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Chapter 1

In tro duction

1.1 Multi-agen t Proto cols

Multi-agent protocolsare setsof rules that specify how agents can interact with
each other. For example, an auction has strict bidding rules and is thus an
exampleof a protocol. Elections form another example. Theseactivities have in
commonthat they canbe donein real life, without useof computersor networks.
However, onecanalsoimagineauctionsandelectionsin which computerprograms
participate, perhapseven in competition with humans. Theseexamplesof multi-
agent protocolsarealreadywidely usedin all kinds of settings. The next examples
illustrate situations in which multi-agent protocolsare useful.

� Everyoneis familiar with the problemof dividing a cakefairly amongseveral
people. Assumethat a round birthday cake is to be sharedfairly among
a certain number of guests. If `fair' meansinto equally sizedand shaped
parts and onecanuseruler and compass,then this becomesa mathematical
problem. Onecanalsoseethis situation asa social scienceproblem,by using
anothernotion of fairness.Onecanrequireenvy-freeness, which meansthat
nobody should be envious of somebody else. Everyone should judge his or
her own pieceat least as good as the other pieces. This is achievable for
two agents by using so-called`cut and choose' protocols: one agent splits
the cake into two parts, the other agent chooseswho getswhich part. The
fact that both agents play an active role in this protocol makes it easier
for agents to acceptthis protocol. What makesthe protocol fair is the fact
that the cutter hasan incentive to cut as fair as possible. In caseof larger
setsof agents, more elaborate proceduresexist [17].

� Supposeyou want to raisemoneyfor a good cause,and a sponsorhasgiven
you a car in order to help you to do so. Shouldyou auction this car, or start
a lottery? A lottery is the traditional way to raise money, at least in The
Netherlands. However, auctionsof di�erent typeshave becomeincreasingly
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2 Chapter 1. Intr oduction

popular in other domains(considereBay, or the distribution of mobilephone
network licenses),and a lot is known about the good theoretical properties
of auctions [63]. Recent work by Goeree and others [39] indicates that
a lottery, despite being random, is a better way to raise money than an
auction. The authors do not only give mathematical arguments. In one
examplewhereparents areasked to donatemoneyto their children's school,
they note that social arguments alsoplay a role:

\Some parents may be o�ended whentold they contributed noth-
ing becausethey lost the auction, or, in other words,becausetheir
contributions were not high enough." [39, p.3]

� On auction websitessuch aseBay, many buyersprefer to placetheir bids at
the very last moments. This is called sniping. Thesesnipers chooseto bid
in the last minute even when the auction lasts a week [76]. Possibly they
do this in order to avoid bidding wars with other bidders,who in the faceof
competition want to spend more money than they originally planned. An-
other explanation is that the snipers somehow enjoy to surprisingly outbid
other people. Either way, somebidders refuseto behave as prescribed by
auction-theory textbooks. To somebiddersand sellerssniping seemsunfair,
but others feel it is justi�ed by the amount of pleasurethey derive from it.

\A lot of peoplewho do not snipe feel it is unfair, but it hap-
pensto be my absolutefavorite way to win at auctions." Marcia
Collier [38]

The needto understand multi-agent protocols is growing, becausetheseproto-
cols are used in new and possibly surprising environments. What worked well
in real life may work di�erently on the Internet or with computer programs as
participants. The stakes are also getting higher. The Internet is not only used
for buying low cost commodities such as books, but also for igh ts, cars and
houses.A new research �eld focusedon understandingand designingprotocols,
sometimescalled `social software' [82], is thereforeemerging.

Agen ts

It is di�cult to come up with a universally accepted de�nition of the word
agent [124]. Nevertheless,every researcher shouldknow the meaningof the words
he or sheuses,or risk talking nonsense.I usethe word agent to meana decision
making entit y, and thus I accepthumans, computer programsor even organisa-
tions asagents. The word hasbeenusedin this way within the English language
for centuries, for instancein the following quotation.
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\Nor are we to be meer instruments moved by the will of those in
authority..but are morall Agents." SamuelBolton, 1646 [80]
(original spelling)

In a more recent tradition, agents are seenas software programs with arti�cial
intelligence-like abilities and properties, such as reexes, mobilit y, intelligence
and emotions. The English science-�ction writer Douglas Adams for instance
describes how agents might function when a spaceshiptries to recover from a
meteorite hit.

Small modulesof software { agents - surgedthrough the logical path-
ways, grouping, consulting, re-grouping. They quickly established
that the ship's memory, all the way back to its central missionmod-
ule, was in tatters. [2]

I am not concernedwith designingor dissectingactual agents, but with proto-
cols for agents. Thus, whereother researchers seethe construction of agents, or
even `intelligent agents', asa long term, yet unattained research goal, in my view
there are already agents and protocols. The focus is not on the internal work-
ings of theseindividual agents, but on the way protocols function when usedby
agents. Sinceprotocolsare formal objects, they can be studied formally, without
experiments or empirical investigations.

Proto cols

A protocol is di�erent from an algorithm becauseit gives agents a choice of
actions. Agents have the freedomto bid whatever they think an item is worth, or
to vote for whatever they think is best. All agents together determinewhat the
outcomeof the protocol is. In an ideal world, the protocol allows all participants
to reach an outcomethat is `optimal' in somesense:the protocol should be fair,
e�cien t, democratic, or otherwisemeet someexpectation. There are often many
di�erent protocols for a certain problem. One can for instance sell a houseby
askingall interestedparties to submit a bid in a closedenvelop, open all envelops
at the sametime, and sell the houseto the highest bidder. Alternativ ely, one
could have an open-cry auction, in which bidding continuesuntil no agent wants
to bid higher than the current bid. Another option would be to have a lottery,
or an essay contest. It is often not immediately obvious which protocol is best.
Selectingthe best protocol for a certain task is thus a relevant and sometimes
di�cult problem.

Traditional versus Computational Approac hes

What we call multi-agent protocols has been already studied under di�erent
namesby other disciplinesthan computer science.For example,economistsand
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gametheorists have studied the properties of auctions [63]. Social choice scien-
tists have beenworking on voting protocolsand fair division protocols[17]. These
related �elds alsohave their own traditional applications. Fair division protocols
arecanbeusedfor cakecutting, but alsofor divorcesettlements [17]. Economists'
examplesare often more trade-oriented or money-oriented. Thus, an opportunit y
exists here to take results and insights from computer science,and use them to
get improvements in applications outside the traditional scope of computer sci-
ence.We hope that knowledgeabout multi-agent protocolscan be usedto design
better solutions for the examplescenariosdescribed in this chapter.

One can distinguish `traditional' approachesfrom computer science(and AI)
approaches by the fact that the computer scientists emphasisecomputational
properties. In the traditional approach one determineswhether somesolution
to a protocol problem exists. The computer scientists are also interested in the
questionwhether somethingcan be computede�cien tly. This emphasison com-
putation can lead to interesting insights. Even though it has beenproven that
no voting schemeis completely immune to manipulation [36], onecan show that
in certain schemesit is very hard to compute how one should manipulate the
voting in order to get a required outcome [24]. In theseschemes,it is unlikely
that someonecan manipulate an election.

In this dissertation computational arguments are alsoused,but in a di�erent
way. By comparing the complexity of di�erent protocol veri�cation problems,
one can determinewhat kind of goalsare hard for agents to achieve, and which
properties are hard to verify. This leadsto more insight into the causesof the
di�cult y of protocol veri�cation of design. For instanceit is often assumedthat
the interaction betweenagents makes gamesand protocols di�cult. Sometimes
however also models with only one agent can have interesting computational
properties, which is a surprising result.

Logical Approac h

In the examplesof cake-cutting and charity auctions,it hasbecomeclear that the
properties that one wants protocols to have can be very diverse. In the second
example,parents actually wanted to contribute, while in the �rst examplefairness
meant that agents would not chooseto swap pieces. In somecases,for example
money-basedauctions, one can reducethe quest for the right protocol to a nu-
merical problem: the problem is reducedto computing the optimal parameters,
or �nding the right side payments. If this is not possible,for instance because
moneyis not available in the protocol, onemust capture theseproperties in some
other preciseway, beforeonecan test protocols for theseproperties. Logical lan-
guagesare very suitable for this task: one can describe complicated properties
in short logical formulas. Logicsare alsovery expressive: onecan state both the
presenceand the absenceof certain properties. Di�eren t logicsare thus usedas
speci�cation languages:the formulas expresswhat one wants or does not want
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from a protocol.

1.2 Proto col Problems

Throughout the dissertationdi�erent exampleproblemsare usedto illustrate the
issuesat hand. For instancechapter 4 contains several protocolsthat canbe used
in the following situation.

Three agents Alice, Bob and Caroline (or A; B and C) have to
select one of the alternatives x; y and z. They are looking for a
suitable voting protocol to selectexactly oneof thesethree alterna-
tivesas the outcome. The protocol should be democratic, so that
any majorit y can enforceany outcome.

In chapter 4, the focus is on what outcomescan be guaranteed by agents and
coalitions of agents. Thus, the issueof e�ectivity is studied. In this chapter, we
�nd many solutions for this problem. The logical approach of chapter 4 cannot
be used for distinguishing thesemany solutions. Therefore, in chapter 5 and 6
more expressive logics are studied that can �nd subtle di�erences between the
di�erent solution to this problem.

The following two problems are more basic than the voting problem stated
above, and using the logic from chapter 4 onecan again �nd protocols that solve
theseproblems. In chapters4 and 5 it is shown how solutions for theseproblems
di�er from each other.

joint decision pr oblem A decisionp is taken if either Alice or Bob think that
p should be the case.If both agents do not want p, it should be rejected.

indep endent decision pr oblem Alice can decide whether a should hold or
not, and Bob can decidewhether b should hold or not.

Chapter 7 is concernedwith the knowledgethat agents have at the end of a
protocol, and how this knowledgedependson the strategiesthat are used. One
exampleproblem that can be analysedusing the techniquesfrom this chapter is
the following problem.

In a TV quiz show the quiz master asks a candidate the following
question: Which day of the weekcomesdirectly after Tuesday? Is it
a) Monday, b) Wednesday, c) Friday or d) Saturday. The candidate
hasno cluewhatsoever about the days of the week,and replies: `I am
not sure. Can I do �ft y-�ft y?'. The quiz master has to remove two
optionsthat arenot the answer, sohesays: `Theanswer is not Monday
and neither Friday'. Doesthe candidatenow know the answer?

In chapter 8, agents areconcernedabout their privacy, and userandomstrate-
giesin order to hide their preferences.
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Alice needsto buy onebox of breakfastcerealsevery week. Each week
shecan either buy Allgrain (A), Barley (B) or Cornak es (C). She
likes A better than B and B better than C. However, Alice knows
that the shop is watching her shopping behaviour closely, and she
does not want the shop to know for sure what her preferencesare.
Therefore,shebuys a di�erent brand every day.

The techniquespresented in this chapter allow oneto calculatethe optimal (ran-
dom) strategiesthat agents should useif they are concernedabout keepingtheir
preferencesprivate.

1.3 Outline of this Dissertation

This �rst chapter is a formula-free introduction. The last chapter is alsowritten
in plain English, and presents someconclusions.The chapters in the middle have
a high density of mathematical notation. The �rst two `middle' chapters are
introductory.

� Chapter 2 contains de�nitions in the area of logic. It contains de�nitions
of propositional logic, which is the basic logic of which all other logics are
extensions,modal logic and epistemiclogic.

� Chapter 3 is a conciseintroduction and overview of gametheory. It de�nes
the conceptsof gametheory that are usedlater on.

The remainderof this dissertation, the so-called`content'-part, describesoriginal
research that I have conductedover the last three years. It canbedivided roughly
in two parts. The �rst three chapters deal with logics that are interpreted over
extensive gamesof perfect information. In thesegamesit is assumedthat agents
have perfect information about the current state of the world. They know what
other agents have done, but are uncertain about what other agents will do. In
order to expressproperties of such situations, di�erent logicsare examined.

� Chapter 4 describes a logic for reasoning about extensive gamescalled
efl . This logic dealswith reasoningabout whether coalitions of agents can
achieve certain goals,without help of the other agents. Game-theoretically
this is a simple situation, and onecan thereforee�cien tly check properties
in this logic. A completeproof systemis alsogiven, together with a proce-
dure to automatically constructs protocols for given properties. The main
result of this chapter hasbeenacceptedfor ESSLLI 2005[107].

� Chapter 5 introduceslogicsthat are more expressive than efl . First of all
the logic efls can be usedto expressmore subtle properties involving side
e�ects of usingcertain strategies.Oneway to look at this logic is by saying
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that it dealswith the situation whereagents are initially not aware of the
preferencesof other agents, a situation that is not normally consideredin
game theory. This logic can thus be used to expressmore properties of
gameforms, but has the samemodel checking complexity as efl .

A secondlogic introducedin this chapter, calledefls , allows oneto reason
about agents that want other agents to be able to do something. This is an
exampleof reasoningabout preferenceson the whole play of the game,not
just on the outcome. Onecanapply this logic to reasonabout polite agents
that want to give other agents the abilit y to choose. This chapter extends
work presented at the AAMAS 2004conferencein New York [113].

� Chapter 6 reasonsabout gameforms and preferencesexplicitly. It usesa
special logic for reasoningabout preferences.As an examplewe study the
backward induction solution concept in this chapter, in which agents use
their knowledgeof each otherspreferencesin order to anticipate each others
choices. This chapter is exceptionalbecause,unlike the other chapters of
this thesis, it is not the solework of Sieuwert van Otterloo, but is basedon
joint, yet unpublished,work donein pleasant cooperation with Olivier Roy
and Johan van Benthem at the ILLC in Amsterdam.

Thesethree chapter can be seenas an attempt to understandgameforms using
more and more preciselanguages. For the logic efl many protocols appear to
be the same.The next two chapterso�er logicsthat give more detailed views,so
that onecan discover subtle di�erences in protocols.

Chapters 7 and 8 deal with the casewhere agents are not fully aware of all
aspects of the current situation. They have imperfect information about certain
facts. Sinceinformation is very important to agents, they might act in order to
get more information. In other situations agents act so that others obtain no
information.

� Chapter 7 discussesknowledgecondition games. In this new type of games,
agents act in order to achieve a certain knowledgesituation: they want to
know that othersdo not know that somethinghappened.Two variants with
di�erent computational complexity are introduced,and sometractable vari-
ants are described. The work has beenpresented incrementally at GTDT
in New York [110], at the �rst Knowledgeand GamesWorkshop in Liver-
pool [111] andat the Europeanworkshopon Multi-Agent Systems[115],and
have �nally beenacceptedfor publication in the Journal of Logic, Language
and Information [114].

� In chapter 8, a similar problem is treated in a di�erent way. We assume
that certain agents want to keeptheir preferencessecret. Using techniques
from information theory, we determine what strategy agents must use in
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order to maximize the uncertainty of an observer. This chapter is basedon
a paper presented at the AAMAS 05 conferencein Utrecht [108].

A recurrent themeis this dissertationis the ideathat agents canhave complex
goalsin a protocol, and that nondeterministicstrategiescanbeusedfor achieving
thesegoals(seefor instancethe situation on page89whereBob makesAlice unable
to decide,or the quiz master exampleon page134wherenature doesnot favour
the candidate). Normally in gametheory agents have preferencesover outcomes,
and the goal is to achieve a certain outcome. A complex goal on the other
hand dependson the wholegame,including properties of the strategiesusedand
other outcomesthan the actual one. For instancein chapter 5 agents careabout
whetherother agents canachieve outcomesor not. In knowledgecondition games
coalitions act in order to make surecertain knowledgeis achieved in the end, and
in chapter 8 agents careabout how predictable their strategy is.

It is easiestto usestrategiesthat recommendsinglebest actions for any sit-
uation. These strategiesare called pure strategiesand are often su�cien t for
reaching simple goals. In this dissertation we often usenondeterministic strate-
gies. Thesestrategiescan recommendmultiple actions and are thus potentially
morepowerful. In knowledgecondition gamesand the privacygamesof chapter 8,
agents candeliberately usethesestrategiesto becomeunpredictable. In the logics
efls and efln thesenondeterministic strategiesare usedbecausein many case
several actions are equally good. One cannot know beforehandwhich action an
agent will take in this case,so we model this uncertainty using nondeterministic
strategies.

1.4 Conclusion

Multi-agent protocols have not beendiscovered recently. The term can be used
to describe commonsituations, such asauctions,voting and cake cutting. These
protocols can be studied from di�erent disciplines, such as game theory, eco-
nomics and social science. Furthermore one can test these protocols for many
di�erent properties, for instance envy-freeness. The di�erent frameworks and
logical languagesde�ned in this dissertation make it possibleto formally analyse
thesemulti-agent protocols,and to test them on many di�erent properties. The
precisionof a logical approach makesit possiblein principle to usethe computer
to �nd the right protocol for any situation. In this dissertation, it is determined
in which casesthis is alsopractical. This is doneby looking at the complexity of
thesecomputing problems.



Chapter 2

Logic

2.1 In tro duction

Logic is one of the oldest disciplinesof science.It has beenstudied more or less
continuously from Aristotle to the present day. For example,it wasan important
part of the Medieval academiccurriculum: together with grammar and rhetoric,
logic formedthe `trivium', the relatively simplearts that oneshouldmasterbefore
one could move on to the more advanced arts of the Quadrivium (arithmetic,
astronomy, geometry, and music) [122].

Given the rich history of logic, it is not possibleto give a completeoverview
of the area. The goal of this chapter is merely to provide the necessaryde�ni-
tions of propositional, modal and epistemiclogic that will subsequently be used
throughout this dissertation. For readersnot so familiar with logic, this chapter
can serve as a conciseintroduction. For other readers,this chapter introduces
the notational conventions that I usein the remainderof this dissertation. First
propositional logic is de�ned. Then in section2.3 modal logic and epistemiclogic
arede�ned. In section2.4wediscussthe di�erent ways in which theoremproving,
satis�abilit y and model checking can be usedfor protocol veri�cation.

A logic typically consistsof threeelements: the logical language,the semantics
and the proof system. A logical languageis a set L of formulas. The semantics
is a relation between formulas and models, that says when a formula is true on
a model. If a formula � is true on a model M we write M j= � , otherwise we
write M 6j= � . We are often interested in formulas that are true in any model,
and theseformulas are calledvalid formulas, validities or tautologies. In order to
indicate that � is a tautology, we write j= � . If a formula � holds in at least one
model, the formula is called satis�able.

The �nal typical element of a logic is the proof system. Such a proof systemS
consistsof axiomsand derivation rulesand allowsoneto formally derive formulas.

2.1.1. Definition. Let L be a logical language. A proof system S is a pair
(A ; R) whereA � L and R � L � .

9
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description language pro of system
propositional logic L p Sp

standard modal logic L 2 S2

epistemiclogic L K SK

Figure 2.1: Proof Systemsfor di�erent logics

The set A is calledthe set of axiomsof S, and R is the set of reasoningrules. If a
proof systemS proofs a formula � , then we write S` � . The notion of proof that
we usehere is that of a �nite list of statements S` � 1, S` � 2, . . . S` � n such that
each formula � i is either an axiom of S, or (� (m1); : : : ; � (mn ); � i ) is a reasoning
rule of S, with m1; : : : ; mn < i . Thus, axioms count as self-evident, and the
reasoningrules allow oneto derive a formula from formulas proven before.

2.1.2. Definition. Let L be a a logical language.A proof systemS is sound if
S` � implies j= � . It is complete if j= � implies S` � .

All logicsin this thesismake useof a symbol : for negationof a formula. In such
logics,a formula � is called consistent if its negationcannot be proven: S 6̀ : � .
In a completeproof system(for a logic wherenegation is de�ned in the classical
way), every consistent formula is satis�able.

Ideally, a proof system should be sound and complete. Furthermore, the
axioms and rules should not be arbitrary sets, but one should be enumerable
in an automatic fashion: a mechanical procedureshould be able to generateall
axioms. In practice, this meansthat the setsof axiomsand reasoningrulesconsist
of a �nite number of patterns, so that any formulas can be inserted in the open
placesof the pattern. This constraint ensuresthat one can e�ectively generate
all proofs, which meansthat there is a procedureto �nd all proofs and thus all
theorems.

Table2.1lists the languagesand proof systemsthat arede�ned in this chapter.

2.2 Prop ositional Logic

Propositional logic is a logic for reasoningon a sentence level: It explains how
complexsentencesfollow from simplesentences.We assumethat there is a set P
of basicor atomic propositions. Theserepresent sentencesthat cannot be broken
down in smaller sentences. In the next example this set contains the atomic
propositions p and q, that capture `It rains' and `The weather is good'. These
atomic propositions are combined using logical connectives or operators, which
stand for somesemantical relation betweenfacts.
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sentence prop osition
It rains p
It doesnot rain : p
The weather is good q
It rains and the weather is good p ^ q
It rains or the weather is good p _ q
If it rains then the weather is good p ! q
It rains if and only if the weather is good p $ q
It rains if and only if the weather is not good pr q
Contradiction ?

It is convenient to have somany operatorsavailable, sothat onecan concisely
and naturally expresscomplex formula structures. At the sametime, it is cum-
bersometo deal with all the di�erent operators in all theoremsand proofs. It is
alsoredundant, becausemany operatorscan be expressedin terms of each other.
For instance, p $ q is equivalent to (p ! q) ^ (q ! p). The commonsolution
to this dilemma is to treat someof theseconnectivesas fundamental, and others
as abbreviations for somethingexpressedusing the fundamental connectives. In
the next subsection,a variant of propositional logic with a minimal set of fun-
damental operators is presented, and a proof systemfor this logic is developed.
In the following subsection,it is shown in detail how propositional logic with all
operators reducesto this language.

2.2.1 Minimal Prop ositional Logic

The languageof minimal propositional logic has a set of basic operators that
is minimal in the following sense:Every function from truth values to a truth
value can be expressedby composing the basic operators, but none of the basic
operators can be expressedas a composition of the other basic operators. One
canchoosesuch a minimal set in di�erent ways. Two well-known minimal setsare
f_ ; :g and f^ ; :g , seefor instance[53, p.71]. Our approach is basedon the basic
operators ? (the constant `false' that is never true) and ! (implication). An
argument for this particular choicewould be that implication plays an important
role in the proof systemde�ned for modal logic.

2.2.1. Definition. Let P be a set of atomic propositionsand p 2 P an element
of P. Minimal propositional logic L p(P) consistsof formulas � generatedby the
grammar

� ::= p j � ! � j ?

Parenthesesindicate how certain formulas are constructed,and can be used,
for instance,to make a distinction between(p ! q) ! r and p ! (q ! r ). If no
parenthesesare given then the secondreading is intended: p ! q ! r should be
read asp ! (q ! r ).
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This languageis interpreted in the following way. A model M for this logic
is a subsetof P. The atomic propositions in M are assumedto be true, the ones
that are not in M are false. The next de�nition determineswhenM j= � for any
formula � .

2.2.2. Definition. Let M � P be a model. The satisfaction relation j= for
minimal propositional logic is de�ned recursively by the following three rules:

M j= ? never

M j= p wherep 2 P i� p 2 M

M j= � !  i� M j= � implies M j=  

Like many logics, propositional logic is closedunder uniform substitution.
This meansthat if one has a valid formula in which p occurs, and one replaces
all occurrencesof p for any other formula � , one again has a valid formula. For
example,since� = p _ : p is valid, the formula  = : q _ :: q is also valid. A
formula  that is obtained from � by uniform substitution is called an instance
of � .

In the remainderof this sectionwe de�ne a proof systemSp for the language
L p. The next three formulas serve as the axioms for this proof system.

A1 = � ! ( ! � )

A2 = (� ! ( ! � )) ! (( � !  ) ! (� ! � ))

A3 = ((� ! ? ) ! ( ! ? )) ! ( ! � )

Wehavede�ned axiomsassetsof formulas,and thusA1 to A3 aresetsof formulas.
To be precise,A1 = f � ! ( ! � )j�;  2 L pg, but it is hoped that the notation
without set brackets is more readable. We can write � 2 A i to indicate that �
has the stated form. If � 2 A i we say that � is an instanceof the axiom scheme
A i .

Supposethat L is a logical languagein which ! has its usual interpretation.
If both � and � !  are validities in this logic, then  must be a validit y aswell.
This fact forms the basisof the reasoningrule ModusPonens. The set M PL that
expressesthis rule is the following.

M PL = f (�; � !  ;  )j�;  2 Lg

A more traditional way of presenting this rule is the following.

M PL =
� � !  

 

2.2.3. Definition. The standard proof system Sp for minimal propositional
logic consistsof the three axiomsA1; A2; A3 and the rule Modus Ponens.

The systemSp is soundand completefor minimal propositional logic. A proof
of this claim is beyond the scopeof this dissertation,but proofsfor similar systems
can be found in logic textbooks, for instance[53].
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2.2.2 Full Prop ositional Logic

Logical connectivescan be seenasfunctions that take asinput a number of truth
values,and return a truth value. There are two truth values,and thus two cor-
responding truth constants: ? (false) and > (true). There are two one-place
functions, namely the identit y, which doesnot have a connective, and negation,
for which the notation : is used. A simple counting argument can be used to
show that there are 24 = 16 di�erent two-argument functions. Only a few of
these are commonly used as connectives, namely ^ (and), _ (or), ! (implica-
tion), $ (double implication) and r (exclusive or). In this section,a versionof
propositional logic basedon theseconnectives is presented. This logic is called
full propositional logic.

A formula of the form : � is called a negation. Similarly we call � _  a
disjunction, � ^  a conjunction, � r  an exclusive disjunction, � !  an
implication and � $  a double implication. The two constants > and ? can
be called verum and falsum. Negation is assumedto be the strongest binding
connective, sothat : q^ r is the sameformula as(: q)^ r . For all other connectives,
operators that appear further to the right in the expressionbind stronger. Thus,
p ^ q_ r is the sameformula as p ^ (q_ r ).

2.2.4. Definition. Let P be a set of atomic propositionsand p 2 P an element
of P. Full propositional logic L f

p(P) consistsof formulas � generatedby the rule

� ::= p j ? j > j � ! � j � $ � j � _ � j � ^ � j � r �

This full languageis interpreted in the following way. The model M is again
a subsetof the set of all propositions P.

M j= > always

M j= ? never

M j= p wherep 2 P i� p 2 M

M j= : � i� not M j= �

M j= � _  i� M j= � or M j=  (or both)

M j= � ^  i� M j= � and M j=  

M j= � r  i� M j= � or M j=  but not both

M j= � !  i� M j= � implies M j=  

M j= � $  i� M j= � and M j=  or neither

It is not hard to show that under this interpretation the following formulas hold
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on any model M .

M j= > $ (? ! ? )

M j= : � $ (� ! ? )

M j= (� _  ) $ (( � ! ? ) !  )

M j= (� ^  ) $ (( � !  ! ? ) ! ? )

M j= (� r  ) $ (( � !  ) ! ( ! � )) ! ? )

M j= (� $  ) $ (( � !  ) ! ( ! � ) ! ? ) ! ? )

Onecan thus de�ne all other operators in terms of the two connectives? and ! .
Conjunction and disjunction have as a feature that changing the order and

nesting of theseoperators doesnot changetheir truth value: � _  is equivalent
to  _ � , and (� _  ) _ � is equivalent to � _ ( _ � ). Theseproperties make it
possibleto apply theseoperators to �nite sets. Thus, we de�ne a disjunction of
a set by _

f � 0; � 1; : : : ; � ng = � 0 _ � 1 _ : : : _ � n

Similarly we de�ne the conjunction of a set as
^

f � 0; � 1; : : : ; � ng = � 0 ^ � 1 ^ : : : ^ � n

A useful property of theseoperators is that any propositional logic formula
is equivalent to a conjunction of disjunctions of possiblynegatedatomic proposi-
tions.

2.2.5. Definition. A formula � is in conjunctive normal form i� it hasthe form
� =

V
i

W
j  ij , where  ij is of the form  ij = : a or  ij = a, for someatomic

proposition a 2 P.

2.2.6. Definition. A formula � is in disjunctive normal form i� it hasthe form
� =

W
i

V
j  ij , where  ij is of the form  ij = : a or  ij = a, for someatomic

proposition a 2 P.

Two examplepropositional logic formulas, one in conjunctive and one in dis-
junctive normal form, are the following.

Conjunctive normal form (p _ q) ^ (: p _ : q)
Disjunctive normal form (p ^ : q) _ (: p ^ q)

For logics other than propositional logic, one can also de�ne the notions of
conjunctive and disjunctive normal form in a similar way. For instancefor modal
logic (de�ned in the next section), a formula is conjunctive form is a formula of
the form � =

V
i

W
j  ij where  ij is either a or : a, for someformula a that is

either an atomic proposition, or of the form 2 X � .
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2.3 Mo dal Logic

Modal logic can be seenasan extensionof propositional logic with operators for
expressing`modal' concepts,such as provabilit y, knowledge or belief. It has a
long history (see[12, pp. 37{48] for a brief exposition) and many applications in
logic, mathematics, computer scienceand arti�cial intelligence. It originates in
the study of necessity. Considerthe following pair of statements:

If it doesnot rain then the weather is good (: p ! q)
If it rains then the weather is not good (p ! : q)

At my time and placeof writing, it rains and the weather is not good. Therefore,
both thesesentencesare true in my current situation. We assumethat peopledo
not likerain, sorain is not calledgood weather. Many philosophersfeelthat, given
this assumption,a sentencesuch as the �rst is true merely by accident, whereas
the secondsentence is necessarilytrue. In order to expressthis di�erence a new
symbol is needed. Here, we use the symbol 2 in front of a formula in order to
expressnecessity. Thus, if M expressesthe current state of the world, and w my
current time and place,then the following hold.

M ; w j= (: p ! q)

M ; w j= 2 (p ! : q)

The dual of the box 2 is the diamond 3 . It expressesthat somethingis possible,
and can be de�ned as 3 � = : 2 : � . One can for instancesay that it is possible
that it rains and the weather is not good (3 (: p ^ : q)), but that it is impossible
that it rains and the weather is good at the sametime : 3 (p^ q). Onecan de�ne
modal logic formally in the following way. The set P is again a set of atomic
propositions,and the set � contains the di�erent modalities that we allow. Thus,
if � contains only oneelement, we get basicmodal logic. If � contains multiple
elements, we get a multi-modal logic with multiple di�erent modal operators.

2.3.1. Definition. Supposethe �nite sets � and P are given, and let X 2 �
and p 2 P be typical elements. Multi-mo dal logic L 2 (P) consistsof formulas �
generatedby the rule

� ::= p j 2 X � j � ! � j ?

If the set of modalities � is a singleton � = f X g then the subscript X can be
omitted and we have single-agent modal logic. The notation 3 X � is usedas a
shorthand for : 2 X : � .

It took a while before logicians discovered a good way to interpret the new
operators. One of the reasonsis that onecan read the operator in di�erent ways.
The next table shows a provabilit y reading, a temporal reading, ethical reading,
doxastic reading and an epistemic reading. For many readings an alternative
notation is sometimesused,so that onecan mix thesedi�erent readingswithout
chanceof confusion.
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meaning notation reference
� can be proven 2 � [16]
� is always true in the future 2 � page24
� ought to be true 2 � or O� [70]
A believes� 2 A � or BA � [71]
A knows � 2 A � or K A � [32]

In the last two examples,the logical languagecontains multiple modal operators,
onefor each agent. Theselogicsare thus multi-modal logics,whereasin the other
exampleswe have single-agent modal logic.

A generalsemantics for modal logicswas�nally found around 1960,and is for
a large part due to Saul Kripk e, and is thereforecalled Kripk e semantics [12].

2.3.2. Definition. A Kripk e model M is a tuple M = (� ; W; f RX gX 2 � ; P; � ),
where� is a set of agents, W is a set of worlds, f RX gX 2 � is a collectionof binary
accessibility relations RX betweenworlds, one for each modality X 2 �, P is a
set of atomic propositions and � is a function � : W ! 2P .

The function � is typically calledan interpretation function. The statement 2 X �
is interpreted as saying that � is true in all possibleworlds. This semantics
is therefore called the possibleworld semantics. Which worlds are possible is
determinedby the accessibility relation RX .

2.3.3. Definition. Suppose that M = (� ; W; f Rg� ; P; � ) is a Kripk e model,
w 2 W, p 2 P and X 2 �.

M ; w j= p i� p 2 � (w)
M ; w j= ? never
M ; w j= � !  i� M ; w j= � implies M ; w j=  
M ; w j= 2 X � i� 8v : (w; v) 2 RX ) M ; v j= �

Di�eren t operators 2 X can have di�erent accessibility relations RX and thus
satisfy di�erent properties. There are someproperties that hold for all modal
logics. Other formulas are only true under somereadingsof modal logic. One
important principle is that of necessitation.

2.3.4. Lemma. Let 2 X � 2 L 2 . If � is valid, then 2 X � is valid. [12]

It is perhapsinteresting to remark that this rule preserves logical truth, but not
actual truth. Thus, it is not the casethat if � is true in a situation, then 2 X � is
true in that situation. The theoremonly claims that validit y is preserved, which
is a weaker statement. This lemma can therefore not be used to introduce an
axiom along the lines of � ! 2 X � , but it can be turned into a reasoningrule.
This rule is called Necessitation.

N ecL = f (�; 2 X � )j2 X � 2 Lg
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Or expressedin the more traditional format:

N ecL =
�

2 X �

Another principle of any normal modal logic is distribution of the box oper-
ator. From the truth of 2 X (p ! q) one can derive 2 X p ! 2 X q. This can be
usedto formulate the axiom Distribution or K .

K = 2 X � ! 2 X (� !  ) ! 2 X  

An important questionis of coursewhether onecan formulate a proof systemfor
modal logic. In such a proof systemone could reuseall axioms of propositional
logic, but this is not normally done. It is more convenient to assumefamiliarit y
with propositional logic, and to allow any propositional logic tautology as an
axiom. Thus, the following is an axiom in our proof systemfor modal logic.

prop = � where� is an instanceof a propositional logic tautology

This axiom allows one to substitute any number of atomic propositions by arbi-
trary modal logic formulas. Onecannot only usethis rule to derive the tautology
p ! p, but also to derive 2 X p ! 2 X p.

One can of coursequestion the legitimacy of this axiom. Is it not too easy
to allow any tautology in a proof? Does this not lead to uncheckable proofs?
The answer is `no'. One can test whether a propositional logic formula is valid
(and thus provable) by checking all di�erent models: there is a �nite number of
atomic propositions in any propositional logic formula, and thus a �nite number
of models. Furthermore onecan convert proofs that usethis axiom by replacing
each usageof this axiom by the corresponding Sp proof. Thus, at least in theory,
such an axiom can be allowed.

2.3.5. Definition. Let L 2 be the languageof modal logic. The proof systemS2

for this languagehasprop and K asaxioms,and ModusPonensand Necessitation
as reasoningrules.

2.3.6. Theorem. Supposethat � 2 L 2 is valid. Then S2 ` � .

This property is called weak completeness,and a proof of someversion of this
theoremcan be found in most modal logic books, for instancethe oneby Black-
burn et al [12, p.194]or Meyer and Van der Hoek [71, p.18]. Below we sketch the
generalidea, which usesmaximally consistent sets.

2.3.7. Definition. Supposea logic is given with languageL and with a proof
systemS that usesModusPonensasa reasoningrule (and possiblyother rulesas
well). A set of formulas S � L is maximally consistent if the following conditions
are all met: ? =2 S, all instancesof axioms � 2 A are in S, if �; � !  2 S then
 2 S, and for any formula � either � 2 S or : � 2 S.
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For each consistent formula � one can �nd a maximally consistent set S so
that � 2 S [12]. If the proof systemS is sound,then for any pointed model M ; w,
the set f � j M ; w j= � g is maximally consistent.

In order to prove the theorem, considera consistent formula � with atomic
propositions from the set P. It is necessaryto show that there is a model
M such that M ; w0 j= � . Such a model W = (� ; W; R; P; � ) can be con-
structed using maximally consistent sets as the worlds as the model: W =
f wjw is a maximally consistent setg. The relation RX is then de�ned such that
(v; w) 2 RX if 3 X � 2 v for all � 2 w, and � (w) = f p 2 Pjp 2 wg. For w0 one
can take any maximally consistent set that contains � . This construction de�nes
one large model M called the canonical model for a logic, such that any consis-
tent formula holds in someworld of this model. This technique to usemaximally
consistent setsas possibleworlds not only works for plain modal logic, but can
often be adapted for modal logicswith a di�erent interpretation [12, p.194].

The multi-modal logic presented here is the weakest possible version of a
modal logic with a possibleworlds semantics. The next table lists someformulas
that one might expect to hold for certain readingsof the 2 operator, but that
cannot be proven in S2 .

4 2 X � ! 2 X 2 X � What is necessary(for X ) is necessarilynecessary
D 2 X � ! : 2 X : � What is necessary(for X ) is possible
T 2 X � ! � What is known to X is true

The names4; D and T are the standard namesfor theseaxioms[12, p.192]. One
can make theseformulas valid by putting constraints on the relations RX . This
idea is usedin order to get an epistemicreading in the next section.

It is often important to determine whether two models satisfy the samefor-
mulas, and for this purposethe notion of bisimulation can be used. Two Kripk e
models are bisimilar if one can �nd for any world in onemodel a corresponding
world in the other model. Such a relation between worlds is called a bisimula-
tion. A formal de�nition of this concept for single-agent modal logic would be
the following.

2.3.8. Definition. Let M 1 = (f X g; W1; R1; P; � 1) andM 2 = (f X g; W2; R2; P; � 1)
be single-agent Kripk e models. A non-empty relation S � W1 � W2 is a bisimu-
lation if the following conditions hold

� If (w1; w2) 2 S then � (w1) = � (w2)

� If (v1; w1) 2 R1 and (v1; v2) 2 S then there is a world w2 such that (v2; w2) 2
R2 and (w1; w2) 2 S

� If (v2; w2) 2 R2 and (v1; v2) 2 S then there is a world w1 such that (v1; w1) 2
R1 and (w1; w2) 2 S
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For logic with more than oneagent onehasto usea set of relations SX asbisim-
ulation. For simplicity reasonsthis extensionhasbeenomitted.

A bisimulation matches worlds that behave similarly with respect to modal
logic formulas. Thus, if M 1; w1 j= � and (w1; w2) 2 S then also M 2; w2 j= � .
In order to decide whether two models are equivalent one thus has to �nd a
bisimulation betweenthe models,or prove that no such relation exists.

2.3.1 Epistemic Logic

Epistemic logic is an extensionof propositional logic with operators that express
that a proposition is known. It originates from philosophy [48], but has found
applications in computer scienceand arti�cial intelligence [71, 32]. It is one of
the best known modal logics.

In epistemiclogic, the operator 2 is usually written K . In the caseof multiple
operators theseare written K X instead of 2 X . The X indicates which agent's
knowledgeone is talking about. Thus, K � denotesthat � is known in the single
agent case,and K A � means that A knows � . Instead of 3 we use M . The
operators M and M X expressthat somethingis consideredpossible,the dual of
knowledge.

The following statements about knowledgemake useof theseoperators.

