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Chapter 1

Intro duction

1.1 Multi-agen t Proto cols

Multi-agent protocols are setsof rules that specify how agens can interact with

eath other. For example, an auction has strict bidding rules and is thus an

exampleof a protocol. Electionsform another example. Theseactivities have in

commonthat they canbe donein real life, without useof computersor networks.
Howeer, onecanalsoimagineauctionsand electionsin which computer programs
participate, perhapsevenin competition with humans. Theseexamplesof multi-

ager protocolsarealreadywidely usedin all kinds of settings. The next examples
illustrate situations in which multi-agent protocolsare useful.

Everyoneis familiar with the problemof dividing a cake fairly amongse\eral

people. Assumethat a round birthday cake is to be sharedfairly among
a certain number of guests. If “fair' meansinto equally sized and shaped

parts and onecanuseruler and compassthen this becomes mathematical

problem. Onecanalsoseethis situation asa sccial scienceproblem, by using
another notion of fairness. One canrequire envy-freeness which meansthat

nobody should be envious of somelody else. Everyone should judge his or

her own pieceat least as good as the other pieces. This is acievable for

two agerns by using so-called cut and choose' protocols: one agen splits

the cake into two parts, the other agert chooseswho getswhich part. The

fact that both agers play an active role in this protocol makesit easier
for agerts to acceptthis protocol. What makesthe protocol fair is the fact
that the cutter hasan incertive to cut asfair as possible.In caseof larger
setsof agers, more elaborate proceduresexist [17].

Supposeyou warnt to raisemoneyfor a good cause,and a sponsorhasgiven
you a car in order to help you to do so. Shouldyou auction this car, or start
a lottery? A lottery is the traditional way to raise money at leastin The
Netherlands. Howewer, auctionsof di erent typeshave becomeincreasingly

1



2 Chapter 1. Introduction

popularin other domains(considereBay, or the distribution of mobile phone
network licenses),and a lot is known about the good theoretical properties
of auctions [63]. Recen work by Goeree and others [39 indicates that
a lottery, despite being random, is a better way to raise money than an
auction. The authors do not only give mathematical argumeris. In one
examplewhereparerts areaskedto donatemoneyto their children's sdool,
they note that saocial argumerns alsoplay a role:

\Some parerts may be o ended whentold they cortributed noth-
ing becausedhey lost the auction, or, in other words, becausdheir
cortributions were not high enough.” [39, p.3]

On auction websitessut aseBay, many buyerspreferto placetheir bids at
the very last momerts. This is called sniping. Thesesnipers chooseto bid
in the last minute even when the auction lasts a week [76]. Possibly they
do this in order to avoid bidding wars with other bidders, who in the faceof
competition want to spend more moneythan they originally planned. An-
other explanation is that the snipers somehav enjoy to surprisingly outbid
other people. Either way, somebidders refuseto behave as prescribed by
auction-theory textb ooks. To somebiddersand sellerssniping seemaunfair,
but othersfeelit is justied by the amourt of pleasurethey derive from it.

\A lot of peoplewho do not snipe feel it is unfair, but it hap-
pensto be my absolutefavorite way to win at auctions." Marcia
Collier [3§

The needto understand multi-agent protocolsis growing, becausethese proto-
cols are usedin new and possibly surprising environmerts. What worked well
in real life may work di erently on the Internet or with computer programs as
participants. The stakes are also getting higher. The Internet is not only used
for buying low cost commadlities sud as books, but also for ights, cars and
houses.A newresearb eld focusedon understandingand designingprotocols,
sometimescalled “sccial software' [82], is therefore emerging.

Agents

It is dicult to come up with a universally acceptedde nition of the word
agent[124]. Newertheless ewery researber should know the meaningof the words
he or sheuses,or risk talking nonsensel usethe word agentto meana decision
making entity, and thus | accepthumans, computer programsor even organisa-
tions asagerns. The word hasbeenusedin this way within the English language
for certuries, for instancein the following quotation.
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\Nor are we to be meer instruments moved by the will of those in
authority..but are morall Agens.”" SamuelBolton, 1646 [80]

(original spelling)

In a more recen tradition, agens are seenas software programswith arti cial
intelligence-like abilities and properties, sud as re exes, mobility, intelligence
and emotions. The English science- ction writer Douglas Adams for instance
descrikes how agerts might function when a spaceshiptries to recover from a
meteorite hit.

Small modulesof software { ageris - surgedthrough the logical path-
ways, grouping, consulting, re-grouping. They quickly established
that the ship's memory, all the way bad to its certral missionmod-
ule, wasin tatters. [2]

| am not concernedwith designingor dissectingactual agens, but with proto-
cols for agens. Thus, where other researbers seethe construction of agerts, or
ewen intelligent agens', asa longterm, yet unattained researt goal, in my view
there are already agens and protocols. The focusis not on the internal work-
ings of theseindividual agerts, but on the way protocolsfunction when usedby
agerns. Sinceprotocolsare formal objects, they can be studied formally, without
experimerts or empirical investigations.

Proto cols

A protocol is dierent from an algorithm becauseit gives ageris a choice of
actions. Agens have the freedomto bid whatewer they think an item is worth, or

to vote for whatewer they think is best. All ageris together determine what the

outcomeof the protocolis. In an ideal world, the protocol allows all participants

to readh an outcomethat is "optimal' in somesense:the protocol should be fair,

e cien t, demcacratic, or otherwisemeet someexpectation. There are often many

di erent protocols for a certain problem. One can for instance sell a houseby

askingall interestedparties to submit a bid in a closedervelop, open all ervelops
at the sametime, and sell the houseto the highest bidder. Alternativ ely, one
could have an open-cry auction, in which bidding cortinuesuntil no agen wants

to bid higher than the current bid. Another option would be to have a lottery,

or an ess§ cortest. It is often not immediately obvious which protocol is best.
Selectingthe best protocol for a certain task is thus a relevant and sometimes
di cult problem.

Traditional versus Computational Approac hes

What we call multi-agent protocols has been already studied under di erent
namesby other disciplinesthan computer science.For example,economistsand



4 Chapter 1. Introduction

gametheorists have studied the properties of auctions [63]. Sccial choice scien-
tists have beenworking on voting protocolsand fair division protocols[17]. These
related elds alsohave their own traditional applications. Fair division protocols
are canbe usedfor cake cutting, but alsofor divorcesettlemers [17]. Economists’
examplesare often more trade-orierted or money-orietted. Thus, an opportunity
exists here to take results and insights from computer science,and usethem to
get improvemerts in applications outside the traditional scope of computer sci-
ence.We hope that knowledgeabout multi-agent protocolscanbe usedto design
better solutionsfor the examplescenariosdescriked in this chapter.

One can distinguish “traditional' approatesfrom computer science(and Al)
approadies by the fact that the computer scienists emphasisecomputational
properties. In the traditional approad one determineswhether some solution
to a protocol problem exists. The computer scientists are also interestedin the
guestionwhether somethingcan be computede cien tly. This emphasison com-
putation can lead to interesting insights. Even though it has been proven that
no voting sthemeis completelyimmune to manipulation [36], one can show that
in certain sthemesit is very hard to compute how one should manipulate the
voting in order to get a required outcome[24]. In thesesdemes,it is unlikely
that someonecan manipulate an election.

In this dissertation computational argumerts are alsoused,but in a di erent
way. By comparing the complexity of di erent protocol veri cation problems,
one can determine what kind of goalsare hard for ageris to adiewve, and which
properties are hard to verify. This leadsto more insight into the causesof the
di cult y of protocol veri cation of design. For instanceit is often assumedthat
the interaction betweenageris makes gamesand protocolsdi cult. Sometimes
howewer also models with only one agent can have interesting computational
properties, which is a surprising result.

Logical Approac h

In the examplesof cake-cutting and charity auctions,it hasbecomeclearthat the
properties that one wants protocolsto have can be very diverse. In the second
example,parerts actually wanted to cortribute, while in the rst examplefairness
meart that agens would not chooseto swap pieces.In somecasesfor example
money-basedauctions, one can reducethe questfor the right protocol to a nu-
merical problem: the problem is reducedto computing the optimal parameters,
or nding the right side paymernts. If this is not possible,for instance because
moneyis not available in the protocol, onemust capture thesepropertiesin some
other preciseway, beforeone can test protocolsfor theseproperties. Logical lan-
guagesare very suitable for this task: one can describe complicated properties
in short logical formulas. Logics are alsovery expressie: one can state both the
presenceand the absenceof certain properties. Di erent logicsare thus usedas
speci cation languages:the formulas expresswhat one wants or does not want
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from a protocol.

1.2 Proto col Problems

Throughout the dissertationdi erent exampleproblemsare usedto illustrate the
issuesat hand. For instancechapter 4 cortains se\eral protocolsthat canbe used
in the following situation.

Three agerts Alice, Bob and Caroline (or A; B and C) have to
selectone of the alternatives x;y and z. They are looking for a
suitable voting protocol to selectexactly oneof thesethree alterna-
tivesas the outcome. The protocol should be demacratic, so that
any majority can enforceany outcome.

In chapter 4, the focusis on what outcomescan be guararteed by agens and
coalitions of agents. Thus, the issueof e ectivity is studied. In this chapter, we
nd many solutions for this problem. The logical approad of chapter 4 cannot
be usedfor distinguishing these many solutions. Therefore, in chapter 5 and 6
more expressie logics are studied that can nd subtle di erences between the
di erent solution to this problem.

The following two problems are more basic than the voting problem stated
above, and using the logic from chapter 4 onecanagain nd protocolsthat solve
theseproblems. In chapters4 and 5 it is shavn how solutions for theseproblems
di er from ead other.

joint decision problem A decisionp is takenif either Alice or Bob think that
p should be the case.If both agens do not want p, it should be rejected.

indep endent decision problem Alice can decide whether a should hold or
not, and Bob can decidewhether b should hold or not.

Chapter 7 is concernedwith the knowledgethat agerts have at the end of a
protocol, and how this knowledgedependson the strategiesthat are used. One
exampleproblem that can be analysedusing the techniquesfrom this chapter is
the following problem.

In a TV quiz shov the quiz master asks a candidate the following
guestion: Which day of the week comesdirectly after Tuesdg? Is it
a) Monday, b) Wednesdy, c) Friday or d) Saturday. The candidate
hasno clue whatscewer about the days of the week,and replies: "I am
not sure. Can | do ft y-ft y?'. The quiz master hasto remove two
optionsthat arenot the answer, sohesays: "Theansweris not Monday
and neither Friday'. Doesthe candidate now know the answer?

In chapter 8, ageris are concernedabout their privacy, and userandom strate-
giesin order to hide their preferences.
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Alice needsto buy onebox of breakfastcerealsevery week. Each week
she can either buy Allgrain (A), Barley (B) or Corn akes(C). She
likes A better than B and B better than C. Howewer, Alice knows
that the shop is watching her shopping behaviour closely and she
does not want the shop to know for sure what her preferencesare.
Therefore,shebuys a di erent brand every day.

The techniquespresened in this chapter allow oneto calculatethe optimal (ran-
dom) strategiesthat ageris should useif they are concernedabout keepingtheir
preferencerivate.

1.3 Outline of this Dissertation

This rst chapter is a formula-freeintroduction. The last chapter is alsowritten
in plain English, and presens someconclusions.The chaptersin the middle have
a high density of mathematical notation. The rst two ‘middle' chapters are
introductory.

Chapter 2 cortains de nitions in the area of logic. It cortains de nitions
of propositional logic, which is the basiclogic of which all other logicsare
extensions,modal logic and epistemiclogic.

Chapter 3 is a conciseintro duction and overview of gametheory. It de nes
the conceptsof gametheory that are usedlater on.

The remainderof this dissertation, the so-called cortent'-part, descritesoriginal
researb that | have conductedover the last three years. It canbe divided roughly
in two parts. The rst three chapters deal with logicsthat are interpreted over
extensive gamesof perfectinformation. In thesegamesit is assumedhat agens
have perfect information about the current state of the world. They know what
other ageris have done, but are uncertain about what other ageris will do. In
order to expressproperties of sud situations, di erent logicsare examined.

Chapter 4 descrikes a logic for reasoningabout extensive gamescalled
efl . This logic dealswith reasoningabout whether coalitions of agens can
achieve certain goals,without help of the other agents. Game-theoretically
this is a simple situation, and one can thereforee cien tly ched properties
in this logic. A completeproof systemis alsogiven, together with a proce-
dure to automatically constructs protocolsfor given properties. The main
result of this chapter has beenacceptedfor ESSLLI 2005[107.

Chapter 5 introduceslogicsthat are more expressie than efl . First of all
the logic efls canbe usedto expressmore subtle propertiesinvolving side
e ects of using certain strategies. One way to look at this logic is by saying
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that it dealswith the situation where ageris are initially not aware of the
preferencesf other agens, a situation that is not normally consideredin
gametheory. This logic can thus be usedto expressmore properties of
gameforms, but hasthe samemodel chedking complexity asefl .

A secondlogic introducedin this chapter, calledefls , allows oneto reason
about agerts that want other ageris to be ableto do something. This is an
exampleof reasoningabout preferencen the whole play of the game,not
just on the outcome. One can apply this logic to reasonabout polite agens
that want to give other agerns the ability to choose. This chapter extends
work presetied at the AAMAS 2004conferencen New York [113.

Chapter 6 reasonsabout gameforms and preferencesexplicitly. It usesa
special logic for reasoningabout preferences.As an examplewe study the
badkward induction solution conceptin this chapter, in which ageris use
their knowledgeof eat otherspreferencesn orderto anticipate ead others
choices. This chapter is exceptional because,unlike the other chapters of
this thesis, it is not the solework of Sieuwwvert van Otterlo o, but is basedon
joint, yet unpublished,work donein pleasam cooperation with Olivier Roy
and Johanvan Benthem at the ILLC in Amsterdam.

Thesethree chapter can be seenas an attempt to understand gameforms using
more and more preciselanguages. For the logic efl many protocols appear to
be the same. The next two chapterso er logicsthat give more detailed views, so
that onecan discover subtle di erencesin protocols.

Chapters 7 and 8 deal with the casewhere ageris are not fully aware of all
aspects of the current situation. They have imperfect information about certain
facts. Sinceinformation is very important to agens, they might act in order to
get more information. In other situations ageris act so that others obtain no
information.

Chapter 7 discusseknowledgecondition games In this newtype of games,
ageris act in order to achieve a certain knowledgesituation: they want to

know that othersdo not know that somethinghappened. Two variants with

di erent computational complexity areintroduced,and sometractable vari-

ants are descrited. The work has beenpresented incremenally at GTDT

in New York [110], at the rst Knowledgeand GamesWorkshopin Liver-
pool [11]] and at the Europeanworkshopon Multi-Agent Systemg115],and
have nally beenacceptedfor publication in the Journal of Logic, Language
and Information [114.

In chapter 8, a similar problem is treated in a di erent way. We assume
that certain agerts want to keeptheir preferencesecret. Using techniques
from information theory, we determine what strategy agerts must usein
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order to maximizethe uncertainty of an obsener. This chapter is basedon
a paper presened at the AAMAS 05 conferencen Utrecht [108].

A recurrert themeis this dissertationis the ideathat agens canhave complex
goalsin a protocol, and that nondeterministic strategiescan be usedfor achieving
thesegoals(sedor instancethe situation on page89whereBob makesAlice unable
to decide,or the quiz master exampleon page 134 where nature doesnot favour
the candidate). Normally in gametheory agerns have preferencesver outcomes,
and the goal is to adhieve a certain outcome. A complex goal on the other
hand dependson the whole game,including properties of the strategiesusedand
other outcomesthan the actual one. For instancein chapter 5 ageris care about
whether other agerts canachieve outcomesor not. In knowledgecondition games
coalitions act in order to make sure certain knowledgeis acieved in the end, and
in chapter 8 ageris care about how predictable their strategy is.

It is easiestto usestrategiesthat recommendsingle best actions for any sit-
uation. These strategiesare called pure strategiesand are often su cient for
reading simple goals. In this dissertation we often use nondeterministic strate-
gies. Thesestrategiescan recommendmultiple actions and are thus potentially
more powerful. In knowledgecondition gamesand the privacy gamesof chapter 8,
ageris candeliberately usethesestrategiesto becomeunpredictable. In the logics
efls and efln thesenondeterministic strategiesare usedbecausein marny case
seeral actions are equally good. One cannot know beforehandwhich action an
agen will take in this case,sowe model this uncertainty using nondeterministic
strategies.

1.4 Conclusion

Multi-agent protocols have not beendiscovered recerily. The term can be used
to descrike commonsituations, sud asauctions, voting and cake cutting. These
protocols can be studied from di erent disciplines, sucd as game theory, eco-
nomics and sccial science. Furthermore one can test these protocols for many
di erent properties, for instance ervy-freeness. The di erent frameworks and
logical languagesde ned in this dissertation make it possibleto formally analyse
thesemulti-agent protocols, and to test them on many di erent properties. The
precisionof a logical approad makesit possiblein principle to usethe computer
to nd the right protocol for any situation. In this dissertation, it is determined
in which caseghis is alsopractical. This is doneby looking at the complexity of
thesecomputing problems.



Chapter 2

Logic

2.1 Intro duction

Logic is one of the oldest disciplinesof science.It hasbeenstudied more or less
continuously from Aristotle to the presen day. For example,it wasan important

part of the Mediewal academiccurriculum: together with grammar and rhetoric,

logic formedthe “trivium', the relatively simplearts that oneshould masterbefore
one could move on to the more advanced arts of the Quadrivium (arithmetic,

astronony, geometry and music) [122.

Given the rich history of logic, it is not possibleto give a complete overview
of the area. The goal of this chapter is merely to provide the necessaryde ni-
tions of propositional, modal and epistemiclogic that will subsequetly be used
throughout this dissertation. For readersnot so familiar with logic, this chapter
can serwe as a conciseintroduction. For other readers,this chapter introduces
the notational corvertions that | usein the remainder of this dissertation. First
propositional logic is de ned. Then in section2.3 modal logic and epistemiclogic
arede ned. In section2.4we discussthe di erent ways in which theoremproving,
satis abilit y and model chedking can be usedfor protocol veri cation.

A logictypically consistsof three elemetts: the logicallanguage the semartics
and the proof system. A logical languageis a set L of formulas. The semarnics
is a relation betweenformulas and models, that says when a formula is true on
a model. If a formula is true on a model M we write M E , otherwise we
write M 6] . We are often interestedin formulas that are true in any model,
and theseformulas are called valid formulas, validities or tautologies. In orderto
indicate that is a tautology, we write = . If aformula holdsin at leastone
model, the formula is called satis able.

The nal typical elemen of alogic is the proof system Sud a proof systemS
consistsof axiomsand derivation rulesand allows oneto formally derive formulas.

2.1.1. Definition.  Let L be a logical language. A proof system S is a pair
(A;R) whereA L andR L.
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description language pro of system
propositional logic Lp Sp
standard modal logic L, S
epistemiclogic Lk Sk

Figure 2.1: Proof Systemsfor di erent logics

The setA is calledthe setof axiomsof S, and R is the setof reasoningrules. If a
proof systemS proofsa formula , then we write S° . The notion of proof that
we usehereis that of a nite list of statemens S° 1, S ,,...S | sud that

rule of S, with mq;:::;m, < i. Thus, axioms court as self-evideh, and the
reasoningrules allow oneto derive a formula from formulas proven before.

2.1.2. Definition.  Let L be a alogical language.A proof systemsS is sound if
S impliesE . It iscompleteif F implies S

All logicsin this thesismake useof a synbol : for negationof a formula. In sut
logics,a formula is called consistent if its negation cannot be proven: S 6 :

In a completeproof system(for a logic wherenegationis de ned in the classical
way), every consistem formula is satis able.

Ideally, a proof system should be sound and complete. Furthermore, the
axioms and rules should not be arbitrary sets, but one should be erumerable
in an automatic fashion: a medanical procedureshould be able to generateall
axioms. In practice, this meansthat the setsof axiomsand reasoningrules consist
of a nite number of patterns, sothat any formulas can be insertedin the open
placesof the pattern. This constrairt ensuresthat one can e ectively generate
all proofs, which meansthat there is a procedureto nd all proofs and thus all
theorems.

Table2.1lists the languagesand proof systemsthat arede ned in this chapter.

2.2 Prop ositional Logic

Propositional logic is a logic for reasoningon a sertence level: It explains how
complexsenencesfollow from simple sertences. We assumethat there is a setP
of basicor atomic propositions. Theserepreseh serencesthat cannot be broken
down in smaller sertences. In the next example this set cortains the atomic
propositions p and g, that capture "It rains' and The weatheris good'. These
atomic propositions are conbined using logical connectives or operators, which
stand for somesemairtical relation betweenfacts.
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sentence prop osition
It rains p

It doesnot rain p

The weatheris good q
It rains and the weatheris good p"
It rains or the weatheris good pP_q
If it rains then the weatheris good p! ¢
It rains if and only if the weatheris good p$ q
It rains if and only if the weatheris not good pr q
Contradiction ?

AN

It is corveniert to have somany operatorsavailable, sothat onecan concisely
and naturally expresscomplexformula structures. At the sametime, it is cum-
bersometo deal with all the di erent operatorsin all theoremsand proofs. It is
alsoredundart, becausamany operatorscan be expressedn terms of ead other.
For instance,p $ qis equivalert to (p! g~ (g! p). The common solution
to this dilemmais to treat someof theseconnectivesas fundamertal, and others
as abbreviations for somethingexpressedising the fundamertal connectiwes. In
the next subsection,a variant of propositional logic with a minimal set of fun-
damenal operatorsis preserted, and a proof systemfor this logic is deweloped.
In the following subsection,it is shovn in detail how propositional logic with all
operators reducesto this language.

2.2.1 Minimal Prop ositional Logic

The languageof minimal propositional logic has a set of basic operators that

is minimal in the following sense:Every function from truth valuesto a truth

value can be expressedoy composing the basic operators, but none of the basic
operators can be expressedas a composition of the other basic operators. One
canchoosesud a minimal setin di erent ways. Two well-known minimal setsare
f ;:9 andf” ;:.g, seefor instance[53 p.71]. Our approad is basedon the basic
operators ? (the constart “false'that is newer true) and ! (implication). An
argumernt for this particular choicewould be that implication plays an important
role in the proof systemde ned for modal logic.

2.2.1. Definition.  Let P be a setof atomic propositionsandp 2 P an elemen
of P. Minimal propositional logic L ,(P) consistsof formulas generatedby the
grammar

n=pj ! j?

Parerthesesindicate how certain formulas are constructed, and can be used,
for instance,to make a distinction between(p! g ! randp! (q! r). If no
parerthesesare given then the secondreadingis intended: p! q! r shouldbe
readasp! (q! r).
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This languageis interpreted in the following way. A model M for this logic
is a subsetof P. The atomic propositionsin M are assumedo be true, the ones
that arenot in M are false. The next de nition determineswhenM E  for any
formula

2.2.2. Definition. Let M P be a model. The satisfaction relation F for
minimal propositional logic is de ned recursiwely by the following three rules:

ME? newer
M F pwherep2 P i p2M
ME | i MfF impliesM F

Like many logics, propositional logic is closed under uniform substitution.
This meansthat if one hasa valid formula in which p occurs, and one replaces
all occurrencesof p for any other formula , one again hasa valid formula. For
example,since = p_ : pisvalid, the formula = :q_: qisalsovalid. A
formula that is obtained from by uniform substitution is called an instance
of .

In the remainder of this sectionwe de ne a proof systemS, for the language
L,. The next three formulas sene asthe axiomsfor this proof system.

Ar= ! (1)
A= (L (LN )
As=(( L 2)r (1t apt (1)

We have de ned axiomsassetsof formulas,andthus A, to Az aresetsof formulas.
Tobeprecise Ay =f ! (! )j; 2Lgyg, butit ishopedthat the notation
without set brackets is more readable. We can write 2 A, to indicate that
hasthe stated form. If 2 A; we say that is an instance of the axiom stheme
Ai.

Supposethat L is a logical languagein which ! hasits usual interpretation.
If both and ! are validities in this logic, then  must be a validity aswell.
This fact forms the basisof the reasoningrule Modus Ponens The setM P, that
expresseshis rule is the following.

MP.=f(; ' ;)j; 2Lg

A more traditional way of presening this rule is the following.

|
MPL: i

2.2.3. Definition.  The standard proof system S, for minimal propositional
logic consistsof the three axioms A; A,; Az and the rule Modus Ponens.

The systemS, is soundand completefor minimal propositional logic. A proof
of this claim is beyond the scope of this dissertation, but proofsfor similar systems
can be found in logic textb ooks, for instance[53].
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2.2.2 Full Prop ositional Logic

Logical connectivescan be seenasfunctions that take asinput a number of truth
values,and return a truth value. There are two truth values,and thus two cor-
responding truth constaris: ? (false) and > (true). There are two one-place
functions, namely the identit y, which doesnot have a connective, and negation,
for which the notation : is used. A simple courting argumen can be usedto
shov that there are 2* = 16 di erent two-argumen functions. Only a few of
these are commonly used as connectives, namely » (and), _ (or), ! (implica-
tion), $ (doubleimplication) and r (exclusiwe or). In this section,a version of
propositional logic basedon these connectivesis presemed. This logic is called
full propositional logic.

A formula of the form : is called a negation. Similarly we call _ a
disjunction, ~  a conjunction, r an exclusiwe disjunction, ! an
implication and $ a double implication. The two constarts > and ? can
be called verum and falsum. Negation is assumedto be the strongest binding
connectiwe, sothat : g"r isthe sameformulaas(: )" r. For all other connecties,
operatorsthat appear further to the right in the expressiorbind stronger. Thus,
p~ gq_r isthe sameformulaasp” (q_r).

2.2.4. Definition.  Let P be a setof atomic propositionsand p 2 P an elemen
of P. Full propositional logic LE(P) consistsof formulas generatedby the rule

=pjp?i>p P s j o p N g

This full languageis interpreted in the following way. The model M is again
a subsetof the set of all propositionsP.

ME > always

ME? never

M E pwherep2 P i p2M

M E: I notM F

ME _ i MFE orM E (or both)
ME ~ i MF andM E

ME T i ME orM FE but not both
ME ! i MFE impliesM E

ME $ i ME andM [ or neither

It is not hard to shav that under this interpretation the following formulas hold
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on any model M .

ME>$ (2! ?)

ME: $ (! ?)
MFE(_D)$ (! 2)t )
ME(CMD)S (! P ?2)?)

MEC(r )$S(@QC! ) ! nt ?)
ME(CS$ D)S (! HYr v yr2yr?)

One canthusde ne all other operatorsin terms of the two connectives? and!

Conjunction and disjunction have as a feature that changing the order and
nesting of these operators doesnot changetheir truth value: _ is equivalernt
to _ ,and( _ )_ isequivalentto _ ( _ ). Theseproperties make it
possibleto apply theseoperatorsto nite sets. Thus, we de ne a disjunction of
a set by

A useful property of these operators is that any propositional logic formula
is equivalert to a conjunction of disjunctions of possibly negatedatomic proposi-
tions.

2.2.5\/[W‘inition. A formula isin conjunctive normal form i it hasthe form
= | i, where j isoftheform j; = :aor j = a for someatomic
propositiona?2 P.

2.2.6y\Befinition. A formula isin disjunctive normal form i it hasthe form
= i ij s where i is of the form i = :aor i = a, for someatomic
propositiona 2 P.

Two examplepropositional logic formulas, onein conjunctive and onein dis-
junctive normal form, are the following.

Conjunctive normal form (p_ )" (: p_: Q)
Disjunctive normal form (p”:q) _ (: p" 9

For logics other than propositional logic, one can also de ne the notions of
conjunctive and disjunctive normal form in a similar way. For instancefor modal
logic (de ned |{} tw next section), a formula is conjunctive form is a formula of
the form =, , §j where j is eitheraor: a, for someformula a that is
either an atomic proposition, or of the form 2
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2.3 Mo dal Logic

Modal logic can be seenas an extensionof propositional logic with operators for
expressing'modal’ concepts,sud as provability, knowledge or belief. It hasa
long history (see[12, pp. 37{48] for a brief exposition) and many applicationsin
logic, mathematics, computer scienceand arti cial intelligence. It originatesin
the study of necessi. Considerthe following pair of statemeris:

If it doesnot rain then the weatherisgood (: p! Q)
If it rains then the weatheris not good (p! :0

At my time and placeof writing, it rains and the weatheris not good. Therefore,
both theseseriencesare true in my current situation. We assumethat peopledo

not likerain, sorain is not calledgood weather. Many philosopherdeelthat, given
this assumption,a sertence suc asthe rst is true merely by acciden, whereas
the secondsentienceis necessarilytrue. In order to expressthis di erence a new
symbol is needed. Here, we usethe symbol 2 in front of a formula in order to

expressnecessiy. Thus, if M expresseshe current state of the world, and w my

currert time and place, then the following hold.

MiwiE (Cp! o
M;wiE 2(p! :0Q

The dual of the box 2 is the diamond 3 . It expresseshat somethingis possible,
andcanbedened as3 = :2: . Onecanfor instancesa that it is possible
that it rains and the weatheris not good (3 (: p” : @), but that it is impossible
that it rains and the weatheris good at the sametime : 3 (p” g). Onecande ne
modal logic formally in the following way. The set P is again a set of atomic
propositions,and the set  cortains the di erent modalities that we allow. Thus,
if  cortains only oneelemen, we get basicmodal logic. If  cortains multiple
elemelts, we get a multi-modal logic with multiple di erent modal operators.

2.3.1. Definition.  Supposethe nite sets and P are given, and let X 2
and p 2 P be typical elements. Multi-mo dal logic L, (P) consistsof formulas
generatedby the rule

=pi2x jov 7
If the set of modalities is a singleton = fX g then the subscript X can be
omitted and we have single-ageh modal logic. The notation 3 x is usedasa
shorthandfor : 2 :

It took a while before logicians discovered a good way to interpret the new
operators. One of the reasongs that onecanreadthe operator in di erent ways.
The next table shows a provability reading, a temporal reading, ethical reading,
doxastic reading and an epistemic reading. For many readingsan alternative
notation is sometimesused,sothat one can mix thesedi erent readingswithout
chanceof confusion.
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meaning notation reference
can be proven 2 [16]
is always true in the future 2 page24
ouglht to be true 2 or0O [70]

A beliewes 2A orBp [71]

A knows 2a OrKp [32]

In the last two examples.the logical languagecortains multiple modal operators,
onefor ead agent. Theselogicsare thus multi-mo dal logics,whereasin the other
exampleswe have single-aget modal logic.

A generalsemairtics for modal logicswas nally found around 1960,and is for
a large part dueto SaulKripk e, and is therefore called Kripk e semarnics [12].

2.3.2. Definition. A Kripke modelM isatuple M = ( ;W;fRxgx> ;P; ),
where isasetofageris, W is asetof worlds, fRx gx» is acollectionof binary
accessibiliy relations Ry betweenworlds, one for eat modality X 2 , P isa
set of atomic propositionsand is a function W ! 27,

The function is typically calledan interpretation function. The statemert 2
is interpreted as saying that s true in all possibleworlds. This semartics
is therefore called the possibleworld semantics Which worlds are possibleis
determinedby the accessibiliy relation Ry .

2.3.3. Definition.  Supposethat M = ( ;W;fRg ;P; ) is a Kripke model,
w2W,p2PandX 2 .

MiwE p ip2 (w)

M;wpE ? never

M;wgE ! i M;wgEg impliesM;wE
M;wFE 2y i 8v:(wW;V)2Rx ) M;VvE

Di erent operators 2x can have di erent accessibiliy relations Ry and thus
satisfy di erent properties. There are someproperties that hold for all modal
logics. Other formulas are only true under somereadingsof modal logic. One
important principle is that of necessitation.

2.3.4. Lemma. Let2yx 2 L,. If isvalid,then2yx isvalid. [12]

It is perhapsinteresting to remark that this rule preseneslogical truth, but not
actual truth. Thus, it is not the casethat if is true in a situation, then 2y is
true in that situation. The theoremonly claimsthat validity is presened, which
is a wealer statement. This lemma can therefore not be usedto introduce an
axiom alongthe linesof | 2y , but it can be turned into a reasoningrule.
This rule is called Necessitation.

Neg = f(; 2x )j2x 2 Lg
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Or expressedn the more traditional format:

Neg =

2 x

Another principle of any normal modal logic is distribution of the box oper-
ator. From the truth of 24 (p! @) onecanderive2xp! 2xq. This canbe
usedto formulate the axiom Distribution or K.

K:2x ! 2)(( ! )I 2X

An important questionis of coursewhether one can formulate a proof systemfor
modal logic. In sud a proof systemone could reuseall axioms of propositional
logic, but this is not normally done. It is more corveniert to assumefamiliarity
with propositional logic, and to allow any propositional logic tautology as an
axiom. Thus, the following is an axiom in our proof systemfor modal logic.

prop = where is an instanceof a propositional logic tautology

This axiom allows oneto substitute any number of atomic propositions by arbi-
trary modal logic formulas. One cannot only usethis rule to derive the tautology
p! p, but alsoto derive2xp! 2xp.

One can of coursequestionthe legitimacy of this axiom. Is it not too easy
to allow any tautology in a proof? Does this not lead to unchedable proofs?
The answer is 'no'. One can test whether a propositional logic formula is valid
(and thus provable) by chedking all di erent models: there is a nite number of
atomic propositionsin any propositional logic formula, and thus a nite number
of models. Furthermore one can corvert proofs that usethis axiom by replacing
eat usageof this axiom by the correspnding S, proof. Thus, at leastin theory,
sud an axiom can be allowed.

2.3.5. Definition.  Let L, bethe languageof modal logic. The proof systemS,
for this languagehasprop and K asaxioms,and Modus Ponensand Necessitation
asreasoningrules.

2.3.6. Theorem. Supmsethat 2 L, isvalid. Then S,"

This property is called weak completenessand a proof of someversion of this
theorem can be found in most modal logic books, for instancethe one by Black-
burn et al [12, p.194]or Meyer and Van der Hoek [71, p.18]. Below we sketch the
generalidea, which usesmaximally consisten sets.

2.3.7. Definition.  Supposea logic is given with languageL and with a proof

systemS that usesModus Ponensasa reasoningrule (and possiblyother rulesas

well). A setof formulasS L is maximally consistentif the following conditions

areall met: ? 2 S, all instancesof axioms 2 A arein S, if ; ! 2 S then
2 S, andfor any formula either 2 Sor: 2S.
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For ea consisten formula onecan nd a maximally consisten set S so
that 2 S[12. If the proof systemS is sound,then for any pointed model M ; w,
the setf jM;wfE gis maximally consisten.

In order to prove the theorem, considera consistem formula  with atomic
propositions from the set P. It is necessaryto shav that there is a model
M sudch that M;wg . Sud a model W = ( ;W;R;P; ) can be con-
structed using maximally consistem sets as the worlds as the model: W =
fwjw is a maximally consistem sety. The relation Ry is then de ned sud that
(viw) 2 Rx if 3x 2 vforal 2 w,and (w)=fp2 Pjp2 wg. For wy one
cantake any maximally consistem setthat corntains . This construction de nes
onelarge model M called the canonical model for a logic, suc that any consis-
tent formula holdsin someworld of this model. This technique to usemaximally
consisten setsas possibleworlds not only works for plain modal logic, but can
often be adapted for modal logicswith a di erent interpretation [12, p.194].

The multi-modal logic preserted here is the weakest possible version of a
modal logic with a possibleworlds semattics. The next table lists someformulas
that one might expect to hold for certain readingsof the 2 operator, but that
cannot be provenin S,.

4 25 ! 2x2x What is necessaryfor X) is necessarilynecessary
D 2x ! :2x: What is necessary(for X) is possible
T 2y ! What is known to X is true

The names4; D and T are the standard namesfor theseaxioms[12, p.192]. One
can make theseformulas valid by putting constrairts on the relations Ry . This
ideais usedin order to get an epistemicreadingin the next section.

It is often important to determine whether two models satisfy the samefor-
mulas, and for this purposethe notion of bisimulation can be used. Two Kripk e
models are bisimilar if onecan nd for any world in one model a correspnding
world in the other model. Sud a relation betweenworlds is called a bisimula-
tion. A formal de nition of this conceptfor single-ageth modal logic would be
the following.

2.3.8. Definition. LetM; = (FXg;Wy1;Ry;P; 1) andM, = (X g; Wy, Ry P; 1)
be single-ageh Kripk e models. A non-empty relation S W; W, is a bisimu-
lation if the following conditions hold

If (wi;w;) 2 Sthen (wp) = (wy)

If (vi;wy1) 2 Ry and(vy; V) 2 S thenthereisaworld w, sud that (v,; wy) 2
R, and (wq;w,) 2 S

If (Vo;Ws) 2 R, and (vq; V) 2 S then thereis aworld w; sud that (vq;wy) 2
R; and (wg;w,) 2 S
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For logic with more than oneagert onehasto usea set of relations Sy asbisim-
ulation. For simplicity reasonsthis extensionhasbeenomitted.

A bisimulation matchesworlds that behave similarly with respect to modal
logic formulas. Thus, if M;w; - and (wq;w,) 2 S then also M,;w, F
In order to decide whether two models are equivalert one thus hasto nd a
bisimulation betweenthe models, or prove that no sud relation exists.

2.3.1 Epistemic Logic

Epistemic logic is an extensionof propositional logic with operatorsthat express
that a proposition is known. It originates from philosoply [4§], but has found
applications in computer scienceand arti cial intelligence[71, 32]. It is one of
the best known modal logics.

In epistemiclogic, the operator 2 is usually written K. In the caseof multiple
operators these are written Ky instead of 2. The X indicates which agert's
knowledgeoneis talking about. Thus, K denotesthat is known in the single

agen case,and K, meansthat A knows . Instead of 3 we use M. The
operatorsM and My expressthat somethingis consideredpossible,the dual of
knowledge.
The following statemerns about knowledge make use of these operators.

It rains P

Alice know it rains Kap

Bob doesnot know that it rains - Kgp

Bob thinks it is possiblethat it rains Mgp

Alice or Bob knows that it rains Kap_Kgp

Bob doesnot know that Alice knows that it rains  KgKap

Alice knows that shethinks it is possiblethat it rains KaMap

2.3.9. Definition.  Supposethe nite sets andP aregiven,andletX 2 and
p 2 P be typical elemens. Epistemic logic L consistsof formulas generated
by the rule

= pjKyx ) ! ] ?

For epistemiclogic we identify ead modality with an agern. Sincethe notation
is usedfor the set of all agerts in this dissertation, we hereuse for the set of
modalities, rather than  aswe did on page15.

A relation R is an equivalene relation over W if for any worlds v; w;x 2 W it
is the casethat (v;Vv) 2 R (re exivit y), if (v;w) 2 R then (w;Vv) 2 R (symmetry)
andif (v;w) 2 R and (w; x) 2 R then (v;Xx) 2 R (transitivit y). If arelation is an
equivalencerelation we often usethe synbol for this relation. Furthermore we
write w x v insteadof (w;v) 2 .

2.3.10. Definition. A Kripke model M = ( ;W;fRxgx2 ;P; ) is an epis-
temic model if ead relation Ry is an equivalencerelation over W.
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The next table lists someexamplesof formulas that hold over epistemic models
M.

E Ky ! Truth
F Kx ! KyxKyg Positive Introspection
F:Kx ! Kx:Kg Negative Introspection

Thesevalidities can be usedasaxiomsin a reasoningsystemfor epistemiclogic.

T=Kx !
4:Kx ! KxKx
5=:Kyx ! Kx: Ky

For epistemiclogic onealsohasa proof system.

2.3.11. Definition.  The proof systemSx for Lk is de ned as
(prop[ K[ 4] 5[ T;MP[ Neg

This proof systemis againsoundand completewith respectto the givensemarnics
basedon epistemicmodels. A proof canbe found in epistemicor modal logic text
books such as[12, p.194]. The commonnamefor this proof systemis S5 or S5,
wheren is the number of agents. This semartics is widely usedbecauset is simple
and seemgealistic for rational agerts, but hasalsoreceiwed criticism. First of all
there is the omniscienceproblem: all agerts know all tautologies, so every agen
knows all mathematical theorems. This seemsunrealistic in the caseof human
agers, or arti cial ageris with a limited computing capacity. There have been
attempts to model knowledgewhile avoiding omnisciencd32]. A secondpotertial
objectionisthat it is not certain that humanshave full introspection over all their
knowledge. Humansdo not always know what they know, and especially it seems
doubtful that they have negative introspection. This is for instance stated in
Rumsfeld'sfamousremark:

\There are known knowns. Theseare things we know that we know.
There are known unknowns. That is to sa, there are things that
we know we don't know. But there are also unknowvn unknowns.
There are things we don't know we don't know." (D. Rumsfeld,USA
secretary of defense,Feb. 12, 2002)[92

Philosophically there are many argumens against introspection [123. In the
corntext of protocols, with a nite number of states and possibilities, it does
not seemto be a problem. It is not unreasonableto assumethat agens have
introspection over a small, well-known domain sud as the possibleoutcomesof
a protocol. It doesnot follow from this assumptionthat agens know ewverything
about the whole world, or are completely aware of omissionson their knowledge
in general.
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Figure 2.2: Rain in Liverpool and Amsterdam: Model M,

2.3.2 Common Kno wledge

If onereasonsabout the knowledge of multiple agerts, it is natural to consider
caseswhere agens collectively know something. In order to make this possible
se\eral notions of group knowledgehave beende ned. The rst of thesenotions
allows oneto say that "Everbody knows...' andis denotedE . This notion can
be de ned by meansof a conjunction over all agens.

N
M;wE E , M;wpF K x
X2

This operator can alsobe de ned using an accessibiliy relation, Ige the K oper-
ators. De ne Rg asthe union of all singleagert relations: Re = , x. The
everybody knows operator can be interpreted in the following way.

M;wE E 1 8v:i(w;v)2 Rg impliesM;v

The relation Rg is not transitive, and thus it is not an equivalencerelation.
Therefore, the principles of positive and negative introspection do not hold for
"Everybody knows'. The formulaE ! EE is not valid, and a courterexample
is presetted in gure 2.2. This illustrated model M; hastwo agens, A and B.
A is in Liverpool, and can thus obsene the weather in Liverpool, and B is in
Amsterdam, and can seethe weather in Amsterdam. The atomic proposition p
indicates that it rains in Liverpool, and g that it rains in Amsterdam. Suppose
that in the actual situation s it rains in both Amsterdam and Liverpool. The
following formulas hold.

Mi;sE Kap”™ Kgq A and B know that it rains in their city

M1;SF Ka(p_ Q) A knows that it rainsin Liverpool or Amsterdam
Mi;sF : KaKgqQ A doesnot know that B knowsiit rains in Liverpool
Mi;sF E(p_0Q Everybody knows that it rains somewhere

Mi;sF : EE(p_0g) Not everybody knows that everybody knows it rains

The conclusionof this exampleis that given what everybody knows, one cannot
concludeanything about what agens know about eat other's knowledge. Since
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one often does want to reasonabout this higher order knowledge, a stronger
notion of group knowledgeis useful. Lewis therefore introduced the notion of
commonknowedge[65]. Intuitiv ely somethingis commonknowledgeif everybody
knowsit, everybody knowsthat ewerybody knowsit, everybody knows everybody
knows everybody knowsit, etcetera. Commonknowledgeturns out to be a more
powerful notion than “ewerybody knows'. First of all it is hard to obtain, but
on the other hand it can be a necessarycondition in order to coordinate [71] or
to make linguistic convertions work [65]. Other phenomena,sud as the pricing
of TV commercials,can also be explained by the need of advertisersto achieve
commonknowledgeinstead of plain knowledge[2]].

The notation C is usedto corvey that is commonknowledge. It can be
de ned in the following way. Let  be the smallestequivalencerelation sud
that for all X we have c. We caninterpret C in the following way.

M;wgE C i 8v:w cvimpliesM;vfE

The following formulas are valid under this interpretation.

EC ! CC
E:C ! C:C
EC ! Cc(! ) cC
EC ! E

E ! E(! E)! C

The commonknowledgeoperator C thus satis es positive and negative introspec-
tion, which meansthat it behavesas a knowledgeoperator.

Onecanshaw that if aformula holdsin every world w of a model M, then
is commonknowledgein M. Thus, if we presen a model of a certain situation in
which there is no state where doesnot hold, then we have implicitly assumed
that is common knowledge. In most examplesin this dissertation, common
knowledgeis not introducedin the language.Howewer, commonknowledgeof at
least the protocol is assumedeverywherein this dissertation, and in somecases
alsothe preferencesf agens are commonknowledge.

