constant that denotesthe identit y relation. Thus,each relation algebraterm
denotesa binary relation, and the relation denotedby a term can be computed
on the basisof the denotation of the atomic relation symbols occurring in it.

167
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Table 11.1: Translation from modal logic to relation algebra

p� = Rp

(> )� = �

(: ' ) � = � ' � \ �

(' ^  ) � = ' � \  �

(3 ' ) � = (R3 � ' � � > ) \ �

Relation algebrais a fragment of �rst-order logic, in the following sense:each
term of relation algebracorrespondsto a �rst-order formula in two freevariables.
For instance, the term R � S corresponds to the �rst-order formula 9z:(Rx1z ^
Szx2). In fact, it hasbeenshown that every term of relation algebracorresponds
to a �rst-order formula in two free variablescontaining at most three variables,
and vice versa[93].

The basicmodal languageis again a fragment of relation algebra. Sincerela-
tion algebraictermsdenotebinary relations, it is convenient to associatewith each
proposition letter p a subrelationRp of the identit y relation, where(w; w) 2 Rp i�
w satis�es p). Then, Table 11.1provides a translation from the modal language
into the languageof relation algebra. It is not hard to seethat a world w satis�es
' i� w standsin the relation ' � to itself.

In this chapter, we will show that the only way to repair interpolation for
relation algebrais to the extendthe languagesuch that every �rst-order operation
on binary relations becomesde�nable. Roughly speaking, this meansthat �rst-
order logic is the smallest extension of relation algebra with interpolation. In
order to provethis, wewill �rst considerM (D), which is the extensionof the basic
modal languagewith the di�erence operator. We will show that the �rst-order
correspondencelanguageL 1 is the smallestextensionof M (D) with interpolation.
Next, weusea well known connectionbetweenM (D) and relation algebrain order
to derive the above mentioned result. Theseresults are taken from [28].

11.1 M (D) and its relation to H(E)

The languageof di�erence logic, denotedby M (D), is obtained by extending the
basic modal languagewith a logical modality D, where D' is interpreted as \ '
holds somewhereelse." More precisely, the formulas of M (D) are given by

' ::= p j : ' j ' ^  j 3 ' j D'
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wherep 2 pr op and 3 2 mod. The truth de�nition for the basicmodal language
is extendedby letting M ; w j= D' i� M ; v j= ' for someworld v distinct from w.
In other words, the accessibility relation for D is the inequality relation.

The expressivity of M (D) with respect to models has beenstudied by [85].
In [46], the elementary frame properties de�nable in M (D) are characterized.
Completenessresults for M (D) can be found in [90, 98].

In this chapter, we use our results on hybrid logic to derive some further
results for di�erence logic, and also relation algebraand �rst-order logic.

There is a strong connectionbetweenM (D) and the hybrid languageH(E).
On the onehand, nominalsare de�nable in M (D), in the sensethat E(p ^ : Dp)
is true in a model preciselyif p has a singleton denotation. On the other hand,
D' holds at the world namedby the nominal i preciselyif E(: i ^ ' ) is true. In
fact, the following hasbeenshown.1

11.1.1. Theorem ([ 3]). There are polynomial translations between H(E) and
M (D) that preservevalidity with respect to any frame.

It follows that for all frame classesK, K is de�nable in H(E) i� K is de�nable
in M (D), and it also follows that the satis�abilit y problem for M (D)-formulas
with respect to K has the same complexity (up to a polynomial) as that for
H(E)-formulas. In combination with Corollary 4.3.2, this givesus the following
result.

11.1.2. Cor ollar y. An elementary frame class is de�nable in M (D) i� it is
closed under ultra�lter morphic images.

Gargov and Goranko give a similar characterization of the elementary frame
classesde�nable in M (D). Their result states:

11.1.3. Theorem ([ 46]). An elementary class K is de�nable in M (D) i� the
following closure condition holds,where we use6= W to denotethe inequality rela-
tion on the set W:

If (W; R) 2 K, and ue(W 0; R0; 6= W 0) is a bounded morphic image of
(W; R; 6= W ), then (W 0; R0) 2 K.

While the two characterizationsarequite similar, we have not beenable to derive
our result from Gargov and Goranko's. Incidentally, the proofs are also quite
di�eren t. The proof of [46] usesalgebraictechniquesand is not easilyadaptedto
other hybrid languagessuch as H(@). On the other hand, our result was proved
purely model theoretically and the sametechnique was usedto characterizethe
frame de�nable power of H and H(@).

Another result on di�erence logic that we obtain as a corollary of our results
on hybrid logics is the following:

1Gargov and Goranko [46] proved a similar result, but involving an exponential translation.
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11.1.4. Cor ollar y. Let K be any frameclassthat admits polynomial �ltr ation.
Satis�ability of M (D)-formulas on K is polynomially reducibleto satis�ability of
M (E)-formulas on K.

This follows immediately from Theorem8.2.3.

11.2 Repairing interp olation for M (D)
Recall the characterization of H(@; #) and L 1 in terms of interpolation presented
by Theorem6.4.4. In this section,we give a similar result, usingM (D) insteadof
H(E). More precisely, we show that the least expressive extensionof M (D) with
interpolation is the �rst-order correspondencelanguage. The proof is similar to
that of Theorem6.4.4(ii) , but a number of small modi�cations needto be made.
In particular, the abstract notion of a hybrid languageused there needsto be
replaced by that of a modal language,by removing all referenceto nominals.
However, sincethe main line of the proof remainsthe same,in what follows, we
will be slightly more concisethan in Section6.4.

We will assumea �xed setof (unary) modalities mod. A signature� is simply
a set of proposition letters. Given a signature � , a (pointed, but not necessarily
point-generated) � -model is a structure M = (F; V; w) whereF = (W; R3 )3 2 mod

is a frame, V : � ! } (W) a valuation and w 2 W a world. The classof all
� -modelsis denotedby Str[� ]. Furthermore, for any classof framesF, StrF[� ] will
denotethe classof � -modelsof which the underlying frame belongsto F.

For any model M = (F; V; w) 2 Str[� ] and function � : � ! � , let M � be the
� -model (F; � � V; w). Secondly, if M 2 Str[� ] and � � � , then M � � denotes
the � -reduct of M , i.e., the � -model that is obtained from M by \forgetting" the
interpretation of � n� . We write K � � for f M � � j M 2 Kg.

11.2.1. Definition (Mod al langua ges). A modal languageis a pair (L ; j= L

), where L is a map from signatures to sets of formulas, and j= L is a relation
between formulas and modelssatisfying the following conditions.

1. Expansion Prop ert y. If � � � then L [� ] � L [� ]. Furthermore, for all
' 2 L [� ] and M 2 Str[� ], M j= L ' i� M � � j= L ' . For M 2 Str[� ], the
statement M j= ' is de�ned (i.e., true or false) if and only if ' 2 L [� ].
Otherwise, it is unde�ned.

2. Renaming Prop ert y For all ' 2 L [� ] and � : � ! � , there is a  2 L [� ]
suchthat for all M 2 Str[� ], M j=  i� M � j= ' .

We will useL also to refer to the pair (L ; j= L ).
Givena model M = (F; V; w) and an element v of the domain of F, we will use

(M ; v) to denotethe model (F; V; v). Thus,with M ; v j= ' wemean(F; V; v) j= ' .
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For ' 2 L [� ], let Mod�
L (' ) = f M 2 Str[� ] j M j= L ' g. For M 2 Str[� ] and

' 2 L [� ], let [[' ]]ML = f v j M ; v j= ' g, i.e., the subsetof the domain of M de�ned
by ' .