It rains p
Alice know it rains K A p
Bob doesnot know that it rains : K B p
Bob thinks it is possiblethat it rains M B p
Alice or Bob knows that it rains K A p _ K B p
Bob doesnot know that Alice knows that it rains : K B K A p
Alice knows that shethinks it is possiblethat it rains K A MA p

2.3.9. Definition. Supposethe �nite sets� andP aregiven,and let X 2 � and
p 2 P be typical elements. Epistemic logic L K consistsof formulas � generated
by the rule

� ::= p j K X � j � ! � j ?

For epistemiclogic we identify each modality with an agent. Sincethe notation
� is usedfor the set of all agents in this dissertation, we hereuse� for the set of
modalities, rather than � as we did on page15.

A relation R is an equivalence relation over W if for any worlds v; w; x 2 W it
is the casethat (v; v) 2 R (reexivit y), if (v; w) 2 R then (w; v) 2 R (symmetry)
and if (v; w) 2 R and (w; x) 2 R then (v; x) 2 R (transitivit y). If a relation is an
equivalencerelation we often usethe symbol � for this relation. Furthermore we
write w � X v instead of (w; v) 2 � X .

2.3.10. Definition. A Kripk e model M = (� ; W; f RX gX 2 � ; P; � ) is an epis-
temic model if each relation RX is an equivalencerelation over W.
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The next table lists someexamplesof formulas that hold over epistemicmodels
M .

j= K X � ! � Truth
j= K X � ! K X K X � Positive Introspection
j= : K X � ! K X : K X � Negative Introspection

Thesevalidities can be usedas axioms in a reasoningsystemfor epistemiclogic.

T = K X � ! �

4 = K X � ! K X K X �

5 = : K X � ! K X : K X �

For epistemiclogic onealsohasa proof system.

2.3.11. Definition. The proof systemSK for L K is de�ned as

(prop [ K [ 4 [ 5 [ T; M P [ N ec)

This proof systemis againsoundandcompletewith respect to the givensemantics
basedon epistemicmodels. A proof canbe found in epistemicor modal logic text
books such as [12, p.194]. The commonnamefor this proof systemis S5 or S5n

wheren is the number of agents. This semantics is widely usedbecauseit is simple
and seemsrealistic for rational agents, but hasalsoreceived criticism. First of all
there is the omniscienceproblem: all agents know all tautologies,so every agent
knows all mathematical theorems. This seemsunrealistic in the caseof human
agents, or arti�cial agents with a limited computing capacity. There have been
attempts to model knowledgewhile avoiding omniscience[32]. A secondpotential
objection is that it is not certain that humanshave full introspection over all their
knowledge.Humansdo not always know what they know, and especially it seems
doubtful that they have negative introspection. This is for instance stated in
Rumsfeld'sfamousremark:

\There are known knowns. Theseare things we know that we know.
There are known unknowns. That is to say, there are things that
we know we don't know. But there are also unknown unknowns.
There are things we don't know we don't know." (D. Rumsfeld,USA
secretary of defense,Feb. 12, 2002)[92]

Philosophically there are many arguments against introspection [123]. In the
context of protocols, with a �nite number of states and possibilities, it does
not seemto be a problem. It is not unreasonableto assumethat agents have
introspection over a small, well-known domain such as the possibleoutcomesof
a protocol. It doesnot follow from this assumptionthat agents know everything
about the whole world, or are completely aware of omissionson their knowledge
in general.
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Figure 2.2: Rain in Liverpool and Amsterdam: Model M 1

2.3.2 Common Kno wledge

If one reasonsabout the knowledgeof multiple agents, it is natural to consider
caseswhere agents collectively know something. In order to make this possible
several notions of group knowledgehave beende�ned. The �rst of thesenotions
allows oneto say that `Everbody knows . . . ' and is denotedE� . This notion can
be de�ned by meansof a conjunction over all agents.

M ; w j= E� , M ; w j=
^

X 2 �

K X �

This operator can alsobe de�ned usingan accessibility relation, like the K oper-
ators. De�ne RE as the union of all singleagent relations: RE =

S
X 2 � � X . The

everybody knows operator can be interpreted in the following way.

M ; w j= E� i� 8v : (w; v) 2 RE implies M ; v j= �

The relation RE is not transitive, and thus it is not an equivalence relation.
Therefore, the principles of positive and negative introspection do not hold for
`Everybody knows'. The formula E� ! EE� is not valid, and a counterexample
is presented in �gure 2.2. This illustrated model M 1 has two agents, A and B.
A is in Liverpool, and can thus observe the weather in Liverpool, and B is in
Amsterdam, and can seethe weather in Amsterdam. The atomic proposition p
indicates that it rains in Liverpool, and q that it rains in Amsterdam. Suppose
that in the actual situation s it rains in both Amsterdam and Liverpool. The
following formulas hold.

M1; s j= K A p ^ K B q A and B know that it rains in their city
M1; s j= K A (p _ q) A knows that it rains in Liverpool or Amsterdam
M1; s j= : K A K B q A doesnot know that B knows it rains in Liverpool
M1; s j= E(p _ q) Everybody knows that it rains somewhere
M1; s j= : EE(p _ q) Not everybody knows that everybody knows it rains

The conclusionof this exampleis that given what everybody knows, onecannot
concludeanything about what agents know about each other's knowledge. Since
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one often does want to reasonabout this higher order knowledge, a stronger
notion of group knowledge is useful. Lewis therefore introduced the notion of
commonknowledge[65]. Intuitiv ely somethingis commonknowledgeif everybody
knows it, everybody knows that everybody knows it, everybody knows everybody
knows everybody knows it, etcetera. Commonknowledgeturns out to be a more
powerful notion than `everybody knows'. First of all it is hard to obtain, but
on the other hand it can be a necessarycondition in order to coordinate [71] or
to make linguistic conventions work [65]. Other phenomena,such as the pricing
of TV commercials,can also be explained by the needof advertisers to achieve
commonknowledgeinstead of plain knowledge[21].

The notation C� is usedto convey that � is commonknowledge. It can be
de�ned in the following way. Let � C be the smallest equivalencerelation such
that for all X we have � X � � C . We can interpret C� in the following way.

M ; w j= C� i� 8v : w � C v implies M ; v j= �

The following formulas are valid under this interpretation.

j= C� ! CC�

j= : C� ! C: C�

j= C� ! C(� !  ) ! C 

j= C� ! E �

j= � ! E(� ! E � ) ! C�

The commonknowledgeoperator C thussatis�es positive and negative introspec-
tion, which meansthat it behavesas a knowledgeoperator.

Onecanshow that if a formula � holds in every world w of a model M , then �
is commonknowledgein M . Thus, if we present a model of a certain situation in
which there is no state where � doesnot hold, then we have implicitly assumed
that � is common knowledge. In most examplesin this dissertation, common
knowledgeis not introducedin the language.However, commonknowledgeof at
least the protocol is assumedeverywherein this dissertation, and in somecases
also the preferencesof agents are commonknowledge.

2.4 Theorem Pro ving, Satis�abilit y and Mo del
Checking

TheoremProving, Satis�abilit y and Model Checking are three di�erent problems
that one can formulate for a logic. In this section, it is explained how these
problemsare relevant for multi-agent protocols.

Theorem proving, the problem of �nding derivations that prove a given the-
orem, has always beenone of the main usesof logic. Automated theorem prov-
ing has received much attention in the �eld of AI. As described by for instance
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MacKenzie [66], automated theorem proving has important applications in the
veri�cation of hardware and software.

A related problem to theorem proving is satis�abilit y. In the satis�abilit y
problem onehasa formula � such that : � cannot be proven, and onewould like
to �nd a model M such that M j= � . In many casesonecanusethe samemethod,
for instancea tableau-basedmethod [96], for theoremproving and satis�abilit y: If
� is satis�able a model is producedby the method, otherwisethe method returns
a proof for : � .

Model checking is the problem of verifying whether a formula � holds on a
given model M , and is alsowidely usedfor veri�cation of systems[53]. For many
logics, including propositional logic, model checking is substantially easierthan
satis�abilit y. Intuitiv ely this can be explainedby the fact that in order to solve
a satis�abilit y problem, onehasto �nd a model, whereasfor model checking one
hasbeengiven onespeci�c model.

Model checking can be used for veri�cation of computer hardware and pro-
grams, in the following way. The systemto be checked is translated in a logical
model M , and the property that onewould like to verify is translated in a formula
� . The following set of correspondencesillustrates the correspondencebetween
the original veri�cation problem and the model checking problem.

protocol
property

,
model

formula

What is meant here is that protocols correspond to models, and properties
with formulas. The double-headedarrow indicatesthat onecangoback and forth
from the informal description on the lefthand side to the formal description of
the situation on the righthand side.

Model checking was �rst donefor properties involving time [22, 10]. One rea-
son that model checking has becomepopular is the invention of symbolic model
checking [69]. Using this technique the model that is checked is not storedexplic-
itly , but represented in a symbolic way, using for exampleorderedbinary decision
diagrams. The model can thus have more states than onecan store explicitly in
the memoryof the computer that is used. The useof symbolic model checking has
madeit possibleto check systemswith billions of states, instead of only millions
of states. Recent work aims to develop model checking techniquesfor epistemic
properties [104,101,56].

For somelogicsone can usetheorem proving for systemveri�cation. This is
possibleif onecantranslate the systeminto a formal structure (for instancea tree
or a graph) and then describe this structure using a formula � 1. The property
to be veri�ed is represented by a formula � 2, and one usesthe theorem prover
to prove that ` � 1 ! � 2. This results into a proof that any systemof the given
structure has the desired property. Schematically one can display this in the
following way.
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protocol
property

,
� 1

� 2

Hence both the protocol and the property correspond to a formula. This
method of veri�cation by theorem proving is only possiblefor logics in which
one can expressthe structure of a system. For some logics, such as Pauly's
coalition logic [85] (discussedin section3.4), this is possiblebecausethe logic has
a modal operator that corresponds to exactly one step in the protocol. Thus,
onecan construct, for each gametree T describinga protocol, a formula � 1 that
describesthis gametree. For other logics,such asVan Benthem's logic for process
models [99], also discussedin section3.4, this is not possible. In this logic game
trees cannot be described in detail, and henceno suitable formula � 1 can be
found.

Another long term goalin computerscienceis the automatic designof systems.
In this casethe user indicates the properties that a system,protocol or program
must have, and the computer constructs a system. One can always usethe AI-
heuristic `generateand test' in order to solve this problem, but this heuristic is
not very e�cien t. In generalthis problem is more di�cult than veri�cation, just
assatis�abilit y is more di�cult than model checking: again onehas to construct
something,instead of just computing a yes-noanswer.

In economics,the classicalnamefor the problem of �nding a suitable auction
or procedureis mechanismdesign[83]. This problem hasbeenpicked up by com-
puter scienceresearchers,and several researchersarenow active in the areacalled
automated mechanism design or computational mechanism design [29, 25]. For
all logics in which models can be seenas representing a system, the mechanism
designproblem can be reducedto satis�abilit y checking. Unfortunately satis�-
abilit y checking is often a di�cult problem, and hencemechanism designusing
logical methods is often hard as well.

Linear Temp oral Logic

A logic that is often used successfullyin combination with model checking is
linear temporal logic LTL . A formula of this logic is interpreted over a sequence
of states. Such a sequencerepresents the di�erent statesa systemcango through
during a computation. The di�erent operators of LTL can be used to refer to
statesafter the current state.

2.4.1. Definition. The logic LTL contains formulas � generatedby the follow-
ing rule. In this rule, p is a typical element of P

� ::= p j ? j � ! � j � U� j f �
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The sequencesof statesthat are consideredfor LTL are not always �nite. There-
fore, it is more convenient to usefunctions f : N ! 2P assequences.Thesefunc-
tions assignsubsetsof true atomic propositions to each natural number. Such a
sequenceis called a history or a run. Each formula � is interpreted over a pair
f ; n wheref is such a function, and n 2 N indicates the current state.

f ; n j= ? never

f ; n j= p wherep 2 P i� p 2 f (n)

f ; n j= � !  i� f ; n j= � implies f ; n j=  

f ; n j= f � i� f ; n + 1 j= �

f ; n j= � U i� 9m : m � nf ; m and j=  and 8m > k > n : f ; k j= �

The `until' operator � U indicatesthat at somepoint in the future  is true,
and until that time � holds. The next operator f � expressesthat � is true at the
next state. A commonlyde�ned shortcut is the `sometimes'operator 3 � = > U�
that indicatesthat � is true somewherein the future. One can de�ne an `always'
operator 2 � that indicates that � holds forever from now on, with the following
de�nition: 2 � = : 3 : � .

A system to be veri�ed is not modeled as a single run but as a set of runs.
Since these runs can be in�nite, such a set must be speci�ed implicitly . The
most commonway to do this is to de�ne a labeled graph (V; E; � ) where � is a
function from V to 2P . A possiblepath in this graph is a sequencew : N ! V
such that (w(n); w(n + 1)) 2 E for all n 2 N. Any possiblepath w de�nes a
possiblerun f : n 7! � (w(n)). A shorthand notation for this is f = � (w), since
f (n) is constructedby �rst computing w(n), and then applying � to the result.
Let W be the set of all possiblepaths, and R the set of all possibleruns.

A model checker for LTL takesa description of a systemand an LTL formula
� . From the description it computesa set of possibleruns R, and then it checks
whether for all runs r 2 R it is the casethat r; 1 j= � . If so the model checker re-
turns true, otherwisethe model checker returns the run r such that r; 1 j= : � . An
LTL model checker thus returns counter-examplesthat can be very informative
for systemdesigners.A well-known model checker for LTL is SPIN [51].

Branc hing Time Temp oral Logic

Computation tree logic is a temporal logic that is suitable for reasoningabout
modelsthat havemultiple possiblefutures [23]. The formulascanexpresswhether
certain events happen in all possible futures, or only in somepossible future.
This hasturned out to be an important feature in the veri�cation of for instance
concurrent computer systems.
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2.4.2. Definition. The logic CTL contains formulas � generatedby the follow-
ing rule. In this rule, p is a typical element of P.

� ::= p j � ! � j ? j 8 j 9 

 ::= 2 � j � U�

The formulas � generatedby the grammar rules stated above are called state
formulas becausethey are interpreted over states. The formulas  are called
path formulas, becausethey are interpreted over paths. As the name indicates
this logic can be interpreted over tree structures, where the nodes of the tree
are states of a system,and the edgesindicate how the systemcan go from one
state to the next. Typically such a tree is constructedby consideringall possible
paths through a labeled graph (V; E; � ), combined in a set W. Each path w
is a �nite sequencew(1)w(2) : : :w(n) or in�nite sequencew(1)w(2) : : : of states
w(n). Thus the notation w = v::: 2 W is usedto indicate that w is an in�nite
path that starts in v. CTL formulas � can be interpreted over a set of paths
combined with an interpretation function � : V ! 2P and a current state v 2 V.
The path formulas are however interpreted over a set of paths combined with an
interpretation function � : V ! 2P and a current path w 2 W.

W; � ; v j= ? never

W; � ; v j= p wherep 2 P i� p 2 � (v)

W; � ; v j= � 1 ! � 2 i� W; � ; v j= � 1 implies W; � ; v j= � 2

W; � ; v j= 8 i� 8w = v::: 2 W : W; � ; w j=  

W; � ; v j= 9 i� 9w = v::: 2 W : W; � ; w j=  

W; � ; w j= 2 � i� 8n � 1 : W; � ; w(n) j= �

W; � ; w j= � 1 U� 2 i� 9m � 1 : W; � ; w(m) j= � 2 and

8k : m > k � 1 ) W; � ; w(k) j= � 1

Both CTL and LTL can be model checked in polynomial time in terms of the
number of statesof the system[90]. This makesthe veri�cation of systemsfeasi-
ble. Unfortunately, the number of states of a systemcan increaseexponentially
with the number of components, or the amount of memory cells, that a system
has. The conclusionthat model checking is tractable, is thus perhapssomewhat
misleading,sincemodel checking is intractable whenthe input is measuredin the
sizeof the description of the system. Summarizingand interpreting the current
state of the art, onecould say that model checking using LTL and CTL is feasi-
ble, but not (yet) very tractable for real world systems. In practice, techniques
like symbolic model checking and other heuristics can be used to make model
checking for ever larger systemsfeasible.
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2.5 Computational Complexit y

In the �eld of computational complexity, researchers contemplate why certain
problemsare hard to solve for computers [81, p. v]. A problem in this context
has to be de�ned precisely. A problem is function f : Prob ! Sol, that takes
probleminstances d 2 Prob to their solution f (d) 2 Sol. In the caseof a decision
problem, the solution spaceconsistsof only two answers: Sol = f 0; 1g where
0 means`no' and 1 means`yes'. An algorithm for problem f is a mechanical
procedurethat takesan input d and producesits answer f (d).

To give an example of a problem in this sense,consider satis�abilit y. For
each logic, its satis�abilit y problem is a logical problem of interest to complexity
theorists. Satis�abilit y is usually phrased as a decision problem f such that
f (� ) = 1 i� � is satis�able.

Since there are many di�erent computer architectures, one can have many
di�erent ideasof what counts as a mechanical procedure. However, it turns out
that many of thesearchitecturesareequivalent with respect to the computational
resourcesthat are required to solve a problem, and therefore it doesnot matter
which architecture or notion of algorithm one chooses. A common choice is to
considerTuring machines, introducedby Alan Turing, becausethesemachinesare
very convenient from a theoretical perspective [81, p. 19]. In practice, algorithms
for Turing machines can be converted to programs for actual computers, that
have a comparablee�ciency .

Turing machines that compute f , do not work on problem instancessim-
pliciter, but on representations thereof. Every problem instance can be repre-
sented by a string of symbols. In practice, it is su�cien t to consideronly two
distinct symbols, 0 and 1, to represent any object. A two-valuedvariable is called
a bit , and the sizekdk of an object d can thus be measuredin the number of bits
oneneedsto encodethe object. For instanceformulascouldbeencodedby usinga
sequenceof say 8 bits to encodeeach symbol in the formula. In that casea formula
p_ q would be24bits in size. The exactnumber of bits neededin a representation
is not always important. It is enoughto know that \any `�nite' mathematical
object can be represented by a �nite string over an appropriate alphabet" [81, p.
26]. We simply assumea \reasonably succinct representation" [81, p. 26] is used
for objects such as formulas.

One computational resourcewe are interested in is the time it takes for an
algorithm to computethe answer to a problem, and this is calledthe computation
time. The question is how the computation time (measuredin stepsof the head
of the Turing machine) dependson the sizeof the input. In particular, onewould
like to �nd monotone functions b : N ! R that provides an upper bound on
the computation time. If for all d 2 Prob larger than a certain �xed length c,
the algorithm can compute f (d) in lessthan b(kdk) steps, then we say that the
running time of the algorithm is boundedby b.

Similarly one can considerbounds on the amount of bits that an algorithm
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needsas working memory in order to compute its answer. Thus, if there is a
constant c such that for instancesd with kdk > c, the algorithm can compute
f (d) using lessthan b(kdk) bits of memory, then we say that the spaceneededby
the algorithm is at most b.

This notion of a bound is overly preciseas it greatly dependson the machine
architecture chosen:for instancesorting a list canhave a bound b(x) = 3�x2+ 167
on onemachine and b0(x) = 3:5�x2+ 14on anothermachine. Therefore,the bound
functions are put into equivalenceclasses.A bound b0 is in the sameequivalence
classas b if there are constants c;e 2 R such that for all inputs d with kdk > e
we have that b0(kdk) � c � b(kdk). We write O(b(kdk)) to denotethe equivalence
classof b(kdk). It is not hard to seethat both boundsgiven above sit in the same
equivalenceclassO(kdk2). They are called quadratic bounds. Similarly one has
linear boundsO(kdk) and exponential boundsO(2kdk).

An algorithm runs in polynomial time if there is somebound b on its running
time that is in O(xn ) for somen. Similarly an algorithm can be in polynomial
space if there is a bound b on the memory neededthat is in b = O(xn ) for some
n.

In �gure 2.3 a graph is displayed. If one seessuch a graph as a network
of roads between cities, a question of practical importance would be what the
shortestpath is betweentwo nodesof the graph. Thus, the path-�nding problem
would be a function f that takes (V; E; v1; v2; n) as input, and returns a path
w1 : : : wm with m � n, w1 = v1 and wm = v2, if such a path exists. Otherwise it
should return `no'. This problem can be solved in polynomial time, for instance
using Dijkstra's algorithm [27].

The model checking problem for propositional logic is the function g such
that g(M ; � ) = 1 if and only if M j= � . This function can be computed in time
O((kM k + k� k)2) and thus this problem can be solved in polynomial time. Only
a small amount of memory is needed,boundedby k� k, and thus the problem is
alsoin polynomial space.In generala Turing machine can only usea polynomial
amount of spacein polynomial time, so all polynomial time problems are in
polynomial space.

Algorithms canbeclassi�ed into classesof algorithms whoseboundsare in the
sameequivalenceclass.Theseclassesarecalledcomplexityclasses. The following
complexity classesare well-known and turn out to be relevant for the results in
this dissertation. The classP contains problemsthat canbe solved in polynomial
time. The classPSPACE contains problemsthat needa polynomial amount of
memory.

Problems can also be divided into the samecomplexity classes.A problem
belongsto a classC if there is an algorithm in C that solves the problem. Thus,
the problem of �nding the shortest path between two points in a graph is in P
becausethere is a P algorithm that solvesthis problem.

The classP is often called that classof tractableof problemsor problemsthat
canbe solvede�ciently . In this dissertationwe follow this convention and indeed
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Figure 2.3: A graph with a Hamiltonian cycle

usesthesewords as meaning`solvable in polynomial time'. The term intr actable
meansthat the problem is not in the classP.

Nondeterministic Computation

Therearemany decisionproblemsf such that f (d) = 1 if thereexistssomeobject
w that satis�es certain criteria. A good example is the problem, for a given
graph, to decide whether this graph has a Hamiltonian cycle. A Hamiltonian
cycle visits each node of the graph, but does not use the sameedgetwice. In
�gure 2.3, Hamilton's original problem is displayed. In this particular graph
there is a Hamiltonian cycle, and the reader is invited to �nd oneas an exercise
(a possibleanswer is displayed in �gure 2.4 on page29). The reader will most
likely experiencethat �nding a Hamiltonian cycle is harder than verifying that a
given path is a Hamiltonian cycle.

Supposethat the problem f : Prob ! f 0; 1g is de�ned such that f (d) = 1 i�
d is a graph that hasa Hamiltonian cycle. Supposealso that we have a problem
g 2 P that checks whether a path w is a Hamiltonian cycle on d. The relation
betweenf and g is that f (d) = 1 , 9w : g(d;w) = 1.

The Hamiltonian cycle w is called a witness for d, since the existenceof a
path w is evidencefor the fact that f (d) = 1. We have assumedthat g 2 P, and
hencethat we have a polynomial time algorithm for g. A very naive algorithm for
solvingf would be the following. Guesssomevaluew, and check whetherg(d;w).
If you are very lucky in guessingw, then this algorithm works in polynomial time
as well. If you are not a good guesser,this algorithm is not e�cien t.

Any problem f for which there exist a polynomial time function g that checks
witnesses,is called solvable in nondeterministic polynomial time [26]. The class
of these problems is called NP. There are many problems that have practical
relevancein this class[35]. A logical exampleof an NP problem is the proposi-
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tional logic satis�abilit y problem f . In order to determine whether a formula �
is satis�able, one can guessa model M � P such that M j= � . If such a model
is guessedcorrectly, then we know that f (� ) = 1. If no lucky guesscan be made
at all, then � is not satis�able and thus f (� ) = 0.

Reductions and Completeness

It is often possibleto translate an instance of one problem into an instance of
another problem. Such a translation is called a reduction in the context of com-
plexity theory. Supposethat f and f 0 are two problems. A reduction r from f
to f 0 is a function such that 8d : f (d) = f 0(r (d)). If a reduction r exists that
is relatively easy to compute, then solving an instance of f cannot be harder
than solving an instanceof f . In order to determinef (d) one�rst computesthe
reducedproblem r (d) and then usesthe algorithm, if one is known, for f 0(r (d)).
If the reduction function r is in P, then we call f reduciblein polynomial time to
f 0 [27].

A problem f is called C-hard if all problems in the complexity classC can
be reducedin polynomial time to problem f . If the C-hard problem f is itself a
member of classC, then f is calledC-complete. Such a problemcanbesaidto bea
representativ e for all problemsof this class.Considerfor instancethe satis�ability
problemf for propositional logic. This decisionproblem canbe de�ned by saying
that f (� ) = 1 if M j= � for model M .

2.5.1. Theorem (Cook's theorem). Deciding whether a propositional logic
formula � is satis�able is NP-complete.

This was the �rst theorem to be proven NP-complete,presented in 1971[81, p.
176]. The proof contains a generalmethod how a reduction function r can be
found for any NP decision problem that has a veri�cation method g. Such a
generalproof has to be given oncefor each class. In order to prove that another
problemin NP is NP-complete,it su�ces to selecta known NP-completeproblem,
and then give a speci�c reduction function r from the completeproblem to the
next problem.

In many NP-completenessproofs it is convenient not to usethe generalsat-
is�abilit y problem in a reduction argument, but to give a reduction from 3-CNF
formulas. A formula � is in 3-CNF if it is in conjunctive normal form, and each
disjunction contains exactly three literals. Such a formula thus has the following
form.

� =
^

i

(� ai _ � bi _ � ci )

The sign � can be either a negation or nothing, and ai ; bi ; ci 2 P are atomic
propositions. The satis�abilit y problem for 3-CNF formulas is called 3SAT and
this problem is NP-complete[81, p. 183].
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For the classPSPACE, we also usea logical problem in the reduction argu-
ments. We usethe satis�abilit y problem for a quanti�ed booleanformula, since
this problem is PSPACE-complete.

2.5.2. Definition. A quanti�ed boolean formula � is a formula of the form

8x19x28x3 : : : 9xn� 18xn � q

such that � q is a propositional logic formula with f x1; : : : xng as atomic proposi-
tions.

An example formula is 8p9q(p _ : q) ^ (: p _ q). This formula is true if for all
truth values of p one can �nd a truth value for q such that the propositional
logic formula holds. Intuitiv ely, 8p� is true if � holds regardlesswhat truth value
one choosesfor p, and similarly 9p� holds if � is true for sometruth value for
p. Formally, we can de�ne the following interpretation for quanti�ed boolean
formulas, which is an extensionof the interpretation of propositional logic given
on page12. Let S � P be a set of atomic propositions, � a quanti�ed boolean
formula, and � q 2 L p a propositional logic formula.

S j= 8x� i� (S [ f xg) j= � and S j= �

S j= 9x� i� (S [ f xg) j= � or S j= �

S j= � q i� S j= � q in propositional logic

The QBF decisionproblem f is de�ned such that for any quanti�ed boolean
formula � we have

f (� ) = 1 if ; j= �

f (� ) = 0 otherwise

2.5.3. Theorem (Stockmeyer and Meyer). The QBF decision problem is
PSPACE-complete.

The completenessproof for this problem was presented in 1973[81, p. 487].
The satis�abilit y problem for propositional logic is of coursea special case

of the QBF problem, where we allow only existential quanti�ers. Instead of
consideringwhether p ! q is satis�able, one can considerthe QBF problem of
decidingwhether9p9q(p ! q) holds. Similarly onecanconsiderother restrictions
on the number of quanti�er seriesin a QBF problem. The following table lists a
few variants.

9p1 : : : 9pn � q satis�abilit y, in class� 1P or NP
8p1 : : : 8pn � q tautology, in class� 1P or co-NP
9p1 : : : 9pn 8q1 : : : 8qn � q � 2P
8p1 : : : 8pn 9q1 : : : 9qn � q � 2P
. . .
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Figure 2.4: A solution to Hamilton's problem

The classes� nP and � nP are de�ned using oracles. A Turing machine with
an oracle is a machine that is allowed to ask certain di�cult questions to a
supernatural being (an oracle). The oracle returns the right answer to these
questionsin onetime step. The class� 2P contains problemsthat can be veri�ed
by a Turing machine that has an oracle for someNP-complete problem. The
problemsgiven above are again completefor theseclasses:any � 2P problem can
be reducedto a QBF problem of the form 9p1 : : : 9pn 8q1 : : : 8qn � q [81, p. 428].

Op en Problem

Intuitiv ely it seemseasierto verify a problem than to solve it. For instanceit is
easyto seethat the path given in �gure 2.4 is a Hamiltonian cycle, whereasit
is lesseasyto �nd such a path. It is therefore widely believed [35] that not all
NP problemscan be solved in polynomial time, and thus that no NP-complete
problemscan be solved in polynomial time. If we assumethat this is the case,
then NP-complete problems are intr actable, and the sameholds for the classes
� 2P and PSPACE. Unfortunately whether P 6= NP is one of the most famous
open problemsin computer science[26].

In this dissertation we show for several problemsthat they are NP-complete,
� 2P complete or PSPACE-complete, and we use this as evidencefor the in-
tractibilit y of theseproblems. Of coursethis is only partial evidence,sinceit is
still possiblethat all problemsin NP, contrary to popular belief, are tractable.



Chapter 3

Game Theory

3.1 Overview

One can de�ne gametheory as the areaof mathematicsthat is about games.In
this case,gametheory is older than most peoplethink. In the sixteenth century
the mathematician and physician JeromeCardano wrote his Book on Gamesof
Chance [78]. The book openswith a statement describingthe various forms that
gamescan take.

Gamesdependeither on agility of body, aswith a ball; or on strength,
as with discusand in wrestling; or on industriously acquiredskill, as
at chess;or on chance, as with dice and with knucklebones; or on
both, as fritillus. [78, p. 185]

As Cardanoindicates,certain gamescandependon both skill and luck at the same
time. Nowadays Cardano'sbook is classi�ed as being about probability theory,
as opposedto game theory. The reasonfor this is that his book is concerned
with calculating the probabilities of certain events, but doesnot considervarious
strategiesand the inuence of an opponents' strategy.

The origin of game theory is therefore better placed in the �rst half of the
twentieth century. One of the �rst mathematical papers that focusedon the
strategic aspects of gameswas Zur Theorie der Gesellschaftspieleby John von
Neumann[118]. The central questionof this paper is about the optimal strategies
for players in a parlour game.

n Players, S1; S2; : : : ; Sn , are playing a given parlour gameG. How
shouldoneof thoseplayers,Sm , play, in order to get a most bene�cial
result? [118,p. 295]

John von Neumann also co-authored the �rst book on game theory, Game
theory and economic behaviour, which appearedin 1944[74]. The title already

33
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Figure 3.1: JeromeCardano

indicates that gametheory is not merely about recreational games,but can be
applied to economics.Von Neumannand Morgensternseea gameasan optimisa-
tion problem in which multiple parties simultaneously try to optimize their own
outcome. According to them, this is `nowheredealt with in classicalmathemat-
ics' [74, p.11]. This inuen tial book introducedgametheory to a wide audience,
summarizedresults that were `alreadyknown, but lacked formal proof' [74, p.6]
and gave many game-theoreticterms their meaning.

The following list contains someof the terms introduced by Von Neumann
and Morgenstern.

A game: A description of a set of interactions betweenagents. The description
should include which agents can participate, what theseagents can do, and
what theseagents try to achieve.

A play: A speci�c sequenceof interactions betweenagents. A gameconsistsof
many possibleplays.

A player: An entit y that can make decisionsin a certain game.

A move: An action that onecan choose,a possibility.

A choice: An action that onehaschosen.

A solution: `plausibly a set of rules for each participant which tell him how to
behave in every situation which may conceivably arise.' [74, p31]

The words `game'and `play' still have the samemeaningin most of the literature.
The word `player' is nowadays often replacedby the synonym `agent'. A possible
reasonfor this changeof terminology is that the word `player' reminds peopleof
recreationalgames,whereasgametheoristsoften considerlessleisurelysituations.
An agent canbea human player, but alsoan organisationor a computerprogram.
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The word `solution' should be usedwith caution. Not every gamehas a unique
solution, so the phrase `the solution of a game' is misleading. A solution is
always a set of rules for all players. A set of rules for a singleplayer can be called
a strategy, and if it is a good set of rules it can be calledan `optimal' or `rational'
strategy.

In order to decidewhat the best set of rules for an agent is, one must take
into account what information the agent has. First of all, it is important to know
whether the agent knows exactly which game it is playing. Even the game of
chesshas several variants, and one can imagine a player who is not sure what
the current variant is. Furthermore, in chessan opponent can try to win at all
cost, or an opponent can be trying to draw. Thesetwo opponents may require
di�erent strategies.Von Neumannand Morgensternboldly state that

... we cannot avoid the assumption that all subjects of the econ-
omy under considerationare completely informed about the physical
characteristics of the situation in which they operate and are able
to perform all statistical, mathematical, etc., operations which this
knowledgemakespossible. [74, p.30].

They call this assumptioncompleteinformation . Another questionis whether
a player can observe or remember every aspect of the current situation. If this
is the casewe say that a gamehas perfect information , but if someaspects are
hidden the gamehasimperfect information . Chessis a good exampleof a perfect
information game,whereaspoker is an imperfect information game.

In gamesof imperfect information, onehasto considerthe questionof whether
a player can remember his own observations, and its own previousactions. If the
description of the gameindicates that a player can remember both observations
and previous actions, then a gamehas perfect recall . If a player can remember
all its previous observations the gamehas perfect memory. An interesting but
perhapsarti�cial exampleof a gamewith imperfect recall wasconstructedby Von
Neumannand Morgensternwhenthey arguedthat onecan treat teamsof players
with the sameobjective as singleplayers. `Bridge is a two-player game,but the
players 1 and 2 do not play it themselves' [74, p. 53]. The four real participants
of a bridge gamebecome`agents', acting on behalf of the two absent players.

Von Neumann and Morgenstern focus on gameswith two players in which
the preferencesof the players are exactly opposite. They have lessto say about
what they call general games, which are gameswith more than two players. The
main problem of solving these general gamesis that in these games,the out-
comedependson the possibleco-operations betweentwo players. Game theory
is nowadays split in two almost unrelated parts: in cooperative gametheory it
is assumedthat agents can make binding agreements between each other, and
theseagreements are enforcable[46]. In this casethe exact strategiesthat are
usedare not so important. The important aspect is which outcome the agents
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should collectively aim for, and how they should split the pro�ts of their collab-
oration. Throughout this thesis it is not assumedthat agents can make binding
agreements, and this is called non-cooperative gametheory.

The problem of how to treat generalgameswas addressedby John Nash in
1951[73]. Nash showed that a solution of a gameshould be a set of strategies
such that when all agents usethesestrategies,no player hasany incentive to use
another strategy. He called such a solution an equilibrium, and nowadays it is
called a Nashequilibrium.

The Nashequilibrium is a solution conceptthat allows the samegameto have
many solutions. A solution concept is a generalrule that for each gamepredicts
which strategiesare good. Many researchers have arguedthat the Nash equilib-
rium allows more solutions than it should. Various re�nements have thus been
proposed. One of the �rst was Selten'ssubgameperfect (Nash) equilibrium [79].
This concept makes most sensewhen applied to perfect information extensive
games. Every decisionpoint of such a gamecan be seenas the starting point
of somegame, and these gamesare called the subgamesof the original game.
Selten argued that a solution should not only be an equilibrium of the original
game,but also of every subgame.All �nite perfect information extensive games
have a subgameperfect equilibrium, and this equilibrium cane�cien tly be calcu-
lated by a procedurenamedbackward induction. The procedureis sometimesalso
called Zermelo'salgorithm, sinceZermeloapplied the sameprocedurein 1913to
analysechess. Other re�nements exist, for instance the trembling hand perfect
equilibrium [93], the proper equilibrium [72] and the sequential equilibrium [62].

Even though Von Neumannand Morgensternlimited themselvesto the study
of complete information games,it was only a matter of time before incomplete
information gameswere considered. Harsanyi proved in 1967 that incomplete
information gamescan in certain casesbe reducedto complete,imperfect infor-
mation games[47]. Hedid not assumethat all agents know all other's preferences.
Instead he assumedthat each agents' preferencesdependedon the type of the
agent. The number of types was limited, and a probability distribution for the
typesshouldbe commonlyknown. In that casethe incompleteinformation game
can be consideredan imperfect information game where in the �rst move the
typesof all agents are determinedat random accordingto the given probability
distribution. After that the gamewould proceedas normal.

The applicationsof gametheory have not beenlimited to the economicrealm.
Early on it wasalreadyrealizedthat gametheory couldbeapplied to political and
military conict situations. An early and inuen tial book applying gametheory
to political scienceis The Strategy of Conict by ThomasC. Schelling [88]. This
book contains various ideas. First of all Schelling showed using experiments that
peopleare able to coordinate their actions. They can do this becausereal world
problemshave so-calledfocal points, even if thesepoints are no longerpresent in
the abstract modelsof gametheory. For example,Schelling asked peopleto try to
meeteach other on a givenday in a givencity, without giving them a speci�c time
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and place,and without allowing them to communicate to each other. One might
expect that this is not possible,sincethere are so many possibilities. However,
Schelling's subjects were remarkably successfulin meeting each other. Many of
them were able to select the sametime and place, by reasoningabout which
points were most obvious to the averageperson. For instance for a meeting in
New York, people often chooseto meet at 12.00 at Central Station. Schelling
alsodiscussesthe rationalit y of promisesand threats. An equilibrium that is not
subgameperfect, can for instance contain an unreliable threat. In that casea
player threatens to do something in a certain situation, even though it is not
rational to really do this action if the subgamein which the action can be done
is reached.

More surprisingapplicationswerefound in biology. This may seemstrange,as
animalsor plants are not usually ascribed rationalit y or intelligence. The players
are thus not assumedto reasonabout their strategies,but to repeat behaviour
that has beensuccessfulin the past. The Nash equilibrium can also be applied
in these circumstances. In classical game theory attention is focused on the
solutions itself, whereasthe processby which a solution is reached is ignored. In
evolutionary game theory it is also studied how certain strategiesare replaced
by others, using dynamic systemstheory. John Maynard Smith is one of the
originators of this �eld [68]. Evolutionary gametheory is a maturing and popular
research area[37, 120].

3.2 Strategic Games

Gamescanbe presented in di�erent forms. A very natural but detailed form is as
an extensive game. In this form there is a number of decisionpoints in each play
of the game,and the outcome is determined by all thesedecisions. This model
is very detailed. Often a lessdetailed perspective is taken, and thus gamesare
studied in strategic or normal form. In this form, each agent has a number of
strategiesavailable at the beginning of the game,and each agent independently
picks a strategy. We can calculate the payo� of the gamedirectly, without going
into details which actionshave beenplayed. The generalde�nition for an n-agent
normal form gameis the following. We let � be the set of all agents, and assume
that � = f 1; 2; : : : ; ng for somen > 0. Thus, in this chapter, and in chapter 8, we
usethe natural numbers as labels for agents. This is necessaryto simplify some
of the de�nitions.