2.4 Theorem Proving, Satisabilit y and Mo del
Checking

TheoremProving, Satis abilit y and Model Cheding are three di erent problems
that one can formulate for a logic. In this section, it is explained how these
problemsare relevant for multi-agent protocols.

Theorem proving, the problem of nding derivations that prove a given the-
orem, has always beenone of the main usesof logic. Automated theorem prov-
ing hasreceived much attention in the eld of Al. As descriled by for instance
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MacKenzie [66], automated theorem proving has important applications in the
veri cation of hardware and software.

A related problem to theorem proving is satis ability. In the satis abilit y
problemonehasa formula sud that : cannotbe proven, and onewould like
to nd amodelM sudhthat M = . In many case®necanusethe samemethod,
for instancea tableau-basednethod [96], for theoremproving and satis abilit y: If

is satis able a model is producedby the method, otherwisethe method returns
a proof for :

Model cheding is the problem of verifying whether a formula  holds on a
givenmodel M, and is alsowidely usedfor veri cation of systems[53]. For many
logics, including propositional logic, model chedking is substartially easierthan
satis abilit y. Intuitiv ely this can be explainedby the fact that in order to solvwe
a satis abilit y problem, onehasto nd a model, whereasfor model chedking one
has beengiven one speci ¢ model.

Model cheding can be usedfor veri cation of computer hardware and pro-
grams,in the following way. The systemto be cheded is translated in a logical
model M, and the property that onewould liketo verify is translatedin a formula

. The following set of corresppndencesillustrates the correspndencebetween
the original veri cation problem and the model chedking problem.

protocol model
property *  formula

What is meart hereis that protocols correspnd to models, and properties
with formulas. The double-headedarrow indicatesthat onecangobadk and forth
from the informal description on the lefthand side to the formal description of
the situation on the righthand side.

Model cheking was rst donefor propertiesinvolving time [22, 10]. One rea-
sonthat model cheking has becomepopular is the invertion of symlolic model
checking [69]. Using this technique the model that is cheded is not stored explic-
itly, but represeted in a symbolic way, usingfor exampleorderedbinary decision
diagrams. The model can thus have more statesthan one can store explicitly in
the memoryof the computerthat is used. The useof synmbolic model cheking has
madeit possibleto chedk systemswith billions of states, instead of only millions
of states. Recern work aims to dewelop model chedking techniquesfor epistemic
properties [104,101, 56].

For somelogics one can usetheorem proving for systemveri cation. This is
possibleif onecantranslate the systeminto a formal structure (for instanceatree
or a graph) and then descrite this structure using a formula ;. The property
to be veri ed is represeted by a formula ,, and one usesthe theorem prover
to provethat = ;! 5. This resultsinto a proof that any systemof the given
structure has the desired property. Sdematically one can display this in the
following way.
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protocol 1

property >

Hence both the protocol and the property correspnd to a formula. This
method of veri cation by theorem proving is only possiblefor logics in which
one can expressthe structure of a system. For somelogics, sud as Pauly's
coalition logic [85] (discussedn section3.4), this is possiblebecausehe logic has
a modal operator that correspnds to exactly one step in the protocol. Thus,
onecan construct, for eath gametree T describinga protocol, a formula ; that
describesthis gametree. For other logics,sut asVan Benthem's logic for process
models [99], also discussedn section 3.4, this is not possible. In this logic game
trees cannot be described in detail, and henceno suitable formula ; can be
found.

Another longterm goalin computer sciencds the automatic designof systems.
In this casethe userindicatesthe propertiesthat a system,protocol or program
must have, and the computer constructs a system. One can always usethe Al-
heuristic "generateand test' in order to solve this problem, but this heuristic is
not very e cient. In generalthis problemis more di cult than veri cation, just
assatis abilit y is more di cult than model cheking: againonehasto construct
something,instead of just computing a yes-noanswer.

In economicsthe classicalnamefor the problem of nding a suitable auction
or procedureis mechanismdesign[83. This problem hasbeenpicked up by com-
puter scienceresearbers,and se\eral researbersare now active in the areacalled
automatal mechanism design or computational mechanism design [29, 25]. For
all logicsin which models can be seenas represeting a system,the medanism
designproblem can be reducedto satis abilit y chedking. Unfortunately satis -
ability cheding is often a di cult problem, and hencemedanism designusing
logical methods is often hard as well.

Linear Temporal Logic

A logic that is often used successfullyin conbination with model chedking is
linear temporal logic LTL. A formula of this logic is interpreted over a sequence
of states. Sud a sequenceepresets the di erent statesa systemcan go through
during a computation. The di erent operators of LTL can be usedto refer to
statesafter the currert state.

2.4.1. Definition.  The logic LTL cortains formulas generatedby the follow-
ing rule. In this rule, p is a typical elemen of P

=pj?j ! j U jf
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The sequencesf statesthat are consideredfor LTL are not always nite. There-
fore, it is more corveniert to usefunctionsf : N! 2P assequencesThesefunc-
tions assignsubsetsof true atomic propositionsto ead natural number. Sud a
sequencas called a history or a run. Eac formula is interpreted over a pair
f;n wheref is sud a function, and n 2 N indicatesthe curren state.

fing ? never

finE pwherep2 P i p2f(n)

fing ! i f;nE impliesf;nfF

fing f i f:n+ 1

fing U i 9m:m nf;mand F and8m> k> n:f;kfE

The “until' operator U indicatesthat at somepoint in the future is true,
and until that time holds. The next operator f expresseshat is true at the
next state. A commonlyde ned shortcut is the "'sometimesoperator3 = > U
that indicatesthat istrue somewherén the future. One cande ne an "always'
operator 2 that indicatesthat holds forever from now on, with the following
de nition: 2 =:3: .

A systemto be veri ed is not modeled as a single run but as a set of runs.
Since theseruns can be in nite, sud a set must be speci ed implicitly. The
most commonway to do this is to de ne a labeledgraph (V;E; ) where isa
function from V to 2°. A possiblepath in this graphis a sequencev : N! V
sud that (w(n);w(n+ 1)) 2 E for all n 2 N. Any possiblepath w de nes a
possiblerun f : n 7! (w(n)). A shorthand notation for this isf = (w), since
f (n) is constructedby rst computing w(n), and then applying to the result.
Let W be the set of all possiblepaths, and R the set of all possibleruns.

A model cheder for LTL takesa description of a systemand an LTL formula

. From the descriptionit computesa set of possibleruns R, and then it cheds
whetherfor all runsr 2 R it isthe casethat r; 1 . If sothe model cheder re-
turns true, otherwisethe model chedker returnstherunr sudthat r;1F= : . An
LTL model cheder thus returns courter-examplesthat can be very informative
for systemdesigners.A well-known model cheder for LTL is SPIN [51].

Branc hing Time Temporal Logic

Computation tree logic is a temporal logic that is suitable for reasoningabout
modelsthat have multiple possiblefutures [23]. The formulascanexpressvhether
certain events happen in all possiblefutures, or only in some possible future.
This hasturned out to be an important featurein the veri cation of for instance
concurrert computer systems.
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2.4.2. Definition.  The logic CTL cortains formulas generatedby the follow-
ing rule. In this rule, p is a typical elemen of P.

= pj ! 1?18 j9
=2 ] U

The formulas generatedby the grammar rules stated above are called state
formulas becausethey are interpreted over states. The formulas are called
path formulas, becausethey are interpreted over paths. As the name indicates
this logic can be interpreted over tree structures, where the nodes of the tree
are states of a system, and the edgesindicate how the systemcan go from one
state to the next. Typically sud a tree is constructedby consideringall possible
paths through a labeled graph (V;E; ), conmbined in a set W. Eacd path w
is a nite sequencen(1)w(2):::w(n) or in nite sequencen(1)w(2)::: of states
w(n). Thus the notation w = v::: 2 W is usedto indicate that w is an in nite
path that starts in v. CTL formulas can be interpreted over a set of paths
combined with an interpretation function :V ! 2° andacurrent statev?2 V.
The path formulas are howeer interpreted over a set of paths combined with an
interpretation function :V ! 2P anda current path w2 W.

W; ;v ? newer

W; ;vE pwherep2 P i p2 (v)

W; svE 1! o i W; ;vE 1impliesW; ;vE
W; ;vE 8 i 8w=Vvii2W: :W; ;wWwfF

W; ;VE 9 i w=vVvii2W: :W; ;wE

W; ;wig 2 i 8n 1:W; ;w(n)F

W; ;wiE U, i 9m 1:W; ;w(m)F ,and

8k:m>k 1) W; wkF 1

Both CTL and LTL canbe model chedked in polynomial time in terms of the
number of statesof the system[90]. This makesthe veri cation of systemsfeasi-
ble. Unfortunately, the number of states of a systemcan increaseexponertially
with the number of componerts, or the amourt of memory cells, that a system
has. The conclusionthat model cheding is tractable, is thus perhapssomewhat
misleading,sincemodel cheding is intractable whenthe input is measuredn the
size of the description of the system. Summarizing and interpreting the currert
state of the art, one could say that model chedking using LTL and CTL is feasi-
ble, but not (yet) very tractable for real world systems. In practice, techniques
like symbolic model cheking and other heuristics can be usedto make model
cheking for ewver larger systemsfeasible.
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2.5 Computational Complexit y

In the eld of computational complexity, researbers cortemplate why certain
problemsare hard to solve for computers[81, p. v]. A problemin this cortext
hasto be de ned precisely A problem is function f : Prob ! Sol, that takes
probleminstances d 2 Prob to their solution f (d) 2 Sol. In the caseof a decision
problem the solution spaceconsistsof only two answers: Sol = fO0; 1g where
0 means no' and 1 means yes'. An algorithm for problem f is a medanical
procedurethat takesan input d and producesits answer f (d).

To give an example of a problem in this sense,consider satis ability. For
ead logic, its satis abilit y problem is a logical problem of interestto complexity
theorists. Satis ability is usually phrased as a decision problem f sud that
f()=1i is satis able.

Since there are marny di erent computer architectures, one can have marny
di erent ideasof what courts as a medanical procedure. Howeer, it turns out
that many of thesearchitectures are equivalent with respectto the computational
resourceghat are requiredto solve a problem, and thereforeit doesnot matter
which architecture or notion of algorithm one chooses. A common choiceis to
considerTuring machines introducedby Alan Turing, becausghesemadinesare
very corveniert from a theoretical perspective [81, p. 19]. In practice, algorithms
for Turing madines can be corverted to programs for actual computers, that
have a comparablee ciency.

Turing machines that compute f, do not work on problem instancessim-
pliciter, but on representationsthereof. Every problem instance can be repre-
sented by a string of symbols. In practice, it is su cient to consideronly two
distinct synbols, 0 and 1, to represeh any object. A two-valuedvariable is called
a bit, and the sizekdk of an object d canthus be measuredin the number of bits
oneneedso encalethe object. For instanceformulascould be encaledby usinga
sequenc®f say 8 bits to encale eat synbol in the formula. In that caseaformula
p_ gwould be 24 bits in size. The exactnumber of bits neededn arepresetation
is not always important. It is enoughto know that \any " nite' mathematical
object can be represeted by a nite string over an appropriate alphabet” [81, p.
26]. We simply assumea \reasonably succinctrepresetation” [81, p. 26]is used
for objects sud asformulas.

One computational resourcewe are interestedin is the time it takesfor an
algorithm to computethe answer to a problem, and this is calledthe computation
time. The questionis how the computation time (measuredin stepsof the head
of the Turing madine) dependson the sizeof the input. In particular, onewould
like to nd monotonefunctionsb: N ! R that provides an upper bound on
the computation time. If for all d 2 Prob larger than a certain xed length c,
the algorithm can computef (d) in lessthan b(kdk) steps,then we say that the
running time of the algorithm is boundedby b.

Similarly one can considerbounds on the amourt of bits that an algorithm
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needsas working memory in order to compute its answer. Thus, if there is a
constart ¢ sud that for instancesd with kdk > c, the algorithm can compute
f (d) usinglessthan b(kdk) bits of memory, then we say that the spaceneededby
the algorithm is at most b.

This notion of a bound is overly preciseasit greatly dependson the madine
architecture chosen:for instancesorting a list canhave abound b(x) = 3 x2+ 167
ononemadine and f(x) = 3:5 x?+ 14 on anothermachine. Therefore,the bound
functions are put into equivalenceclasses A bound i is in the sameequivalence
classas b if there are constars c;e 2 R sud that for all inputs d with kdk > e
we have that B{kdk) ¢ b(kdk). We write O(b(kdk)) to denotethe equivalence
classof b(kdk). It is not hard to seethat both boundsgiven above sit in the same
equivalenceclassO(kdk?). They are called quadratic bounds. Similarly one has
linear bounds O(kdk) and exponertial bounds O(2k%).

An algorithm runs in polynomial time if there is somebound b on its running
time that is in O(x") for somen. Similarly an algorithm can be in polynomial
space if there is a bound b on the memory neededthat is in b= O(x") for some
n.

In gure 2.3 a graph is displayed. If one seessut a graph as a network
of roads between cities, a question of practical importance would be what the
shortestpath is betweentwo nodesof the graph. Thus, the path- nding problem
would be a function f that takes (V;E;vi;Vo;n) asinput, and returns a path
Wi:iiiWp With m n, w; = v; andwp, = vy, if sud a path exists. Otherwise it
should return "no'. This problem can be solved in polynomial time, for instance
using Dijkstra's algorithm [27].

The model chedking problem for propositional logic is the function g sud
that g(M; )= 1lif andonly if M F . This function can be computedin time
O((kMk + k k)?) and thus this problem can be solved in polynomial time. Only
a small amourt of memory is needed,boundedby k k, and thus the problem s
alsoin polynomial space.In generala Turing machine canonly usea polynomial
amourt of spacein polynomial time, so all polynomial time problems are in
polynomial space.

Algorithms canbe classi ed into classe®f algorithms whoseboundsarein the
sameequivalenceclass. Theseclassesre called complexity classes. The following
complexity classesare well-known and turn out to be relevant for the resultsin
this dissertation. The classP corntains problemsthat canbe solvedin polynomial
time. The classPSPACE cortains problemsthat needa polynomial amourt of
memory.

Problems can also be divided into the samecomplexity classes.A problem
belongsto a classC if there is an algorithm in Cthat solvesthe problem. Thus,
the problem of nding the shortest path betweentwo points in a graphisin P
becausethere is a P algorithm that solvesthis problem.

The classP is often called that classof tractableof problemsor problemsthat
canbesolvwede ciently . In this dissertationwe follow this convertion andindeed
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Figure 2.3: A graph with a Hamiltonian cycle

usesthesewords as meaning sohable in polynomial time'. The term intractable
meansthat the problem s not in the classP.

Nondeterministic  Computation

There are many decisionproblemsf sud that f (d) = 1if there existssomeobject

w that satis es certain criteria. A good exampleis the problem, for a given
graph, to decide whether this graph has a Hamiltonian cycle. A Hamiltonian

cycle visits eat node of the graph, but does not usethe sameedgetwice. In

gure 2.3, Hamilton's original problem is displayed. In this particular graph
there is a Hamiltonian cycle, and the readeris invited to nd oneasan exercise
(a possibleansver is displayed in gure 2.4 on page29). The readerwill most
likely experiencethat nding a Hamiltonian cycleis harder than verifying that a
given path is a Hamiltonian cycle.

Supposethat the problemf : Prob! fO0;1gis de ned sudthat f(d)= 11
d is a graph that hasa Hamiltonian cycle. Supposealsothat we have a problem
g 2 P that cheds whether a path w is a Hamiltonian cycle on d. The relation
betweenf andgisthat f(d)=1, 9w:g(d;w)= 1.

The Hamiltonian cycle w is called a witness for d, sincethe existenceof a
path w is evidencefor the fact that f (d) = 1. We have assumedthat g 2 P, and
hencethat we have a polynomial time algorithm for g. A very naive algorithm for
solvingf would be the following. Guesssomevaluew, and chek whetherg(d; w).
If you are very lucky in guessingw, then this algorithm works in polynomial time
aswell. If you are not a good guesserthis algorithm is not e cien t.

Any problemf for which there exist a polynomial time function g that chedks
witnesses,is called solvable in hondeterministic polynomial time [26]. The class
of these problems s called NP. There are marny problems that have practical
relevancein this class[35]. A logical exampleof an NP problem is the proposi-
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tional logic satis abilit y problem f . In order to determine whether a formula
is satis able, onecanguessa modelM P sud that M £ . If sudh a model
is guessedcorrectly, then we know that f ( ) = 1. If no lucky guesscan be made
at all, then is not satis able andthusf( ) = 0.

Reductions and Completeness

It is often possibleto translate an instance of one problem into an instance of
another problem. Sud a translation is called a reduction in the cortext of com-
plexity theory. Supposethat f and f © are two problems. A reduction r from f
to f %is a function sud that 8d : f(d) = fqr(d)). If a reduction r exists that
is relatively easyto compute, then solving an instance of f cannot be harder
than solving an instanceof f . In order to determinef (d) one rst computesthe
reducedproblem r (d) and then usesthe algorithm, if oneis known, for f {r(d)).
If the reduction function r is in P, then we call f reduciblein polynomial time to
f 9[27].

A problem f is called C-hard if all problemsin the complexity classC can
be reducedin polynomial time to problem f . If the G-hard problemf is itself a
member of classC, thenf is calledC-complete Sud a problemcanbesaidto bea
represenativ e for all problemsof this class. Considerfor instancethe satis ability
problemf for propositional logic. This decisionproblem canbe de ned by saying
that f( )= 1if M  for model M.

2.5.1. Theorem (Cook's theorem). Deciding whethera propositional logic
formula is satis able is NP-complete.

This wasthe rst theoremto be proven NP-complete, presened in 1971[81, p.
176]. The proof cortains a generalmethod how a reduction function r can be
found for any NP decision problem that has a veri cation method g. Sud a
generalproof hasto be given oncefor ead class. In order to prove that another
problemin NP is NP-complete,it su ces to selecta known NP-completeproblem,
and then give a speci ¢ reduction function r from the complete problem to the
next problem.

In many NP-completenesgroofsit is conveniert not to usethe generalsat-
is abilit y problem in a reduction argumen, but to give a reduction from 3-CNF
formulas. A formula isin 3-CNF if it is in conjunctive normal form, and ead
disjunction cortains exactly three literals. Sud a formula thus hasthe following
form. A

= (&a_ b_ )
|
The sign  can be either a negation or nothing, and a;;hh;¢ 2 P are atomic
propositions. The satis abilit y problem for 3-CNF formulas is called 3SAT and
this problemis NP-complete[81, p. 183].
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For the classPSPACE, we also use a logical problem in the reduction argu-
merts. We usethe satis abilit y problem for a quarti ed booleanformula, since
this problem is PSPACE-complete.

2.5.2. Definition. A quanti ed boolean formula is a formula of the form
8X19X28X3: 119X,y 18Xy ¢

sud that 4 is a propositional logic formula with fxy;:::X,g asatomic proposi-
tions.

An exampleformula is 8p9q(p _: 9) * (: p_ ). This formula is true if for all
truth valuesof p one can nd a truth value for q sud that the propositional
logic formula holds. Intuitiv ely, 8p istrue if holdsregardlesswvhat truth value
one choosesfor p, and similarly 9p holds if is true for sometruth value for
p. Formally, we can de ne the following interpretation for quarti ed boolean
formulas, which is an extensionof the interpretation of propositional logic given
on pagel2. Let S P be a set of atomic propositions, a quarti ed boolean
formula, and 4 2 L, a propositional logic formula.

S E 8x i (S[ fxggF andSE
SF 9% i (S[ fxggF orSfE
SF g i SFE ¢in propositional logic

The QBF decisionproblemf is de ned sud that for any quartied boolean
formula we have

f()=1if  F
f()=0 otherwise

2.5.3. Theorem (Stockmeyer and Meyer). The QBF decision problemis
PSPACE-complete.

The completenesgproof for this problem was presened in 1973[81, p. 487].

The satis abilit y problem for propositional logic is of coursea special case
of the QBF problem, where we allow only existertial quarti ers. Instead of
consideringwhether p ! q is satis able, one can considerthe QBF problem of
decidingwhether9p9q(p! ) holds. Similarly onecanconsiderother restrictions
on the number of quarti er seriesin a QBF problem. The following table lists a
few variants.

9p1:::9pn ¢ satis ability, in class ;P or NP
8p1:::8pn ¢ tautology, in class ;P or co-NP
P19 B8ahi::8G, ¢ 2P
8p1:::8ph 9th:::9%, ¢ 2P
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Figure 2.4: A solution to Hamilton's problem

The classes ,P and ,P are de ned using oracles. A Turing macine with
an oracle is a madine that is allowed to ask certain dicult questionsto a
supernatural being (an oracle). The oracle returns the right answer to these
guestionsin onetime step. The class ,P contains problemsthat canbe veri ed
by a Turing macine that has an oracle for some NP-complete problem. The
problemsgiven above are again completefor theseclassesany ,P problem can
be reducedto a QBF problem of the form 9p; :::9p, 8y :::80, 4 [81,p. 428].

Open Problem

Intuitiv ely it seemseasierto verify a problem than to solwe it. For instanceit is
easyto seethat the path givenin gure 2.4 is a Hamiltonian cycle, whereasit
is lesseasyto nd sud a path. It is therefore widely believed [35] that not all
NP problemscan be solved in polynomial time, and thus that no NP-complete
problemscan be solved in polynomial time. If we assumethat this is the case,
then NP-complete problems are intr actable and the sameholds for the classes

-P and PSPACE. Unfortunately whether P 6 NP is one of the most famous
open problemsin computer science[26].

In this dissertation we shaw for seeral problemsthat they are NP-complete,

oP complete or PSPACE-complete, and we use this as evidencefor the in-
tractibilit y of these problems. Of coursethis is only partial evidence,sinceit is
still possiblethat all problemsin NP, cortrary to popular belief, are tractable.
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Game Theory

3.1 Overview

One can de ne gametheory asthe areaof mathematicsthat is about games.In
this case,gametheory is older than most peoplethink. In the sixteerth certury
the mathematician and physician Jerome Cardano wrote his Book on Gamesof
Chane [78]. The book openswith a statemert describingthe various forms that
gamescan take.

Gamesdepend either on agility of body, aswith a ball; or on strength,
aswith discusand in wrestling; or on industriously acquiredskill, as
at chess;or on chance, as with dice and with knucklebones; or on
both, asfritillus. [78, p. 185]

As Cardanoindicates, certain gamescandependon both skill and luck at the same
time. Nowadays Cardano'sbook is classi ed as being about probability theory,
as opposedto gametheory. The reasonfor this is that his book is concerned
with calculating the probabilities of certain everts, but doesnot considervarious
strategiesand the in uence of an opponerts’ strategy.

The origin of gametheory is therefore better placedin the rst half of the
twentieth certury. One of the rst mathematical papers that focusedon the
strategic aspects of gameswas Zur Theorie der Geselschaftspieleby John von
Neumann[11§. The certral questionof this paper is about the optimal strategies
for playersin a parlour game.

should oneof thoseplayers, S,,, play, in orderto geta most bene cial
result?[118,p. 295]

John von Neumann also co-authoredthe rst book on gametheory, Game
theory and economic behaviour, which appearedin 1944[74]. The title already

33
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Figure 3.1: JeromeCardano

indicates that gametheory is not merely about recreational games,but can be
appliedto economics.Von Neumannand Morgensternseea gameasan optimisa-
tion problemin which multiple parties simultaneously try to optimize their own
outcome. According to them, this is "nowhere dealt with in classicalmathemat-
ics' [74, p.11]. This in uential book introducedgametheory to a wide audience,
summarizedresults that were “already known, but lacked formal proof' [74, p.6]
and gave many game-theoreticterms their meaning.

The following list cortains someof the terms introduced by Von Neumann
and Morgenstern.

A game: A description of a set of interactions betweenagens. The description
shouldinclude which agers can participate, what theseageris can do, and
what theseagers try to achieve.

A play: A specic sequenceof interactions betweenagerts. A gameconsistsof
marny possibleplays.

A player: An ertity that can make decisionsin a certain game.
A move: An action that one can choose,a possibility.
A choice: An action that one haschosen.

A solution: “plausibly a set of rules for ead participant which tell him how to
behave in ewery situation which may conceiably arise.' [74, p31]

The words ‘game'and “play’ still have the samemeaningin most of the literature.

The word “player' is nowadays often replacedby the synorym “agen’. A possible
reasonfor this changeof terminology is that the word “player' reminds peopleof
recreationalgames whereaggametheorists often considerlessleisurely situations.
An agen canbe ahuman player, but alsoan organisationor a computer program.
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The word “solution' should be usedwith caution. Not every gamehas a unique
solution, so the phrase "the solution of a game' is misleading. A solution is
always a set of rules for all players. A setof rulesfor a singleplayer can be called
a strategy, and if it is a good set of rulesit canbe calledan “optimal' or ‘rational'
strategy.

In order to decidewhat the best set of rules for an agen is, one must take
into accourt what information the agen has. First of all, it is important to know
whether the agent knows exactly which gameit is playing. Even the game of
chesshas se\eral variants, and one can imagine a player who is not sure what
the current variant is. Furthermore, in chessan opponert cantry to win at all
cost, or an opponert can be trying to draw. Thesetwo opponerts may require
di erent strategies. Von Neumannand Morgensternboldly state that

we cannot avoid the assumption that all subjects of the econ-
omy under considerationare completely informed about the physical
characteristics of the situation in which they operate and are able
to perform all statistical, mathematical, etc., operations which this
knowledgemakespossible. [74, p.30].

They call this assumptioncompleteinformation. Another questionis whether
a player can obsene or remenber every aspect of the current situation. If this
is the casewe say that a gamehas perfect information, but if someaspects are
hidden the gamehasimperfect information. Chessis a good exampleof a perfect
information game,whereaspoker is an imperfect information game.

In gamesof imperfectinformation, onehasto considerthe questionof whether
a player can remenber his own obsenations, and its own previousactions. If the
description of the gameindicatesthat a player can remenber both obsenations
and previous actions, then a game has perfect recall. If a player can remenber
all its previous obsenations the game has perfect memory. An interesting but
perhapsarti cial exampleof a gamewith imperfect recall wasconstructedby Von
Neumannand Morgensternwhenthey arguedthat onecantreat teamsof players
with the sameobjective as single players. "Bridge is a two-player game,but the
players 1 and 2 do not play it themsehes' [74, p. 53]. The four real participants
of a bridge gamebecome agerts', acting on behalf of the two absen players.

Von Neumann and Morgenstern focus on gameswith two players in which
the preferencesof the players are exactly opposite. They have lessto say about
what they call general games which are gameswith more than two players. The
main problem of solving these generalgamesis that in these games,the out-
comedependson the possibleco-operations betweentwo players. Game theory
is nowadays split in two almost unrelated parts: in cooperative gametheory it
is assumedthat ageris can make binding agreemets between ead other, and
theseagreemets are enforcable[46]. In this casethe exact strategiesthat are
usedare not soimportant. The important aspect is which outcomethe agerts
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should collectively aim for, and how they should split the pro ts of their collab-
oration. Throughout this thesisit is not assumedthat ageris can make binding
agreemets, and this is called non-caoperative gametheory.

The problem of how to treat generalgameswas addressedoy John Nashin
1951[73]. Nash shawved that a solution of a gameshould be a set of strategies
sud that when all agers usethesestrategies,no player hasany incertive to use
another strategy. He called suc a solution an equilibrium, and nowadays it is
called a Nash equilibrium.

The Nashequilibrium is a solution conceptthat allowsthe samegameto have
marny solutions. A solution concept is a generalrule that for eadc gamepredicts
which strategiesare good. Many researbers have arguedthat the Nash equilib-
rium allows more solutions than it should. Various re nements have thus been
proposed. One of the rst was Selten'ssulgameperfect (Nash) equilibrium [79].
This concept makes most sensewhen applied to perfect information extensivwe
games. Every decisionpoint of sud a game can be seenas the starting point
of somegame, and these gamesare called the subgamesof the original game.
Seltenarguedthat a solution should not only be an equilibrium of the original
game,but also of every subgame.All nite perfectinformation extensive games
have a subgameperfect equilibrium, and this equilibrium cane cien tly be calcu-
lated by a procedurenamedbackwad induction. The procedureis sometimesalso
called Zermelo's algorithm, sinceZermeloapplied the sameprocedurein 1913to
analysechess. Other re nemernts exist, for instance the trembling hand perfect
equilibrium [93], the proper equilibrium [72] and the sequetial equilibrium [62].

Even though Von Neumannand Morgensternlimited themselhesto the study
of complete information games,it was only a matter of time beforeincomplete
information gameswere considered. Harsaryi proved in 1967 that incomplete
information gamescan in certain casesbe reducedto complete,imperfect infor-
mation gameg47]. He did not assumethat all agens know all other's preferences.
Instead he assumedthat ead agers' preferencesdependedon the type of the
agernt. The number of typeswas limited, and a probability distribution for the
typesshould be commonlyknown. In that casethe incompleteinformation game
can be consideredan imperfect information game where in the rst move the
typesof all agers are determined at random accordingto the given probability
distribution. After that the gamewould proceedas normal.

The applications of gametheory have not beenlimited to the economicrealm.
Early onit wasalreadyrealizedthat gametheory could be appliedto political and
military conict situations. An early and in uential book applying gametheory
to political sciences The Strategy of Conict by ThomasC. Sdelling [88]. This
book contains variousideas. First of all Schelling shaved using experimerts that
peopleare able to coordinate their actions. They can do this becausereal world
problemshave so-calledfocal points, even if thesepoints are no longer preser in
the abstract modelsof gametheory. For example,Sdelling asked peopleto try to
meetead other on a givenday in a given city, without giving them a speci c time
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and place,and without allowing them to commnunicate to eat other. One might
expect that this is not possible,sincethere are so many possibilities. Howe\er,
Sdelling's subjects were remarkably successfuin meeting ead other. Many of
them were able to selectthe sametime and place, by reasoningabout which
points were most obvious to the averageperson. For instance for a meetingin
New York, people often chooseto meet at 12.00at Certral Station. Sdelling
alsodiscusseghe rationality of promisesand threats. An equilibrium that is not
subgameperfect, can for instance cortain an unreliable threat. In that casea
player threatens to do somethingin a certain situation, ewen though it is not
rational to really do this action if the subgamein which the action can be done
is readed.

More surprising applicationswerefound in biology. This may seemstrange,as
animalsor plants are not usually ascribed rationality or intelligence. The players
are thus not assumedto reasonabout their strategies,but to repeat behaviour
that has beensuccessfuin the past. The Nash equilibrium can also be applied
in these circumstances. In classicalgame theory attention is focusedon the
solutionsitself, whereasthe processby which a solution is readed is ignored. In
ewlutionary gametheory it is also studied how certain strategiesare replaced
by others, using dynamic systemstheory. John Maynard Smith is one of the
originators of this eld [68]. Evolutionary gametheory is a maturing and popular
researb area[37,12Q.

3.2 Strategic Games

Gamescanbe preserted in di erent forms. A very natural but detailed form is as
an extensive game. In this form there is a number of decisionpoints in ead play

of the game, and the outcomeis determined by all these decisions. This model
is very detailed. Often a lessdetailed perspective is taken, and thus gamesare
studied in strategic or normal form. In this form, eat agen has a number of
strategiesavailable at the beginning of the game,and eah agert independertly

picks a strategy. We can calculatethe payo of the gamedirectly, without going
into details which actions have beenplayed. The generalde nition for an n-agen

normal form gameis the following. Welet be the setof all agens, and assume
that = f1;2;:::;ngfor somen > 0. Thus,in this chapter, and in chapter 8, we
usethe natural numbers as labels for agens. This is necessaryto simplify some
of the de nitions.

3.2.1. Definition. A strategic game G is a tuple ( ;fS*gx, ;U) where =
f1,:::;ngis a set of agerts, for eathh X 2 the set S* is a set of strategiesfor
agert X,and U* : (S* ::: S"™) ! Risautility function for agen X.

The utilit y function UX takesa strategy for ead agen asinput, and return areal
number for agert X, which represets that ager's utilit y. The notation UX (s)
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denotesthe Xth elemen of the vector U(s), and thus represets the utilit y of
agernt X when the strategy pro le s is used. One can seeU as a function that
returns a vector of real numbers, onefor ead agen.

In a strategic game,ead agen tries to maximizeits utilit y. They can choose
any strategy from their set of strategies,and thesesetscan be in nite. One can
combine the strategiesthat agens have chosenin a so-calledstrategy vector. A

and for all agerts X we have sy 2 S*. In order to manipulate these strategy
vectors, two constructs are needed. The construct s ; denotesthe vector s with
the jth elemen removed. Thus, (a;b;c) , = (a;c). The construct [s;Xx] is used
to denotethe vector s with x insertedin an appropriate place.

For example[(a;c);d] = (a;d;c), or [(a;c);d] = (a;c;d), dependingon what is
appropriate. Determining what the appropriate placeis canbedi cult, therefore
the construction [s;Xx] canonly be usedif s is of the form s x for someagern X.
For example[(a; b;c) »;d] = (a;d;c). In practice this meansthat theseconstructs
can be usedto replaceone strategy of a strategy vector by another strategy. The
combination [s j;t;] or, depending on author's preferences(s ;;t;) is standard
in gametheory [79, p. 7].

In many situations, every agert X hasa nite number of basicactionsm; to
choosefrom. The total utility of a strategy somehav dependson the payo of
eah action. The number of strategiescan still be in nite. The payo of eah
action is typically given in the form of a matrix A. We rst presen the casefor
two agerts, and then extend this to an arbitrary number of agerts.

Tw o player games

3.2.2. Definition. An m n bi-matrix is a function A sud that for eat vector
A returns a real number AX (a;b) 2 R.

The next table shovshow a2 3 bi-matrix is usually displayed. This matrix can
be usedto de ne a gamewhereagen 1 hastwo actions, and agen 2 hasthree
actions.

AL(1;1);A%(1;1) AY1;2);A%(1;2) A(1;3);A%(1;3)
A(2;1);A%(2;1) AY2;2);A%(2;2) AY(2;3);A%(2;3)

In a pure strategy game, the strategy of both agens consistsof a single action.
We can use the bi-matrix A given above to de ne a pure strategy game G =
(f1;29;(f1,29;f1;,2;3g; T); U). The set of ageris would be f 1; 2g, the strategy
setof agent 1 would be f 1; 2g, and the strategy set of ager 2 would be f 1; 2; 3g,
and the utilit y function would be de ned by U(a;b) = (Al(a;b); A%(a;b)).

In a mixed strategy game, a strategy consistsof a probability for eat ac-
tion. Thus a mixed strategy game G basedon the bi-matrix A would be G =



3.2. Strategic Games 39

(f1; 2g; (S*; S?); U), whereS! = f(a;b)ja;b2 [0;1];a+ b= 1gandS? = f(a;b;0)ja;
b;c 2 [0;1];a+ b+ c= 1g. An examplestrategy for player 1 would be (0:25; 0:75).
If the agen follows this strategy it should take action 1 twerty- v e percern of
the time, and action 2 se\erty- v e percen of the time. The utilit y function U
returns the expectedpayo, andis de ned as

U((a;b); (c;d;e) =
(acAl(1; 1) + adAl(1;2) + aeAl(1; 3) + bcA(2; 1) + bdA'(2; 2) + beAl(2; 3);
acA?(1;1) + adA?(1;2) + aeA?(1;3) + bcA(2; 1) + bdA?(2;2) + beA(2;3))

Multi-pla yer games

3.2.3. Definition.  Anm; my::: m, multi-matrix is a function A sud that

The term A(a;;ay:::a,) denotesavectorv2 R sud that vi = Al(aay:::ay,),
Vo = A?(aqay:::a,) etcetera. A bi-matrix is a multi-matrix wheren = 2. The
notation R , which is for instanceusedby Gamut [34, p. 84], denotesthe set of
all functionsf : ! R. The set is often nite and is assumedto have some
kind of natural ordering, sud as the setf1;2;3g. If this is the casethen the
elemens f 2 R canbe seenastuples. Each elemen f would correspnd to the
tuple (f (1);f (2);f (3)). Thus, the set R"%2% is isomorphicto R3.

For a givenmulti-matrix A onecanin fact de ne di erent games.The simplest
type of gameis the pure strategy game In this game,the strategy of ead agert X
consistsof a singleaction ax and the payo isthen A(a;:::a,). This de nition
doesnot allow ageris to play randomly.

In a mixed strategy game,the strategy of an agen is a probability distribution
over the available actions. The utility is the expected (weighed average) value
of A. This type of gameis de ned belon. The shorthand AX (s) denotesthe
expected payo of action i for agert X when the other agens use strategies
from s. It can be de ned in the following way. De ne the set VX = fw8Y 2

nfXg:vy 2 S";vx = ig. Thus, this set cortains the pure strategy pro les in
which agent X selectsactioni. For instanceif Aisa2 2 multi-matrix we have
Vi = £(2;1);(2;2)0.

3.2.4. Definition.  For any multi-matrix A, agert X and action i, and vector s
of mixed strategiessy for ead agent Y, we de ne the expected payo of action
i for agert X by:
X
Aix (s) = ((s1)w, (Sx vy 1(Sx+1)vxn (Sn)va )Ax (v)
(v1::vn)2VX
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In this de nition, the elemen v, denotesa possibleaction for player 1, s; is the
strategy of player 1, and therefore (s;),, denotesthe probability that player 1
will play action 1. Although this de nition is hard to read, in practice it is not
hard to seehow this expected payo is computed. To give an example,let A be
againa2 2 multi-matrix, assumethat the rst player plays action 1 with ninety
percen probability, and that the secondplayer plays the rst action with forty
percen probability. Then the expectedpayo of action 2 for agert 1 is computed
in the following way.

A3(((0:9;0:1); (0:4;0:6))) = 0:4A*(2;1) + 0:6A%(2;2)

The following setP™ is usedin the de nition of mixed strategies. It cortains
vectorsthat sumup to one. Thesevectorscan be seenas specifying probabilities
for all actions.

X
P™=fx2[0;1]"] x; = 1g

3.2.5. Definition. Let Abeanm; my::: m, multi-matrix. The mixed
strategy game M ,(A) of A is a tuple ( ;f|§X g;U) where = f1;2;:::;ng, the
strategy setsare S* = P™ and UX(s) = | sFAX(s).

Recall that the notation U* (s) denotesthe X th elemen of the vector U(s). It
represets the utilit y of agert X whenthe strategy pro le s is used.

The fact that agerts can play mixed strategiesis explicitly de ned in this
de nition of a mixed strategy game. We assumethat all ageris are equipped with
random number generators(coins, dice or whatewer) sothat they can randomize
their behaviour exactly as speci ed in their strategy. This de nition of a mixed
strategy gameis sud that eat mixed strategy gameis in fact a strategic game.

For the next de nition we needthe function argmax that returns all inputs
that maximize a given function. argmax f (x) = fxj9y : f(x) < f(y)g We
use the function argmax to de ne what a "'good' strategy is: A good strategy
is a strategy that returns a maximal utilit y. The function b* returns the best
responsestrategiesfor agent X for a given gameand strategy vector.

3.2.6. Definition.  Let ( ;fSXgyx, ;U) beagameands?2 (QX S*) astrategy
pro le. The bestresponseb(s) = b'(s) b'(s)) is de ned by

b (s) = argmax U” ((s x;1))

The set b(s) thus cortains the strategy vectorst sud that ty is optimal if all
opponents Y usethe strategy sy. We could assumethat the strategy of the
opponerts is xed. The setbX (s) is the set of best decisionsfor agert X .

When playing a gamean agern cannotalways predict what strategy the other
agerns use, becausethe other agerts might want to changetheir strategy once
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they learn that X usesa strategy in by (s). The notion of a best responseis
thereforenot a solution conceptin itself. One canhowewer seart for xed points
in the best responsefunction, and this is called a Nash equilibrium.

3.2.7. Definition.  Let ( ;fSXgx, ;U) beagameands?2 (QX S*) astrategy
pro le. The vector s is a Nashequilibrium i s2 Q(s).

Every mixed strategy game has at least one Nash equilibrium [73]. There has
beensomediscussionin the literature whether the notion of a Nash equilibrium
needsto be re ned. Seeral re nements have been proposed[72], but none of
them hasthe appealing simplicity of the Nash equilibrium.

A special class of gamesfor usein logic are the win-loss games In these
gamesthe utilit y functions only takestwo values,which can be assaiated with
winning and losing. Typically thesevaluesare 1 and 0. The utilit y function can
then be speci ed by stating what the winning positions are. Thesesetscan then
be speci ed by stating a formula, so that a position is winning if it makesthe
formula true.

Another special classare the constant-sumgames We de ne this property
only for gameswith exactly two players. A game (fA;Bg;fS”;SBg;V) is a
constart-sum gameif thereis a constart ¢ 2 R sud that for any strategy pro le
( a; )it isthe casethat UA(( a; 8)) + UB(( A; 8)) = c. If the constart cis
0 then we call it a zelo-sumgame The next bi-matrix A de nes a constart-sum
gamewherethe constart is 2.

1;1 0,2 20
20 1;1 02
Examplesof strategic gamescan be found in many gametheory text books.
All classicalexamplescanbefoundin the primer by Osborne and Rubinstein [79],
but more playful examplesare given by Binmore [11]. Textbooks on ewlutionary
gametheory sud asGintis' [37,12( alsomake much useof strategicform games.
In ead casethe examplesof strategic gamesare often presened in the form of
nite multi-matrices, and this can give readersthe falseimpressionthat strategic
gamesare always nite, small and simple. In chapter 8, it is shavn that there
are many other strategic gamesthat do match de nition 3.2.1,but are not pure
or mixed strategy games.

3.3 Extensiv e Games

In an extensive gamethe ageris have to make sequencesf choicesthat ultimately
leadto an outcome. There are multiple decisionpoints and at ead decisionpoint
one of the agerts hasto decidewhat to do next. The rules of the game specify
exactly which sequence®f actions are legal. We represen theserulesin a very
simple way, by listing all sequenceshat are allowed.
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Figure 3.2: A gametree and a set of sequences
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3.3.1. Definition. A non-empty set H of sequencess a sequene set if for
any sequenceéh and action a it is the casethat ha2 H impliesh 2 H. For any
sequencsetH andh 2 H we de ne the setof next actionsA(H; h) = fajha2 Hg
and the set of terminal sequenceZ(H) = fh 2 HjA(H;h) = ;g.

Another term for a sequene set could be a non-empty pre x-closed set.

If H is a sequenceset then one can de ne a graph G = (V;E) by de ning
V = H andE = f(h;ha)jha2 Hg. This graphis a tree with the empty sequence

asroot. Sud a tree is often called a gametree. In gure 3.2 a gametree and

the correspnding set of sequencess displayed.

Extensive gamescanbe played asperfectinformation games.In this caseevery
agern candistinguish all sequencesand thus the agert can selectthe action that
is best for that speci ¢ decisionpoint.

3.3.1 Perfect Information

In order to play an extensive game, one must know which agert can in uence
which decision. Therefore, we augmen the gametree with a function turn that
returns the agen that is in cortrol of a certain history.

3.3.2. Definition. A gameform F is a tuple F = ( ;H;turn), where is
a nite set of agens, H is a nite sequenceset and turn is a function turn :
Hnz(H)!

A gameform by itself is often not what one needs. One typically want a game
form with a utilit y function (if you are a gametheorist) or a gametree annotated
with atomic propositions (if you are a logician). In certain casesyou might want

both. We usethe word “interpreted’ to indicate a structure that is labeled with

atomic propositions. If a structure cortains utilities it is calledan extensivegame

otherwisea gameform.
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name contains

(extensiwe) gameform | tree

interpreted gameform | tree, atomic propositions

extensive game tree, utilit y function

interpreted game tree, utilit y function, atomic propositions

The word “extensie' emphasizeghat we deal with gamesin which the order of
movesis explicitly presemn. We omit it if it is not necessaryand thus we speak
of game forms rather than extensive gameforms. An extensivegameform is
thus synorymous to gameform, and so are interpreted extensivegameform and
interpretad extensivegame

3.3.3. Definition.  An extensivegameF is atuple F = ( ;H;turn;U), suc
that ( ;H;turn) isagameformandU: Z(H) ' R .

The function U is called a utilit y function. It returns the utility for eah agen
and ead agen tries to maximize its utilit y.

3.3.4. Definition.  Let( ;H;turn) beagameform. A pure strategy for agen
X in gameform F is a function with domainfh 2 Hjturn(h) = X g sud that
(h) 2 A(H;h).

The notion of a strategy can be extendedto strategiesfor coalitions . A
pure coalition strategy  for is afunction f with domainfh 2 Hjturn(h) 2 g
suc that (h) 2 A(H;h).