Finally, the symbol j= will beusednot only to refer to the satisfactionrelation,
but alsoto the local consequence relation: for � [ f  g � L [� ], wesay that � j= L '
i� for all M 2 Str[� ], it holds that if M j= L ' for ' 2 � then M j= L  .

When restricting attention to a speci�c frameclassF, we will write Mod�
L ;F(' )

for f M 2 StrF[� ] j M j= L ' g. Likewise,for � [ f  g � L [� ], we say that � j= L ;F '
i�

T
' 2 � Mod�

L ;F(' ) � Mod�
L ;F( ).

11.2.2. Definition (Extensions of modal langua ges). Let L ; L 0 be
modal languages. Then L 0 extends L relative to a frame class F (notation:
L � F L 0) if the following holds for all signatures � and proposition letters
p1; : : : ; pn (n � 0).

� For each ' 2 L [� [ f p1; : : : ; png] and  1; : : : ;  n 2 L 0[� ], there is a formula
of L 0[� ], which we will denote by ' [~p=~ ], such that for all M 2 StrF[� ],
M j= L 0 ' [~p=~ ] i� M [p17! [[ 1 ]]M

L 0;:::;pn 7! [[ n ]]M
L 0] j= L ' .

The basic modal languagelanguageM and its extensionM (D) are modal lan-
guagesin the senseof De�nition 11.2.1. The �rst-order correspondencelanguage
L 1 also constitutes a modal language,if we consideronly formulas with at most
one free variable.2

11.2.3. Definition (Interpola tion). A modal languageL has interpolation
on a frame classF if for all ' 2 L [� ] and  2 L [� ] such that ' j= L ;F  , there is
a # 2 L [� \ � ] suchthat ' j= L ;F #, and # j= L ;F  .

The readershould keepin mind that j= L ;F denotesthe local entailment relation.
Now for the main result of this section.

11.2.4. Theorem. Let L be any modal language,and let F be any frame class.
If M (D) � F L and L has interpolation on F then L 1 � F L .

The remainderof this sectionis devoted to the proof of Theorem11.2.4.

11.2.5. Definition (Pr ojective classes). Let � be a signature, and let K �
StrF[� ]. Then K is a projective classof a modal languageL relative to a frame
classF if there is a ' 2 L [� ] with � � � , suchthat K = Mod�

L ;F(' ) � � .

2In this chapter, we use L 1 to refer to the �rst-order correspondencelanguage of modal
logic, as opposedto the �rst-order correspondencelanguagefor hybrid logic (which contains in
addition constants).
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11.2.6. Definition (Nega tion). A modal languageL hasnegationon F if for
each ' 2 L [� ] there is an formula of L [� ], which we will denoteby : ' , suchthat
ModL ;F( ) = StrF[� ]nModL ;F(' ).

11.2.7. Lemma. Let L be a modal languagewith negation that has interpolation
on a frame class F, and let K � StrF[� ], for somesignature � . If both K and
StrF[� ]nK are projective classesof L relative to F, then there is a ' 2 L [� ] such
that K = ModL ;F(' ).

Pro of: SinceK is a projective class,there is a formula ' 2 L [� ], with � � � ,
such that K = ModL ;F(' ) � � . Likewise,since StrF[� ]nK is a projective class,
there is a formula  2 L [� 0], with � � � 0, such that StrF[� ]nK = ModL ;F( ) � � .
Without loss of generality, we may assumethat � \ � 0 = � (by the Renaming
property of L ). It follows that ' j= L ;F :  . SinceL has interpolation, there must
be a # 2 L [� ] such that ' j= L ;F # and # j= L ;F :  . As a last step, we will show
that ModL ;F(#) = K.

SupposeM 2 K. Then M = N � � for someN 2 ModL ;F(' ). Since' j= L ;F #,
it follows that N j= #. By the Expansionproperty, M j= #. Conversely, suppose
M 62K. Then M = N � � for someN 2 ModL ;F( ). Since# j= L ;F :  , it follows
that N 6j= #. By the Expansionproperty, M 6j= #. 2

11.2.8. Lemma. Let L be a modal languagewith interpolation on a frame class
F, suchthat M (D) � F L . Then for all ' 2 L [� ] and p 2 � , there is a formula of
L [� nf pg], which we will denoteby #p:' , such that ModL ;F(#p:' ) = f (F; V; w) 2
StrF[� nf pg] j (F; V [p7!f wg]; w) j= ' g.

Pro of: Let K#p:' = f (F; V; w) 2 StrF[� nf pg] j (F; V [p7!f wg]; w) j= ' g. K#p:' is
projectively de�ned by p^ : Dp^ ' and its complement is projectively de�ned by
p^ : Dp^ : ' . SinceL hasnegationand has interpolation on F, by Lemma 6.4.7
K#p:' = ModL ;F( ) for some 2 L [� nf pg]. 2

Pro of of Theorem 11.2.4: Let L be any modal languagewith interpolation
over nominals on a frame class F, such that M (D) � F L . Let ' 2 L 1[� [
f p1; : : : ; png] and  1; : : : ;  n 2 L [� ]. Wewill show that there is a formula � 2 L [� ]
that is [~p=~ ]-equivalent to ' on F, meaningthat

for all M 2 StrF[� ], M j= L � i� M [p17! [[ 1 ]]ML ;:::;pn 7! [[ n ]]ML ] j= H (@) '

The proof proceedsby induction on the length of ' . To simplify the induction,
we will temporarily extend the syntax of L 1, by allowing unary predicates to
occur as arguments of other predicates. For instance, R(y; P) is allowed as an
atomic formula, and it is interpreted as9x:(Px ^ Ryx). This changeclearly does
not a�ect the expressive power of L 1, but it will make the inductive argument
simpler.
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It is not hard to seethat in the basecase,where ' is an atomic formula, the
claim holds. Also the inductive step for formulas of the form :  or  1 ^  2 is
straightforward (cf. also the proof of Theorem 6.4.4(i) ). Finally, let ' be of the
form 9y: . By the de�nition of L 1, ' contains at most one free variable, say
x (in case' contains no free variables, let x be any variable distinct from y).
Let p;q be distinct proposition letters (unary predicates)not occurring in � . By
induction hypothesis,' [x=i; y=j ] 2 L 1[� [ f i; j g] is [~p=~ ]-equivalent on F to some
� 2 L [� [ f p;qg]. By Lemma 11.2.8and by the fact that M (D) � F L , we obtain
a formula #p:E#q:� 2 L [� ] that is easily shown to be [~p=~ ]-equivalent to ' on
F. 2

11.3 An application to relation algebra
In the introduction of this chapter, we mentioned that the basicmodal language
can be seenasa fragment of relation algebra. As it happens,relation algebracan
itself be thought of as an instance of the basic modal language,with a speci�c
set of modalities, and interpreted on a speci�c classof frames.

We will considerthe basic modal languageover a collection of three modali-
ties: a binary modality � , a unary modality 
 , and a null-ary modality (modal
constant) � . Thus, the formulas of this languageare given by

' ::= p j > j : ' j ' ^  j ' �  j 
 ' j �

The correspondingframeshavethreeaccessibility relations,onefor each modality.
Let SQ be the classof such framesF = (W; R� ; R
 ; R� ) for which there is a set
U such that W = U � U, and

R� = f ((w; v); (w; u); (u; v)) j w; v; u 2 Ug (i.e., R� denotescomposition)
R
 = f ((w; v); (v; w)) j w; v 2 Ug (i.e., R
 denotesinverse)
R� = f (w; w) j w 2 Ug (i.e., R� denotesthe identit y relation on U)

The basic modal languageinterpreted on the frame classSQ is known as arrow
logic. In fact, it is relation algebrain disguise.Arrow logic is known not to have
interpolation. Theorem 11.2.4 tells us what it takes to repair interpolation: it
tells us that the �rst-order correspondencelanguageis the smallestextensionof
the basicmodal logic that has interpolation on SQ.