3.2.1. Definition. A strategic game G is a tuple (� ; f SX gX 2 � ; U) where � =
f 1; : : : ; ng is a set of agents, for each X 2 � the set SX is a set of strategiesfor
agent X , and UX : (S1 � : : : � Sn ) ! R is a utilit y function for agent X .

The utilit y function UX takesa strategy for each agent asinput, and return a real
number for agent X , which represents that agent's utilit y. The notation UX (~s)
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denotesthe X th element of the vector U(~s), and thus represents the utilit y of
agent X when the strategy pro�le ~s is used. One can seeU as a function that
returns a vector of real numbers, one for each agent.

In a strategic game,each agent tries to maximize its utilit y. They can choose
any strategy from their set of strategies,and thesesetscan be in�nite. One can
combine the strategiesthat agents have chosenin a so-calledstrategy vector . A
tuple ~s = (s1; s2; : : : ; sn) is a strategy vector for gameG if G = (� ; f SX gX 2 � ; U)
and for all agents X we have sX 2 SX . In order to manipulate thesestrategy
vectors, two constructsare needed.The construct s� j denotesthe vector s with
the j th element removed. Thus, (a;b;c) � 2 = (a;c). The construct [s;x] is used
to denotethe vector s with x inserted in an appropriate place.

For example[(a;c); d] = (a;d;c), or [(a;c); d] = (a;c;d), dependingon what is
appropriate. Determining what the appropriate placeis canbe di�cult, therefore
the construction [s;x] can only be usedif s is of the form s� X for someagent X .
For example[(a;b;c) � 2; d] = (a;d;c). In practice this meansthat theseconstructs
can be usedto replaceonestrategy of a strategy vector by another strategy. The
combination [s� j ; t j ] or, depending on author's preferences,(s� j ; t j ) is standard
in gametheory [79, p. 7].

In many situations, every agent X hasa �nite number of basicactions mi to
choosefrom. The total utility of a strategy somehow dependson the payo� of
each action. The number of strategiescan still be in�nite. The payo� of each
action is typically given in the form of a matrix A. We �rst present the casefor
two agents, and then extend this to an arbitrary number of agents.

Tw o player games

3.2.2. Definition. An m� n bi-matrix is a function A such that for each vector
(a;b) wherea 2 f 1; : : : ; mg and b2 f 1; ng, and for each X 2 f 1; 2g, the function
A returns a real number AX (a;b) 2 R.

The next table shows how a 2� 3 bi-matrix is usually displayed. This matrix can
be usedto de�ne a gamewhere agent 1 has two actions, and agent 2 has three
actions.

�
A1(1; 1); A2(1; 1) A1(1; 2); A2(1; 2) A1(1; 3); A2(1; 3)
A1(2; 1); A2(2; 1) A1(2; 2); A2(2; 2) A1(2; 3); A2(2; 3)

�

In a pure strategy game,the strategy of both agents consistsof a singleaction.
We can use the bi-matrix A given above to de�ne a pure strategy game G =
(f 1; 2g; (f 1; 2g; f 1; 2; 3g; T); U). The set of agents would be f 1; 2g, the strategy
set of agent 1 would be f 1; 2g, and the strategy set of agent 2 would be f 1; 2; 3g,
and the utilit y function would be de�ned by U(a;b) = (A1(a;b); A2(a;b)).

In a mixed strategy game, a strategy consistsof a probability for each ac-
tion. Thus a mixed strategy gameG basedon the bi-matrix A would be G =
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(f 1; 2g; (S1; S2); U), whereS1 = f (a;b)ja;b2 [0; 1]; a+ b= 1g andS2 = f (a;b;c)ja;
b;c 2 [0; 1]; a+ b+ c = 1g. An examplestrategy for player 1 would be (0:25; 0:75).
If the agent follows this strategy it should take action 1 twenty-�v e percent of
the time, and action 2 seventy-�v e percent of the time. The utilit y function U
returns the expectedpayo�, and is de�ned as

U((a;b); (c;d;e)) =

(acA1(1; 1) + adA1(1; 2) + aeA1(1; 3) + bcA1(2; 1) + bdA1(2; 2) + beA1(2; 3);

acA2(1; 1) + adA2(1; 2) + aeA2(1; 3) + bcA2(2; 1) + bdA2(2; 2) + beA2(2; 3))

Multi-pla yer games

3.2.3. Definition. An m1 � m2 : : : � mn multi-matrix is a function A such that
for each vector a1a2 : : : an whereaY 2 f 1; : : : ; mY g for all Y 2 f 1; : : : ; ng, and for
each X 2 f 1; : : : ; ng, the function A returns a real number AX (a1i2 : : : an ) 2 R.

The term A(a1; a2 : : : an ) denotesa vector v 2 R� such that v1 = A1(a1a2 : : : an ),
v2 = A2(a1a2 : : : an ) etcetera. A bi-matrix is a multi-matrix where n = 2. The
notation R� , which is for instanceusedby Gamut [34, p. 84], denotesthe set of
all functions f : � ! R. The set � is often �nite and is assumedto have some
kind of natural ordering, such as the set f 1; 2; 3g. If this is the casethen the
elements f 2 R� can be seenas tuples. Each element f would correspond to the
tuple (f (1); f (2); f (3)). Thus, the set Rf 1;2;3g is isomorphic to R3.

For a givenmulti-matrix A onecanin fact de�ne di�erent games.The simplest
typeof gameis the pure strategy game. In this game,the strategy of each agent X
consistsof a singleaction aX and the payo� is then A(a1 : : : an ). This de�nition
doesnot allow agents to play randomly.

In a mixed strategy game,the strategy of an agent is a probability distribution
over the available actions. The utilit y is the expected (weighedaverage)value
of A. This type of game is de�ned below. The shorthand AX

i (~s) denotesthe
expected payo� of action i for agent X when the other agents use strategies
from ~s. It can be de�ned in the following way. De�ne the set V X

i = f ~vj8Y 2
� n f X g : vY 2 SY ; vX = ig. Thus, this set contains the pure strategy pro�les in
which agent X selectsaction i . For instanceif A is a 2 � 2 multi-matrix we have
V 1

2 = f (2; 1); (2; 2)g.

3.2.4. Definition. For any multi-matrix A, agent X and action i , and vector ~s
of mixed strategiessY for each agent Y, we de�ne the expected payo� of action
i for agent X by:

AX
i (~s) =

X

(v1 :::vn )2 V X
i

((s1)v1 � � � (sX � 1)vX � 1 (sX +1 )vX +1 � � � (sn )vn )AX (~v)
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In this de�nition, the element v1 denotesa possibleaction for player 1, s1 is the
strategy of player 1, and therefore (s1)v1 denotesthe probability that player 1
will play action 1. Although this de�nition is hard to read, in practice it is not
hard to seehow this expectedpayo� is computed. To give an example,let A be
againa 2� 2 multi-matrix, assumethat the �rst player plays action 1 with ninety
percent probability, and that the secondplayer plays the �rst action with forty
percent probability. Then the expectedpayo� of action 2 for agent 1 is computed
in the following way.

A1
2(((0:9; 0:1); (0:4; 0:6))) = 0:4A1(2; 1) + 0:6A1(2; 2)

The following set Pm is usedin the de�nition of mixed strategies. It contains
vectorsthat sum up to one. Thesevectorscan be seenasspecifying probabilities
for all actions.

Pm = f x 2 [0; 1]m j
X

i

x i = 1g

3.2.5. Definition. Let A be an m1 � m2 : : : � mn multi-matrix. The mixed
strategy game M m (A) of A is a tuple (� ; f SX g; U) where � = f 1; 2; : : : ; ng, the
strategy setsare SX = PmX , and UX (~s) =

P
i sX

i AX
i (~s).

Recall that the notation UX (~s) denotesthe X th element of the vector U(~s). It
represents the utilit y of agent X when the strategy pro�le ~s is used.

The fact that agents can play mixed strategies is explicitly de�ned in this
de�nition of a mixed strategy game.We assumethat all agents areequipped with
random number generators(coins, dice or whatever) so that they can randomize
their behaviour exactly as speci�ed in their strategy. This de�nition of a mixed
strategy gameis such that each mixed strategy gameis in fact a strategic game.

For the next de�nition we needthe function argmax that returns all inputs
that maximize a given function. argmaxx f (x) = f xj:9 y : f (x) < f (y)g We
use the function argmax to de�ne what a `good' strategy is: A good strategy
is a strategy that returns a maximal utilit y. The function bX returns the best
responsestrategiesfor agent X for a given gameand strategy vector.

3.2.6. Definition. Let (� ; f SX gX 2 � ; U) be a gameand~s 2 (
Q

X SX ) a strategy
pro�le. The best responseb(~s) = b1(~s) � � � � � bn (~s)) is de�ned by

bX (~s) = argmaxt UX ((s� X ; t))

The set b(~s) thus contains the strategy vectors t such that tX is optimal if all
opponents Y use the strategy sY . We could assumethat the strategy of the
opponents is �xed. The set bX (~s) is the set of best decisionsfor agent X .

When playing a gamean agent cannot always predict what strategy the other
agents use, becausethe other agents might want to changetheir strategy once



3.3. ExtensiveGames 41

they learn that X usesa strategy in bX (~s). The notion of a best response is
thereforenot a solution conceptin itself. Onecan however search for �xed points
in the best responsefunction, and this is called a Nash equilibrium.

3.2.7. Definition. Let (� ; f SX gX 2 � ; U) be a gameand~s 2 (
Q

X SX ) a strategy
pro�le. The vector ~s is a Nash equilibrium i� ~s 2 b(~s).

Every mixed strategy gamehas at least one Nash equilibrium [73]. There has
beensomediscussionin the literature whether the notion of a Nash equilibrium
needsto be re�ned. Several re�nements have been proposed[72], but none of
them has the appealing simplicity of the Nash equilibrium.

A special classof gamesfor use in logic are the win-loss games. In these
gamesthe utilit y functions only takes two values,which can be associated with
winning and losing. Typically thesevaluesare 1 and 0. The utilit y function can
then be speci�ed by stating what the winning positions are. Thesesetscan then
be speci�ed by stating a formula, so that a position is winning if it makes the
formula true.

Another special classare the constant-sumgames. We de�ne this property
only for gameswith exactly two players. A game (f A; Bg; f SA ; SB g; U) is a
constant-sum gameif there is a constant c 2 R such that for any strategy pro�le
(� A ; � B ) it is the casethat UA (( � A ; � B )) + UB (( � A ; � B )) = c. If the constant c is
0 then we call it a zero-sumgame. The next bi-matrix A de�nes a constant-sum
gamewherethe constant is 2.

�
1; 1 0; 2 2; 0
2; 0 1; 1 0; 2

�

Examplesof strategic gamescan be found in many gametheory text books.
All classicalexamplescanbe found in the primer by Osborneand Rubinstein [79],
but moreplayful examplesare given by Binmore [11]. Textbookson evolutionary
gametheory such asGintis' [37,120] alsomakemuch useof strategic form games.
In each casethe examplesof strategic gamesare often presented in the form of
�nite multi-matrices, and this can give readersthe falseimpressionthat strategic
gamesare always �nite, small and simple. In chapter 8, it is shown that there
are many other strategic gamesthat do match de�nition 3.2.1,but are not pure
or mixed strategy games.

3.3 Extensiv e Games

In an extensive gamethe agents have to makesequencesof choicesthat ultimately
leadto an outcome. There are multiple decisionpoints and at each decisionpoint
one of the agents has to decidewhat to do next. The rules of the gamespecify
exactly which sequencesof actions are legal. We represent theserules in a very
simple way, by listing all sequencesthat are allowed.
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Figure 3.2: A gametree and a set of sequences

3.3.1. Definition. A non-empty set H of sequencesis a sequence set if for
any sequenceh and action a it is the casethat ha 2 H implies h 2 H . For any
sequencesetH and h 2 H wede�ne the setof next actionsA(H; h) = f ajha 2 H g
and the set of terminal sequencesZ(H ) = f h 2 H jA(H; h) = ;g .

Another term for a sequence set could be a non-empty pre�x-closed set.
If H is a sequenceset then one can de�ne a graph G = (V; E) by de�ning

V = H and E = f (h; ha)jha 2 H g. This graph is a tree with the empty sequence
� as root. Such a tree is often called a gametree. In �gure 3.2 a gametree and
the corresponding set of sequencesis displayed.

Extensivegamescanbeplayedasperfectinformation games.In this caseevery
agent can distinguish all sequences,and thus the agent can selectthe action that
is best for that speci�c decisionpoint.

3.3.1 Perfect Information

In order to play an extensive game, one must know which agent can inuence
which decision. Therefore,we augment the gametree with a function turn that
returns the agent that is in control of a certain history.

3.3.2. Definition. A game form F is a tuple F = (� ; H; turn ), where � is
a �nite set of agents, H is a �nite sequenceset and turn is a function turn :
H n Z(H ) ! �.

A gameform by itself is often not what one needs. One typically want a game
form with a utilit y function (if you are a gametheorist) or a gametree annotated
with atomic propositions (if you are a logician). In certain casesyou might want
both. We usethe word `interpreted' to indicate a structure that is labeled with
atomic propositions. If a structure contains utilities it is calledan extensivegame,
otherwisea gameform.
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name contains
(extensive) gameform tree
interpreted gameform tree, atomic propositions
extensive game tree, utilit y function
interpreted game tree, utilit y function, atomic propositions

The word `extensive' emphasizesthat we deal with gamesin which the order of
moves is explicitly present. We omit it if it is not necessary, and thus we speak
of game forms rather than extensive game forms. An extensivegame form is
thus synonymous to gameform, and so are interpreted extensivegameform and
interpreted extensivegame.

3.3.3. Definition. An extensivegame F is a tuple F = (� ; H; turn ; U), such
that (� ; H; turn ) is a gameform and U : Z (H ) � � ! R� .

The function U is called a utilit y function. It returns the utilit y for each agent
and each agent tries to maximize its utilit y.

3.3.4. Definition. Let (� ; H; turn ) bea gameform. A pure strategy � for agent
X in gameform F is a function � with domain f h 2 H jturn (h) = X g such that
� (h) 2 A(H; h).

The notion of a strategy can be extendedto strategiesfor coalitions � � �. A
pure coalition strategy � � for � is a function f with domain f h 2 H jturn (h) 2 � g
such that � (h) 2 A(H; h).

3.3.5. Definition. Let F = (� ; H; turn ) bea gameform. A behavioural strategy
� for agent X 2 � in gameform (� ; H; turn ) is a function � with domain f h 2
H jturn (h) = X g such that for each h, � (h) is a probability distribution over
A(H; h).

There is a di�erence between mixed strategiesand behavioural strategies [79].
The concept of mixed strategiesapplies to strategic games. A mixed strategy
is itself a probability distribution. A behavioural strategy is a function that
returns probability distributions for nodesof an extensive game. For imperfect
information gameswithout perfect recall the two kinds of strategiesarenot equiv-
alent [79].

3.3.6. Definition. Let F = (� ; H; turn ) be a game form. A nondeterminis-
tic strategy � for agent X in game form F is a function � with domain f h 2
H jturn (h) = X g such that � (h) is a non-empty subsetof A(H; h).

The notion of a strategy for a coalition � � � can also be introduced for be-
havioural and nondeterministic strategies.

For each gameform F , we de�ne SX
p (F ) to be the set of pure strategiesof

agent X in F , the setSX
b (F ) to be the setof behavioural strategiesof X in F , and
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SX
n (F ) the setof nondeterministicstrategies. The notion of behavioural strategy

is a more generalnotion than that of a pure strategy. For any pure strategy �
onecan �nd a behavioural strategy � 0 by de�ning � 0(h)(a) = 1 if a = � (h), and 0
otherwise. Thus, oneaction getsprobability oneand the other actions get prob-
abilit y zero. For each behavioural strategy � one can de�ne a nondeterministic
strategy � 0 by de�ning � 0(h) = f a 2 A(H; h)j� (h)(a) > 0g. Thus, � 0 returns that
actionsthat have a nonzeroprobability in � . A nondeterministicstrategy is a less
detailed descriptionof a behavioural strategy, in which the exactprobabilities are
omitted. We usenondeterministic strategieswhen the exact probabilities are not
important.

Extensive gamescan be reduced to strategic games. This observation was
alreadymadeby Von Neumannand Morgenstern[74]. Below, we do this for both
pure strategy and behavioural strategy games.

3.3.7. Definition. Let (� ; H; turn ; U) be an extensive game. The correspond-
ing pure strategy strategic gameis (� ; f SX

p gX 2 � ; U0), where U0(~s) is de�ned by
U0(~s) = U(r (~s; � )) where

r (~s; h) =
�

h i� h 2 Z(h)
r (~s; (h; sX (h))) i� turn (h) = X

3.3.8. Definition. Let (� ; H; turn ; U) be an extensive game. The correspond-
ing behavioural strategy strategic gameis (� ; f SX

b gX 2 � ; U0). The function U0(~s)
is de�ned by U0(~s) =

P
h2 Z (h) p(~s;h) � U(h) where

p(~s; � ) = 1

p(~s;ha) = ~s(h)(a) � p(~s;h)

A Nash equilibrium of an extensive game is de�ned as a Nash equilibrium of
the corresponding strategic game. It should be clear from the context whether
the corresponding strategic game is the pure strategy gameor the behavioural
strategy game. In �gure 3.3,a small extensive gameE1 is displayed. In this game
two PhD students Alice (A) and Bob (B) have the choiceof cleaningtheir shared
o�ce (action c), or to ignore the mess(action i ). SinceAlice arrives�rst, shehas
to decide�rst what shewill do. If shedoesnot cleanthe o�ce, Bob is facedwith
the samechoice. A clean o�ce is worth 2 utilit y units, but cleaning the o�ce
costsan agent 1.

Each agent has two pure strategiescalled � c and � i , listed in the next table.

A nB � c � i

� c (1; 2) (1; 2)
� i (2; 1) (0; 0)
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Figure 3.3: To cleanor not to clean: GameE1

The two Nash equilibria of this game are indicated in bold. In the lower left
equilibrium, A ignoresthe problem and B cleansthe room (payo� (2; 1)). In the
other equilibrium B plans to ignore the problem and A cleansthe room (payo�
(1; 2)). Are both of theseNashequilibria equally good? Many peopletend to say
`no'. The reasoningis as follows. Each decisionnode of an extensive gamecan
be seenas the starting point of a smaller extensive game. Such a gameis called
a subgameof an original game. One would expect each agent to act rationally
in each subgame. If an equilibrium has such a property, it is called a subgame
perfect equilibrium.

3.3.9. Definition. Let F = (� ; H; turn ) be a game form, and h 2 H . The
sub-`gameform' of F starting at h is de�ned assubg(F; h) = (� ; H 0; turn 0) where
H 0 = f h0jh � h0 2 H g and turn 0 is the sameasturn but with the domain restricted
to H 0

This de�nition canbeextendedto interpreted gameforms,gamesand interpreted
gamesin a straightforward way. The setof all subgamesof a givengameis de�ned
as the set allsub((� ; H; turn ; U)) = f subg((� ; H; turn ; U); h)jh 2 H g.

3.3.10. Definition. Let G = (� ; H; turn ; U) be an extensive game,f a function
that reducesextensive gamesto strategic games. The strategy pro�le ~s is a
subgameperfect equilibrium if for all subgamesG0 of G it is the casethat ~s is a
Nash equilibrium of f (G0).

The example game of �gure 3.3 has one subgameperfect Nash equilibrium in
which agent B cleansthe o�ce. The other Nash equilibrium is not subgame
perfect, sinceit is not optimal for agent B to choosethe action ignore if A does
not cleanthe room.

3.3.11. Theorem (Kuhn). Every perfect information game has at least one
subgameperfect equilibrium in pure strategies [64].
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Figure 3.4: An imperfect information gameform FI

If the utilit y function U of a gameG is such that for any agent X and history
h 2 Z(h) we have that h 6= h0 ) UX (h) 6= UX (h0) then the optimal action a in
a certain situation is always unique, and thus the subgameperfect equilibrium is
unique.

3.3.2 Imp erfect Information

In imperfect information gamesit is possiblethat an agent X doesnot seethe
di�erence between histories h and h0. Thus when agent X is in the situation
represented by h, it considersit possible that it might be in the situation h0.
We use equivalencerelations � X to store this information, and write h � X h0

to indicate this lack of information. For instance in a gameof Poker, agent X
may not know the hand of cardsthat an opponent Y holds. If the only di�erence
betweensituations h and h0 would be the hand of cardsof Y, then h � X h0.

3.3.12. Definition. An imperfect information game form F is a tuple F =
(� ; H; turn ; � ), where� is a �nite set of agents, H is a non-empty, pre�x-closed
set of �nite sequences,turn is a function turn : H n Z(H ) ! �, for each X 2 �
the relation � X � H � H is an equivalencerelation betweenstates. Furthermore
� X has to satisfy the following condition: if turn (h) = X and h0 � X h then also
turn (h0) = X and A(H; h) = A(H; h0).

An example imperfect information gameform is displayed in �gure 3.4. In
this �gure, the lack of information is indicated by dashedlines. Henceagent B
cannot distnguish the historiesy and n, and thus hasno information what action
agent A haschosen:y � B n.

It often happensthat an agent X hasto make decisionsin situations h and h0

that it cannot distinguish, i.e. h � X h0. SinceX cannot seea di�erence between
these situations, strategies for X must prescribe the same behaviour in both
situations. The de�nitions of the di�erent strategiesthus have to be modi�ed.

3.3.13. Definition. A strategy � for X in gameform F = (� ; H; turn ; � ; � ) is
uniform if for all h � X h0 it holds that � (h) = � (h0).
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This modi�cation can be applied to all kinds of strategies: pure, behavioural
and nondeterministic. For imperfect information gameswe only consideruniform
strategies,even if the word uniform is not mentioned.

An exampleof a uniform pure strategy � B for agent B in gameform FI would
be � B (y) = � B (n) = y. The strategy � B (y) = y and � B (n) = n would not B
uniform, and thus this would not be an acceptablestrategy.

For gamesof imperfect information we usea di�erent notion of a subgame.

3.3.14. Definition. Let F = (� ; H; turn ) be a game form, and h 2 H . Let
F 0 = (� ; H 0; turn 0; � 0) whereH 0 = f h0jh � h0 2 H g and turn 0; � 0 are the sameas
turn ; � but with their domain restricted to H 0 instead of H . The structure F 0 is
a subgameform i� for all j 2 H 0 and X 2 � it is the casethat j � X j 0 implies
j 0 2 H 0.

Any decisionnodeh0 in a subgameshouldonly be indistinguishablefrom histories
that are also in the subgame. This meansthat all agents `know' that they are
in the subgame,and anything that is outside the subgamedoesnot inuence the
agents' decisions.Someimperfect information gameshave subgames,but others
do not have any becausecertain information is private from start to end. The
notion of a subgameperfect equilibrium is therefore not often used on imper-
fect information games. Instead, people use extensionssuch as the sequential
equilibrium or the trembling hand perfect equilibrium [79].

It is often reasonableto suppose that agents remember information. This
meansthat if two historiesh; h0 can be distinguished,then any pair of extensions
of thesehistories can also be distinguished: h � X h0 implies h � h2 � X h0 � h0

2.
This property is called perfect memory. Another useful assumption to make is
that agents remember their own decisions.Thus, if turn (h) = X then ha � X ha0

implies a = a0. If a gameform has this property and perfect memory then the
gameform hasperfect recall .

Examples

Agent C in gameform FI doesnot aveperfectmemory. The agent candistinguish
y and n (thus y 6�C n), but it cannot distinguish yn and nn (henceyn � C nn).

In the gameform FI , agent B canforget its own action, sinceyy � B yn. Thus
the gameform FI does not have the property and hencedoes not have perfect
recall.

The assumptionof perfect recall makesit easierto computeNashequilibrium
strategies. In fact, for two player constant-sum gameswith perfect recall, one
can �nd Nash equilibrium strategiesin polynomial time. If perfect recall is not
assumed,the problem is � 2P-completeand thus believed to be intractable [57].
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3.4 Existing Work on Logic and Games

Logiciansand gametheorists often work on the sameproblems,and their respec-
tive �elds are becomingmore and more connecteddue to the e�orts of many
researchers in both �elds [97].

It is surprising to seethat logic and gamescanbe connectedin many di�erent
ways.

Logic can be usedto understandand make transparent the reasoningbehind
game-theoreticsolution concepts. In this caselogic is a tool usedto understand
the assumptionsmadein gametheory. The focus is often on the knowledgethat
is requiredfor agents in order to ensurethat a certain outcomeis reached. Exam-
plesof work in this direction include Aumann's discovery that a Nashequilibrium
can arisewithout commonknowledge[7], or De Bruin's analysesof iterated elim-
ination of dominated strategies[30].

Epistemic logic and its extensionscan be usedto understandsituations that
occur in imperfect information games. A typical example is the gameof Clue.
In order to play this board gameonemust reasonabout knowledgeof cards,and
thus this gamelends itself well to modeling using dynamic epistemic logic [105].
Probabilistic epistemic logic is useful for modeling gamesin which probabilities
play a role [59]. The dynamicepistemiclogic approach canbeextendedto include
even complexgameactionssuch ascheating and deceivingother players [8]. The
focus in this areaof research is on the imperfect information of players.

The subgameperfect Nash equilibrium, also known as backward induction,
is the most popular solution conceptfor extensive gamesof perfect information.
Modal logiciansarealways interestedin determiningthe expressivity of modal lan-
guages,and at least two authors have thus determinedwhat languageoneneeds
to characterisethis solution concept. Bonanno [14] has given a characterisation
of backward induction using branching time temporal logic. Harrenstein [45] has
useda di�erent multi-modal logic.

Sincea gameform lacks preferences,one cannot ask what agents want in a
gameform, or which agents will win in a gameform: the conceptof winning is not
de�ned if there are no preferences.One can however investigatethe e�ectivity of
coalitions of agents: whether agents can, by choosing the right strategy, ensure
that a certain outcomeholds. This can be formalized in logic. Pauly's coalition
logic [85] and Van Benthem's logic for processmodels[99] do exactly this. These
logics are suitable for reasoningabout what agents, or coalitions of agents, can
achieve by their choice of strategy. This is called e�ectivit y. Sinceboth these
logicsare closelyrelated to the work in this chapter, they are introducedin more
detail in section3.4.1.

In order to study gamesinsteadof gameforms, onemust introducethe notion
of preferences.This leadsto the idea of preference logic. Our work on preference
logic goes back to Von Wright [119]. Von Wright used an intuitiv e approach,
basedon identifying likely axioms. Van Dalen [100] subsequently proved several
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completenessresults for certain basic semantics. Rescher [86] also developed a
semantic for Von Wright's language,this time basedon the fact that the value
of a formula � (in a certain model) should be the averageof the utilities of all
worlds in the model that satisfy � . This is certainly an interesting idea, but hard
to characterize in an axiomatic way. Chisholm and Sosa[20] investigated the
philosophicalaspects of preferencelogic further. A recent overview is presented
by Hansson[44, 320].

What thesesourceshave in common is that they use a binary construction
�P  in order to expresspreferences.This is di�erent from the usual modal logic
approach, which is normally basedon an unary operator 2 � (seefor instance[45]).
The binary approach seemsto correspond better with natural language,where
one can say things such as \I prefer co�ee over tea". The sort of relations that
is usedto indicate preferencescan alsobe usedto expressrelative likelihood [42].
As a result, the technical results stated in terms of likelyhood can be applied
to preferences.Huang [52] also introducespreferencelogics, in order to model
agents with boundedrationalit y.

Another way to combine logic and gamesis to interpret a formula as a game
betweentwo players,oneof which wants to reach a `true' outcome,the other one
a `false'outcome. This idea has beenusedin the interpretation of independence
friendly logic (IF logic). This logic was introduced by Hintikka with the bold
goal of replacing �rst order logic as the primary logic of scienti�c discourse[49].
This idea hasnot materialized, partly becauseIF logic is quite complicated,and
has several interesting `features' (that somecall `bugs'). It has a compositional
semantics but it is not the simplestsemantics [50], for this logic the falsity condi-
tions are not the mirror imageof the truth conditions [31], and onecan question
whether the interpretation of IF is faithful to gametheory [94].

3.4.1 Coalition Logics

Coalition logic [84, p.46] is a logic for reasoningabout e�ectivit y in generalgame
frames. The languageis very similar to efl (to be de�ned on page58), and thus
coalition logic is examinedhere in detail �rst.

3.4.1. Definition. Assume that �nite sets P; � are given. A coalition logic
formula � is de�ned by the following rule. In theserules p 2 P and � � �.

� ::= p j � ! � j ? j [�] �

Coalition logic is interpreted over generalgameframes,which combine features
of strategic gamesand extensive games.A generalframe is similar to a tree, but
at each decisionnode all agents have to selectan action, like in a strategic game.
The next state depends on the actions chosenby all agents. This semantics is
described in detail in Pauly's dissertation [84, p.46]. This classof models is more
generalthan the interpreted gameformsthat areusedfor efl . The interpretation
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of a coalition logic formula � over a generalgameframe G in state s is de�ned
below.

3.4.2. Definition. A coalition model M is a tuple (S;f E � j� � � g; � ) whereS
is a set of states, � : S ! P an interpretation function, and for each coalition �
we have E � : S ! 22S

is a function that to each s 2 S assignsa set of sets of
states. The functions E � must be monotonic, i.e. if T 2 E � (s) and T � T0 then
T0 2 E � (s)

The following rules de�ne the interpretation of coalition logic formulas over
pointed modelsM ; s, wheres 2 S is a state in the coalition model M

G; s j= ? never
G; s j= p for p 2 � (s)
G; s j= � !  i� not G; s j= � or G; s j=  
G; s j= [�] � i� � G � E � (s)

where� G = f t 2 SjG; t j= � g

This logic doesnot make a distinction betweenintermediatestatesand endstates
or outcomes.The internal structure of the protocol can thereforebe described in
coalition logic, and onecan usesatis�abilit y for protocol veri�cation.

The fact that coalition logic doestake intermediatestatesinto account, means
that oneshould read formulas from efl and coalition logic in a di�erent way. In
chapter 4 we seethat the efl formula [A]2 p expressesthat A can enforcethat
a p outcomeis reached. Syntactically the closestcoalition logic formula is [A]p.
This formula meansA can make p true in the next state. If the next state is not
an outcomestate, then this formula doesnot say anything about which outcomes
A can reach. In order to expresssomething about outcomes,one can however
use extended coalition logic. This logic is an extension of coalition logic with
operators [� � ]� and [� � ]� . The �rst operator expressesthat � can eventually be
reached by �, and the secondoperator [� � ]� expressesthat � can keep� true in
the entire future. The �rst operator can be usedto refer to outcomestates,and
indeedPauly introducesa special notation to do so.

[� t ]� def= [� � ]([; ]? ^ � )

Pro of Theory

There are sound and complete proof systemsfor several variantes of Coalition
logic. The full detailsaregivenby Pauly [85,85]. Herewepresent asan examplea
soundand completeproof systemfor coalition modelsthat havea weakly playable
e�ectivit y function.

3.4.3. Definition. An e�ectivit y function E � : S ! 22S
is �- maximal i� for all

T, if S n T =2 E � n� then T 2 E �
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3.4.4. Definition. An e�ectivit y function E � : S ! 22S
is superadditive i�

for all T1; T2; � 1; � 2 such that � 1 \ � 2 = ; , if X 1 2 E � 1 and X 2 2 E � 2 then
X 1 \ X 2 2 E � 1 [ � 1

3.4.5. Definition. An e�ectivit y function E � : S ! 22S
is weakly playableif it

satis�es the following �v e conditions: (1) ; =2 E(�), (2) if ; 2 E(�) and � 0 � �
then ; 2 E(� 0), (3) If ; =2 E(; ) then S 2 E(�) for all � � �, (4) E is �-maximal
and (5) E is superadditive.

Thesefollowing axioms are sound on coalition models with weakly playable
e�ectivit y functions.

j= : [�] ? (N ? )

j= [� [ � 2]? ! [�] ? (? )

j= : [; ]? ! [�] > (> )

j= : [; ]: � ! [�] � (N )

j= ([� 1](� 1) ^ [� 2](� 2)) ! [� 1 [ � 2](� 1 ^ � 2) (S)

where� 1 \ � 2 = ;

There are two reasoningrules for coalition logic. The �rst is Modus Ponens,the
secondone is called Monotonicity.

� $  
[�] � $ [�]  

The proof systemconsistingof thesetwo rules and the �v e axioms is soundand
complete on coalition models with weakly playable e�ectivit y functions [84, p.
55].

Coalition logic can be usedfor reasoningabout extensive games.In that case
the following formula, valid on extensive game forms, should be added as an
axiom.

[�] � !
_

X 2 �

[X ]�

This formula can be read assaying that if somethingcan be done,it can be done
by oneof the agents.

Pauly presents several completenessproofs for di�erent classesof models,and
for a detailed presentation we refer to his dissertation [84, p. 54]. The most
generalproof is similar to the standard completenessproof of modal logic based
on a canonicalmodel.

For extendedcoalition logic, a completeaxiomatization is alsogiven, and this
axiomatisation was later usedby Goranko [40, 41] to develop a completeproof
systemfor ATL. Theseproof systemsare more complex than the system given
herefor efl , sincetheseproof systemsdeal with systemswith in�nite runs. Our
logic efl is only a small fragment of theselogics.
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3.4.2 Power Level Logic and Bisim ulation

Another languagefor reasoningabout what agents cane�ect hasbeenintroduced
by Van Benthem [99]. Van Benthem introducesthe notation f G; X g� , whereX
is a singleagent and G refersto a strategic game. This operator is interpreted in
the following way.

M ; s j= f G; X g� , 9S : � X
G s;S ^ 8t 2 S : M ; t j= �

The relation � X
G s;S is interpreted as saying that agent X has a strategy for

playing gameG from state s onwards such that all next statesare within the set
S. Van Benthem remarks that the argument G can be omitted if the gamedoes
not change,and this makesthe languageeven more similar to efl .

This languageallows oneto write f Agf Bg� . This doesnot add to the expres-
sivity of the language,sincethe secondoperator canbeomitted without changing
the meaningof the formula.

j= f Agf Bg� $ f Ag�

Variants on this language,presented in the samepaper [99],combine this language
with featuresof coalition logic.

As explainedon page18, the notion of bisimulation is usedin standard modal
logic in order to decidewhen two models are the same. For the logic described
here, one cannot usethe samede�nition directly. Instead Van Benthem de�nes
the notion of a power bisimulation.

3.4.6. Definition. Supposetwo models M and M 0 with setsof worlds W; W 0

are given. A binary relation E � W � W 0 is a power bisimulation if the following
conditions hold.

� If (x; y) 2 E then they satisfy the sameatomic propositions

� For any agent X , if (x; y) 2 E and � X
M xU then there is a set V such that

� X
M 0yV and 8v 2 V 9u 2 U : (u; v) 2 E

� Vice versa: For any agent X , if (y; x) 2 E and � X
M yV then there is a set U

such that � X
M 0xU and 8u 2 U 9v 2 V : (u; v) 2 E

This de�nition capturesthe ideathat agents have the sameabilities in the models
M and M 0. Two models that are power bisimilar satisfy the sameformulas [99].

3.4.3 Alternating-time Temp oral Logic

Alternating-time Temporal Logic (ATL ) is a multi-agent extension of CTL [6].
The languageof ATL contains temporal operators similar to CTL, but instead
of the quanti�ers 8 and 9 that appear in CTL, strategy operators hh� ii are used,
where� can be any set of agents.
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3.4.7. Definition. Let � be a set of agents, and P a set of atomic propositions.
The logic ATL contains formulas � generatedby the following rule. In this rule,
p is a typical element of P and � � �

� ::= p j � ! � j ? j hh� ii  

 ::= 2 � j � U�

The meaningof a formula hh� ii � is that the agents in � can usea strategy such
that � holds.

This logic is interpreted over alternating transition systems[6]. These are
de�ned astuples (P; � ; Q; � ; � ). As usualP is a set of atomic propositionsand �
a set of agents. The set Q is a set of statesthe systemcan be in, and � : Q ! P
addspropositions to thesestates. The function � : Q � � ! 22Q

assignsto each
agent in each state a set of setsof states. Each agent can chooseoneset of states,
and the next state of the systemwill be from that set.

An example would be a system where Q = f 0; 1; 2; 3; 4g. Suppose that
� (0; X ) = ff 1; 2g; f 3; 4ggand � (0; Y) = ff 1; 3g; f 2; 4gg. Agent X cannow choose
f 1; 2g and Y can choosef 2; 4g. They make thesechoicessimultaneously. The
next state of the systemwill be 2, becausethat is the only commonstate in their
chosensets. It is necessaryto put someconstraints on � so that a next state can
always be chosen.

The interpretation of this logic usesthe notion of strategy to interpret the
coalition operator hh� ii . A strategy for � is any function that makes a choice
� � (X ; q) 2 � (q; X ) for any agent X 2 � in any state q 2 Q. Basedon a strategy
� � , onecan de�ne the set of possiblewalks W(� � ) through Q so that all choices
for agents X 2 � are madeasrecommendedby the strategy. This set of walks is
usedin the following interpretation of ATL.

M ; q j= ? never

M ; q j= p wherep 2 P i� p 2 � (v)

M ; q j= � !  i� M ; q j= � implies M ; q j=  

M ; q j= hh� ii � i� 9� � : 8w = v::: 2 W(� � ) : M ; w j= �

M ; w j= 2 � i� 8n > 0 : M ; w(n) j= �

M ; w j= � U i� 9m > 0 : M ; w(m) j=  and

8m > k > 0 : M ; w(k) j= �

The model checker Mocha can be usedto verify ATL properties of systemspeci-
�cations [5].
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3.4.4 Dynamic Epistemic Logic

Strictly speaking,dynamic epistemiclogic is not a gamelogic becauseits de�ni-
tion doesnot make any referenceto gamesat all. It is however frequently applied
to game-like situations [105],and it seemsto be the right tool to model knowledge
changein imperfect information games.

Dynamic epistemic logic is an extensionof epistemic logic and contains the
usual logical connectives,ordinary modal operators K X � , and update operators
[� ] .

3.4.8. Definition. Assumethat �nite setsP; � aregiven. A dynamicepistemic
logic formula � is de�ned by the following rule. In theserules p 2 P and X 2 �.

� ::= p j � ! � j ? j K X � j [� ]�

Formulasare interpreted over a pointed epistemicmodelsM ; w. The ordinary
operators are interpreted in the sameway as in epistemic logic. The construct
[� ] is interpreted by �rst computingan updatedmodel M � and then determining
whether M � j=  .

3.4.9. Definition. Let M = (� ; W; � ; P; � ) be an epistemicmodel and w 2 W.
Dynamic epistemiclogic is interpreted in the following way.