3.3.5. Definition.  LetF = ( ;H;turn) beagameform. A behavioual strategy

for agen X 2 in gameform ( ;H;turn) is a function with domainfh 2
Hjturn(h) = X g sud that for ead h, (h) is a probability distribution over
A(H;h).

There is a di erence between mixed strategiesand behavioural strategies[79].
The concept of mixed strategiesappliesto strategic games. A mixed strategy
is itself a probability distribution. A behavioural strategy is a function that
returns probability distributions for nodesof an extensive game. For imperfect
information gameswithout perfectrecall the two kinds of strategiesare not equiv-
alert [79].

3.3.6. Definition. Let F = ( ;H;turn) be a gameform. A nondeterminis-
tic strategy for agent X in gameform F is a function with domain fh 2
Hjturn(h) = X g sud that (h) is a non-empty subsetof A(H;h).

The notion of a strategy for a coalition can also be introduced for be-
havioural and nondeterministic strategies.

For eath gameform F, we de ne ng (F) to be the set of pure strategiesof
agert X in F, the setS) (F) to bethe setof behavioural strategiesof X in F, and
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SX (F) the setof nondeterministic strategies. The notion of behavioural strategy
is a more generalnotion than that of a pure strategy. For any pure strategy
onecan nd abehavioural strategy °by de ning Yh)(a) = 1ifa= (h), and0
otherwise. Thus, one action gets probability one and the other actions get prob-
ability zero. For ead behavioural strategy one can de ne a nondeterministic
strategy °by de ning qh) = fa2 A(H;h)j (h)(a) > Og. Thus, °returns that
actionsthat have a nonzeroprobability in . A nondeterministic strategyis a less
detailed description of a behavioural strategy, in which the exact probabilities are
omitted. We usenondeterministic strategieswhenthe exact probabilities are not
important.

Extensive gamescan be reducedto strategic games. This obsenation was
already madeby Von Neumannand Morgenstern[74]. Below, we do this for both
pure strategy and behavioural strategy games.

3.3.7. Definition.  Let ( ;H;turn;U) be an extensie game. The correspnd-
ing pure strategy strategic gameis ( ;fsg Ox2 ; U9, where UYs) is de ned by
UYs) = U(r(s; )) where

. h i h2Z(h
(S = si(hise(h) i tum(h) = X

3.3.8. Definition.  Let ( ;H;turn;U) be an extensie game. The correspnd-
ing behavioural strategy strategic gameis ( S ax2 ;U9Y. The function UYs)
isde ned by UYs) = |, P(s;:h) U(h) where

p(s; )=1
p(s;ha) = s(h)(a) p(s;h)

A Nash equilibrium of an extensive gameis de ned as a Nash equilibrium of
the correspnding strategic game. It should be clear from the cortext whether
the correspnding strategic gameis the pure strategy gameor the behavioural
strategy game. In gure 3.3, asmall extensive gamekE is displayed. In this game
two PhD studerts Alice (A) and Bob (B) have the choiceof cleaningtheir shared
o ce (action c), or to ignorethe mess(action i). SinceAlice arrives rst, shehas
to decide rst what shewill do. If shedoesnot cleanthe o ce, Bob is facedwith
the samechoice. A cleano ce is worth 2 utility units, but cleaningthe o ce
costsan agert 1.

Each agen hastwo pure strategiescalled . and j, listed in the next table.

AnB [+ i
¢ | (12)](1;2)
i1 (2:1) ] (0;0)
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Figure 3.3: To cleanor not to clean: GameE;

The two Nash equilibria of this game are indicated in bold. In the lower left
equilibrium, A ignoresthe problem and B cleansthe room (payo (2;1)). In the
other equilibrium B plansto ignore the problem and A cleansthe room (payo
(1;2)). Are both of theseNashequilibria equally good? Many peopletend to say
‘no’. The reasoningis as follows. Eadc decisionnode of an extensive gamecan
be seenasthe starting point of a smaller extensive game. Sud a gameis called
a subgameof an original game. One would expect ead agen to act rationally
in eadt subgame. If an equilibrium has sud a property, it is called a subgame
perfect equilibrium.

3.3.9. Definition. Let F = ( ;H;turn) be a gameform, and h 2 H. The
sub-"gameform’ of F starting at h is de ned assubg(F;h) = ( ;H%turn9 where
H%= fhYh h°2 Hgandturn®is the sameasturn but with the domain restricted
to HO

This de nition canbe extendedto interpreted gameforms, gamesand interpreted
gamesn astraightforward way. The setof all subgamef a givengameis de ned
asthe setallsub(( ;H;turn;U)) = fsubg( ;H;turn;U);h)jh 2 Hg.

3.3.10. Definition.  Let G = ( ;H;turn;U) be anextensive game,f afunction
that reducesextensive gamesto strategic games. The strategy prole s is a
sulpame perfect equilibrium if for all subgamesG® of G it is the casethat s is a
Nash equilibrium of f (G9.

The example gameof gure 3.3 has one subgameperfect Nash equilibrium in

which agert B cleansthe oce. The other Nash equilibrium is not subgame
perfect, sinceit is not optimal for agert B to choosethe action ignoreif A does
not cleanthe room.

3.3.11. Theorem (Kuhn). Every perfect information game has at least one
sulgameperfect equilibrium in pure strategies [64].
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Figure 3.4: An imperfectinformation gameform F,

If the utilit y function U of a gameG is sud that for any agent X and history
h 2 Z(h) we have that h 8 h°) UX(h) 8 U*(h9 then the optimal action a in
a certain situation is always unique, and thus the subgameperfect equilibrium is
unique.

3.3.2 Imp erfect Information

In imperfect information gamesit is possiblethat an agennt X doesnot seethe
di erence between histories h and h® Thus when agert X is in the situation
represeted by h, it considersit possiblethat it might be in the situation h°.
We use equivalencerelations x to store this information, and write h  x h°
to indicate this lack of information. For instancein a game of Poker, agent X
may not know the hand of cardsthat an opponert Y holds. If the only di erence
betweensituations h and h® would be the hand of cardsof Y, thenh x hC

3.3.12. Definition.  An imperfect information game form F is a tuple F =
( ;H;turn; ), where isa nite setof agens, H is a non-empty, pre x-closed
setof nite sequencesturn is a function turn :Hnz(H)! , foreadh X 2
therelation x H H is an equivalencerelation betweenstates. Furthermore

x hasto satisfy the following condition: if turn (h) = X and h® 4 h then also
turn (h9 = X and A(H;h) = A(H;h9.

An example imperfect information gameform is displayed in gure 3.4. In
this gure, the lack of information is indicated by dashedlines. Henceagert B
cannot distnguishthe historiesy and n, and thus hasno information what action
agen A haschosen:y g n.

It often happensthat an agernt X hasto make decisionsin situations h and h°®
that it cannot distinguish,i.e. h x h% SinceX cannotseea di erence between
these situations, strategiesfor X must prescribe the same behaviour in both
situations. The de nitions of the di erent strategiesthus have to be modi ed.

3.3.13. Definition. A strategy for X in gameform F = ( ;H;turn; ; )is
uniform if for all h  x hit holdsthat (h) = (h9.
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This modi cation can be applied to all kinds of strategies: pure, behavioural
and nondeterministic. For imperfectinformation gameswe only consideruniform
strategies,ewen if the word uniform is not mertioned.

An exampleof a uniform pure strategy g for agert B in gameform F, would
be g(y) = g(n) = y. The strategy g(y) = y and g(n) = n would not B
uniform, and thus this would not be an acceptablestrategy.

For gamesof imperfect information we usea di erent notion of a subgame.

3.3.14. Definition. Let F = ( ;H;turn) be a gameform, and h 2 H. Let
FO=( ;H%turn® 9 whereH®= fhh h°2 Hg andturn® ©°arethe sameas
turn;  but with their domain restricted to H®instead of H. The structure F°is
a sulgameform i forallj 2 Hand X 2 it is the casethat j x j®implies
jo2 HO

Any decisionnode h®in a subgameshouldonly be indistinguishablefrom histories
that are alsoin the subgame. This meansthat all ageris "know' that they are
in the subgame,and anything that is outside the subgamedoesnot in uence the
agerns' decisions.Someimperfectinformation gameshave subgamesput others
do not have any becausecertain information is private from start to end. The
notion of a subgameperfect equilibrium is therefore not often used on imper-
fect information games. Instead, people use extensionssud as the sequenal
equilibrium or the trembling hand perfect equilibrium [79].

It is often reasonableto supposethat agers remenber information. This
meansthat if two histories h; h° can be distinguished,then any pair of extensions
of these histories can also be distinguished: h  x h%impliesh h, x h® hS.
This property is called perfect memory. Another useful assumptionto make is
that agers remenber their own decisions.Thus, if turn(h) = X thenha x ha
implies a = a° If a gameform hasthis property and perfect memory then the
gameform has perfect recall .

Examples

Agent C in gameform F, doesnot ave perfectmemory The agert candistinguish
y and n (thusy 6 ¢ n), but it cannot distinguish yn and nn (henceyn ¢ nn).

In the gameform F,, agent B canforgetits own action, sinceyy g yn. Thus
the gameform F, doesnot have the property and hencedoesnot have perfect
recall.

The assumptionof perfectrecall makesit easierto compute Nash equilibrium
strategies. In fact, for two player constart-sum gameswith perfect recall, one
can nd Nash equilibrium strategiesin polynomial time. If perfect recall is not
assumedthe problemis ,P-completeand thus believed to be intractable [57].
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3.4 Existing Work on Logic and Games

Logiciansand gametheorists often work on the sameproblems,and their respec-
tive elds are becoming more and more connecteddue to the e orts of many
researbersin both elds [97].

It is surprisingto seethat logic and gamescan be connectedin many di erent
ways.

Logic can be usedto understandand make transparert the reasoningbehind
game-theoreticsolution concepts. In this caselogic is a tool usedto understand
the assumptionsmadein gametheory. The focusis often on the knowledgethat
is requiredfor agens in orderto ensurethat a certain outcomeis readed. Exam-
plesof work in this direction include Aumann's discovery that a Nashequilibrium
can arisewithout commonknowledge[7], or De Bruin's analysesof iterated elim-
ination of dominated strategies[30].

Epistemic logic and its extensionscan be usedto understand situations that
occur in imperfect information games. A typical exampleis the gameof Clue.
In orderto play this board gameone must reasonabout knowledgeof cards,and
thus this gamelendsitself well to modeling using dynamic epistemiclogic [105].
Probabilistic epistemiclogic is useful for modeling gamesin which probabilities
play arole [59]. The dynamic epistemiclogic approad canbe extendedto include
even complexgameactions sud as cheating and deceivingother players[8]. The
focusin this areaof researt is on the imperfect information of players.

The subgameperfect Nash equilibrium, also known as badkward induction,
is the most popular solution conceptfor extensive gamesof perfect information.
Modal logiciansare always interestedin determiningthe expressiviy of modal lan-
guages.and at leasttwo authors have thus determinedwhat languageone needs
to characterisethis solution concept. Bonanno[14] has given a characterisation
of badkward induction using branching time temporal logic. Harrenstein[45 has
useda di erent multi-modal logic.

Sincea gameform lacks preferencespone cannot ask what agerts want in a
gameform, or which ageris will win in a gameform: the conceptof winning is not
de ned if there are no preferencesOne can howeer investigatethe e ectivity of
coalitions of agens: whether agens can, by choosingthe right strategy, ensure
that a certain outcomeholds. This can be formalizedin logic. Pauly's coalition
logic [85] and Van Benthem's logic for processmodels[99] do exactly this. These
logics are suitable for reasoningabout what agers, or coalitions of agers, can
achieve by their choice of strategy. This is called e ectivity. Sinceboth these
logicsare closelyrelated to the work in this chapter, they are introducedin more
detail in section3.4.1.

In orderto study gamesinstead of gameforms, onemust intro ducethe notion
of preferences.This leadsto the idea of preferenc logic. Our work on preference
logic goes badk to Von Wright [119]. Von Wright used an intuitiv e approad,
basedon idertifying likely axioms. Van Dalen [100 subsequetly proved se\eral
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completenesgesults for certain basic sematics. Resder [86] also deweloped a
sematic for Von Wright's language,this time basedon the fact that the value
of a formula (in a certain model) should be the averageof the utilities of all
worlds in the model that satisfy . This is certainly an interestingidea, but hard
to characterizein an axiomatic way. Chisholm and Sosa[2(] investigated the
philosophical aspects of preferencelogic further. A recen overview is presened
by Hansson[44, 320].

What these sourceshave in commonis that they usea binary construction

P in orderto expresspreferences.This is di erent from the usual modal logic

approad, which is normally basedon an unary operator2 (seefor instance[45]).
The binary approad seemsto correspnd better with natural language,where
one can sa& things sud as\l prefer co ee over tea". The sort of relations that
is usedto indicate preferencesan alsobe usedto expressrelative likelihood [42].
As a result, the technical results stated in terms of likelyhood can be applied
to preferences.Huang [52] also introducespreferencelogics, in order to model
agerns with boundedrationality.

Another way to combine logic and gamesis to interpret a formula asa game
betweentwo players, one of which wants to read a "true' outcome,the other one
a false'outcome. This idea has beenusedin the interpretation of independene
friendly logic (IF logic). This logic was introduced by Hintikka with the bold
goal of replacing rst order logic asthe primary logic of scieni c discourse[49].
This idea has not materialized, partly becausdF logic is quite complicated,and
has se\eral interesting ‘features'(that somecall "bugs'). It hasa compositional
sematics but it is not the simplestsematics [50], for this logic the falsity condi-
tions are not the mirror image of the truth conditions [31], and one can question
whether the interpretation of IF is faithful to gametheory [94].

3.4.1 Coalition Logics

Coalition logic [84, p.46]is a logic for reasoningabout e ectivit y in generalgame
frames. The languageis very similar to efl (to be de ned on page58), and thus
coalition logic is examinedherein detail rst.

3.4.1. Definition.  Assumethat nite setsP; are given. A coalition logic
formula is de ned by the following rule. In theserulesp2 P and

=plo b 37l

Coalition logic is interpreted over generalgame frames, which combine features
of strategic gamesand extensive games.A generalframe is similar to a tree, but
at ead decisionnode all ageris have to selectan action, like in a strategic game.
The next state dependson the actions chosenby all agerts. This semairics is
descrited in detail in Pauly's dissertation [84, p.46]. This classof modelsis more
generalthan the interpreted gameformsthat areusedfor efl . The interpretation
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of a coalition logic formula over a generalgameframe G in state s is de ned
below.

3.4.2. Definition. A coalition model M is atuple (S;fE | g; ) whereS
is asetof states, :S! P aninterpretation function, and for ead coalition
we have E :S! 2% s a function that to eath s 2 S assignsa set of sets of
states. The functions E must be monotonic,i.e. if T2 E (s) and T  T°then
T2 E (s)

The following rules de ne the interpretation of coalition logic formulas over
pointed modelsM ; s, wheres 2 S is a state in the coalition model M

G;sgE ? never

G;sFEp for p2 (s)

G;siE ! i not G;sg orG;sf
Gisi [] i ¢ E (9

where ©=1ft2 SjG;tF g

This logic doesnot make a distinction betweenintermediate statesand end states
or outcomes. The internal structure of the protocol can thereforebe descrited in
coalition logic, and one can usesatis abilit y for protocol veri cation.

The fact that coalition logic doestake intermediate statesinto accoun, means
that oneshouldread formulas from efl and coalition logic in a di erent way. In
chapter 4 we seethat the efl formula [A]2 p expresseghat A can enforcethat
a p outcomeis readed. Syntactically the closestcoalition logic formula is [A]p.
This formula meansA can make p true in the next state. If the next state is not
an outcomestate, then this formula doesnot say anything about which outcomes
A canread. In order to expresssomethingabout outcomes,one can however
use extended coalition logic. This logic is an extension of coalition logic with
operators| ] and[ ] . The rst operator expresseshat canewertually be
reached by , andthe secondoperator[ ] expresseshat cankeep truein
the ertire future. The rst operator can be usedto refer to outcomestates, and
indeed Pauly introducesa special notation to do so.

[ = [ 1G1?~)

Pro of Theory

There are sound and complete proof systemsfor seeral variantes of Coalition
logic. The full detailsaregivenby Pauly [85, 85]. Herewe preser asan examplea
soundand completeproof systemfor coalition modelsthat have a weakly playable
e ectivit y function.

3.4.3. Definition.  An e ectivity function E :S! 22 is - maximali for all
T,fSnT2E , thenT 2 E
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3.4.4. Definition.  An eectivity function E : S| 22 is superadditive i
for all Ty;T,; 1; 2 sudh that ;\ , = ;,if X; 2 E, and X, 2 E , then
X1\ X2 E

i 1

3.4.5. Definition.  An e ectivity function E : S'! 22 is weakly playableif it
satis es the following v e conditions: (1) ; 2 E(), (2)if; 2 E() and °
then; 2E( 9, (3)If ; 2E(;)thenS 2 E() for all , (4) E is -maximal
and (5) E is superadditive.

Thesefollowing axioms are sound on coalition models with weakly playable
e ectivit y functions.

F:I1? (N?)
FIL 217! [17? (?)
F:CI?2! [1> >)
=N Y A (N)
FAOQJAC)M[2AC20" [ 2l 20C 2™ 2) (S)

where ;\ ,=;

There are two reasoningrules for coalition logic. The rst is Modus Ponens,the
secondoneis called Monotonicity.

s
THERL

The proof systemconsisting of thesetwo rules and the v e axiomsis soundand
complete on coalition models with weakly playable e ectivit y functions [84, p.
55].

Coalition logic can be usedfor reasoningabout extensive games.In that case
the following formula, valid on extensive game forms, should be added as an
axiom.

[l ! [X]
X2
This formula can be read as saying that if somethingcanbe done,it canbe done
by one of the ageris.

Pauly presets seeral completenesgroofsfor di erent classeof models,and
for a detailed presemation we refer to his dissertation [84, p. 54]. The most
generalproof is similar to the standard completenesgroof of modal logic based
on a canonicalmodel.

For extendedcoalition logic, a completeaxiomatization is alsogiven, and this
axiomatisation was later usedby Goranko [40, 41] to dewlop a complete proof
systemfor ATL. These proof systemsare more complexthan the system given
herefor efl , sincetheseproof systemsdeal with systemswith in nite runs. Our
logic efl is only a small fragmert of theselogics.
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3.4.2 Power Level Logic and Bisim ulation

Another languagefor reasoningabout what ageris cane ect hasbeenintroduced
by Van Berthem [99]. Van Benthem introducesthe notation fG; X g , whereX

is a singleagen and G refersto a strategic game. This operator is interpreted in
the following way.

M;sF fG;Xg , 9S: £s;S"8t2S:M;tF

The relation &s;S is interpreted as saying that agert X has a strategy for
playing gameG from state s onwards sud that all next statesare within the set
S. Van Benthem remarksthat the argumert G can be omitted if the gamedoes
not change,and this makesthe languageeven more similar to efl .

This languageallows oneto write f AgfBg . This doesnot add to the expres-
sivity of the language sincethe secondoperator can be omitted without changing
the meaningof the formula.

F fAgfBg $ fAg

Variants onthis language preseted in the samepaper [99], conbine this language
with featuresof coalition logic.

As explainedon page18, the notion of bisimulation is usedin standard modal
logic in order to decidewhen two models are the same. For the logic descriked
here, one cannot usethe samede nition directly. Instead Van Berthem de nes
the notion of a power bisimulation.

3.4.6. Definition.  Supposetwo models M and M ° with sets of worlds W; W?°
aregiven. A binary relaton E W  W?is a power bisimulation if the following
conditions hold.

If (x;y) 2 E then they satisfy the sameatomic propositions

For any agert X, if (x;y) 2 E and § xU then there is a setV sud that
XoyVand8v2Vou2U: (uv)2 E

Vice versa: For any agert X, if (y;x) 2 E and {yV then thereis a setU
suc that ¥ oxU and8u2 U9v2V: (u;v) 2 E

This de nition capturesthe ideathat agers have the sameabilities in the models
M and M % Two modelsthat are power bisimilar satisfy the sameformulas [99].

3.4.3 Alternating-time  Temporal Logic

Alternating-time Temporal Logic (ATL) is a multi-agent extensionof CTL [6].
The languageof ATL corntains temporal operators similar to CTL, but instead
of the quanti ers 8 and 9 that appearin CTL, strategy operatorsth ii are used,
where canbe any set of agerns.
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3.4.7. Definition. Let beasetofagers, andP a setof atomic propositions.
The logic ATL contains formulas generatedby the following rule. In this rule,
p is a typical elemen of P and

c=pj U j2 Wi

The meaningof a formula th ii is that the ageris in  can usea strategy sud
that holds.

This logic is interpreted over alternating transition systems[6]. These are
de ned astuples (P; ;Q; ; ). AsusualP is a setof atomic propositionsand
a setof agerts. The setQ is a set of statesthe systemcanbein,and :Q! P
adds propositionsto thesestates. The function : Q I 22° assignsto eadh
ager in ead state a set of setsof states. Each agern canchooseoneset of states,
and the next state of the systemwill be from that set.

An example would be a system where Q = f0;1;2;3;49. Suppose that

(0; X) = ff 1;2g;f3;4ggand (0;Y) = ff 1;3g;f2;4gg. Agert X cannow choose

f1,2g and Y can choosef 2;4g. They make these choicessimultaneously The
next state of the systemwill be 2, becausehat is the only commonstate in their
chosensets. It is necessaryto put someconstraints on sothat a next state can
always be chosen.

The interpretation of this logic usesthe notion of strategy to interpret the
coalition operator tn ii. A strategy for is any function that makes a choice

(X509 2 (g X) forany agert X 2 in any state q2 Q. Basedon a strategy

, one can de ne the set of possiblewalks W( ) through Q sothat all choices
for ageris X 2 are madeasrecommendedy the strategy. This set of walks is
usedin the following interpretation of ATL.

M;gE ? never

M;qF pwherep2 P i p2 (v)

MiaqF ! i M;qF impliesM;qfF
M;gqF i i 9 8Bw=wvii2W( ):M;wE
M;wpE 2 i 8n>0:M;w(n) E

M;wE U i 9m> 0:M;w(m)F and

8m> k> 0:M;w(k) F

The model cheker Mocha can be usedto verify ATL properties of systemspeci-
cations [5].
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3.4.4 Dynamic Epistemic Logic

Strictly speaking, dynamic epistemiclogic is not a gamelogic becauseits de ni-
tion doesnot make any referenceto gamesat all. It is howewer frequertly applied
to game-like situations [105],and it seemdo bethe right tool to model knowledge
changein imperfect information games.

Dynamic epistemiclogic is an extensionof epistemiclogic and contains the
usual logical connectiwes, ordinary modal operatorsK x , and update operators

[ 1.

3.4.8. Definition.  Assumethat nite setsP; aregiven. A dynamicepistemic
logic formula is de ned by the following rule. In theserulesp2 P and X 2 .

=pp b 7 Ky L]

Formulas are interpreted over a pointed epistemicmodelsM ; w. The ordinary
operators are interpreted in the sameway as in epistemiclogic. The construct
[ ] isinterpretedby rst computinganupdated modelM andthen determining
whetherM [

3.4.9. Definition. LetM = ( ;W; ;P; ) beanepistemicmodelandw 2 W.
Dynamic epistemiclogic is interpreted in the following way.

M;wfF p i p2 (w)

M;wfE ? never

M;wgE ! i M;wg impliesM;wE
M;wF Ky i 8(w;v)2 x: M;VF
M;wiE [ ] i M;wgE impliesM ;wf

WhereM = ( ;W% °%P: 9 is dened sud that W= fw 2 WjM;w F g,
;WO 2P isdened by qw) = (w) and for all agens X we have §=
[(W® W9

In the interpretation of an update formula = [ ] , the model M is changed.
We havethat M;wF [ ] ifandonlyif M ;wiE . The modelM is a model
for the situation that you getif you update M with the information . In the case
of dynamic epistemiclogic, this update is doneby removing from M the worldsin
which  doesnot hold. The updatesin dynamic epistemiclogic canbe compared
to announcemets, becausef you announcea simple formula p, then everybody
knows p afterwards: W;w F [p]p. For more complicated formulas this does not
hold, considerfor instance = [p” : Kgp](p” : Kgp). After the announcemet)
B of courseknows that p holds, so is not a tautology.

A completeproof systemfor dynamic epistemiclogic exists, becauseone can
usethe following reduction axiomsto reduceany DEL formula to a formula of
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epistemiclogic.

At [Ip$ (! P

PF [ $ (! :[1)

Dist [1C1™ 2208 (117112
KA [ IKx $ (! Kx[]1)

This reduction method canalsobe usedto obtain a completeproof systemfor
dynamic epistemiclogic with commonknowledge[61], and for more complicated
actions involving knowledgeand beliefs[9].






Chapter 4

Logics for Proto cols

4.1 Intro duction

In this chapter, the logic efl is presened, that can be usedfor reasoningabout
multi-agent protocols. The acrorym efl standsfor e ectivity logic, becausehis
logic can be usedto expresswhether coalitions have strategiesthat are e ective
in achieving certain goals. Thus, the logic contains statemeris sud as [X] ,
meaningthat X canachieve . The statemen [X] doesnot meanthat X wants
, but rather that X would have a strategy for at hand if it would ewer need
one.
As an example of how a logical approad can be useful for people inter-
estedin multi-agent protocols,the following informal situation descriptionis used
throughout this chapter.

Three agerts Alice, Bob and Caroline (or A; B and C) have to
selectone of the alternatives x;y and z. They are looking for a
suitable voting protocol to selectexactly oneof thesethree alterna-
tivesas the outcome. The protocol should be demacratic, so that
any majority can enforceany outcomex;y or z.

The goal of this chapter is to capture theserequiremerns in logic, and then to
nd protocolsthat satisfy theserequiremerts.

In this chapter, we give seweral examples,and we havetried to givethe smallest
interesting examplesof eathy phenomenon. The following more basic decision
problemsare usedfor theseexamples.

joint decision problem A decisionp canbetakenif either A or B thinks that
p should be the case.If both agens do not want p, it should be rejected.

indep endent decision problem An ager A candecidewhethera shouldhold
or not, and agen B can decidewhether b should hold or not.

57
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Figure 4.1: A voting protocol Fy

In the next section, section 4.2, the languageefl is de ned. Section 4.3
discusseghe model cheking problem. Bisimulation is discussedn section 4.4,
and section4.5 preselts a proof system.

In the secondpart of this chapter, we look at the di erent ways in which
one can represem protocols. It is shavn in section 4.6 that the way in which
protocolsare represeted in uences the model cheking complexity. This is done
by specifyinga moree cient way of represeting protocols,and proving that the
model cheking problem becomesharder when this input format is used. Within
this chapter we also presemn many alternative protocols for the example voting
problem. The last section,section4.7, cortains conclusions.

4.2 Dening Eectivit y Logic

Protocolsare modeledin this chapter as (extensive) gameforms. In order to use
logical formulas for the properties, these gameforms are extendedwith atomic
propositions. Theseatomic propositions are addedonly to the outcomestates of
eat gameform. Sud gameforms are called interpreted gameforms.

4.2.1. Definition.  An interpreted game form F is dened as a tuple F =
( ;H;turn;P; ), sothat ( ;H;turn) is a gameform, P is a nite setof atomic
propositions,and : Z(H) ! 2" returns the true atomic propositions of any
terminal history.

An examplegameform that represets a protocol for the voting problem is
displayedin gure 4.1. The outcomesare markedwith propositionsx;y;z. In this
protocol, A decideswhether B or C can decideon the outcome of the protocol.

4.2.2. Definition.  Assumethat nite setsP; are given. An efl formula
is de ned by the following two rules. In theserulesp2 P and

=2 ) ! 1?2711
= pj ! j?
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The secondline of this de nition de nes a typical propositional logic formula
Thesepropositional logic formulas are not efl formulas. They can only appear
as2 or[] . Thus,formulassuth asp_:pandp! qarepropositional logic
formulas, but are not themsehesefl formulas.

Propositional logicis interpreted in the usualway. The logicefl isinterpreted
over an interpreted gameform F = ( ;H;turn;P; ). The de nition makesuse
of pure strategies  and updateswith thesestrategies.

4.2.3. Definition. LetF = ( ;H;turn;P; ) bean interpreted gameform and
a pure strategy for coalition . The updated model F°= Up(F; ) is de ned
asF%= ( ;H%turn®%P; 9 whereHis the unique subsetof H sud that

the empty sequence is a member of H®

if h2 Handturn(h) 2 thenh (h) 2 HC but for all other actions b we
have hb 2 H°

if turn(h) 2 thenha2 H%forany ha2 H.

The newelemens P° turn®and Careidertical to P and respectively, except
that they are restricted to H°

The idea behind an update F°= Up(F; ) isthat it calculatesa reducedgame
form FC in which no action is taken that is excludedby the strategy . The
strategy  is only de ned for ageris X 2 . The other ageris are not restricted
in any way by the strategy. The notion of an update is usedin the following
interpretation of efl .

FF? never

FF ! i notFFE orFF
FF2 i 8h22zZH): (h)F
FFEII i 9 8h2Z(HY: qh) E

where( ;H%turn®P; 9= Up(F; )

Intuitiv ely, the box 2 isauniversalquarti er. It expresseshat holdsin every
outcomestate. The construction|[] expresseshat hasa strategy sothat if
it usesthis strategy, any readable outcomesatis es

The languageefl is expressie enoughto expresshe rst two propertiesthat
are required for the exampleprotocol. First of all, it can be usedto expressthat
a protocol F selectsexactly oneaction.

FF2(x_y_2)
FE2:(X™y)
FFE2:(x"2
FiF2:(y"2)
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Secondly one can expressthat any two agerns can enforceany outcome.

FF[AB]Ix" [AB]y” [AB]z
FF[ACIx" [ACly " [AC]z
FF [BClx"[BCly" [BC]z

It is not hard to verify that the example protocol Fy displayed in gure 4.1
indeedsatis es theseformulas. Therefore,there exists a suitable protocol for the
examplevoting problem.

4.3 Mo del Checking for EFL

The main point of this sectionis to show that the model chedking problem for
efl istractable. This is not a very deeppoint. Howeer, it is valuablein practice
and it seresas a test casefor the notation chosen.

4.3.1. Definition. Let F = ( ;H;turn;U) be an extensiwe game. For eadh
agernt X the value function v* is de ned recursively by vX(h) = UX(h) if h 2
Z(H) andv* (h) = maxazau:n) V< (ha) whenX = turn (h), andv* (h) = minaza(a:n)
v* (ha) when X & turn(h).

4.3.2. Lemma. The function v* can be computel in time O(kF k).

Pr oof. Supposethat we walk through the gametree using a post-order tree
walk [27, p.245]. At eah node h, we can compute vX (h) sinceeither h is a leaf,
or we have already computedthe value of all children ha of h, in which casewe
take the maximum maxazan:n VU™ M (ha) of all children. This walk takestime
O(KFK).

The value of a gameindicates how much payo ageris can expect if they act
optimally. If one knows the value of ead node, one also knows which movesare
good. Supposethat h is a nonterminal history and turn(h) = X. Intuitiv ely
an action a is a “good' action i v*(ha) = v*(h), and thus knowing the value
function helpsagerts to selectthe best actions.

4.3.3. Theorem. For a givenformula 2 efl and interpreted gameform F,
checking whetherF = takestime O(kFk k K)

Pr oof. Assumethat aformula anda modelF = ( ;H;turn;P; ) aregiven,
and furthermore assumethat F is represetted explicitly by listing all elemeits of
pairs and sets.

Determining for any propositional logic formula  and terminal history s
whether (s) F  can be donein time proportional to k k. For any formula
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= 2 , determining whether F £ can thus be donein time proportional to
kHk k k kFk k k.

Supposenow that = [] . Wecandene agameF°= ( %H;turn%U)
where °=f ; gandturnqh)= i turn(h) 2 . Otherwiseturnqh) = . The
utilit y function is de ned sudh that U (h) = (1;0)i (h) g . For ead terminal
history, this takestime at most O(k k), thus computing the whole function takes
time O(kFk k k). For this game, one can compute the value function v . If
v ()= 1lthenF . OtherwiseF 6 . Computing the value function is thus
su cient for determining whether F F  holds. According to lemma 4.3.2 this
can be donein time O(kF k).

For other formulas one can prove the theorem by using induction over the
formula structure. The case = ? is atrivial case.The basecasesare formed

by =2 and =[] ,andwe have seenthat thesecasestake time at most
O(kFk k k), and the induction hypothesisis that this holds for all formulas.
In case = ;! », one can seethat determining whether F takestime

O(kFk k 1k)+ O(kFk k ,k) O(kFk k k). Sincetheseare all the caseswe
concludethat for any formula and gameform F the theorem holds.

Combining logic and game theory can potertially lead to problems with high
complexity, but the result given hereshaws that this is not always the case.This
model chedking problem is easydueto two factors. First of all the preferencesf
ageris are expressedy meansof propositional logic. In this format one cannot
expresscomplicated, higher order preferences.Secondly this logic essehally de-
scribestwo-player constart-sum games,sinceone group of ageris tries to achieve
something under the assumptionthat the other agens do not cooperate. Two
player constari-sum gameswith perfect information are well understood and
computing optimal strategiesfor sud gamesis not computationally costly.

4.4 Bisim ulation

An important questionis to decidewhentwo protocolsare the same.In general,
this is a complicated question, becauseone can compareprotocols with more or
lessscrutiny. One way out of this dilemma is to use logical equivalenceas a
deciding factor. Given a suitable logic one can de ne two protocolsto be the
same when their correspnding game forms satisfy the same logical formulas.
This leaves us with the problem of deciding when two interpreted game forms
satisfy the sameformulas.

For the logic efl one cannot apply the notion of bisimulation of standard
modal logic directly, becauseit is not clear what the “setsof worlds' are that
should act as domain of the bisimulation relation. For somelogics de ned on
extensive gamesonecande ne a bisimulation betweenthe setsof histories. Each
position in the gametree of the rst model is matched by the bisimulation to an
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equivalent position in the other model. For efl this idea doesnot work, because
efl doesnot usethe structure of the gametree directly in its semarnics. Two

modelsin which agernis move in a completely di erent order can still satisfy the

sameefl formulas. Thus, for efl one must usea relation similar to the power

bisimulation discussedn page52.

4.4.1. Definition.  Supposethat the two models F = ( ;H;turn;P; ) and
FO= ( ;H%turn®P; 9 aregiven. A binary relaton E  Z(H) Z(H9Y is an
outcome bisimulation if the following conditions hold.

If (h:h9) 2 E then (h) = %h9

For any coalition strategy  there exists a strategy ° sud that the fol-
lowing holds: Let Z be the set of terminal histories of Up(F; ) and let
Z 9 be the set of terminal histories of Up(F% ©). Then 8z°2 z°9z2 Z :
(2,29 2 E

Vice versa. For any coalition strategy ° there exists a strategy ~ sud
that the following holds: Let Z be the setof terminal historiesof Up(F; )
and let Z°be the setof terminal historiesof Up(F% ©). Then8z 2 Z 92°2
2% (2,292 E

If two gameforms are outcome bisimilar, then they satisfy the sameformulas.
This is proven in two steps. Below we de ne which formulas are called basic and
simple In lemmad4.4.3we shaw that two bisimilar models satisfy the samebasic
and simple formulas. Lemma 4.4.5 can then be usedto shaw that if two models
satisfy the samebasicand simple formulas, they satisfy the sameformulas.

4.4.2. Definition. A formula of the form 2 is basic. A formula of the form
[] is calledsimple

Basic formulas can be seenas represeting global constrairts on the possible
outcomes,or as powers of the empty coalition. Each simple formula expresses
power of a certain coalition.

4.4.3. Lemma. Supmse that the two madelsF = ( ;H;turn;P; 9 and F°=
( ;H%turn®%P; 9 are given and that E is a bisimulation between F and F°.
Then thesemadels satisfy the samebasic and simple formulas.

Pr oof. Supposethat F = 2 . The empty coalition has only one strategy .
and this strategy hasthe property that Up(F; .) = F. The sameholds for F°.
Take Z asthe set of terminal historiesof F and Z°of F°. Take any state z°2 z.
The secondclause of the bisimulation tells us there a bisimilar state z 2 Z.
SinceF £ 2 and (2) = 929 it followsthat 4z% F . Sincez®was chosen
arbitrarily , it followsthat F% 2
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Supposethat F F [] . This meansthat there is a strategy  sud that
Up(F; ) E 2 . According to bisimulation one can nd a matching strategy
0. Take Z;Z°to be the terminal historiesof Up(F; );Up(F% ©) respectively.
Take any state z°2 Z°% Onecan nd astatez 2 Z sud that (z;z% 2 E. Since
(z) F and 929 = (2) it followsthat %z% F . Sincez® was chosen
arbitrarily , we concludethat FOF []
Sincethe de nition of outcomebisimulation is symmetric, one canrepeat the
argumert to shav that F°E 2 impliesthat F £ 2 , and that F° E []
impliesF F []

In the next lemma, we use speci ¢ formulas instead of simple formulas. These
speci ¢ formulasare simple formulas sud that no strongersimple formulas exists.

4.4.4. Definition.  Take any setS of formulasand supposethat ;=[] 2 S

and ,=[] 2S. Theformula ,ismorespecic than ,if2( ! )2 Sand
2( ! )2S. The formula ; is specic if thereis no more speci ¢ formula in
S.

To give an exampleof a speci ¢ formula, take S = f[A]a;[A]b;2 (b! a)g. In this
case[Albis the only speci ¢ formula in S, becausethis formula is more speci ¢
than [Ala.

The next lemmatells usthat it is enoughto ched only formulasthat are sim-
ple and speci ¢ to ensurethat two maximally consistem setsare the same. Since
the set of all formulas satis ed by a model is always a maximally consisten set,
one can alsousethis lemmato shav that two models satisfy the sameformulas.

4.45. Lemma. Supmsethat S and T are maximally consistent sets. Let S°
contain all basic and all speci ¢ formulas of S and T° all basic and all specic
formulasof T. If S°= T%thenS=T.

Pr oof. Supposethat S and T are maximally consisten sets. Let S° cortain
all basicand all speci ¢ formulas of S and T? all basicand all speci ¢ formulas
of T. Supposealsothat S°= T% Let =[] 2 S. We have to shav that

2 T. If isspecic, then 2 S° thus 2 T%and 2 T. If not, then
there is some 'more specic' formula[] 2 S sothat 2( ! )2 S . This
formula itself neednot be specic, sincethere might be an even more speci c
formula that rules out [] . Howewer, sinceP is nite, there is only a nite
number of non-equialert propositional logic formulas. This meansthere must

beaspecic formula[] 2 S%and2( ! )2 S. SinceS°= T%we know that
[] 2 TCandthus[] 2 T. Since2( ! )2 Sis basic,we canconcludethat
2( ! )2S°=T% T. Usingthe the validity (] ~2( ! ))! [] and

the fact that T is maximally consistem, we concludethat [] 2 T.
It isnow proventhat S and T cortain the samesimpleformulas. Considernow
aformulaoftheform: [] .If:[] 2 S,thevalidity ofthe axiomdetermined
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proven in the next section,can be usedto shovthat [ n]: 2 S. Sincethis is
a simple formula, we concludethat [ n]: 2 T. Usingdetermined againwe
obtain:[] 2T.

A useful property of maximally consistem setsisthat if ~ 2 Sthen 2 S
and 2 S. Moreoverif _ 2 Sthen 2 Sor 2 S (or both). For ewery
formula 2 S in conjunctive normal form we can concludethat 2 T. Since
ewvery propositional formula is equivalert to a formula in conjunctive normal form,
we may concludethat for any formula it is the casethat 2 S | 2T.
Therefore,S=T.

One can also prove the reverseof lemma4.4.3.

4.4.6. Lemma. Supmse that the two madelsF = ( ;H;turn;P; 9 and F°=
( ;H%turn®%P; 9 are given and that these madels satisfy the same formulas.
Then there is a outcome bisimulation E between F and F°

Pr oof. Supposethat F = ( ;H;turn;P; 9 and F°= ( ;H%turn®%P; 9 are
given. De ne arelation E  Z(H) Z(HY by stating that zEz°if (2) = 429.
We have to shaw that this relation is an outcome bisimulation. That the rst
condition of de nition 4.4.1holds,followsdirectly from the de nition of E. Below
we show that the secondcondition holds. The argumert for the third condition
is completely parallel to the argumert for the secondcondition.

Take any strategy on F, and compute Z = Z(Up(F; )). Supposethat

P = fpo;ps;::i;pngandthat Z = fgp;:::;z,0. Each state z; 2 Z can be com-
pletely describted by a formula o "o ibiwhere p=pifp2 (z) and
ip = : p otherwise. Let = jm:O . It followsthat F F []2 . SinceF

and F© satisfy the sameformulas, F°F [] 2 . Thereforethere exists a strategy
O sud that Up(F% °) F 2 . Now take Z°= z(Up(F% ©9)) and take any state

z°2 7% Since 4z% E it must hold that 4z% E ; for somej. Therefore
9z% = (z) and thus z%Ez for somez; 2 Z, which is what we had to show.

The notion of outcome bisimulation can thus be usedto test whether two
protocols have the sameproperties.

4.5 Completeness

Using the notations from the previous section, one can determine whether two
protocolsare equivalert. In this sectionthe focusis onthe moredi cult problem
of determining whether there exists a protocol F that satis es a given property

. In order to do so, a proof systemSg¢, is de ned, sothat one can prove that
certain formulas hold for any model. If Sgg,. ;' , then there is no model F sud
that F F . The proof systemwe presen is complete,and thus the opposite also
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holds: If Sgr. 6: , then there existsa model F sudh that F . The proof
givenis constructive, in the sensehat it providesa method for constructing such
a model.

First the validity of the formulasthat are usedasaxiomsis proven. Then the
proof systemSgg | is de ned, and the completenessproof is given.

The next table lists four axioms that can be written without the coalition
operator [] . These axioms are thus formulas of "'normal' modal logic [12].
For the Greek letter one may substitute any instance of any propositional
logic tautology that one can obtain using uniform substitution. For instance
[1 p_:[] pisaninstanceofp_: p. For all other Greekletters onemay substitute
any propositional logic formula.

prop = t autology
prop, = 2 box-t autology
S=2 1 3 seriality
K=2(! ) (2 ' 2) distribution

All instancesof theseaxioms are valid. For the axiom t autology this follows
from the fact that the connectives? ;! are interpreted in the sameway asin
propositional logic. For the axiom box-t autology , one can remark that the
de nition of 2 usesthe semarnics of propositional logic. For the axiom seri-
ality , it follows from the fact that eady gameform must have a non-empty set
of outcomestates. The distribution ~ axiom is the sameasthe standard modal
logic distribution axiom. Its validity can be shown in the sameway. This works
becausethe operator 2 is alsode ned as a universal operator: 2 holdsif is
true in all readable states. For efl , the reacdable states are all the outcome
states.

Theseaxiomsare completefor the fragmert of efl in which the construction
[] is not used. To give a proof sketch: considerthe completenessproof of
standard modal logic [12]. One can adapt the completenessproof so that no
nesting of boxesoccurs. In that case,the proof exactly matchesthe languageof
efl without [] . The remaining axiomsfor efl are listed below.

C=(] ~[ n]C ' DY 11 combina tion
M=[] $:[ n]: determined
N=[:] $ 2 nobod y

4.5.1. Lemma. All instances of combination , determined and nobody are
valid
Pr oof. Let F be any interpreted gameform.

Takeaninstance([] ~[]( ' )! [ [ ] ofcombination sothat
\ = ;. Takeany model F sothat FF [] andF E []J( ! ). It
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follows that there are two strategies and  sud that Up(F; ) E 2

andUp(F; )E 2( ! ). Thetwostrategies and aretwo functions
with separatedomains. One canform a combined strategy [ = [ .
If an outcomestate is pruned by either or |, then it is alsopruned by
the combined strategy. Therefore,Up(F; [ )F 2 ~2( ! )andthus

FFRLIT]

Takeaninstance[] $ :[ n]: ofdetermined . Onecande ne atwo
player constarnt-sum extensive gamebasedon the gametree of F between
and = n sothat winsin anoutcomesifsE and winsifspE :

In sud an extensive gameof perfect information, the two coalitions must
have a winning strategy. Therefore,either F £ [] orF F []:

Take aninstance[;] $ 2 ofnobody. First the left to right implication
is proven, then we do right to left. Supposethat F = [;] This meansthere
is a strategy for the empty coalition . sothat Up(F; .) F 2 . The empty
coalition hasonly one strategy (the function with the empty domain), and
this strategy . doesnothing: Up(F; .) = F. Thus,F F 2 . For the right
to left implication, assumethat F F 2 . It follows from Up(F; .) = F
that F = [;] .