Note that while Theorem 11.2.4 was only proved for languageswith unary
modalities, the proof generalizedto languagessuch as that of arrow logic, that
have modalities with other arities (cf. alsoRemark 6.4.9).

11.3.1. Theorem. L 1 is the least expressiveextensionof the basic modal lan-
guagewith interpolation on SQ.
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Pro of: The di�erence operator is de�nable relative to SQ: for any formula ' ,
D' is equivalent to (: � � ' � > ) _ (> � ' � : � ) [96]. Hence, in terms of Def-
inition 11.2.2, the basic modal languageM extends M (D) relative to SQ. It
follows by Theorem 11.2.4 that every modal languageextending M relative to
SQthat hasinterpolation on SQextendsL 1 relative to SQ. Finally, that L 1 itself
has interpolation relative to SQ follows immediately from the fact that SQ is an
elementary frame class. 2

In fact, in order to repair interpolation, an extensionof the languageof arrow
logic was proposed,called RL# [78]. In the samepaper, it is shown that RL# is
equally expressive as L 1 (on SQ). Hence,Theorem 11.3.1tells us that, in some
sense,the results of [78] are optimal.

We canrephraseTheorem11.3.1in relation algebraicterms by observingthat
every elementary operation on binary relations is de�nable in L 1 over SQ. To
make this precise,we needto introducesometerminology. Every �rst-order for-
mula of the form ' (R1; : : : ; Rn ; x; y), whereR1; : : : ; Rn are binary relation sym-
bols, de�nes an n-ary operation O on binary relations: given binary relations
R1; : : : ; Rn on a setD, O(R1; : : : ; Rn ) = f (d;e) 2 D j (D; R1; : : : ; Rn ) j= ' [d;e]g.
Operations on binary relations that are de�ned by a �rst-order formula in this
way arecalledelementary. Examplesare intersection(R1xy ^ R2xy), complement
(: Rxy) and composition (9z:(R1xz ^ R2zy)).

11.3.2. Pr oposition. Let O be any n-ary elementaryoperation on binary rela-
tions (n � 0). Then there is a formula � (p1; : : : ; pn ) 2 L 1[f p1; : : : ; png] (involving
the modalities � , 
 and � ), such that for all modelsM based on a frame in SQ,
[[� (p1; : : : ; pn )]]ML 1 = O([[p1]]ML 1 ; : : : ; [[pn ]]ML 1 ).

Pro of: Let ' (R1; : : : ; Rn ; x; y) be any �rst-order formula de�ning a map from n
binary relations to a singlebinary relation. Pick correspondingproposition letters
(unary predicates)P1; : : : ; Pn , and de�ne ' � inductively as follows

(Rkxy)� = 9z:(Pk(z) ^ R� zxz ^ R� zzy)
(x = y) � = x = y
> � = >
(' ^  ) � = ' � ^  �

(: ' ) � = : (' � )
(9x:' ) � = 9x:(R� (x) ^ ' � )

Finally, let � (x) 2 L 1[� ] be the formula 9yz:(' � (y; z) ^ R� xyx ^ R� xxz). Then for
all models M basedon a frame in SQ, [[� (p1; : : : ; pn )]]ML 1 = O([[p1]]ML 1 ; : : : ; [[pn ]]ML 1 ).
The proof of this claim is left to the reader. 2

Algebraically speaking, we can concludefrom this that the only way to restore
interpolation for the classof representable relation algebraby expansionis to add
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the entire clone of elementary operations on binary relations. In particular, it
doesnot su�ce to add only �nitely many elementary operations, or to add only
J�onsson'sQ-operators [97].





Chapter12

Second order propositional modal logic

In this chapter, we considerthe extensionof the basicmodal logic with proposi-
tional quanti�ers introducedin 1970by Fine [41]. The formulas of this languages
are generatedby the following recursive de�nition:

' ::= p j : ' j ' ^  j 3 ' j 9p:' j 8p:'

The propositional quanti�ers are interpreted in the expected way: 9p:' is true
if there is a subset X of the domain such that ' holds when the valuation is
changedsuch that p denotesX , and similar for the universalquanti�er.

In what follows, we will refer to this languageas second order propositional
modal logic (SOPML). This namethat is justi�ed by the fact that many formulas
of SOPML expressnon-elementary properties, even on the level of models. Con-
sider for instance the formula 8p:(23 p ! 32 p). If this formula would have a
�rst-order equivalent � (x), then 8x:� (x) would de�ne the classof framesde�ned
by the McKinsey formula, which is known to be non-elementary. It follows that
8p:(23 p ! 32 p) does not have a �rst-order equivalent. In other words, the
standard translation cannot be extendedto the full SOPML.

A formula of SOPML is in pre�x form if it is of the form Q1p1 � � � Qnpn :' ,
whereQ1; : : : ; Qn 2 f9 ; 8g and ' is a quanti�er free modal formula.

It was shown by Fine [41] that second-orderarithmetic can be interpreted in
SOPML. This result was strengthenedby Kaminski and Tiomkin [68], where it
was shown that there is a satis�abilit y preserving translation from full second
order logic to SOPML.1 It follows immediately that the satis�abilit y problem for
SOPML is not decidable,and in fact not analytical.

Nevertheless,not every secondorder formula is equivalent to a formula of
SOPML. This follows from the fact that SOPML formulas are invariant under

1Kremer [71, 72] further strengthened this result by showing that such translation from
secondorder logic exists already for the extension of several intuitionistic and relevance logics
with propositional quanti�ers.

177
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generatedsubframes,as was observed by Van Benthem [11]. The preciseexpres-
sive power of SOPML has not been characterized. In particular, the following
questionsasked by Van Benthem [11] have not beenansweredso far:

1. Is every SOPML formula equivalent to one in pre�x form?

2. Is every boundedL 1-formula equivalent to a formula of SOPML?

In what follows, we will answer thesequestionspositively. Furthermore, we will
show that the basic modal languageis the bisimulation invariant fragment of
SOPML, and we will show that H(@; #) has the sameexpressive power as the
�rst-order de�nable part of SOPML.

12.0.1. Pr oposition. Every formula of SOPML is equivalent to one in pre�x
form.

Pro of: We will prove the result for uni-modal languages.The proof generalizes
straightforwardly to the multi-modal case.Let ' 1(p) bethe formula 3 p^ 8q(3 (p^
q) ! 2 (p ! q)), which holds i� there is exactly onesuccessorsatisfying p. Now,
given a secondorder modal formula ' , one can move all quanti�ers to the front
of the formula using the following equivalences.

:9 p: = 8p::  :8 p: = 9p::  
(9p: ) ^ � = 9p:( ^ � ) (8p: ) ^ � = 8p:( ^ � )
3 9p: = 9p:3  3 8p: = 9q8p:(' 1(q) ^ 2 (q !  ))

where p does not occur in � and q does not occur in  . The resulting formula
might still not be in pre�x form due to the newly introduced' 1-subformulas, but
it can easily be transformed in pre�x form. Furthermore, it is equivalent to the
original formula ' . 2

The following analogueof Theorem2.2.3holds for secondorder modal logic.

12.0.2. Theorem. Both on �nite modelsand in general: a formula ' of SOPML
is invariant under bisimulations i� ' is equivalentto a formula of the basic modal
language.