M ; w j= p i� p 2 � (w)
M ; w j= ? never
M ; w j= � !  i� M ; w j= � implies M ; w j=  
M ; w j= K X � i� 8(w; v) 2� X : M ; v j= �
M ; w j= [� ] i� M ; w j= � implies M � ; w j= �

Where M � = (� ; W 0; � 0; P; � 0) is de�ned such that W 0 = f w 2 WjM ; w j= � g,
� 0 : W 0 ! 2P is de�ned by � 0(w) = � (w) and for all agents X we have � 0

X = � X

[ (W 0 � W 0)

In the interpretation of an update formula � = [ ]� , the model M is changed.
We have that M ; w j= [ ]� if and only if M  ; w j= � . The model M  is a model
for the situation that you get if you update M with the information  . In the case
of dynamic epistemiclogic, this update is doneby removing from M the worlds in
which  doesnot hold. The updatesin dynamic epistemiclogic canbe compared
to announcements, becauseif you announcea simple formula p, then everybody
knows p afterwards: W; w j= [p]p. For more complicated formulas this doesnot
hold, considerfor instance� = [p^ : K B p](p^ : K B p). After the announcement,
B of courseknows that p holds, so � is not a tautology.

A completeproof systemfor dynamic epistemiclogic exists, becauseonecan
use the following reduction axioms to reduceany DEL formula to a formula of
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epistemiclogic.

At [� ]p $ (� ! p)

PF [� ]:  $ (� ! : [� ] )

D ist [� ]( 1 ^  2) $ ([� ] 1 ^ [� ] 2)

K A [� ]K X  $ (� ! K X [� ] )

This reduction method canalsobe usedto obtain a completeproof systemfor
dynamic epistemiclogic with commonknowledge[61], and for more complicated
actions involving knowledgeand beliefs[9].





Chapter 4

Logics for Proto cols

4.1 In tro duction

In this chapter, the logic efl is presented, that can be usedfor reasoningabout
multi-agent protocols. The acronym efl standsfor e�ectivity logic, becausethis
logic can be usedto expresswhether coalitions have strategiesthat are e�ective
in achieving certain goals. Thus, the logic contains statements such as [X ]� ,
meaningthat X canachieve � . The statement [X ]� doesnot meanthat X wants
� , but rather that X would have a strategy for � at hand if it would ever need
one.

As an example of how a logical approach can be useful for people inter-
estedin multi-agent protocols,the following informal situation description is used
throughout this chapter.

Three agents Alice, Bob and Caroline (or A; B and C) have to
select one of the alternatives x; y and z. They are looking for a
suitable voting protocol to selectexactly oneof thesethree alterna-
tivesas the outcome. The protocol should be democratic, so that
any majorit y can enforceany outcomex; y or z.

The goal of this chapter is to capture these requirements in logic, and then to
�nd protocols that satisfy theserequirements.

In this chapter, wegiveseveral examples,andwehavetried to givethe smallest
interesting examplesof each phenomenon. The following more basic decision
problemsare usedfor theseexamples.

joint decision pr oblem A decisionp can be taken if either A or B thinks that
p should be the case.If both agents do not want p, it should be rejected.

indep endent decision pr oblem An agent A candecidewhethera shouldhold
or not, and agent B can decidewhether b should hold or not.

57



58 Chapter 4. Logics for Protocols

A

B C

x y z x y z

Figure 4.1: A voting protocol FV

In the next section, section 4.2, the languageefl is de�ned. Section 4.3
discussesthe model checking problem. Bisimulation is discussedin section 4.4,
and section4.5 presents a proof system.

In the secondpart of this chapter, we look at the di�erent ways in which
one can represent protocols. It is shown in section 4.6 that the way in which
protocolsare represented inuences the model checking complexity. This is done
by specifying a more e�cien t way of representing protocols,and proving that the
model checking problem becomesharder when this input format is used. Within
this chapter we also present many alternative protocols for the examplevoting
problem. The last section,section4.7, contains conclusions.

4.2 De�ning E�ectivit y Logic

Protocolsare modeledin this chapter as (extensive) gameforms. In order to use
logical formulas for the properties, thesegameforms are extendedwith atomic
propositions. Theseatomic propositions are addedonly to the outcomestatesof
each gameform. Such gameforms are called interpreted gameforms.

4.2.1. Definition. An interpreted game form F is de�ned as a tuple F =
(� ; H; turn ; P; � ), so that (� ; H; turn ) is a gameform, P is a �nite set of atomic
propositions, and � : Z (H ) ! 2P returns the true atomic propositions of any
terminal history.

An examplegameform that represents a protocol for the voting problem is
displayed in �gure 4.1. The outcomesaremarkedwith propositionsx; y; z. In this
protocol, A decideswhether B or C can decideon the outcomeof the protocol.

4.2.2. Definition. Assumethat �nite setsP; � are given. An efl formula �
is de�ned by the following two rules. In theserules p 2 P and � � �

� ::= 2  j � ! � j ? j [�]  

 ::= p j  !  j ?
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The secondline of this de�nition de�nes a typical propositional logic formula  .
Thesepropositional logic formulas are not efl formulas. They can only appear
as 2  or [�]  . Thus, formulas such as p _ : p and p ! q are propositional logic
formulas, but are not themselvesefl formulas.

Propositional logic is interpreted in the usualway. The logic efl is interpreted
over an interpreted gameform F = (� ; H; turn ; P; � ). The de�nition makesuse
of pure strategies� � and updateswith thesestrategies.

4.2.3. Definition. Let F = (� ; H; turn ; P; � ) be an interpreted gameform and
� � a pure strategy for coalition �. The updated model F 0 = Up(F; � � ) is de�ned
as F 0 = (� ; H 0; turn 0; P; � 0) whereH 0 is the unique subsetof H such that

� the empty sequence� is a member of H 0

� if h 2 H 0 and turn (h) 2 � then h� � (h) 2 H 0, but for all other actions b we
have hb =2 H 0

� if turn (h) =2 � then ha 2 H 0 for any ha 2 H .

The new elements P0, turn 0 and � 0 are identical to P and � respectively, except
that they are restricted to H 0.

The idea behind an update F 0 = Up(F; � � ) is that it calculatesa reducedgame
form F 0, in which no action is taken that is excludedby the strategy � � . The
strategy � � is only de�ned for agents X 2 �. The other agents are not restricted
in any way by the strategy. The notion of an update is used in the following
interpretation of efl .

F j= ? never
F j= � !  i� not F j= � or F j=  
F j= 2 � i� 8h 2 Z(H ) : � (h) j= �
F j= [�] � i� 9� � 8h 2 Z(H 0) : � 0(h) j= �

where(� ; H 0; turn 0; P; � 0) = Up(F; � � )

Intuitiv ely, the box 2 � is a universalquanti�er. It expressesthat � holds in every
outcomestate. The construction [�] � expressesthat � has a strategy so that if
it usesthis strategy, any reachable outcomesatis�es � .

The languageefl is expressive enoughto expressthe �rst two properties that
are required for the exampleprotocol. First of all, it can be usedto expressthat
a protocol F selectsexactly oneaction.

F j= 2 (x _ y _ z)

F j= 2 : (x ^ y)

F j= 2 : (x ^ z)

F j= 2 : (y ^ z)
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Secondly, onecan expressthat any two agents can enforceany outcome.

F j= [AB ]x ^ [AB ]y ^ [AB ]z

F j= [AC]x ^ [AC]y ^ [AC]z

F j= [BC]x ^ [BC]y ^ [BC]z

It is not hard to verify that the example protocol FV displayed in �gure 4.1
indeedsatis�es theseformulas. Therefore,there existsa suitable protocol for the
examplevoting problem.

4.3 Mo del Checking for EFL

The main point of this section is to show that the model checking problem for
efl is tractable. This is not a very deeppoint. However, it is valuablein practice
and it servesas a test casefor the notation chosen.

4.3.1. Definition. Let F = (� ; H; turn ; U) be an extensive game. For each
agent X the value function vX is de�ned recursively by vX (h) = UX (h) if h 2
Z(H ) andvX (h) = maxa2 A(H ;h) vX (ha) whenX = turn (h), andvX (h) = mina2 A(H ;h)

vX (ha) when X 6= turn (h).

4.3.2. Lemma. The function vX can be computed in time O(kF k).

Pr oof. Supposethat we walk through the game tree using a post-order tree
walk [27, p.245]. At each node h, we can compute vX (h) sinceeither h is a leaf,
or we have already computed the value of all children ha of h, in which casewe
take the maximum maxa2 A(H ;h) vturn (h)(ha) of all children. This walk takestime
O(kF k). �

The value of a game indicates how much payo� agents can expect if they act
optimally. If oneknows the value of each node, onealso knows which movesare
good. Supposethat h is a nonterminal history and turn (h) = X . Intuitiv ely
an action a is a `good' action i� vX (ha) = vX (h), and thus knowing the value
function helpsagents to selectthe best actions.

4.3.3. Theorem. For a given formula � 2 efl and interpreted gameform F ,
checking whetherF j= � takestime O(kF k � k� k)

Pr oof. Assumethat a formula � and a model F = (� ; H; turn ; P; � ) are given,
and furthermore assumethat F is represented explicitly by listing all elements of
pairs and sets.

Determining for any propositional logic formula  and terminal history s
whether � (s) j=  can be done in time proportional to k k. For any formula
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� = 2  , determining whether F j= � can thus be done in time proportional to
kH k � k k � kF k � k� k.

Supposenow that � = [�]  . We can de�ne a game F 0 = (� 0; H; turn 0; U)
where� 0 = f � ; � g and turn 0(h) = � i� turn (h) 2 �. Otherwiseturn 0(h) = �. The
utilit y function is de�ned such that U� (h) = (1; 0) i� � (h) j=  . For each terminal
history, this takestime at most O(k� k), thus computing the whole function takes
time O(kF k � k� k). For this game, one can compute the value function v� . If
v� (� ) = 1 then F j= � . OtherwiseF 6j= � . Computing the value function is thus
su�cien t for determining whether F j= � holds. According to lemma 4.3.2 this
can be donein time O(kF k).

For other formulas � one can prove the theorem by using induction over the
formula structure. The case� = ? is a trivial case. The basecasesare formed
by � = 2  and � = [�]  , and we have seenthat thesecasestake time at most
O(kF k � k� k), and the induction hypothesis is that this holds for all formulas.
In case� =  1 !  2, one can seethat determining whether F j= � takes time
O(kF k � k� 1k) + O(kF k � k� 2k) � O(kF k � k� k). Sincetheseare all the cases,we
concludethat for any formula � and gameform F the theorem holds. �

Combining logic and game theory can potentially lead to problems with high
complexity, but the result given hereshows that this is not always the case.This
model checking problem is easydue to two factors. First of all the preferencesof
agents are expressedby meansof propositional logic. In this format one cannot
expresscomplicated,higher order preferences.Secondly, this logic essentially de-
scribestwo-player constant-sum games,sinceonegroup of agents tries to achieve
somethingunder the assumption that the other agents do not cooperate. Two
player constant-sum gameswith perfect information are well understood and
computing optimal strategiesfor such gamesis not computationally costly.

4.4 Bisim ulation

An important questionis to decidewhen two protocolsare the same.In general,
this is a complicatedquestion,becauseonecan compareprotocols with more or
less scrutiny. One way out of this dilemma is to use logical equivalenceas a
deciding factor. Given a suitable logic one can de�ne two protocols to be the
same when their corresponding game forms satisfy the same logical formulas.
This leaves us with the problem of deciding when two interpreted game forms
satisfy the sameformulas.

For the logic efl one cannot apply the notion of bisimulation of standard
modal logic directly, becauseit is not clear what the `setsof worlds' are that
should act as domain of the bisimulation relation. For somelogics de�ned on
extensive gamesonecan de�ne a bisimulation betweenthe setsof histories. Each
position in the gametree of the �rst model is matched by the bisimulation to an
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equivalent position in the other model. For efl this idea doesnot work, because
efl doesnot use the structure of the gametree directly in its semantics. Two
models in which agents move in a completely di�erent order can still satisfy the
sameefl formulas. Thus, for efl one must usea relation similar to the power
bisimulation discussedon page52.

4.4.1. Definition. Suppose that the two models F = (� ; H; turn ; P; � ) and
F 0 = (� ; H 0; turn 0; P; � 0) are given. A binary relation E � Z (H ) � Z (H 0) is an
outcome bisimulation if the following conditions hold.

� If (h; h0) 2 E then � (h) = � 0(h0)

� For any coalition strategy � � there exists a strategy � 0
� such that the fol-

lowing holds: Let Z be the set of terminal histories of Up(F; � � ) and let
Z 0 be the set of terminal histories of Up(F 0; � 0

� ). Then 8z0 2 Z 0 9z 2 Z :
(z; z0) 2 E

� Vice versa. For any coalition strategy � 0
� there exists a strategy � � such

that the following holds: Let Z be the set of terminal historiesof Up(F; � � )
and let Z 0 be the set of terminal historiesof Up(F 0; � 0

� ). Then 8z 2 Z 9z0 2
Z 0 : (z; z0) 2 E

If two gameforms are outcome bisimilar, then they satisfy the sameformulas.
This is proven in two steps. Below we de�ne which formulas are called basic and
simple. In lemma 4.4.3we show that two bisimilar modelssatisfy the samebasic
and simple formulas. Lemma 4.4.5can then be usedto show that if two models
satisfy the samebasicand simple formulas, they satisfy the sameformulas.

4.4.2. Definition. A formula of the form 2 � is basic. A formula of the form
[�] � is called simple.

Basic formulas can be seenas representing global constraints on the possible
outcomes,or as powers of the empty coalition. Each simple formula expressesa
power of a certain coalition.

4.4.3. Lemma. Suppose that the two models F = (� ; H; turn ; P; � 0) and F 0 =
(� ; H 0; turn 0; P; � 0) are given and that E is a bisimulation between F and F 0.
Then thesemodelssatisfy the samebasic and simple formulas.

Pr oof. Supposethat F j= 2 � . The empty coalition has only one strategy � ;

and this strategy has the property that Up(F; � ; ) = F . The sameholds for F 0.
Take Z as the set of terminal histories of F and Z 0 of F 0. Take any state z0 2 z.
The secondclauseof the bisimulation tells us there a bisimilar state z 2 Z .
SinceF j= 2 � and � (z) = � 0(z0) it follows that � 0(z0) j= � . Sincez0 was chosen
arbitrarily , it follows that F 0 j= 2 � .
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Supposethat F j= [�] � . This meansthat there is a strategy � � such that
Up(F; � � ) j= 2 � . According to bisimulation one can �nd a matching strategy
� 0

� . Take Z; Z 0 to be the terminal histories of Up(F; � � ); Up(F 0; � 0
� ) respectively.

Take any state z0 2 Z 0. One can �nd a state z 2 Z such that (z; z0) 2 E. Since
� (z) j= � and � 0(z0) = � (z) it follows that � 0(z0) j= � . Since z0 was chosen
arbitrarily , we concludethat F 0 j= [�] � .

Sincethe de�nition of outcomebisimulation is symmetric, onecan repeat the
argument to show that F 0 j= 2 � implies that F j= 2 � , and that F 0 j= [�] �
implies F j= [�] � . �

In the next lemma, we use speci�c formulas instead of simple formulas. These
speci�c formulasaresimpleformulassuch that no strongersimpleformulasexists.

4.4.4. Definition. Take any set S of formulas and supposethat � 1 = [�]  2 S
and � 2 = [�] � 2 S. The formula � 2 is more speci�c than � 1 if 2 (� !  ) 2 S and
2 ( ! � ) =2 S. The formula � 1 is speci�c if there is no more speci�c formula in
S.

To give an exampleof a speci�c formula, take S = f [A]a; [A]b;2 (b ! a)g. In this
case[A]b is the only speci�c formula in S, becausethis formula is more speci�c
than [A]a.

The next lemmatells us that it is enoughto check only formulas that aresim-
ple and speci�c to ensurethat two maximally consistent setsare the same.Since
the set of all formulas satis�ed by a model is always a maximally consistent set,
onecan alsousethis lemma to show that two modelssatisfy the sameformulas.

4.4.5. Lemma. Suppose that S and T are maximally consistent sets. Let S0

contain all basic and all speci�c formulas of S and T 0 all basic and all speci�c
formulas of T. If S0 = T0 then S = T.

Pr oof. Supposethat S and T are maximally consistent sets. Let S0 contain
all basic and all speci�c formulas of S and T 0 all basic and all speci�c formulas
of T. Supposealso that S0 = T0. Let � = [�]  2 S. We have to show that
� 2 T. If � is speci�c, then � 2 S0, thus � 2 T0 and � 2 T. If not, then
there is some`more speci�c' formula [�] � 2 S so that 2 (� !  ) 2 S . This
formula itself need not be speci�c, since there might be an even more speci�c
formula that rules out [�] � . However, since P is �nite, there is only a �nite
number of non-equivalent propositional logic formulas. This meansthere must
be a speci�c formula [�] � 2 S0 and 2 (� !  ) 2 S. SinceS0 = T0 we know that
[�] � 2 T0 and thus [�] � 2 T. Since2 (� !  ) 2 S is basic,we can concludethat
2 (� !  ) 2 S0 = T0 � T. Using the the validit y ([�] � ^ 2 (� !  )) ! [�]  and
the fact that T is maximally consistent, we concludethat [�]  2 T.

It is now proventhat S and T contain the samesimpleformulas. Considernow
a formula of the form : [�]  . If : [�]  2 S, the validit y of the axiom determined ,
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proven in the next section,can be usedto show that [� n �] :  =2 S. Sincethis is
a simple formula, we concludethat [� n �] :  =2 T. Using determined again we
obtain : [�]  2 T.

A usefulproperty of maximally consistent setsis that if � ^  2 S then � 2 S
and  2 S. Moreover if � _  2 S then � 2 S or  2 S (or both). For every
formula � 2 S in conjunctive normal form we can concludethat � 2 T. Since
every propositional formula is equivalent to a formula in conjunctive normal form,
we may concludethat for any formula � it is the casethat � 2 S , � 2 T.
Therefore,S = T. �

One can alsoprove the reverseof lemma 4.4.3.

4.4.6. Lemma. Suppose that the two models F = (� ; H; turn ; P; � 0) and F 0 =
(� ; H 0; turn 0; P; � 0) are given and that these models satisfy the same formulas.
Then there is a outcome bisimulation E between F and F 0.

Pr oof. Supposethat F = (� ; H; turn ; P; � 0) and F 0 = (� ; H 0; turn 0; P; � 0) are
given. De�ne a relation E � Z (H ) � Z (H 0) by stating that zEz0 if � (z) = � 0(z0).
We have to show that this relation is an outcome bisimulation. That the �rst
condition of de�nition 4.4.1holds, followsdirectly from the de�nition of E. Below
we show that the secondcondition holds. The argument for the third condition
is completelyparallel to the argument for the secondcondition.

Take any strategy � � on F , and compute Z = Z(Up(F; � � )). Supposethat
P = f p0; p1; : : : ; png and that Z = f z0; : : : ; zm g. Each state zj 2 Z can be com-
pletely described by a formula  j =

V n
i=0 � i pi where� i pi = pi if pi 2 � (zj ), and

� i pi = : pi otherwise. Let � =
Wm

j =0  j . It follows that F j= [�] 2 � . SinceF
and F 0 satisfy the sameformulas, F 0 j= [�] 2 � . Thereforethere exists a strategy
� 0

� such that Up(F 0; � 0
� ) j= 2 � . Now take Z 0 = z(Up(F 0; � 0

� )) and take any state
z0 2 Z 0. Since � 0(z0) j= � it must hold that � 0(z0) j=  j for somej . Therefore
� 0(z0) = � (zj ) and thus z0Ezj for somezj 2 Z , which is what we had to show. �

The notion of outcome bisimulation can thus be used to test whether two
protocolshave the sameproperties.

4.5 Completeness

Using the notations from the previous section, one can determine whether two
protocolsare equivalent. In this sectionthe focusis on the moredi�cult problem
of determining whether there exists a protocol F that satis�es a given property
� . In order to do so, a proof systemSE F L is de�ned, so that onecan prove that
certain formulas hold for any model. If SE F L `: � , then there is no model F such
that F j= � . The proof systemwe present is complete,and thus the oppositealso
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holds: If SE F L 6̀ : � , then there exists a model F such that F j= � . The proof
given is constructive, in the sensethat it providesa method for constructing such
a model.

First the validit y of the formulas that are usedasaxiomsis proven. Then the
proof systemSE F L is de�ned, and the completenessproof is given.

The next table lists four axioms that can be written without the coalition
operator [�] � . These axioms are thus formulas of `normal' modal logic [12].
For the Greek letter � one may substitute any instance of any propositional
logic tautology that one can obtain using uniform substitution. For instance
[�] p_ : [�] p is an instanceof p_ : p. For all other Greekletters onemay substitute
any propositional logic formula.

prop = � t autology

prop2 = 2 � box-t autology

S = 2 � ! 3 � seriality

K = 2 (� !  ) ! (2 � ! 2  ) distribution

All instancesof theseaxioms are valid. For the axiom t autology this follows
from the fact that the connectives ? ; ! are interpreted in the sameway as in
propositional logic. For the axiom box-t autology , one can remark that the
de�nition of 2 � usesthe semantics of propositional logic. For the axiom seri-
ality , it follows from the fact that each gameform must have a non-empty set
of outcomestates. The distribution axiom is the sameas the standard modal
logic distribution axiom. Its validit y can be shown in the sameway. This works
becausethe operator 2 is also de�ned as a universal operator: 2 � holds if � is
true in all reachable states. For efl , the reachable states are all the outcome
states.

Theseaxiomsare completefor the fragment of efl in which the construction
[�] � is not used. To give a proof sketch: consider the completenessproof of
standard modal logic [12]. One can adapt the completenessproof so that no
nesting of boxesoccurs. In that case,the proof exactly matchesthe languageof
efl without [�] � . The remaining axioms for efl are listed below.

C =([�] � ^ [� n �]( � !  )) ! [� [ �]  combina tion

M =[�] � $ : [� n �] : � determined

N =[ ; ]� $ 2 � nobod y

4.5.1. Lemma. All instances of combina tion , determined and nobod y are
valid

Pr oof. Let F be any interpreted gameform.

� Take an instance([�] � ^ [�]( � !  )) ! [� [ �]  of combina tion so that
� \ � = ; . Take any model F so that F j= [�] � and F j= [�]( � !  ). It
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follows that there are two strategies� � and � � such that Up(F; � � ) j= 2 �
andUp(F; � � ) j= 2 (� !  ). The two strategies� � and � � aretwo functions
with separatedomains. One can form a combined strategy � � [ � = � � [ � � .
If an outcomestate is pruned by either � � or � � , then it is alsopruned by
the combined strategy. Therefore,Up(F; � � [ � ) j= 2 � ^ 2 (� !  ) and thus
F j= [� [ �]  .

� Take an instance[�] � $ : [� n�] : � of determined . Onecan de�ne a two
player constant-sum extensive gamebasedon the gametree of F between�
and � = � n� sothat � wins in an outcomes if s j= � and � wins if s j= : � .
In such an extensive gameof perfect information, the two coalitions must
have a winning strategy. Therefore,either F j= [�] � or F j= [�] : � .

� Take an instance[; ]� $ 2 � of nobod y. First the left to right implication
is proven, then we do right to left. Supposethat F j= [; ]� This meansthere
is a strategy for the empty coalition � ; sothat Up(F; � ; ) j= 2 � . The empty
coalition hasonly onestrategy (the function with the empty domain), and
this strategy � ; doesnothing: Up(F; � ; ) = F . Thus, F j= 2 � . For the right
to left implication, assumethat F j= 2 � . It follows from Up(F; � ; ) = F
that F j= [; ]� .

�

One property that one can derive is specificity and can be derived using
combina tion and nobod y. Another property is monotonicity , which follows
from box-t autology , combina tion and nobod y.

([�] � ^ 2 (� !  )) ! [�]  specificity
[�] � ! [� [ � 2]� monotonicity

4.5.2. Definition. The proof systemSE F L consistsof the seven axioms t au-
tology , box-t autology , seriality , distribution , combina tion , deter-
mined, nobod y given above and the reasoningrule Modus Ponens.

As an exampleof how this proof system can be used, assumethat we have
threeagents (� = f A; B ; Cg) and threepropositionsP = f a;b;cg. Wearelooking
for a protocol that has the following properties.

1 2 (a _ b_ c)

2 : [AB ]2 c

3 : [AC]2 b
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One can usethe proof systemSE F L to show that from thesethree properties, it
follows that : [A]2 : a. The following derivation provesthis property.

4 [C]2 : c 2; determined

5 [B ]2 : b 3; determined

6 [BC]2 (: b^ : c) 4; 5; combina tion

7 2 ((: b^ : c) ! a) 1; box-t autology ; K

8 [BC]2 a 6; 7; specificity

9 : [A]2 : a 8; determined

4.5.3. Theorem. The proof systemSE F L for efl is sound.

Pr oof. In lemma 4.5.1 it is shown that all axioms are sound. On page 12
it is remarked that the rule modus ponenspreserves validit y. From thesefacts
it follows that only valid formulas can be derived, which meansthat the proof
systemis sound. �

The proof system de�ned here is also complete, and this is proven below in a
constructive sense.This proof di�ers from the standard completenessproof for
modal logic, that is sketched on page17. The proof is a bit more complicated
becausethe semantics of this logic do not refer to singlestepsin the gametrees,
but on the possibleoutcomesthat agents can e�ect.

4.5.4. Theorem. The proof systemSE F L is completefor efl

Pr oof. We have to show that for each consistent formula � 2 efl there is a
model F such that F j= � . Let a consistent formula � 2 efl be given. Let S be
a maximally consistent set so that � 2 S and let S0 contain all basicand speci�c
formulasof S. Below a model F is constructedsothat 8 2 S0 : F j=  . Lemma
4.4.5can then be usedto concludethat F j= � .

The model F we are about to construct is de�ned recursively usinga function
f (C; A ; r ). The outcome of this function depends on a set of basic and simple
formulas C, on a set of active agents A � � and on a representation function
r : � ! 2� . The set r (X ) contains the agents that are represented by agent
X . The model F is de�ned as F = f (S0; A 0; r0). Initially , all agents are active
agents: A 0 = �, and each agent initially only represents itself: r 0(X ) = f X g.
The function r can also be applied to coalitions of agents. This is de�ned by
r (�) = [ X 2 � r (X ). The pair A ; r canbe usedto calculatea newset of simpleand
basic formulas S(C; A ; r ) from a given subsetC.

S(C; A ; r ) = f 2  j 2  2 Cg [ f [�]  j � � A ; [r (�)]  2 Cg
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The gameform f (C; A ; r ) is de�ned in the following way. If A contains exactly
oneactive agent X , then we de�ne a model f (C; A ; r ) = (� ; H; turn ; P; � ) where
H = f �;  j [X ] 2 C; [X ] is speci�cg. De�ne turn (� ) = X . If 2  j 2 C,
then becauseof box-t autology 2 ( ! ( ^  j )) 2 C. Using the specificity
property, we conclude[X ]( ^  j ) 2 C. Repeating this reasoningfor any simple
formula  j 2 C, we obtain a formula [X ]( ^

V
j  j ) 2 C. Let � ( ) be a set of

atomic propositions such that � ( ) j= ( ^
V

j  j ). One can now show that any
formula � 2 C is satis�ed by this model.

If A hastwo or moremembers,de�ne f (C; A ; r ) = (� ; H; turn ; P; � ) asfollows.
Take any agent X 2 A . De�ne turn (� ) = X , so that this becomesthe acting
agent of the current situation. The set of options A(H; � ) consistsof two parts:
A(H; � ) = E [ J . Agent X can thus choosefrom two di�erent typesof actions:
formulas from set E or `joining' an agent from set J .

� The set E consistsof all speci�c choicesof agent X : E = f  e j[X ] e 2
C is speci�cg. These choiceslead to a subgamein which the formula  e

holds in all outcomes.This subgameis de�ned as f (C0; A ; r ) where

C0 = f 2  e; 2  ; [�] � j 2  ; [� [ f X g](� ^  e) 2 Cg

This de�nition ensuresthat  e holdsin the submodel. Axiom combina tion
ensuresthat no inconsistent formulas appear in C.

� The set J contains all other active agents: J = f Y 2 A j Y 6= X g.
These choices Y lead to the subgamesf (CY ; A n f X g; r 0) where CY =
S(C; A n f X g; r 0), and r 0 is such that r 0(Y) = f Y; X g and r 0(Z ) = f Zg
for Z 6= Y. Intuitiv ely, choosing Y meansthat agent Y will now make all
decisionsfor agent X .

We must show that f (C; A ; r ) satis�es all formulas in C. This is done using
induction. The induction hypothesisis that submodelsof the current model have
this property. The basecaseis formed by modelswith oneactive agent, and this
hasbeendonewith above.

First, considerbasicformulas,of the form 2 � 2 C. Theseformulasarepresent
in each setC0 that is usedto construct a subgame.Usingthe induction hypothesis
we know that all outcomesof all choicessatisfy � , and thus f (C; A ; r ) j= 2 � .

Consider[�]  2 C with X =2 �. This formula is alsopresent in any set C0 and
by induction hypothesiswe know that there is thus a strategy in each subgame
for � to ensure . We can combine thesesubgamestrategiesinto a strategy � �

for the whole gamethat guarantees , and thus f (C; A ; r ) j= [�]  .
Secondly, consider[�]  2 C with X 2 �. If � = f X g then there is somespe-

ci�c  e 2 E sothat 2 ( e !  ) 2 C. This choiceleadsto a submodel f (C0; A ; r ).
From  e 2 C0 and the induction hypothesisit follows that there is a strategy � X

for this submodel that guarantees . Agent X can now usea strategy � 0
X sothat
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A

B B

a;b a b

y n

y n y n

Figure 4.2: A simple gameform F1

� X (� ) = f  eg and within the subgamef (C0; A ; r ), strategy � 0
X makes the same

choicesas � X . This strategy guarantees and thus f (C; A ; r ) j= [�]  . If there
is more than one agent in �, then X can join any of the other agents Y 2 �.
By induction the coalition � n f X g will have a strategy for guaranteeing  in the
subgamef (C0; A n f X g; r 0), and thus f (C; A ; r ) j= [�]  .

The model F = f (S0; A 0; r0) thus satis�es all formulas  2 S0. From lemma
4.4.5 it follows that F satis�es all formulas in S and thus F j= � . �

Becausethis proof is constructive, it provides us with a standard method for
constructing gametrees. Thesetreeshave a speci�c format.

4.5.5. Cor ollar y. For any protocol F there is an equivalent protocol F 0 in
which each agentonly movesonce, and all agentsmovein a given order.

In �gure 4.2an exampleinterpreted gameform is shown. In this gameform agent
A �rst decideswhether a should hold or not. Then agent B can decidewhether
proposition b should hold or not. A possiblestory could be that a indicates that
A dressesin black, and b indicates that B dressesin black. The next table lists
properties that are true for the exampleF1.

F1 j= [A]a ^ [A]: a

F1 j= [B ]b^ [B ]: b

F1 j= [B ](a $ b) ^ [B ](a r b)

One can concludethat agent B , becauseit goessecond,can control more. This
corollary can be illustrated for the exampleprotocol of �gure 4.2. According to
the proof there should be an equivalent protocol in which agent B moves �rst.
This is indeedthe case,and the protocol is illustrated in �gure 4.3. One can see
that B in this casecan choosefrom four options.

In the construction of the proof, each agent has a choicewhether it wants to
useoneof its abilities (setE) or whetherit wants to join a speci�c agent (setJ ). In
order to illustrate thesetwo possibilities,considerthe property � 3 = [A]p^ [B ]p^
[AB ]: p. There is only oneatomic proposition in this example,soP = f pg. There
are only four distinct formulas that one can express: p; : p;? ; p ! p. Suppose



70 Chapter 4. Logics for Protocols
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Figure 4.3: Alternativ e F2
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Figure 4.4: Gameform F AB
3

that S is a maximally consistent set containing � 3. The abilit y [A]p is more
speci�c than [A](p ! p). Thus, agent A has one speci�c abilit y p. In the game
form F AB

3 that is constructed in the proof, agent A has two options. It can use
this abilit y, or it can join agent B . The gameform is depicted in �gure 4.4. In
this protocol agent A and B have exactly the sameamount of inuence on the
outcome,thus onecould call this protocol fair.

4.6 Linear Represen tations

The de�nition of a gameform doesnot allow oneto compactly specify the inter-
preted gameform FV of �gure 4.1 (page 58). A more compact format, similar
to the compact formats used in LTL and CTL model checking, is useful. For
this purposewe describe herea new way of representing thosegameforms, called
linear representation. The idea behind this description method is that a game
tree can be summarizedby describinga typical path. Consider for instancethe
solution to the independent decisionproblem given in �gure 4.2. This protocol
canbe informally described by saying that �rst agent A chooseswhethera should
hold, and then agent B decideswhether b should hold. Schematically onewould
like to represent this protocol in the following way

R1 = A :::�! B :::�! : : :

In this section, such a notation is de�ned, and used in two ways. First of the
notation is usedfor giving more examplesof protocols. Then, it is usedto show
how the model checking complexity of efl depends on the way protocols are
speci�ed.

In this section we need to make a distinction between a description R of
a protocol, and the protocol itself. Suppose that R is a linear representation
of a protocol, such as the string R1 given above. We use pRq to indicate the
protocol denotedby R. We hope that R1 is smaller than the protocol pR1q that
it represents, and this hope can be expressedas kR1k < kpR1qk.

Examples

In this subsubsectionwe present a few examplelinear representations
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To start with a simple example,considerthe trivial protocol F whereagent
A can only choseoneaction, after which an outcomein which p holds is reached.
Such a protocol F could be described by the linear representation R = A �! f pg.
The set f pg at the end of the representation is the set of propositions that is true
at the endof the protocol. The agent A in front of the arrow indicatesthat agent
A is the agent that canchose.In this protocol agent A can only choseoneaction.
It hasno real choice,which makesthe protocol trivial.

In order to describe morecomplicatedprotocols,two additional constructions
canbeused.The �rst oneis parallel composition. Supposethat wehavetwo linear
representations R1 = A �! f pg and R2 = A �! f qg. In each of theseprotocols
agent A canonly choseoneaction, but the two protocolshave di�erent outcomes.
We de�ne R3 to be the parallel composition of the two linear representations:
R3 = R1jjR2, or:

R3 = (A �! f pg)jj (A �! f qg)

In the protocol described by R3, agent A can choosetwo actions, and end up in
either the outcomeof pR1q or the outcomeof pR2q. Thus parallel composition
of protocolsgivesthe starting agents more choice.

The other construction is the useof variables. Take a protocol in which agent
A can choosewhich of the tree propositions f p;q; r g is true. The agent is allowed
to choseone of thesepropositions. This protocol can be described by the linear

representation R = A
v2f p;q;r g
� � � � � ! f vg. The symbol v is usedhereasa variable that

cantakesthe valuesp;q or r . The protocol pF q thushasthree possibleoutcomes,
in which either p;q or r holds.

The follow grammarde�nes how onecanform expressionsthat denoteboolean
values,sets,lists and objects. Assumethat a set of propositionsP = f p0; p1; : : :g
and a set of agents � = f X 0; X 1; : : :g are given.

Bool ::= Objct = Objct j Bool _ Bool

Set ::= ; j f List g j Set [ Set j Set \ Set j Setn Set j f List j̀' Boolg

List ::= Objct j Objct; List

Objct ::= Prop j Set j Ag

Ag ::= X 0 j X 1 j : : :

Prop ::= p0 j p1 j : : :

All theseoperators are interpreted in the usual way, except perhapsfor f xj� g.
The x in this example is a concreteobject, not a variable. Thus, if p� q holds
then pf xj� gq = f pxqg, otherwisepf xj� gq = ; .

The denotation pEq of an Objct expressionE canbe computedin polynomial
time, sincee�cien t algorithms for all operationsexist. In fact the operationsused
are polynomial shrinking (seepage87), which meansthat the denotation pEq of
an expressionE is alsonot bigger than E: kpEqk � kEk
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The next table givessomeexamplesof Objct expressionsand their denotations

pf p;q; r gq = f p;q; r g

pf Ag [ f Bgq = f A; Bg

pf pjA = Bgq = ;

Substitution of variables is neededin order to de�ne linear representations.
Assumethat a set of variablesV is given,and that v 2 V. The notation s[v n x]
is used to obtained by replacing all occurrencesof v 2 V in s by x. Thus,
f 3; vg[v n 1] = f 1; 3g.

A linear representation can now be de�ned recursively, in three steps. First
of all an Objct expressionthat denotesa set of propositions, like s = f x; yg, is
a linear representation of a protocol. Such a set represents a protocol with no
choicesand only one outcome. It serves as a basecase. Since computing the
denotation of an expressionis a tractable problem, onecan always compute psq
in polynomial time O(kskn) for somen 2 N.

Secondly, one can usean expressionof the form X v2 A� � ! R(v). Here X is an
agent, v 2 V is a variable, pAq is a set of objects. This expressiondenotesa game
form such that agent X can chooseany action a from the set pAq, after which
the protocol proceedswith R(a). An exampleof this construct is the following

voting protocol, in which A decideswhether x; y or z holds: A
p2f x;y ;zg
� � � � � ! f pg.

Finally, onecan join the options of two di�erent protocol X a2 A� � ! R1, X b2 B� � !
R2 usingthe construct (X a2 A� � ! R1)jj (X

b2 B� � ! R2). In the resulting protocol, agent
X can chooseeither an action from pAq or an action from pBq. The following
description of the protocol F AB

3 displayed in �gure 4.4 usesthis construct.

RAB
3 = (A

p2f P g
� � � ! f pg)jj (A B�! B

s2ff pg;;g
� � � � � ! s)

Note that onecan represent the sameprotocol in di�erent ways. At the start
of this section as example is given where an agent A can choose whether p;q
or r holds. This protocol F was described using variables as F = pRq where

R = A
v2f p;q;r g
� � � � � ! f vg. One can alsouseparallel composition to describe the same

protocol. Thus F = pR0q where

R0 = (A �! f pg)jj (A �! f qg)jj (A �! f r g)

Note that R is a shorter description than R0. The more concisedescription R
is often easierto read, and thus preferredover R0.

In the next two de�nitions we formally de�ne what we can allow for a repre-
sentation, and how theserepresentations are translated into gameforms. Then
we give more examplegameforms for the voting problem, and give a complexity
result.
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4.6.1. Definition. Assumea set of variables V is de�ned and that the �nite
setsP; � are given. The set of all linear representations is de�ned recursively as
follows.

� If R is a Objct-expression,such that R denotesa set of atomic propositions
pRq � P, then R is a linear representation

� The construct X v2 S� � ! R is a linear representation if the following conditions
aremet. We demandthat X 2 �, that v 2 V is a variable, that S is a linear
representation such that pSq is a set of objects, and that for all si 2 pSq
we have that R[v n si ] is a linear representation.

� If R0 = X v2 S0�� �! R0
0 and R1 = X v2 S1�� �! R0

1 are linear representations and
pS0q \ pS1q = ; then R0jjR1 is a linear representation.

Using this de�nition we can now �ll in the details in the linear representation of
the independent decisionproblem given above.

R1 = A
s12ff ag;;g
� � � � � � ! B

s22ff bg;;g
� � � � � � ! s1 [ s2

Thus, agent A chooseswhether atomic proposition a appears in s1, agent B
chooseswhether b appears in s2, and the �nal outcome of the protocol is the
union of their respective decisions. If one had 100 agents, then this method of
speci�cation would be much more e�cien t than a description in tuples and sets.