One property that one can derive is specificity and can be derived using

combination andnobody. Another property is monotonicity , which follows
from box-t autology , combination and nobody.

(1 ~2( ! )N! [l specificity
[1 ' [ [ 2 monotonicity

4.5.2. Definition.  The proof system Sg| consistsof the seven axiomst au-
tology , box-t autology , seriality , distribution , combination , deter-
mined, nobod y given above and the reasoningrule Modus Ponens.

As an example of how this proof systemcan be used, assumethat we have

threeagenis ( = fA; B; Cg) andthree propositionsP = fa;b;cg. Wearelooking
for a protocol that hasthe following properties.

12(a_b_0
2 . [AB]2c
3 :[AC]2b
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One can usethe proof systemSg, to show that from thesethree properties, it
follows that : [A]2: a. The following derivation provesthis property.

4 [Cl2:c 2; determined
5[B]2: b 3; determined
6 [BCJ2(: b": ¢ 4; 5; combination
72((:bM:c)! @) 1;box-t autology ;K
8 [BC]2a 6; 7; specificity
9 :[A]2: a 8; determined

4.5.3. Theorem. The proof systemSgg, for efl is sound.

Proof. In lemma4.5.1it is shovn that all axioms are sound. On page 12
it is remarked that the rule modus ponenspresenes validity. From these facts
it follows that only valid formulas can be derived, which meansthat the proof
systemis sound.

The proof systemde ned here is also complete, and this is proven belov in a
constructive sense. This proof di ers from the standard completenesgproof for
modal logic, that is sketched on page17. The proof is a bit more complicated
becausehe semaittics of this logic do not refer to single stepsin the gametrees,
but on the possibleoutcomesthat agens can e ect.

4.5.4. Theorem. The proof systemSgg is completefor efl

Pr oof. We have to show that for eat consistem formula 2 efl thereis a
model F sudh that F = . Let a consistet formula 2 efl begiven. Let S be
a maximally consiste setsothat 2 S and let S°cortain all basicand speci ¢
formulasof S. Below a model F is constructedsothat 8 2 S°: F F . Lemma
4.4.5canthen be usedto concludethat F

The model F we are about to construct is de ned recursiwely using a function
f (C;A;r). The outcome of this function dependson a set of basic and simple
formulas C, on a set of active ageris A and on a represemation function
r: ! 2. The setr(X) corains the agens that are represeted by agen
X. The model F is de ned asF = f (S®Ag;ro). Initially, all agents are active
agens: Ap = , and ead ager initially only represets itself: ro(X) = fXg.
The function r can also be applied to coalitions of agens. This is de ned by
r() =[xz r(X). The pair A;r canbe usedto calculatea new set of simpleand
basicformulas S(C; A;r) from a given subsetC.

S(C;A;ry=f2 j2 2Cg[ f[] j Ar()] 2Cg
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The gameform f (C; A;r) is de ned in the following way. If A cortains exactly
oneactive agent X, then we de ne amodel f (C;A;r) = ( ;H;turn;P; ) where
H=1f,; J[X] 2 C;[X] isspecicg. Dene tun() = X. If 2 ; 2 C,
then becauseof box-t autology 2( ! ( * ;)) 2 C. Usingthe specificity
property, we conclude[X]( ~ ;) 2 C. Repea\;ing this reasoningfor any simple
formula ; 2 C, we obtain a formula [X]( VN i) 2 C. Let () bea setof
atomic propositionssud that ( ) ( » i) One can now show that any
formula 2 C is satis ed by this model.

If A hastwoor moremenbers,denef (C;A;r) = ( ;H;turn;P; ) asfollows.
Take any agert X 2 A. Dene turn( ) = X, sothat this becomesthe acting
agen of the currert situation. The set of options A(H; ) consistsof two parts:
A(H; )= E[ J. Agent X canthus choosefrom two di erent typesof actions:
formulas from set E or “joining' an agert from setJ.

i

The set E consistsof all specic choicesof agert X: E = f ¢ j[X] ¢ 2
C is specicg. These choiceslead to a subgamein which the formula .
holds in all outcomes. This subgameis de ned asf (C%A;r) where

C°=f2 2 5[] j2 ;[ [fXd( ~ &2Cg

This de nition ensureghat . holdsin the submadel. Axiom combina tion
ensuresthat no inconsisten formulas appearin C.

The set J corntains all other active agenis: J = fY 2 A jY 6 Xag.
These choices Y lead to the subgamesf (CY;A nfXg;r% whereCY =
S(C;A nfXg;r9, and r%is sud that r{Y) = fY;XgandrYzZ) = fZg
for Z 6 Y. Intuitiv ely, choosingY meansthat agent Y will now make all
decisionsfor agen X.

We must show that f (C;A;r) satis es all formulas in C. This is done using
induction. The induction hypothesisis that submadelsof the current model have
this property. The basecaseis formed by modelswith oneactive agen, and this
has beendone with above.

First, considerbasicformulas,oftheform2 2 C. Theseformulasarepresern
in ead setCPthat is usedto constructa subgame.Usingthe induction hypothesis
we know that all outcomesof all choicessatisfy , andthusf (C;A;r) F 2

Consider[] 2 C with X 2 . This formula is alsopresen in any setC°and
by induction hypothesiswe know that there is thus a strategy in eat subgame
for to ensure . We can combine thesesubgamestrategiesinto a strategy
for the whole gamethat guarartees , andthusf (C;A;r) E []

Secondly consider[] 2 Cwith X 2 . If = fXgthen thereis somespe-
cic ¢2Esothat2( ¢! )2 C. This choiceleadsto asubmadel f (C%A;r).
From .2 C%and the induction hypothesisit followsthat there is a strategy x
for this submadel that guarartees . Agert X cannow usea strategy 2 sothat
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Figure 4.2: A simple gameform F;

x () = f g and within the subgamef (C%A;r), strategy % makesthe same
choicesas x. This strategy guarartees and thusf (C;A;r) g [] . If there
is more than one agent in , then X can join any of the other ageris Y 2
By induction the coalition nf X g will have a strategy for guararteeing in the
subgamef (C% A nfX g;r9, andthusf (C;A;r) F []

The model F = f (S% Ag;ro) thus satis es all formulas 2 S° From lemma
4.4.5it followsthat F satis es all formulasin S and thusF [

Becausethis proof is constructive, it provides us with a standard method for
constructing gametrees. Thesetrees have a speci ¢ format.

4.5.5. Cor ollar y. For any protocol F there is an equivalent protocol F in
which each agentonly movesonce, and all agentsmovein a given order.

In gure 4.2an exampleinterpreted gameform is shavn. In this gameform agen
A rst decideswhether a should hold or not. Then agert B can decidewhether
proposition b should hold or not. A possiblestory could be that a indicates that
A dressedn bladk, and b indicatesthat B dressedn bladk. The next table lists
propertiesthat are true for the exampleF;.

F. F [Ala” [A]: a
FiF [B]b" [B]: b
FiF [Bl(@a$ b~ [B](ar b

One can concludethat agen B, becauset goessecond,can cortrol more. This
corollary can be illustrated for the example protocol of gure 4.2. According to
the proof there should be an equivalert protocol in which agert B moves rst.
This is indeedthe case,and the protocol is illustrated in gure 4.3. One can see
that B in this casecan choosefrom four options.

In the construction of the proof, ead agen hasa choice whether it wants to
useoneof its abilities (setE) or whetherit wants to join aspeci ¢ agen (setJ). In
order to illustrate thesetwo possibilities, considerthe property 3 = [A]p” [B]p"
[AB]: p. Thereis only oneatomic proposition in this example,soP = fpg. There
are only four distinct formulas that one can express:p;: p;?;p! p. Suppose
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Figure 4.3: Alternativ e F, Figure 4.4: Gameform F4®8

that S is a maximally consistem set cortaining 3. The ability [A]p is more
speci ¢ than [A](p! p). Thus, agen A hasonespecic ability p. In the game
form F4B that is constructedin the proof, agert A hastwo options. It can use
this ability, or it can join agent B. The gameform is depictedin gure 4.4. In
this protocol agert A and B have exactly the sameamourt of in uence on the
outcome,thus one could call this protocol fair.

4.6 Linear Representations

The de nition of a gameform doesnot allow oneto compactly specify the inter-
preted gameform F, of gure 4.1 (page58). A more compact format, similar
to the compact formats usedin LTL and CTL model cheding, is useful. For
this purposewe descrile herea newway of represeting thosegameforms, called
linear representation The idea behind this description method is that a game
tree can be summarizedby describinga typical path. Considerfor instancethe
solution to the independert decisionproblem givenin gure 4.2. This protocol
canbeinformally descriked by saying that rst agert A chooseswhethera should
hold, and then agert B decideswhether b should hold. Sthematically one would
like to represehn this protocol in the following way

Ri=AI B1I" :::

In this section, sud a notation is de ned, and usedin two ways. First of the
notation is usedfor giving more examplesof protocols. Then, it is usedto shawv
how the model cheking complexity of efl dependson the way protocols are
speci ed.

In this section we needto make a distinction between a description R of
a protocol, and the protocol itself. Supposethat R is a linear represetation
of a protocol, sud as the string R; given above. We use pRq to indicate the
protocol denotedby R. We hope that R; is smallerthan the protocol pR;q that
it represets, and this hope can be expressedas kR1k < kpR1gk.

Examples

In this subsubsectionve presen a few examplelinear represetations
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To start with a simple example, considerthe trivial protocol F where agen
A canonly choseoneaction, after which an outcomein which p holdsis reated.
Sud a protocol F could be descrited by the linear represetation R = A! fpg.
The setf pg at the end of the represetation is the set of propositionsthat is true
at the end of the protocol. The agent A in front of the arrow indicatesthat agen
A isthe agen that canchose.In this protocol agert A canonly choseoneaction.
It hasno real choice, which makesthe protocol trivial.

In order to descrike more complicatedprotocols,two additional constructions
canbeused. The rst oneis parallel composition. Supposethat we havetwo linear
represemations R; = A! fpgand R, = A! fqg. In eadh of theseprotocols
agent A canonly choseoneaction, but the two protocolshave di erent outcomes.
We de ne Rj3 to be the parallel composition of the two linear represetations:
R; = lej R,, or:

Rs= (Al fpg)j(A! fag)

In the protocol descriked by R3, agent A can choosetwo actions, and end up in
either the outcome of pR1q or the outcome of pR»q. Thus parallel composition
of protocols givesthe starting ageris more choice.

The other construction is the useof variables. Take a protocol in which agen
A can choosewhich of the tree propositionsf p;q; rgis true. The agert is allowed
to choseone of these propositions. This protocol can be descriked by the linear
represemation R = A vr P fvg. The symbol v is usedhereasa variable that
cantakesthe valuesp;gor r. The protocol pF g thus hasthree possibleoutcomes,
in which either p;q or r holds.

The follow grammarde nes how onecanform expressionshat denoteboolean
values,sets, lists and objects. Assumethat a setof propositionsP = fpg;ps;:::0

and a setof ageris = fXg; X4;:::g are given.
Bool ::= Objct = Objct j Bool _ Bool
Set::= ; jfListgj Set[ Setj Set\ Setj SetnSetj fList j' Boolg
List ::= Obijct j Objct; List
Objct ::= Propj Setj Ag
Ag = Xo ) Xqj ii:

Prop:i=pojp1j :::

All these operators are interpreted in the usual way, except perhapsfor fxj g.
The x in this exampleis a concreteobject, not a variable. Thus, if p q holds
then pfxj ggq= fpxqg, otherwisepfxj ggq= ;.

The denotation pE g of an Objct expressionE canbe computedin polynomial
time, sincee cien t algorithms for all operationsexist. In fact the operationsused
are polynomial shrinking (seepage87), which meansthat the denotation pE q of
an expressionE is alsonot biggerthan E: kpEgk KEKk
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The next table givessomeexamplesof Objct expressionsand their denotations

pfp;araq =fp;g;rg
pfAg[ fBgq =fA;Bg
pfpjA = Bgq =;

Substitution of variablesis neededin order to de ne linear represetations.
Assumethat a set of variablesV is given,andthat v 2 V. The notation s|v n x]
is used to obtained by replacing all occurrencesof v 2 V in s by x. Thus,
f3;vglvnl]= f1;3g.

A linear represetation can now be de ned recursiwely, in three steps. First
of all an Objct expressionthat denotesa set of propositions, like s = fx; yg, is
a linear represemation of a protocol. Sud a set represets a protocol with no
choicesand only one outcome. It senes as a basecase. Since computing the
denotation of an expressionis a tractable problem, one can always compute psq
in polynomial time O(ksk") for somen 2 N.

Secondly one can use an expressionof the form X v2p R(v). HereX is an
agen, v 2 V is avariable, pAq is a set of objects. This expressiondenotesa game
form sud that agernt X can chooseany action a from the set pAq, after which
the protocol proceedswith R(a). An exampleof this construct is the following

voting protocol, in which A decideswhether x;y or z holds: A P2rxyige f pg.
Finally, one canjoin the options of two di erent protocol X azf Ri, X P2p
R, usingthe construct (X 2 R1)jj(X 2P R>). In the resulting protocol, agen
X can chooseeither an action from pAq or an action from pBqg. The following
description of the protocol F4® displayed in gure 4.4 usesthis construct.
R® = (A P11 fpgiia P B PP g
Note that onecan represen the sameprotocol in di erent ways. At the start

of this section as example is given where an agert A can choose whether p;q
or r holds. This protocol F was descrilked using variablesas F = pRq where

R= A VP99 fvg. One can alsouseparallel composition to descrite the same
protocol. Thus F = pR%Y where

R%= (A! fpg)ii(A! fagi(A! frg)

Note that R is a shorter descriptionthan R% The more concisedescription R
is often easierto read, and thus preferred over R®

In the next two de nitions we formally de ne what we can allow for a repre-
seration, and how theserepresetations are translated into gameforms. Then
we give more examplegameforms for the voting problem, and give a complexity
result.
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4.6.1. Definition.  Assumea set of variablesV is de ned and that the nite
setsP; aregiven. The setof all linear represetations is de ned recursiely as
follows.

If R is a Objct-expressionsud that R denotesa set of atomic propositions
pRq P, then R is a linear represetation

The constructX “2° Risalinear represemation if the following conditions

aremet. Wedemandthat X 2 , that v2 V isavariable,that Sisalinear
represemation sud that pSq is a set of objects, and that for all s; 2 pSq
we have that R[v ns;] is a linear represetation.

If Ro= X “*T RYandR; = X “*T R? arelinear represetations and
PSog\ pSiq=; then RyjjR; is a linear represetation.

Using this de nition we cannow |l in the details in the linear represetation of
the independen decisionproblem given above.

R = A sy 2ff ag;;g B Sp 2ff bg;;lg 31[ s

Thus, agert A chooseswhether atomic proposition a appearsin s;, agen B
chooseswhether b appearsin s,, and the nal outcome of the protocol is the
union of their respective decisions. If one had 100 agens, then this method of
speci cation would be much more e cient than a descriptionin tuples and sets.

The next de nition de nesafunction f F that translateslinear represemations
into interpreted gameforms. This function is de ned in the following way.

4.6.2. Definition.  Assumethe nite setsP; aregiven,Dene fF(R) = fF(;R),
wheref [ is the function de ned below. Let h be a sequencef actions.

If pRqg P thenfl(h;R)=( ;fhg;;;P; ) where (h)= pRaq.

AssumeR = X *2° ROisalinear represemation. Forany s; 2 pSgcompute
( sHitum P ) & fF(hs;;RYs n sil)lg The result ff(h; R)gis de ned
asff(;R) = ( ; ,Hi[ fhg;turn;P; i) whereturn = (;turn;) [

f(h;X)g.

fT(h;RojjR1) = ( ;Ho[ Hyjturng[ turny; P; o[ 1) where( ;Hi;turni;P; ;) =

ff(hRi)
The voting protocol Fy hasthe following linear represetation.
X2fB;Gg p2f x;y;zg
RA = A 99 x 19 tpg

It says exactly what the protocol is : A choosesbetweenB and C, which in turn
chooseshis favorite alternative.
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4.6.3. Fact. Forany linear represemation R, f F (R) isaninterpreted gameform.

Pr oof. An induction on R provesthis fact.

One of the usesof linear represetations is to describe example protocols
succinctly. Another useis to shov how the complexity of model cheking depends
on the choice of input format. The linear represeration of an interpreted game
form can be more compact than a naive represetation of a gameform. If one
speci es the input using linear represetation, the efl model chedking problem
has a high computational complexity.

4.6.4. Theorem. Deciding whetheran efl formula holdson a linearly repre-
sentel gameform F is PSPACE-complete.

Pr oof. In the proof of theorem4.3.3and lemma4.3.2it is explainedhow model
cheking efl dependson the ability to do a post-order tree walk. If we can do
sudh a post-order tree walk in polynomial space,then we can model ched efl
formulas in polynomial space. An algorithm for sud a walk typically usesa
stack. On this stadk a description of the current node is stored, after which the
description of a successois computed, which is alsostored on the stad, etcetera,
until a nal node is reated. We therefore shaw the following facts.

For a linear description R of a terminal node and a propositional logic
formula , onecan determinewhether pRg F in polynomial time. This
follows immediately from the assumptionthat one can compute the set
of atomic propositions pRq in polynomial time. A naive polynomial time
algorithm is to compute pRq and then determinewhetherpRqfF . Hence
this takesat most b(kRk + k k) for somepolynomial bound R

Ead linear description of a successoof R is smallerthat R itself. This is
easyto see. In the caseof R = R4jjR,, both R; and R, are smaller than

R. In the caseof R = X “?Pi% Rqv), it is alsoclearthat KR{v)k KRk,
Thus, eat elemen on the stadk needsas most memory kRk

The maximal number of descriptionson the stad is alsoboundedby kRK,
becausdhe maximal depth of the model denotedby R is at mostthe number
of arrows that occurin R.

From the last two facts one can compute that one needsat most kRk kRk
memory for the stack. Therefore, the total amourt of memory that one needs
to determine whether holds on pRq for a linear represemation R is lessthan
kRK? + b(kRk + k k), and thus is polynomial.

It remainsto be proven that the problemis PSPACE-hard. This canbe done
by reducingthe QBF problem descrited on page31to the efl decisionproblem.
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Assumethat a QBF formula 8x,9x,8x3:::8%, is given. We have to con-
struct an equivalert efl decisionproblem, consistingof a represetation R and a
formula © Let =fX;YgandP = fx;j0 i ng. The atomic proposition X
is a dummy atomic proposition, sinceit doesnot appearin . The represetation
of the interpreted gameform is the following:

vy 2f xo;x}g vy 2f xo;xig . Vn 12f Xo:Xn *g v 2f xo;xr]g

R=X Y Y X

Take °= [Y] . The agen Y thus makesall existertial choices(it tries to
pick valuesfor the x; that make true), and agert X is usedfor the universal
choices. If 8x19x,8X3:::9%, 18X, ,thenfF(R) F %and vice versa.

It hasto be remenberedthat for someprotocols without a lot of structure,
the linear represemation format is not moree cient. For very irregular protocols
all linear represetations can be larger that the gameform itself. Newertheless,
onecan give a linear represetation of any protocol.

4.6.5. Theorem. For any interpreted gameform F = ( ;H;turn;P; ) where
H consists of sequene@s of propositions, there is a linear representationR such
that fF(R) = F

Pr oof. The setH of any gameform F consistsof sequence®f actions. It
does not matter what kind of objects these actions are, as long as they can be
distinguished. In the examplesthroughout this dissertation, we have usednatural
numbers, propositions and agens as actions. In this proof we restrict the action
to be propositions becausepropositions are part of the Objct notation.

For any subsetS P of propositions,onecan nd an expressiorR sud that
pRq = S, by listing all elemens of S. For instanceif S = fp;qg then one can
simply take R = fp;qg.

For any interpreted gameform F = ( ;f g;turn;P; ) that has only one
outcome, one can take an expressionR sothat pRq= (). This expressionR
consistsof a list of atomic propositionsthat hold in the singleend state of the
interpreted gameform F. This simple casecan be used as a basecasefor an
inductive proof.

Considernow an interpreted gameform F = ( ;H;turn;P; ) that hasmore
than one outcome, and assumethat for all smaller gameforms F ° one can con-

the set of possible rst actions, and let X = turn( ) be the agert to move rst.
De ne, for ead action a;, the interpreted subgameform F; = subgF;a;). By
induction hypothesis, there is a represemation R; sud that fF(R;) = F;. Let
v 2 V be somevariable. One can now create a game form R by using the jj

construction.

v2f a]lg v2f ar]g

R=(X Ra)jj - :jj(X Rn)
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Figure 4.5: A secondvoting protocol Fy

For this linear represemation R, it holdsthat f F(R) = F. Therefore, by induc-
tion, onecan nd alinear represetation R for any interpreted gameform F that
usespropositions for actions.

The newrepresetation format canbe usedto de ne more candidateprotocols
for the example problem de ned in the beginning of this chapter. These new
protocols all satisfy the requiremens of the example, while being very di erent
from protocol Fy. Below we de ne two more protocols, called Fy, = f F(R58€)
and Fy3 = fF(R%). Part of the gametree of protocol Fy, is depictedin gure
4.5.

RABC = p VA9 (g PR o @Mahe ¢ i 1® fag)

In Fy,, A and B choosefrom the three possibleoutcomes.If they choosethe
sameoutcome,then that is the nal outcome. Otherwise C can choosefrom the
two outcomesthey selected.

Ré - A a2f x;Y:?g B b2f x;y;ig C 2f X;y;.?g
fxjf a;b;og = fx;y;zgg[ fajb= ag[ fga= cg[ fgb= cg

In our third exampleFy 3, the agens A, B, and C vote sequetially for one
of the three outcomes;the outcomethat getsthe most votesis elected. If A, B
and C disagreethen a pre-determinedoutcomex is elected.

It is not hard to verify that thesethree protocols satisfy exactly the same
efl formulas. One can thus concludethat thesethree protocolsare equally fair,
and that thereis no reasonto prefer oneof thoseprotocolsabove the others. This
conclusionseemscourter-intuitiv e, becausehe protocol R seemsiasedtowards
outcomex. If the agerts cannot cometo an agreemety then outcomex results.
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Perhaps efl is the right tool and the bias mertioned for R} is an irrelevant
detail. It is alsopossiblethat the logic efl is not sensitive enough. Both of these
viewpoints are valid, depending on the application one hasin mind.

Making more use of the new notation, one can make even more complicated
protocols. Similar to R%, one can de ne protocols R} and R3, in which y and
respectively z arethe default outcomes.Onecano er oneof the ageris the choice
of selectingthe default outcome.

Rﬁ - A d2f x;y;?g Rg

The new protocol f F (R%) again satis es the sameefl formulas. If one how-
ewver thinks that R} is biasedtowardsx, then onemust concludethat R7 is skewed
towards A. The word skewis usedhereto expressthat a certain agert is treated
di erently in a signi cant way from other agens, whereasbias meansthat an
outcomeis treated in a di erent way than the other outcomes. To give another
example of how one can make more subtle protocols, considerthe casewhere
agent A chooseswhether B or C selectsthe default outcome.

The result is that there are indeedmany di erent protocols for the example
problem. Many of thesecan be elegarly descrited using a linear represetation,
even whenit would have beenvery hard to draw a picture of the gametree. For
efl howewer all theseprotocolsare equivalent.

4.7 Conclusion

The logic efl is a high level logic for reasoningabout multi-agent protocols. In
this chapter, the problem of nding a good voting protocol has beenusedas a
motivating examplefor the construction of sud logic. Dierent protocols have
beenpreseied and modeled as gameforms. Using efl we have shown that the
candidate protocols indeed satisfy the requiremens of the problem. Using an
e ectivit y logic sud asefl onecanthusreasonabout the powers of ageris and
coalitions in protocols.

In order to e ciently discussmultiple protocols, one needsa good way of
represeting di erent protocols. The naive way, asa tuple of setsand functions,
is rather cumbersome. Another option is to specify protocols by meansof a
picture of a gametree. However this is alsoonly practical for small protocols. In
this chapter, a newinput format is de ned, calledthe linear represetation. The
idea behind this format is that one can specify a protocol by describinga typical
execution of the protocol. For the examplevoting problem, one can elegarnly
descrilke many protocol variants using the linear represetation.
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One big question is whether veri cation of multi-agent protocolsin efl is
tractable. Thus, onewould like to know the model chedking complexity of efl .
The answer to this question dependson how one wants to specify the input. If
one allows protocolsto be speci ed in a linear represetation, then this problem
is very intractable: It is PSPACE complete. This result doesnot only say some-
thing about efl , but appliesto solving gamesin general. With a su cien tly
advancednotation, determining the winner of a gameis an intractable problem.
For instance winner determination in the gamesof Go and Geograply is also
PSPACE-complete[81, p. 463].

On the other hand, the veri cation problem becomedractable if oneusesthe
naive represemation for gameforms. The interpretation of the logicefl is de ned
in terms of winning a perfectinformation game,and this problemis not too hard.
Veri cation can be donein polynomial time. This supports the conclusionthat
efl is indeedsimple. One can concludethat veri cation of propertiesin efl is
a feasible computational problem. Interesting future work is to nd out whether
techniquesthat have beenusedto speedup model cheders for ATEL and CTL
can be adaptedfor efl .

In many applications one doesnot already have a protocol. One only hasa
speci cation and onewould like to nd a protocol that meetsthis speci cation.
This correspnds to the satis ability problem for efl : one hasan efl formula

, and would like to know whether there exists an interpreted gameform F that
satis es this formula. This problem is also sohable for efl : a proof system
SerL hasbeenpresened, sothat oneprove formally which formulas cannotbe
satis ed. This proof systemis thus complete. If no sud proof exists, a method
has been sketched that allows one to construct a model. Automated protocol
designon the basisof efl speci cations thus seemspossible. It is interesting to
note that one hasa lot of freedomin constructing these models: one can order
the agerts in any way, and construct a model in which the ageris make decisions
in this order. This property distinguishesthis logic from modal logicsthat work
on the level of single actions.

One open guestion, concerningthe example protocol, is how one can distin-
guish betweenall candidate protocolsthat have beenpreseined in this chapter.
All protocols presened are equivalert under efl . Howewer, it seemsthat these
protocolsshould behave di erently of oneconsidersmore complicatedproperties.
In the next chapter, extendedlogics that work under di erent assumptionsare
employed to solwe this problem.



Chapter 5

Politeness and Side E ects

5.1 Intro duction

Like the previous chapter, this chapter is concernedwith reasoningabout game
forms, which are seenas models for multi-agent protocols. In this chapter we
extend the logic of the previous chapter. It is assumedthat ead ager that
participates in a protocol has someprivate preferencesabout the outcomeof the
protocol. The word “preferencesis usedherein a very loosesenseasa synorym
for "goal' or "desire'. It is alsoassumedhat thesepreferencesare not determined
by the protocol. Agents canwant whatever they want to want. In voting protocols
it is clearthat the agent canhave its own, private, preferencesver outcomes.In
an auction this is lessclear: auctions are often analysedunder the assumption
that ead agent wants to win at the lowest cost. We assumea more general
setting, where ageris can alsoplay to lose,or to maximize the amourt they pay.

One of the goals of this chapter is to investigate veri cation of more com-
plicated properties than only the ability to enforcea certain outcome. Three
complicationsthat are being discussedare the following.

Groups of agents can have coalition preferenes. One can expressin the
logical languageghat A and B togetherwant . This meansthat they try
to reat a certain goal together and are able to cooperate.

Agens may beinterestedin nestel abilities: anagern canhavethe ability to
enableanother agen to adchieve something,or to make sure another agerts
is not able to do something. The wish to give other people the chance
to make a decision,is often assaiated with politeness we usethe phrase
‘reasoningabout politeness'as an informal name for these nested ability
goals.

We are not only interestedin knowing what ageris can aciiewve, but alsoin
what way they adiiewve it. Thus, we would like to know whether an agen

79
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hasto spend all his moneyto win an auction, or whether an agen should
vote for the candidate it like best. Thus, the side e ects of acting in a
certain way are alsoimportant.

In this chapter, di erent logical languagesare de ned, sothat we can determine
how consideringnesting and side e ects a ects the analysisof protocols. In total
four languagesare de ned. The next table lists the languagesand their features.

logic | nesting | sidee ects
efl

efls
efln
eflns

Chapter Structure

The structure of this chapter is the following. First the logic efls is de ned
in section 5.2, and examplesfor this logic are given in section 5.3. The next
section, section 5.4, cortains a theorem stating that for logics of a certain form,
the model cheking problem is tractable. It is shavn that this theorem can be
applied to efls . Then the questionis posedwhether there are more expressie
or detailed logicsbasedon efl and efls . In section5.5, rst the languageefin
for reasoningabout nestedabilities is introduced, and we determine the model
chedking complexity of this logic. Then a more expressie languageefins is given
for reasoningabout both politenessand sidee ects. The last section,section5.6
is the conclusion.

5.2 Dening EFLS

5.2.1. Definition.  Supposethat and P are nite sets(of agens and atomic
propositions respectively). The languageefls consistsof formulas generated
by the following rules. In theserulesp 2 P and

m=pj ! j?
[ 12§ U j7?

This languagecan be seenas an extensionof efl , in the following way. An efl
formula[] s equivalert to the efls formula[ : ]2

A formula[ : ] shouldbe readassaing Assumethat usesa strategy
that is supporting . Then follows'. It is assumedthat all agens are aware of
strategiesthat areused. The strategythat anagen usescanbe saidto be "visible'
to other agerts. If onewants to expressthis ideain the most extremeform, one
could say that we assumethat strategiesare visible in the sameway as people
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can seewhat clothesother peopleare wearing on a certain day. In many real life

settings, nding out what strategiesare usedin a strategic setting will probably
take a bit moree ort, but is not impossible. This visibility assumptionis inspired
by the assumptionof completeinformation in gametheory, andis compatiblewith

the ideaof a Nashequilibrium. Indeedif one,asa gametheorist or asa strategic
consultart, intendsto publish books and papers about good strategies(whether
theseare chessstrategies, marketing strategies, strategiesfor penalty taking, or

strategiesfor generatingsecurerandom numbers) then sud strategiesmust work

even when public. Even if one doesnot wish to publish strategies, people can
often obsene what action you take and deduceyour strategy from this. Thusit is

known what playing styles professionalchessplayers prefer and how professional
football players take penalties. Many professionalkeepers, including Hans van
Breukelen, for instancerelied on Jan Reker's booklet for this information [117.

The visibility assumptionis also inspired by insights from security and cryp-
tography. One canseethe de nition of speci cation of a cryptographic algorithm
asa protocol, and the implemenation details asa strategy within suc protocol.
For instancethe protocol for RSA key generationrequiresoneto choosetwo prime
numbersp and g. An agent hasmany ways to do this, and commonstrategiesin-
clude usingthe current time and somekeyboard input for generatingtheseprime
numbers (SeeSdneier [89] for a dicussionof RSA and implemertation details).
The implemertation details are often public information, sincefor many security
programsone can obtain the sourcecode.

The e ectivenessf an implemertation shouldnot lie in the fact that its inner
details are secret(Thus, one should avoid trying to obtaining security through
obscurity [89]). In order to prove that a strategy or algorithm is "good' or “safe’,
one should assumethat it is known to all opponerts that the strategy is used,
and then considerhow e ective the strategy is. For instanceif Microsoft decides
to usea certain encryption medanismin its web sener software, then anybody
with harmful intentions can buy and study the software, and nd out what mea-
sureshave beentaken against attacks. Typically in security one wants to prove
that opponerts remain ignorart of private data. If they are ignorarnt even when
they know the strategy used,they are certainly ignorant when they do not know
the strategy used. This assumption can also be made in the caseof imperfect
information games,and indeeda similar argumert is given on page132.

The ideathat strategiesare "visible' makesthe act of decidingto usea strategy
similar to publicly announcingthat you usethe strategy. In complexstatemerts,
this ideaof an announcemeth can be usedinformally whenreadingformulas. The
following examplesillustrate how formulas of this logic can be read.

[A:q2p
This example formula expresseghat if A is trying to adiieve g, then as a side
e ect p will hold for every possibleoutcome.

[A:qB :r]2r
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This exampleformula can be read as expressingthat, assumingafter A has de-
cidedthat it wants g, then B can selecta strategy sud that r becomedrue. The
order of operatorsin the formula indicatesthat B knows the strategy of A, and
can usethis in its selectionof a strategy for r.

The next formula seemdo cortain cortradictory assumptions.

[A:qA::d2(C: 9

This formulas expresseghat if A wants g, and then it wants : g, then : g is
guararteed. In order for this formula to hold on a model F, it must be the
casethat A cannot make g true, otherwiseit would chooseto do soin the rst
assumption.

For the interpretation of this logic the following de nitions are used.

5.2.2. Definition. Let F = ( ;H;turn;P; ) beaninterpreted gameform and
h 2 H. The reducedmodel r(H;h) is dened asr(H;h) = ( ;H%turn®%P; 9
whereH® = fhh h°2 Hg and turn® © are restrictions of the correspnding
elemers of F to HC

The next de nition rede nesthe update function Up sothat it works on nonde-
terministic strategies. The intuition is that in the updated model Up(F; ), the
agerts in  only take actionsthat are recommendedoy

5.2.3. Definition. Let F = ( ;H;turn;P; ) beaninterpreted gameform and

a strategy for . Dene Up(F; ) = ( ;H%tun®%P; 9 where HC is the
greatestsubsetof H sud that ha 2 H%mpliesh 2 H%andturn(h) 2 ~ha2 H°
impliesa 2  (h). The functionsturn® ©are idertical to turn; but restricted
to HO

The next de nition de nes a strategy €( ) that is intended to be the least
restrictive, or most general,strategy that canuseto achieve

5.2.4. Definition. Let F = ( ;H;turn;P; ) be an interpreted game form,
and 2 L,. A history j isa -eective position (for ) i thereis a

strategy  sud that for ead terminal history h in Up(r(H;j); ) it isthe case

that (h) . The mostgeneral -e ective strategy €( ) is now de ned by

¢ )h) = fajhaisa -e ective position for g if this setis non-empty
- AH otherwise

The de nition above spells out what we considera rational strategy ©( ) for a
coalition that wants to achieve . The strategy is de ned sud that it selects
actions a that lead to winning positions. If that is not possible,it selectsall

actions. The idea s that coalition tries to guarartee in all positions where
it can guarartee . This is similar to the notion of a subgame-grfect strategy.

In the de nition below we usethis strategy for interpreting the logic. Let F =

( ;H;turn;P; ) be an interpreted gameform. For any formula 2 efls the
relation F = is de ned asfollows.
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Figure 5.1: Alice and Bob eat cake

FF? never

FF ! I notFFE orFF

FE?2 i 8h22zZMH): (h)F where( ;H;turn;P; )=F
FRI -1 1 Up(F; °()F

The interpretation of theseformulas is similar to that of previousupdate logics,
sudh as dynamic epistemiclogic, discussedn section3.4.40n page54.

In efls , formulas of the form [ : ] can be seenas updates. In order to
determinewhetherF F [ : ] , anewmodel F°= Up(F; ©( )) is computed.
This new model represets the situation after hasdecidedto try to acieve
It holdsthat F = [ : ] if andonlyif F°F . In an update logic, the model
can thus be changedby adding new information to it. How the model changes,
dependson the update function that is used.

5.3 Examples

5.3.1 Alice and Bob eat Cake

Alice and Bob have a cake, and they have agreedto divide it by meansof a \cut-
and-choose" protocol [17]. Alice has cut the cake and unfortunately one of the
piecesis biggerthan the other. Bob can now choosefrom three options: he can
selectthe big piece,selectthe small piece,or he cansay to Alice "No, you choose'.
If helets Alice choose,shecan either choosethe big pieceor the small piece. Both
agerts have common knowledge of this protocol. The interpreted game form
protocol correspnding to this situation is displayed in gure 5.1. Proposition a
meansthat Alice getsthe biggestpiece, b that Bob getsthe biggest piece, and
e meansthat something has happenedthat is enbarrassingto Alice and Bob,
namely that either Alice or Bob has chosenthe biggestpiece. In many cultures
this is consideredimpolite. Using efls one can expressrelevant properties of
this protocol. First we will provide seeral efls formulas (A standsfor Alice, B
standsfor Bob).
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Figure 5.2: Model Up(M; E(: €))

[B :: €]2a If B doesnot want either of them being enbarrassed,he must
take the smallest piece. Our semarics take a pessimistic view, so Bob
cannot take the risk of letting A choose. Figure 5.2 shavs the updated
model Up(M; £ (: €)).

[B :: €[A :: €e]2a This formula is a consequencef the previousexample.
It expresseghat if B doesnot want enmbarrassmeh and that A does not
want enmbarrassmen then A getsthe biggestpiece. This may seemstrange,
sincethere is an outcomein which : e and b are true. Howeer, the order
of assumptionsis important. The formula expresseshat B wishesto guar-
antee the absenceof enbarrassmen, independerly of what A does. Two
possiblereadingsof the formula are that he commits himselfto his strategy
beforehe learnsthat A hasthe samepreferencepor that he thinks that this
goalis soimportant that he doesnot wish to rely on A for this property.

[AB : :€][B : b2b In this example, A and B commonly want to avoid
embarrassmeh, and B alsoprefersh. If this is the case,B canlet A choose
andthen A will take the smallestpiece. Figure 5.3 shavsthe updated model
Up(M;fA;Bg;: e).

[A::€]B ::€[B :hb2bThis formula expresseshat if A doesnot want
embarrassmeh, B doesnot want embarrassmeh, and B prefersthe biggest
piecethen B getsthe biggestpiece. The behaviour of B isin uenced by the
fact that he knows that A prefersto avoid enbarrassmeh In this scenario
A shouldtry to hide the fact that shehasgood manners,becauseit is not
in her advantage if B knows this.

This exampleillustrates that, by using efls , one can expressconsequences
of ordering goalsin a certain way. There are se\eral interesting side e ects men-
tioned in the above formulas.
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Figure 5.4: Gameform F£4

5.3.2 Joint Decision Problem

In gure 4.4, on page70, an interpreted gameform F£® is given in which two
agerts jointly decidewhether p should hold or not. If either agen warnts to have
p it should hold, otherwisep is rejected. In gure 5.4 another protocol is given
that satis es the sameefl formulas. In this protocol, the rolesof B and A are
reversed. It seemsreasonableto assumethat ageris care who hasto give its
opinion rst, and therefore one would like to have a logic that can distinguish
theseprotocols.

The following statemers shaw that efls is sud a logic.

F{® FB::pllA::pl2:p
FEAG B ::p[A::pl2:p

The reasonthe formula does not hold in the secondmodel is that B, because
it moves rst in the protocol F2#, has an informational disadwantage. When it

hasto decideit doesnot know what A will do, and thereforeit is not clear that

letting A choosehelps towards adchieving its goal. The logic efls is thus more
expressie than efl .
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5.4 Mo del Checking EFLS

The semattics of efls is basedupon the ideathat onecaninterpret the construct
[ ] by updating a model M with , and then chedking whether holds in
the updated model. Sud a semarnics, familiar from dynamic epistemic logic
described on page54, can be called an update semairtics. The goal of this section
is to determinethe model cheking complexity of the logic efls . Instead of doing
it directly, we prove a more generaltheorem concerningupdate sematics of a
certain form, and then show that the theoremappliesto efls .

Below we give a generalde nition of an update language. This de nition is
suitable for efls , but not generalenoughfor all other update logics. The term
“update language'in this sectionthus doesnot referto all logical languageshat
usethe ideaof updates. It refersonly to languageso which the given de nitions
can be applied. In this sectionwe have given this term a speci c interpretation,
usingthe following de nition. Let M be a setof modelsfor alogic, N; any setof
additional information objects, N, a setof formulasin another (simpler) language.
We assumethat two functions f and g are given, sudh that f : M N;! M
andg: M N, ! ftrue, falsey. Supposealsothat for any n, 2 N, andM 2 M ,
one can ched in polynomial time whether g(M; n,) holds. One can, basedon
thesefunctions f and g, de ne an update logic L s 4 with the following sematrtics.

5.4.1. Definition.  Supposethat M and N aregiven,and assumehat n; 2 N,
and n; 2 N,. The update languageL ; 4 consistsof formulas generatedby the
following rules.

= [ng] jnaj ! j?

This languageis called an update language,becauseone can interpret this logic
using updates. The function f is usedto compute a new model from the current
model. The next de nitions capturesthe idea of an update semartics. In the
next de nitions, M 2 M isamodel,n; 2 N1, n; 2 Ny and ;2 Ly,

ME? never

ME | i notMpE orMEF
M F n; i g(M;ny)
MEM] T f(Min)fF

The following formulas are valid under this semartics.

FiC!Y ) [n] ! [n]
F:[n] $ [n]

Theseaxiomscan be comparedto the reduction axioms stated for dynamic epis-
temic logic stated on page55. The axiomsare not identical, and thesetwo axioms
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are not su cient to eleminateall update operators, but they do help to simplify
formulas.

This semartics is a generalisationof the semarics of efls . For efls , the
setN; consistsof pairs ( ; ), but in this generalsemarics one can update with
anything. The setN, consists,in the caseof efls , of the formulasN, = f2 j 2
L,g. The questionis whether sud a semarics can be evaluated in polynomial
time. If so,then the model cheking problemis tractable, and thus this logic can
be usedin practice for protocol veri cation.

Whether model cheding is tractable, dependson the function f . This function
should be easily computable, but it should also not create bigger and bigger
models. If afunction f hasthesetwo properties, it is called polynomial shrinking.

5.4.2. Definition. A function f is polynomial shrinkingi kf (a;bk < kak+ kik
and f canbe computedin polynomial time.

If the function f is polynomial shrinking, then the model cheking problem is
indeedtractable.

5.4.3. Theorem. Supmsethat f is a polynomial shrinking function, and that
Ltg is the correspnding update logic. One can cheek for givenM 2 M and
2 Lty whetherM F  within polynomial time.

Pr oof. Supposethat f is a polynomial shrinking function, and that L¢g is
the correspnding update logic. In order to prove the theorem, an algorithm
and constarts a and b must be given, sud that the algorithm needsat most
time (kMk + k k)2 + bto determinewhetherM E , for any inputs M and
The algorithm works recursiwely on the structure of , sofour caseshave to be
examined. The rst two casesare basic cases,n the two other caseswe usean
induction assumption.

If = 7?,then M 6 . Returning this answer takesconstart time, and
onecantake any b larger than this constan time.

Supposethat = n, 2 N,. It hasbeenassumedhat it can be determined
in polynomial time whether g(M;n,). Thus, there are constarts ¢ and d
sud that this takeslesstime than (kMk + k k)¢ + d. Takinga c and
b d, it followsthat this takeslesstime than (kMk+ k k)2 + b,

Supposethat = ;! >. This meansthat k k= 1+ k 1k+ k »k. In
order to determinewhether holds, one hasto computewhetherM
and whetherM F 5. Using the induction hypothesis,and supposingthat
a 2,onecanshowv that this takeslessthan (kMk + k k)2 + btime.

Suppose nally that = [n] ;. In order to determine whetherM E
one hasto computef (M;n) and then chek whetherf (M;n) F ;. Since
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f is polynomial shrinking, there are constarts c;d sud that computing
f (M;n) takes lessthan (kMk + knk)¢ + d. Furthermore, kf (M;n)k

kMk + knk. The induction hypothesis states that determining whether
f(M;n)  , takeslesstime than (kf (M;n)k + k ;k)® + b, which is less
than (kM k+ knk+ k ;k)*+ b. Onecanassumethat a 2 and then derive
that both parts of this computation can be donein time (kM k+ k k)2 + h.

This theoremcanbe usedto show that update logicsthat are basedon an update
function f with the right properties, have a tractable model chedking problem.
In the next theorem it is shavn that the efls update function indeed behaves
well (i.e. that it is polynomial shrinking).