Pro of: One direction follows simply from the bisimulation of modal formulas.
For the other direction, we will usethe notion of n-bisimulation [21]. Let n 2 ! ,
let M ; N be models and let w and v states of M and N, respectively. We say
that w is n-bisimilar to w0 (notation: M ; w $ n N; w0) if there exists a sequence
of binary relations Z0; : : : ; Zn satisfying the following properties:

(i) wZ0w0

(ii) If vZ i v0 then v and v0 agreeon all proposition letters
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(iii) If vZ i v0 for i < n and vR3 u then there exists a u0 with v0R0
3 u0 and uZ i +1 u0

(iv) If vZ i v0 for i < n and v0R0
3 u0 then there exists a u with vR3 u and uZ i +1 u0

Consider any formula ' of SOPML that is invariant under bisimulations Let k
be the modal depth of ' (i.e., the maximal nesting degreeof modal operators).
As a �rst step, we will show that ' is invariant under k-bisimulations. Suppose
(M ; w) $ k (N; v). Let (cM ; w) be the tree-unraveling of (M ; w) and let cM k be the
submodel of cM consistingof all points reachablefrom w in at most k steps(along
the union of all accessibility relations). By construction, (M ; w) $ (cM ; w), and
(cM ; w) satis�es ' i� (cM k ; w) does. De�ne bN and bN k similarly. Then (cM k ; w) $

( bN k ; v). Combining theseobservations, and using the bisimulation invarianceof
' , we concludethat (M ; w) and (N; v) agreeon ' .

It is known that, if we restrict attention to the (�nitely many) proposition
letters occurring in ' , every model (M ; w) is described completely up to k-
bisimulation by a singlemodal formula � k

(M ;w) of modal depth k (e.g., seePropo-
sition 2.29and Proposition 2.30 in [21]).

Finally, consider the set � = f: � n
(M ;w) j (M ; w) 6j= ' g. It follows from the

invarianceunder k-bisimulations that for all M 2 K, (M ; w) j= � i� (M ; w) j= ' .
Since there are only �nitely many mutually non-equivalent modal formulas of
modal depth k [21, Proposition 2.29], � contains only �nitely many formulas,
modulo logical equivalence,and ' is equivalent their conjunction.

A similar argument applies to �nite models, where the tree unraveling con-
struction must be replacedby a partial unraveling, cf. [81]. 2

In other words, the Van Benthem-Rosencharacterization of modal logic as the
bisimulation invariant fragment of �rst-order logic holds alsoif �rst-order logic is
replacedby secondorder modal logic.

Note that the proof of Theorem12.0.2crucially dependson the useof (partial)
tree unravellings,and that the result might not hold on frameclassesthat arenot
closedunder this operation. In particular, considerthe classof bi-modal frames
(W; R1; R2) in which R2 is the reexiv e transitiv e closureof R1 (note that this
classis de�nable by a singlemodal formula). As observed by [92], results of [67]
imply that, on such frames,the bisimulation invariant fragment of SOPML is the
modal � -calculus!

Secondordermodal logic itself canbecharacterizeditself in termsof invariance
undergeneratedsubmodels. This followsfrom the following surprisingconnection
betweensecondorder modal logic and H(@; #).

12.0.3. Theorem. Every nominal free H(@; #)-sentence is equivalent to a for-
mula of SOPML. Conversely,if a formula of SOPML hasa �rst-or der equivalent,
then it is equivalent to a nominal free H(@; #)-sentence.
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Before we will prove Theorem 12.0.3, we will list a number of its consequences.
First of all, Theorem12.0.3shows that H(@; #) is, in somesense,the intersection
of SOPML and �rst-order logic. In order to formulate this more precisely, let a
pointed model be a pair (M ; w), whereM is a model and w is an element of M .
Note that M neednot be generatedby w. Modal formulas, as well as �rst-order
formulas with one free variable, naturally de�ne classesof pointed models. As
with frame classes,we call a classof pointed models elementary if it is de�ned
by a �rst-order formula with one free variable.

12.0.4. Cor ollar y. A classK of pointed models is de�nable by a nominal free
H(@; #)-sentence i� K is both elementaryand de�nable by a formula of SOPML.

By Theorem9.2.5, we obtain the following.

12.0.5. Cor ollar y. An elementary class K of pointed models is de�ned by a
formula of SOPML i� K it is invariant under generated submodels.

Theorem12.0.3in combination with Corollary 9.3.2alsogivesrise to the follow-
ing analogueof the Goldblatt-Thomason theorem for secondorder propositional
modal logic.

12.0.6. Cor ollar y. Let K be an elementaryclassof frames. Then the following
are equivalent.

1. K is de�nable by a set of formulas of SOPML

2. K is de�ned by a single formula of SOPML

3. K is closed undergenerated subframesand reects point-generated subframes

In particular, if a frame class is de�ned by a �rst-order formula of the form
8x:' (x), with ' (x) bounded,then it is alsode�ned by a formula of SOPML.

It seemsnot unreasonableto expect that Corollary 12.0.6can be generalized
to frame classesde�nable in monadic secondorder logic. However, inspection of
the proof shows that Proposition 9.3.6appliesalso to secondorder modal logic.
In other words, there is a monadic� 1

1-de�nable frameclassK that is closedunder
generatedsubframesand reects point-generatedsubframes,such that K is not
de�nable in SOPML. Similarly, Proposition 9.3.5showsthat Corollary 12.0.6does
not hold on �nite models.

In order to prove Theorem12.0.3, we will extend the hybrid languageH with
a new kind of quanti�ers, denotedby 9k and 8k . Formally, for every formula '
and natural number k, we admit 9kx:' and 8kx:' as formulas, and we extend
the truth de�nition in such a way that M ; g; w j= 9kx:' i� there is a point v such
that M ; g[x := v]; w j= ' , and v is reachable from w in at most k steps along
the union of all accessibility relations (similarly for the universalquanti�er). Let
H(9n ) be the extensionof H with the quanti�ers 9k and 8k for all k 2 ! .
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12.0.7. Lemma. Every H(9n)-formula is equivalent to a H(@; #)-sentence, and
conversely, every nominal free H(@; #)-sentence is equivalent to an H(9n )-
formula.

Pro of: We will prove the result for uni-modal languages.The generalizationto
formulas containing several modalities is straightforward.

The �rst part of the statement is easyto prove: let 3 � n  is shorthand forW
k� n 3 k  . Then 9nx:' is equivalent to #y:(3 � n#x:@y ' ), for y a variable distinct

from x that doesnot occur in ' .
As for the secondpart, let ' be any nominal freeH(@; #)-sentence,and let m

be its modal depth. Considerits standardtranslation STx (' ), which is a bounded
formula of the �rst-order correspondencelanguagewith no free variablesbesides
x. For any bounded�rst-order formula  , de�ne the H(9n )-formula  � asfollows.

(Ryz) � = 3 � m (y ^ 3 z)
(Py)� = 3 � m (y ^ p)
(y = z) � = 3 � m (y ^ z)
(:  ) � = : ( � )
( ^ � ) � =  � ^ � �

9z:(Ryz ^  ) � = 9mz:(3 � m (y ^ 3 z) ^  � )

An inductiveargument showsthat the H(9n )-sentence90x:(STx (' )) � is equivalent
to STx (' ), and henceto ' . 2

Armed with Lemma 12.0.7, we can proceedwith the proof of Theorem12.0.3.