The next de�nition de�nes a function f F that translateslinear representations
into interpreted gameforms. This function is de�ned in the following way.

4.6.2. Definition. Assumethe �nite setsP; � aregiven,De�ne f F (R) = f F
1 (�; R),

wheref F
1 is the function de�ned below. Let h be a sequenceof actions.

� If pRq � P then f F
1 (h; R) = (� ; f hg; ; ; P; � ) where� (h) = pRq.

� AssumeR = X s2 S� � ! R0 is a linear representation. For any si 2 pSq compute
(� ; H i ; turn i ; P; � i ) = f F

1 (hsi ; R0[s n si ]). The result f F
1 (h; R) is de�ned

as f F
1 (h; R) = (� ;

S
i H i [ f hg; turn ; P;

S
i � i ) where turn = (

S
i turn i ) [

f (h; X )g.

� f F
1 (h; R0jjR1) = (� ; H0[ H1; turn 0[ turn 1; P; � 0[ � 1) where(� ; H i ; turn i ; P; � i ) =

f F
1 (h; Ri )

The voting protocol FV has the following linear representation.

RA
1 = A

X 2f B ;Cg
� � � � � ! X

p2f x;y ;zg
� � � � � ! f pg

It says exactly what the protocol is : A choosesbetweenB and C, which in turn
chooseshis favorite alternative.
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4.6.3. Fact. For any linear representation R, f F (R) is an interpretedgameform.

Pr oof. An induction on R provesthis fact. �

One of the usesof linear representations is to describe example protocols
succinctly. Another useis to show how the complexity of model checking depends
on the choiceof input format. The linear representation of an interpreted game
form can be more compact than a naive representation of a gameform. If one
speci�es the input using linear representation, the efl model checking problem
hasa high computational complexity.

4.6.4. Theorem. Deciding whetheran efl formula � holdson a linearly repre-
sented gameform F is PSPACE-complete.

Pr oof. In the proof of theorem4.3.3and lemma4.3.2it is explainedhow model
checking efl dependson the abilit y to do a post-order tree walk. If we can do
such a post-order tree walk in polynomial space,then we can model check efl
formulas in polynomial space. An algorithm for such a walk typically usesa
stack. On this stack a description of the current node is stored, after which the
descriptionof a successoris computed,which is alsostoredon the stack, etcetera,
until a �nal node is reached. We thereforeshow the following facts.

� For a linear description R of a terminal node and a propositional logic
formula � , one can determine whether pRq j= � in polynomial time. This
follows immediately from the assumption that one can compute the set
of atomic propositions pRq in polynomial time. A naive polynomial time
algorithm is to computepRq and then determinewhether pRq j= � . Hence
this takesat most b(kRk + k� k) for somepolynomial bound R

� Each linear description of a successorof R is smaller that R itself. This is
easyto see. In the caseof R = R1jjR2, both R1 and R2 are smaller than

R. In the caseof R = X v2 pSq� � � ! R0(v), it is also clear that kR0(v)k � kRk.
Thus, each element on the stack needsas most memory kRk

� The maximal number of descriptionson the stack is alsoboundedby kRk,
becausethe maximal depth of the modeldenotedby R is at most the number
of arrows that occur in R.

From the last two facts one can compute that one needsat most kRk � kRk
memory for the stack. Therefore, the total amount of memory that one needs
to determine whether � holds on pRq for a linear representation R is lessthan
kRk2 + b(kRk + k� k), and thus is polynomial.

It remainsto be proven that the problem is PSPACE-hard. This can be done
by reducingthe QBF problem described on page31 to the efl decisionproblem.
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Assumethat a QBF formula 8x19x28x3 : : : 8xn � is given. We have to con-
struct an equivalent efl decisionproblem, consistingof a representation R and a
formula � 0. Let � = f X ; Yg and P = f x i j0 � i � ng. The atomic proposition x0

is a dummy atomic proposition, sinceit doesnot appear in � . The representation
of the interpreted gameform is the following:

R = X
v12f x0 ;x 1g
� � � � � � ! Y

v22f x0 ;x 2g
� � � � � � ! : : : Y

vn � 12f x0 ;x n � 1g
� � � � � � � � � ! X

vn 2f x0 ;x n g
� � � � � � ! f v1; v2; : : : ; vng

Take � 0 = [Y]� . The agent Y thus makes all existential choices(it tries to
pick valuesfor the x i that make � true), and agent X is usedfor the universal
choices. If 8x19x28x3 : : : 9xn� 18xn � , then f F (R) j= � 0 and vice versa. �

It has to be remembered that for someprotocols without a lot of structure,
the linear representation format is not moree�cien t. For very irregular protocols
all linear representations can be larger that the gameform itself. Nevertheless,
onecan give a linear representation of any protocol.

4.6.5. Theorem. For any interpreted gameform F = (� ; H; turn ; P; � ) where
H consists of sequences of propositions, there is a linear representationR such
that f F (R) = F

Pr oof. The set H of any game form F consistsof sequencesof actions. It
does not matter what kind of objects theseactions are, as long as they can be
distinguished. In the examplesthroughout this dissertation,wehave usednatural
numbers, propositions and agents as actions. In this proof we restrict the action
to be propositions becausepropositions are part of the Objct notation.

For any subsetS � P of propositions,onecan �nd an expressionR such that
pRq = S, by listing all elements of S. For instance if S = f p;qg then one can
simply take R = f p;qg.

For any interpreted game form F = (� ; f � g; turn ; P; � ) that has only one
outcome,one can take an expressionR so that pRq = � (� ). This expressionR
consistsof a list of atomic propositions that hold in the singleend state � of the
interpreted game form F . This simple casecan be used as a basecasefor an
inductive proof.

Considernow an interpreted gameform F = (� ; H; turn ; P; � ) that hasmore
than one outcome,and assumethat for all smaller gameforms F 0 one can con-
struct representation R0 such that f F (R0) = F 0. Let A(H; � ) = f a1; : : : ; ang be
the set of possible�rst actions, and let X = turn (� ) be the agent to move �rst.
De�ne, for each action ai , the interpreted subgameform Fi = subg(F; ai ). By
induction hypothesis, there is a representation Ri such that f F (Ri ) = Fi . Let
v 2 V be somevariable. One can now create a game form R by using the jj
construction.

R = (X
v2f a1 g
� � � � ! R1)jj : : : jj (X

v2f an g
� � � � ! Rn )
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Figure 4.5: A secondvoting protocol FV 2

For this linear representation R, it holds that f F (R) = F . Therefore,by induc-
tion, onecan �nd a linear representation R for any interpreted gameform F that
usespropositions for actions. �

The newrepresentation format canbeusedto de�ne morecandidateprotocols
for the example problem de�ned in the beginning of this chapter. These new
protocols all satisfy the requirements of the example,while being very di�erent
from protocol FV . Below we de�ne two more protocols, called FV 2 = f F (RAB C

2 )
and FV 3 = f F (Rx

3). Part of the gametree of protocol FV 2 is depicted in �gure
4.5.

RAB C
2 = A

a2f x;y ;zg
� � � � � ! (B

b2 P nf ag
�� � � � ! C

c2f a;bg
� � � � ! f cg)jj (B a�! f ag)

In FV 2, A and B choosefrom the three possibleoutcomes.If they choosethe
sameoutcome,then that is the �nal outcome. OtherwiseC can choosefrom the
two outcomesthey selected.

Rx
3 = A

a2f x;y ;zg
� � � � � ! B

b2f x;y ;zg
� � � � � ! C

c2f x;y ;zg
� � � � � !

f xjf a;b;cg = f x; y; zgg[ f ajb= ag [ f cja = cg [ f cjb= cg

In our third exampleFV 3, the agents A, B , and C vote sequentially for one
of the three outcomes;the outcomethat gets the most votes is elected. If A, B
and C disagreethen a pre-determinedoutcomex is elected.

It is not hard to verify that these three protocols satisfy exactly the same
efl formulas. One can thus concludethat thesethree protocolsare equally fair,
and that there is no reasonto preferoneof thoseprotocolsabove the others. This
conclusionseemscounter-intuitiv e, becausethe protocol Rx

3 seemsbiasedtowards
outcomex. If the agents cannot cometo an agreement, then outcomex results.
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Perhaps efl is the right tool and the bias mentioned for Rx
3 is an irrelevant

detail. It is alsopossiblethat the logic efl is not sensitive enough.Both of these
viewpoints are valid, depending on the application onehas in mind.

Making more useof the new notation, one can make even more complicated
protocols. Similar to Rx

3, one can de�ne protocols Ry
3 and Rz

3, in which y and
respectively z arethe default outcomes.Onecano�er oneof the agents the choice
of selectingthe default outcome.

RA
4 = A

d2f x;y ;zg
� � � � � ! Rd

3

The new protocol f F (RA
4 ) again satis�es the sameefl formulas. If onehow-

ever thinks that Rx
3 is biasedtowardsx, then onemust concludethat RA

4 is skewed
towards A. The word skewis usedhereto expressthat a certain agent is treated
di�erently in a signi�cant way from other agents, whereasbias meansthat an
outcomeis treated in a di�erent way than the other outcomes. To give another
example of how one can make more subtle protocols, consider the casewhere
agent A chooseswhether B or C selectsthe default outcome.

RA
5 = A

S2f B ;Cg
� � � � � ! RS

4

The result is that there are indeedmany di�erent protocols for the example
problem. Many of thesecan be elegantly described using a linear representation,
even when it would have beenvery hard to draw a picture of the gametree. For
efl however all theseprotocolsare equivalent.

4.7 Conclusion

The logic efl is a high level logic for reasoningabout multi-agent protocols. In
this chapter, the problem of �nding a good voting protocol has beenusedas a
motivating examplefor the construction of such logic. Di�eren t protocols have
beenpresented and modeledas gameforms. Using efl we have shown that the
candidate protocols indeed satisfy the requirements of the problem. Using an
e�ectivit y logic such asefl onecan thus reasonabout the powersof agents and
coalitions in protocols.

In order to e�cien tly discussmultiple protocols, one needsa good way of
representing di�erent protocols. The naive way, as a tuple of setsand functions,
is rather cumbersome. Another option is to specify protocols by meansof a
picture of a gametree. However this is alsoonly practical for small protocols. In
this chapter, a new input format is de�ned, called the linear representation. The
idea behind this format is that onecan specify a protocol by describinga typical
execution of the protocol. For the example voting problem, one can elegantly
describe many protocol variants using the linear representation.
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One big question is whether veri�cation of multi-agent protocols in efl is
tractable. Thus, one would like to know the model checking complexity of efl .
The answer to this question dependson how one wants to specify the input. If
oneallows protocols to be speci�ed in a linear representation, then this problem
is very intractable: It is PSPACE complete. This result doesnot only say some-
thing about efl , but applies to solving gamesin general. With a su�cien tly
advancednotation, determining the winner of a gameis an intractable problem.
For instance winner determination in the gamesof Go and Geography is also
PSPACE-complete[81, p. 463].

On the other hand, the veri�cation problem becomestractable if oneusesthe
naive representation for gameforms. The interpretation of the logic efl is de�ned
in terms of winning a perfect information game,and this problem is not too hard.
Veri�cation can be done in polynomial time. This supports the conclusionthat
efl is indeedsimple. One can concludethat veri�cation of properties in efl is
a feasiblecomputational problem. Interesting future work is to �nd out whether
techniquesthat have beenusedto speedup model checkers for ATEL and CTL
can be adapted for efl .

In many applications one doesnot already have a protocol. One only has a
speci�cation and one would like to �nd a protocol that meetsthis speci�cation.
This corresponds to the satis�abilit y problem for efl : one has an efl formula
� , and would like to know whether there existsan interpreted gameform F that
satis�es this formula. This problem is also solvable for efl : a proof system
SE F L hasbeenpresented, so that oneprove formally which formulas � cannot be
satis�ed. This proof systemis thus complete. If no such proof exists, a method
has been sketched that allows one to construct a model. Automated protocol
designon the basisof efl speci�cations thus seemspossible. It is interesting to
note that one has a lot of freedomin constructing thesemodels: one can order
the agents in any way, and construct a model in which the agents make decisions
in this order. This property distinguishesthis logic from modal logics that work
on the level of singleactions.

One open question, concerningthe exampleprotocol, is how one can distin-
guish betweenall candidate protocols that have beenpresented in this chapter.
All protocols presented are equivalent under efl . However, it seemsthat these
protocolsshouldbehave di�erently of oneconsidersmorecomplicatedproperties.
In the next chapter, extendedlogics that work under di�erent assumptionsare
employed to solve this problem.



Chapter 5

Politeness and Side E�ects

5.1 In tro duction

Like the previous chapter, this chapter is concernedwith reasoningabout game
forms, which are seenas models for multi-agent protocols. In this chapter we
extend the logic of the previous chapter. It is assumedthat each agent that
participates in a protocol hassomeprivate preferencesabout the outcomeof the
protocol. The word `preferences'is usedherein a very loosesense,asa synonym
for `goal' or `desire'. It is alsoassumedthat thesepreferencesare not determined
by the protocol. Agents canwant whatever they want to want. In voting protocols
it is clear that the agent can have its own, private, preferencesover outcomes.In
an auction this is lessclear: auctions are often analysedunder the assumption
that each agent wants to win at the lowest cost. We assumea more general
setting, whereagents can alsoplay to lose,or to maximize the amount they pay.

One of the goals of this chapter is to investigate veri�cation of more com-
plicated properties than only the abilit y to enforcea certain outcome. Three
complicationsthat are being discussedare the following.

� Groups of agents can have coalition preferences. One can expressin the
logical languagesthat A and B together want � . This meansthat they try
to reach a certain goal together and are able to cooperate.

� Agents may be interestedin nested abilities: an agent canhave the abilit y to
enableanother agent to achieve something,or to make sureanother agents
is not able to do something. The wish to give other people the chance
to make a decision, is often associated with politeness, we use the phrase
`reasoningabout politeness' as an informal name for these nested abilit y
goals.

� We are not only interestedin knowing what agents can achieve, but alsoin
what way they achieve it. Thus, we would like to know whether an agent

79
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has to spend all his money to win an auction, or whether an agent should
vote for the candidate it like best. Thus, the side e�ects of acting in a
certain way are also important.

In this chapter, di�erent logical languagesare de�ned, so that we can determine
how consideringnestingand sidee�ects a�ects the analysisof protocols. In total
four languagesare de�ned. The next table lists the languagesand their features.

logic nesting sidee�ects
efl � �

efls � �

efln � �

eflns � �

Chapter Structure

The structure of this chapter is the following. First the logic efls is de�ned
in section 5.2, and examplesfor this logic are given in section 5.3. The next
section,section5.4, contains a theorem stating that for logicsof a certain form,
the model checking problem is tractable. It is shown that this theorem can be
applied to efls . Then the question is posedwhether there are more expressive
or detailed logicsbasedon efl and efls . In section5.5, �rst the languageefln
for reasoningabout nestedabilities is introduced, and we determine the model
checking complexity of this logic. Then a moreexpressive languageeflns is given
for reasoningabout both politenessand sidee�ects. The last section,section5.6
is the conclusion.

5.2 De�ning EFLS

5.2.1. Definition. Supposethat � and P are �nite sets(of agents and atomic
propositions respectively). The languageefls consistsof formulas  generated
by the following rules. In theserules p 2 P and � � �.

� ::= p j � ! � j ?

 ::= [� : � ] j 2 � j  !  j ?

This languagecan be seenas an extensionof efl , in the following way. An efl
formula [�] � is equivalent to the efls formula [� : � ]2 � .

A formula [� : � ] should be read as saying `Assumethat � usesa strategy
that is supporting � . Then  follows'. It is assumedthat all agents are aware of
strategiesthat areused. The strategy that an agent usescanbesaidto be`visible'
to other agents. If onewants to expressthis idea in the most extremeform, one
could say that we assumethat strategiesare visible in the sameway as people
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can seewhat clothesother peopleare wearing on a certain day. In many real life
settings, �nding out what strategiesare usedin a strategic setting will probably
take a bit moree�ort, but is not impossible.This visibilit y assumptionis inspired
by the assumptionof completeinformation in gametheory, and is compatiblewith
the ideaof a Nashequilibrium. Indeedif one,asa gametheorist or asa strategic
consultant, intends to publish books and papers about good strategies(whether
theseare chessstrategies,marketing strategies,strategiesfor penalty taking, or
strategiesfor generatingsecurerandom numbers) then such strategiesmust work
even when public. Even if one does not wish to publish strategies,peoplecan
often observe what action you take and deduceyour strategy from this. Thus it is
known what playing styles professionalchessplayers prefer and how professional
football players take penalties. Many professionalkeepers, including Hans van
Breukelen, for instancerelied on Jan Reker's booklet for this information [117].

The visibilit y assumptionis also inspired by insights from security and cryp-
tography. Onecanseethe de�nition of speci�cation of a cryptographic algorithm
asa protocol, and the implementation details asa strategy within such protocol.
For instancethe protocol for RSA keygenerationrequiresoneto choosetwo prime
numbersp and q. An agent hasmany ways to do this, and commonstrategiesin-
cludeusing the current time and somekeyboard input for generatingtheseprime
numbers (SeeSchneier [89] for a dicussionof RSA and implementation details).
The implementation details are often public information, sincefor many security
programsonecan obtain the sourcecode.

The e�ectivenessof an implementation shouldnot lie in the fact that its inner
details are secret (Thus, one should avoid trying to obtaining security through
obscurity [89]). In order to prove that a strategy or algorithm is `good' or `safe',
one should assumethat it is known to all opponents that the strategy is used,
and then considerhow e�ective the strategy is. For instanceif Microsoft decides
to usea certain encryption mechanism in its web server software, then anybody
with harmful intentions can buy and study the software, and �nd out what mea-
sureshave beentaken against attacks. Typically in security one wants to prove
that opponents remain ignorant of private data. If they are ignorant even when
they know the strategy used,they are certainly ignorant when they do not know
the strategy used. This assumption can also be made in the caseof imperfect
information games,and indeeda similar argument is given on page132.

The ideathat strategiesare`visible' makesthe act of decidingto usea strategy
similar to publicly announcingthat you usethe strategy. In complexstatements,
this ideaof an announcement canbe usedinformally whenreadingformulas. The
following examplesillustrate how formulas of this logic can be read.

[A : q]2 p

This example formula expressesthat if A is trying to achieve q, then as a side
e�ect p will hold for every possibleoutcome.

[A : q][B : r ]2 r
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This exampleformula can be read as expressingthat, assumingafter A has de-
cidedthat it wants q, then B can selecta strategy such that r becomestrue. The
order of operators in the formula indicates that B knows the strategy of A, and
can usethis in its selectionof a strategy for r .

The next formula seemsto contain contradictory assumptions.

[A : q][A : : q]2 (: q)

This formulas expressesthat if A wants q, and then it wants : q, then : q is
guaranteed. In order for this formula to hold on a model F , it must be the
casethat A cannot make q true, otherwise it would chooseto do so in the �rst
assumption.

For the interpretation of this logic the following de�nitions are used.

5.2.2. Definition. Let F = (� ; H; turn ; P; � ) be an interpreted gameform and
h 2 H . The reducedmodel r (H; h) is de�ned as r (H; h) = (� ; H 0; turn 0; P; � 0)
where H 0 = f h0jh � h0 2 H g and turn 0; � 0 are restrictions of the corresponding
elements of F to H 0.

The next de�nition rede�nes the update function Up so that it works on nonde-
terministic strategies.The intuition is that in the updated model Up(F; � � ), the
agents in � only take actions that are recommendedby � � .

5.2.3. Definition. Let F = (� ; H; turn ; P; � ) be an interpreted gameform and
� � a strategy for �. De�ne Up(F; � � ) = (� ; H 0; turn 0; P; � 0) where H 0 is the
greatestsubsetof H such that ha 2 H 0 implies h 2 H 0 and turn (h) 2 � ^ ha 2 H 0

implies a 2 � � (h). The functions turn 0; � 0 are identical to turn ; � but restricted
to H 0.

The next de�nition de�nes a strategy � e
� (� ) that is intended to be the least

restrictive, or most general,strategy that � can useto achieve � .

5.2.4. Definition. Let F = (� ; H; turn ; P; � ) be an interpreted game form,
� � � and � 2 L p. A history j is a � -e�ective position (for �) i� there is a
strategy � � such that for each terminal history h in Up(r (H; j ); � � ) it is the case
that � (h) j= � . The most general� -e�ective strategy � e

� (� ) is now de�ned by

� e
� (� )(h) =

�
f ajha is a � -e�ective position for � g if this set is non-empty
A(H; h) otherwise

The de�nition above spells out what we considera rational strategy � e
� (� ) for a

coalition � that wants to achieve � . The strategy is de�ned such that it selects
actions a that lead to winning positions. If that is not possible, it selectsall
actions. The idea is that coalition � tries to guarantee � in all positions where
it can guarantee � . This is similar to the notion of a subgame-perfect strategy.
In the de�nition below we usethis strategy for interpreting the logic. Let F =
(� ; H; turn ; P; � ) be an interpreted gameform. For any formula � 2 efls the
relation F j= � is de�ned as follows.
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B

b;e a

A

a;e b

Figure 5.1: Alice and Bob eat cake

F j= ? never
F j= � !  i� not F j= � or F j=  
F j= 2 � i� 8h 2 Z(H ) : � (h) j= � where(� ; H; turn ; P; � ) = F
F j= [� : � ] i� Up(F; � e

� (� )) j=  

The interpretation of theseformulas is similar to that of previousupdate logics,
such as dynamic epistemiclogic, discussedin section3.4.4on page54.

In efls , formulas of the form [� : � ] can be seenas updates. In order to
determine whether F j= [� : � ] , a new model F 0 = Up(F; � e

� (� )) is computed.
This new model represents the situation after � has decidedto try to achieve � .
It holds that F j= [� : � ] if and only if F 0 j=  . In an update logic, the model
can thus be changedby adding new information to it. How the model changes,
dependson the update function that is used.

5.3 Examples

5.3.1 Alice and Bob eat Cake

Alice and Bob have a cake, and they have agreedto divide it by meansof a \cut-
and-choose" protocol [17]. Alice has cut the cake and unfortunately one of the
piecesis bigger than the other. Bob can now choosefrom three options: he can
selectthe big piece,selectthe small piece,or he cansay to Alice `No, you choose'.
If he lets Alice choose,shecaneither choosethe big pieceor the small piece. Both
agents have common knowledge of this protocol. The interpreted game form
protocol corresponding to this situation is displayed in �gure 5.1. Proposition a
meansthat Alice gets the biggest piece,b that Bob gets the biggest piece,and
e meansthat something has happened that is embarrassingto Alice and Bob,
namely that either Alice or Bob has chosenthe biggestpiece. In many cultures
this is consideredimpolite. Using efls one can expressrelevant properties of
this protocol. First we will provide several efls formulas (A standsfor Alice, B
standsfor Bob).
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B

a

Figure 5.2: Model Up(M ; � e
B (: e))

� [B : : e]2 a If B doesnot want either of them being embarrassed,he must
take the smallest piece. Our semantics take a pessimistic view, so Bob
cannot take the risk of letting A choose. Figure 5.2 shows the updated
model Up(M ; � e

B (: e)).

� [B : : e][A : : e]2 a This formula is a consequenceof the previousexample.
It expressesthat if B does not want embarrassment and that A does not
want embarrassment, then A getsthe biggestpiece. This may seemstrange,
sincethere is an outcomein which : e and b are true. However, the order
of assumptionsis important. The formula expressesthat B wishesto guar-
antee the absenceof embarrassment, independently of what A does. Two
possiblereadingsof the formula are that he commits himself to his strategy
beforehe learnsthat A hasthe samepreference,or that he thinks that this
goal is so important that he doesnot wish to rely on A for this property.

� [AB : : e][B : b]2 b In this example, A and B commonly want to avoid
embarrassment, and B alsoprefersb. If this is the case,B can let A choose
and then A will take the smallestpiece.Figure 5.3showsthe updatedmodel
Up(M ; f A; Bg; : e).

� [A : : e][B : : e][B : b]2 b This formula expressesthat if A does not want
embarrassment, B doesnot want embarrassment, and B prefersthe biggest
piecethen B getsthe biggestpiece.The behaviour of B is inuenced by the
fact that he knows that A prefersto avoid embarrassment. In this scenario
A should try to hide the fact that shehas good manners,becauseit is not
in her advantage if B knows this.

This example illustrates that, by using efls , one can expressconsequences
of ordering goalsin a certain way. There are several interesting sidee�ects men-
tioned in the above formulas.
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Figure 5.3: Model Up(M ; f A; Bg; : e)
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p
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p A

p : p

Figure 5.4: Gameform F B A
3

5.3.2 Join t Decision Problem

In �gure 4.4, on page70, an interpreted gameform F AB
3 is given in which two

agents jointly decidewhether p should hold or not. If either agent wants to have
p it should hold, otherwisep is rejected. In �gure 5.4 another protocol is given
that satis�es the sameefl formulas. In this protocol, the roles of B and A are
reversed. It seemsreasonableto assumethat agents care who has to give its
opinion �rst, and therefore one would like to have a logic that can distinguish
theseprotocols.

The following statements show that efls is such a logic.

F AB
3 j= [B : : p][A : : p]2 : p

F B A
3 6j= [B : : p][A : : p]2 : p

The reasonthe formula does not hold in the secondmodel is that B , because
it moves �rst in the protocol F B A

3 , has an informational disadvantage. When it
has to decideit doesnot know what A will do, and therefore it is not clear that
letting A choosehelps towards achieving its goal. The logic efls is thus more
expressive than efl .
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5.4 Mo del Checking EFLS

The semantics of efls is basedupon the ideathat onecan interpret the construct
[� ] by updating a model M with � , and then checking whether  holds in
the updated model. Such a semantics, familiar from dynamic epistemic logic
described on page54, can be calledan update semantics. The goalof this section
is to determinethe model checking complexity of the logic efls . Insteadof doing
it directly, we prove a more general theorem concerningupdate semantics of a
certain form, and then show that the theorem appliesto efls .

Below we give a generalde�nition of an update language. This de�nition is
suitable for efls , but not generalenoughfor all other update logics. The term
`update language'in this sectionthus doesnot refer to all logical languagesthat
usethe idea of updates. It refersonly to languagesto which the given de�nitions
can be applied. In this sectionwe have given this term a speci�c interpretation,
usingthe following de�nition. Let M bea setof modelsfor a logic, N 1 any setof
additional information objects,N2 a setof formulasin another(simpler) language.
We assumethat two functions f and g are given, such that f : M � N 1 ! M
and g : M � N2 ! f true, falseg. Supposealsothat for any n2 2 N2 and M 2 M ,
one can check in polynomial time whether g(M ; n2) holds. One can, basedon
thesefunctions f and g, de�ne an update logic L f g with the following semantics.

5.4.1. Definition. Supposethat M and N aregiven, and assumethat n1 2 N1

and n2 2 N2. The update languageL f g consistsof formulas  generatedby the
following rules.

 ::= [n1] j n2 j  !  j ?

This languageis called an update language,becauseone can interpret this logic
using updates. The function f is usedto computea new model from the current
model. The next de�nitions captures the idea of an update semantics. In the
next de�nitions, M 2 M is a model, n1 2 N1, n2 2 N2 and  ; � 2 L f g.

M j= ? never
M j=  ! � i� not M j=  or M j= �
M j= n2 i� g(M ; n2)
M j= [n1] i� f (M ; n1) j=  

The following formulas are valid under this semantics.

j= [n](� !  ) ! [n]� ! [n] 

j= : [n] $ [n]:  

Theseaxiomscan be comparedto the reduction axiomsstated for dynamic epis-
temic logic stated on page55. The axiomsarenot identical, and thesetwo axioms
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are not su�cien t to eleminateall update operators, but they do help to simplify
formulas.

This semantics is a generalisationof the semantics of efls . For efls , the
set N1 consistsof pairs (� ; � ), but in this generalsemantics onecan update with
anything. The set N2 consists,in the caseof efls , of the formulasN 2 = f 2 � j� 2
L pg. The question is whether such a semantics can be evaluated in polynomial
time. If so, then the model checking problem is tractable, and thus this logic can
be usedin practice for protocol veri�cation.

Whether modelchecking is tractable, dependson the function f . This function
should be easily computable, but it should also not create bigger and bigger
models. If a function f hasthesetwo properties, it is calledpolynomial shrinking.

5.4.2. Definition. A function f is polynomial shrinking i� kf (a;b)k < kak+ kbk
and f can be computed in polynomial time.

If the function f is polynomial shrinking, then the model checking problem is
indeedtractable.

5.4.3. Theorem. Suppose that f is a polynomial shrinking function, and that
L f g is the corresponding update logic. One can check for given M 2 M and
 2 L f g whetherM j=  within polynomial time.

Pr oof. Suppose that f is a polynomial shrinking function, and that L f g is
the corresponding update logic. In order to prove the theorem, an algorithm
and constants a and b must be given, such that the algorithm needsat most
time (kM k + k k)a + b to determinewhether M j=  , for any inputs M and  .
The algorithm works recursively on the structure of  , so four caseshave to be
examined. The �rst two casesare basic cases,in the two other caseswe usean
induction assumption.

� If  = ? , then M 6j=  . Returning this answer takes constant time, and
onecan take any b larger than this constant time.

� Supposethat  = n2 2 N2. It hasbeenassumedthat it can be determined
in polynomial time whether g(M ; n2). Thus, there are constants c and d
such that this takes lesstime than (kM k + k k)c + d. Taking a � c and
b � d, it follows that this takeslesstime than (kM k + k k)a + b.

� Supposethat  =  1 !  2. This meansthat k k = 1 + k 1k + k 2k. In
order to determinewhether  holds, onehas to computewhether M j=  1

and whether M j=  2. Using the induction hypothesis,and supposingthat
a � 2, onecan show that this takeslessthan (kM k + k k)a + b time.

� Suppose�nally that  = [n] 1. In order to determine whether M j=  ,
onehas to compute f (M ; n) and then check whether f (M ; n) j=  1. Since
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f is polynomial shrinking, there are constants c;d such that computing
f (M ; n) takes less than (kM k + knk)c + d. Furthermore, kf (M ; n)k �
kM k + knk. The induction hypothesis states that determining whether
f (M ; n) j=  1 takes lesstime than (kf (M ; n)k + k 1k)a + b, which is less
than (kM k + knk + k 1k)a + b. One can assumethat a � 2 and then derive
that both parts of this computation can be donein time (kM k + k k)a + b.

�

This theoremcanbe usedto show that update logicsthat arebasedon an update
function f with the right properties, have a tractable model checking problem.
In the next theorem it is shown that the efls update function indeed behaves
well (i.e. that it is polynomial shrinking).

5.4.4. Theorem. The function f : (M ; (� ; � )) 7! Up(M ; � e
� (� )) is polynomial

shrinking

Pr oof. The function f takes a coalition � � � and a propositional logic
formula � 2 L p, calculatesthe strategy � e

� (� ) and returns the updated model
Up(M ; � e

� (� )). In order to show that it is polynomial shrinking, we must show
two things. First of all that it is computable in polynomial time. Secondly, that
the output is smaller than the input. The latter is easy: the reduced model
Up(M ; � e

� (� )) contains lessstates than M , and thus it is smaller. It remains to
be shown that the function f can be computed in polynomial time. In order to
show this, lemma 4.3.2 is used. De�ne an extensive gameF 0 = (� 0; H; turn 0; U)
where � 0 = f � ; � n � g. Thus, it is a two-player game. The function turn 0 is
de�ned such that turn 0(h) = � i� turn (h) 2 �. The function U is de�ned such
that U� (h) = 1 if � (h) j= � , and U� (h) = 0 otherwise. It is a constant-sum game,
thus U� n� (h) = 1� U� (h). According to lemma4.3.2,the valuefunction v for this
gamecan be computed in polynomial time. Using the value function, it is not
hard to de�ne the strategy � e

� (� ). If v� (h) = 1 then � e
� (� )(h) = f ajv� (ha) = 1g.

If v� (h) = 0 then � e
� (� )(h) = A(H; h). Onceonehasthis strategy, onecan useit

to computethe model Up(M ; � e
� (� )) in linear time: onehasto apply this function

to every history exactly once. �

A simple model checking program for efls hasbeenimplemented. The program
can be found at www.csc.liv.ac.uk/~sieu wert /glp .

The precedingtheorem and its proof suggestthat one can construct many
logics that can be model checked in polynomial time. Should we not search for
a more expressive logic than efls ? At the sametime one can wonder whether
polynomial shrinking is indeed a necessaryrequirement for the construction of
a polynomially model checkable logic. In order to investigate these issues,two
conceivable extensionsof efl and efls are de�ned. The �rst one, efln , is an
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extensionof efl that allows one to form nested abilities. This logic allows one
to expressinteresting properties, but hasa very high model checking complexity.

The next logic, eflns , is an extensionof efls that is supposedto capture
both nesting and side e�ects. This logic seemsintuitiv e, but it is hard to give a
proper semantics for this language.

5.5 Extensions of EFL

5.5.1 Mo del Checking efln

5.5.1. Definition. Supposethat � and P are �nite sets(of agents and atomic
propositions). The languageefln consistsof formulas  generatedby the fol-
lowing rules. In theserules p 2 P and � � �.

� ::= p j � ! � j ?

 ::=[�]  j 2 � j  !  j ?

The usual connectivesof this logic are interpreted as usual, and [�] � holds if
there is a strategy ensuring� .

F j= ? never
F j= � !  i� not F j= � or F j=  
F j= 2 � i� 8h 2 Z(H ) : � (h) j= � where(� ; H; turn ; P; � ) = F
F j= [�] � i� 9� � : Up(F; � � ) j= �

The following exampleformulas illustrate how this logic canbeusedfor the `Alice
and Bob eat cake' example.

[B ]([A]2 a ^ [A]2 b)

This exampleexpressesthat B can let A choosewho getsthe biggestpiece. This
formula doeshold for the example:Bob cantakethe action of letting Alice choose.

[B ](: [A]2 a ^ : [A]2 b)

The above formula expressesthat Bob can make Alice unable to decide. One
might think that Bob can satisfy this goal by making a decisionhimself, but this
is not the case.Bob shouldusea nondeterministicstrategy, such asselectingany
action, in order to ensurethat A cannot determineanything.

[B ](: [B ]2 a ^ : [B ]2 b)

This last examplesoundsstrange, becauseit only makes senseif Bob does not
trust himself: It expressesthat Bob can get rid of his own abilities. In a game
theory setting this canbeuseful: Bob would like to commit himselfsothat no-one
will try to put pressureon him. This formula does hold in our example: what
Bob has to do is to chooseeither always a, or commit to b. Both these pure
strategiesdo the trick.



90 Chapter 5. Politenessand Side E�e cts

B

A A A A

ab a b

a a : a : a

b : b a$ b ar b

Figure 5.5: A's strategy for letting B decide

Indep endent Decision Problem

In chapter 4, the independent decisionproblem was introduced. In this problem
two agents A and B can each decideon a certain issue. An agent A can decide
whether a should hold or not, and agent B can decidewhether b should hold or
not. A �rst protocol for this problem has beengiven in �gure 4.2 on page69.
Using efl one can concludethat B has additional powers to decidewhether a
and b should have the sametruth value, and we have constructedan equivalent
protocol in �gure 4.3 on page70. In efl theseprotocols are equivalent, and by
enumerating all formulas of the form [X : � ][Y : � 2] one can check that these
are also equivalent under efls . Since theseprotocols still look quite di�erent,
it would be good to have a logic that can distinguish theseprotocols. It can be
donein the logic efln .

Assumethat A thinks very highly of agent B , and that A would prefer it if B
would decideon the value of both a and b. Whether A can transfer its decision
power is expressedby the following formula.

 = [A]([B ](a ^ b) ^ [B ](a ^ : b) ^ [B ](: a ^ b) ^ [B ](: a ^ : b))

In the secondprotocol F2 this formula holds, sinceA can usethe strategy that is
depicted in �gure 5.5. On the other hand, this goal cannot be satis�ed in game
form F1 in �gure 4.2.

5.5.2. Theorem. Deciding whetheran efln formula � holdson an interpreted
gameform F is PSPACE-complete,evenin the caseof one agent.

Pr oof. The de�nition of F j= � can be converted into a naive algorithm. For
interpreting the construction [�]  one can try all strategiesone after another.
This may take sometime, but does not take much space: applying a strategy
gives a smaller model. Therefore, this can be done with an amount of memory
that is proportional to the sizeof the input. Hencethe problem is in PSPACE.
It remains to be proven that this problem is PSPACE-hard. This can be done
by reducing the QBF decisionproblem of page31 to the efln decisionproblem.
This reduction is explainedin generalin this proof, and then illustrated using an
example. The exampleis discussedon page92 and displayed in �gure 5.6.
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The objective of a QBF problem is to decidefor a given formula of the form
8x19x28x3 : : : 9xn� 18xn � q whether this formula holds. The formula � q is a propo-
sitional logic formula with only propositionsfrom the set f x i j0 < i � ng. Assume
that a QBF formula 8x19x28x3 : : : 9xn� 18xn � q is given. We have to construct an
equivalent efln decisionproblem.

First we construct an interpreted gameform F = (f X g; H; turn ; P; � ). De�ne
Pq to be the old set of atomic propositions: Pq = f x i j0 < i � ng. The set
P = f q+ ; q� jq 2 Pqg contains twice as many atomic proposition: for every old
proposition q there is a positive occurrenceq+ and a negative one q� . The set
H is de�ned asH = f �; pjp 2 Pg. Each terminal run thus consistsof oneatomic
proposition. Naturally, turn (� ) = X and � (p) = f pg.

We can thus construct the required formula � in the following way. Suppose
that � q is in conjunctive normal form. De�ne a function f in the following way.

f (: p) = 3 p�

f (p) = 3 p+

f (� ^  ) = f (� ) ^ f ( )

f (� _  ) = f (� ) _ f ( )

This function converts a propositional formula � into an efln formula. It is
usedin order to convert the propositional part � q into efln . The next de�nition
de�nes an efln formula � i that expressesthat all propositionsx j with j < i have
beenassigneda value, whereasthe propositions x j with j > i do not have been
given a value yet.