5.4.4. Theorem. The function f : (M;( ; )) 7! Up(M; €( )) is polynomial
shrinking

Pr oof. The function f takes a coalition and a propositional logic
formula 2 L, calculatesthe strategy €( ) and returns the updated model
Up(M; €( )). In orderto shaw that it is polynomial shrinking, we must shov
two things. First of all that it is computablein polynomial time. Secondly that
the output is smaller than the input. The latter is easy: the reduced model
Up(M; €( )) cortains lessstatesthan M, and thus it is smaller. It remainsto
be shavn that the function f can be computedin polynomial time. In order to
shaw this, lemma4.3.2is used. De ne an extensive gameF°= ( % H;turn®U)
where °=f ; n g. Thus, it is a two-player game. The function turn? is
de ned sud that turn9h) = i turn(h) 2 . The function U is de ned sud
that U (h) = 1if (h) F ,andU (h) = 0 otherwise. It is a constart-sum game,
thusU " (h) = 1 U (h). Accordingto lemma4.3.2,the value function v for this
game can be computedin polynomial time. Using the value function, it is not
hard to de ne the strategy €¢( ). If v (h) = 1then €( )(h) = fajv (ha) = 1g.
If v (h) = 0then ¢( )(h) = A(H;h). Onceonehasthis strategy, onecan useit
to computethe modelUp(M; €( )) in linear time: onehasto apply this function
to ewery history exactly once.

A simple model cheking program for efls hasbeenimplemerted. The program
can be found at www.csc.liv.ac.uk/~sieu wert/glp .

The precedingtheorem and its proof suggestthat one can construct many
logicsthat can be model cheded in polynomial time. Should we not seard for
a more expressie logic than efls ? At the sametime one can wonder whether
polynomial shrinking is indeed a necessaryrequiremen for the construction of
a polynomially model chedable logic. In order to investigate theseissues,two
conceiable extensionsof efl and efls are de ned. The rst one,efln , is an
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extensionof efl that allows oneto form nestal abilities. This logic allows one
to expressinteresting properties, but hasa very high model chedking complexity.

The next logic, eflns , is an extensionof efls that is supposedto capture
both nesting and side e ects. This logic seemdntuitiv e, but it is hard to give a
proper semattics for this language.

5.5 Extensions of EFL
5.5.1 Mo del Checking efln

5.5.1. Definition.  Supposethat and P are nite sets(of agens and atomic
propositions). The languageefln consistsof formulas generatedby the fol-
lowing rules. In theserulesp 2 P and

=pj ! j?
=[] j2 ! j?
The usual connectiwes of this logic are interpreted asusual,and [] holds if
there is a strategy ensuring .

FFE? never

FF ! i notFE orFF

FF?2 i 8h2zH): (h)F where( ;H;turn;P; )=F
FFI] i 9 Up(F; )F

The following exampleformulasillustrate how this logic can be usedfor the "Alice
and Bob eat cake' example.

[BI([Al2a” [A]2b)

This exampleexpresseshat B canlet A choosewho getsthe biggestpiece. This
formula doeshold for the example: Bob cantake the action of letting Alice choose.

[B](: [A]l2a” : [A]2b)

The above formula expresseghat Bob can make Alice unable to decide. One
might think that Bob can satisfy this goal by making a decisionhimself, but this
is not the case.Bob should usea nondeterministic strategy, sud asselectingany
action, in order to ensurethat A cannot determine anything.

[B]: [B]2a” : [B]2b)

This last example soundsstrange, becauseit only makes senseif Bob does not
trust himself: It expresseghat Bob can get rid of his own abilities. In a game
theory setting this canbe useful: Bob would liketo commit himselfsothat no-one
will try to put pressureon him. This formula doeshold in our example: what
Bob hasto do is to chooseeither always a, or commit to b. Both these pure
strategiesdo the trick.
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Figure 5.5: A's strategy for letting B decide

Indep endent Decision Problem

In chapter 4, the independent decisionproblem was introduced. In this problem
two agerts A and B can ead decideon a certain issue. An agert A can decide
whether a should hold or not, and agent B can decidewhether b should hold or
not. A rst protocol for this problem has beengiven in gure 4.2 on page 69.
Using efl one can concludethat B has additional powersto decidewhether a
and b should have the sametruth value, and we have constructed an equivalent
protocol in gure 4.3 on page70. In efl theseprotocolsare equivalert, and by
enumerating all formulas of the form [X : ]J[Y : ,] onecan chedk that these
are also equivalert under efls . Sincethese protocols still ook quite di erent,
it would be good to have a logic that can distinguish theseprotocols. It can be
donein the logic efin .

Assumethat A thinks very highly of agent B, and that A would preferit if B
would decideon the value of both a and b. Whether A can transfer its decision
power is expressedy the following formula.

= [Al(B](a™ b~ [B](a™ : b~ [B](: a” b " [B](: a” : b))

In the secondprotocol F, this formula holds, sinceA canusethe strategy that is
depictedin gure 5.5. On the other hand, this goal cannot be satis ed in game
form Fy in gure 4.2.

5.5.2. Theorem. Deciding whetheran efln formula holdson an interpreted
gameform F is PSPACE-complete,evenin the caseof one agent.

Pr oof. The de nition of F F  can be corverted into a naive algorithm. For
interpreting the construction [] one can try all strategiesone after another.
This may take sometime, but does not take much space: applying a strategy
gives a smaller model. Therefore, this can be donewith an amourt of memory
that is proportional to the sizeof the input. Hencethe problemis in PSPACE.
It remainsto be proven that this problem is PSPACE-hard. This can be done
by reducingthe QBF decisionproblem of page31to the efln decisionproblem.
This reduction is explainedin generalin this proof, and then illustrated using an
example. The exampleis discussedn page92 and displayed in gure 5.6.
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The objective of a QBF problem is to decidefor a given formula of the form
8X19%28X3:::9X, 18Xn o Whetherthis formula holds. The formula  is a propo-
sitional logic formula with only propositionsfrom the setfx;j0O< i ng. Assume
that a QBF formula 8x19x,8x3:::9X, 18X, ¢ is given. We have to construct an
equivalent efln decisionproblem.

First we construct an interpreted gameform F = (f X g;H;turn;P; ). De ne
Py to be the old set of atomic propositions: Py = fx;j0 < i ng. The set
P = fd;q jg2 Pyg cortains twice as many atomic proposition: for every old
proposition q there is a positive occurrenceq” and a negative oneq . The set
H isdened asH = f ; pjp2 Pg. Each terminal run thus consistsof one atomic
proposition. Naturally, turn( ) = X and (p) = fpog.

We can thus construct the required formula in the following way. Suppose
that 4 isin conjunctive normal form. De ne a function f in the following way.

f(:p)=3p
f(p)=3p
fCr )=Ff()M()
fC_ )=f()_f()

This function corverts a propositional formula into an efln  formula. It is
usedin order to convert the propositional part 4 into efln . The next de nition

de nesanefln formula ; that expresseshat all propositionsx; with j < i have
beenassigneda value, whereasthe propositions x; with j > i do not have been

given a value yet.
N N

= (Bx)r Bx; N ((3x7)" (3%))
joi j>i

The ideausedhereis that a nondeterministic strategy for the constructedmodel
can be seenas a truth value assignmen for the original QBF problem. If the
strategy includesx;” then x; is true in the correspnding assignmen and if x; is
includedin the strategy then x; is falsein the correspnding assignmet The part
(3 xj") r (3x; ) expresseshat exactly oneof thosetwo actions must be possible,
and thus ensureghat the assignmenis consistetn. The formula ; expresseshat
for j > i, both actions must still be possible: (3 xj+) A (3% ). This is necessary
becausehis choice hasto be madelater.

Next a function g is de ned sothat F F g(8X19X28X3:::9X, 18Xy ¢) |
the QBF statement 8x;9x,8x3:::9X, 18X, ¢ holds. The function g is de ned
recursiwely, sothat agert X canat ead step pick the truth value of exactly one
propositional variable Xx;.

g Q=f(aq if 42 L,

9(9x; ) = X1~ a( )
a(8xi )= [X](i™:a()
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Figure 5.6: The model Fyq

The length of the formula g( ) is quadratically bounded: kg( )k k k. Thus,
for a given QBF problem, we have constructedan equivalert efln  model chedk-
ing problem in polynomial time.

To give an example of how the proof works, considerthe QBF problem
8p9q(p_: g ™ (: p_0d. The model Fpq of the correspnding model cheding
problemis pictured in gure 5.6. As explainedat the end of the proof, the corre-
sponding formula is rather long, soit is broken down in parts, called ,; ; and

0o=(3Bp'r3p)"@Bg"r3q)
1=@Bp'r3p)~@Bgr3q)
(Bp"_3g)"(Bp _37")
IXTC o S IXIC LN )

Onecanverify that Fpq F , andthusthe QBF problem8p9q(p_: o)™ (: p_0)
hasa positive answer. It is interestingto seein this examplethat oneagert alone
makes things hard for itself, by derying itself certain rights. Sincethere is only
one agen, this is arguably not even gametheory but decisiontheory. In this
framework the way single agerts in uence their own abilities is the causeof the
complexity. The extensionto multiple agens comesfor free.

5.5.2 Mo del Checking eflns

One advantage of efls over efl is that one can useefls to reasonabout side
e ects in games. A formula|[ : ] expresseshat striving towards has as
a sidee ect. It canbe usedto expressthat maximizing prot diminishessccial
welfare or that knowing A's actionsis helpful for B. This feature is not presen
in efln . On the other hand efln can be usedto expressgoalsfor polite and
helpful agents. Within efln onecansay that A wants to help B. A logical next
step is thereforeto de ne an ewen richer language,called efins , that conbines
the featuresof efls and efln . This languageis de ned in this section, so that
we canlook at possibleinterpretations of this language.
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5.5.3. Definition.  Supposethat and P are nite sets(of agers and atomic
propositions), with typical elemets 2 and p 2 P. The languageefins
consistsof formulas generatedby the following rules.

=pj ! j?
=1 1312 ) ! j?

The ocial readingofaformula[ : ] isthat if wants ,then holds. The
badkground assumptionis againthat if formsa certain plan or adoptsa certain
strategy, all agens know this strategy immediately (strategies are visible, one
might sa&y).

This languageis not literally an extensionof all logics preserned before, but
one can easily translate efl , efls and eflns formulas into this language. The
efl formula[] translatesto[ :2 ]2 . Theefls formula[ : ] translatesto
the eflns formula[ :2 ] ,andthe efln formula[] translatesinto|[ : ] .
Thesetranslations presene the intuitiv e meaningof ead formula.

We would like to de ne a semartics for this logic on interpreted gameforms
M, that is consisten with the sematics of efl |, efls andefln . Thus,if for some
model M it holdsthat M F [] (usingthe efln semarnics), thenM [ : ]
under the eflns semarics. Another item on the wish list is that the semartics
is an update semairtics.

This section cortains two results related to possibleinterpretation of efins .
First we give a possibleinterpretation that is consistem with the semairtics of
efln , and shav that under this semarics the new logic is not more expressie
than efln . Secondly we show that there is no reasonableupdate semairtics for
this languagethat is consistem with the sematics of efln . From theseresults
one can concludethat de ning a logic for reasoningabout politenessand side
e ects at the sametime is not trivial.

First Interpretation The following rules de ne an interpretation for eflns
over interpreted gameformsF = ( ;H;turn;P; ).

FF? never

FF | i notMpE orM F

FF 2 i 8h22zH): (h)F

FFRIL:1 1 9 :Up(F;, )F andUp(F; )F

This is a reasonablede nition, becauseit is consisten with efln . The update
operator [ : ] canbe read as saing that it is possiblethat when usesa
strategy for achieving , then holds. This is similar in spirit to the interpre-
tation of similar formulas in efls , but not completely the same. For the logic
efls , we de ned a unique rational strategy €( ) that is the most generalstrat-
egy for achieving . In this semarics we do not usea unique rational strategy,
but considerall strategies sud that Up(F; ) F
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The main drawbad of this semartics is not that it is unreasonableput that
it doesnot bring us more expressiviy than we already had. Everything one can
say in eflns is under this sematics equivalert to somethingone could already
expressusing an efls  formula.

5.5.4. Theorem. For everyformula 2 eflns onecan nd a formula 2
efln  suchthat for any interpreted gameform F the following holds

FF . FF

Pr oof. This claim is proven using induction over the structure of the formula

2 eflns . The basecaseis provided by formulas = ? and = 2 ;. Both
these constructs appear in both languagesand are interpreted in the sameway,
soonecantake =

For = 4! ,, onecantake = ;! >, Where 1; » 2 efln are
formulas that are equivalent to ;; , respectively. The induction hypothesis
guararteesthat theseformulas exist.

The di cult caseisthusthe newconstruct[ : ;] ,. This formula holdson a
model F if hasa strategythat satis esboth ; and ,. This canbe expressedn
efln usingthe formula = []( 1™ ). Again ;; , 2 efls areformulasthat
are equivalent to ; , respectively. The induction hypothesisagain guarartees
that theseformulas exist.

Second In terpretation The previousresult showvs that if onedoesnot usean
update semariics basedon a unique ‘rational' strategy, it becomesdi cult to
expressside e ects. Saying that somestrategy for has asa sidee ect is not
the sameas saying that the best or most rational strategy for has asa side
e ect.

In order to make this last statemer, one would like to have is an update
semairtics basedon an update function f. This function f should return the
model f (F; ; ) that onegetswhen usesthe rational or most obvious strategy
for obtaining

The next theoremshawsthat onecannoteasily nd sud an update semartics
for eflns . To be precisewe show that there is no non-arbitrary update semarics
that is consistem with the interpretation of efls . Any update semarics would
have to make arbitrary choicesabout which strategiesit considersrational.

5.5.5. Fact. There is no reasonableupdate sematics for the languageefins
that is consisten with the interpretation of efin .
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Figure 5.7: A small model Fg

Pr oof. An update semattics for eflns would have the following form. As a
model we againusean interpreted gameform F = ( ;H;turn;P; ). The symbol
f is usedfor the update function.

FF? newver

FF ! i notME orM E
FEZ2 i 8h2zZH): (h)E
FRI 1 @ f(F ;)F

It is claimedthat no suitable function f canbe found. This is doneby reasoning
which propertiesthis function should have, and showving that thesepropertiesare
cortradictory.

Speci cally, we look at the behaviour of the function f on an example. In
gure 5.7 an interpreted gameform F¢ is displayed in which agert A can choose
for either p or g. Thus, this model satis es the following efln  formula.

Fe F [Al(2pr 20q)

Under the given update semartics for the languageeflns the following transla-
tion of this formula should hold.

FeF [A:2pr 2q(2pr 29

Sincethis is an update semairtics, onecanapply the following validities for update
sematics, that were already stated in section5.4.

FiC!Y ) [n] ! [n]
F:[n] $ [n]

Using theseprinciples one can derive the following.

FsF [A:2pr 29)2pr [A:2pr 20]2q
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And thus exactly one of the following two formulas must hold.

FeFE [A:2pr 2q2p
FeF [A:2pr 20]2q

In the model Fg, the propositions p and g play a symmetric role. All previous
logicshave a semartics that doesnot dependon irrelevant properties sud asthe

ordering of propositions or actions. Therefore, one would expect a reasonable
semattics not to treat the propositions p or q di erently. Any choice for one of

the two similar formulas would be arbitrary, and would thus be unreasonable.

The word reasonableusedin the previous fact is of coursea vagueword. The
word has beeninterpreted in the proof as meaningthat any semaiics should
behave similar in symmetric situations.

The proof is basedupon the fact that there are two incompatible strategies
for bringing about A's goal2pr 2g. In the interpretation of efln , the idea of
usingthe most generalstrategy wasusedto solve sud dilemmas. Sud a strategy
would leave the agert with the most freedom,and thus it would be rational for
the agern to usesud a strategy. Unfortunately, for the examplegoal 2pr 2q
neither e ectiv e strategy is more generalthan the other.

5.6 Conclusion

This chapter de nes three new languagesefls , efln and eflns that are richer
variants of the logic efl . Using thesericher languagesone can distinguish pro-
tocolsthat are equivalert for efl . Theselanguagesare thus useful for choosing
betweenprotocols.

To illustrate this conclusionwith someexamples,consideragainthe following
two problems.

joint decision problem A decisionp can be taken if either A or B think that
p should be the case.If both agens do not want p, it should be rejected.

indep endent decision problem An agen A candecidewhethera shouldhold
or not, and agent B can decidewhether b should hold or not.

Both problemscanbe descritedin efl , and di erent protocolsfor both problems
exist. From the viewpoint of efl , all these protocols are equivalert. In this
chapter, we have seenthat the logic efls canbe usedto distinguish two protocols
for the joint decisionproblem.

The logic efln  on the other hand can distinguish the two solution for the
independent decision problems. Thus, the added expressibility of both logics
allows us to answer more detailed questionsabout protocols.
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For eat of theselogicsone can determinethe complexity of the model ched-
ing problem, which indicateswhether the languagecan be usedfor veri cation in
practice. The next table lists theseresults.

logic | nesting | sidee ects | model cheking
efl P

efls p

efln PSPACE-complete
eflns PSPACE-complete

Veri cation of properties expressedin efl and efls is thus feasible, whereas
veri cation of properties expressedn efln can be very di cult. The de nition
of eflns that we have given makes this languagetranslatable into efln , so
it must have the samemodel chedking complexity. In the previous section an
argumernt is given why a better sematics is hard to de ne.






Chapter 6
Preference Logics in Extensiv e Games

This chapter is basedon joint researt with Olivier Roy and Johan van Ben-
them .

6.1 Intro duction

The logic efl presened in chapter 4 provides a high level view of protocols. It
can distinguish someprotocols, but many protocolsthat somehaev feel di erent
are equivalent accordingto the logic efl . One explanation for this result is that
agerns, accordingto efl act without knowledge of the plans of other agerns.
They seard for strategiesthat lead to successho matter what the other agens
do. This approad is in stark cortrast with the usualassumptionsof gametheory.
Under the assumption of completeinformation, ageris know the preferencesof
other ageris. Therefore, agens can predict what other agens do, and usethis
to their advantage. In order to provide a logical model that doesrecognizethe
importance of agen preferenceswe introduce in this chapter a logic basedon
preferenceogic.

Considerthe two protocolsin gure 6.1. In thesegames,two ageris A and
B are facedwith the problem of a dirty shareddesk. The value of a cleandesk
is 2 for ead ager, but the task of cleaningis valued at utility 1. The game

A s
[} [}

A VA Y

Figure 6.1: Two extensive games
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on the left models the situation where Alice arrives rst at the oce. Shecan
decideto cleanthe desk,which givesher utilit y 1. Shecan alsoignore the dirty
desk. When Bob arrivesand the deskis clean, he experiencesutility 2. If Alice
has not cleanedthe desk, Bob can cleanthe desk. This giveshim utility 1 and
Alice utility 2. Bob's other option is to ignore the problem, in which caseboth
ageris experienceutilit y 0.

The gameon the right is very similar, exceptthat in this gameBob is the rst
agern to arrive at the o ce. The roles of the two agens are thus reversed. The
certral questionabout thesetwo gamesis whether thesegamesare equivalert. If
that is the case,then apparenly either medanismis a fair way for both agens
to jointly decidewhether to clean. If howewver these gamesare not equivalert,
then oneagen might have an advantage over the other agert.

The assumptionof completeinformation that is commonin gametheory tells
usthat agers are not only aware of their own preferencesbut alsoof eat other's
preferences.Thus, both ageris do not only know that they want a cleandesk,but
they also know that the other agert wants exactly the same. This information
can be usedby agerns to their advantage. The agen that arrives rst, Alice in
the left game, knows that the other agern prefersa cleandesk. If she doesnot
cleanthe desk,then it is best for Bob to do the cleaning. Since sheknows this,
shedecidesto ignorethe problem. The rational outcomeof the left gameis thus
that Bob cleansthe desk. The rational outcome of the right gameis that Alice
doesthe cleaning. Both gamesare thus not equivalert for the agers, and eah
agern is motivated to arrive rst.

The outcomesof both gamesthat are predicted above are subgameperfect
equilibria: The rst agen reasonswhat will happen in the subgamewhere she
doesnot cleanthe desk,and usesthis information to decidewhether sheshould
clean. Sud a subgameperfect equilibrium can be computed using a procedure
calledbackwad induction, and theseterms are consideredsynoryms here. In this
chapter, a logic is presetted that can capture this reasoning.Sinceit seemghat
this preferencelogic might be interesting in its own right, a completenesgproof
for this logic is also given.

The structure of this chapter is the following. We de ne the language of
preferencelogic in section 6.2. In this section we de ne a semaitics for this
language,a notion of bisimulation and a proof system. Since this languageis
de ned in what onecan call a non-madal-logic style, the competenesgroof of the
de ned proof systemis rather hands-on. Therefore,the next section,section6.3,
is usedto de ne what one can call a modern variant of preferencelogic. For this
logic, a completenesgroof using standard modal logic techniquescan be given.
Section6.4 combinespreferencdogic with a logic for reasoningabout gametrees.
This conmbined logic is usedin section6.5to characterizethe badkward induction
solution concept.
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6.2 Preference Logic

To have a preferencaneansthat oneputs \one thing beforeor above another"[80].
In the cortext of games,it is important to know the preferencesthat agers
have betweenthe various outcomes. One can model suc preferencesy giving
binary relations between outcome states. A preferencerelation is thus a set
R = f(x;y)joutcomex is asgood as or better than yg. In our logic, onecan use
hPrefi to say that thereisa statex anda statey sud that (x;y) 2 R. If
there are multiple agerts, the agert X whosepreferencesare being discusseds
indicated with a subscript: hPrefix . The useof preferencedss an alternative
to the useof utilities. If onehasa utilit y function U, one can de ne a preference
relation by stating that xhPrefiy i U(x) U(y). Thus, agens prefer outcomes
that have a higher utilit y over outcomeswith a lower utilit y. On the other hand, if
onehas a preferencerelation one can construct a utilit y function that represets
the samestructure. This can even be done for probability distributions over
outcomes,which arisein mixed strategy gamesg[75. The utilit y function onegets
is of coursenot unique: one can apply any linear transformation to the utilit y
function, and still get the same preferencerelations. This can be seenas an
argumernt against utilit y functions and thus in favor of preferencerelations. In
mathematical de nitions, sud asthose given in the chapter on gametheory of
this dissertations, the use of utilit y functions is notationally more corvenien.
For logical purposesthe useof preferencerelations makessense.After all, modal
languagesare ‘languagedor talking about relational structures' [12, p. iX].

6.2.1. Definition.  Supposethe nite sets andP aregiven,andletX 2 and
p 2 P betypical elemens. Preferencelogic Lp consistsof formulas generated
by the following rule.

= pj hPrefix j ! j?

A logic for reasoningabout preferenceswith a very similar syntax was already
proposedin 1963[119. Howewer our interpretation for this languageis original.
One can introduce other operators by de nition in terms of the given operators.
Besidesthe usual logical connectives, one can de ne the following.
def -
Ex = hPrefi X
Ax = D Ex:
[Pref]x : ( hPrefiy )

=N
g

One canthink of [Pref]x assaying that is strictly preferredby X over
This is somekind of universal quarti cation: it refersto all states satisfying
and all statessatisfying . The operator hPrefiy is the dual of this operator,
and says (in preferencemodels) that it is possiblethat s asleast as good as
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. Ex meansthat there exist circumstancesin which  holds, whereasAx
expresseshat always holds.
As an example,the following formula expresses reasonableproperty of pref-
erences.lt expresseshat if p is always better than g and q is always better than
r, then q is always better than r.

p[Pref]lx g™ qPref]xr ! p[Pref]xr

Whether the principle expressedby this formula holds for a given relation,
depends of the constraints that we put on sud relation. Three properties of
relationsturn out to beimportant. A relation R istotal if 8xy : x 6 y) (xRy_
YRX). It is re exive if 8x : XRX, and anti-symmetric if 8xy : (XRy " yRx) !

X = y. The strict versionR? is the relation R® = f(a;bjaRb” : bRag. A relation
R is strict-tr ansitive if 8xyz : xRSy~ yRSz ! xRS5z. In normal circumstances
onewould expect a preferencerelation to be total, strict-transitive and re exive.

These properties re ect reasonableproperties that one would expect from a
preferencerelation. If one assumeshat preferencedollow from an underlying
utilit y relation, these properties should hold. Indeed thesethree properties are
usedin the de nition of a preferenee model, de ned below.

6.2.2. Definition. A re exive frameF isatuple F = (W; ;fg ) sud that
W is a setof outcomes, isa nite setofagensand x W W isareexive
relation betweenworlds for eat agent X of A.

6.2.3. Definition. A minimal preferene model M is a tuple M = (W; ;f
g ;P; )suh (W, ;fg )isareexiveframe,P isa nite setof atomic propo-
sitonsand :W ! 2" assignspropositionsto outcomes.

6.2.4. Definition. A preferenee model M is a minimal preferencemodel M =
(W; ;fg ;P; )suhthateahh x W W isastrict-transitiv e,total relation.

In the context of preferencemodeswe referto elemerts of W aseither outcomes,
statesor worlds. Intuitiv ely the worldsw 2 W are possibleoutcomesandw ~ w®°
meansthat w is as least as good asw®. An example of a preferencemodel is
displayed in gure 6.2. In this gure the preferencesof the single agert are
indicated by the vertical position of states: Higher statesare preferredover lower
states. No lines betweenstates are therefore necessaryto indicate the preference
information.

As is commonin modal logic we de ne a pointed model to be a pair M;w
whereM is a model with a setof worlds W andw 2 W. Formulasare interpreted
over pointed modelsM ; w in the following way.
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e
mwe 0e
-e

Figure 6.2: A singleagert preferencemodel

M;wpE ? never

MiwE p i p2 (w)

M;wE HPrefix i 9Wew% 2 x: M;w’E andM;w%
M;wiE | [ notM;wgE or M;wE

Let M bethe model displayedin gure 6.2and let w, be the world wherep holds.
Then we can show the following.

M;wp, F p” (phPrefixs) ~ (ghPrefixr)

In standard modal logic, an accessibiliy relation is usedin the interpretation
of modal operators. The truth conditions of the modal operator only depend on
accessiblenvorlds. The preferenceoperator hPrefiy looks at all worlds, so one
might say it usesthe universalaccessibiliy relation, in which any world is related
to any world. Sud an operator is called a glokal operator. In the following
lemmait is shavn that sud an operator can be usedto de ne the operator E
that expresseshat a world satisfying the formula  exists.

6.2.5. Lemma. LetM = (W, ;fg ;P; ) bea minimal preferenee model
M:W’E Ex , 9wW2W: MWk

Pr oof. Supposethat M;w°E Ex . By de nition this meansthat M;w°

hPrefix . This meansthat there are statesw; and w, sud that, amongother
things, M;w; F . For the reversedirection, supposethat 9w 2 W : M;w
Becausethe relation  is re exive, we have w  w and therefore there are
worlds w; = w;w, = w sudh that w, x wi,, M;wE andM;w E . We
concludethat M;w°F  hPrefix andthus M;wlE Ex

A corollary of this theoremisthat F Ex $ Ey . It is therefore harmlessto
omit the subscriptx and simply write E instead of Ex

6.2.1 Bisim ulation

In this sectionwe de ne a notion of bisimulation for preferencemodels,and prove
that two modelsare bisimilar if and only if they satisfy the samepreferencedogic
formulas.



104 Chapter 6. Preferene Logicsin ExtensiveGames

6.2.6. Definiton. LetM = (W; ;fg ;P; JandM®= (W% ;f %9 ;P; 9
be two minimal preferencemodels. A relation R~ W  WZ0is a bisimulation i

all pairs of related worlds (w; w9 2 R satisfy the sameatomic propositions:
(w) = w9 and

forall viw 2 H with v x w:9v%w’2 WP vRv% wRwo™ v § wland
for all vV&w®2 HOwith v® $ wP:9v;w 2 H : VRVGEWRWo" vy w.

We sa that two pointed models M ;w and M % wP are bisimilar, i there existsa
bisimulation R betweenM and M ° such that (w; w9 2 R. Two pointed models
M;w and M % wP° are equivalenti they satisfy exactly the sameformulas: 8
M;wE $ M%wPE . The next theoremrelatesthesetwo notions.

6.2.7. Theorem. LetP be nite andlet M;w = (W; ;fg x» ;P; );w and
MC%wo= (W% :f %x, ;P; 9;wPbetwo pointed models. The modelsM ; w and
M % wPO are bisimilar i they are equivalent.

Proof. LetM = (W, ; ;P; YandM%= (W% : %P; 9. Supposethereis
a bisimulation R betweenM and M ° such that wRw®. We shaw that that these
modelsareequivalert by induction onthe structure of formulas . The casewhere

= ? is easy For any two worlds v;v°we have that M;v 6§ ? and M%Vv°6gj 2.
Considernow the caseof = p2 P. Let v;v®againbe arbitrary worldsin W;W?
respectively. Supposewe have M ;v E p. The rst condition of bisimulation tells
us that M%Vv% = p. Becauseour notion of bisimulation is symmetric, we can
repeat the argumert with M and M ®interchangedfor the \only if" part. Assume
now the induction hypothesisthat for all subformulas of and all worlds v;v°
we have that M;vE i MC%VWE . It follows, using this hypothesis, that
if = 1! LthenM;viFE i M%WE . Soasa last step we shav that
M:;vE (hPrefi ,i M%VE hPrefi ,. SupposeM;vE hPrefix . This
meansthat there are worlds x;y 2 W with M;x i, and M;y F , and
X x Y. Using the de nition of bisimulation and the induction hypothesis, we
know that there are worlds x%y°2 WO%sud that M%x°F ,andM%y°F and
x% 9 y% Thus, we know that M%wP=  jhPrefiy ,. The sameargumert with
M and M %interchangedcan be usedto shav that M%w E ;hPrefix -, only if
M,WOF 1rPrefix 2.

It remains to be proven that if 8 : M;v F $ M%V0 E | then
there is a bisimulation R between M and M° with vRv®. We assumethat
8 : M;viE $ MC%vWE | The relation R that is neededis de ned in
the following way: VRV®i  (v) = qv9. The rst condition of bisimulation is
thus satis ed. In order to chedk the secondcondition, take two worlds v;u 2 W
with v x u. Onecan nd formulas , and , that descrike exactly which atoms
aretrue in v and u respectively. This is possiblebecauseP is nite. Sincev x u,
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Figure 6.3: Two bisimilar models

we have that M;w E ( (hPrefix ), and thus M%wPE ( ,HPrefix ). There
must be elemens v° °u®sothat M%VvPE |, and M%u®E . This provesthe
secondclauseof the bisimulation de nition. A symmetric argumen givesus a
proof for the third condition.

Using this notion, one can determine whether two models satisfy the samefor-
mulas. In gure 6.3 two bisimilar models are displayed. In the right model, two
equally good statesare displayed, one of them is labeledwith proposition p, the
other onewith proposition g. The left model hasthree statesthat are not equally
preferred by the single ager of this model. The left p state is better than the q
state, which is better than the right p state. (Again the preferencesre indicated
by the vertical position of the states.)

6.2.2 Pro of System

A proof systemSp for preferenceogic can be de ned in the following way. First
we list the axioms, then the reasoningrules. In AndConv; and AndConv,, it
does not matter whether X = Y or not. The synmbol standsfor a possible
negation: canbeeither: or . In ead instanceof the axioms AndConv,
and AndConv,, one must make the samechoicefor this symbol.

Prop All propositional tautologes

E intro I Ex

E xist I‘Prefix ! (EY NEy )

K1 (Ay( ! )A I‘Prefix ) ! H:)refix
K> (Ay( ! )A fPrefix ) ! |"Prefix

AndD st HPrefiy ! (( ™ )hPrefix _ ( ~: )hPrefix )
AndD st WPrefiy ! ( HPrefix( ™ )_ HPrefix( ~: ))
AndConv; ( ( hPrefiy )~ )hPrefix $ ( HPrefiy )" hPrefiy
AndConv, hPrefix ( ( hPrefixy )™ )$ ( hPrefiy )™ HPrefiy
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The reasoningrules for this proof systemare Modus Ponensand Necessitation
for Ax . Thesetwo rules are listed below.

Ax

The following rules can be derived in this system.

OrDist, ( _ )hPrefiy ! ( hPrefix )_ ( HPrefiyx )
OrDist, Prefixy ( _ )! ( hPrefix ) _ ( HPrefiyx )

The rst rule OrDist; can be derived using the following instanceof AndD ist ;:
( _ dhPrefixy ' ((( _ )™ HhPrefix _(( _ )™ : )hPrefiy )

Since(( _ )™ )isequivalert to and(( _ )7 : ) isequivalert to in
propositional logic, one can useProp and K ; to derive OrDist;. Similarly one
can prove OrDist, using an instance of AndD ist,.

It is interesting to considerthe nesting of preferences.In order to measure
the level of nesting, de ne the function |

1(?) =0

1(p) =0

IC ') =max(I( );1( ))

I( hPrefix ) =1+ max(I( );1( ))

The languageof preferencelogic allows for nestedpreferenceoperators, but it is
not clear what sud nestedformulas express.Doesit make senseto say that \to
prefer over isatleastasgood as "? Someonevho holdsthat sud sertences
are meaninglessmay decideto exclude them from the logic by restricting the
languageto LPl =f 2Lpjl( ) 1gwherenesting of operatorsis not allowed.
We have decidedto keepour approad asgeneralas possibleon this point, sowe
did not usethis restriction. But, interestingly enough,using axioms AndConv;
and AndConv, one can shov that we can always ‘unnest' a nestedformula: a
formula of nestingl > 1 is always equivalent to a formula of nesting(l 1). This
is proven in the next lemma. This equivalenceplays a role in the completeness
proof, and it shaws that ewen if we can nest preferenceformulas, sud nesting
doesnot add to the expressiviy of the language.

6.2.8. Lemma. For all formulas 2 Lp with [( ) > 1thereis aformula such
thatSp $ andI( )=1() 1

Pr oof. We provethat the theoremholdsfor = HhPrefiyx . For other formulas
it follows by an induction argumernt.
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Assume = HPrefiyx . Any formula can be written in disjunctive normal
form. We use the notation dnf ( ) for the disjunctive normal form (seepage
14) of any formula . The formula $ dnf( ) is a propositional tautology
and thuswe canderive S, $ dnf( )andewenSy Ax( $ dnf( )) for any
formula . For the languageLp the disjunctive normal form has the following
appearance:dnf( ) = _n ") ( %11 hPrefiy, ?nj)" P where indicates the
possibleappearanceof a negation,and I( P) = 0.

In the next derivation j; k;1 and m are indices over formulas (elemerts of a
conjunction or disjunction). The indicesX and Y rangeover ageris. The inner
indicesY are actually dependen onj; k;| and m, but theseargumerts have been
suppressed.Instead of writing Yy, on the left and Yy, on the right, and Yy m, in
the last formula, we have written Y. Alsothe synbol , which indicatesa possible
negation, should be indexedsothat correspnding occurencef this symbol are
interpreted correspndingly. Theseindicesare alsoomitted for readability.

hPrefix
, Prop;Nec;Ki»
[dnf ( )]hPrefiy [dnf ( )]

Lo? (mhPrefiv 30~ PlPrefix [~ ( ghPrefiy 2) ™
, OrDisty.,
_m_k[*; ( ytPrefiy 2~ PlPrefiy[r ( ghPrefiy Z)~ Pl
, AndConvy.,
_m_k(® (i hPrefiy 2N (M ghPrefiy §)) A [ PhPrefiy P

def

Onecanseethat I( ) = I( ) 1 by noting that I( ) = max(I( );I( )) and
I( )= 1+ max(I( );1()).

6.2.9. Theorem. The alove proof systemis sound: Sp~ implies
The validity proofs for ead axiom are given below.

(E intr o) Supposethat M;w E . Since  is re exive, we have that
w x w,andthusM;w g hPrefiyx . This isthe sameasM;w [ E .

(Exist) SupposeM ;w E hPrefix . This meansthat there are two worlds
w? and w®sud that w® w% and these worlds satisfy M;w® E  and
M;w%jE . Sincethe relation v is re exive for all agerts Y, we obtain
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M;w°E Ey ,andM;w°E Ey . Thesetwo conclusionscan be conmbined
to derive M;w°E Ey " Ey

(K1 - Ky). It isnot hard to seethat Ax istrue i holdsin ewvery world
of the model.
Supposethat M;w F Av( ! ) and M;w F HPrefiy , for arbitrary

ageris X andY . This meansthat therearewy; w, 2 W sud that w; x wo,
M;wis F andM;w, £ . Furthermore for all worlds w®2 W we have
M;wliE= (! ). In particular, this last fact implies that M;w; F !
, from which we get M;w; . Sincew; x Wy, we have M;w E
hPrefix . The argumert for K, is similar.

(AndDist; AndDist,) Supposethat M;w E  hPrefix . This means

that there are w® and w®sud that M;w°E , M;w®% = andw® x w®

For every formula we know that either M;w°E  or M;wlE : |, and

henceM;w°E ( ~ ) _( ~: ). Thus,M;wiE (( » )rPrefix ) _(( »
)hPrefix ). The argumert for AndD st is similar.

(AndConv;  AndConv,) As for the other caseswe only prove soundness
for AndConvy, the argumern for the other axiom beingertirely similar. We
alsoprove soundnesgor the axiomwith a positive occurrenceof hPrefiy
Supposethat M;w F ( HPrefix ~ )hPrefix . This meansthere aretwo
worlds wi; w, 2 W sud that M;w; E HPrefix ~ andM;w,  and
W; x W,. From theseone canderive M;w;  HPrefix andM;w; E
. This new fact can then be usedto showv that M;w F HhPrefiy and
M;wE HPrefix . Finally M;wE HPrefix ~ hPrefiyx .
For the reverseimplication, supposethat M;w E  HhPrefix * hPrefiy .
This meansrstly that there are two worlds wy; w, 2 W sud that M; w; F
, M;w, E and w; x W, and secondlythat there are two worlds
w3, Wy 2 W sudh that M;wz E , Msw, E andws ¢ Wy, From these
to facts one canderive that M;w;  HPrefix ~ and this canbe used
to concludeM;w F ( HPrefiy ™ )hPrefiy .

6.2.10. Theorem. The alove proof systemis complete: F  implies Sp°

Suppose is given. Assumethat : cannot be proven, in other words that
is consistemn. We construct a model M with a world w sud that M;w
Let S=f g bea maximally consisten setcortaining . All we needto doisto
show that there is a model M;w sudhthat 8 2 S: M;w fF . It then follows
that M;w [
Let P bethe setofatomsoccurringin . A maximal propositional conjunction
™ is an ordered conjunction of atoms or negatedatoms sud that every atom
in P is mertioned exactly once. Thus, if P = fa;b;cg then a” : b cis a
maximal propositional conjunction, but b” a is not. The ordering ensuresthat
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equivalent maximally consisten formulas are exactly equal. Let SP'° consist of
all propositional logic formulasin S, and let S™ = f MHPrefiy M2 S} ™; ™
are maximal propositional conjunctiongg. The proof now proceedsasfollows. We
rst constructa model M sud that thereis a statew in M sothat M;w =  for
all 2 SP'° and sud that ewery state in M satis es all formulasin S™*. Then
we shaw that M ;w satis es all formulasin S.

The model M = (W; ; ;P; ) is dened in the following way. Let W =
f M(E ™M) 2 S™g. SoW cortains maximal propositional conjunctions. is
the setof agerns mertioned in S, and this setis nite becauseonly a nite number
of agerts canbe mertioned in a nite formula. Wedene ( M) =fpjSp™ ™!
pg. The preferencerelationisdened by ™ x ™, ( M™hPrefix ™) 2 SM&,
This relation is re exive: If ( "HPrefiy ™M) 2 S™® then, becauseof Exist, we
know Ex ™= ™hPrefixy ™ 2 S™_ Similarly for ™.

The world w that we needcan be found in the following way. Supposethat
m 2 SProP for a maximal propositional conjunction ™. This implies, using
E intro that E ™ 2 S and thus there is a world w suc that M;w ™.
Sinceewery formula 2 SP'°P is a consequencef ™, we havethat M;wE for
all 2 SProp,

6.2.11. Lemma. Let and be propositional formulas. HPrefiy 2 S i
M;wFE  hPrefiy

Proof. Let ; bepropositional formulasand assume HPrefiy 2 S. Wecan
repeatedlyapply axiomsAndD ist; and AndD ist, for all the propositions,and use
thefactthat _ 2 Simplies 2 Sor 2 S, to obtain two maximal conjunction
Mmand ™ sud that Sp~ M | and Sp ™! and MhPrefixy ™ 2 S.
It follows that ™HPrefiy ™ 2 S™*, Using axiom Exist we conclude that
EM™M2S™ andE ™ 2 S™*, Therefore, ™ 2 W and ™ 2 W. From the
de nition of x weobtainthat ™ x ™ and this leadsus to concludethat
M;w E  "HPrefixy ™. Using the soundnessof K, and K, we can derive that
M;w E hPrefiy
For the reversepart, assumethat M;w = HPrefiy . From the soundnesof
AndDist; and AndD st it follows that there are maximal conjunctions ™ and
M sut that M;w E  MHhPrefixy ™. This impliesthat MHPrefiy ™ 2 S, and
using K, and K, we concludethat hPrefiy 2 S.

An induction argumern over the level of nestingin setsS canbe givento show
that 2 Si M;wpgE forany formula with I( ) 1. To shaow that this is
alsothe casefor higher level formulas, with nestedpreferencesye canuselemma
6.2.8to nd for any formula aformula sudthat S, $ andlI() 1.
If 2 Sthen 2 S, andsincel() 1wecan nd a model M;w sud that
M;w F . It now follows that M;w F , and we have shavn that the given
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proof systemis completefor minimal preferencemodels.

Now we can make the step from minimal preferencemodels to preference
models. We sa that an axiom A is sound on a set of re exive frames S if
every instance 2 A is true on every model M = (W, ;f xgx2 ;P; ) sud
that (W; ;f xgx2 ) 2 S. An axiom scheme is completefor S if for every
re exiveframe (W, ;f xgx» ) 2 S canbeextendedto a pointed modelM;w =
(W; ;f xoxo ;P; );wsud that thereisaninstance oof with M;wE : o.

De ne the following extra axioms.

Total (Ex "Ex )! ( HPrefix _ HPrefiy )
Trans (Ex "~ hPrefix )! ( hPrefix _ hPrefiyx )

6.2.12. Theorem. Total is a soundand complete axiom schemefor the set of
re exive frameswith total preference relations.

Pr oof. Supposethat M = (W; ;f xogx. ;P; ) is a model sud that all
relations x aretotal andlet w2 W. Assumethat M;w F Ex ”~ Ex . This
meansthat there are two worlds x;y 2 W sud that M;x andM;y F
From totality we know that either x x y ory x. In the rst case,we have
M;w F HPrefiy andin the secondcaseM;w F HPrefiy . Either way this
leadsto M;w E ( HPrefix _ HPrefiyx ). Thus, Total is soundfor re exive
frameswith total preferencerelations.

For the secondpart assumethat (W; ;f x0gx. ) is a non-total re exive
frame. This meansthat for someX and x;y 2 W it is the casethat neither
X xynory x x. Dene P = fp;gg and (x) = fpg; (y) = fqg and for
all remainingworldsz: (z) = ;. LetM = (W, ;f x0gx2 ;P; ). This model
satisesM;x F (Exp”™ Exq). Howewer, M;w E (phPrefix q_ ghPrefiy p) does
not hold. Thus,M;x E (Exp” Exq)! (phPrefixq_ ghPrefiyx p) doesnot hold.
Therefore, T otal is completefor the classof total re exive frames.

6.2.13. Theorem. Total are soundand completeaxiomsfor the set of re exive
frameswith strict-tr ansitive, total preference relations.

Pr oof. Note that the transitivit y axiom implies totality: Take = . Thus, if
we add the axiom Trans then Total is derivable.

First we prove the soundnessof Trans on strict-transitiv e, total re exive
frames. Supposethat M = (W; ;f xgx. ;P; ) is a model sud that all
relations x are total and strict-transitive, and let w 2 W. Assume that
M;wE (Ex ™ hPrefix ). This meansthat there are three worlds x;y;z 2 W
suhh that M;x F ,M;yF ,M;zF andx x z. In orderto obtain a
corntradiction, assumethat M;w E : ( hPrefix )~ : ( HPrefix ). Sincethe
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model is total, it followsnow that z x yandy x X. From strict-transitivit y
we obtain that z x X, andthis impliesthat not x x z. This is a cortradiction,
sothe axiom Trans doeshold on this model. Sincewe have assumed\ ; w to be
an arbitrary total, strict-transitiv e model, we may concludethat any sud model
satis es the transitivit y axiom.

For the secondpart, assumethat (W; ;f xgx. ) is areexive frame. We
can assumethat the preferencerelations are total, otherwisethe derivable axiom
Total would not hold on somemodel basedon this re exive frame. Thus, we
assumethat for someX, the relation x is not a strict-transitiv e relation. This
meansthat for somestatesx;y;z 2 W it is the casethat x x yandy x z,
but not x x z. Using totality we can showv that z x Xx must hold. De ne
P = fp;grgand (x) = fpg; (y) = fqg; (z) = frg and for all remaining
worldsw : (w) = ;. Let M = (W; ;f xoxo ;P; ). This model satis es
M;x E (Exqg” rhPrefix p), and M; x 6 ghPrefix p and alsoM ; x & phPrefix g.
Hencethe axiom Trans is not soundon this model.