Pro of of Theorem 12.0.3: Let ' be any nominal free H(@; #)-formula. By
Lemma 12.0.7, ' is equivalent to an H(9� n )-formula  . We may assumewith-
out lossof generality that  is of the form Q1x1 � � � Qkxk � , where Q1; : : : ; Qn 2
f8 n ; 9n j n 2 ! g and � is quanti�er free. Let ` be the largestnatural number such
that a quanti�er of the form 9` or 8` occurs in  , and let m = ` + md(� ). Let
3 � m ' be shorthand for

W
k� m 3 k ' , let 2 � m ' be shorthand for

V
k� m 2 ' , and let

# be the formula of SOPML obtained from  by replacing every subformula of
the form 9� nx: by 9p:(3 � np ^ 8q:(3 � m (p ^ q) ! 2 � m (p ! q) ^ ' [x=p]) and
replacingevery subformula of the form 8� nx: by 8p:(3 � np^ 8q:(3 � m (p^ q) !
2 � m (p ! q) ! ' [x=p]). A simple inductive argument shows that # is equivalent
to the H(9� n )-formula  , and henceto the H(@; #)-formula ' .

For the conversedirection, by Theorem9.2.5it su�ces to observe that second
order modal formulas are invariant under generatedsubmodels. 2
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Conclusions

Roughly speaking, this thesis contains two types of results. Results of the �rst
type can be seenasaddressingspeci�c cellsin a big table along the following two
dimensions.

� Extensionsof the basic modal language

The basic modal language,the hybrid languagesH, H(@) and H(E), the
bounded fragment and H(@; #), guarded fragments, relation algebra and
secondorder propositional modal logic

� Model theoretic and computational properties

Expressivity, frame de�nabilit y, axiomatization, interpolation, the Beth
property and complexity

The secondtype of results establish cross-connectionsbetween languages. In
particular, a number of truth- or satis�abilit y-preserving translations between
di�eren t languagesaredescribed,and certain languagesarecharacterizedin terms
of others (for instance,asbeing a model theoretically interesting fragment, or as
being the smallestextensionsatisfying certain properties).

Resultsof the �rst type reported in this thesis include the following.

We gave Goldblatt-Thomason-style characterizations of the elemen-
tary frame classesde�nable in H , H(@), H(E), and H(@; #), both for
pure formulas and for arbitrary formulas. The characterizationsare
basedon two new operations on frames: ultra�lter morphic images
and bisimulation systems.

Wecharacterizedthe expressivity and framede�nable power of second
order propositional modal logic (SOPML). The proofs are basedon
the observation that the �rst-order de�nable part of SOPML coincides
with the boundedfragment.
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We showed that either in�nitely many rules or non-orthodox rules
are neededin the axiomatizations of H , H(@) and H(E) in order to
obtain a generalcompletenessresult for pure extensions.On the other
hand, we showed that there is an axiomatization for H(@; #) that
contains only �nitely many, orthodox rules, that satis�es a general
completenessresult for pure extensions.

Resultsof the secondtype include the following.

We showed that H(@; #) is the smallest extensionof H(@) with in-
terpolation (i.e., interpolation over proposition letters and nominals).
Likewise,we showed that L 1 is the smallest extensionof H(E) with
interpolation, and that L 1 is the smallest extension of M (D) with
interpolation. The proofs are basedon the simple observation that
every interpolant for (i ^ ' ) ! (j ! ' [i=j ]) (with j a nominal not
occuring in ' ) is equivalent to #x:' [i=x].

Weshowedthat, while most propertiesdo not transfer in generalfrom
a modal logic to the corresponding H- or H(@)-logic,there is a large
classof modal logics for which complexity, interpolation, uniform in-
terpolation and �nite axiomatization do transfer. The proof is based
on a seriesof translations from H and H(@) to the basicmodal lan-
guage,each of which preserves satis�abilit y with respect to certain
frame classes.

A few cells of the big table described above are still blank (in particular, which
elementary frame classesare de�nable by guarded �rst-order formulas?). Also,
there might still be interesting model theoretic cross-connectionsbetween frag-
ments of �rst-order logic, waiting to be discovered. In fact, I hope that this thesis
will contribute to the emergenceof a new area of research that might be called
\abstract model theory below �rst-order logic".



AppendixA

Basics of model theory

This section reviewsa number of important results on the model theory of �rst
order logic that are used in proofs throughout this thesis. For a more detailed
treatment, cf. [64, 37]. We assumethat the readeris familiar with the syntax and
semantics of �rst-order logic. We will only consider �rst-order languageswith
constants and relation symbols but without function symbols of arity greater
than zero. We will denote�rst-order models(or, structures) aspairs M = (D; I )
consistingof a domain D and an interpretation function I that assignsrelations
of the appropriate arity to the relation symbols and that assignselements of D
to constants. Given such a structure M and a �rst-order formula ' (x1; : : : ; xn ),
we will write M j= ' [d1; : : : ; dn ] if d1; : : : ; dn are elements of the domain of M ,
such that ' holds in M interpreting x1; : : : ; xn as d1; : : : ; dn .

The �rst three results are easily stated.

A.0.1. Theorem (Compactness). Let � be a set of �rst-or der formulas. If
every �nite subsetof � hasa model, then � hasa model.

A.0.2. Theorem (L •owenheim-Sk olem). Let � be a countable set of �rst-
order formulas. If � hasa model then � hasa countablemodel.

A.0.3. Theorem (Craig Interpola tion). Let ';  be �rst-or der formulas,
such that j= ' !  . Then there is a formula # such that j= ' ! #, j= # !  
and all constants,relation symbols and function symbols occurring in # occur both
in ' and in  .

For the remaining results we needto introduce someterminology. A model M
is a submodel of a model N if the domain of M is a subsetof the domain of N
and the interpretations of every non-logicalsymbol in M is simply the restriction
of its interpretation in N with respect to the domain of M . It follows that if an
element of the domain of N is namedby a constant, then it is alsoin the domain
of M . We say that M is an elementarysubmodel of N if it is a submodel, and
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for all �rst-order formulas ' (x1; : : : ; xn ) and elements d1; : : : ; dn of the domain of
M , M j= ' [d1; : : : ; dn ] i� N j= ' [d1; : : : ; dn ]. In this case,we alsosay that N is
an elementaryextensionif M .

Given a set of modelsf M i j i 2 I g for a relational language(i.e., without con-
stants or function symbols), the union N =

S
i 2 I M i is de�ned in the natural way:

the domain of N is the union of the domainsof M i (i 2 I ), and the sameholds
for the interpretation of the relation symbols. In general, this notion can only
be applied to models for relational languages.However, there are circumstances
in which it can alsobe applied to models for languagescontaining constants and
function symbols. An exampleof this is the following situation.

A.0.4. Theorem (Unions of element ar y chains). Let (M k)k2 ! be a se-
quence of models,suchthat M k is an elementarysubmodel of M k+1 for all k 2 ! ,
and let M ! be the union

S
k2 ! M k . Then for each k 2 ! , M k is an elementary

submodel of M ! .

NB:
S

i 2 I M i should not be confusedwith the disjoint union of the models M i

(i 2 I ). In fact, for the above result crucially relieson the non-disjointnessof the
models in question.

An ultra�lter over a set W is a set U � } (W) satisfying three conditions:

1. W 2 U

2. For all X � W, X 2 U i� (W n X ) 62U

3. For all X 2 U and Y 2 U, X \ Y 2 U

An ultra�lter is principal if hasa singletonelement.

A.0.5. Definition (Ul trapr oducts). Given a collection of models f M a =
(Da; I a) j a 2 Ag and an ultra�lter U over the set A, the following de�nes the
ultraproduct � UM a = (D; I ).