� i =
^

j � i

((3 x+
j ) r (3 x �

j )) ^
^

j >i

((3 x+
j ) ^ (3 x �

j ))

The idea usedhereis that a nondeterministic strategy for the constructedmodel
can be seenas a truth value assignment for the original QBF problem. If the
strategy includesx+

i then x i is true in the corresponding assignment, and if x �
i is

includedin the strategy then x i is falsein the correspondingassignment. The part
(3 x+

j ) r (3 x �
j ) expressesthat exactly oneof thosetwo actionsmust be possible,

and thus ensuresthat the assignment is consistent. The formula � i expressesthat
for j > i , both actions must still be possible: (3 x+

j ) ^ (3 x �
j ). This is necessary

becausethis choicehas to be madelater.
Next a function g is de�ned so that F j= g(8x19x28x3 : : : 9xn� 18xn � q) i�

the QBF statement 8x19x28x3 : : : 9xn� 18xn � q holds. The function g is de�ned
recursively, so that agent X can at each step pick the truth value of exactly one
propositional variable x i .

g(� q) = f (� q) if � q 2 L p

g(9x i � ) = [X ](� i ^ g(� ))

g(8x i � ) = : [X ](� i ^ : g(� ))
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X

p+ p� q+ q�

p+ p� q+ q�

Figure 5.6: The model Fpq

The length of the formula g(� ) is quadratically bounded: kg(� )k � k� k2. Thus,
for a given QBF problem, we have constructedan equivalent efln model check-
ing problem in polynomial time. �

To give an example of how the proof works, consider the QBF problem
8p9q(p _ : q) ^ (: p _ q). The model Fpq of the corresponding model checking
problem is pictured in �gure 5.6. As explainedat the end of the proof, the corre-
sponding formula � is rather long, so it is broken down in parts, called � 0; � 1 and
 .

� 0 = (3 p+ r 3 p� ) ^ (3 q+ ^ 3 q� )

� 1 = (3 p+ r 3 p� ) ^ (3 q+ r 3 q� )

 = (3 p+ _ 3 q� ) ^ (3 p� _ 3 q+ )

� = : [X ](� 0 ^ : [X ](� 1 ^  ))

Onecanverify that Fpq j= � , and thusthe QBF problem8p9q(p_ : q)^ (: p_ q)
hasa positive answer. It is interesting to seein this examplethat oneagent alone
makes things hard for itself, by denying itself certain rights. Sincethere is only
one agent, this is arguably not even game theory but decision theory. In this
framework the way singleagents inuence their own abilities is the causeof the
complexity. The extensionto multiple agents comesfor free.

5.5.2 Mo del Checking eflns

One advantage of efls over efl is that one can useefls to reasonabout side
e�ects in games. A formula [� : � ] expressesthat striving towards � has  as
a side e�ect. It can be usedto expressthat maximizing pro�t diminishessocial
welfare or that knowing A's actions is helpful for B . This feature is not present
in efln . On the other hand efln can be used to expressgoals for polite and
helpful agents. Within efln onecan say that A wants to help B. A logical next
step is therefore to de�ne an even richer language,called eflns , that combines
the featuresof efls and efln . This languageis de�ned in this section,so that
we can look at possibleinterpretations of this language.



5.5. Extensionsof EFL 93

5.5.3. Definition. Supposethat � and P are �nite sets(of agents and atomic
propositions), with typical elements � 2 � and p 2 P. The languageeflns
consistsof formulas  generatedby the following rules.

� ::= p j � ! � j ?

 ::= [� :  ] j 2 � j  !  j ?

The o�cial reading of a formula [� : � ] is that if � wants � , then  holds. The
background assumptionis againthat if � forms a certain plan or adoptsa certain
strategy, all agents know this strategy immediately (strategies are visible, one
might say).

This languageis not literally an extensionof all logics presented before,but
one can easily translate efl , efls and eflns formulas into this language. The
efl formula [�] � translatesto [� : 2 � ]2 � . The efls formula [� : � ] translatesto
the eflns formula [� : 2 � ] , and the efln formula [�] � translates into [� : � ]� .
Thesetranslations preserve the intuitiv e meaningof each formula.

We would like to de�ne a semantics for this logic on interpreted gameforms
M , that is consistent with the semantics of efl , efls and efln . Thus, if for some
model M it holds that M j= [�] � (using the efln semantics), then M j= [� : � ] 
under the eflns semantics. Another item on the wish list is that the semantics
is an update semantics.

This sectioncontains two results related to possibleinterpretation of eflns .
First we give a possibleinterpretation that is consistent with the semantics of
efln , and show that under this semantics the new logic is not more expressive
than efln . Secondly, we show that there is no reasonableupdate semantics for
this languagethat is consistent with the semantics of efln . From theseresults
one can concludethat de�ning a logic for reasoningabout politenessand side
e�ects at the sametime is not trivial.

First In terpretation The following rules de�ne an interpretation for eflns
over interpreted gameforms F = (� ; H; turn ; P; � ).

F j= ? never
F j= � !  i� not M j= � or M j=  
F j= 2 � i� 8h 2 Z(H ) : � (h) j= �
F j= [� : � ] i� 9� � : Up(F; � � ) j= � and Up(F; � � ) j=  

This is a reasonablede�nition, becauseit is consistent with efln . The update
operator [� : � ] can be read as saying that it is possiblethat when � usesa
strategy for achieving � , then  holds. This is similar in spirit to the interpre-
tation of similar formulas in efls , but not completely the same. For the logic
efls , we de�ned a unique rational strategy � e

� (� ) that is the most generalstrat-
egy for achieving � . In this semantics we do not usea unique rational strategy,
but considerall strategies� � such that Up(F; � � ) j= � .
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The main drawback of this semantics is not that it is unreasonable,but that
it doesnot bring us more expressivity than we already had. Everything onecan
say in eflns is under this semantics equivalent to somethingone could already
expressusing an efls formula.

5.5.4. Theorem. For every formula � 2 eflns one can �nd a formula  2
efln suchthat for any interpreted gameform F the following holds

F j= � , F j=  

Pr oof. This claim is proven using induction over the structure of the formula
� 2 eflns . The basecaseis provided by formulas � = ? and � = 2 � 1. Both
theseconstructs appear in both languagesand are interpreted in the sameway,
so onecan take  = � .

For � = � 1 ! � 2, one can take  =  1 !  2, where  1;  2 2 efln are
formulas that are equivalent to � 1; � 2 respectively. The induction hypothesis
guaranteesthat theseformulas exist.

The di�cult caseis thus the newconstruct [� : � 1]� 2. This formula holdson a
model F if � hasa strategy that satis�es both � 1 and � 2. This canbeexpressedin
efln using the formula  = [�](  1 ^  2). Again  1;  2 2 efls are formulas that
are equivalent to � 1; � 2 respectively. The induction hypothesisagain guarantees
that theseformulas exist. �

Second In terpretation The previousresult shows that if onedoesnot usean
update semantics basedon a unique `rational' strategy, it becomesdi�cult to
expresssidee�ects. Saying that somestrategy for � has  as a sidee�ect is not
the sameas saying that the best or most rational strategy for � has  as a side
e�ect.

In order to make this last statement, one would like to have is an update
semantics basedon an update function f . This function f should return the
model f (F; � ; � ) that onegetswhen � usesthe rational or most obvious strategy
for obtaining � .

The next theoremshows that onecannot easily�nd such an update semantics
for eflns . To be precisewe show that there is no non-arbitrary update semantics
that is consistent with the interpretation of efls . Any update semantics would
have to make arbitrary choicesabout which strategiesit considersrational.

5.5.5. Fact. There is no reasonableupdate semantics for the languageeflns
that is consistent with the interpretation of efln .
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A

p q

1 2

Figure 5.7: A small model F6

Pr oof. An update semantics for eflns would have the following form. As a
model we againusean interpreted gameform F = (� ; H; turn ; P; � ). The symbol
f is usedfor the update function.

F j= ? never
F j= � !  i� not M j= � or M j=  
F j= 2 � i� 8h 2 Z(H ) : � (h) j= �
F j= [� : � ] i� f (F; � ; � ) j=  

It is claimed that no suitable function f can be found. This is doneby reasoning
which properties this function shouldhave, and showing that thesepropertiesare
contradictory.

Speci�cally, we look at the behaviour of the function f on an example. In
�gure 5.7 an interpreted gameform F6 is displayed in which agent A can choose
for either p or q. Thus, this model satis�es the following efln formula.

F6 j= [A](2 pr 2 q)

Under the given update semantics for the languageeflns the following transla-
tion of this formula should hold.

F6 j= [A : 2 pr 2 q](2 pr 2 q)

Sincethis is an update semantics, onecanapply the following validities for update
semantics, that were already stated in section5.4.

j= [n](� !  ) ! [n]� ! [n] 

j= : [n] $ [n]:  

Using theseprinciples onecan derive the following.

F6 j= [A : 2 pr 2 q]2 pr [A : 2 pr 2 q]2 q
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And thus exactly oneof the following two formulas must hold.

F6 j= [A : 2 pr 2 q]2 p

F6 j= [A : 2 pr 2 q]2 q

In the model F6, the propositions p and q play a symmetric role. All previous
logicshave a semantics that doesnot depend on irrelevant properties such asthe
ordering of propositions or actions. Therefore, one would expect a reasonable
semantics not to treat the propositions p or q di�erently. Any choice for one of
the two similar formulas would be arbitrary, and would thus be unreasonable.�

The word reasonableused in the previous fact is of coursea vagueword. The
word has been interpreted in the proof as meaning that any semantics should
behave similar in symmetric situations.

The proof is basedupon the fact that there are two incompatible strategies
for bringing about A's goal 2 pr 2 q. In the interpretation of efln , the idea of
using the most generalstrategy wasusedto solve such dilemmas. Such a strategy
would leave the agent with the most freedom,and thus it would be rational for
the agent to use such a strategy. Unfortunately, for the examplegoal 2 pr 2 q
neither e�ective strategy is more generalthan the other.

5.6 Conclusion

This chapter de�nes three new languagesefls , efln and eflns that are richer
variants of the logic efl . Using thesericher languagesone can distinguish pro-
tocols that are equivalent for efl . Theselanguagesare thus useful for choosing
betweenprotocols.

To illustrate this conclusionwith someexamples,consideragain the following
two problems.

join t decision problem A decisionp can be taken if either A or B think that
p should be the case.If both agents do not want p, it should be rejected.

indep endent decision problem An agent A candecidewhether a shouldhold
or not, and agent B can decidewhether b should hold or not.

Both problemscanbe described in efl , and di�erent protocolsfor both problems
exist. From the viewpoint of efl , all these protocols are equivalent. In this
chapter, we have seenthat the logic efls canbeusedto distinguish two protocols
for the joint decisionproblem.

The logic efln on the other hand can distinguish the two solution for the
independent decision problems. Thus, the added expressibility of both logics
allows us to answer more detailed questionsabout protocols.
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For each of theselogicsonecan determinethe complexity of the model check-
ing problem, which indicateswhether the languagecan be usedfor veri�cation in
practice. The next table lists theseresults.

logic nesting sidee�ects model checking
efl � � P
efls � � P
efln � � PSPACE-complete
eflns � � PSPACE-complete

Veri�cation of properties expressedin efl and efls is thus feasible, whereas
veri�cation of properties expressedin efln can be very di�cult. The de�nition
of eflns that we have given makes this languagetranslatable into efln , so
it must have the samemodel checking complexity. In the previous section an
argument is given why a better semantics is hard to de�ne.





Chapter 6

Preference Logics in Extensiv e Games

This chapter is basedon joint research with Olivier Roy and Johan van Ben-
them .

6.1 In tro duction

The logic efl presented in chapter 4 provides a high level view of protocols. It
can distinguish someprotocols, but many protocols that somehow feel di�erent
are equivalent accordingto the logic efl . One explanation for this result is that
agents, according to efl act without knowledge of the plans of other agents.
They search for strategiesthat lead to successno matter what the other agents
do. This approach is in stark contrast with the usualassumptionsof gametheory.
Under the assumptionof complete information , agents know the preferencesof
other agents. Therefore, agents can predict what other agents do, and use this
to their advantage. In order to provide a logical model that does recognizethe
importance of agent preferences,we introduce in this chapter a logic basedon
preferencelogic.

Consider the two protocols in �gure 6.1. In thesegames,two agents A and
B are facedwith the problem of a dirt y shareddesk. The value of a cleandesk
is 2 for each agent, but the task of cleaning is valued at utilit y � 1. The game

A
B

1

� 1
2

� � 2
1

� � 0
0

�

2

1 2

B
A

1

� 2
1

� � 1
2

� � 0
0

�

2

1 2

Figure 6.1: Two extensive games
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on the left models the situation where Alice arrives �rst at the o�ce. Shecan
decideto clean the desk,which givesher utilit y 1. Shecan also ignore the dirt y
desk. When Bob arrivesand the desk is clean,he experiencesutilit y 2. If Alice
has not cleanedthe desk,Bob can clean the desk. This giveshim utilit y 1 and
Alice utilit y 2. Bob's other option is to ignore the problem, in which caseboth
agents experienceutilit y 0.

The gameon the right is very similar, exceptthat in this gameBob is the �rst
agent to arrive at the o�ce. The roles of the two agents are thus reversed. The
central questionabout thesetwo gamesis whether thesegamesare equivalent. If
that is the case,then apparently either mechanism is a fair way for both agents
to jointly decidewhether to clean. If however these gamesare not equivalent,
then oneagent might have an advantage over the other agent.

The assumptionof completeinformation that is commonin gametheory tells
us that agents arenot only awareof their own preferences,but alsoof each other's
preferences.Thus, both agents do not only know that they want a cleandesk,but
they also know that the other agent wants exactly the same. This information
can be usedby agents to their advantage. The agent that arrives �rst, Alice in
the left game,knows that the other agent prefersa clean desk. If shedoesnot
clean the desk, then it is best for Bob to do the cleaning. Sincesheknows this,
shedecidesto ignore the problem. The rational outcomeof the left gameis thus
that Bob cleansthe desk. The rational outcomeof the right gameis that Alice
doesthe cleaning. Both gamesare thus not equivalent for the agents, and each
agent is motivated to arrive �rst.

The outcomesof both gamesthat are predicted above are subgameperfect
equilibria: The �rst agent reasonswhat will happen in the subgamewhere she
doesnot clean the desk,and usesthis information to decidewhether sheshould
clean. Such a subgameperfect equilibrium can be computed using a procedure
calledbackward induction, and theseterms areconsideredsynonyms here. In this
chapter, a logic is presented that can capture this reasoning.Sinceit seemsthat
this preferencelogic might be interesting in its own right, a completenessproof
for this logic is alsogiven.

The structure of this chapter is the following. We de�ne the languageof
preferencelogic in section 6.2. In this section we de�ne a semantics for this
language,a notion of bisimulation and a proof system. Since this languageis
de�ned in what onecancall a non-modal-logicstyle, the competenessproof of the
de�ned proof systemis rather hands-on.Therefore,the next section,section6.3,
is usedto de�ne what onecan call a modern variant of preferencelogic. For this
logic, a completenessproof using standard modal logic techniquescan be given.
Section6.4combinespreferencelogic with a logic for reasoningabout gametrees.
This combined logic is usedin section6.5 to characterizethe backward induction
solution concept.
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6.2 Preference Logic

To havea preferencemeansthat oneputs \one thing beforeor aboveanother"[80].
In the context of games, it is important to know the preferencesthat agents
have between the various outcomes. One can model such preferencesby giving
binary relations between outcome states. A preferencerelation is thus a set
R = f (x; y)joutcomex is as good as or better than yg. In our logic, onecan use
� hPref i  to say that there is a � state x and a  state y such that (x; y) 2 R. If
there are multiple agents, the agent X whosepreferencesare being discussedis
indicated with a subscript: � hPref i X  . The useof preferencesis an alternative
to the useof utilities. If onehasa utilit y function U, onecan de�ne a preference
relation by stating that xhPref i y i� U(x) � U(y). Thus, agents prefer outcomes
that have a higherutilit y over outcomeswith a lower utilit y. On the other hand, if
onehasa preferencerelation onecan construct a utilit y function that represents
the same structure. This can even be done for probability distributions over
outcomes,which arisein mixed strategy games[75]. The utilit y function onegets
is of coursenot unique: one can apply any linear transformation to the utilit y
function, and still get the samepreferencerelations. This can be seenas an
argument against utilit y functions and thus in favor of preferencerelations. In
mathematical de�nitions, such as those given in the chapter on gametheory of
this dissertations, the use of utilit y functions is notationally more convenient.
For logical purposesthe useof preferencerelations makessense.After all, modal
languagesare `languagesfor talking about relational structures' [12, p. ix].

6.2.1. Definition. Supposethe �nite sets� andP aregiven,and let X 2 � and
p 2 P be typical elements. Preferencelogic L P consistsof formulas � generated
by the following rule.

� ::= p j � hPref i X � j � ! � j ?

A logic for reasoningabout preferenceswith a very similar syntax was already
proposedin 1963[119]. However our interpretation for this languageis original.
One can introduceother operators by de�nition in terms of the given operators.
Besidesthe usual logical connectives,onecan de�ne the following.

EX � def= � hPref i X �

AX � def= : EX : �

� [Pref ]X  def= : ( hPref i X � )

One can think of � [Pref ]X  as saying that � is strictly preferredby X over  .
This is somekind of universal quanti�cation: it refers to all states satisfying �
and all statessatisfying  . The operator � hPref i X  is the dual of this operator,
and says (in preferencemodels) that it is possiblethat � is as least as good as
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 . EX � meansthat there exist circumstancesin which � holds, whereasAX �
expressesthat � always holds.

As an example,the following formula expressesa reasonableproperty of pref-
erences.It expressesthat if p is always better than q and q is always better than
r , then q is always better than r .

p[Pref ]X q^ q[Pref ]X r ! p[Pref ]X r

Whether the principle expressedby this formula holds for a given relation,
depends of the constraints that we put on such relation. Three properties of
relations turn out to be important. A relation R is total if 8xy : x 6= y ) (xRy_
yRx). It is reexive if 8x : xRx, and anti-symmetric if 8xy : (xRy ^ yRx) !
x = y. The strict versionRs is the relation Rs = f (a;b)jaRb^ : bRag. A relation
R is strict-tr ansitive if 8xyz : xRsy ^ yRsz ! xRsz. In normal circumstances
onewould expect a preferencerelation to be total, strict-transitiv e and reexive.

Theseproperties reect reasonableproperties that one would expect from a
preferencerelation. If one assumesthat preferencesfollow from an underlying
utilit y relation, theseproperties should hold. Indeed thesethree properties are
usedin the de�nition of a preference model, de�ned below.

6.2.2. Definition. A reexive frame F is a tuple F = (W; � ; f�g � ) such that
W is a set of outcomes,� is a �nite set of agents and � X � W � W is a reexive
relation betweenworlds for each agent X of A.

6.2.3. Definition. A minimal preference model M is a tuple M = (W; � ; f�
g� ; P; � ) such (W; � ; f�g � ) is a reexive frame, P is a �nite set of atomic propo-
sitions and � : W ! 2P assignspropositions to outcomes.

6.2.4. Definition. A preference model M is a minimal preferencemodel M =
(W; � ; f�g � ; P; � ) such that each � X � W � W is a strict-transitiv e, total relation.

In the context of preferencemodeswe refer to elements of W aseither outcomes,
statesor worlds. Intuitiv ely the worlds w 2 W are possibleoutcomesand w � w0

meansthat w is as least as good as w0. An example of a preferencemodel is
displayed in �gure 6.2. In this �gure the preferencesof the single agent are
indicated by the vertical position of states: Higher statesare preferredover lower
states. No lines betweenstatesare thereforenecessaryto indicate the preference
information.

As is common in modal logic we de�ne a pointed model to be a pair M ; w
whereM is a model with a setof worlds W and w 2 W. Formulasare interpreted
over pointed modelsM ; w in the following way.
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q
r

p
s

Figure 6.2: A singleagent preferencemodel

M ; w j= ? never
M ; w j= p i� p 2 � (w)
M ; w j= � hPref i X  i� 9(w0; w00) 2� X : M ; w0 j= � and M ; w00j=  
M ; w j= � !  i� not M ; w j= � or M ; w j=  

Let M be the model displayed in �gure 6.2and let wp be the world wherep holds.
Then we can show the following.

M ; wp j= p ^ (phPref i X s) ^ (qhPref i X r )

In standard modal logic, an accessibility relation is usedin the interpretation
of modal operators. The truth conditions of the modal operator only depend on
accessibleworlds. The preferenceoperator hPref i X looks at all worlds, so one
might say it usesthe universalaccessibility relation, in which any world is related
to any world. Such an operator is called a global operator. In the following
lemma it is shown that such an operator can be usedto de�ne the operator E�
that expressesthat a world satisfying the formula � exists.

6.2.5. Lemma. Let M = (W; � ; f�g � ; P; � ) be a minimal preference model

M ; w0 j= EX � , 9w 2 W : M ; w j= �

Pr oof. Supposethat M ; w0 j= EX � . By de�nition this meansthat M ; w0 j=
� hPref i X � . This meansthat there are statesw1 and w2 such that, amongother
things, M ; w1 j= � . For the reversedirection, supposethat 9w 2 W : M ; w j= � .
Becausethe relation � X is reexive, we have w � w and therefore there are
worlds w1 = w; w2 = w such that w2 � X w1, M ; w j= � and M ; w j= � . We
concludethat M ; w0 j= � hPref i X � and thus M ; w0 j= EX � . �

A corollary of this theorem is that j= EX � $ EY � . It is therefore harmlessto
omit the subscript X and simply write E� instead of EX � .

6.2.1 Bisim ulation

In this sectionwe de�ne a notion of bisimulation for preferencemodels,and prove
that two modelsare bisimilar if and only if they satisfy the samepreferencelogic
formulas.
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6.2.6. Definition. Let M = (W; � ; f�g � ; P; � ) and M 0 = (W 0; � ; f� 0g� ; P; � 0)
be two minimal preferencemodels. A relation R � W � W 0 is a bisimulation i�

� all pairs of related worlds (w; w0) 2 R satisfy the sameatomic propositions:
� (w) = � 0(w0) and

� for all v; w 2 H with v � X w : 9v0; w0 2 W 0 : vRv0; wRw0^ v0 � 0
X w0 and

� for all v0; w0 2 H 0 with v0 � 0
X w0 : 9v; w 2 H : vRv0; wRw0^ v � X w.

We say that two pointed modelsM ; w and M 0; w0 are bisimilar , i� there exists a
bisimulation R betweenM and M 0 such that (w; w0) 2 R. Two pointed models
M ; w and M 0; w0 are equivalent i� they satisfy exactly the sameformulas: 8� :
M ; w j= � $ M 0; w0 j= � . The next theorem relatesthesetwo notions.

6.2.7. Theorem. Let P be �nite and let M ; w = (W; � ; f�g X 2 � ; P; � ); w and
M 0; w0 = (W 0; � ; f� 0gX 2 � ; P; � 0); w0 be two pointed models. The modelsM ; w and
M 0; w0 are bisimilar i� they are equivalent .

Pr oof. Let M = (W; � ; � ; P; � ) and M 0 = (W 0; � ; � 0; P; � 0). Supposethere is
a bisimulation R betweenM and M 0 such that wRw0. We show that that these
modelsareequivalent by induction on the structure of formulas� . The casewhere
� = ? is easy. For any two worlds v; v0 we have that M ; v 6j= ? and M 0; v0 6j= ? .
Considernow the caseof � = p 2 P. Let v; v0 againbe arbitrary worlds in W; W 0

respectively. Supposewe have M ; v j= p. The �rst condition of bisimulation tells
us that M 0; v0 j= p. Becauseour notion of bisimulation is symmetric, we can
repeat the argument with M and M 0 interchangedfor the \only if " part. Assume
now the induction hypothesisthat for all subformulas  of � and all worlds v; v0

we have that M ; v j=  i� M 0; v0 j=  . It follows, using this hypothesis, that
if � =  1 !  2 then M ; v j= � i� M 0; v0 j= � . So as a last step we show that
M ; v j=  1hPref i  2 i� M 0; v0 j=  1hPref i  2. SupposeM ; v j=  1hPref i X  2. This
meansthat there are worlds x; y 2 W with M ; x j=  1, and M ; y j=  2 and
x � X y. Using the de�nition of bisimulation and the induction hypothesis,we
know that there are worlds x0; y0 2 W 0 such that M 0; x0 j= � , and M 0; y0 j=  and
x0 � 0

X y0. Thus, we know that M 0; w0 j=  1hPref i X  2. The sameargument with
M and M 0 interchangedcan be usedto show that M 0; w j=  1hPref i X  2 only if
M ; w0 j=  1hPref i X  2.

It remains to be proven that if 8� : M ; v j= � $ M 0; v0 j= � , then
there is a bisimulation R between M and M 0 with vRv0. We assumethat
8� : M ; v j= � $ M 0; v0 j= � . The relation R that is neededis de�ned in
the following way: vRv0 i� � (v) = � 0(v0). The �rst condition of bisimulation is
thus satis�ed. In order to check the secondcondition, take two worlds v; u 2 W
with v � X u. Onecan �nd formulas � v and � u that describe exactly which atoms
aretrue in v and u respectively. This is possiblebecauseP is �nite. Sincev � X u,
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p
q

p
p q

Figure 6.3: Two bisimilar models

we have that M ; w j= (� vhPref i X � u), and thus M 0; w0 j= (� vhPref i X � u). There
must be elements v0 � 0 u0 so that M 0; v0 j= � v and M 0; u0 j= � u. This provesthe
secondclauseof the bisimulation de�nition. A symmetric argument gives us a
proof for the third condition. �

Using this notion, one can determine whether two models satisfy the samefor-
mulas. In �gure 6.3 two bisimilar models are displayed. In the right model, two
equally good statesare displayed, oneof them is labeledwith proposition p, the
other onewith proposition q. The left model hasthree statesthat arenot equally
preferredby the singleagent of this model. The left p state is better than the q
state, which is better than the right p state. (Again the preferencesare indicated
by the vertical position of the states.)

6.2.2 Pro of System

A proof systemSP for preferencelogic can be de�ned in the following way. First
we list the axioms, then the reasoningrules. In AndConv1 and AndConv2, it
does not matter whether X = Y or not. The symbol � stands for a possible
negation: � � can be either : � or � . In each instanceof the axioms AndConv1

and AndConv2, onemust make the samechoice for this symbol.

Prop Al l propositional tautologies

E � intr o � ! EX �

Exist � hPref i X  ! (EY � ^ EY  )

K 1 (AY (� !  ) ^ � hPref i X � ) !  hPref i X �

K 2 (AY (� !  ) ^ � hPref i X � ) ! � hPref i X  

AndD ist 1 � hPref i X  ! (( � ^ � )hPref i X  _ (� ^ : � )hPref i X  )

AndD ist 2 � hPref i X  ! (� hPref i X ( ^ � ) _ � hPref i X ( ^ : � ))

AndConv1 (� (� hPref i Y  ) ^ � )hPref i X � $ � (� hPref i Y  ) ^ � hPref i X �

AndConv2 � hPref i X (� (� hPref i X  ) ^ � ) $ � (� hPref i Y  ) ^ � hPref i X �
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The reasoningrules for this proof system are Modus Ponensand Necessitation
for AX . Thesetwo rules are listed below.

�
AX �

� � !  
 

The following rules can be derived in this system.

OrDist 1 (� _  )hPref i X � ! (� hPref i X � ) _ ( hPref i X � )

OrD ist 2 � hPref i X (� _  ) ! (� hPref i X � ) _ (� hPref i X  )

The �rst rule OrDist 1 can be derived using the following instanceof AndD ist 1:

(� _  )hPref i X � ! ((( � _  ) ^ � )hPref i X � _ (( � _  ) ^ : � )hPref i X � )

Since(( � _  ) ^ � ) is equivalent to � and (( � _  ) ^ : � ) is equivalent to  in
propositional logic, one can useProp and K 1 to derive OrDist 1. Similarly one
can prove OrDist 2 using an instanceof AndD ist 2.

It is interesting to considerthe nesting of preferences.In order to measure
the level of nesting, de�ne the function l

l(? ) =0

l(p) =0

l(� !  ) = max(l(� ); l ( ))

l(� hPref i X  ) =1 + max(l(� ); l ( ))

The languageof preferencelogic allows for nestedpreferenceoperators, but it is
not clear what such nestedformulas express.Doesit make senseto say that \to
prefer � over  is at leastasgood as� "? Someonewho holds that such sentences
are meaninglessmay decide to exclude them from the logic by restricting the
languageto L � 1

P = f � 2 L P jl (� ) � 1g wherenesting of operators is not allowed.
We have decidedto keepour approach asgeneralaspossibleon this point, sowe
did not usethis restriction. But, interestingly enough,using axioms AndConv1

and AndConv2 one can show that we can always `unnest' a nested formula: a
formula of nesting l > 1 is always equivalent to a formula of nesting (l � 1). This
is proven in the next lemma. This equivalenceplays a role in the completeness
proof, and it shows that even if we can nest preferenceformulas, such nesting
doesnot add to the expressivity of the language.

6.2.8. Lemma. For all formulas � 2 L P with l(� ) > 1 there is a formula � such
that SP ` � $ � and l(� ) = l(� ) � 1

Pr oof. Weprove that the theoremholdsfor � =  hPref i X � . For other formulas
� it follows by an induction argument.
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Assume� =  hPref i X � . Any formula can be written in disjunctive normal
form. We use the notation dnf (� ) for the disjunctive normal form (see page
14) of any formula � . The formula � $ dnf (� ) is a propositional tautology
and thus we can derive SP ` � $ dnf (� ) and even SP ` AX (� $ dnf (� )) for any
formula � . For the languageL P the disjunctive normal form has the following
appearance: dnf (� ) = _m ^ j � (� 1

mj hPref i hmj � 2
mj ) ^ � p where � indicates the

possibleappearanceof a negation,and l(� p) = 0.
In the next derivation j; k; l and m are indices over formulas (elements of a

conjunction or disjunction). The indicesX and Y rangeover agents. The inner
indicesY are actually dependent on j; k; l and m, but thesearguments have been
suppressed.Instead of writing Ymj on the left and Ykl on the right, and Yklmn in
the last formula, wehavewritten Y. Also the symbol � , which indicatesa possible
negation,should be indexedso that corresponding occurencesof this symbol are
interpreted correspondingly. Theseindicesare alsoomitted for readability.

 hPref i X �

, Prop;N ecA ; K 1;2

[dnf ( )]hPref i X [dnf (� )]

,

[_m ^ j � ( 1
mj hPref i Y  2

mj )) ^  p]hPref i X [_ k ^ l � (� 1
klhPref i Y � 2

kl )) ^ � p]

, OrD ist 1;2

_m _ k [^ j � ( 1
mj hPref i Y  2

mj ) ^  p]hPref i X [^ l � (� 1
klhPref i Y � 2

kl ) ^ � p]

, AndConv1;2

_m _ k (^ j � ( 1
mj hPref i Y  2

mj )) ^ (^ l (� 1
klhPref i Y � 2

kl )) ^ [ phPref i X � p]
def= �

One can seethat l(� ) = l(� ) � 1 by noting that l(� ) = max(l( ); l (� )) and
l(� ) = 1 + max(l( ); l (� )). �

6.2.9. Theorem. The aboveproof systemis sound: SP ` � implies j= �

The validit y proofs for each axiom are given below.

� (E � intr o) Supposethat M ; w j= � . Since� X is reexive, we have that
w � X w, and thus M ; w j= � hPref i X � . This is the sameas M ; w j= E� .

� (Exist ) SupposeM ; w j= � hPref i X  . This meansthat there are two worlds
w0 and w00such that w0 � w00, and these worlds satisfy M ; w0 j= � and
M ; w00j=  . Sincethe relation � Y is reexive for all agents Y , we obtain
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M ; w0 j= EY � , and M ; w0 j= EY  . Thesetwo conclusionscan be combined
to derive M ; w0 j= EY � ^ EY  .

� (K 1 - K 2). It is not hard to seethat AX � is true i� � holds in every world
of the model.

Supposethat M ; w j= AY (� !  ) and M ; w j= � hPref i X � , for arbitrary
agents X andY. This meansthat therearew1; w2 2 W such that w1 � X w2,
M ; w1 j= � and M ; w2 j= � . Furthermore for all worlds w0 2 W we have
M ; w0 j= (� !  ). In particular, this last fact implies that M ; w1 j= � !
 , from which we get M ; w1 j=  . Since w1 � X w2, we have M ; w j=
 hPref i X � . The argument for K 2 is similar.

� (AndD ist 1 � AndD ist 2) Suppose that M ; w j= � hPref i X  . This means
that there are w0 and w00such that M ; w0 j= � , M ; w00j=  and w0 � X w00.
For every formula � we know that either M ; w0 j= � or M ; w0 j= : � , and
henceM ; w0 j= (� ^ � ) _ (� ^ : � ) . Thus, M ; w j= (( � ^ � )hPref i X  ) _ (( � ^
: � )hPref i X  ). The argument for AndD ist 2 is similar.

� (AndConv1 � AndConv2) As for the other cases,we only prove soundness
for AndConv1, the argument for the other axiom beingentirely similar. We
alsoprovesoundnessfor the axiom with a positiveoccurrenceof � hPref i X  .
Supposethat M ; w j= (� hPref i X  ^ � )hPref i X � . This meansthere are two
worlds w1; w2 2 W such that M ; w1 j= � hPref i X  ^ � and M ; w2 j= � and
w1 � X w2. From theseone can derive M ; w1 j= � hPref i X  and M ; w1 j=
� . This new fact can then be used to show that M ; w j= � hPref i X � and
M ; w j= � hPref i X  . Finally M ; w j= � hPref i X  ^ � hPref i X � .
For the reverseimplication, supposethat M ; w j= � hPref i X  ^ � hPref i X � .
This means�rstly that there are two worlds w1; w2 2 W such that M ; w1 j=
� , M ; w2 j=  and w1 � X w2 and secondly that there are two worlds
w3; w4 2 W such that M ; w3 j= � , M ; w4 j= � and w3 � X w4. From these
to facts one can derive that M ; w3 j= � hPref i X  ^ � and this can be used
to concludeM ; w j= (� hPref i X  ^ � )hPref i X � .

6.2.10. Theorem. The aboveproof systemis complete: j= � implies SP ` �

Suppose� is given. Assumethat : � cannot be proven, in other words that
� is consistent. We construct a model M with a world w such that M ; w j= � .
Let S = f � g be a maximally consistent set containing � . All we needto do is to
show that there is a model M ; w such that 8 2 S : M ; w j=  . It then follows
that M ; w j= � .

Let P bethe setof atomsoccurring in � . A maximal propositional conjunction
� m is an ordered conjunction of atoms or negatedatoms such that every atom
in P is mentioned exactly once. Thus, if P = f a;b;cg then a ^ : b ^ c is a
maximal propositional conjunction, but b^ a is not. The ordering ensuresthat
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equivalent maximally consistent formulas are exactly equal. Let Spr op consistof
all propositional logic formulas in S, and let Smax = f � mhPref i X  m 2 Sj� m ;  m

aremaximal propositional conjunctionsg. The proof now proceedsasfollows. We
�rst construct a model M such that there is a state w in M sothat M ; w j= � for
all � 2 Spr op and such that every state in M satis�es all formulas in Smax . Then
we show that M ; w satis�es all formulas in S.

The model M = (W; � ; � ; P; � ) is de�ned in the following way. Let W =
f � m j(E � m ) 2 Smax g. So W contains maximal propositional conjunctions. � is
the setof agents mentioned in S, and this set is �nite becauseonly a �nite number
of agents can be mentioned in a �nite formula. We de�ne � (� m ) = f pj SP ` � m !
pg. The preferencerelation is de�ned by � m � X  m , (� mhPref i X  m ) 2 Smax .
This relation is reexive: If (� mhPref i X  m ) 2 Smax then, becauseof Exist , we
know EX � m = � mhPref i X � m 2 Smax . Similarly for  m .

The world w that we needcan be found in the following way. Supposethat
� m 2 Spr op for a maximal propositional conjunction � m . This implies, using
E � intr o, that E� m 2 S and thus there is a world w such that M ; w j= � m .
Sinceevery formula � 2 Spr op is a consequenceof � m , we have that M ; w j= � for
all � 2 Spr op.

6.2.11. Lemma. Let � and  be propositional formulas. � hPref i X  2 S i�
M ; w j= � hPref i X  

Pr oof. Let �;  be propositional formulas and assume� hPref i X  2 S. We can
repeatedlyapply axiomsAndD ist 1 and AndD ist 2 for all the propositions,and use
the fact that � _ � 2 S implies � 2 S or � 2 S, to obtain two maximal conjunction
� m and  m such that SP ` � m ! � and SP `  m !  and � mhPref i X  m 2 S.
It follows that � m hPref i X  m 2 Smax . Using axiom Exist we conclude that
E� m 2 Smax and E m 2 Smax . Therefore, � m 2 W and  m 2 W. From the
de�nition of � X we obtain that � m � X  m and this leadsus to concludethat
M ; w j= � mhPref i X  m . Using the soundnessof K 1 and K 2 we can derive that
M ; w j= � hPref i X  .

For the reversepart, assumethat M ; w j= � hPref i X  . From the soundnessof
AndD ist 1 and AndD ist 2 it follows that there are maximal conjunctions � m and
 m such that M ; w j= � m hPref i X  m . This implies that � mhPref i X  m 2 S, and
using K 1 and K 2 we concludethat � hPref i X  2 S. �

An induction argument over the level of nestingin setsS canbe given to show
that � 2 S i� M ; w j= � for any formula � with l(� ) � 1. To show that this is
alsothe casefor higher level formulas,with nestedpreferences,we canuselemma
6.2.8 to �nd for any formula � a formula � such that SP ` � $ � and l(� ) � 1.
If � 2 S then � 2 S, and since l(� ) � 1 we can �nd a model M ; w such that
M ; w j= � . It now follows that M ; w j= � , and we have shown that the given
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proof systemis completefor minimal preferencemodels.
Now we can make the step from minimal preferencemodels to preference

models. We say that an axiom A is sound on a set of reexive frames S if
every instance � 2 A is true on every model M = (W; � ; f� X gX 2 � ; P; � ) such
that (W; � ; f� X gX 2 � ) 2 S. An axiom scheme � is complete for S if for every
reexive frame(W; � ; f� X gX 2 � ) =2 S canbeextendedto a pointed model M ; w =
(W; � ; f� X gX 2 � ; P; � ); w such that there is an instance� 0 of � with M ; w j= : � 0.

De�ne the following extra axioms.

Total (EX � ^ EX  ) ! (� hPref i X  _  hPref i X � )

Trans (EX  ^ � hPref i X � ) ! (� hPref i X  _  hPref i X � )

6.2.12. Theorem. Total is a soundand completeaxiom schemefor the set of
reexive frameswith total preference relations.

Pr oof. Suppose that M = (W; � ; f� X gX 2 � ; P; � ) is a model such that all
relations � X are total and let w 2 W. Assumethat M ; w j= EX � ^ EX  . This
meansthat there are two worlds x; y 2 W such that M ; x j= � and M ; y j=  .
From totalit y we know that either x � X y or y � x. In the �rst case,we have
M ; w j= � hPref i X  and in the secondcaseM ; w j= � hPref i X  . Either way this
leads to M ; w j= (� hPref i X  _  hPref i X � ). Thus, Total is sound for reexive
frameswith total preferencerelations.