Therefore, T rans characterizeshe classof re exiv e frameswith strict-transitiv e,
total preferencerelations.

Transitivity of a relation is a commonly assumedn modal logic, for instance
for reasoningabout time [12], and a standardaxiom for transitivity is33 ! 3
For preferencelogic we have usedthe more di cult notion of strict-transitivit .
A reasonableguestionis thereforewhether a simpler axiom is not available. Con-
sider for instancethe following axiom, which seemgo capture transitivit y.

(( HPrefiy )~ ( HPrefiy ) ! ( HPrefix )

This axiom is unfortunately not valid on preferencemodels. A courter-example
is the following instance, which doesnot hold on the model displayed in gure
6.2 on pagel103.

((phPrefix (g_s)) ™ ((g_ s)MPrefixr)) ! (phPrefixr)

Another reasonableguestionis whetherthere are strict-transitiv e modelsthat
are not transitive. An example of sud a model is given in gure 6.4. In this
gure the preferencerelation of a single agert has beenindicated using arrows.
The re exiv e arrows have beenomitted.

6.3 An Alternativ e Preference Logic

The proof given above, although valid, lacks a certain eleganceit doesnot make
use of existing modal logic results. Therefore, in this paragraph we presen a
di erent axiomatisation. In order to do so the languageof preferencelogic is
slightly adapted.



112 Chapter 6. Preferene Logicsin ExtensiveGames
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Figure 6.4: A strict-transitiv e, intransitiv e preferencemodel

6.3.1. Definition.  Supposethe nite sets andP aregiven,andletX 2 and
p 2 P betypical elemets. Alternativ e preferenceogic L2 consistsof formulas
generatedby the following rule.

=pj3x JE | ! j?

In this logic, the operator HhPrefiy canbedened asE( ~ 3 ). Intuitively
the meaningof 3 x is that there is a state better for X than the currert state,
in which  holds. The construct E meansthat somewherdn the model a state

existsin which  holds. For this logic we de ne the operators2yx = : 3x:
andA = :E: . Theseoperatorsarethusdualsfor the two primitiv e operators.
This logic is interpreted in the following way. Let M = (W; ; ;P; ) bea

preferencemodel.

M;wpE ? never

M;wj p ip2 (w)

M;wE E i w2 W: M;wE

M;wiE 3 i 9(w;w9 2 1 M;woE

[

X
M;wgE ! not M;wg or M;wfE
The operator 3 x is interpreted in the standard modal logic fashion using the
relation . The operator E alsohasa standard interpretation, but basedon

the universalrelation. All worlds are accessibleo this operator.

6.3.2. Fact. Alternative preferencelogic L2 is strictly more expressie than
preferenceogic Lp.

Pr oof. The operator HPrefiy canbe de ned in alternative preferencelogic,
but the operator 3 x is not de nable in the old preferencelogic. This can be
showvn by looking again at the modelsin gure 6.3. The formula E(p” : 3 0),
which says that there is a p world for which no equal or better g world exists, is
satis ed in one model but not in the other. Sincethesemodels satisfy the same
Lp formulas, there cannot be a Lp formula that is equivalert to E(p” : 3 ).
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6.3.1 Pro of System

One can de ne a proof systemfor this logic quite easily becausethe interpreta-
tion of both operatorsis a standard modal logic interpretation. The proof system
S3 for L2 hasthe following axioms:

Axioms for 3
Ko2x( ! )P @2x ' 2x )
4 3x3x ! 3«
T I
Axioms for E
Ke A(C! )!I (A! A)
4= EE ' E
Te .
Be I AE
Incl 3x ! E

Tot (E "E )! (E( "3x )_E( ~3))
The reasoningrules for this logic are Modus Ponens,Necessitationfor 2y  and
necessy for A . Thesethree rules are listed below.

2% A

6.3.3. Theorem. The proof systemL 2 is soundand completefor the language
L2 on minimal preferene maodelswith transitive preferene relations.

Pr oof. It is clearthat the axiomsare soundand that the reasoningrules pre-
sene validity: they are all standard axioms. The logic is completewith respectto
the classof re exive and transitive frames,see[12, p.417]. To seethat the logic
is complete with respect to the classof re exive, transitive and linear frames,
just notice that Lin, the axiom for linearity, is a Sahlqvist formula. Applying
the algorithm of the Sahlqvist CorresppndenceTheorem[12, p.165]one seeghat
it correspndsto the rst order expressionof linearity: 8x;y(x 'y _y  X).
Furthermore, by the canonicity of Sahlqvist formulas, [12, p.322], we know that
the canonicalmodel for L3 is linear, and sothat L2 is completewith respect to
the classof re exive, transitive and linear frames.

6.4 Finite Tree Logic

In this sectiona logic is preserted that can be usedfor reasoningabout nite
trees, sud as gametrees. Using this logic one can descrike gamestrees. This
logic is adapted from Blackburn and Viol [13], asis the completenesgroof.
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6.4.1. Definition.  Supposethe nite sets andP aregiven,andletX 2 and
p 2 P betypical elemertts. Finite tree logic Lt consistsof formulas generated
by the following rule.

=pj HPrefix jHXi jhi jh*i j o j?
We de ne the following additional operators.
X] & :hXi:
[1 € i
[ "] £ h *i

6.4.2. Definition. Let fRx Ox2 b§ an indexed set of relations Ry, one for
eathh agen X 2 . Wedene R = fRxgx, asthe union of all relations in
fRx0gx» andR™ asthe transitive closureof R.

6.4.3. Definition. A proto-madel M is a tuple M = (W; ;fRxgx». ;P; ;)

sud that W is asetofworlds, a nite setofageris, foreath X 2 the relation

Rx W W isarelation betweenworlds, P is a set of atomic propositions and
:W ! 2P assignspropositionsto worlds.

6.4.4. Definition. A treemodel M isaproto-modelM = (W; ;fRxgx2 ;P; )
sud that R = [ x Rx de nesa nite tree on somesubsetW ™ of W.

The worlds W nW T are not related by the relation R to any other worlds. These
so-called looseworlds' are not readable by actions, but are important in the
preferenceof ageris.

We de ne the set of terminal nodesZ (W;R) by Z(W;R) = fw 2 Wj:9 w°:
wRw%. The read function read(R; w) is the setof points reacable from w and
can be de ned by stating that read(R; w) is the smallestset S such that w2 S
andx 2 S*"xRy) y2S.

6.4.5. Definition. A prefeenetree modelM isatupleM = (W; ;fRxox2 ;f x
Ox2 ;P; ) sudthat (W; ;fRxgx. ;P; ;) isatree model and for eat agen

X 2 therelation ( x) Z(W;R) Z(W;R) is are exive, strict-transitiv e,
total relation.

M;wpE ? newer

MiwfE p i p2 (w)

M;wgE ! I M;wgE impliesM;w E

M;wFE hXi i 9w wRy WO sud that M;wl

M;wfFE h i i 9X;wP: wRxwPsud that M;wlf

M;wfFE h *i i 9w®: wR*wPsud that M;w°f

M;w E  hPrefiyx I 9(u;v)2( x)sudhthat M;uF andM;v E
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As an exampleof how this logic can be used,considerthe protocol displayed
in gure 4.1 on page4.1. This protocol can be descrited as a preferencetree
model M4, if we indicate what the preferencesf the agerts are. One possibleset
of preferencedastherefore beenindicated in the next table.

Agent Most to least preferred outcomes

A X,y:Z
B Y X; Z
C Xy

It is assumedherethat the utilit y that an agen attachesto a certain outcome,
only dependson the atomic propositionsthat hold on a certain outcome. This is
a reasonableassumption,sincetheseatomic propositions are supposedto encale
the relevant properties of ead outcome. Thus, accordingto the table, A prefers
both x outcomesabove both y outcomes, and both y outcomesover both z
outcomes. The rst two formulas descrike the structure of the game, and the
last formula refersto the preferences.Let w, be the root of model M4, and let
> =[] ?. The formula - holdsin terminal states.

M1;wo F PAI(RBI( » A x) " WBi( » M y)" Bi( » " 2))
M1;wo F PAI(RCI( » * x) A RCi( » * y) * KCi( 2 * 2))
M1;Wo F (yhPrefiaz) N (yhPrefig: y) » (zhPrefic: 2)

6.4.6. Definition.  The proof systemSy for nite tree logic consistsof the rule
Modus Ponensand the following axioms.

prop = where is an instanceof a propositional logic tautology
K =[X] ! (IX]JC ! ) [X])
XY =mXi> ! :hYi> whereX 6 Y
all=hi $ _xhXi
trans=[ *] $ [I( ~[ *1)
L=h"*i ! h*i( ~:h i)
Ac=([1 ?»" )_h"i((1?"~ )! HPrefix

The following formula is known in dynamic predicatelogic asthe induction prin-
ciple.

B (N AN N (GRE N B D) R A
This formula sthemeis valid for nite tree logic. Here we shav that this axiom
can be derived from the other principles.

6.4.7. Theorem. The induction principle can be derived in nite tree logic:

St
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Proof. Dene asthe negationof ;: = (] ~[ *1I( ! hi )" :[ *].
The Lob axiom L can be formulated as

S A (R D N A
and axiom tr ans can be expressecequivalertly as
ST s ([1 ~ 1)
Using this formulation of the tr ans axiom, one can shav that

S O (1) N I (G S B R ) R ) (R B I
This canbe simpli ed, becausd ] appearstwicein this formula.
Sttos (1 ALTIC T I AL T
And one can bring the negationinside:
Sttos (1 AMLTICH I phhE Y]
Using tr ans again and Modus Ponensgives
S 8 (1 ~M1 A0 10 1 phhi [T

One can now derive three implications from this formula.

St ' [I
St VI TIC!Y hi)
S U hi [ 7]

Thesethree statemens conbine to the following conclusion

St hi(l ALTICY T DAL TT)

This statemert is the sameasS;™ ! h i

Using cortraposition this leadsto St [] !

From trans onecanderivethat St [ *] ! [] |

And thesecanbe combinedinto Sy [ *] !

The necessitationrule canbe usedto derive St [ ][ *]1 ! 1)

From L now follows St™ [ *]
and thus (with Modus Ponens)Sy™ |

This proof systemis complete, and the proof for this fact is given below in
seweral steps. It is a straightforward adaptation from Blackburn and Viol [13],
exceptthat we have translated notations where necessary Blackburn and Viol
introducedthis logic for the nite binary treesthat are usedin linguistics asparse
trees. Our adaptation shavs that this logic can alsobe usedfor gametrees.
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6.4.8. Definition.  The closurecl() of a setof formulas is the smallestset
S sud that the following hold.

For all subfornulas of formulas 2 wehave 2 S
Ifh*i 2Sthenhi 28S

If 2 Sand isnotoftheform: then: 2 S

If isa nite set,thencl() is nite. From now onwe assumethat isa nite
set.

6.4.9. Definition. A set A is a maximally consistent subsetof someset S if
there is a maximally consistem setC sud that A= C\ S. The atom setAt()
of a setof formulas consistsof all the maximal consisten subsetsA of cl( ).

If is nite then alsothe set%atoms is nite. Furthermore, for every nite set
At() it isthe casethat Sp~ ,,, () A. Onecanthink of At() asthe setof
subforrmulas whosetruth we are interestedin. A maximally consisten subsetis
thus that part of a maximally consistem setthat we are interestedin.

Thesede nitions are usedto de ne a proto-model. This proto-model is not a
yet tree, but later on we order the elemetts of this model in sud a way that a
tree is formed.

6.4.10. Definition.  The proto-modelC isde nedas(At() ; ;fRxgxz2 ;P; )
where consistsof all ageris mertioned in , P of all atomic propositions oc-
curringin , and (A) = fp2 Pjp2 Ag. The relations Rx are de ned by

N N

ARyB , Sp6: ( AMKXi( B))

It is not hard to show that for the operator h i a s\i}‘nilar conc{i}ion holds. Using
axioms 3; 4 we can shov that ARB SS 6:( Ahi( B)). Wedene
Lo() =fA2At() j[]? 2 Ag. Let § = Li. If At() nS; 6 ; then Ly
existsand we de ne

joi
N N

Lia =fA2At() jAZ2S and AN (T B)is consisteng
B2S;

6.4.11. Lemma. SupmseA 2 L; and hXi 2 A. Thereis a B 2 L; suchthat
ARxB andj < i.

Pr oof. Supposethat S;™: ( ~ h Ti: ). Using necessitationone can derive
that S;:h "i( ~h *ii ). The Lob axiom cannow be usedin cortra positive
form (thus: b! : ainsteadofa! b). This givesusS;™: . Another way to put
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this is to say that if is consistem (St 6 : ), then( ~ h *i: ) is consisten:
Sr6: ( “h*ii ).

Supposenow that A and B together form a partition of At(): All atoms
appearin A or B but not in both. One can\§hcw using\me re§plt of the previous
paragraphthat thereisanA; 2 A sudhthat A" *]( B, 28 B;) is consisten.
The proof for this qR/ser\a{i/on is the following. W

Thedisjupgtion  , .4 Ajisconsistem andtherefore(obsenation 1) (5 54
[ *]: a2a  Aiisconsisten. SinceA and B form a partition of asetAt() of
all maximally Wnsis(;am subsets,i(,\po sqpin A is satis ed then a set of B must
%satls\fd: SNEINYY A Wplles s;2e  Bj- This leadsto the conclusionthat
( aza AN TN \B) 28 Bj) is consiste and thus for someA; 2 A we have
that Ai"[ *]( B, 28 B;) is consisten. In the construction of the proto-model,
the setS; and At() nS; form a partition of At(). This provesthe obsenation.

We canusethe obsenation that we have just provento seethat if L., exists,
then it is non-empty. Every level i the setS; thus gets bigger. SinceAt() isa
nite set, eventually S; = At() and ewery atom hasbeenassignedto a certain
level. For the proof of the lemma, supposeA 2 L; and hXi 2 A. It is clearthat
i > 0andthus S; ; exists. To obtain a cortradiction, supposetp,at there i§/no
atomB 2 S; ; sud that ARx B, thus\yhat for all l?, the fovnula ANhXi B
is inconsistg/ﬁ. Thi%meansthat St AMN[X]( BiS 1 B). As a shortcut,
deneB= ,5 , B. SnceA 2 L, we have that ~ [ *]B is consister.
Sincewe Ggn rewrite [] as [Y], weknowthat A" | [Y]B isconsistemn and
thusthat A" [X]B is consiste. This yieldsa cortradiction. Thus, there must
beanatomB 2 S, ; sud that ARxB.

This concludesthe preparationsfor the completenesgroof, and we can prove the
completenessheorem.

6.4.12. Theorem. The proof systemSy is complete.

Pr oof. We can construct a model for any formula . Take = f g. Choose
A2 At() sucdthat 2 A. Let Wy = fAg. We call a pair (w;hXi ) ofw2 W,
an unsatis ed demandif hiXi 2 w but thereis now®2 W, sud that wR,w°and
2 W% As long asthere are unsatis ed demands,pick one unsatis ed demand
(w; hXi ) and take a world w2 L., in asetL,, sud that wWRxyw®and 2 W.
The world w® must have a lower level than w: if w 2 L; theni < m. Lemma6.4.11
guararteesthat sud a w° exists. De ne W,;1 = W, [ fw%. The construction
processmust terminate after a certain number of steps, becausewe add worlds
with strictly lower levels ewvery time. Thus, for somesu cien tly large m, there is
a world W, that hasno unsatis ed demands.
Let the proto-model C = (At() ; ;fRx0gx2 ;P; ) be dened as before.
De ne the following modelM = (Wy; ;fR%gx> ;P; 9 wherefRgx, ; Care

V
A
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the restrictions of fRx gx» ; to W,,. One canuseinduction on the structure of
the formula to prove that M;wy F
It remains for us to de ne a preferencerelation over W,,. The axiom Ag

establishesthat all worlds that are involved in the actions, are usedin the pref-
erencerelation. All other axiomsonly dealwith preference®r only with actions.
Sincewe have proven the preferencelogic to be complete,any consiste set of
preferenceformulas can be satis ed by a model. This model cortains exactly
one state for eacy maximally consistet propositional formula, but we can mul-
tiply thesestatesto obtain a bisimilar model in which we have a correspndence
betweenthe outcomesof the action relation and the preferenceworlds. If some
world of the preferencemodel cannot be mapped on the action model, a “loose
world" canbe createdthat doesnot form part of the gametree: Our de nition of
a tree model allows for worlds that only play a role in the preferencemodel.

6.5 Backward Induction: An Application

One of the reasonsto study preferencelogicsis that they can be usedfor logical
investigationsinto gametheoretic solution concepts. Sincethe subgameperfect
equilibrium that is computed by the backward induction procedureis one of the
bestknown solution concepts,it is a good guineapig for testing the expressiviy of
game-relatedogics. For instanceit is usedfor demonstratingthe useof branching
time temporal logic by Bonanno[14], and is also modelled by Harrenstein[45].

The subgameperfect equilibrium hasbeende ned in de tion 3.3.100n page
45, Below we rephrasethis de nition in terms more suitable for logical purposes.
We de ne a solution conceptasa relation Ry, betweenthe statesof an extensiwe
game. The relation contains the movesthat are rational: Thesemoves are the
recommendationsto the players made by the solution concept. Below we give
the de nition of the relation Bl that descrikesthe badkward induction solution
concept. Let M = (W, ;fRxOx> ;f x0x2 ;P; ) bea preferencetree model.
Bl is a subsetof the relation R. The outcomesof this relation are Z(W;BI),
and the read of this relation from x is read(B1;x). Intuitiv ely, read(BI ; x)
contains the nodesthat one can read using only movesthat appearin Bl. We
de ne the reaable outcomesas rz(W;R;w) = Z(W;R)\ reah(R;w). The
relation Bl is de ned in suc away that for all w°2 W nZ (W) it is the casethat
rz(W;Bl;w9 Z(W;R) and krz(W;BI;w)k = 1. Thus, Bl only recommends
possiblemoves, and it recommendsexactly one move in every node that is part
of the tree. Finally, if for somestate w it is the casethat wBIw°and wRy w®
then there is an x 2 rz(W;BI ;w9 sud that thereisay 2 rz(W;BI;w° sud
that x x y. That is, w®is possiblyat leastasgood asw® This property makes
it rational for agert X to choosethe move w° above w®
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Not every gamehasa unique badkward induction relation. Take for instance
any gamein which all agens value all outcomesequally. In sud a game, any
relation that choosesone move for eat node is a badkward induction relation.

If the preferencerelation is anti-symmetric howewer, then there is exactly
one badkward induction relation. Otherwise there might be more. Thus, if no
agerts valuesa pair of nodesequally, then there existsa unique subgameperfect
equilibrium.

Below we extend nite tree logic with operators 3 g5 and 3 sol that refer
to recommendedmoves. This new logic is called solvel gamelogic becauseit is
interpreted over solved models.

6.5.1. Definition. = Supposethe nite sets and P are given, and let X 2
and p 2 P be typical elemens. Solwed gamelogic L, consistsof formulas
generatedby the rule

= pj HPrefix jHXi jhi jh*i j ! J? 350 130
Again one can assumethe following derived operators.
2 sol = 3ok

def .
2soI -3 sol

The construction3 g5 meansthat onecanusearecommendednovedto read a
state where holds. Similarly, 3 meansthat one can useonly recommended
movesto read an outcome where  holds.

This logic can be interpreted over solved models. Thesemodelsare similar to
preferencetree models, but cortain an extra relation that descritesa solution to
the game.

6.5.2. Definition. A solved model M is atuple M = (W, ;fRxgx. ;f «x

Ox2 ;P; ;Rso) sothat (W; ;fRxgx2 ;f x0xo2 ;P; )isapreferencaree model
and Rg; R is a function: for eat nonterminal state s there is a unique next
state t sud that (s;t) 2 Rgq.

The relation Ry indicates a game-theoreticsolution to the game, becauseit
cortains recommendedmoves. A solved model is thus a structure that cortains
a gameand recommendationsto all players. Sud a solved model can be tested
for rationality, by chedking whether the recommendationsare consistem with the
preferencesf the agerts. The interpretation of all operators is the sameas for
preferencetree logic. The new operators 3 g5 and 3 sol are interpreted in the
following way.

M;WE 8¢9 1 9W?: WRswW° sudh that M;wl =
MiwiE 3o, i OwW°2 rz(W; Rso; W) sud that M; WO
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Note that the operator 3 | is interpreted sud that it refersto outcome states
only. This is done becauseonly outcomestates have preferences.

In order to be able to characterize badkward induction, we have to put an
extra constrairt on the modelsthat we consider. In the following de nition we
de ne when we call a preferencerelation functional (with respect to a given
interpretation function ).

6.5.3. Definition. Considera preferencerelation x in the cortext of a model
with someinterpretation . The relation  is functional if there is a function
fy : 27 1 Rsud that for all worldsv; wwehavethat v x wimpliesfx ( (V)

fx (- (w)).

We call preferencemodels, tree models and solved models functional if all pref-
erencerelations that occur in these models are functional (with respect to the
interpretation function of the model). If a model is function, it meansthat
the atomic propositionsencale all propertiesthat agers usein their preferences.
Thus, in functional modelsthe atomic propositionsare all that ageris careabout.
The right model in gure 6.3is functional, but the left model is not.

The following four formulas characterizethe badkward induction solution con-
cept, at least for functional models. This meansthat all functional models on
which all instancesof the following four formulas hold, have the badkward in-
duction solution conceptastheir solution. One canthus say that the conceptof
badkward induction is described by the logical formulas.

In fact the rst four properties hold on any solved model, becauseof the
constrairts we have put on the solution relation. Therefore, one could say that
the fourth property characterizesbackward induction. The formula Bs expresses
what kind of reasoningcan be usedto motivate the badkward induction solution
concept, and can thus be usedto explain this concept. This way of using logic
to characterizesolutions conceptsgivesmore insight in the ideasor assumptions
behind theseconcepts[30].

Bi=hi>! 3q4p

If onecando a move, onecan do a recommendednove
B2=3gg ! hi

If moving to a state is recommendedijt is possible
Bs=3go $ (17" )_3s0Bg0))

A recommendedbutcomecan be reaced in zeroor more steps
Ba=3g0l ! 20l

Only onemove is recommended
Bs =(350Rgo " MXi245 ) ! ( hPrefix )

X should not move againstits preferences
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6.5.4. Theorem. If a pointed solval model M;w has the backwad induction
relation as its solution then it satis es the formulas B; to Bs.

Pr oof. Supposethat M ;w is a solved model, and that the relation Ry, is indeed
the badkward induction relation Bl. For ead instance of formula B; we shav
that it holdsin this model.

Supposethat M;w E h i>. This meansthat w is an internal node. From
krz(W;B1;w)k = 1 it follows that there must be a next BI move, and
thereforeM;w F 3 sof -

Supposethat M;w F 3 g4 ,» Which meansthere is a state w? sudh that
(w;w9 2 Bl andM;w°E . SinceBl R, it holdsthat (w;w% 2 R and
thusM;wE h i

From krz(W;B1;v)k = 1 for all nonterminal nodesv, it follows that there
is only one state w° with (w;w% 2 BIl. Therefore, for any state w° with
(w;w9 2 BI it is the casethat M;wlF  andthusM; W 2 .

Suppose that M;w F 3 ol which meansthere is an outcome w° 2

rz(W;Bl;w) sothat M ;w%j: . If w is an outcomeitself, then w® = w

andM;w FE ([] ? » ). Otherwisethere is a w®with (w;w% 2 BI and
+\p/00; . H

M;wrF 3sol andthus M;w 330|350I :

Supposethat M;w 3 g5 , which meansthat there is a state wOsud that
(w; w9 2 Bl andM;w°FE . In the de nition of a solved model it is stated
that this world w®is unique, and hencethere are no other worlds w®sud
that (w;w° 2 BI. Therefore, M;wF 2 4 -

Finally, assumeM;w F (3 g2 sol A hXi2Sol ). Thus, there is a state
w; with (w;w;) 2 Bl and M;w; F zsol . There is also a state w, suc
that (w;wz) 2 Rx with M;w, | 2, . Hence9v; 2 rz(W,;BI ;w9 with
M;vi E and9v, 2 rz(W;BI;w,) with M;v, . The de nition of the
Bl relation now tells usthat v; is possiblyat leastasgood asv,, and thus
Vi x Vo, andthereforeM;w E hPrefiyx

6.5.5. Theorem. If a pointed solvel model M ; w with a functional interpretation
satis es the formula B4, thenit hasthe backwad induction relation asits solution.

Pr oof. Supposethat a solved model M ; w has preferenceghat are functional:
Outcomesw;w® with  (w) = (w9 are equally preferred. Assumethat all in-
stancesof B, hold on M ; w.
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Figure 6.5: A non-functional tree model M

We have to show that the relation Rgy in M is a badkward induction relation.
Not surprisingly, this hasto be shown inductively, starting with the nal nodes.
The basecaseis formed by nodesw that are outcomes,and for these nodes
nothing hasto be proven: The Ry, relation of an outcomeis always the empty
relation, becausethere are no movesto recommend.

Assumenow that w is a nonterminal node sud that (w;w;) 2 Ry, and let
(w;wp) 2 Ry, and that the recommendedmove (w;ws;) is in violation of the
badkward induction properties. This assumptionis madeto derive a cortradic-
tion. Thus, we assumethat all outcomesin rz(W;BI;w;) are strictly worse
than all outcomesin rz(W;BI;w,), accordingto agert X. Sincethe prefer-
encesare functional, it holdsthat (o,) 6 (0o,) for all o, 2 rz(W;BI;w;) and
0 2 rz(W;BIl;w,). Take a formula ; that describes an outcome o, exactly,
and a formula , that descritesan outcomeo, exactly. Naturally M;o, F : >
and vice versa. Sincethe preferencesare functional, all ; statesare strictly less
preferredthan all , states,and thus M;w E : ( ;hPrefix ). SinceW,w
(3 50R sol 1 A h>(i2Sol ») and B4 is supposedto hold, this is a cortradiction.
Thus, it is not possiblethat the move (w;w;) does not satisfy the badkward
induction properties. Using induction we can now concludethat all movesrec-
ommendedby Rg, are movesrecommendedby badkward induction, and hence
that Rgo = BI.

It is necessaryto restrict the relations in the model to be functional. There
are non-functional solved models that satisfy the given formulas, but whoseso-
lution relation is not a badkward induction solution. An exampleof sud a non-
functional model M is displayed in gure 6.5. Assumethat M is a solved model
where outcome 3 is preferred over the other two outcomes,and that the solu-
tion relation in M recommendsoutcome 1. This solution is not the badkward
induction relation, sinceoutcome 3 is clearly better. Howewer it satis es B; to
Bs.

In order to show that the logical approad of this chapter is more expressie
than the use of the logic efl , consideragainthe rst solution in gure 4.1 on
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Figure 6.6: Solved model M,

page58to the examplevoting problem of chapter 4. On pagel15we de ned a
preferencetree model by combining the protocol of gure 4.1 with a given set of
preferences.We extend this model to a solved model M, by adding suggested
moves. The solution relation added is that A chooseswg, B choosesy and C
choosesz. This solution relation is indicated in gure 6.6.

Call the root node wa, B's decisionnode wg and C's decision hode wc.
Assumethat the following preferenceformulas hold.

M;wa F X[Pref]ay ™ y[Pref]az
M;wa F y[Prefls(x _ 2)
M;wa F z[Preflc(x _y)

If the solution of this solved model is the backward induction relation, then it
follows from y[Pref]g (X _ z) that M;wg F 3 ggy. Similarly, M;wec F 3 g2
Sinceone can derive from the rst line that M;wa E : (zhPrefipny), it follows
from Bs that not M;wa F 3 g2 soff and henceM ;wy F Zsoy. Therefore,the
indicated solution relation is indeegthe badkward induction solution.

After consideringmore di erent preferenceassumptions,one can shaov that
ageris B and C have the best ‘chance'(assumingall di erent preferencerelations
are equally likely) to get the options they prefer most. Agernt A on the other
hand is leastlikely to get the option it prefersleast. Thus, using preferencdogic
onecan give adviceto agerts which role they shouldtake in this voting problem,
which was not possiblebasedon efl . Agents that strongly prefer one option
should take the role of agent B or C, whereasageris that strongly dislike one of
the options are better of asagern A.

6.6 Conclusion

In this chapter, the focus has not beenon model chedking but on proof theory.
A languagelLr for reasoninghas been preserted and a complete proof system
for this languageis given. We have also deweloped a more modern languagefor
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preferenced 3, and shavn that this languageis more expressie than Lp, while
having a proof systemwith a simpler completenesgroof.

In section 6.4, we have used preferencelogic in conmbination with a logic for
reasoningabout nite trees. This allows oneto reasonabout extensive games.
Again a proof systemfor this logic has beende ned, using techniquesthat are
standard in modal logic. The logic can be usedfor characterisingthe badkward
induction solution concept. An analysisof the examplevoting problem of chapter
4 shows that this logic is more expressie than efl .

The most important conclusionthat can be drawn from this chapter is that
modal logic, becauseso much is known about it, is a suitable tool for model-
ing game-theoreticreasoning. Possible future work would be to analyse other
solution conceptsas well, sud asiteration of dominarnt strategies,and the (not
subgame-grfect) Nash equilibrium. A more challenging project would be to
analyseimperfect information games. One sud attempt already exists in the
form of ATEL [103, also discussedin section7.5. Recern ATEL researb has
shown that reasoningabout imperfect information gamesis a challenging prob-
lem[3, 54,55, 109]. It would be interestingto comparethe ATEL approad, with
the more direct modal logic approad usedin this chapter.






Chapter 7

Kno wledge Condition Games

7.1 Intro duction

In the previouschapters, we have looked at protocolsthat canbe modelledasper-
fectinformation gameforms. In sud protocolsall ageris are aware of all previous
ewverts, and therefore no aspects of the current situation are unknown. In this
chapter the focusis on protocolsthat can be modelled asimperfect information
gameforms. Sud protocolsare interesting for at leasttwo reasons:

The imperfect information of ageris has consequencesf what strategies
they can use. Finding optimal strategiesfor imperfect information games
is thereforea more complex problem than for perfectinformation games.

The knowledgethat agerns do and do not have of the current situation can
be usedin the de nition of the game. Having certain knowledgecan be the
goal of an agert or a coalition of ageris.

In orderto study thesetwo aspectsof multi-agent protocols,we de ne a newclass
of games,called knowedgecondition games In a knowledgecondition game,two
coalitions of agens enact a protocol. One coalition strivesto read a certain
knowledge situation, and the other coalition tries to prevert the rst coalition
from reading its goal. In other words, one coalition \wins" if it is ableto forcea
certain condition to hold in the world, wherethis condition relatesto the know-
ledge(and absenceof knowledge)of the ageris in the game. Formally, we specify
the goalsituation (i.e., the condition that the ageris strive to achieve) using epis-
temic logic, and protocols are modeledasinterpreted gameforms with imperfect
information.

After de ning these gamesand illustrate using various examples,we focus
on the computational complexity of determining who wins a knowledge condi-
tion game under various assumptions. Speci cally the following questionsare
answvered.

127
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Whether the presenceof opponerts make it harder to determine the exis-
tence of a winning strategy in a knowledgecondition game

Whether winner determination is harder if oneassumedhat strategiesare
known to agens

Whether one can idertify variants of knowledge condition gamesin which
winner determination is tractable

The complexity resultsalsoallow oneto seewhetherreasoningabout knowledgein
strategic situations is indeeda complexproblem. The fact that we have collected
in this chapter many di erent complexity results shows that this is indeed the
case.

The structure of this chapter is as follows. In the next section, section 7.2
we have collectedall necessaryde nitions. Section7.3 provides four examplesof
knowledgecondition games. The rst exampleshovs how knowledge properties
are important in a voting protocol. The secondexampleinvolvesa more playful
quiz problem. It shows how signaling can erter into reasoningabout knowledge.
The third example,the RussianCards problem, is larger than the previoustwo
and hencethe correspnding knowledge condition gameis not easily solved by
hand. In the last example the use of a multi-step strategy for a coalition of
three agerts is demonstrated. Section 7.4 preseits four results relating to the
complexity of knowledge condition games. We prove the complexity of deciding
a knowledgecondition gamein which strategiesare known, rst for the restricted
casewithout opponerts, then with opponerts. Wethen do the samefor knowledge
condition gamesin which strategiesare unknown. Section 7.5 discussessome
related work, and section7.6 presens someconclusions.

7.2 Dening Knowledge Condition Games

In this sectionwe de ne how one can createa knowledgecondition gameG from
an interpreted gameform F. This is donein two de nitions at the end of the
section. Beforethesede nitions, we de ne epistemiclogic, gameforms, strategies
and updates, which are all neededin order to de ne knowledgecondition games.

The notion of an interpreted game form has beenintroduced in chapter 3.
In that chapter, only interpreted gameforms with perfectinformation have been
de ned. De nitions for imperfectinformation gameforms are given below.

7.2.1. Definition.  An interpreted gameform F is a tuple
F=( Htun; ;P;);

where:
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Figure 7.1: Interpreted gameform Fq

is a nite setof agens;
H is a non-empty, pre x-closed set of nite sequences;
turn is a function turn :Hnz(H) ! ;

foread X 2 therelation x H H isanequivalencerelation between
sequences;

P is a nite setof atomic propositions;and
:Z(H)! 27 returnsthe true atomic propositionsof any terminal history.
Thesecomponerts must satisfy the following condition:
if turn(h) = X andh® x hthen alsoturn(h9 = X and A(H;h) = A(H;h9.

(This de nition is adapted from Osborne and Rubinstein [79, p.200]). We have
extendedtheir notion of information setssud that agers also have information
whenthey arenot in charge,which is a not uncommonfor logical purposed15,98].

Atomic propositions can be usedto referto certain terminal histories, for in-
stanceto historieswherean agen achievesa certain goal. The ideaof annotating
end states or terminal histories with logical propositions has been used before
by Harrenstein et al [45] and the author [113. Approaches basedon temporal
logic [101, 102] often annotate all nodesof the model with propositions, so that
formulas can be interpreted anywhere in the model.

An exampleinterpreted gameform Fq is depictedin gure 7.1. In this exam-
ple, agent A can make a choice from two alternatives (numbered 1 and 2), one
of which satis es p. After this choice, A can distinguish thesesituations, but B
cannot.

For ewery interpreted gameform F we can calculatean epistemicmodel M =
m(F) represeting the knowledgein the end statesof F. We do this by taking all
the terminal histories of F asthe set of statesof M. The statesof the model M
are all outcomesof the interpreted gameform F, and two outcomesare related
in M i they arerelatedin F.

7.2.2. Definition. Let F = ( ;H;turn; ;P; ) be an interpreted gameform.
The end situation modelm(F) isde ned asm(F) = ( ;Z(H); %P; ) wherefor
eah agert X,  isthe restriction of x to Z(H) Z(H).



130 Chapter 7. Knowledge Condition Games

The transformation m is usedto expresswhen an interpreted gameform F
makesa formula true. The function m only usesthe epistemicrelation between
end states. The relations betweenother statesare howewver usedin the de nition
of uniform strategies.

7.2.1 Strategies

Strategiesare an important part of every game. Informally a strategy is a
function that tells all agents in coalition what to do next in the historiesthey
corntrol. We usenondeterministic strategiesfor our agers. Thesestrategieshave
beende ned in de nition 3.3.6 on page43. Sud a strategy doesnot return a
unique option that the agert should take, but it returns a set of options, with
the intention that the agen should randomly selectan elemen of this set. Our
strategiesare thus akin to the randomizedor "mixed' strategies,or more correctly
the behaviourl strategies of game theory [79, p.212], except that we do not
considerprobabilities of making particular choices. Sincewe deal with imperfect
information games,only uniform strategies, as de ned in de nition 3.3.13,are
considered.

For the exampleinterpreted gameform F, there are three di erent strategies

iag for agert A. The strategy can either tell the agen to take the rst option,
or it can prescribe the secondoption, or the strategy can expressthat the agen
should randomly choosebetweenboth options. Formally, these possibilities are
de ned by respectively {, () ="flg, 7,()="f2gand ?, ()="112g.

For any strategy  for an interpreted gameform F we can considera re-
stricted interpreted gameform F °in which the ageris X 2 only chooseoptions
that arepart of the strategy. The agernis Y 2 canstill do whatewver they want in
FC Sud a restricted interpreted gameform modelsthe situation in which coali-
tion is committed to the given strategy. The restricted model F°is computed
by an update function F°= u(F; ).

7.2.3. Definition. Let F = ( ;H;turn; ;P; ) be an interpreted gameform.
The update function u is de ned by

u(F; )=( ;H%tun®% °%pP; 9;
where:

HOis the smallestsubsetof H sud that 2 H%and for eath h 2 H%and
a2 A(H;h): iftun(h)2 ora2 (h)thenha2 H®

Oissuch that forall X: $= x \(H° H9Y; and

turn®and Care the sameasturn and , but with their domain restricted
to HC



7.2. De ning Knowledge Condition Games 131

An update of the example F, with strategy ?Ag does not changeanything:
U(Fo; {ag) = Fo. Anupdatewith , returnsamodel F; with only two histories:
and 1. This meansthat the epistemicmodel of F; only hasone state in which
p holds. Thus, using the interpretation of epistemiclogic (de ned on pagel16), it
holdsthat m(u(Fo; {44));1F Kap.

7.2.2 Strategic Games

The function G = kcg(F; ; ; ) de nes aknowledgecondition gamein which
wishesto achieve , while hopesto prevert it. The gameG is not an extensiwe
game,but a gamein normal or strategic form. It is not possibleto considerG as
an extensie game,becausewhether the knowledgecondition holdsis not a local
property of ea end state.

We are only interested in two-player, constart-sum, win-loss games,and in
thesegamesonly two payo vectorsare possible:(1;0) which is bestfor the rst
player, and (0; 1) which is best for the secondplayer. In thesegamesone can say
that an agent canwin if it has a strategy that guararteesthat the agens gets
utility 1. If the rst player canwin we write w(G) = 1.

7.2.4. Definition. Let G = (fA; Bg;fSa; Sgg; U) beatwo player constart-sum
win-lossgame. The winner function w is de ned by

W(G):l, QAZSASBZSB:U(A; B):(l,O)

7.2.3 Kno wledge Condition Games

A knowledge condition game is a two-player, constari-sum, win-loss strategic
game. It is played betweentwo coalitions and of ageris. Thesesetsmust be
disjoint, but not every agert hasto be in one of those sets. If an agent X 2
isnotin [ then this agen is said to be neutral. The agens in  are called
proponents and the agens in oppnents To de ne a knowledge condition
game,we must give an interpreted gameform F and an epistemiclogic formula

: The proponerts try to make this formula true on F, and the opponerts try to
make it falseon F. Formally:

7.2.5. Definition. Let F = ( ;H;turn; ;P; ) bean interpreted gameform,

; disjoint sets of agerts and 2 Lk a knowledge formula. De ne
keglF; ; ;)= (f ; ofS,;S,0,U) whereS,;S, cortain all nondeterminis-
tic strategiesof and in F respectively, and

(L;0) i Bw2W: (W, ;P; QwE
(0;1) otherwise

u ; )=

where( ;W; ;P; 9= m(u(u(F; ); ).
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Take the example gameform Fy and take o = Kgp. For the gameGq =
kcg(Fo;fAQ;;; o) we can compute a payo matrix. As calculated before, f Ag
hasthree strategies. The empty coalition only hasthe unique empty function f.
asa strategy.

1 2 3
fAg fAg fAg

f. 1(1,0)| (0,1) | (0,2)

We seethat for this game,f Ag hasa winning strategy (namely }Ag). Therefore,
w(kcg(Fo;TAQ;;; o)) = 1. In the above de nition, we usethe updated model
m(u(u(F; ); )) asamodel for what all ageris know. We have thus implicitly
assumedhat ewverybody commonly knows which strategiesare usedby and ,
r if oneassumeghat strategiesare somehav visible to other agens. As we have
arguedon page81 in the caseof perfect information games,this is a reasonable
assumption. It makessensdf oneconsidersstrategiesaswell-known convertions.
Also if a gameis played by computer programsthat are open for inspection, this
is a reasonableassumption. Finally, one can arguethat assumingthat no details
can be kept secretis a very consenative and thus soundassumptionif onetries
to prove the correctnessof security protocols. In somecircumstances,however,
one might not want to make this assumption. Therefore, we presen belov a
variant kcg® of knowledge condition gamesin which the knowledge formulas
is evaluated the original model m(F). The strategiesare usedto determine the
readable statesw and the proponerts win if in all thesestatesw, it holds that
m(F);w

7.2.6. Definition. Let F = ( ;H;turn; ;P; ) be an interpreted gameform,

; disjoint sets of ageris and 2 Lk a knowledge formula. De ne
kedAF; ; ; )= (f ; 9fS;S gU) whereS and S cortain all strategies
of ; in F respectively, and

(3;0) i 8BwW2W: m(F);wF
(0;1) otherwise

u ; )=

whereW isdened by ( ;W; ;P; )= m(u(u(F; ); )).

The di erence betweenkcg and kcd lies in their respective utilit y function.
The function U ewaluatesthe formula in the model m(u(u(F; ); )), in all
states. The function WP evaluatesthe formula in the model m(F), thusin the
model beforeupdates. This di erence re ects the ideathat in kcg, strategiesare
commonly known, whereasin kcgf they are not known. The function U° only
evaluatesthe formula in statesw that occur in m(u(u(F; ); )). The idea
hereis that the truth of only matters in statesthat are actually readed, and
which statesare reatable dependson the strategieschosen.
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7.3 Examples

7.3.1 Anon ymous Voting

A voting protocol canbe usedwhena group of agens hasto make a joint decision
onacertainissue. A commonprotocol is majority voting: Ead agert canvote for
an option and the option that getsthe most votesis the outcomeof the protocol.
In the exampleinterpreted gameform Fy = ( ;H;turn; ;P; ), three agers A,
B and C usemajority voting to decidewhether a plan P should be acceptedor
not. Thus = fA;B;cgandP = fa;b;c;pg. Each agent hasto choosefrom two
actions: support the plan (s), or rejectit (r). They vote in alphabetical order,
so rst A choosesbetweenaction s and r, then B (without knowing A's choice)
chooseseither s or r and nally C doesthe same,unaware of what A and B

did. This protocol thus haseigh terminal histories. The proposition p indicates
whetherP is acceptedand p holdsif at leasttwo agers chooses. Furthermorethe
proposition a holdsif A choosess, bif B choosess and the samefor C with ¢. The
interpretation function isthus (sss) = fa;b;c;pg; (ssr) = fa;b;pg::: (rrr) =

;. We assumethat s 6 x s?if s and s®di er in the evaluation of the outcomenp,
or if the vote of X diers in s from that in s°

The following gameresults hold.

w(keg(Fv;fA;Bg;fCg;p) = 1
w(kcg(Fyv;fA;Bg;fCg;Kgc_ Kg: () =1
w(kcg(Fy;fBg;fCg;Kgc_Kg: ) =0

A and B together canensurethat p is true, by both voting s. They can alsovote
di erently, sothat a and : b result. In this casethe outcomewill solely depend
on C's choice. They thus learn what C voted. Agent B cannotlearn what C did
on its own.

One example, descriked by Scneier [89, p. 133],is a voting protocol where
B would have the option of copying A's (encrypted) vote. In that caseone might
get

w(kcg(FQ;fBg;fA;Cg;Kga_Kg: a) =1

This is an unwanted property and thus a "bug' in the protocol. It is necessaryto
reasonabout knowledgeto expresshis bug, soa standard game-theoreticanalysis
might not have revealedthis shortcoming.

7.3.2 Fift y-Fift y Problem

Considerthe following scenario:

In a TV quiz shov the quiz master asks a candidate the following
guestion: Which day of the week comesdirectly after Tuesdg? Is it
a) Monday, b) Wednesdy, c) Friday or d) Saturday. The candidate
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Figure 7.2: The ft y-ft y problemFq

hasno clue whatscewer about the days of the week,and replies: "I am
not sure. Can | do ft y-ft y?'. The quiz master hasto remove two
optionsthat arenot the answer, sohesays: "Theanswer is not Monday
and neither Friday'. Doesthe candidate now know the answer?