Let � be the equivalence relation � on the product � a2 A Da given by

f � g i� f a 2 A j f (a) = g(a)g 2 U

Let D be the quotient (� a2 A Da)= � . For each constant c, let

I (c) = [hI a(c)i a2 A ]�

Final ly, for each k-ary relation R and [f 1]; : : : ; [f k ] 2 D, let

([f 1]; : : : ; [f k ]) 2 I (R) i� f a 2 A j (f 1(a); : : : ; f k(a)) 2 I a(R)g 2 U

If all factor models M a are the same,then � UM i is called an ultrapower. Every
model M is isomorphic to a submodel of the ultrapower � UM , the isomorphism
beingthe function that sendsevery element d to the equivalenceclass[hd;d; : : :i ]� .
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A.0.6. Theorem (  Los). For all models M , ultra�lters U and �rst-or der sen-
tences ' , � UM j= ' i� M j= '

Related to ultraproducts are the simpler notions of products and subdirect prod-
ucts, which will alsoplay a role in this thesis.

A.0.7. Definition (Pr oducts and subdirect pr oducts). The product of
a collection of modelsf M a = (Da; I a) j a 2 Ag, (also called cartesianproduct or
direct product, notation: � a2 A M a) is the model (D; I ), where D is the cartesian
product � a2 A Da, and for each n-ary relation R,

I (R) = fhd1; : : : ; dn i 2 D n j hd1(a); : : : ; dn (a)i 2 I a(R) for each a 2 Ag

A subdirect product of f M a j a 2 Ag is any submodel N of the product � a2 A M a

for which it holds that the natural projection functions from the domain of N to
the domainsof the modelsM a (a 2 A) are surjective.

The next notion we introduce is that of ! -saturatedness. A 1-type is a set of
formulas in one free variable. A 1-type �( x) is realized in a model M if there is
an element d of the domain of M such that M j= � [x : d]. A model is said to
be 1-saturated if for all 1-types �( x), if every �nite subsetof �( x) is realized in
M , then �( x) itself is realizedin M . One can think of 1-saturatednessas a sort
of compactnesswithin a model.

Given a model M and a �nite sequenced1; : : : ; dn of elements of the domain
of M , we use (M ; d1; : : : ; dn ) to denote the expansionof M in which the ele-
ments d1; : : : dn are namedby additional constants c1; : : : ; cn (each new constant
ck denotesthe corresponding element dk in the expandedmodel). A model M is
! -saturated if every such expansion(M ; d1; : : : ; dn ) (with n 2 ! ) is 1-saturated.
Note that we use! and N interchangably to denotethe set of non-negative inte-
gers.

A.0.8. Theorem (! -Satura tion). Every model M has an ! -saturated ele-
mentary extensionM + . In fact, M + can be constructed suchthat it is isomorphic
to an ultrapower of M .

It should be noted that this result holds regardlessof the cardinality of the lan-
guage(i.e., the number of non-logicalsymbols) [32, Theorem6.1.4and 6.1.8].

We say that two models,M ; N are elementarilyequivalent (notation: M � F O

N) if they satisfy the same�rst-order sentences.
One, rather trivial, su�cien t condition for elementary equivalenceis the ex-

istenceof an isomorphism. An isomorphismbetweenmodels M and N is a bi-
jection f between the domains of M and N such that for all atomic formulas
' (x1; : : : ; xn ) and elements d1; : : : ; dn for the domain of M , M j= ' [d1; : : : ; dn ]
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i� N j= ' [f (d1); : : : ; f (dn )]. If an isomorphismbetweenM and N exists, then
we say that M and N are isomorphic, and that N is an isomorphic copy of N.
Clearly isomorphicmodelssatisfy the same�rst-order formulas. A more interest-
ing su�cien t condition for elementary equivalenceis the existenceof a potential
isomorphism, a notion that will be de�ned next.

A �nite partial isomorphism between models M ; N is a �nite relation
f (a1; b1); : : : ; (an ; bn )g betweenthe domainsof M and N such that for all atomic
formulas ' (x1; : : : ; xn ), M j= ' [a1; : : : ; an ] i� N j= ' [b1; : : : ; bn ]. Sinceequality
statements areatomic formulas,every �nite partial isomorphismis (the graph of)
an injective partial function.

A.0.9. Definition (Potential isomorphisms). A potential isomorphismbe-
tween two modelsM and N is a non-emptycollection F of �nite partial isomor-
phismsbetween M and N that satis�es the following conditions:

� For all �nite partial isomorphismsZ 2 F and for each w 2 M , there is a
v 2 N suchthat Z [ f (w; v)g 2 F .

� For all �nite partial isomorphismsZ 2 F and for each v 2 N, there is a
w 2 M suchthat Z [ f (w; v)g 2 F .

We write M ; w1; : : : ; wn
�= p N; v1; : : : ; vn to indicate the existence of a potential

isomorphismF between M and N suchthat f (w1; v1); : : : ; (wn ; vn )g 2 F .

It is well known that �rst-order formulas are invariant under potential isomor-
phisms. In other words, the existenceof a potential isomorphism implies ele-
mentary equivalence. The conversedoes not hold in general, but it holds for
! -saturated models.

A.0.10. Theorem. If M �= p N then M � F O N. Conversely,if M � F O N and
M and N are ! -saturated, then M �= p N.

An exact characterization of elementary equivalencecan be given in terms of
Ehrenfeucht-Fra•�ss�e games, which can be seenas �nite approximations of poten-
tial isomorphisms.The Ehrenfeucht-Fra•�ss�e gameof length n on models M and
N (notation: EF (M ; N; n)) is as follows. There are two players, Spoiler and
Duplicator. The gamehas n rounds, each of which consistsof a move of Spoiler
followed by a move of Duplicator. Spoiler's movesconsistof picking an element
from oneof the two models,and Duplicators responseconsistsof picking an ele-
ment of the oppositemodel. In this way, Spoiler and Duplicator build up a (�nite)
binary relation betweenthe domainsof the two models: initially , the relation is
empty; each round, it is extendedwith another pair. The winning conditions are
as follows: if at somepoint of the gamethe constructed binary relation is not
a �nite partial isomorphism,then Spoiler wins immediately. If after each round
the relation is a �nite partial isomorphism,then the gameis won by Duplicator.
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A.0.11. Theorem (Ehrenfeucht-Fra •�ss�e). Assume a �rst-or der language
with only �nitely many relation symbols and function symbols. M � F O N i�
Duplicator hasa winning strategy in the gameEF (M ; N; n) for each n 2 ! .

Observe that, since these gamesare �nite zero-sumperfect information games
betweentwo-players, by Zermelo'stheorem one of the two players always has a
winning strategy.

In fact, TheoremA.0.11canbestrengthened:equivalencewith respect to �rst-
order formulas of quanti�er depth n correspondsto Duplicator having a winning
strategy in the gameof n rounds. Moreover, a winning strategy for spoiler may
be constructedfrom the distinguishing formula, and vice versa[9].





AppendixB

Basics of computabilit y theory

We briey reviewsomenotions from complexity theory and recursiontheory that
are usedin this thesis. More information can be found in [24], [89] and [62].

A decision problem may be identi�ed either with a set of strings over the
alphabet f 0; 1g, or with a set of natural numbers. In fact, these views can be
identi�ed by consideringnatural numbers as written down in binary notation.
Thus, while the length of a string s is simply the number of elements of the se-
quence,the length of a natural number n will be the length of its binary encoding,
which is approximately logn. We will usejsj to refer to the length of s, wheres
is either a bit-string or a natural number.