For the secondpart assumethat (W; � ; f� X gX 2 � ) is a non-total reexive
frame. This meansthat for someX and x; y 2 W it is the casethat neither
x � X y nor y � X x. De�ne P = f p;qg and � (x) = f pg; � (y) = f qg and for
all remaining worlds z : � (z) = ; . Let M = (W; � ; f� X gX 2 � ; P; � ). This model
satis�es M ; x j= (EX p ^ EX q). However, M ; w j= (phPref i X q _ qhPref i X p) does
not hold. Thus, M ; x j= (EX p^ EX q) ! (phPref i X q_ qhPref i X p) doesnot hold.
Therefore,Total is completefor the classof total reexive frames. �

6.2.13. Theorem. Total are soundand completeaxiomsfor the set of reexive
frameswith strict-tr ansitive, total preference relations.

Pr oof. Note that the transitivit y axiom implies totalit y: Take � = � . Thus, if
we add the axiom Trans then Total is derivable.

First we prove the soundnessof Trans on strict-transitiv e, total reexive
frames. Suppose that M = (W; � ; f� X gX 2 � ; P; � ) is a model such that all
relations � X are total and strict-transitiv e, and let w 2 W. Assume that
M ; w j= (EX  ^ � hPref i X � ). This meansthat there are three worlds x; y; z 2 W
such that M ; x j= � , M ; y j=  , M ; z j= � and x � X z. In order to obtain a
contradiction, assumethat M ; w j= : (� hPref i X  ) ^ : ( hPref i X � ). Since the



6.3. An Alternative Preference Logic 111

model is total, it follows now that z � X y and y � X x. From strict-transitivit y
we obtain that z � X x, and this implies that not x � X z. This is a contradiction,
so the axiom Trans doeshold on this model. Sincewe have assumedM ; w to be
an arbitrary total, strict-transitiv e model, we may concludethat any such model
satis�es the transitivit y axiom.

For the secondpart, assumethat (W; � ; f� X gX 2 � ) is a reexive frame. We
can assumethat the preferencerelations are total, otherwisethe derivable axiom
Total would not hold on somemodel basedon this reexive frame. Thus, we
assumethat for someX , the relation � X is not a strict-transitiv e relation. This
meansthat for somestates x; y; z 2 W it is the casethat x � X y and y � X z,
but not x � X z. Using totalit y we can show that z � X x must hold. De�ne
P = f p;q; r g and � (x) = f pg; � (y) = f qg; � (z) = f r g and for all remaining
worlds w : � (w) = ; . Let M = (W; � ; f� X gX 2 � ; P; � ). This model satis�es
M ; x j= (EX q ^ rhPref i X p), and M ; x 6j= qhPref i X p and also M ; x 6j= phPref i X q.
Hencethe axiom Trans is not soundon this model.

Therefore,Trans characterizesthe classof reexive frameswith strict-transitiv e,
total preferencerelations. �

Transitivit y of a relation is a commonly assumedin modal logic, for instance
for reasoningabout time [12], anda standardaxiom for transitivit y is 33 � ! 3 � .
For preferencelogic we have usedthe more di�cult notion of strict-transitivit y.
A reasonablequestionis thereforewhether a simpler axiom is not available. Con-
sider for instancethe following axiom, which seemsto capture transitivit y.

(( � hPref i X  ) ^ ( hPref i X � )) ! (� hPref i X � )

This axiom is unfortunately not valid on preferencemodels. A counter-example
is the following instance, which does not hold on the model displayed in �gure
6.2 on page103.

((phPref i X (q_ s)) ^ ((q_ s)hPref i X r )) ! (phPref i X r )

Another reasonablequestionis whether there arestrict-transitiv e modelsthat
are not transitive. An exampleof such a model is given in �gure 6.4. In this
�gure the preferencerelation of a single agent has been indicated using arrows.
The reexive arrows have beenomitted.

6.3 An Alternativ e Preference Logic

The proof given above, although valid, lacks a certain elegance:it doesnot make
use of existing modal logic results. Therefore, in this paragraph we present a
di�erent axiomatisation. In order to do so the languageof preferencelogic is
slightly adapted.
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p

q

r

Figure 6.4: A strict-transitiv e, intransitive preferencemodel

6.3.1. Definition. Supposethe �nite sets� andP aregiven,and let X 2 � and
p 2 P be typical elements. Alternativ e preferencelogic L 2

P consistsof formulas �
generatedby the following rule.

� ::= p j 3 X � j E � j � ! � j ?

In this logic, the operator � hPref i X  can be de�ned as E(� ^ 3  ). Intuitiv ely
the meaningof 3 X � is that there is a state better for X than the current state,
in which � holds. The construct E� meansthat somewherein the model a state
exists in which � holds. For this logic we de�ne the operators 2 X � = : 3 X : �
and A� = : E: � . Theseoperatorsare thus duals for the two primitiv e operators.

This logic is interpreted in the following way. Let M = (W; � ; � ; P; � ) be a
preferencemodel.

M ; w j= ? never
M ; w j= p i� p 2 � (w)
M ; w j= E� i� 9w0 2 W : M ; w0 j= �
M ; w j= 3 X � i� 9(w; w0) 2� X : M ; w0 j= �
M ; w j= � !  i� not M ; w j= � or M ; w j=  

The operator 3 X is interpreted in the standard modal logic fashion using the
relation � X . The operator E� also has a standard interpretation, but basedon
the universal relation. All worlds are accessibleto this operator.

6.3.2. Fact. Alternativ e preferencelogic L 2
P is strictly more expressive than

preferencelogic L P .

Pr oof. The operator � hPref i X  can be de�ned in alternative preferencelogic,
but the operator 3 X � is not de�nable in the old preferencelogic. This can be
shown by looking again at the models in �gure 6.3. The formula E(p ^ : 3 q),
which says that there is a p world for which no equal or better q world exists, is
satis�ed in one model but not in the other. Sincethesemodels satisfy the same
L P formulas, there cannot be a L P formula that is equivalent to E(p ^ : 3 q). �
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6.3.1 Pro of System

One can de�ne a proof systemfor this logic quite easily, becausethe interpreta-
tion of both operators is a standardmodal logic interpretation. The proof system
S2

P for L 2
P has the following axioms:

Axioms for 3
K 2 X (� !  ) ! (2 X � ! 2 X  )
4 3 X 3 X � ! 3 X �
T � ! 3 X �

Axioms for E
KE A(� !  ) ! (A� ! A )
4E EE� ! E �
TE � ! E �
BE � ! AE �
Incl 3 X � ! E �
Tot (E � ^ E ) ! (E(� ^ 3 X  ) _ E( ^ 3 � ))

The reasoningrules for this logic are Modus Ponens,Necessitationfor 2 X � and
necessity for A� . Thesethree rules are listed below.

�
2 X �

�
A�

� � !  
 

6.3.3. Theorem. The proof systemL 2
P is soundand completefor the language

L 2
P on minimal preference modelswith transitive preference relations.

Pr oof. It is clear that the axioms are soundand that the reasoningrules pre-
serve validit y: they areall standardaxioms. The logic is completewith respect to
the classof reexive and transitive frames,see[12, p.417]. To seethat the logic
is complete with respect to the classof reexive, transitive and linear frames,
just notice that Lin , the axiom for linearity, is a Sahlqvist formula. Applying
the algorithm of the Sahlqvist CorrespondenceTheorem[12, p.165]oneseesthat
it corresponds to the �rst order expressionof linearity: 8x; y(x � y _ y � x).
Furthermore, by the canonicity of Sahlqvist formulas, [12, p.322],we know that
the canonicalmodel for L 2

P is linear, and so that L 2
P is completewith respect to

the classof reexive, transitive and linear frames. �

6.4 Finite Tree Logic

In this section a logic is presented that can be used for reasoningabout �nite
trees, such as gametrees. Using this logic one can describe gamestrees. This
logic is adapted from Blackburn and Viol [13], as is the completenessproof.
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6.4.1. Definition. Supposethe �nite sets� andP aregiven,and let X 2 � and
p 2 P be typical elements. Finite tree logic L T consistsof formulas � generated
by the following rule.

� ::= p j � hPref i X � j hX i � j h� i � j h� + i � j � ! � j ?

We de�ne the following additional operators.

[X ]� def= :h X i: �

[�] � def= :h � i: �

[� + ]� def= :h � + i: �

6.4.2. Definition. Let f RX gX 2 � be an indexed set of relations RX , one for
each agent X 2 �. We de�ne R =

S
f RX gX 2 � as the union of all relations in

f RX gX 2 � and R+ as the transitive closureof R.

6.4.3. Definition. A proto-model M is a tuple M = (W; � ; f RX gX 2 � ; P; � ; )
such that W is a setof worlds, � a �nite setof agents, for each X 2 � the relation
RX � W � W is a relation betweenworlds, P is a set of atomic propositionsand
� : W ! 2P assignspropositions to worlds.

6.4.4. Definition. A tree model M is a proto-modelM = (W; � ; f RX gX 2 � ; P; � )
such that R = [ X RX de�nes a �nite tree on somesubsetW T of W.

The worlds W nW T are not related by the relation R to any other worlds. These
so-called`looseworlds' are not reachable by actions, but are important in the
preferencesof agents.

We de�ne the set of terminal nodesZ(W; R) by Z(W; R) = f w 2 Wj:9 w0 :
wRw0g. The reach function reach(R; w) is the set of points reachable from w and
can be de�ned by stating that reach(R; w) is the smallestset S such that w 2 S
and x 2 S ^ xRy ) y 2 S.

6.4.5. Definition. A preference tree model M is a tuple M = (W; � ; f RX gX 2 � ; f� X

gX 2 � ; P; � ) such that (W; � ; f RX gX 2 � ; P; � ; ) is a tree model and for each agent
X 2 � the relation (� X ) � Z (W; R) � Z (W; R) is a reexive, strict-transitiv e,
total relation.

M ; w j= ? never
M ; w j= p i� p 2 � (w)
M ; w j= � !  i� M ; w j= � implies M ; w j=  
M ; w j= hX i � i� 9w0 : wRX w0 such that M ; w0 j= �
M ; w j= h� i � i� 9X ; w0 : wRX w0 such that M ; w0 j= �
M ; w j= h� + i � i� 9w0 : wR+ w0 such that M ; w0 j= �
M ; w j= � hPref i X  i� 9(u; v) 2 (� X ) such that M ; u j= � and M ; v j=  
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As an exampleof how this logic can be used,considerthe protocol displayed
in �gure 4.1 on page 4.1. This protocol can be described as a preferencetree
model M 1, if we indicate what the preferencesof the agents are. Onepossibleset
of preferenceshas thereforebeenindicated in the next table.

Agen t Most to least preferred outcomes
A x; y; z
B y; x; z
C z; x; y

It is assumedhere that the utilit y that an agent attachesto a certain outcome,
only dependson the atomic propositions that hold on a certain outcome. This is
a reasonableassumption,sincetheseatomic propositionsare supposedto encode
the relevant properties of each outcome. Thus, accordingto the table, A prefers
both x outcomesabove both y outcomes, and both y outcomesover both z
outcomes. The �rst two formulas describe the structure of the game, and the
last formula refers to the preferences.Let wA be the root of model M 1, and let
� ? = [�] ? . The formula � ? holds in terminal states.

M1; w0 j= hAi (hB i (� ? ^ x) ^ hB i (� ? ^ y) ^ hB i (� ? ^ z))

M1; w0 j= hAi (hCi (� ? ^ x) ^ hCi (� ? ^ y) ^ hCi (� ? ^ z))

M1; w0 j= (yhPref i A z) ^ (yhPref i B : y) ^ (zhPref i C : z)

6.4.6. Definition. The proof systemST for �nite tree logic consistsof the rule
Modus Ponensand the following axioms.

prop = � where� is an instanceof a propositional logic tautology

K =[ X ]� ! ([X ](� !  ) ! [X ] )

X Y = hX i> ! :h Y i> whereX 6= Y

all = h� i � $ _X hX i �

tr ans =[� + ]� $ [�]( � ^ [� + ]� )

L = h� + i � ! h� + i (� ^ :h � + i � )

AG =(([�] ? ^ � ) _ h� + i ([�] ? ^ � )) ! � hPref i X �

The following formula is known in dynamic predicatelogic as the induction prin-
ciple.

� I = ([�] � ^ [� + ](� ! [�] � )) ! [� + ]�

This formula schemeis valid for �nite tree logic. Here we show that this axiom
can be derived from the other principles.

6.4.7. Theorem. The induction principle can be derived in �nite tree logic:

ST ` � I
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Pr oof. De�ne � as the negationof � I : � = ([�] � ^ [� + ](� ! h� i � )) ^ : [� + ]� .
The L•ob axiom L can be formulated as

ST ` [� + ]([� + ]� ! � ) ! [� + ]�

and axiom tr ans can be expressedequivalently as

ST ` [� + ]� $ ([�] � ^ [� + ]� )

Using this formulation of the tr ans axiom, onecan show that

ST ` � $ ([�] � ^ [� + ](� ! [�] � )) ^ : [�]( � _ [� + ]� )

This can be simpli�ed, because[�] � appearstwice in this formula.

ST ` � $ ([�] � ^ [� + ](� ! [�] � )) ^ : [�][� + ]�

And onecan bring the negation inside:

ST ` � $ ([�] � ^ [� + ](� ! [�] � )) ^ h� i: [� + ]�

Using tr ans again and Modus Ponensgives

ST ` � $ ([�] � ^ [�][�] � ^ [�][� + ](� ! [�] � )) ^ h� i: [� + ]�

One can now derive three implications from this formula.

ST ` � ! [�][�] �

ST ` � ! [�][� + ](� ! h� i � )

ST ` � ! h� i: [� + ]�

Thesethree statements combine to the following conclusion

ST ` � ! h� i ([�] � ^ [� + ](� ! [�] � )) ^ : [� + ]� )

This statement is the sameas ST ` � ! h� i �
Using contraposition this leadsto ST ` [�] � I ! � I

From tr ans onecan derive that ST ` [� + ]� I ! [�] � I

And thesecan be combined into ST ` [� + ]� I ! � I

The necessitationrule can be usedto derive ST ` [� + ]([� + ]� I ! � I )
From L now follows ST ` [� + ]� I

and thus (with Modus Ponens)ST ` � I �

This proof system is complete,and the proof for this fact is given below in
several steps. It is a straightforward adaptation from Blackburn and Viol [13],
except that we have translated notations where necessary. Blackburn and Viol
introducedthis logic for the �nite binary treesthat areusedin linguistics asparse
trees. Our adaptation shows that this logic can alsobe usedfor gametrees.
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6.4.8. Definition. The closurecl(�) of a set of formulas � is the smallestset
S such that the following hold.

� For all subformulas  of formulas � 2 � we have  2 S

� If h� + i � 2 S then h� i � 2 S

� If � 2 S and � is not of the form :  then : � 2 S

If � is a �nite set, then cl(�) is �nite. From now on we assumethat � is a �nite
set.

6.4.9. Definition. A set A is a maximally consistent subsetof someset S if
there is a maximally consistent set C such that A = C \ S. The atom set At (�)
of a set of formulas � consistsof all the maximal consistent subsetsA of cl(�).

If � is �nite then also the set of atoms is �nite. Furthermore, for every �nite set
At (�) it is the casethat SP `

W
A2 At (�) A. One can think of At (�) as the set of

subformulas whosetruth we are interested in. A maximally consistent subsetis
thus that part of a maximally consistent set that we are interestedin.

Thesede�nitions are usedto de�ne a proto-model. This proto-model is not a
yet tree, but later on we order the elements of this model in such a way that a
tree is formed.

6.4.10. Definition. The proto-modelC � is de�ned as(At (�) ; � ; f RX gX 2 � ; P; � )
where � consistsof all agents mentioned in �, P of all atomic propositions oc-
curring in �, and � (A) = f p 2 Pjp 2 Ag. The relations RX are de�ned by

ARX B , SP 6̀: (
^

A ^ hX i (
^

B))

It is not hard to show that for the operator h� i a similar condition holds. Using
axioms 3; 4 we can show that ARB , SP 6̀ : (

V
A ^ h� i (

V
B)). We de�ne

L0(�) = f A 2 At (�) j[�] ? 2 Ag. Let Si =
S

j � i L i . If At (�) n Si 6= ; then L i +1

exists and we de�ne

L i +1 = f A 2 At (�) jA =2 Si and
^

A ^ [� + ](
_

B 2 Si

^
B)is consistentg

6.4.11. Lemma. SupposeA 2 L i and hX i � 2 A. There is a B 2 L j such that
ARX B and j < i .

Pr oof. Supposethat ST ` : (� ^ h� + i: � ). Using necessitationone can derive
that ST `:h � + i (� ^ h� + i: � ). The L•ob axiom can now be usedin contra positive
form (thus : b ! : a insteadof a ! b). This givesusST `: � . Another way to put
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this is to say that if � is consistent (ST 6̀ : � ), then (� ^ h� + i: � ) is consistent:
ST 6̀: (� ^ h� + i: � ).

Supposenow that A and B together form a partition of At (�): All atoms
appear in A or B but not in both. One can show using the result of the previous
paragraphthat there is an A i 2 A such that

V
A i ^ [� + ](

W
B j 2B

V
B j ) is consistent.

The proof for this observation is the following.
The disjunction

W
A i 2A

V
A i is consistent and therefore(observation 1) (

W
A i 2A

V
A i )^

[� + ]:
W

A i 2A

V
A i is consistent. SinceA and B form a partition of a set At (�) of

all maximally consistent subsets,if no set in A is satis�ed then a set of B must
be satis�ed: :

W
A i 2A

V
A i implies

W
B j 2B

V
B j . This leadsto the conclusionthat

(
W

A i 2A

V
A i ) ^ [� + ](

W
B j 2B

V
B j ) is consistent and thus for someA i 2 A we have

that A i ^ [� + ](
W

B j 2B

V
B j ) is consistent. In the construction of the proto-model,

the set Si and At (�) nSi form a partition of At (�). This provesthe observation.
We canusethe observation that we have just proven to seethat if L i +1 exists,

then it is non-empty. Every level i the set Si thus gets bigger. SinceAt (�) is a
�nite set, eventually Si = At (�) and every atom has beenassignedto a certain
level. For the proof of the lemma,supposeA 2 L i and hX i � 2 A. It is clear that
i > 0 and thus Si � 1 exists. To obtain a contradiction, supposethat there is no
atom B 2 Si � 1 such that ARX B, thus that for all B the formula

V
A ^ hX i

V
B

is inconsistent. This meansthat ST `
V

A ^ [X ]: (
V

B 2 Si � 1

V
B). As a shortcut,

de�ne B =
V

B 2 Si � 1

V
B. SinceA 2 L i , we have that

V
A ^ [� + ]B is consistent.

Sincewe can rewrite [�] as
V

Y [Y ], we know that
V

A ^
V

Y [Y ]B is consistent and
thus that

V
A ^ [X ]B is consistent. This yields a contradiction. Thus, there must

be an atom B 2 Si � 1 such that ARX B. �

This concludesthe preparationsfor the completenessproof, and we canprove the
completenesstheorem.

6.4.12. Theorem. The proof systemST is complete.

Pr oof. We can construct a model for any formula � . Take � = f � g. Choose
A 2 At (�) such that � 2 A. Let W0 = f Ag. We call a pair (w; hX i � ) of w 2 Wn

an unsatis�ed demandif hX i � 2 w but there is no w0 2 Wn such that wRkw0 and
� 2 w0. As long as there are unsatis�ed demands,pick one unsatis�ed demand
(w; hX i � ) and take a world w0 2 Lm in a set Lm such that wRX w0 and � 2 W.
The world w0must havea lower level than w: if w 2 L i then i < m. Lemma6.4.11
guarantees that such a w0 exists. De�ne Wn+1 = Wn [ f w0g. The construction
processmust terminate after a certain number of steps,becausewe add worlds
with strictly lower levels every time. Thus, for somesu�cien tly large m, there is
a world Wm that hasno unsatis�ed demands.

Let the proto-model C � = (At (�) ; � ; f RX gX 2 � ; P; � ) be de�ned as before.
De�ne the following model M = (Wm ; � ; f R0

X gX 2 � ; P; � 0) wheref R0
X gX 2 � ; � 0 are
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the restrictions of f RX gX 2 � ; � to Wm . One can useinduction on the structure of
the formula � to prove that M ; w0 j= � .

It remains for us to de�ne a preferencerelation over Wm . The axiom AG

establishesthat all worlds that are involved in the actions, are usedin the pref-
erencerelation. All other axiomsonly deal with preferencesor only with actions.
Sincewe have proven the preferencelogic to be complete,any consistent set of
preferenceformulas can be satis�ed by a model. This model contains exactly
one state for each maximally consistent propositional formula, but we can mul-
tiply thesestatesto obtain a bisimilar model in which we have a correspondence
betweenthe outcomesof the action relation and the preferenceworlds. If some
world of the preferencemodel cannot be mapped on the action model, a `loose
world' can be createdthat doesnot form part of the gametree: Our de�nition of
a tree model allows for worlds that only play a role in the preferencemodel. �

6.5 Backw ard Induction: An Application

One of the reasonsto study preferencelogics is that they can be usedfor logical
investigations into gametheoretic solution concepts. Sincethe subgameperfect
equilibrium that is computedby the backward induction procedureis oneof the
bestknown solution concepts,it is a good guineapig for testing the expressivity of
game-relatedlogics. For instanceit is usedfor demonstratingthe useof branching
time temporal logic by Bonanno[14], and is alsomodelled by Harrenstein [45].

The subgameperfect equilibrium has beende�ned in de�tion 3.3.10on page
45. Below we rephrasethis de�nition in terms more suitable for logical purposes.
We de�ne a solution conceptasa relation Rsol betweenthe statesof an extensive
game. The relation contains the moves that are rational: Thesemoves are the
recommendationsto the players made by the solution concept. Below we give
the de�nition of the relation BI that describes the backward induction solution
concept. Let M = (W; � ; f RX gX 2 � ; f� X gX 2 � ; P; � ) be a preferencetree model.
B I is a subsetof the relation R. The outcomesof this relation are Z(W; BI ),
and the reach of this relation from x is reach(B I ; x). Intuitiv ely, reach(B I ; x)
contains the nodesthat one can reach using only movesthat appear in B I . We
de�ne the reachable outcomesas rz(W; R; w) = Z(W; R) \ reach(R; w). The
relation BI is de�ned in such a way that for all w0 2 W nZ(W) it is the casethat
r z(W; BI ; w0) � Z (W; R) and krz(W; BI ; w)k = 1. Thus, B I only recommends
possiblemoves,and it recommendsexactly one move in every node that is part
of the tree. Finally, if for somestate w it is the casethat wBI w0 and wRX w00,
then there is an x 2 rz(W; BI ; w0) such that there is a y 2 rz(W; BI ; w00) such
that x � X y. That is, w0 is possiblyat least asgood asw00. This property makes
it rational for agent X to choosethe move w0 above w00.
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Not every gamehasa unique backward induction relation. Take for instance
any gamein which all agents value all outcomesequally. In such a game, any
relation that choosesonemove for each node is a backward induction relation.

If the preferencerelation is anti-symmetric however, then there is exactly
one backward induction relation. Otherwise there might be more. Thus, if no
agents valuesa pair of nodesequally, then there existsa unique subgameperfect
equilibrium.

Below we extend �nite tree logic with operators 3 sol� and 3 �
sol� that refer

to recommendedmoves. This new logic is called solved gamelogic becauseit is
interpreted over solved models.

6.5.1. Definition. Supposethe �nite sets � and P are given, and let X 2 �
and p 2 P be typical elements. Solved game logic L sol consistsof formulas �
generatedby the rule

� ::= p j � hPref i X � j hX i � j h� i � j h� + i � j � ! � j ? j 3 sol� j 3 �
sol�

Again onecan assumethe following derived operators.

2 sol�
def= : 3 sol: �

2 �
sol�

def= : 3 �
sol: �

The construction 3 sol� meansthat onecanusea recommendedmoved to reach a
state where� holds. Similarly, 3 �

sol� meansthat onecan useonly recommended
movesto reach an outcome where� holds.

This logic can be interpreted over solved models. Thesemodelsare similar to
preferencetree models,but contain an extra relation that describesa solution to
the game.

6.5.2. Definition. A solved model M is a tuple M = (W; � ; f RX gX 2 � ; f� X

gX 2 � ; P; � ; Rsol) sothat (W; � ; f RX gX 2 � ; f� X gX 2 � ; P; � ) is a preferencetreemodel
and Rsol � R is a function: for each nonterminal state s there is a unique next
state t such that (s; t) 2 Rsol.

The relation Rsol indicates a game-theoreticsolution to the game, becauseit
contains recommendedmoves. A solved model is thus a structure that contains
a gameand recommendationsto all players. Such a solved model can be tested
for rationalit y, by checking whether the recommendationsare consistent with the
preferencesof the agents. The interpretation of all operators is the sameas for
preferencetree logic. The new operators 3 sol and 3 �

sol are interpreted in the
following way.

M ; w j= 3 sol� i� 9w0 : wRsolw0 such that M ; w0 j= �
M ; w j= 3 �

sol� i� 9w0 2 rz(W; Rsol ; w) such that M ; w0 j= �
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Note that the operator 3 �
sol is interpreted such that it refers to outcomestates

only. This is donebecauseonly outcomestateshave preferences.
In order to be able to characterize backward induction, we have to put an

extra constraint on the models that we consider. In the following de�nition we
de�ne when we call a preferencerelation functional (with respect to a given
interpretation function � ).

6.5.3. Definition. Considera preferencerelation � X in the context of a model
with someinterpretation � . The relation � X is functional if there is a function
f X : 2P ! R such that for all worlds v; w wehave that v � X w implies f X (� (v)) �
f X (� (w)).

We call preferencemodels, tree models and solved models functional if all pref-
erencerelations that occur in these models are functional (with respect to the
interpretation function � of the model). If a model is function, it meansthat
the atomic propositionsencode all properties that agents usein their preferences.
Thus, in functional modelsthe atomic propositionsareall that agents careabout.
The right model in �gure 6.3 is functional, but the left model is not.

The following four formulascharacterizethe backward induction solution con-
cept, at least for functional models. This meansthat all functional models on
which all instancesof the following four formulas hold, have the backward in-
duction solution conceptas their solution. One can thus say that the conceptof
backward induction is described by the logical formulas.

In fact the �rst four properties hold on any solved model, becauseof the
constraints we have put on the solution relation. Therefore, one could say that
the fourth property characterizesbackward induction. The formula B5 expresses
what kind of reasoningcan be usedto motivate the backward induction solution
concept, and can thus be usedto explain this concept. This way of using logic
to characterizesolutions conceptsgivesmore insight in the ideasor assumptions
behind theseconcepts[30].

B1 = h� i> ! 3 sol>

If onecan do a move, onecan do a recommendedmove

B2 = 3 sol� ! h� i �

If moving to a � state is recommended,it is possible

B3 = 3 �
sol� $ (([�] ? ^ � ) _ 3 sol3

�
sol� )

A recommendedoutcomecan be reached in zeroor more steps

B4 = 3 sol� ! 2 sol�

Only onemove is recommended

B5 =( 3 sol2
�
sol� ^ hX i 2 �

sol ) ! (� hPref i X  )

X should not move against its preferences
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6.5.4. Theorem. If a pointed solved model M ; w has the backward induction
relation as its solution then it satis�es the formulas B1 to B5.

Pr oof. Supposethat M ; w is a solved model, and that the relation Rsol is indeed
the backward induction relation BI . For each instance of formula B i we show
that it holds in this model.

� Supposethat M ; w j= h� i> . This meansthat w is an internal node. From
krz(W; BI ; w)k = 1 it follows that there must be a next B I move, and
thereforeM ; w j= 3 sol> .

� Supposethat M ; w j= 3 sol� , which meansthere is a state w0 such that
(w; w0) 2 B I and M ; w0 j= � . SinceBI � R, it holds that (w; w0) 2 R and
thus M ; w j= h� i � .

From krz(W; BI ; v)k = 1 for all nonterminal nodesv, it follows that there
is only one state w0 with (w; w0) 2 B I . Therefore, for any state w0 with
(w; w0) 2 B I it is the casethat M ; w0 j= � and thus M ; w j= 2 sol� .

� Suppose that M ; w j= 3 �
sol� , which means there is an outcome w0 2

rz(W; BI ; w) so that M ; w0 j= � . If w is an outcome itself, then w0 = w
and M ; w j= ([�] ? ^ � ). Otherwise there is a w00with (w; w00) 2 B I and
M ; w00j= 3 �

sol� and thus M ; w j= 3 sol3
�
sol� .

� Supposethat M ; w j= 3 sol� , which meansthat there is a state w0 such that
(w; w0) 2 B I and M ; w0 j= � . In the de�nition of a solved model it is stated
that this world w0 is unique, and hencethere are no other worlds w00such
that (w; w00) 2 B I . Therefore,M ; w j= 2 sol� .

� Finally, assumeM ; w j= (3 sol2
�
sol� ^ hX i 2 �

sol ). Thus, there is a state
w1 with (w; w1) 2 B I and M ; w1 j= 2 �

sol� . There is also a state w2 such
that (w; w2) 2 RX with M ; w2 j= 2 �

sol . Hence9v1 2 rz(W; BI ; w0) with
M ; v1 j= � and 9v2 2 rz(W; BI ; w2) with M ; v2 j=  . The de�nition of the
BI relation now tells us that v1 is possiblyat least asgood asv2, and thus
v1 � X v2, and thereforeM ; w j= � hPref i X  .

�

6.5.5. Theorem. If a pointed solved modelM ; w with a functional interpretation
satis�es the formula B4, then it hasthebackward induction relation asits solution.

Pr oof. Supposethat a solved model M ; w has preferencesthat are functional:
Outcomesw; w0 with � (w) = � (w0) are equally preferred. Assumethat all in-
stancesof B4 hold on M ; w.
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1 : p 2 : q 3 : p

Figure 6.5: A non-functional tree model M

We have to show that the relation Rsol in M is a backward induction relation.
Not surprisingly, this has to be shown inductively, starting with the �nal nodes.
The base caseis formed by nodes w that are outcomes, and for these nodes
nothing has to be proven: The Rsol relation of an outcomeis always the empty
relation, becausethere are no movesto recommend.

Assumenow that w is a nonterminal node such that (w; w1) 2 Rsol, and let
(w; w2) 2 RX , and that the recommendedmove (w; w1) is in violation of the
backward induction properties. This assumptionis made to derive a contradic-
tion. Thus, we assumethat all outcomesin r z(W; BI ; w1) are strictly worse
than all outcomesin r z(W; BI ; w2), according to agent X . Since the prefer-
encesare functional, it holds that � (o1) 6= � (o2) for all o1 2 rz(W; BI ; w1) and
o2 2 rz(W; BI ; w2). Take a formula � 1 that describes an outcome o1 exactly,
and a formula � 2 that describesan outcomeo2 exactly. Naturally M ; o1 j= : � 2

and vice versa. Sincethe preferencesare functional, all � 1 statesare strictly less
preferred than all � 2 states, and thus M ; w j= : (� 1hPref i X � 2). SinceW; w j=
(3 sol2

�
sol� 1 ^ hX i 2 �

sol� 2) and B4 is supposedto hold, this is a contradiction.
Thus, it is not possible that the move (w; w1) does not satisfy the backward
induction properties. Using induction we can now concludethat all moves rec-
ommendedby Rsol are moves recommendedby backward induction, and hence
that Rsol = BI . �

It is necessaryto restrict the relations in the model to be functional. There
are non-functional solved models that satisfy the given formulas, but whoseso-
lution relation is not a backward induction solution. An exampleof such a non-
functional model M is displayed in �gure 6.5. Assumethat M is a solved model
where outcome 3 is preferred over the other two outcomes,and that the solu-
tion relation in M recommendsoutcome 1. This solution is not the backward
induction relation, sinceoutcome3 is clearly better. However it satis�es B1 to
B5.

In order to show that the logical approach of this chapter is more expressive
than the use of the logic efl , consideragain the �rst solution in �gure 4.1 on
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A

B C

x y z x y z

Figure 6.6: Solved model M 2

page58 to the examplevoting problem of chapter 4. On page115 we de�ned a
preferencetree model by combining the protocol of �gure 4.1 with a given set of
preferences.We extend this model to a solved model M 2 by adding suggested
moves. The solution relation added is that A chooseswB , B choosesy and C
choosesz. This solution relation is indicated in �gure 6.6.

Call the root node wA , B 's decision node wB and C's decision node wC .
Assumethat the following preferenceformulas hold.

M ; wA j= x[Pref ]A y ^ y[Pref ]A z

M ; wA j= y[Pref ]B (x _ z)

M ; wA j= z[Pref ]C (x _ y)

If the solution of this solved model is the backward induction relation, then it
follows from y[Pref ]B (x _ z) that M ; wB j= 3 soly. Similarly, M ; wC j= 3 solz.
Sinceone can derive from the �rst line that M ; wA j= : (zhPref i A y), it follows
from B5 that not M ; wA j= 3 sol2

�
solz and henceM ; wA j= 2 �

soly. Therefore,the
indicated solution relation is indeedthe backward induction solution.

After consideringmore di�erent preferenceassumptions,one can show that
agents B and C have the best `chance'(assumingall di�erent preferencerelations
are equally likely) to get the options they prefer most. Agent A on the other
hand is least likely to get the option it prefersleast. Thus, using preferencelogic
onecan give adviceto agents which role they should take in this voting problem,
which was not possiblebasedon efl . Agents that strongly prefer one option
should take the role of agent B or C, whereasagents that strongly dislike oneof
the options are better of asagent A.

6.6 Conclusion

In this chapter, the focus has not beenon model checking but on proof theory.
A languageL P for reasoninghas been presented and a complete proof system
for this languageis given. We have also developed a more modern languagefor
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preferencesL 2
P , and shown that this languageis more expressive than L P , while

having a proof systemwith a simpler completenessproof.
In section 6.4, we have usedpreferencelogic in combination with a logic for

reasoningabout �nite trees. This allows one to reasonabout extensive games.
Again a proof systemfor this logic has beende�ned, using techniques that are
standard in modal logic. The logic can be usedfor characterising the backward
induction solution concept. An analysisof the examplevoting problem of chapter
4 shows that this logic is more expressive than efl .

The most important conclusionthat can be drawn from this chapter is that
modal logic, becauseso much is known about it, is a suitable tool for model-
ing game-theoreticreasoning. Possiblefuture work would be to analyseother
solution conceptsas well, such as iteration of dominant strategies,and the (not
subgame-perfect) Nash equilibrium. A more challenging project would be to
analyse imperfect information games. One such attempt already exists in the
form of ATEL [102], also discussedin section 7.5. Recent ATEL research has
shown that reasoningabout imperfect information gamesis a challenging prob-
lem [3, 54, 55, 109]. It would be interesting to comparethe ATEL approach, with
the more direct modal logic approach usedin this chapter.





Chapter 7

Kno wledge Condition Games

7.1 In tro duction

In the previouschapters,wehave lookedat protocolsthat canbemodelledasper-
fect information gameforms. In such protocolsall agents areawareof all previous
events, and therefore no aspects of the current situation are unknown. In this
chapter the focus is on protocols that can be modelled as imperfect information
gameforms. Such protocolsare interesting for at least two reasons:

� The imperfect information of agents has consequencesof what strategies
they can use. Finding optimal strategiesfor imperfect information games
is thereforea more complexproblem than for perfect information games.

� The knowledgethat agents do and do not have of the current situation can
be usedin the de�nition of the game. Having certain knowledgecan be the
goal of an agent or a coalition of agents.

In order to study thesetwo aspectsof multi-agent protocols,we de�ne a newclass
of games,calledknowledgecondition games. In a knowledgecondition game,two
coalitions of agents enact a protocol. One coalition strives to reach a certain
knowledgesituation, and the other coalition tries to prevent the �rst coalition
from reaching its goal. In other words, onecoalition \wins" if it is able to forcea
certain condition to hold in the world, wherethis condition relatesto the know-
ledge(and absenceof knowledge)of the agents in the game. Formally, we specify
the goalsituation (i.e., the condition that the agents strive to achieve) usingepis-
temic logic, and protocolsare modeledas interpreted gameforms with imperfect
information.

After de�ning these gamesand illustrate using various examples,we focus
on the computational complexity of determining who wins a knowledge condi-
tion game under various assumptions. Speci�cally the following questionsare
answered.

127
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� Whether the presenceof opponents make it harder to determine the exis-
tenceof a winning strategy in a knowledgecondition game

� Whether winner determination is harder if oneassumesthat strategiesare
known to agents

� Whether one can identify variants of knowledgecondition gamesin which
winner determination is tractable

The complexity resultsalsoallow oneto seewhetherreasoningabout knowledgein
strategic situations is indeeda complexproblem. The fact that we have collected
in this chapter many di�erent complexity results shows that this is indeed the
case.

The structure of this chapter is as follows. In the next section, section 7.2
we have collectedall necessaryde�nitions. Section7.3 provides four examplesof
knowledgecondition games.The �rst exampleshows how knowledgeproperties
are important in a voting protocol. The secondexampleinvolvesa more playful
quiz problem. It shows how signaling can enter into reasoningabout knowledge.
The third example,the RussianCards problem, is larger than the previous two
and hencethe corresponding knowledgecondition game is not easily solved by
hand. In the last example the use of a multi-step strategy for a coalition of
three agents is demonstrated. Section 7.4 presents four results relating to the
complexity of knowledgecondition games.We prove the complexity of deciding
a knowledgecondition gamein which strategiesare known, �rst for the restricted
casewithout opponents, then with opponents. Wethen do the samefor knowledge
condition gamesin which strategiesare unknown. Section 7.5 discussessome
related work, and section7.6 presents someconclusions.

7.2 De�ning Kno wledge Condition Games

In this sectionwe de�ne how onecan createa knowledgecondition gameG from
an interpreted gameform F . This is done in two de�nitions at the end of the
section. Beforethesede�nitions, we de�ne epistemiclogic, gameforms, strategies
and updates,which are all neededin order to de�ne knowledgecondition games.

The notion of an interpreted game form has been introduced in chapter 3.
In that chapter, only interpreted gameforms with perfect information have been
de�ned. De�nitions for imperfect information gameforms are given below.

7.2.1. Definition. An interpreted gameform F is a tuple

F = (� ; H; turn ; � ; P; � );

where:
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A

p

1 2
B

Figure 7.1: Interpreted gameform F0

� � is a �nite set of agents;

� H is a non-empty, pre�x-closed set of �nite sequences;

� turn is a function turn : H n Z(H ) ! �;

� for each X 2 � the relation � X � H � H is an equivalencerelation between
sequences;

� P is a �nite set of atomic propositions; and

� � : Z (H ) ! 2P returns the true atomic propositionsof any terminal history.

Thesecomponents must satisfy the following condition:

if turn (h) = X and h0 � X h then also turn (h0) = X and A(H; h) = A(H; h0).

(This de�nition is adapted from Osborne and Rubinstein [79, p.200]). We have
extendedtheir notion of information setssuch that agents alsohave information
whenthey arenot in charge,which is a not uncommonfor logicalpurposes[15,98].

Atomic propositions can be usedto refer to certain terminal histories, for in-
stanceto historieswherean agent achievesa certain goal. The ideaof annotating
end states or terminal histories with logical propositions has been used before
by Harrenstein et al [45] and the author [113]. Approaches basedon temporal
logic [101, 102] often annotate all nodesof the model with propositions, so that
formulas can be interpreted anywhere in the model.