This situation frequerily occurson televisionin seeral Europeancourtries in the
"Millionaire shav'. One can also considerthis situation to be a metaphor for a
multi-agent information exdangesituation. One canmodel this in an interpreted
gameform Fq = ( ;H;turn; ;P; ). The setof agerts is = fN;Q;Cyg,
involving an agert N (Nature) that determineswhat the right answer is, a quiz
masterQ that eliminatestwo answers,and a candidateC. This interpreted game
form is depictedin gure 7.2. First Nature selectsone of the answersto be the
right answer: It can choosefrom the actions 1;2;3 and 4. The quiz master,
who knows the right answer, can then selectan action ij that indicates that
the two optionsi and j are eliminated; i andj must be di erent from the right
ansver. The terminal histories are thus all histories (k;ij ). For sud histories,
(k;ij) ¢ (k%99 if the sameoptions are eliminated: ij = i§°% The setof atomic
propositionsis P = fa j 1 | 4 fe j 1 i 49, and ead terminal
history is interpreted in the following way: ((k;ij )) = fax; &;€g9. The question
is whether the candidate knows the answer at the end of the protocol. This is
expressedby = Kca; Kca, Kcasz_ Kcas. The following table lists sewral
properties of this situation.

Nature may favour the candidate: w(kcg(Fq;fNg;;; ) =1
Nature may not favour the candidate: w(kcg(Fq;fNg;;;: ) =1
The quiz master can help the candidate: w(kcg(Fo;fQg;;; )) =1

We thus seethat whether the candidate knows the answer depends on Nature
and on the quiz master Q. If Nature usesa deterministic strategy, in which for
instancea; always holds, then the candidate knows that this is the right answer.
Howe\er, if Nature usesthe nondeterministic strategy in which ead answer could
be the right answer, the candidate will not know the answer.
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Figure 7.3: The updated interpreted gameform u(Fq; fqq)

The situation becomesmore interesting if the quiz master gets involved. In
this gamethe quiz master hasthe ability to signal the right answer to the candi-
date. Consider,for example,strategy qg4, de ned asfollows.

tqg(1) = 23y
tqq(2) = f34g
rqg(3) = f14g
fog(4) = f12g

This strategy tells the candidate exactly what the right answer is: The answer
directly before the two eliminated options (assuming4 comesbefore 1). The
updated model u(Fq; qg) IS givenin gure 7.3. This strategy acts as a code
betweenthe candidate and the quiz master. It is the strategy that provesthat
w(kcg(Fo;fQg;; ;) = 1. A practical conclusiononecandraw is that oneshould
not bet on this quiz if one doesnot know what the interests of the quiz master
are.

This examplealso demonstrateswhy we prefer to assumethat strategiesare
commonlyknown. If onewould have usedthe alternative de nition kcg® in which
agers do not know what strategiesare used,then one can obtain the following
results.

Nature cannot favour the candidate: w(kcg(Fq;fNg;;; ) =0
The quiz master cannot help the candidate: w(kcg(Fq;fQg;;; )) =0

These results are courter-intuitiv e, since signaling in gamesis a phenomenon
that does occur in practice. When proving the security of a protocol, it is a

good principle to make the weakest assumptionspossible. At rst sight, it seems
that assumingthat strategiesare not known is the wealest possibleassumption.
Howewer, in the caseof proving ignorance, rst sight can be misleading. It is

harder to prove that the candidate does not know the answer when he or she
knows all strategiesthat are used,than it is to prove ignorancewhen he or she
doesnot know the strategies. Therefore,the wealkest and safestassumptionis to

assumethat he doesknow the strategies. This shaws that it is bestto usethe

de nition of kcg rather than the alternative kcg for theseignoranceproofs. This

motivatesthe choiceto make kcg the default and call keg® the alternative.
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7.3.3 Russian Cards Problem

The Russiancards problem rst appearedin the Russianmathematicsolympiad
in 2000[106]. It hassubsequetty beenpicked up by logiciansas an example of
a information basedsecurity. An informal description, taken from [104, is the
following.

From a pad of seven known cardstwo players ead draw three cards
and a third player getsthe remaining card. How canthe playerswith
three cards openly (publicly) inform ead other about their cards,

without the third player learning from any of their cards who holds
it?

Following the analysisby Van Ditmarsch [109 we call the ageris A, B and C
and the cards 0;1;2;3;4;5 and 6. The interesting thing about this problem
is that certain solutions to this problem appear sound, but are not sound. A
solution to this problemis a joint strategy for A and B that prescribeswhat they
should comnunicate to eat other. We are mostly interestedin direct exdhanges:
statemerts by A sud that B directly learnsall of A's cards. Agernt B canrespond
by telling A which card C has. Assumefor the momert that the actual deal of
cardsisthat A holds0;1and2, that B holds3; 4 and5andthat C holds6. Instead
of reasoningabout completestrategiesfor A and B ,we settle for idertifying which
statemens by A for this situation van can be part of a strategy. Here are some
solution attempts. Imaginethat the next public statemeris are madeby agert A
sothat all ageris can hearit.

| have 012 or 345: This statemern is true and whentaken literally it doesnot
tell C anything about a single card. Unfortunately A canimaginethat C
holds card 5. in which casethis statemert would reveal A's cardsto C. So
A cannot make this statemen safely

| have 012 or | have none of these cards: A knowsthat C cannot pinpoint
any card after learning this statemen. Unfortunately C can reasonlike
this: SupposeA has345. In that caseshecannot excludethat | hold card
2. If | had card 2 | would know that B holds card 0 and 1. Alice would
newer allow me to learn that. Contradiction. By this line of reasoningshe
can eliminate all possibilities except012.

| have 012, 034, 056, 135, 146 or 236 This is an exampleof a statemen A
can make.

In this sectionwe de ne a knowledgecondition gamecorrespndingto the Russian
Cards problem. This approad can be comparedto previous attempts using
epistemicmodel cheking and dynamic epistemiclogic.
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We introduce a set of agenis = fN;A;B;Cg and a set of cards D =
f0;1;,2;3;4;5,69. A nice way to use propositions for this problem is to use a;
to indicate that agert A holds card i, and similarly for b and ¢.. The set of all
dealsof cardsallowed in this problem s

= fabgdefjgjf a;b;c;d;e;f;gg=10;1,2,3;4,5,6g" a< b< crd< e< fg

For a deal abgdefjg, the cardsof A are a;b;c, agent B ownsd;e;f and C holds
card f . We can thus say that in a situation with deal 0133456, the following
formula holds: ag ™ a1 a, » by by by ™ Cs.

An interpreted gameform

Frc = ( ;H;turn; ;P; )

can now be de ned as follows. As indicated above, we take = fN;A;B;Cg.
The setH is described by

H=1f; ;(;x)j 2 ;x2f0;1,2;3;4;599

The variable x is usedto indicate a symbol that A comnunicates publicly to
B and C. In the examplesabove, this symbol wasa sertencesud as\l have 012
or 345". In a knowledgecondition game,it is su cient to useabstract symbols.
The agerts B and C know when A usesa signal x, and thus the meaning of x.
We have chosento allow only six di erent signals. It is not obvious beforehand
whether six signalsis enough,but we will answer this questionlater.
The function turn is de ned sud that turn( ) = N andturn( ) = A for all
2 . The equivalencerelations are de ned sud that ageris know their on
cards, and the action selectedby A. Thus the following de nition applies,where
X canstand for any agen, h for any elemen of H, and x for any signal.

h6yx h° if khk 8 kh%
abgdefjg 6 » aXc§d%¥ §g° i(ab;c)6 (%KD
abgdefjg 6 g aYd%e* 4g° i(d;ef)6 (d®e*f9
abgdefjg 6 o aXc§d%e¥ §g° i g6 ¢°

((abgdefjg); x) 6 o ((aPCIdEX §g9;x) i ( a;b;ic;x) 6 (%1% x9
((abgdefjg);x) 65 ((aVCIdeX Gg9;x%)  i( d;e;f;x) 6 (d%€%f5x%9)
((abgdefjg); x) 6 ¢ ((aYCId%¥ §g9:x%)  i(gix) 6 (059

h x h° otherwise

For the set P of propositions, we take P = fa;;h;gji 2 f0;1;2; 3;4,;5; 690.
The function isde ned as (((tuvjwxyjz);s)) = fa;;a,;ay; by, b by; c,9. Thus
in the situation (0123456; 1) the propositions ag; a;; ay; bs; by; bs; ¢ hold.
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The knowledge goal of this problem can then be expressedby conjunction
bknavs” cig. The positive part bknows expresseghat at B knows the deal of
cards. A

bknavs= (b ! Kghi)
i2D
The secondpart cig expresseshat C doesnot know for any card who holds it.

We call this a negative knowledgerequiremert, or an ignorancerequiremen.
N

cig= (:Kca”:Kch)

i2D

We can now solwe the Russiancards problem by nding a strategy that ful lls,
for a suitable model F, the following question.

w(kcy(F;fA; Bg;; ; bknans” cig)) = 1
We can verify that there are strategies = a4 Sud that
w(kcg(F;fA; Bg;; ; bknavs” cig)) = 1

One sud strategy is the following

02 (abgdefjg) i abc2 012 034 056 135 146 236 2459
12 (abgdefjg) i abc2 f013 026 045 125 146 234 3569
22 (abgdefjg) i abc2 014 025 036 123 156 246 3459
32 (abgdefjg) i abc2 f 015024 036 126 134 235 4569
42 (abgdefjg) i abc2 f016 023 045 124 135 256 3469
52 (abgdefjg) i abc2 012 035 046 136 145 234 2569

It followsthat \I have 012,034,056,135,146,288 245" is a safestatemert for
A to make when she has one of these setsof cards. Another conclusionone can
draw is that in the RussianCards problem, a vocabulary of six di erent signals
is su cient for A to comnunicate its hand safelyto B.
Note that the strategy described above is nondeterministic. For certain hands,
agert A has a choice of two actions. For instance (01Z3defjg) = f0;5g and
(146defjg) = f0; 1g. It is necessaryfor A to make truly random choices,and
not simplify its strategy by always goingfor oneaction in thesecases.To seethis,
supposethat agert A would decidethat it doesnot useaction O if another action
is available, and supposethat the card deal is 05§1243. In that caseagert A
would useaction 0, and C would know that A canonly have card deals034, 056,
135,236, 0r 245. SinceC hascard 3 itself, it candeducethat the only card deals
that A can have are 056 and 245. Therefore C knows that A must have card
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5. When using this strategy, A should therefore make a geruine random choice
betweenthe two available actions, for instance using a coin ip.

Other strategiesfor A are deterministic. One deterministic strategy, that re-
quiresat leastseendi erent signals,is the strategy ,, descriked by the following
formula.

»(abgdefjg) = f(a+ b+ c) mod 7g

The ideais that agert A announceshe sum of its cardsmodula 7. For instance
if A hascards024it shoulduseaction 6. When C hearsthat A haschosenaction
6, it candeducethat A hascards024,015,123,256 or 346. In casethat C has
card 6, it would know that A haseither cards024,0150r 123, but doesnot know
for any speci c card that A hasit. Thuswe know that there are deterministic as
well as nondeterministic strategiesfor agent A.

In the existing literature it was already proven that the statement \I have
012,034,056,135,146,286 245" can be made. In Van Ditmarsch's paper [104 all
statemerts that canbe usedwhenA holds012are given. Howewer Van Ditmarsch
doesnot presen a completestrategy, and indeedit is not trivial to comeup with
a set of six statemers that cover all possible card combinations of agen A.
Thus knowledge condition gamesis a suitable framework for seartiing detailed
strategiesfor situations sud asthe RussianCards problem.

7.3.4 Comm unication Example

In this examplefour agens are commnunicating to ead other. The ageris take
turns in sendingout a messagea single bit in this example. Not all ageris can
seeall messagesagert A canonly seewhat signalD sends,B what D sends,C
can seewhat signal A sends,and D canseewhat B and C send. The problemis
that B would like to know what messageC sends.

In order to model a situation with four comnmunicating agens, we de ne an
interpreted gameform Fc = ( ;H;turn; ;P; ) with the following componerts.

=fA;B;C;Dg
H = f ; a;ab;abc;abcda;b;c;d 2 f0; 199
P =fpg
The function turn is de ned by

tun ()= A
turn(a) = B
turn(ab = C
turn(abg = D

wherea;b;c 2 f0; 1g.
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The equivalencerelations arede ned by the following equations. In these
equations,X canbe any agen, and a;b;c;d and their primed courterprats
can be either O or 1.

h 6 x hYf khk 6 kh%
abcd , aBcy ad= a%d°
abcd g a4 bd= b
abcd ¢ abcts ac= a%®
abcd p atd becd= B

abc y ath ab® y a¥c0
ab y ath a0 y ato

a x ai a000 x a®oo

(akld) = fpg and (akod) = ;

>Fom the de nition of the equivalencerelations oneseeghat A canseewhat D
does, B can seewhat D does, C can seewhat A does,and D can seewhat B
and C does. Also, agerts can remenber their own action, and they can seeall
messageshat are sert.

In order to comeup with a knowledge condition game, we assumethat the
three ageris B; C and D act asateam. The goalis to make B know what action
C selects. It is not hard to seethat the three agens can do this: D can copy
the messagef A. Agent B can seethis copiedsignal, and therefore knows what
C hasdone. In order to make this example more interesting, we add another
requiremen: We assumethat the coalition of agenis doesnot want A to know
what messagé& sends.Sinceager A canalsoseewhat agent D does,the copying
strategy sketched in this paragraphno longerworks. The three agers must use
a more complicated coalition strategy.

The knowledgegoal descrilked above consistsof a positive and a negative part:
agernt B must gain someknowledgeabout C's action, and agert A must not gain
knowledgeabout C. This complexgoalis descriked by the following formula

= (Kgp_Kg:p": (Kecp_Kc:p

Note that the proposition p correspndsto C's signal.

The questionis whether the three-agemn coalition has a strategy that makes
this goaltrue. In terms of knowledgecondition gameswe thus would like to have
an answer to the following question.

w(kcg(Fc;fB;C;Dg;fAg, ) =1
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The answer to this questionis \y es". The following strategy gcp is a successful
strategy in this knowledgecondition game.

sco(a) =f0; 1g
sco(ab =f0; 1g
sco(abg =fQjb= cg[ f1jb6 cg

This strategy is nondeterministicin the rst two steps,but deterministic in the
last step. Agert B, who knows its own action, can deducefrom D's action
whether the proposition p holds. Agent A cannot do this, sinceit doesnot know
what B hasdone. It is necessaryfor B and C that they make a nondeterministic
choice,otherwiseA could deducewhether p holdsfrom knowing the strategy that
is used.

7.4 Computational Complexit y

Looking at computational complexity is interesting for two reasons. First of
all it tells whether a certain problem is “tractable’, i.e. whether the problem
can be solved in practice. Secondly it can tell you more about the problem.
It can tell you for instance whether somethingis a very generalproblem (i.e.,
whether the problem format can be usedto formulate questionsabout many
di erent situations, sud aslogic), or what featuresmakesa problemdi cult. In
this sectionwe look at the complexity of the kcg decision problem which is the
problem of decidingfor a gamekcg(F; ; ; ) whetherthe rst coalition hasa
winning strategy. We look at this problem under various assumptions,and report
four theorems,as follows:

The rst theoremis concernedwith the problem of decidingwhethera coali-
tion canwin a knowledgecondition gamewith an empty setof opponents.
This is called the no-oppnents knowledge condition game decision prob-
lem. It turns out that this problem is already NP-complete, and thus not
tractable.

The secondtheorem states that the generalkcg decisionproblem is even
harder: with opponerts the problemis ,P-complete.

For the other theoremswe use the alternative version of knowledge condition
gameskcdf.

In the third theoremwe claim that the no-opponerts kcg® decisionproblem
is as hard asthe generalproblem.

Both problemsare NP-complete,which is the fourth theorem.
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In this chapter, we encale interpreted gameformsin an explicit way, by listing
all histories. In practice protocols are often speci ed in an implicit way (for in-
stancein someform of sourcecode) and sud represemations canbe exponertially
more e cien t.

7.4.1. Theorem. The problemto decide for givencoalitions F; and formula

whetherw(kcg(F; ;;; )) = 1is NP-complete.
Pr oof. Assumethat F; ; aregiven. The empty coalition hasonly onestrategy
.. This strategy is sudh that u(F; .) = F. Therefore
w(keg(F; 555 =1, 9 m@uF; )F

A nondeterministic polynomial algorithm for this problem exists. Find or guess
nondeterministically a strategy . Sincea strategy encalesa subsetof actions
available in F, the sizeof is smallerthan the sizeof F and thus polynomial
in the input size. Now calculate M = m(u(F; )), and verify for ead state w
of M that M;w F . The number of statesin M is at most the number of
terminal historiesof F, sokMk kFk. All of this can be donein polynomial
time. Therefore,this problem can be solved using a nondeterministic polynomial
algorithm and this problemis in NP.

In order to show that the restricted kcg problem of the theorem s as hard
as any NP problem, we shav that any instance of the 3SAT problem descriked
on pagg 30 can be transformed into an equivalert restricted kcg instance. Let

3 = " (a _h _ g) be a propositional logic formula in conjunctive normal
form with three literals per clause. The literal formulas a;; b; ¢ must be either
atomic propositions or negatedatomic propositions. We can construct an inter-
preted gameform F with a singleagert = fAg and a formula sud that
w(kcg(F;fAg;;; )) = 1lifandonlyif 9S: SE 3.

The model F = (fAg;H;turn; ;P; ) is constructedin the following way.
Let P2 be the set of atomic propositions occurring in 3. The new set of atomic
propositions P cortains two propositions for any old proposition: P = fx*jx 2
P3g[ fx jx 2 P3g. For eah new proposition a history is created: H = f g[
fejp 2 Pg. The interpretation function is sud that only the correspnding
atomic proposition is true: (g,) = fpg. Furthermore turn( ) = A. Agert A
cannot distinguish any end state: e, a €, for all terminal historiese, and e.

The formula = 17 ,isaconjunction of two parts. The part ; expresses
that for ead original atomic proposition p 2 P3, either the positive proposition
p"is consideredpossil:;!eor the negative p , but not both:

1= (Map™ _Map )" 1 (Map™ A Map )
p2pP3

The idea s that the strategy that A usesis actually an assignmen of valuesto
all atomic propositionsin P3. The condition ; expresseshat suc assignmen
must assigneither the truth value true (p*) or false(p ) to ead proposition p.
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Figure 7.4: The model of 3SAT formula

\%

The , part encalesthe original formula 3= ~.(a _h _ g). In the next
de nition we usea helper function f de ned suchthat f (: p) = p andf (p) = p*.
Using this function we de ne B asfollows.

N

2= Ma(f(a) _f(h)_f(c))

It is not hard to seethat any strategy ag sud that m(u(F; tag)) F 1" 2
correspndsto an assignmen S sud that p2 Sif and only if p* 2 ¢x4( ), and
that this assignmenh satises S F 3. Sincethe formula and model constructed
have sizesthat are linear with respect to the sizeof 2, this is a polynomial re-
duction. Therefore, the restricted kcg problem is NP-hard. Sincewe have also
shown that the problemis in NP, we concludethat the restricted kcg problemis
NP-complete.

As an example,considerthe satis abilit y of the 3SAT formula = (p_:q_
r)~ (: g_: p_r). This formula cortains three propositions, sothe correspnding
interpreted gameform, depictedin gure 7.4, cortains six terminal histories. The
correspnding knowledgeformula is ¢ .

k = (Map® _Map )™ 1 (Map® » Map )?
(MaQ" _Maqg )" (MaQ" ~ Maq )"
(MAI’+ _ MAI’ )A . (MAI’+ A MAI’ )A
Ma(P" _q _r")"Ma(q _p _r")

A typical NP-completeproblem s to determinewhether a propositional logic
formulais satis able. Suppose is aformula with atomic propositionsxs; Xo;::: Xp.
We canthuswrite = (%) wherethe vector x consistsof all the x;. The sat-
isfaction problem can now be phrased as deciding whether 9% : (%). In the
sameway we canformulate moredi cult problems,by allowing more quarti ers:
9y8x : (%;¥) is the problem whereone hasto decidewhether there is an x suth
that (3;¥y) istrue for all y. This problem, called SAT ,, isatypical ,P complete
problem [81, ch. 17]. It is widely beliewed, but not proven, that theseproblems
are strictly more di cult than NP-completeproblems.
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P Y Y Y gt g g

Figure 7.5: The construction of the ,P proof

7.4.2. Theorem. Deciding for givenF; , and whetherw(kcg(F; ; ; )) =
1, is ,P-completeproblem.

Pr oof. First we have to prove that this problemis indeedin ,P. In order to
do this, considerthe winning condition of a knowledgecondition in more detail.

w(keglF; ;3 D=1, 9 8 m(uu; ) NF

Supposethat F; ; and are given. It is possibleto encale strategies of
as assignmets to a vector of propositional variablesy, and the strategy of
as assignmets to x. One can then nd a formula (%;¥) that is true if

m(u(u(F; ); )) E . The sizeof this formula is polynomial in jFj + | j.

The kcg decisionproblem is equivalent to a SAT , problem:

w(keg(F; 5 ; ) =1, 9x8y: (x¥%

Deciding whether 9x8y :  (%; ), is a SAT, problem, and is thusin ,P.

The secondpart of the proofis to shaw that the kcg decisionproblemis indeed
completefor this class,and this can be done by reducing SAT, to a knowledge
condition game. The proof is similar to the previous NP-completenessproof,
but now involves two ageris. Assumethat a SAT, prop)em Oy8x . (% y) is
given. We can assumethat is in 3SAT form: = (& _h_g). First
we de ne an interpreted gameform F = ( ;H;turn; ;P; ). Let = fA;Bg,
and Z(H) = f(a;b)j9i;j - a= x{ ora= x;;b=1y" orb=y, g The setH
contains all histories of Z(H) and all pre xes of these histories. The function
turn is de ned sud that A moves rst, and then B moves: turn( ) = A and
turn((x; )) = B. Therelations A and g areequal,and de ned sud that eadh
agert only knows the length of eat history: s A s°, jsj = js. The set of
propositions P of the kcg problemis fz"jz 2 (x[ wg[ fz jz2 (¢[ y)g. The
function isdened by (a;b = fa;bg. This completesthe de nition of the
interpreted gameform F. The number of terminal historiesof F is 2j%j 2jyj, and
thus the sizeof F is polynomial in the sizeof the input problem.

Wedene =fAgand = fBg. Next, wede ne an epistemiclogic formula

sudh that can win the gamekcg(F; ; ; )i 9%8y : (%¥%). Let =
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B ( AnMf( (¢y). Thepart B expresseshat the strategy of B corresmpnds
to an assignmento y. The part * expresseshat the strategy of A correspnds
to astrategyfor x. Finally, f ( (3¢;¥)) isatranslation of the input formula (¢; ¥).

N

® = ‘ ((MBYJ‘+ _ Mgy, )" (MB(yj+ Nyi))

J
A\

h= . (MaX{ _ Max; )™ o (MA(X ™ X))

|
N

f( 06y =f( | (a_h_qc)= | (f(a) _f(h) _f(c))

The function f is de ned suc that f(: p) = p and f(p) = p". The size
of islinear in the sizeof . Therefore, this is a polynomial reduction. This
completesthe proof that the knowledgecondition gamedecisionproblemis ,P-
hard. Sinceit is alsoin ,P, we concludethat the problemis ,P-complete.

The construction of a model F is illustrated in gure 7.5. This is the model that
you would getin the reduction of (; ¥) wherex cortains p and g and ¥ consists
of r. The model is again relatively small: only two actions happen in eadh play
of this interpreted gameform. The rst oneis decidedby agen A, the second
oneby B.

In the two previous proofs, it is essetial that the ageris are aware of the
strategiesthey choose. Both constructionswould not work with the alternative
de nition kcg’. One can hope that the computational complexity of the kcg?
decisionproblem would be lower. Indeed one can prove that in this caseit does
not matter whether there are opponernts.

7.4.3. Theorem. Assumethat F; , and aregiven. w(kcAF; ; ; ) =1
i wkedF; ;;; N =1

Proof. Let G = kegf{F; ; ; ) be a kcd® decisionproblem. Notice that the
goal of coalition is to choosea strategy  sud that UY ; )= (0;1), where

W is the utility function of the game G. Since UW° is de ned using universal
guarti cation over the set of terminal historiesof u(u(G; ); ), the bestthing
to do for coalition is to make surethat this setis aslarge aspossible.In order
to achievethis,  shouldchoosethe neutral strategy that allowsany action: The
strategy with (h) = A(H;h). Sincewe have assumedhat neutral agers can
do any action, we might aswell assumethat the agertis X 2  are neutral, and
determinethe value of the gamew(kcd{F; ;;; )) = 1.

We seethus that the presenceof opponerts is not relevant, and indeedin ATEL
no distinction between opponerts and neutral agens is made. The questionis
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now whether solving the kcg decisionproblemiis still ashard asthe original no-
opponerts kcg problem. The answver is yes. The no-opponerts kcg® problem is
alsoNP-complete. Howeer, the proof is di erent in an interesting way.

7.4.4. Theorem. Deciding for givenF; and whetherw(kcd{F; ;;; )) = 1,
is an NP-completeproblem.

Pr oof. We can prove that this problemis in NP by a similar argumert asgiven
for theorem7.4.1. For the hardnessresult we againshowv a reduction from 3SAT.
Assumethat *= " (a_h_g) isapropositional formulain conjunctive normal
form with three literals per clause. Let P32 be the set of atomic propositions
occurring in - 3. We de ne an interpreted game form betweentwo agers: an
agent Q that asksquestions,and an agent A that answersthem. The proponert
coalitionis = fAgandQ isassumedo be neutral. Every terminal history is of
the form (p;b;i; x), wherep2 P3, b2 f0;1g,i 2 f1;2;:::;ngandx 2 fa;;h; co.
The rst action p is chosenby agernt Q and must be oneatomic proposition of 3.
The agent A must then reply by giving a booleanvalue b. This indicates what
truth value A hasin mind for p. Then agent Q chosesonetriplet (a; _b __¢) that
appearsin 3. Agent A then hasto choosewhich of thesethree parts it thinks
should be true: either a or h or ¢,. The trick howewer is that A, is de ned in
sud a way that for all historiesh and h® agert A only knows the length of the
histories: h 5 h%i jhj = jhY.

A doesnot know, whenmakingits nal decision,which answer it hasgivenon
its rst turn. The agern thus risks giving inconsistert information. For instance
in the history (p;L1;(: p_qg_r);: p) agert A rst says that p is true, and then
says that it thinks that : p holds. The goal of agent A in the gameis to avoid
these inconsisten histories. We let P = feg consist of one proposition and
de ne for all p 2 P2 the interpretation function sud that ((p;1;i;: p)) = feg,

((p;; 0;i; py)) = fegand ((p;b;i; X)) = ; otherwise. One can now considerthe
knowledge condition gameG = kcg{F;fAg;;;: €). Agert A canwin the game
G i thereis a satisfying assignmen for 3.

The proof given above is very similar to a proof given by Sdtobbens [9]] for
the NP-completenesof ATL with imperfectinformation. This corroboratesour
claim that this variant of knowledge condition gamesis closelyrelated to ATL
and thusto ATEL. The proof exploits the fact that in gameswhere coalitions do
not have perfectrecall, it is very di cult for ageris and coalitions to coordinate
their own actions.

7.4.1 Tractable Variants

In the previous section we proved that, in general,the kcg decisionproblem is
not tractable. In this sectionwe identify someeasiercases.
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7.4.5. Theorem. LetF be an interpreted gameform with perfect recall, any
coalition of agentsand an epistemicformula. Deciding whetherw(kcgqF; ;;; )) =
1 can be donein polynomial time.

Proof. LetM = ( ;W;R;P; )= m(F) bethe end state model of F. We can
computethe setS=fw2 W jM;w E g in polynomial time. De ne a utility
function U sudh that U(w) = 1i w2 S andU(w) = 0 otherwise. The pair F;U s
now an extensive gamewith perfectrecall. The optimal solution for this game
can be computedin polynomial time [58]. If the expectedpayo of is exactly
one,then w(kcd{F; ;;; )) = 1, otherwisew(kcg{F; ;;; )) 6 1.

For perfect recall frameworks and the variant kcg® the decisionproblem is thus
tractable. One might wonder whether the sameclaim can be madefor kcg. The
answver is no, becauseonecan modify the NP-completenesgroof for kcgin sud a
way that it usesa perfectrecall interpreted gameform. The modi cation is that
onehastwo agens, A and A° sothat A is the agen that choosesa strategy, and
Alis the agert that cannot distinguish end states and occursin the knowledge
condition. In generalone can always nd a perfectrecall interpreted gameform
that is equivalent for the kcg decisionproblem by choosinga freshagen for eah
decisionnode, and usefresh agerns in the knowledgecondition.

Instead of asking whether there are interpreted game forms F that make
decisionproblemseasy one can alsoask whether there are easyformulas . The
answer to this questionis yes. To seehow this works, we rst formulate the
notion of positive formulas and negative formulas formulas.

7.4.6. Definition.  For any p 2 P, the formula p is both positive and negative.
Falsum ? is also both positive and negative. If is positive and is negatiwe,
then ! is negative. Vice versa,if is positiveand is negative, then !

is positive. If  is positive then Ky is positive.

Positive and negative formulas are both called monotone formulas, becauseone
can prove that they presene truth in the following way. Supposethat M =
( ;W, ;P; YandM°= ( ;W% °P; 9 aremodelssud that W® W and °©
and ©are the restrictions of and to W% In this casewe say that M%is a
submadel of M. Suppose * is a positive formula, and  is a negative formula.
Then the following statemens can be proven.

M;wiE *  implies MewfE *

MCw implies M;w [
The proof of these statemernts is done by induction over the formula structure.
The interesting step involves the knowledge operator. Supposethat M;w
Kx *. By de nition this meansthat 83v2 W :w x v =) M;vE *. Since
WZ0is a subsetof W, this meansthat 8v2 W%:w $ v =) M;viE *. Using
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the induction hypothesiswe obtain 8v2 W w % v =) MC%vE * andthus
M O;W F K x *,

Knowledgecondition gameswith monotoneformulas are easierto solve than
generalknowledgecondition games.

7.4.7. Theorem. The problemto decide for givenF; , anda monotonefor-
mula whetherw(kcg(F; ; ; )) = 1 can be solve in polynomial time.

Pr oof. We prove the casewhere is a positive formula. The argumen for
negative formulas is similar. Recall that by de nition, w(kcg(F; ; ; )) = 1
i 9 8 8w2 W it holdsthat m(u(u(F; ); ));wpE whereW is the set
of worlds in the model m(u(u(F; ); )). Since is a positive formula, we
know that m(u(F; ));wpE impliesm(u(u(F; ); ));wpFE . The bestthing
for coalition to do is to use a strategy that does not eliminate any action.
They should usea neutral strategy ° sud that u(F; °) = F. This strategy is
descriked by °(h) = A(H;h).

For coalition things are exactly opposite. Supposethat ! and 2 are
strategiesso that ! is more specic than 2. Formally, this meansthat 8h :

Y(h) 2(h). The monotonicity of implies that m(u(F; ?));w E  implies

m(u(F; 1));w E . Coalition thus does best be choosing the more speci ¢
strategy !. For coalition we thus only have to considerthe most specic
strategies. Thesemost speci ¢ strategiesare what onecan call pure, becausdhey
selectexactly one action at ead decisionpoint. A badkward induction argumert
can be usedto show that there are as many pure strategiesfor F asthere are
terminal historiesin F. We cantry all pure strategies P to seeif one satis es
8w : m(u(F; P);w . This givesan algorithm that needstime O(kFk* k k).
The rst kFk is causedby the fact that we needto considerall pure strategies.
The remainingterm kKFk k k is the time neededto determinewhether for all w
it is the casethat u(M; P);w E . The decisionproblem can thus be donein
polynomial time.

For negative formulas the rolesof and are interchanged. For a negative
formula , coalition canusethe neutral strategy °. The opponert coalition
should now try all pure strategies P.

7.5 Related Work

Knowledgeconditions gamesare gameshasedon epistemiclogic, that canbe used
for modelling gamesabout knowledge. This makesthem very similar to the logic
ATEL [102,103. This logic is an extensionof epistemiclogic with operatorsto
talk about group abilities and time. It is basedupon ATL, discussedn chapter
2.
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The languageof ATEL cortains temporal operatorssimilar to CTL and know-
ledgeoperators. The temporal operators are always precededby an agen oper-
ator.

7.5.1. Definition. Let beasetofagers, andP a setof atomic propositions.
The logic ATEL cortains formulas generatedby the following rule. In this rule,
p is a typical elemen of P, X 2 and

=pj ! j? Wi Ky
=2 j U

This logic is interpreted over alternating epistemictransition systems. Theseare
de ned astuples (P; ;Q; ; ; ). AsusualP isa setof atomic propositionsand
asetof agerts. The setQ is a setof statesthe systemcanbein,and :Q! P
adds propositions to thesestates. For any agent X the relation x Q Qs
an equivalencerelation, and : Q I 22° assignsto eah agert in ead state
a set of setsof states. Each agen can chooseoneset of states,and the next state
of the systemwill be from that set.
An example would be a system where Q = f0;1;2;3;4g. Suppose that
(0; X) = ff 1;2g;f3;4ggand (0;Y) = ff 1;3g;f2;4gg. Agert X cannow choose
f1,2g and Y can choosef 2;4g. They make these choicessimultaneously The
next state of the systemwill be 2, becausehat is the only commonstate in their
chosensets. It is necessaryto put someconstraints on sothat a next state can
always be chosen.
The interpretation of this logic usesthe notion of strategy to interpret the
coalition operator tn ii. A strategy for is any function that makes a choice
(X;0) 2 (g;X) forany agert X 2 in any state g2 Q. Basedon a strategy
, onecan de ne the set of possiblewalks W( ) through Q sothat all choices
for ageris X 2 are madeasrecommendedy the strategy. This set of walks is
usedin the following interpretation of ATEL.

M;gF ? newver

M;gqE pwherep2 P i p2 (V)

M;qF ! i M;gF impliesM;qF
M;qF Kx i 8(qd)2 x: M;dF

M;gqE i i 9 8w=vwvii2W( ):M;wE
M;wpE 2 i 8n>0:Q;w(n) F

M;wEg U i 9m> 0:M;w(m)E and

8m> k> 0:M;w(k) F
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A main advantage of ATEL over kcgis that ATEL extendstemporal logic, and
canthus be usedto expressdi erent kinds of goalssud as eventually adieving
something,or avoiding somestate forever. When this logic was presened it was
reported that the logic hasa low model chedking complexity [104. Unfortunately
this only holdsif oneallows strategiesthat are not uniform (seede nition 3.3.13).
If one demandsuniform strategies,model chedking becomesNP-complete, even
without using the knowledgeoperator [91]. Another point of discussionfor this
logic is the fact that the existenceof a strategy, usedin the interpretation of
h ii , is a very weak condition. One can comeup with situations were HXii
holds but onewould not expect X to achieve [54, 55, 109. Thus, it seemghat
the interpretation of this logic still needssomesorting out, and indeed ATEL
currertly receivesa lot of researt attention [3, 87).

Knowledge condition gamesis a less versatile veri cation framework than
ATEL, becausekcg does not allow complicated temporal reasoning. Only the
special caseof knowledgeat the outcomestageof the protocol is studied. Know-
ledge condition gamesalso do not allow for concurrert moves. This has the
advantage that knowledge condition gamesare easierto understand, and that
the complicationsthat arise in the interpretation of ATEL do not arise in the
context of knowledgecondition games. An interesting di erence between ATEL
and kcg is that in kcg nondeterministic (and hencearguably \ric her") strategies
are used,whereasATEL usesdeterministic strategies.

One can also compare knowledge condition gamesto variants of dynamic
epistemiclogic, described on page 54, sincedynamic epistemiclogic allows rea-
soning about the e ect of actions on the knowledge of agerts. Indeed the quiz
master problem is inspired by Van Ditmarsch' analysis of the Russian Cards
problem [106].

7.6 Conclusion

By combining protocols and knowledge conditions into games,one can express
properties of multi-agent protocols relating to security and secrecy In a know-
ledgecondition game,onecanmake ne distinctions betweenfor instanceneutral
and opponern ageris, and one can give exampleswherethis distinction is signif-
icant. Therefore,thesegamesare a promising direction for future researt into
the interaction betweenknowledgeand strategies.

The complexity results reported in this chapter draw an interesting picture.
There seemsto be a computational cost for assumingthat agers know strate-
gies. The single agert decisionproblem is already intractable. The presenceof
opponerts makesit even harder to compute whether a coalition can guarartee
a property. If we drop this assumptionand reformulate the notion of winning a
knowledge condition game, then the extra complexity of adding opponerts dis-
appears. Howewer, the problem without opponerts is still NP-completeand thus
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intractable, but for di erent reasons. The complexity proof is no longer based
upon formulating a di cult knowledgeformula, but on the hardnessof coordi-
nating in an interpreted gameform without perfectrecall.

Future researt could focus on comparing decision problems for knowledge
condition gamesto other game-theoreticdecisionproblems,in order to establish
what exactly the complexity cost is of consideringknowledge goals. It would
also be interesting to nd out under which assumptionsknowledge condition
gamescan be solved in polynomial time. Other directions include looking at
knowledgecondition gamesfrom a logical viewpoint by searting for axioms,and
to considerthe medanismdesignproblemto nd an interpreted gameform with
given properties.






Chapter 8

Entrop y and Priv acy

8.1 Intro duction

Information is valuable,and thus ageris do not always want to give it away. Both
organisationsand individuals often want to keepcertain information private. At
the sametime they might want to act upon it. Doesthis reveal the information?
In this chapter we study how ageris should act if they want to maximize their
utilit y, while at the sametime not giving away too much information. Unlike
the previous chapter, in this chapter we do this basedon explicit probabilities.
We de ne two classesf gamesin which the utilit y for ead agert doesnot only
depend on the payo of the chosenaction, but alsoon the information properties
of the strategy used. These gamesare called minimal information gamesand
most normal gamesand might be applied to the following situations.

Supermarkets and e-commerceshopsregisterwhat is bought by ead of their
customers. Customersknow this and even assistin this processby using
so-called’bonus cards' (Alb ert Heyn) or “club cards'(Tesco). Newertheless,
many customersare worried about their privacy. They would prefer it if
the shop knew lessabout them. Customerscan do somethingto minimize
the knowledge of the shop. First of all they can make their shoppingless
regular (i.e. randomly buy items sothat the shopis not surewhich products
the customeractually uses). Secondly they can sign up for more than one
card(accoun) or swap cardsbetweenead other. On the Internet, deleting
cookiesat random intervals and using a di erent IP number can have the
samee ect.

In a secondprice auction it is optimal to bid exactly as much asyou think
the item is worth [63]. Howewer, you might have spent a lot of time to
estimate the value of the item, soyou do not want to reveal your estimate.
Sinceyour bid hasto be public, it seemghat you might do better by bidding
slightly random. By modeling this asa minimal information game,onecan

153
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compute how one should randomise. A similar argumen applieswhen you
sendout an arti cial agen to do your shopping. If the agen is sent over
an insecurenetwork, ewveryone can inspect the sourcecode and thus the
bidding strategy of the agert. You might not want to sendan ager that is
exactly optimal for your preferencesin order to hide your preferences.

Many public placesare now monitored by closedcircuit television systems.
If you cometo one sud placeregularly, the cameraattendants learn a lot
about your habits and thus about you. You feelthat this is a bread of your
personalprivacy, and decideto hide your habits by changingyour behaviour
often, for instanceby goingto di erent shopsin a di erent order every time.
This situation can alsobe modeled asa minimal information game. Again
one can translate this exampleto the domain of arti cial ageris and the
Internet.

Considernow the caseof a criminal who warnts to stealfrom a shopguarded
by a closedcircuit televisionsystem. Hewarts to look like a regular shopger,
but hasdi erent goals. He thus wants to behase sothat he can steal the
most, while at the sametime appear to be a normal shopper. This can be
modeled as a most normal game.

As the similar setting of the last two examplessuggest, minimal information
gamesand most normal gamesare related to ead other. From these examples
it should also be clear that we assumethat the strategiesthat agers use are
publicly known. This assumptionmakesour results stronger (if you have privacy
while your strategy is public, you will have even more privacy whenyou can keep
your strategy secret).

Privacy hasreceiwed a lot of attention from economistsand in legal settings.
Somekey sourceshave beencollectedon a website [1]. The work in this chapter
di ers from theseeconomicpapersfor two reasons.First of all we only deal with
personalinformation privacy, whereasthe word "privacy' alsohasother meanings.
The seconddi erence is that thesepaperstry to explain the needfor personal
privacy in terms of economicutilit y. Odlyzko for instance relates privacy and
price discrimination [77]. It is assumedherethat privacy is a fundamernal value,
that is not instrumental to any gain. Privacy itself is a good causethat can be
enjoyed directly.

Distributed constraint optimization techniquescan be usedby agers to solwe
coordination problemssud as sdeduling a meeting at the most suitable time
and place. In theseapplications agens have to reveal information on their pref-
erencesfor the meeting, but this information is also privacy-sensitie [33, 67].
In this application domain there is alsoa trade-o betweensolution quality and
privacy, and this can also be modeled using entropy [33. Thus, privacy-related
researt certainly haspractical applications and it would be interesting to study
thesefurther. Therefore,we agreewith Mahesvaran and others' [67] “call to arms
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to improve privacy protection algorithms and further researt on privacy'. The
results of this chapter can be seenas a responseto this call, sincethe strategies
that are deweloped in this chapter can be usedwithin privacy protection algo-
rithms. For examplethe agert in the examplesin section8.7 usea randomised
strategy, computed using the results of this chapter, in order to make it as hard
as possiblefor obsenersto learn their preferences.

The gamesde ned in this chapter usea soft (probabilistic, quartitativ e) ap-
proach towards information. They deal with probabilities explicitly, and can
make subtle distinctions betweenpossible,likely and almost certain events. This
soft approat can be cortrasted to the hard approad (discrete, qualitative) of
logic and model cheking. When taking a hard approad in protocol analysis,one
is only interested in what is possibleand what not, with a complete disregard
for the relative likelihoods of di erent outcomes. Both the soft and the hard
approad have been used for multi-agent systems. The use of epistemic logic
to understandthe gameof Cluedo [104 is an exampleof the hard approad, as
well as other logical approadesto reasoningabout knowledge and knowledge
change [6, 9, 32, 102, 115]. Receh work on privacy preserving auctions [18]
and work on the Dining Cryptographer problem [19] or the RussianCards prob-
lem[106,112]canalsobeclassi edas hard'. At the sametime thereis somework
on reasoningabout uncertainty [43, 60] that conbineslogic and a soft approah
to information. The soft approad is more detailed than the hard approad, be-
causeit givesexact probabilities. In certain circumstancesthis is an advantage.
The hard approad can tell us that agens do best by randomising their strat-
egy but doesnot indicate the exact probabilities of an optimal strategy. On the
other hand the higher level of abstraction of the hard approad makesit easier
to interpret the results.

A quartitativ e approad, basedon information theory, can also be usedto
look at natural languagepragmatics. Seefor instance the ongoingwork by Van
Rooij [116]. Another way to useerntropy in a game-relatedsetting isin a searting
gamesud asMastermind [59].

In this chapter, the focus is on strategic games,whereasin most previous
chapters of this dissertation we use extensive games. The reasonis that it is
quite complicated,starting with the notation, to do a similar exercisgor extensiwe
games.lt is alsonot necessary:An extensive gameis a more detailed description
of a strategic game, so the results of this chapter can be applied to extensiwe
games.

The layout of this chapter is as follows. Section 8.2 descrikes a detailed
example problem. The next section, section 8.3, introduces basic information
theory notions sud as ertropy. In section 8.4 we de ne minimal information
games,and calculate the best strategiesin these games. In section 8.5 we do
the samefor most normal games. Section 8.6 shaws that these conceptscan be
usedfor de ning new solution concepts. As application is discussedin section
8.7. Finally, the conclusionsare preseited in section8.8.
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8.2 Example

The following problem senes as an example. Alice (agert 1) needsto buy one
box of breakfast cerealsevery week. Every week sheis facedwith the following
choice: whether to buy Allgrain (A), Barley (B) or Corn akes(C). Alice is not
indi erent to which brand she eats. In fact shelikes A better than B and B
better than C, asis indicated by the following matrix of utilities.

acton| A | B | C
utility | 3.0 2.0| 1.0

If Alice is solelyinterestedin maximising her expected utilit y, sheshould buy
A ewery week. Howewer, Alice knows that the shop is watching her shopping
behaviour closely and sheis concernedabout her privacy. Shedecidesthat the
decisionthat shemakesshould be private, and shecan achiewve this by ipping a
coin and letting her decisiondepend on this coin ip. This way the shopcannot
predict her decision.