Given such a set L of bitstrings, or of natural numbers, the task is then to
decide for a given string, or natural number, s whether s 2 L. A problem L
is called decidable (or, recursive) if there is a deterministic Turing machine that
solves this problem in �nite amount of time (i.e., for each input s it terminates
after �nitely many stepsand correctly answers the question whether s 2 L). A
problem L is called recursively enumerable (r.e.) if there is a (not necessarily
halting) deterministic Turing machine that enumerates the elements of L. A
problem is co-recursivelyenumerable if its complement is recursively enumerable.
Any problemthat is neither recursively enumerablenor co-recursively enumerable
is called highly undecidable.

Complexit y classes

Complexity theory classi�esdecisionproblemswith respect to the amount of time
and spacea Turing machine needsto solve them.

Consider a function f : N ! N. We say that a problem L in dtime (f ) if
there is a deterministic Turing machine M and natural numbers c;d such that
on any input s with jsj > d, M terminates after at most c � f (jsj) many steps
and correctly answersthe questionwhether s 2 L. ntime (f ) is de�ned similarly,
using non-deterministic Turing machines. A problem L in space(f ) if there is
a deterministic Turing machine M and natural numbers c;d such that, on any
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Table B.1: Someimportant complexity classes

PTime =
[

k2 N

dtime (nk)

NP =
[

k2 N

ntime (nk)

PSpace =
[

k2 N

space(nk)

ExpTime =
[

k2 N

dtime (2nk
)

NExpTime =
[

k2 N

ntime (2nk
)

ExpSpace =
[

k2 N

space(2nk
)

2-ExpTime =
[

k2 N

dtime (22n k

)

2-NExpTime =
[

k2 N

ntime (22n k

)

2-ExpSpace =
[

k2 N

space(22n k

)

:::

Element ar y =
[

k2 N

k-ExpTime

input s with jsj > d, M decidesin �nite amount of time whether s 2 L, using at
most c � f (jsj) many cellsof the tape.

Thesenotions can be usedto de�ne a number of important classesof decision
problemsthat play a role in this thesis,which are listed Table B.1. Each of these
classesis contained in the classesappearing below it in the list.

Reductions and completeness

A polynomial reduction from a problem L to a problem L 0 (more precisely, a
polynomial time many-one reduction) is a deterministic Turing machine that,
given input s, terminates after at most f (jsj) many stepsand producesoutput
t such that s 2 L i� t 2 L 0, for somepolynomial function f : N ! N. All
complexity classeslisted in Table B.1 are closedunder polynomial reductions.



193

For C a classof decisionproblemsand L a decisionproblem, L is said to be C-
hard (more precisely, C-hard under polynomial reductions) if every problem in C
canbe polynomially reducedto L. A decisionproblem L is said to be C-complete
if L 2 C and L is C-hard.

We will alsomake useof other typesof reductionsin this thesis. A computable
reduction from a problem L to a problem L 0 is a deterministic Turing machine
that, given input s, terminates after �nitely many stepsand producesoutput t
such that s 2 L i� t 2 L 0. Clearly, the classof decidabledecisionproblems is
closedunder computable reductions. On the other hand, the classeslisted in
Table B.1 are not closedunder computablereductions.

Finally, a non-deterministic polynomial conjunctive reduction of a problem L
to a problemL 0 is a polynomial time non-deterministicTuring machine that, given
input s (non-deterministically) producesa sequencet1; : : : ; tn of instancesof L 0,
such that s 2 L i� somerun of the non-deterministic Turing machine with input
s producesa sequencet1; : : : ; tn such that each t i is in L 0 (i � n). Clearly, non-
deterministic polynomial conjunctive reduction generalizethe usual polynomial
time many-one reductions. With the exceptionof PTime , all complexity classes
listed in Table B.1 are closedunder non-deterministic polynomial conjunctive
reductions(the classPTime is not closedunder such reductions,unlessPTime =
NP ) [74].

Arithmetical and analytical hierarchy

While complexity theory providesthe tools to classifythe complexity of decidable
problems,recursiontheory is the proper framework for the studying and classify-
ing undecidableproblems. Recursiontheory studiesdecisionproblemsfrom the
perspective of de�nabilit y in �rst-order or second-orderarithmetic.

The languageof �rst-or der Peano arithmetic, L 1
P A , is the �rst-order language

over the vocabulary that consistsof binary relation � , function symbols+ and � ,
and equality. Formulasof this languageare interpreted over the natural numbers.
A set L of natural numbers is called arithmetical if it is de�nable in �rst-order
Peanoarithmetic, i.e., if there is a formula ' (x) of L 1

P A such that for all n 2 N,
n 2 L i� (N; � ; + ; � ) j= ' [n]. Arithmetical sets may be further classi�ed in
terms of the quanti�er patterns occuring in the formulas that de�ne them. More
speci�cally, a set of natural numbers is said to be in � 0

k (with k � 1) if it is
de�ned by a L 1

P A -formula of the form Q1x1 � � � Qnxn :' , with Q1; : : : ; Qn 2 f9 ; 8g
and ' quanti�er-free, such that Q1 = 9 and the number of quanti�er alternations
(i.e., universal quanti�ers following existential quanti�ers or vice versa) in the
sequenceQ1 : : : Qn is at most k � 1. A set of natural numbers is said to be in � 0

k
if its complement is in � 0

k , and in � 0
k if it is both in � 0

k and in � 0
k . A remarkable

result in recursion theory states that the decidablesetsof natural numbers are
precisely the onesthat are in � 0

1, and the recursively enumerable sets are the
onesin � 0

1.
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Table B.2: Someimportant classesof problems in recursion theory

Arithmetical hierarc hy

� 0
1 � 0

2

� � � � �
decidable � 0

2 � 0
3 � � �

(= � 0
1) � � � � �

� 0
1 � 0

2

Analytical hierarc hy

� 1
1 � 1

2

� � � � �
arithmetical � 1

2 � 1
3 � � �

(=
S

k � 0
k ) � � � � �

� 1
1 � 1

2

The languageof second-order Peano arithmetic, L 2
P A , is the second-orderlan-

guageover the vocabulary that consistsof binary relation � , function symbols +
and � , and equality. A set of natural numbers is called analytical if it is de�ned
by a formula of L 2

P A . Again, the analytical sets can be classi�ed with respect
to the quanti�er patterns occuring in the de�ning formulas. A set of natural
numbers is said to be in � 1

k (with k � 1) if it is de�ned by a L 2
P A -formula of

the form Q1X 1 � � � QnX n :' , where Q1; : : : ; Qn 2 f9 ; 8g are quanti�ers over sets
and ' contains only �rst-order quanti�ers, such that Q1 = 9 and the number of
quanti�er alternations (i.e., universal quanti�ers following existential quanti�ers
or vice versa)in the sequenceQ1 : : : Qn is at most k � 1. A setof natural numbers
is said to be in � 1

k if its complement is in � 1
k , and in � 1

k if it is both in � 0
k and in

� 1
k .

Table B.2 summarizessomeof the above classes,and indicates their relation-
ships. Each of the indicated inclusions is strict. Each of the classeslisted in
Table B.2 is closedunder computablereductions. A set A of natural numbers is
said to be � k

` -hard (more precisely, � k
` -hard under computablereductions) if for

every set B in � k
` there is a computablereduction from B to A. A set of natural

numbers is � k
` -complete if it is both in � k

` and � k
` -hard. Likewisefor � k

` and
� k

` . When onespeaksof an arbitrary decisionproblem asbeing, for instance,� 1
1-

hard, then it is implicitly understood that the instancesof the decisionproblem
are coded into natural numbers (using a computableencoding).

The set of (codings of) true � 1
1 sentencesof arithmetic is itself a � 1

1-complete
set. In fact, this can be strengthenedslightly, sincethe intended interpretation
of + and � in (N; � ) can be de�ned using �rst-order sentences. In this way, we
obtain the following.
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B.0.1. Theorem. The existential second order theory of (N; � ) is � 1
1-complete.