Alice rst attempts to usethe following random strategy.

action A B C
probability | 0.98| 0.01| 0.01

If Alice usesthis strategy, then the shop doesnot know anything about her
decision: All three actionsmay occur with positive probability. At the sametime
her expectedpayo is still very high, becausdahe suboptimal actionsoccur with a
very low probability. Problem solved, soit seems.But this is not the whole story.
Eventhough the shopdoesnot gain any knowledge,it doesgain information from
this strategy. If the shoplearns, from repeated obsenation, that Alice usesthis
strategy, then it is quite certain that shewill buy A. The shophas gained quite
a lot of information. Therefore,the indicated strategy is not the right strategy if
one analysesthe situation using information theory.

Onecanarguethat no newtypesof gamesare needed pecausenecancapture
Alice's wish for privacy in the utilit y function of somemodi ed pure or mixed
strategy game. This is not the casebecausean thesegamesthe utilit y of strategies
is determinedsolely by the utilit y of singleactions: The utilit y function must be
of the form U = ,p(a)u(a), wherep(a) is the probability of action a, and u(a)
the payo of this individual action. Privacy and uncertainty are not reducibleto
certain individual actions, and thereforeno suitable pure or mixed strategy game
can be found.

A more sophisticatedidea is to model privacy by adding an extra player G
that tries to guessAlice's actions. In sud a game,Alice would gain a high payo
by randomisingher actions, and thus optimal strategiesfor this gamewould also
be privacy-preservingstrategies. The following payo matrix givessud a game.
The parameters ; ,; 3;and 1; »; 3 areall positive.
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Gn Alice A B C
A 1,30 1 0;2:0 0;1:.0
B 0; 3.0 2,20 0;1.0
C 0;3.0 0;2:.0 ;10 3

This strategic game,in which both ager choosetheir strategy independerily at
the sametime, hasbeendesignedsud that agen G hasincertives ; to choosethe
sameaction as Alice, while Alice receivespenalties ; if G has guessedher next
action correctly. This gameis thus arguably a good model for a situation in which
A warnts privacy. It is howewer not clearhow oneshould estimateall the variables
that oneneedsfor this larger game. Theseconsiderationshave corvinced us that
it is easierto treat privacy asan independen aspect of an agert's utilit y.

8.3

Information theory is the eld of sciencethat dealswith the measuremen of in-
formation [2§. It hasapplicationsin signal processingcomnunication networks,
cryptography and error correction codes. In this chapter we useinformation the-
ory, and its certral notion entropy, to estimate the amourt of information in
strategies. Strategieswill be modeledas stochastic variablesranging over a nite
set of actions, so we de ne erntropy over stochastic variables. The entropy of a
stochastic variable is the amourt of randomnessn, the disorderof, or uncertainty
about the value that the variable will take. The conceptof entropy was intro-
duced by Shannon[95, and it is widely seenas the most natural measurefor
information [28§. We de ne the following function f (x; y), that is helpful for the
de nition of entropy. Let Ig be the base2 logarithm.

Information  Theory

8
<0 ifx=0andy =0
f(x;y)= 1 if x> 0andy=0
xlgy ifx Oandy>0

For a discreterandom variable X we de ne the erntropy E (X ), which is measured
in bits, in the following way.
E(X)= f(p(X =Kk);p(X = k))

k

This de nition of ertropy does not work for cortinuous random variables. A
di erent de nition for cortinuous variables also exists [95, p. 35], basedon in-
tegration rather than summation. Sincethis is slightly more complicated and
cortinuous random variables are not usedin this chapter, the details are not
discussedhere.

A random variable X with valuesin the domainf1;2;:::; mg can be speci-
ed by giving a vector of length m with the probabilities of ead value: (p(X =
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Figure 8.1: The function E((x;1 X))

represen the available actions. A requiremert for probability measure®on stochas-
tic variablesis that the probabilities should add up to 1. We can thus only use
vectorsx that indeedadd up to 1, soit is corveniert to de ne the set of all these
vectors. The setde nition of the setP™ from page40 is repeated here, and we
alsode ne Q™ asthe set of nonzerovectors.

X
m=fx 2 [0;1]"] xi = 1g

X
QM =fx2 (0;1]"j x = 1g

The set P™ cortains all vectors of length m that add up to 1, and Q™ cortains
all vectorsthat add up to 1 and do not take the value 0. The setQ™ is important
in someof the proofs, but often we work with the more generalsetP™. We can
apply the notion of ertropy to probability vectorsx 2 P™.

X
E(x) = f (Xi; Xk)
K

In gure 8.1the function E((x;1 X)) is displayed (here we apply the function
E to a probabilty vector (x; 1 x) that dependson a variable x 2 [0; 1]). Thus
the gure showsthe enropy of a two-valued random variable (y1;y2) = (X; 1 X)
, Where x is the probability of the rst action, and 1 x the probability of the
secondaction. As you can seethe ertropy in the two pure strategies, namely
(1;0) and 0; 1 is zero. The ertropy is maximal if both actions are equally likely,
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at (0:5;0:5). In the cortext of strategies,a strategy with a higher ertropy leaves
obsenerswith more uncertainty, and thus givesthe agen that usesthat strategy
more privacy. Below we give v e examplesof ertropy. The example strategy
vectors can all be seenas strategiesover three basicactions. A strategy (a;b;c)
contains the probability a of selectionthe rst action, b for the secondaction and
c for the third.

E ((1=3; 1=3; 1=3)) = 1:585bits
E ((0:5; 0:25; 0:25)) = 1.5 bits
E((0:5;0:5;0)) = 1 bit
E ((0:98,0:01; 0:01)) = 0:161 bits
E((2:0;0;0)) = 0 bits

Pure strategies, in which only one action gets a positive probability, have an
ertropy of zero bits. The entropy function is bounded. It cannot be negative,
and avector x of length m canhave at mostan ertropy of lgm. It hasthis ertropy
if all the ertries x; are equalto 1=m, thus if the vector represeits a stochastic
variable with a uniform distribution.

The secondideathat we usefrom information theory is relative entropy [28].
The function E"®(x; y) canbe usedto comparetwo probability vectorsx;y 2 P".
The underlying idea s that E"®(x;y) measureshow much di erence one would
notice if probability vector x is usedinstead of y for selectingactions. In order
to compute this di erence, we add up the di erences for eat action k. The
probability x, correspndsto the probability that action k is chosen,given that
strategy x is used: xx = P (kjx). Similarly y, = P(kjy). UsingBayes'law onecan
calculatethe relative likelihood of strategy x instead of strategy y whenobserving
that action k is chosen: P (xjk)=P(yjk). Assumingthat the a priori probabilities
P(x) and P (y) are equal, one can derive that this is X =Y.

P(xjk) _ P(x\ K)P(K) _ P(kix)P(x) _ P(Kjx)
P(yik) ~ P(y\ P(k)  P(kiy)P(y)  P(kjy)

This obsenation is the motive behind the following de nition.

X
E0Gy) = f (X Vi)
k

The function E"® almost behaves as a distance function or metric. It is never
negativeandonly zeroif x = y. It alsosatis esthe triangle inequality. It isin nite

if for somek it is the casethat xx > 0 and y, = 0. The only di erence between
this function and a distancefunction or metric is that E"® is not symmetric. In
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marny casesE"®(x;y) 6 E"®(y;x).

E"¢((0:5; 0:5); (0:75; 0:25)) = 0:2075bits
E"®((0:75, 0:25); (0:5; 0:5)) = 0:1887bits
E'el((0:9;0:1); (0:75; 0:25)) = 0:1045bits
E"¢l((0:75; 0:25); (0:9; 0:1)) = 0:1332bits

If x hasa higher ertropy than x° then on averagefor a random vectory it is the
casethat E"®(y;x) < E"®(y;x9. It is harderto notice a di erence betweeny and
a high erntropy vector x than to notice a di erence betweeny and a low erntropy
vector x°

8.4 Minimal Information Games

The next de nition of a minimal information gameaimsto capture the following
situation. Agerts choosea mixed strategy with two goalsin mind. First of all,
they want a high payo. Secondly they want privacy. They feelthat they have
more privacy if others are more uncertain about the action they will choose,and
thus they prefer strategieswith a high entropy. These gamesthus model the
situation where ageris have a fundamenal desirefor privacy.

We have to specify how the agent would like to trade privacy against payo .
This is governed by a parameter > 0 that indicates the value of privacy. It
expressehow much expectedpayo the agen is willing to trade againsta bit of
privacy. The higher , the morethe agen valuesprivacy.

8.4.1. Definition. Let Abeam; my::: m, multi-matrix and > 0. The
minimal information gameMi (A) isatuple ( F‘,f Sg ;U)where =1f1;2;:::;nq,
the strategy setsare Sy = P™ and U*(s) = sfAX(s)+ E(s")

The parameter regulateshow much all the agens value the fact that there
is uncertainty over their next action. If we would allow = 0, then the game
becomesa mixed strategy game: Mi°(A) = Mx(A). As approadesin nit y, the
actual payo becomeslessand lessimportant. It would have been possibleto
choose dierently for ead agen, but this would have madethe de nition less
clear.

As an example,we considerthe shoppinggamefrom the introduction. This
gamehasonly one agen, that hasthree options A; B; C with respective payo s
3;2;1. The optimal strategiesfor the minimal information gamewith di erent
valuesof is givenin the next table. It alsolists the utilit y of s that the agen
would get in the mixed strategy game Mx(A) for the given strategy s and the
utilit y that the agen would get in the minimal information gameMi (A).
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| m P2 Ps Mx(A) Mi (A)
0:1/0999 4 10°> 2 10° 3.0 3.0
0510876 0:117 0:.015 2:852 3:168
1.0 | 0:665 0:244 0:090 2575 3775

The bestpayo that the agen cangetis 3:0 by only choosingthe rst action.
Howewer this would result in no privacy, becauseif everybody knows that the
agen usesthis strategy, then any obsener knows beforehandwhat the agert will
do ewery week. For a low value of the utility of s in Mi (A) is very closeto
this optimal value of 3. For higher values, the averagepayo without ertropy
becomeslower. We could call this the cost of privacy. From the table we can
seethat if the agen valuesprivacy at one unit per bit ( is expressedn units
per bit) then the agent doesbestby paying 0:425in order to obtain 0:775bits of
privacy.

The questionis of coursehow we can calculate the strategiesthat maximize
the utilit y in minimal information games. For the linear functions of the mixed
strategy gamesthis is a solved problem, but for more complicatedfunctions, such
as the utilit y function of a minimal information game, this can be di cult. In
the next theoremthe solution for this optimisation problem is shown.

8.4.2. Theorem. Let Mi (A) be a minimal information gameand s a strategy
pro le. The setb*(s) is a singletonf by suchthat

2 'AX(s)
h = PW
k2 Tk

Proof. Let Mi (A) = ( ;fSxgx. ;U) be a minimal information game. We
have to prove that the set b* (s) cortains one elemen, and that that elemen is
descriled by the givenformula. We rst show that all points in b* (s) are interior
points. Then we derive an equationthat any bestresponsemust satisfy, and shav
that this equation hasa unique solution, namely the onegiven in the theorem.

Let n be the number of actions that agent X can choosefrom. Take any
vector x 2 Sy and assumethat x 2 P" nQ". We are going to showv that
there is a better vector ¥, and thus % is not a best response. There is some
i sud that x; = 0 and somej sud that x; 6 0. We will shov that there
is some sud that ¥ = [[x i; ] ;% ] is a better vector: UX([s x;¥]) >
UX([s x;%]). To show this, note that the utilit y function UX is cortinuous and
di erentiable. Note further that —-U*([s x;%]) = +1 and TjUX ([s x;X%]) <
+1 . Therefore, for suciently small , the gain from raising x; outweighsthe
potertial lossfrom lowering x;. Therefore, for su ciently small we have that
U ([s x;¥]) > U([s x;%]) andthusx 2 b* (s).

Now supposethat b2 b*(s). We know that b2 Q". Takei;j 2 f1;2;:::;mg
astwo di erent indices. Sincebis optimal, it shouldnot be possibleto increaseU*
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by increasingh while decreasindy, and thereforefor any optimal point it holds
that U ([s x;H) = U ([s x;H). Wecanusethis asastarting point for the

following link of equations. First we compute the derivative —hUX ([s x;h).

—bUX([S x i bl) =

X
_h( hA (s x;B)+ EM) =
j

Al (s) + _h(E(b)) =

AX(s)+ ( lgh Ige) =
Al (s) lgh lge

Using this derivative one can reducethe equation given above in the following
way.

—mb([S x ;b)) = —hUx([S x ; bl) ;

A’(s) lgh=Af(s) Igh ,
AX(s) AX(9)= lgh Igh .
AK (s) b

A R

Sinceb 2 P" it holds that b sumsup to P b = 1. Forany b2 h(s) onecan
nd somepositive constart csud that b = ¢ 2 A 1t now follows from the
above eql&tion that for LY b it is the casethat i = c2 AT (9 We can now
calculate b =1=c ,2 A&® andthusweknow that 1=, 2 "A®),
Thus, we have proven that there is a unique point b2 b* (s) which satis es the
equationin theorem8.4.2

8.4.3. Theorem. Every minimal information gameMi (A) hasa Nash equilib-
rium.

Pr oof. Letf bethe function fromS; ::: S,t0S; ::: S, that returnsthe
strategy vector with the best responsesfor ead ager. Thus, f is the function
that for eat x returns the unique point f (x) sud that f (x) 2 b(x). The previous
theoremshawsthat this is a cortinuousfunction. The setS; :::S, istopological
isomorphic to someclosedsphereB™. We can now use Brouwer's xed point
theorem, which tells us that ewery cortinuousfunction f : B™ I B™ must have
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a point x with f (x) = x [4]. We thus obtain a strategy vector x with f (x) = X,
and thus a point x sud that x 2 b(x). This point is a Nash equilibrium.

This proof is related to Nash'soriginal proof that Nash equilibria exist in mixed
strategy gamesby the fact that both theoremscan be proven using Brouwer's
xed point theorem. The di erence howewer is that the mixed strategy games
havelinear payo functions. Minimal information gamesdo not have linear payo
functions, soin this proof the xed point theoremis usedin a di erent way.

The two theoremsof this section,theorm 8.4.3di er in their constructiveness.
Theorem 8.4.2 gives a concreteway to compute optimal responsesin minimal
information games. This theorem can therefore be applied immediately. Indeed
we have usedthe result formula of this theoremto computethe optimal strategies
in the table on page160. Thus one can immediately apply this theoremin order
to decidehow to act, or to predict how others will act, in situations that can
be modelled as minimal information games. Indeedin section 8.7 we apply the
theoremagainto nd strategiesfor agers.

Bach or Stravinsky

Theorem8.4.3is not immediately applicable,becauseat doesnot tell onehow one
should nd a Nash Equilibrium. It is thus not constructive in a practical sense.
Howewer it is important to know that a Nash equilibrium exists, sincethis can
be a strong motivation for nding one. In the next examplewe usethe following
bi-matrix A for de ning a two-personminimal information game.

2,1 0,0
0,0 1,2

This matrix is often usedin a game called Bach or Stravinsky[79, p. 16]. The
story behind these payo s is that both agens can decide where they want to
go tonight, either to a Bacdh concertor a Stravinsky concert. Both ageris enjoy
eat others compary, and hencethey receiwe zeropayo if they do not goto the
sameconcert. The rst agen prefersBach and thus experiences2 units of value
when both agert choosethe rst option. The secondagen valuesBach at 1 and
Stravinsky as 2.

Since we are interested in privacy, we assumethat both agens value their
privacy. Hencewe de ne a minimal information gameMi (A), where = 0:5. As
we have seenin theorem8.4.2it is optimal for agens to randomizetheir behaviour
somehav. Theorem8.4.3tells usthere is at leastone Nash equilibrium. We have
usedcomputer seard to nd onefor the stated value of

Agent prob. action 1 prob action 2
1 0.148 0.851
2 0.042 0.957
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One canseethat in this Nashequilibrium Stravinsky is the most likely outcome.
Both agens choose action 2 most often. Howewer they do not do this with
absolute certainty, in order to leave someuncertainty for obseners. The exact
probabilities aredi erent for both agens sincethey have slightly di erent payo s.

85 Most Normal Games

So far we have discussedthe situation in which the ageris try to protect their
privacy against an opponert interestedin their next action. In this sectionwe
look at another situation, in which agens try to hide their preferences. It is
assumedthat an averagestrategy for ‘normal’ usersis given. One agert howeer
hasdi erent preferencesrom the normal users,but doesnot want to beidenti ed
as not normal. Therefore, the agen is searding for a strategy that appearsas
normal as possibleand maximizesits payo at the sametime.
We approad the problemin exactly the sameway aswe have approadedthe
rst problem. We de ne most normal gamesMn (A) that dependon a parameter
expressinghow important normal behaviour for the agen is.

8.5.1. Definition. Let Abeam; my::: m, multi-matrix, let > 0, and
let t be a strategy vector for the gameMx(A). The most normal gameMn (A; 1)
is a tuple ( ;ﬁSX g;U) where = f1;2;:::;ng, the strategy setsare Sy = P™Mx
and UX(s) = sfAK(s)  E™I(sX;tX)

The parameter againdeterminesthe trade-o betweenselectingactionswith a
high payo and acting normal.

8.5.2. Theorem. LetMn (A;1) be a mostnormal gameand s a strategy pro le
for this game. The setb* (s) is a singletonf by suchthat

1pX
g2 Ae

h=F

2 A

Pr oof. Let Mn (A;t) be a most normal game,s a strategy prole and X 2
anagen. Supposethat b2 bX (s) is the bestresponsefor agert X andlet i beone
of B's actions. If t; = 0 and b 6 0, then the relative entropy becomesn nite,
and the utilit y thus in nitely low. This cannot be optimal, thus if b maximizes
the utility, then t; = O implieshh = 0. Thus, in this casethe optimal point is not
an interior point. It follows that if t; = 1, then for any optimal strategy b we
must have b = 1.

Considernow the casewheret; > 0. We calculatethe derivative of the relative
entropy function.

X

—hEreI(b;tX) — _h b(lgt|x lgh) = Igh + Ige Igt,X
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We seethat if b > 0 approades zero, then this derivative becomesnegative
innit y. If b is su ciently small, then we would lower the utilit y UX ([s x;1]) by
decreasindy further. Therefore,for any optimal value of b, it cannot be the case
that t; > Oand b = 0.

Sincewe have showvn that t; = 0 implies b B 0, it remainsfor usto nd the
optimal vector in the spaceS = fb2 [0;1]"j b = 1~ (t = 0! b = 0)g.
The previousargumert hasshown that bis an interior point of this setS. Sud
points can only be optimal if —QUX (s x;h) = WUX ([s x ;b)) for any pair i; j
with t;;t; > 0. The next computation will showv that there is a unique point
satisfying this condition. Sinceany cortinuousfunction on a closeddomain must
have a maximum, this point b will maximizeagen X's utilit y in the normal form
game.

First we calculate the derivative.

—mb([S x; bl) =

AX (s) —hEre'(b;tX) =
Af(s) (gh+Ige Igtf)=
Af(s) lgh  Ige+ gt}

Now nd the points b wherethe derivatives —DUX and FUX are equal.

—hUX([Sx;b])— —hUX([SX;b]) '

Al (s) lgh + Igt{ = Af(s) lgh + gt .
lg(h=k) lg(t* =t) = AX(s) AX(s) :
h X2 AN
h 2 WO

P
Againwecanchoosecsudthat b = ct*2 "A'® andshavthat = X2 "AK®),
This leadsto the next formula.

1AX
2 ATe

h =

ETEER

This formula givesush = 1if t; = 1,andh = 0if t; = 0. Therefore,this formula
givesus the optimal strategy for any normal form game.
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Discussion

One consequencef the theorem s the following obsenation. If a certain action
i is not consideredby normal agerts (t* = 0) then the non-normal agert should
not consideraction i either (b = 0). If one had useda hard, logical approat
one could have reathed the sameconclusion. In the most extreme caseone can
considerthe casewherenormal ageris usea pure strategy. In that casethe non-
normal agen hasto usethe samepure strategy. If the non-normal agen values
all actions equally, he alsodoesbest by copying the normal strategy. In all other
casesthe best strategy for the non-normal agen is dierent. Apparertly the
agen doesbest by always taking somerisk and getting a higher utilit y.

8.6 Equilibrium Re nemen ts

By introducing minimal information gameswe have introduced a gamewith a
new kind of utility function. For small valuesof the gameMi (A) is very
similar to the mixed strategy gameMx(A). One can, with someimagination, see
a Nash equilibrium x of Mi (A) asa solution of Mx(A). In that case,onehasa
new solution conceptfor mixed strategy gamesMx(A). Sud a solution x of some
gameMi (A) is not a Nash equilibrium of Mx(A), but an appraximation of it.

How good this approximation is dependson the parameter . We cande ne a
Nashequilibrium by letting approad zero. This way, we cande ne a ‘minimal
information' equilibrium.

8.6.1. Definition.  The strategy prole x is a minimal information equilib-
rium of Mx(A) i there is a sequence ;; »;::: of positive numbers sud that
limj; ;= 0,asequences; X,;::: sud that x; isa Nashequilibrium of Mi '(A)
andlimj; X = X.

8.6.2. Theorem. Every mixed strategy gameMx(A) hasa minimal information
equilibrium.

Pr oof. De ne the sequence ;; ,;::: by ; = 1=i. This sequencecorverges
to zero. By theorem 8.4.3 eadh game Mi '(A) has some Nash equilibrium ;.
The strategy spaceS; ::: S, is aclosedand boundedsubsetof R™ for some
m. Therefore, sinceany closedand bounded subsetof R™ is compact [12]] we
derive that ewery sequencen S; ::: S, has someconverging subsequence.
Let X1;X5;::: be a converging subsequencef yi;y,;::: and let x be the limit
of limj); X;. Let 4; »;::: bethe correspnding subsequencef ; ,;::: SO
that x; is a Nashequilibrium of Mi ' (A). When approadesin nit y, the utilit y
function of Mi (A) corvergesuniformly to the utilit y function of Mx(A). Since
X;i is always maximizing ead ageris utilit y in Mi ' (A), it must be the casethat x
maximizesthe utilit y of Mx(A) for eat agert. Therefore,x is a Nashequilibrium
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of Mx(A).

Every minimal information equilibrium is a special caseof a proper equilib-
rium as de ned by Myerson, and thereforeit is also a trembling hand perfect
equilibrium [72). Thesere nements can thus be motivated (if one wants to) by
an appeal to privacy minded agens. Perhapsthere are other applications where
oneneedsa responseconceptthat selectsinterior solution points, for instanceto
avoid division by zero. In that casethe minimal information bestresppnsesseem
suitable.

8.7 Telecom Network Example

Modern technology allows governmeris and other large institution to closelyob-
sene the movemern of individuals. In the introduction we mertioned closed
circuit televisionsystems,but it is alsopossibleusing mobile telephonenetworks
and in the near future RFID tags. In this sectionwe therefore assumethat an
obsener can monitor the behaviour of agerts in a small part of a city. Three
di erent scenarioshave beenimplemerted in a visual computer simulation, that
allows the user to take the role of the obsener. The user can try to idertify
what group agerts belongto basedon their behaviour. The ageris have been
programmedto optimize their behaviour using the optimal strategies of theo-
rems 8.4.2 and 8.5.2. Explicit strategiesthat are basedon thesetheoremsare
for instance given in table 8.7 on page 169. Di erent agers value their privacy
di erently and thususea di erent valuefor . It takesmoretime to spot agerts
that usea highervalueof , sothe useof optimal strategiesfor privacy protection
is e ective in making life harder for an obsener. Howeer if the obsener hasno
time constraints, it can ultimately identify all ageris.

The simulation is available asa Java applet on the world wide web, at the ad-
dresswww.bluering.nl/sieuwert/programs/priv acysim/simprivacy.html. One can see
seeral agens walking betweentheir homeand se\eral shops. The simulator cur-
rently contains three levels. Each level is a new puzzle or challengeto the user.
The user can seeall agerts, and monitor which placesthey visit. The useralso
knows what groups of agerts exist, and what the preferencesf ead group are.
The goalis to guessthe group of ead agen.

All agens useoptimal strategiesfor hiding their preferences.One might say
that the agens know that they are being watched, and act in order to make it
di cult to identify to which groupthey belong. In other words, the agerts act asif
they are playing a minimal information gameor a most normal game. The agens
are howewer not in competition with ead other, but act independenly. Below
we quickly descrile the settingsof the rst two levels. For the third level a longer
description is given, in which the strategiesusedby the agers are descriked in
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Figure 8.2: Sim Privacy

details.

Level 1: Rich or Poor

The rst level shows part of a city with two shops. One shopis a cheap shop,
the other oneis an expensiwe shop. Two groupsof ageris live in this city, namely
poor agerts and rich ageris. The poor ageris prefer to go to the cheap shop,
and the rich agens prefer the expensiwe shop. Howeer, all ageris do not want
anybody to know whether they are rich or poor. Therefore,all ageris randomize
their shoppingbehaviour, and visit both shopswith someprobability. The goal
of this level is to determinefor ead agent whetherit is a rich or a poor agen.

The main learning point from studying this level in the simulation is that these
puzzlescanbe solved. Sincethe agerts adapt their strategy towardstheir payo s
(we have shown that it is optimal for them to do soin theorem8.4.2), one gains
someinformation from observingthe agens behavior. If oneis allowedto obsene
the agens long enough,one will gain enoughinformation to determinethe type
of eat agent with any level of probability. The simulation therefore shavs that
in the longrun it is impossibleto protect onesprivacy againstobsenerswho have
this much detailed information about onesdaily behaviour. If onebelievesin the
universalhumanright to privacy, it is thereforenecessaryo prevert organisations
from collectingarbitrary largeamourts of data, or to store sud data for inde nite
amourts of time.

Level 2: Citizens and Criminals

In this level there are again two groups of ageris. The citizens shopin any of
the four shops,and occasionallyhave to goto the bank to withdraw money The
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citizensgoto eah shopwith equalprobability. The criminals have other sources
of income, and thus have no needto visit the bank. Howewer the criminals do

not want othersto know that they are criminal, so sometimesthey do walk to

the bank to keepup appearancesput lessoften than they goto the shop. How

often they go to the shop dependson their level of paranoia: Normal agens go
lessthan paranoid agens.

This level demonstratesthe in uence of the parameter on the behaviour of
agerts. The four di erent types of agerts, from normal to paranoid, have the
samepreferencesut value privacy di erently. Anyone who has solved this level
hasexperiencedthat paranoid ageris are harderto idertify. One canthus protect
onesprivacy better by acting more randomly.

Level 3: Crooks and Spooks

In the third level there are four shopsand three groups of agens. The four
shopsare the walmart, drugstore, spy shop and the bank. The three groups
are citizens, who are by all consideredto be normal, the crooks, who are the
unorganisedcriminals, and the spooks, who are the organisedcriminals. The
utilit y valuesof ead type of agert is givenin the table below.

group \Walmart drugstore spy shop bank

citizens 0 1 1 2
spooks 1 1 2 1
crooks 1 1 2 1

The spooksand the crooks have the samepreferences.The di erence between
those two groups is that the spooks know what the citizens do, whereasthe
crooks have no idea what normal is. Therefore,the crooks usea strategy that is
asrandom aspossible,whereasthe spooks usea strategy that is as similar asthe
citizens as possible. The crooks can be said to be playing a most normal game,
and the spooks a minimal information game.

In the next table oneseeghe strategiesthat the agens usein this simulation.
The rst column lists the type of an agen. The secondlists the value of that
that agen uses. For eat agen type, there is a strategy for a not-so paranoid
ageris (= 1) and for more paranoid ageris (= 1.5). The remaining columns
list the probability that ead agert visits a location.

type walmart drugstore spy shop bank
citizens| 1 0:072 0:196 0:196 0:534
citizens| 1.5| 0:115 0:224 0:224 0:436
spooks | 1 0:054 0:146 0:399 0:399
spooks | 1.5 0:06 0:165 0:322 0:45
crooks |1 0:174 0:174 0:475 0174
crooks | 1.5| 0:202 0:202 0:393 0:202
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For computing the strategy of ager types citizens and crooks we have used
theorem 8.4.2to compute the optimal strategies. For the spoks ageris we have
usedtheorem8.5.2,wherethe strategy of the non-paranoidcitizenshasbeenused
asthe normal strategy. One canseein the table that for all three typesof agerts,
the more paranoid agens choosea strategy with a higher ertropy. They act more
random. It is also clear that the spooks use a strategy that is more similar to
the citizens strategy, and hencethey are harder to distinguish from the citizens.
For instancethe crooks go often to walmart, but the other two typesof ageris do
not. By determining the frequencyof walmart visits, an obsener can determine
whether an agen is a crook or not.

In general,animated simulations sud asthis onecan be usedto demonstrate
certain phenomenain a more corvincing and entertaining way than calculations
can. One can simulate much larger systemsthan one can solve by analytical
means,and thus simulations can be of more realistic sizethan examplescan. On
the other hand, a proof-by-simulation lacks rigour. One can arguethat simula-
tions do not lead to scieri ¢ knowledgein a way that proof does.

This simulation has beenprogrammedin Java, a languagevery suitable for
interactive graphical programs. No speci ¢ agern systemslibrary hasbeenused.
The sourcecode is available on request.

8.8 Conclusion

Two new kinds of gameshave beende ned. First of all, minimal information
games,in which ageris want to maximize the uncertainty that obseners have
over their next move. Secondly most normal games,in which agens want to
behave as similar as possibleto an existing ‘normal' agen, while maximizing
their payo . The de nitions usethe conceptsentropy and relative ertropy which
are borrowed from information theory. In two theoremsit is shovn what the
optimal best responsesare in thesegames. Theseturn out to be unique in eah
situation, and to depend cortinuously on the payo matrix and the opponert
strategies. From this continuity onecan derive that Nashequilibria exist in these
games.

Minimal information gamescan be usedto analysesituations with privacy-
minded agens. If agens attach somevalue to privacy, the best strategy always
givesthem someprivacy.

In most normal games,the situation is slightly more complicated. How well
the non-normalagert X cando dependsvery much on the strategy that normal
agerts use. If the normal ageris usea pure strategy, then X hasno choicebut to
adopt the samestrategy. The situation however becomesa lot better if the normal
ageris are privacy-minded. In this casethey choosea high-ertropy strategy, and
this leavesthe wanting-to-b e-normalagert alot of roomto pursueits own agenda.

One can extend the work in these gamesin seweral ways. It would be in-
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teresting to look at experimertal data, to seewhether most-normal or minimal-
information strategiesare usedin the real world. Secondly one could implemert
thesestrategiesin order to obtain privacy. The questionis then whether the soft
approad to privacy is what userswart.

On a theoretical side, it seemsthat these gamesgive approximations to the
Nash equilibrium with useful technical properties. Two of these properties are
continuity of the best response function and the fact that best responsesare
always interior.






Chapter 9

Conclusion

For many people,veri cation of software soundslike watching paint dry: Appar-
ertly necessarybut quite dull comparedto the creative processthat camebefore
it, and the creative usesthat come after it. The average user of the veri ed
software hardly learnsanything from watching the process:either the programis
ne, or a bugis found and xed, after which the programis also ne.

This dissertationis intented to corvince the readerthat veri cation of multi-
agen protocolsis in fact very interesting. First of all becausemulti-agent pro-
tocols are widely used, sometimesat unexpected places. The debate about the
proposedconstitution for the European Union which took placein May 2005,is
essetially a multi-agent protocol problem: what voting procedureshouldbe used
sothat ewery courtry and personis represeted fairly? Often one can capture
requiremens sud asfairnessin di erent ways, and decidingwhat is the bestway
is not a meretechnical matter.

The secondreasonwhy multi-agent protocols are so interesting is that rea-
soningabout multi-agent systemsis complicatedand can have surprising results.
In software veri cation, the state-s@ce explosion problem is often cited as the
biggestobstacle:the systemsto be veri ed often have a huge number of di erent
states. Multi-agent protocolscan have a small number of states, esgecially when
theseprotocolshave to be explainedto and usedby humans. On the other hand
the requiremerts for these protocols can be subtle and di cult to interpret: in
many casesproperties sut asfairnesscanbe hard to de ne and verify. Di erent
logics basedon extensive gameshave been presened in the previous chapters.
Using three examples,a voting problem, the joint decisionproblem and the inde-
penden decisionproblem, we have shavn that more complexlogics can be used
to identify subtle di erencesin protocols. Thesemore expressie logicscan have
lessfavourable computational properties, making veri cation intractable. Thus,
besidessccial argumerts, there are alsotechnical argumernts in favour or against
certain approades.

An important distinction, that has beenborrowed from gametheory, is the

173
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one between perfect information protocols and imperfect information protocols.
In the rst classof protocols all actions and all facts about the currernt state
are public. Knowledge about these aspects thus does not play a role in these
protocols. In imperfect information protocols knowledge is vitally important.
Chapters 4 to 5 are focusedon perfect information protocols, the nal chapters
7 and 8 on imperfect information protocols.

9.1 Perfect Information Proto cols

Modal logic is a very useful tool for studying perfect information protocols. It
is easyto de ne logicsthat deal speci cally with theseprotocols. The rst logic
presented, efl , can be usedto reasonabout which coalitions can enforcewhat
kind of outcome. It canalsobe usedin practice for veri cation of existing proto-
cols. Unfortunately it is not very expressie: Many protocolsthat feel di erent
satisfy the sameefl properties.

Onecanextendthe languageefl in orderto make moreinteresting properties.
This leadsto two meaningful extensions: efls and efln . The rst language
can expressmore complex reasoninginvolving side e ects of adopting certain
strategies: \Supposel know that you want this, can | then do that?". The
secondlogic, efln , can be usedfor expressingnestedproperties sud as\l want
to allow you to allow meto do this". For thesethree logics we have determined
the computational complexity of model chedking. A fourth languageefins that
combines featuresfrom efln  and efls hasalsobeende ned. This languageis
howewer is hard to interpret in a conserative way.

In chapter 6 a more explicit logic is usedfor reasoningabout preferences.The
languagehas been extendedwith operators reasoningabout gametrees, which
makesit possibleto usethis logic for analysinggame-theoreticreasoningin detail.
As an examplethe conceptof backward induction hasbeenanalysedin this logic.

These di erent logics illustrate that in order to understand a multi-agent
protocol, one has to understand the badground assumptions: what do ageris
know about eat other and the situation. One always hasa choicehow to analyse
a protocol. Even protocols with perfect information, that are often seenas the
easiestcase,can be di cult to compare.

9.2 Imp erfect Information Proto cols

It is well-known that knowledgeand information are very important for agers,
and it is alsocommonto usegametheory for analysingthe interaction between
ageris with dierent interests. It is therefore a "logical' next step to consider
gamesabout information . A knowledgecondition gameis a gamebetweentwo
groups of agens: one group wants to read a certain knowledge situation, the
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other group wants to stop the rst group from reading this situation. This situ-

ation that the groupswant to read or avoid is speci ed usingordinary epistemic
logic. The fact that a well known logic is usedmakesknowledgecondition games
easierto understand,comparedto logical languageswith new operators. The fact
that knowledge condition gamesonly model the knowledge of the ageris in the

nal situation is alsoan advantage: no temporal reasoningis necessaryResearh

in temporal logic has shavn that reasoningabout time is complexin itself, soit

is not wiseto make things even moredi cult by mixing the aspectsof time and
strategies.

The complexity results for knowledge condition gamesindicate that games
about knowledgecan be intractable. They becometractable when monotonefor-
mulas are used. The complexity is thus causedby the fact that in epistemiclogic,
one can mix knowledge demands(Somelody knows something) and ignorance
demands(Somelpdy doesnot know something).

It often makessensdo assumethat agerts are aware of the strategiesthat are
used, for instance of strategiesthat are so often usedthat they becomecorven-
tions, or when dealing with security protocols. One can also assumethat agens
do not know strategies. This hasbeende ned askcgd®. This alternative de nition
makesdecisionproblemsslightly easier,and is thus a conveniert assumption.

In a knowledge condition game where ignoranceis demanded,the optimal
strategy is often a random one. The coalition of agers that wants somelody to
beignorant should choosetheir actionsin arandom, unpredictableway. The fact
that making random choicescan be optimal has beenknown to gametheorists
before[11], but sometimessurprisespeople: ipping a coin is not often recom-
mendedfor important decisions.The chapter on knowledgecondition gamesdoes
not tell what kind of coin oneshoulduse. It doesnot tell what exactprobabilities
oneshould useto choosebetweenactions, becausethe logical approad doesnot
work with explicit probabilities.

In order to be able to say something about those probabilities, chapter 8
introducesminimal information games. In these gamesagens have two goals:
getting an optimal payo by choosing the best actions, and randomizing their
behaviour in sud a way that an obsener is kept ignorarnt about what the agen
might do in the future. In order to measure’ignorance’,information theory is
used. | have computed optimal strategiesfor these games,and these strategies
give detailed information how one should randomize. The sameis done for the
related notion of most normal games In those games,ageris want to behase as
similar to "normal’ as possible,but also getting the highestpayo . Thus, in this
chapter the questionabout what coin one should useis solved.

Comparing thosetwo approades,one basedon logic and one basedon infor-
mation theory, onecan make two obsenations. On the onehand onecan sa that
the logical approad is more general. Using epistemiclogic one can expressgoals
that mix knowledgeand ignorance. The gamesbasedon information theory only
deal with ignorance. In generalone needsa logical approad in order to form
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complexgoals. On the other hand, a logical approad hasthe disadvantage that
it is more abstract: important details, sud asthe exact probabilities, are often
omitted.

9.3 Results

The next table shows the complexity results stated in this dissertation. The
problemsin the classPSPACE arede nitely not tractable: no e cien t algorithms
for these problems exist. The sameis probably true, in practical terms, of the
problemsin the class ,P: Eventhough ,P problemsare theoretically easierto
solwe, all problemsin both classesaretoo hard to be solvedin practice. The class
NP cortains problemsthat are alsobelieved to be hard. No e cient algorithms
for these problems are known, but sometimesone can nd heuristics for those
problems. The problemsin the nal class,P, are called tractable. They can be
solved in reasonablgime.

number | class | members

1 PSPACE | efl model chedking with linear represetation
2 efln  model cheking

3 oP kcg decisionproblem with opponerts

4 NP kcg without opponerts

5 ked®

6 P efl model cheding

7 efls model cheking

8 kcg for monotoneformulas

It is clearthat analysinggamesis a complexa air: many of theseproblemsare
intractable. The intractability has di erent causes. Sometimes,in cases3 and
4 for instance, the presenceof opponerts can make a problem much harder. In
other cases,namely 1 and 2, the situation with one agen is already complex.
This is a bit surprising.

In the chapter on logic it hasbeenexplainedthat theoremproving and model
cheking are both important techniquesfor multi-agent protocol veri cation. In
this dissertation the following complete proof systemsare preseted.

description logic | pro of system
e ectivit y logic efl SEFL
preferencelogic Lp Sp

alternative preferencelogic | L2 S2

nite tree logic L+t St

The rst result, that there is a completeproof systemfor efl , supports the hope
that logical medanism designis possible. The completenesgroof sketches an
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algorithm for constructing protocols. It would be interesting to implemert and
test this procedurein the future.

Preferencelogic Lp is a more natural languageto expresspreferenceshan
propositional logic. One can use preferencelogic to say things sud as\co ee is
better than tea", instead of the lessinformative \co ee is good" or \tea is bad".
A proof systemfor this logic exists. This logic has beenusedfor constructing a
logic L, that can be usedfor characterising game-theoreticsolution concepts.
Interesting future work would be to usethis preferencdogic in an update frame-
work.
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Samenvatting

Multi-agent protocollen zijn collectiesvan regelsdie aangeen hoe meerderepar-
tijen met elkaar in cortact kunnentreden. Een veiling bijvoorbeeld heeft strikte
regelsdie aangeen hoe er geboden kan worden. Ook de mogelijke zetten van
eensdaakpartij zijn vastgelegdin eencollectie regels,en vormen dus eenmulti-
agern protocol. Tenslottezijn ook verkiezingeneenvoorbeeldvan eenmulti-agent
protocol. Dezeactiviteiten hebben gemeendat zein het edite leven, zonderon-
dersteuning van computers gedaankunnen worden. Men kan zich edtter ook
voorstellen dat computerprogramma’smeeden aan veilingen en verkiezingen,
missatien zelfsmet of tegenmenselijle spelers. Aangeziencomputerprogramma’s
nog niet zo intelligent zijn als wetensbappers somswensen,is het vaak van be-
lang dat protocollen aan bepaaldeveiligsheidseisewoldoen. Men wil duskunnen
nagaanaan welke eigensbhappen eenprotocol voldoet.

Het doel van mijn onderzeek is om methodeste ontwikkelen waarmeemen
multi-agent protocollen kan vergelijken en analyseren. Om dit te kunnen doen
moet men eenonderstieid maken tussenversdillende klassenprotocollen, en ook
versaillende soorten eigenshappen onderstieiden. Protocollen waarin iedere
“speler' geheelop de hoogte is van de huidige toestand(schaak bijv oorbeeld) wor-
den behandeldin het eerstedeelvan dit proefsdirift. Voor dezeprotocollengeldt
dat de eigenshappen die te besdirijven zijn in de logisde taal van hoofdstuk 4,
e cien t door eencomputerte veri erenzijn. Ook kan menformeelredenererover
dezeeigenshappen. Echter, ook voor dezerelatief eervoudige protocollenzijn er
eigenshappen, die uitgedrukt kunnen worden in logisde talen uit hoofdstuk 5,
waarvoor automatisde veri catie erg complexis. Over sommigeingewikkeldere
eigenshappen kan men editer wel formeel redenerenmet het bewijssysteemuit
hoofdstuk 6.

Er zijn ook veel protocollen waarin niet alle spelersvan alle details van de
situatie op de hoogte zijn. Denk bijvoorbeeldaan spelenzoalsStratego of Poker.
In deze protocollen is informatie over de huidige situatie, en kennis over wat
andere spelers weten een belangrijke factor. In hoofdstuk 7 worden situaties
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behandeldwaarin het doel van bepaaldespelersis om bepaaldekennis juist wel
of juist niet te hebben. De complexiteit van het analyserenvan dit soort situaties
kan hoog zijn, afhankelijk van welke aannamesnen maakt.

In al dezeeerstehoofdstukkenwordt kennisals eenkwalitatieve eigenshap be-
handeld: alsiets wat menwel of niet heeft. In het laatste hoodstuk gebruiken we
kwantitatiev e methoden uit de informatie-theorie, om de hoeweelheidinformatie
is bepaaldesituaties te minimaliseren. Er worden spelen gede nieerd waarin het
de bedceling van bepaaldespelersis om zo weinig mogelijk informatie bloot te
geen, en voor dezespelersworden de optimale strategieen berelend. Een mo-
gelijke toepassingvan dit onderzceek ligt in de bestierming van privacy tegen
privacy-stiendendetechnologie.



Abstract

The researbt goalbehindthis dissertationis to dewelopways to compareand anal-

ysemulti-agent protocols. In orderto do soonehasto distinguish di erent types
of protocols, and one hasto distinguish di erent classesf properties. Protocols
that canbe modelledasimperfectinformation gameforms are thereforediscussed
in the rst part of this dissertation, whereasprotocols that can be modeled as
imperfectinformation are the subject of the secondpart. In both parts we de ne

conceptsthat help us to analyseand understand protocols, demonstrate these
conceptson example protocols, and investigate the computational properties of

theseconcepts.

In chapter 4, a logic for reasoningabout what coalitions can achieve in proto-
colsis presenied. For this logic, a complete proof systemis given, and the model
chedking complexity is determined.

In chapter 5, logicsfor reasoningabout more complicated properties are pre-
sented. Speci cally we comparethe model chedking complexity of logicsfor rea-
soningabout side-e ectsand nestedabilities.

In chapter 6, protocols are analysedusing logics that deal with preferences
explicitly. For two di erent variants of preferencelogics we give completeness
proofs, and as an example,a characterisation of backward induction is given.

Protocolswith imperfect information are the topic of the secondpart of this
dissertation. In theseprotocols the knowledgethat ageris have plays a leading
role. One can look at knowledgein a qualitative way, using epistemiclogic, and
this is done in chapter 7. In this chapter, it is shovn how the computational
complexity of protocol veri cation, depends on the presenceof opponerts, on
whether strategiesare known, and on the monotonic nature of the knowledge
requiremens. In chapter 8, it is shavn that one can also model knowledgein a
guartitativ e way. Usingthis approad, we computeoptimal strategiesfor privacy
presenation.
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