Another example of a � 1
1-hard decision problem, due to Harel [62] is the

recurrent tiling problem, which can be de�ned as follows. A tile is a tuple t =
ht lef t ; t r ight ; t top; tbottom i of elements of someset C. A tiling of N � N using a set
of tiles T is a function f : N � N ! T such that for all n; m 2 N, f (n; m) r ight =
f (n + 1; m)bottom and f (n; m)top = f (n; m + 1)bottom . Now, the recurrent tiling
problem is the following problem:

givena �nite setof tiles T and a designated tile t 2 T, is there a tiling
f of N � N using T suchthat f (n; 0) = t for in�nitely many n 2 N?

B.0.2. Theorem ([ 62]). The recurrent tiling problemis � 1
1-complete.

Here is an exampleof a decisionproblem that is not analytical.

B.0.3. Theorem. Satis�ability of monadic second order formulas over the sig-
nature consisting of a singlebinary relation is highly undecidable,and in fact not
analytical.

Pro of: There is a computablesatis�abilit y-preservingtranslation from arbitrary
second-orderformulas to monadic secondorder formulas in one binary relation
symbol [68]. By a standard recursiontheoretic argument, using the fact that the
model (N; � ; + ; � ) is de�ned up to isomorphismby a secondorder formula, the
classof satis�able second-orderformulas is not analytical (cf. [38]). The result
follows. 2
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Samenvatting

In dit proefschrift worden verschillende uitbreidingen van de basis modale taal
bestudeerd. Modeltheoretische en computationele eigenschappen van dezeuit-
breidingenworden onderzocht. Het proefschrift bevat grofweg tweetypen resul-
taten. De resultaten van het eerste type behandelenspeci�eke cellen van een
grote tabel met de volgendedimensies.

� Uitbreidingenvan de basis modale taal

De basis modale taal, de hybride talen H, H(@) en H(E), het bounded
fragment en H(@; #), guarded fragmenten, relatie algebra en tweedeorde
propositionelemodale logica.

� Modeltheoretischeen computationeleeigenschappen

Expressiviteit, frame de�nieerbaarheid, axiomatizering, interpolatie, de
Beth eigenschap en complexiteit

Resultatenvan het tweedetypetonenkruisverbandenaantussentalen. In het bij-
zonderwordenverschillende waarheid-of vervulbaarheid-behoudendevertalingen
tussenverschillende talen beschreven, en wordenbepaaldetalen gekarakteriseerd
in termen van anderetalen (bijv oorbeeldals zijnde eenmodeltheoretisch interes-
sant fragment, of alszijnde dekleinsteuitbreiding die aanbepaaldeeigenschappen
voldoet).

Hoofdstuk 1 geeft eenalgemeneintroductie tot het proefschrift.

Hoofdstuk 2 neemt belangrijke noties en resultaten in modale logica door va-
nuit eenmodeltheoretisch perspectief. Het bevat tevensenkelenieuwe resultaten:
de niet-recursieve opsombaarheid van de eersteorde formules die behoudenblij-
ven onder ultra�lter extensies,eenalgemeeninterpolatie-resultaat voor modale
logica's,en enigeresultaten betre�ende modale logica'sdie geaxiomatizeerdzijn
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door ondiepe formules (i.e., formuleswaarin geenvoorkomenvan eenpropositie-
letter in het bereik is van meerdan �e�en modale operator).

De hoofdstukken die op Hoofdstuk 2 volgenzijn onderverdeeldin tweedelen.
In Deel I, dat bestaat uit Hoofdstuk 3{ 8, worden de hybride talen H, H(@) and
H(E) in detail bestudeerd.Dezetalen kunnen worden beschouwd als bescheiden
uitbreidingen van de basismodale taal. Hoofdstuk 3 introduceert de talen met
hun syntax en semantiek. In Hoofdstuk 4 wordt de expressiviteit bestudeerd,
zowel op het niveau van modellen als op het niveau van frames. In Hoofd-
stuk 5 worden axiomatizeringenen volledigheid bestudeerd. Hoofdstuk 6 bevat
resultaten betre�ende interpolatie en de Beth eigenschap. Hoofdstuk 7 behan-
delt vervulbaarheid-behoudendevertalingen van H, H(@) en H(E) naar de basis
modale taal. Hoofdstuk 8 behandelt de algemenevraag naar de overdracht van
eigenschappen van modale logica's naar corresponderendelogica's in de rijk ere
talen H, H(@) and H(E).

In Deel I I, dat bestaat uit Hoofdstuk 9{ 12, worden enige meer expressieve
uitbreidingen van de basismodale taal bestudeerd. Hoofdstuk 9 bestudeerthet
bounded fragment, en de daaraan gerelateerdehybride taal H (@; #). Hoofd-
stuk 10bestudeertguardedfragmenten met constanten. Hoofdstuk 11bestudeert
relatie algebra. Tot slot betreft Hoofdstuk 12 tweedeorde propositionelemodale
logica, de uitbreiding van de basismodale taal met propositionelekwantoren.



Abstract

In this thesis,several extensionsof the basicmodal languageare studied. Model
theoretic and computational properties of these extensions are investigated.
Roughly speaking, the thesis contains two types of results. The �rst type of
results can be seenas addressingspeci�c cells in a big table along the following
two dimensions.

� Extensionsof the basic modal language

The basic modal language,the hybrid languagesH, H(@) and H(E), the
bounded fragment and H(@; #), guarded fragments, relation algebra and
secondorder propositional modal logic

� Model theoretic and computational properties

Expressivity, frame de�nabilit y, axiomatization, interpolation, the Beth
property and complexity

The secondtype of results establish cross-connectionsbetween languages. In
particular, a number of truth- or satis�abilit y-preserving translations between
di�eren t languagesaredescribed,and certain languagesarecharacterizedin terms
of others (for instance,asbeing a model theoretically interesting fragment, or as
being the smallestextensionsatisfying certain properties).

Chapter 1 provides a generalintroduction to the thesis.

Chapter 2 reviews basic notions and results of modal logic from a model
theoretic perspective. It also contains several new results: the non-recursive
enumerability of the �rst-order formulas preserved under ultra�lter extensions,a
generalinterpolation result for modal logics,and someresults concerningmodal
logicsaxiomatizedby shallow formulas (i.e., formulas in which no occurenceof a
proposition letter is in the scope of more than onemodal operator).
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The chapters that follow Chapter 2 are divided in two parts. In Part I,
which consists of Chapter 3{ 8, the hybrid languagesH, H(@) and H(E) are
studied in detail. These languagescan be consideredmodest extensionsof the
basicmodal language.Chapter 3 introducesthe languageswith their syntax and
semantics. In Chapter 4, their expressivity is studied, both on the level of models
and on the level of frames. In Chapter 5, axiomatizations and completeness
results are discussed. Chapter 6 contains results concerninginterpolation and
the Beth property. Chapter 7 discussessatis�abilit y preservingtranslations from
H, H(@)and H(E) to the basicmodal language.Chapter 8 discussesthe general
questionwhich properties transfer from modal logics to the corresponding logics
in the richer languagesH, H(@) and H(E).

In Part I I, consisting of Chapter 9{ 12, somemore expressive extensionsof
the basicmodal languageare studied. Chapter 9 studiesthe boundedfragment,
and the related hybrid languageH(@; #). Chapter 10 studiesguardedfragments
with constants. Chapter 11studiesrelation algebra. Finally, Chapter 12concerns
secondorder propositional modal logic, which is the extensionof the basicmodal
languagewith propositional quanti�ers.
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