An exampleinterpreted gameform F0 is depicted in �gure 7.1. In this exam-
ple, agent A can make a choice from two alternatives (numbered 1 and 2), one
of which satis�es p. After this choice, A can distinguish thesesituations, but B
cannot.

For every interpreted gameform F we can calculatean epistemicmodel M =
m(F ) representing the knowledgein the endstatesof F . We do this by taking all
the terminal histories of F as the set of statesof M . The statesof the model M
are all outcomesof the interpreted gameform F , and two outcomesare related
in M i� they are related in F .

7.2.2. Definition. Let F = (� ; H; turn ; � ; P; � ) be an interpreted gameform.
The endsituation model m(F ) is de�ned asm(F ) = (� ; Z (H ); � 0; P; � ) wherefor
each agent X , � 0

X is the restriction of � X to Z (H ) � Z (H ).



130 Chapter 7. KnowledgeCondition Games

The transformation m is used to expresswhen an interpreted gameform F
makesa formula � true. The function m only usesthe epistemicrelation between
end states. The relations betweenother statesare however usedin the de�nition
of uniform strategies.

7.2.1 Strategies

Strategiesare an important part of every game. Informally a strategy � � is a
function that tells all agents in coalition � what to do next in the histories they
control. We usenondeterministic strategiesfor our agents. Thesestrategieshave
been de�ned in de�nition 3.3.6 on page43. Such a strategy does not return a
unique option that the agent should take, but it returns a set of options, with
the intention that the agent should randomly selectan element of this set. Our
strategiesare thus akin to the randomizedor `mixed' strategies,or morecorrectly
the behavioural strategies, of game theory [79, p.212], except that we do not
considerprobabilities of making particular choices.Sincewe deal with imperfect
information games,only uniform strategies, as de�ned in de�nition 3.3.13, are
considered.

For the exampleinterpreted gameform F0 there are three di�erent strategies
� f Ag for agent A. The strategy can either tell the agent to take the �rst option,
or it can prescribe the secondoption, or the strategy can expressthat the agent
should randomly choosebetweenboth options. Formally, thesepossibilities are
de�ned by respectively � 1

f Ag(� ) = f 1g, � 2
f Ag(� ) = f 2g and � 3

f Ag(� ) = f 1; 2g.
For any strategy � � for an interpreted game form F we can considera re-

stricted interpreted gameform F 0 in which the agents X 2 � only chooseoptions
that arepart of the strategy. The agents Y =2 � canstill do whatever they want in
F 0. Such a restricted interpreted gameform models the situation in which coali-
tion � is committed to the given strategy. The restricted model F 0 is computed
by an update function F 0 = u(F; � � ).

7.2.3. Definition. Let F = (� ; H; turn ; � ; P; � ) be an interpreted gameform.
The update function u is de�ned by

u(F; � � ) = (� ; H 0; turn 0; � 0; P; � 0);

where:

� H 0 is the smallest subsetof H such that � 2 H 0 and for each h 2 H 0 and
a 2 A(H; h): if turn (h) =2 � or a 2 � � (h) then ha 2 H 0;

� � 0 is such that for all X : � 0
X = � X \ (H 0 � H 0); and

� turn 0 and � 0 are the sameas turn and � , but with their domain restricted
to H 0.
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An update of the exampleF0 with strategy � 3
f Ag does not changeanything:

u(F0; � 3
f Ag) = F0. An update with � 1

f Ag returns a model F1 with only two histories:
� and 1. This meansthat the epistemicmodel of F1 only has onestate in which
p holds. Thus, using the interpretation of epistemiclogic (de�ned on page16), it
holds that m(u(F0; � 1

f Ag)) ; 1 j= K B p.

7.2.2 Strategic Games

The function G = kcg(F; � ; � ; � ) de�nes a knowledgecondition gamein which �
wishesto achieve � , while � hopesto prevent it. The gameG is not an extensive
game,but a gamein normal or strategic form. It is not possibleto considerG as
an extensive game,becausewhether the knowledgecondition holds is not a local
property of each end state.

We are only interested in two-player, constant-sum, win-loss games,and in
thesegamesonly two payo� vectorsare possible:(1; 0) which is best for the �rst
player, and (0; 1) which is best for the secondplayer. In thesegamesonecan say
that an agent can win if it has a strategy that guarantees that the agents gets
utilit y 1. If the �rst player can win we write w(G) = 1.

7.2.4. Definition. Let G = (f A; Bg; f SA ; SB g; U) bea two player constant-sum
win-lossgame. The winner function w is de�ned by

w(G) = 1 , 9� A 2 SA 8� B 2 SB : U(� A ; � B ) = (1; 0)

7.2.3 Kno wledge Condition Games

A knowledge condition game is a two-player, constant-sum, win-loss strategic
game. It is played betweentwo coalitions � and � of agents. Thesesetsmust be
disjoint, but not every agent has to be in one of those sets. If an agent X 2 �
is not in � [ � then this agent is said to be neutral. The agents in � are called
proponents, and the agents in � opponents. To de�ne a knowledge condition
game,we must give an interpreted gameform F and an epistemiclogic formula
� : The proponents try to make this formula true on F , and the opponents try to
make it falseon F . Formally:

7.2.5. Definition. Let F = (� ; H; turn ; � ; P; � ) be an interpreted gameform,
� ; � � � disjoint sets of agents and � 2 L K a knowledge formula. De�ne
kcg(F; � ; � ; � ) = (f � ; � g; f S�

n ; S�
n g; U) where S�

n ; S�
n contain all nondeterminis-

tic strategiesof � and � in F respectively, and

U(� � ; � � ) =
�

(1; 0) i� 8w 2 W : (� ; W; � ; P; � 0); w j= �
(0; 1) otherwise

where(� ; W; � ; P; � 0) = m(u(u(F; � � ); � � )).
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Take the example game form F0 and take � 0 = K B p. For the gameG0 =
kcg(F0; f Ag; ; ; � 0) we can compute a payo� matrix. As calculated before, f Ag
has three strategies.The empty coalition only has the unique empty function f ;

as a strategy.

� 1
f Ag � 2

f Ag � 3
f Ag

f ; (1,0) (0,1) (0,1)

We seethat for this game,f Ag hasa winning strategy (namely � 1
f Ag). Therefore,

w(kcg(F0; f Ag; ; ; � 0)) = 1. In the above de�nition, we use the updated model
m(u(u(F; � � ); � � )) asa model for what all agents know. We have thus implicitly
assumedthat everybody commonlyknows which strategiesare usedby � and �,
r if oneassumesthat strategiesare somehow visible to other agents. As we have
arguedon page81 in the caseof perfect information games,this is a reasonable
assumption. It makessenseif oneconsidersstrategiesaswell-known conventions.
Also if a gameis played by computer programsthat are open for inspection, this
is a reasonableassumption. Finally, onecan arguethat assumingthat no details
can be kept secretis a very conservative and thus soundassumptionif one tries
to prove the correctnessof security protocols. In somecircumstances,however,
one might not want to make this assumption. Therefore, we present below a
variant kcg0 of knowledge condition gamesin which the knowledge formulas �
is evaluated the original model m(F ). The strategiesare usedto determine the
reachable states w and the proponents win if in all thesestates w, it holds that
m(F ); w j= � .

7.2.6. Definition. Let F = (� ; H; turn ; � ; P; � ) be an interpreted gameform,
� ; � � � disjoint sets of agents and � 2 L K a knowledge formula. De�ne
kcg0(F; � ; � ; � ) = (f � ; � g; f S� ; S� g; U0) where S� and S� contain all strategies
of � ; � in F respectively, and

U0(� � ; � � ) =
�

(1; 0) i� 8w 2 W : m(F ); w j= �
(0; 1) otherwise

whereW is de�ned by (� ; W; � ; P; � ) = m(u(u(F; � � ); � � )).

The di�erence betweenkcg and kcg0 lies in their respective utilit y function.
The function U evaluates the formula � in the model m(u(u(F; � � ); � � )), in all
states. The function U0 evaluates the formula � in the model m(F ), thus in the
model beforeupdates. This di�erence reects the idea that in kcg, strategiesare
commonly known, whereasin kcg0 they are not known. The function U0 only
evaluates the formula � in states w that occur in m(u(u(F; � � ); � � )). The idea
here is that the truth of � only matters in states that are actually reached, and
which statesare reachable dependson the strategieschosen.
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7.3 Examples

7.3.1 Anon ymous Voting

A voting protocol canbeusedwhena group of agents hasto make a joint decision
on a certain issue.A commonprotocol is majority voting: Each agent canvote for
an option and the option that getsthe most votesis the outcomeof the protocol.
In the exampleinterpreted gameform FV = (� ; H; turn ; � ; P; � ), three agents A,
B and C usemajorit y voting to decidewhether a plan P should be acceptedor
not. Thus � = f A; B ; cg and P = f a;b;c;pg. Each agent hasto choosefrom two
actions: support the plan (s), or reject it (r ). They vote in alphabetical order,
so �rst A choosesbetweenaction s and r , then B (without knowing A's choice)
chooseseither s or r and �nally C does the same,unaware of what A and B
did. This protocol thus has eight terminal histories. The proposition p indicates
whetherP is acceptedand p holdsif at leasttwo agents chooses. Furthermore the
proposition a holdsif A choosess, b if B choosess and the samefor C with c. The
interpretation function is thus � (sss) = f a;b;c;pg; � (ssr) = f a;b;pg: : : � (r r r ) =
; . We assumethat s 6�X s0 if s and s0 di�er in the evaluation of the outcomep,
or if the vote of X di�ers in s from that in s0.

The following gameresults hold.

w(kcg(FV ; f A; Bg; f Cg; p)) = 1
w(kcg(FV ; f A; Bg; f Cg; K B c _ K B : c)) = 1
w(kcg(FV ; f Bg; f Cg; K B c _ K B : c)) = 0

A and B together can ensurethat p is true, by both voting s. They can alsovote
di�erently, so that a and : b result. In this casethe outcomewill solely depend
on C's choice. They thus learn what C voted. Agent B cannot learn what C did
on its own.

One example,described by Schneier [89, p. 133], is a voting protocol where
B would have the option of copying A's (encrypted) vote. In that caseonemight
get

w(kcg(F 0
V ; f Bg; f A; Cg; K B a _ K B : a)) = 1

This is an unwanted property and thus a `bug' in the protocol. It is necessaryto
reasonabout knowledgeto expressthis bug, soa standardgame-theoreticanalysis
might not have revealedthis shortcoming.

7.3.2 Fift y-Fift y Problem

Considerthe following scenario:

In a TV quiz show the quiz master asks a candidate the following
question: Which day of the weekcomesdirectly after Tuesday? Is it
a) Monday, b) Wednesday, c) Friday or d) Saturday. The candidate
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Figure 7.2: The �ft y-�ft y problem FQ

hasno cluewhatsoever about the days of the week,and replies: `I am
not sure. Can I do �ft y-�ft y?'. The quiz master has to remove two
optionsthat arenot the answer, sohesays: `Theanswer is not Monday
and neither Friday'. Doesthe candidatenow know the answer?

This situation frequently occurson televisionin several Europeancountries in the
`Millionaire show'. One can also considerthis situation to be a metaphor for a
multi-agent information exchangesituation. Onecanmodel this in an interpreted
game form FQ = (� ; H; turn ; � ; P; � ). The set of agents is � = f N; Q; Cg,
involving an agent N (Nature) that determineswhat the right answer is, a quiz
masterQ that eliminatestwo answers,and a candidateC. This interpreted game
form is depicted in �gure 7.2. First Nature selectsone of the answers to be the
right answer: It can choose from the actions 1; 2; 3 and 4. The quiz master,
who knows the right answer, can then select an action ij that indicates that
the two options i and j are eliminated; i and j must be di�erent from the right
answer. The terminal histories are thus all histories (k; ij ). For such histories,
(k; ij ) � C (k0; i0j 0) if the sameoptions are eliminated: ij = i 0j 0. The set of atomic
propositions is P = f ai j 1 � i � 4g [ f ei j 1 � i � 4g, and each terminal
history is interpreted in the following way: � ((k; ij )) = f ak ; ei ; ej g. The question
is whether the candidate knows the answer at the end of the protocol. This is
expressedby  = K Ca1 _ K C a2 _ K Ca3 _ K Ca4. The following table lists several
properties of this situation.

Nature may favour the candidate: w(kcg(FQ; f N g; ; ;  )) = 1
Nature may not favour the candidate: w(kcg(FQ; f N g; ; ; :  )) = 1
The quiz master can help the candidate: w(kcg(FQ; f Qg; ; ;  )) = 1

We thus seethat whether the candidate knows the answer depends on Nature
and on the quiz master Q. If Nature usesa deterministic strategy, in which for
instancea1 always holds, then the candidateknows that this is the right answer.
However, if Nature usesthe nondeterministicstrategy in which each answer could
be the right answer, the candidatewill not know the answer.
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N

1 2 3 4

23 34 14 12

Figure 7.3: The updated interpreted gameform u(FQ ; � f Qg)

The situation becomesmore interesting if the quiz master gets involved. In
this gamethe quiz masterhasthe abilit y to signal the right answer to the candi-
date. Consider,for example,strategy � f Qg, de�ned as follows.

� f Qg(1) = f 23g
� f Qg(2) = f 34g
� f Qg(3) = f 14g
� f Qg(4) = f 12g

This strategy tells the candidateexactly what the right answer is: The answer
directly before the two eliminated options (assuming 4 comesbefore 1). The
updated model u(FQ; � f Qg) is given in �gure 7.3. This strategy acts as a code
between the candidate and the quiz master. It is the strategy that proves that
w(kcg(FQ; f Qg; ; ; q)) = 1. A practical conclusiononecandraw is that oneshould
not bet on this quiz if one doesnot know what the interests of the quiz master
are.

This examplealso demonstrateswhy we prefer to assumethat strategiesare
commonlyknown. If onewould have usedthe alternative de�nition kcg0, in which
agents do not know what strategiesare used,then one can obtain the following
results.

Nature cannot favour the candidate: w(kcg(FQ; f N g; ; ;  )) = 0
The quiz master cannot help the candidate: w(kcg(FQ; f Qg; ; ;  )) = 0

These results are counter-intuitiv e, since signaling in gamesis a phenomenon
that does occur in practice. When proving the security of a protocol, it is a
good principle to make the weakest assumptionspossible.At �rst sight, it seems
that assumingthat strategiesare not known is the weakest possibleassumption.
However, in the caseof proving ignorance, �rst sight can be misleading. It is
harder to prove that the candidate does not know the answer when he or she
knows all strategiesthat are used, than it is to prove ignorancewhen he or she
doesnot know the strategies.Therefore,the weakest and safestassumptionis to
assumethat he doesknow the strategies. This shows that it is best to use the
de�nition of kcg rather than the alternative kcg0 for theseignoranceproofs. This
motivates the choice to make kcg the default and call kcg0 the alternative.
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7.3.3 Russian Cards Problem

The Russiancardsproblem �rst appearedin the Russianmathematicsolympiad
in 2000[106]. It has subsequently beenpicked up by logiciansas an exampleof
a information basedsecurity. An informal description, taken from [106], is the
following.

From a pack of seven known cardstwo players each draw three cards
and a third player getsthe remaining card. How can the playerswith
three cards openly (publicly) inform each other about their cards,
without the third player learning from any of their cards who holds
it?

Following the analysis by Van Ditmarsch [106] we call the agents A, B and C
and the cards 0; 1; 2; 3; 4; 5 and 6. The interesting thing about this problem
is that certain solutions to this problem appear sound, but are not sound. A
solution to this problem is a joint strategy for A and B that prescribeswhat they
shouldcommunicate to each other. We are mostly interestedin direct exchanges:
statements by A such that B directly learnsall of A's cards. Agent B canrespond
by telling A which card C has. Assumefor the moment that the actual deal of
cardsis that A holds0; 1 and2, that B holds3; 4 and5 and that C holds6. Instead
of reasoningabout completestrategiesfor A and B,we settle for identifying which
statements by A for this situation van can be part of a strategy. Here are some
solution attempts. Imagine that the next public statements are madeby agent A
so that all agents can hear it.

I have 012 or 345: This statement is true and when taken literally it doesnot
tell C anything about a single card. Unfortunately A can imagine that C
holds card 5. in which casethis statement would reveal A's cardsto C. So
A cannot make this statement safely.

I have 012 or I have none of these cards: A knows that C cannot pinpoint
any card after learning this statement. Unfortunately C can reasonlike
this: SupposeA has 345. In that caseshecannot excludethat I hold card
2. If I had card 2 I would know that B holds card 0 and 1. Alice would
never allow me to learn that. Contradiction. By this line of reasoningshe
can eliminate all possibilitiesexcept012.

I have 012, 034, 056, 135, 146 or 236 This is an exampleof a statement A
can make.

In this sectionwede�ne a knowledgecondition gamecorrespondingto the Russian
Cards problem. This approach can be compared to previous attempts using
epistemicmodel checking and dynamic epistemiclogic.
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We introduce a set of agents � = f N; A; B ; Cg and a set of cards D =
f 0; 1; 2; 3; 4; 5; 6g. A nice way to use propositions for this problem is to use ai

to indicate that agent A holds card i , and similarly for bi and ci . The set of all
dealsof cardsallowed in this problem is

� = f abcjdef jg jf a;b;c;d;e;f ; gg = f 0; 1; 2; 3; 4; 5; 6g^ a < b< c ^ d < e < f g

For a deal abcjdef jg, the cardsof A are a;b;c, agent B owns d;e;f and C holds
card f . We can thus say that in a situation with deal 012j345j6, the following
formula holds: a0 ^ a1 ^ a2 ^ b3 ^ b4 ^ b5 ^ c6.

An interpreted gameform

FRC = (� ; H; turn ; � ; P; � )

can now be de�ned as follows. As indicated above, we take � = f N; A; B ; Cg.
The set H is described by

H = f �; � ; (� ; x)j� 2 � ; x 2 f 0; 1; 2; 3; 4; 5gg

The variable x is usedto indicate a symbol that A communicatespublicly to
B and C. In the examplesabove, this symbol wasa sentencesuch as\I have 012
or 345". In a knowledgecondition game,it is su�cien t to useabstract symbols.
The agents B and C know when A usesa signal x, and thus the meaningof x.
We have chosento allow only six di�erent signals. It is not obvious beforehand
whether six signalsis enough,but we will answer this question later.

The function turn is de�ned such that turn (� ) = N and turn (� ) = A for all
� 2 �. The equivalencerelations � are de�ned such that agents know their on
cards,and the action selectedby A. Thus the following de�nition applies,where
X can stand for any agent, h for any element of H , and x for any signal.

h 6�X h0 if khk 6= kh0k

abcjdef jg 6�A a0b0c0jd0e0f 0jg0 i�( a;b;c) 6= (a0; b0; c0)

abcjdef jg 6�B a0b0c0jd0e0f 0jg0 i�( d;e;f ) 6= (d0; e0; f 0)

abcjdef jg 6�A a0b0c0jd0e0f 0jg0 i� g 6= g0

((abcjdef jg); x) 6�A ((a0b0c0jd0e0f 0jg0); x0) i�( a;b;c;x) 6= (a0; b0; c0; x0)

((abcjdef jg); x) 6�B ((a0b0c0jd0e0f 0jg0); x0) i�( d;e;f ; x) 6= (d0; e0; f 0; x0)

((abcjdef jg); x) 6�C ((a0b0c0jd0e0f 0jg0); x0) i�( g; x) 6= (g0; x0)

h � X h0 otherwise

For the set P of propositions, we take P = f ai ; bi ; ci ji 2 f 0; 1; 2; 3; 4; 5; 6gg.
The function � is de�ned as � ((( tuvjwxyjz); s)) = f at ; au; av; bw ; bx ; by; czg. Thus
in the situation (012j345j6; 1) the propositions a0; a1; a2; b3; b4; b5; c6 hold.
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The knowledge goal of this problem can then be expressedby conjunction
bknows^ cig. The positive part bknows expressesthat at B knows the deal of
cards.

bknows=
^

i 2 D

(bi ! K B bi)

The secondpart cig expressesthat C doesnot know for any card who holds it.
We call this a negative knowledgerequirement, or an ignorancerequirement.

cig =
^

i 2 D

(: K C ai ^ : K Cbi )

We can now solve the Russiancards problem by �nding a strategy that ful�lls,
for a suitable model F , the following question.

w(kcg(F; f A; Bg; ; ; bknows^ cig)) = 1

We can verify that there are strategies� = � f Ag such that

w(kcg(F; f A; Bg; ; ; bknows^ cig)) = 1

One such strategy is the following

0 2 � (abcjdef jg) i� abc2 f 012; 034; 056; 135; 146; 236; 245g

1 2 � (abcjdef jg) i� abc2 f 013; 026; 045; 125; 146; 234; 356g

2 2 � (abcjdef jg) i� abc2 f 014; 025; 036; 123; 156; 246; 345g

3 2 � (abcjdef jg) i� abc2 f 015; 024; 036; 126; 134; 235; 456g

4 2 � (abcjdef jg) i� abc2 f 016; 023; 045; 124; 135; 256; 346g

5 2 � (abcjdef jg) i� abc2 f 012; 035; 046; 136; 145; 234; 256g

It follows that \I have 012,034,056,135,146,236or 245" is a safestatement for
A to make when shehas one of thesesetsof cards. Another conclusionone can
draw is that in the RussianCards problem, a vocabulary of six di�erent signals
is su�cien t for A to communicate its hand safelyto B.

Note that the strategy describedabove is nondeterministic. For certain hands,
agent A has a choice of two actions. For instance � (012jdef jg) = f 0; 5g and
� (146jdef jg) = f 0; 1g. It is necessaryfor A to make truly random choices,and
not simplify its strategy by always goingfor oneaction in thesecases.To seethis,
supposethat agent A would decidethat it doesnot useaction 0 if another action
is available, and supposethat the card deal is 056j124j3. In that caseagent A
would useaction 0, and C would know that A can only have card deals034,056,
135,236,or 245. SinceC hascard 3 itself, it can deducethat the only card deals
that A can have are 056 and 245. Therefore C knows that A must have card
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5. When using this strategy, A should therefore make a genuine random choice
betweenthe two available actions, for instanceusing a coin ip.

Other strategiesfor A are deterministic. One deterministic strategy, that re-
quiresat leastsevendi�erent signals,is the strategy � 2, describedby the following
formula.

� 2(abcjdef jg) = f (a + b+ c) mod 7g

The idea is that agent A announcesthe sum of its cardsmodula 7. For instance
if A hascards024it shoulduseaction 6. When C hearsthat A haschosenaction
6, it can deducethat A has cards024, 015, 123, 256 or 346. In casethat C has
card 6, it would know that A haseither cards024,015or 123,but doesnot know
for any speci�c card that A has it. Thus we know that there are deterministic as
well asnondeterministic strategiesfor agent A.

In the existing literature it was already proven that the statement \I have
012,034,056,135,146,236or 245" canbe made. In Van Ditmarsch's paper [106] all
statements that canbeusedwhenA holds012aregiven. However Van Ditmarsch
doesnot present a completestrategy, and indeedit is not trivial to comeup with
a set of six statements that cover all possible card combinations of agent A.
Thus knowledgecondition gamesis a suitable framework for searching detailed
strategiesfor situations such as the RussianCards problem.

7.3.4 Comm unication Example

In this examplefour agents are communicating to each other. The agents take
turns in sendingout a message,a singlebit in this example. Not all agents can
seeall messages:agent A can only seewhat signal D sends,B what D sends,C
can seewhat signal A sends,and D can seewhat B and C send. The problem is
that B would like to know what messageC sends.

In order to model a situation with four communicating agents, we de�ne an
interpreted gameform FC = (� ; H; turn ; � ; P; � ) with the following components.

� � = f A; B ; C; Dg

� H = f �; a;ab;abc;abcdja;b;c;d 2 f 0; 1gg

� P = f pg

� The function turn is de�ned by

turn (� ) = A

turn (a) = B

turn (ab) = C

turn (abc) = D

wherea;b;c 2 f 0; 1g.
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� The equivalencerelations � arede�ned by the following equations. In these
equations,X can be any agent, and a;b;c;d and their primed counterprats
can be either 0 or 1.

h 6�X h0if khk 6= kh0k

abcd� A a0b0c0d0i� ad = a0d0

abcd� B a0b0c0d0i� bd= b0d0

abcd� C a0b0c0d0i� ac = a0c0

abcd� D a0b0c0d0i� bcd= b0c0d0

abc� X a0b0c0i� abc0 � X a0b0c00

ab� X a0b0i� ab00 � X a0b000

a � X a0i� a000� X a0000

� � (ab1d) = f pg and � (ab0d) = ;

>From the de�nition of the equivalencerelations oneseesthat A can seewhat D
does, B can seewhat D does, C can seewhat A does, and D can seewhat B
and C does. Also, agents can remember their own action, and they can seeall
messagesthat are sent.

In order to comeup with a knowledgecondition game,we assumethat the
three agents B; C and D act asa team. The goal is to make B know what action
C selects. It is not hard to seethat the three agents can do this: D can copy
the messageof A. Agent B can seethis copiedsignal, and thereforeknows what
C has done. In order to make this example more interesting, we add another
requirement: We assumethat the coalition of agents does not want A to know
what messageC sends.Sinceagent A canalsoseewhat agent D does,the copying
strategy sketched in this paragraphno longer works. The three agents must use
a more complicatedcoalition strategy.

The knowledgegoaldescribed above consistsof a positive and a negative part:
agent B must gain someknowledgeabout C's action, and agent A must not gain
knowledgeabout C. This complexgoal is described by the following formula � .

� = (K B p _ K B : p) ^ : (K C p _ K C : p)

Note that the proposition p corresponds to C's signal.
The question is whether the three-agent coalition has a strategy that makes

this goal true. In terms of knowledgecondition games,we thus would like to have
an answer to the following question.

w(kcg(FC ; f B ; C; Dg; f Ag; � )) = 1
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The answer to this questionis \y es". The following strategy � B CD is a successful
strategy in this knowledgecondition game.

� B CD (a) = f 0; 1g

� B CD (ab) = f 0; 1g

� B CD (abc) = f 0jb= cg [ f 1jb6= cg

This strategy is nondeterministic in the �rst two steps,but deterministic in the
last step. Agent B , who knows its own action, can deduce from D's action
whether the proposition p holds. Agent A cannot do this, sinceit doesnot know
what B hasdone. It is necessaryfor B and C that they make a nondeterministic
choice,otherwiseA could deducewhether p holds from knowing the strategy that
is used.

7.4 Computational Complexit y

Looking at computational complexity is interesting for two reasons. First of
all it tells whether a certain problem is `tractable', i.e. whether the problem
can be solved in practice. Secondly, it can tell you more about the problem.
It can tell you for instance whether something is a very generalproblem (i.e.,
whether the problem format can be used to formulate questions about many
di�erent situations, such as logic), or what featuresmakesa problem di�cult. In
this sectionwe look at the complexity of the kcg decision problem, which is the
problem of deciding for a gamekcg(F; � ; � ; � ) whether the �rst coalition � hasa
winning strategy. We look at this problem under variousassumptions,and report
four theorems,as follows:

� The �rst theoremis concernedwith the problemof decidingwhethera coali-
tion � canwin a knowledgecondition gamewith an empty setof opponents.
This is called the no-opponents knowledgecondition gamedecisionprob-
lem. It turns out that this problem is already NP-complete,and thus not
tractable.

� The secondtheorem states that the generalkcg decisionproblem is even
harder: with opponents the problem is � 2P-complete.

For the other theorems we use the alternative version of knowledge condition
gameskcg0.

� In the third theoremwe claim that the no-opponents kcg0 decisionproblem
is as hard as the generalproblem.

� Both problemsare NP-complete,which is the fourth theorem.
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In this chapter, weencode interpreted gameforms in an explicit way, by listing
all histories. In practice protocols are often speci�ed in an implicit way (for in-
stancein someform of sourcecode) and such representations canbeexponentially
more e�cien t.

7.4.1. Theorem. The problemto decide for givencoalitions F; � and formula �
whetherw(kcg(F; � ; ; ; � )) = 1 is NP-complete.

Pr oof. Assumethat F; � ; � aregiven. The empty coalition hasonly onestrategy
� ; . This strategy is such that u(F; � ; ) = F . Therefore

w(kcg(F; � ; ; ; � )) = 1 , 9� � m(u(F; � � )) j= �

A nondeterministic polynomial algorithm for this problem exists. Find or guess
nondeterministically a strategy � � . Sincea strategy encodesa subsetof actions
available in F , the sizeof � � is smaller than the sizeof F and thus polynomial
in the input size. Now calculate M = m(u(F; � � )), and verify for each state w
of M that M ; w j= � . The number of states in M is at most the number of
terminal histories of F , so kM k � kF k. All of this can be done in polynomial
time. Therefore,this problem can be solved using a nondeterministic polynomial
algorithm and this problem is in NP.

In order to show that the restricted kcg problem of the theorem is as hard
as any NP problem, we show that any instanceof the 3SAT problem described
on page 30 can be transformed into an equivalent restricted kcg instance. Let
� 3 =

V
i (ai _ bi _ ci ) be a propositional logic formula in conjunctive normal

form with three literals per clause. The literal formulas ai ; bi ; ci must be either
atomic propositions or negatedatomic propositions. We can construct an inter-
preted game form F with a single agent � = f Ag and a formula � such that
w(kcg(F; f Ag; ; ; � )) = 1 if and only if 9S : S j= � 3.

The model F = (f Ag; H; turn ; � ; P; � ) is constructed in the following way.
Let P3 be the set of atomic propositions occurring in � 3. The new set of atomic
propositions P contains two propositions for any old proposition: P = f x+ jx 2
P3g [ f x � jx 2 P3g. For each new proposition a history is created: H = f � g [
f epjp 2 Pg. The interpretation function is such that only the corresponding
atomic proposition is true: � (ep) = f pg. Furthermore turn (� ) = A. Agent A
cannot distinguish any end state: ep � A eq for all terminal historiesep and eq.

The formula � = � 1 ^ � 2 is a conjunction of two parts. The part � 1 expresses
that for each original atomic proposition p 2 P 3, either the positive proposition
p+ is consideredpossibleor the negative p� , but not both:

� 1 =
^

p2 P 3

(MA p+ _ MA p� ) ^ : (MA p+ ^ MA p� )

The idea is that the strategy that A usesis actually an assignment of valuesto
all atomic propositions in P 3. The condition � 1 expressesthat such assignment
must assigneither the truth value true (p+ ) or false(p� ) to each proposition p.
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A

p+ p� q+ q� r + r �

Figure 7.4: The model of 3SAT formula  

The � 2 part encodes the original formula � 3 =
V

i (ai _ bi _ ci ). In the next
de�nition weusea helper function f de�ned such that f (: p) = p� and f (p) = p+ .
Using this function we de�ne B as follows.

� 2 =
^

i

MA (f (ai ) _ f (bi ) _ f (ci ))

It is not hard to seethat any strategy � f Ag such that m(u(F; � f Ag)) j= � 1 ^ � 2

corresponds to an assignment S such that p 2 S if and only if p+ 2 � f X g(� ), and
that this assignment satis�es S j= � 3. Sincethe formula and model constructed
have sizesthat are linear with respect to the sizeof � 3, this is a polynomial re-
duction. Therefore, the restricted kcg problem is NP-hard. Sincewe have also
shown that the problem is in NP, we concludethat the restricted kcg problem is
NP-complete. �

As an example,considerthe satis�abilit y of the 3SAT formula  = (p _ : q_
r ) ^ (: q_ : p_ r ). This formula contains three propositions,sothe corresponding
interpreted gameform, depictedin �gure 7.4, contains six terminal histories. The
corresponding knowledgeformula is  K .

 K = (MA p+ _ MA p� ) ^ : (MA p+ ^ MA p� )^
(MA q+ _ MA q� ) ^ : (MA q+ ^ MA q� )^
(MA r + _ MA r � ) ^ : (MA r + ^ MA r � )^
MA (p+ _ q� _ r + ) ^ MA (q� _ p� _ r + )

A typical NP-completeproblem is to determinewhether a propositional logic
formula is satis�able. Suppose� is a formula with atomic propositionsx1; x2; : : : xn .
We can thus write � = � (~x) where the vector ~x consistsof all the x i . The sat-
isfaction problem can now be phrased as deciding whether 9~x : � (~x). In the
sameway we canformulate moredi�cult problems,by allowing morequanti�ers:
9y8x : � (~x; ~y) is the problem whereonehas to decidewhether there is an ~x such
that � (~x; ~y) is true for all ~y. This problem,calledSAT2, is a typical � 2P complete
problem [81, ch. 17]. It is widely believed, but not proven, that theseproblems
are strictly more di�cult than NP-completeproblems.
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A

B B B B

p+ r + p+ r � p� r + p� r � q+ r + q+ r � q� r + q� r �

Figure 7.5: The construction of the � 2P proof

7.4.2. Theorem. Deciding for givenF; � , � and � whetherw(kcg(F; � ; � ; � )) =
1, is � 2P-completeproblem.

Pr oof. First we have to prove that this problem is indeed in � 2P. In order to
do this, considerthe winning condition of a knowledgecondition in more detail.

w(kcg(F; � ; � ; � )) = 1 , 9� � 8� � m(u(u(F; � � ); � � )) j= �

Suppose that F; � ; � and � are given. It is possible to encode strategies of
� as assignments to a vector of propositional variables ~y, and the strategy of
� as assignments to ~x. One can then �nd a formula  (~x; ~y) that is true if
m(u(u(F; � � ); � � )) j= � . The size of this formula is polynomial in jF j + j� j.
The kcg decisionproblem is equivalent to a SAT2 problem:

w(kcg(F; � ; � ; � )) = 1 , 9~x8~y :  (~x; ~y)

Deciding whether 9~x8~y :  (~x; ~y), is a SAT2 problem, and is thus in � 2P.
The secondpart of the proof is to show that the kcgdecisionproblemis indeed

complete for this class,and this can be done by reducing SAT2 to a knowledge
condition game. The proof is similar to the previous NP-completenessproof,
but now involves two agents. Assumethat a SAT2 problem 9~y8~x :  (~x; ~y) is
given. We can assumethat  is in 3SAT form:  =

V
i (ai _ bi _ ci ). First

we de�ne an interpreted gameform F = (� ; H; turn ; � ; P; � ). Let � = f A; Bg,
and Z(H ) = f (a;b)j9i; j : a = x+

i or a = x �
i ; b = y+

j or b = y�
j g. The set H

contains all histories of Z (H ) and all pre�xes of these histories. The function
turn is de�ned such that A moves �rst, and then B moves: turn (� ) = A and
turn ((x �

i )) = B. The relations � A and � B are equal,and de�ned such that each
agent only knows the length of each history: s � A s0 , jsj = js0j. The set of
propositions P of the kcg problem is f z+ jz 2 (~x [ ~y)g [ f z� jz 2 (~x [ ~y)g. The
function � is de�ned by � (a;b) = f a;bg. This completesthe de�nition of the
interpreted gameform F . The number of terminal historiesof F is 2j~xj � 2j~yj, and
thus the sizeof F is polynomial in the sizeof the input problem.

We de�ne � = f Ag and � = f Bg. Next, we de�ne an epistemiclogic formula
� such that � can win the game kcg(F; � ; � ; � ) i� 9~x8~y :  (~x; ~y). Let � =
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: � B _ (� A ^ f ( (~x; ~y)). The part � B expressesthat the strategy of B corresponds
to an assignment to ~y. The part � A expressesthat the strategy of A corresponds
to a strategy for ~x. Finally, f ( (~x; ~y)) is a translation of the input formula  (~x; ~y).

� B =
^

j

((MB y+
j _ MB y�

j ) ^ : (MB (y+
j ^ y�

j ))

� A =
^

i

((MA x+
i _ MA x �

i ) ^ : (MA (x+
i ^ x �

i ))

f ( (~x; ~y)) = f (
^

i

(ai _ bi _ ci )) =
^

i

(f (ai ) _ f (bi ) _ f (ci ))

The function f is de�ned such that f (: p) = p� and f (p) = p+ . The size
of � is linear in the size of  . Therefore, this is a polynomial reduction. This
completesthe proof that the knowledgecondition gamedecisionproblem is � 2P-
hard. Sinceit is also in � 2P, we concludethat the problem is � 2P-complete. �

The construction of a model F is illustrated in �gure 7.5. This is the model that
you would get in the reduction of  (~x; ~y) where~x contains p and q and ~y consists
of r . The model is again relatively small: only two actions happen in each play
of this interpreted gameform. The �rst one is decidedby agent A, the second
oneby B.

In the two previous proofs, it is essential that the agents are aware of the
strategiesthey choose. Both constructionswould not work with the alternative
de�nition kcg0. One can hope that the computational complexity of the kcg0

decisionproblem would be lower. Indeedone can prove that in this caseit does
not matter whether there are opponents.

7.4.3. Theorem. Assumethat F; � , � and � are given. w(kcg0(F; � ; � ; � )) = 1
i� w(kcg0(F; � ; ; ; � )) = 1.

Pr oof. Let G = kcg0(F; � ; � ; � ) be a kcg0 decisionproblem. Notice that the
goal of coalition � is to choosea strategy � � such that U0(� � ; � � ) = (0; 1), where
U0 is the utilit y function of the game G. Since U0 is de�ned using universal
quanti�cation over the set of terminal historiesof u(u(G; � � ); � � ), the best thing
to do for coalition � is to make surethat this set is as large aspossible.In order
to achieve this, � � shouldchoosethe neutral strategy that allowsany action: The
strategy � with � (h) = A(H; h). Sincewe have assumedthat neutral agents can
do any action, we might as well assumethat the agents X 2 � are neutral, and
determinethe value of the gamew(kcg0(F; � ; ; ; � )) = 1. �

We seethus that the presenceof opponents is not relevant, and indeedin ATEL
no distinction between opponents and neutral agents is made. The question is
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now whether solving the kcg0 decisionproblem is still ashard as the original no-
opponents kcg problem. The answer is yes. The no-opponents kcg0 problem is
alsoNP-complete. However, the proof is di�erent in an interesting way.

7.4.4. Theorem. Deciding for givenF; � and � whetherw(kcg0(F; � ; ; ; � )) = 1,
is an NP-completeproblem.

Pr oof. We can prove that this problem is in NP by a similar argument asgiven
for theorem7.4.1. For the hardnessresult we againshow a reduction from 3SAT.
Assumethat � 3 =

V n
i=1 (ai _bi _ci ) is a propositional formula in conjunctivenormal

form with three literals per clause. Let P 3 be the set of atomic propositions
occurring in � 3. We de�ne an interpreted game form between two agents: an
agent Q that asksquestions,and an agent A that answers them. The proponent
coalition is � = f Ag and Q is assumedto be neutral. Every terminal history is of
the form (p;b;i; x), wherep 2 P 3, b2 f 0; 1g, i 2 f 1; 2; : : : ; ng and x 2 f ai ; bi ; ci g.
The �rst action p is chosenby agent Q and must be oneatomic proposition of � 3.
The agent A must then reply by giving a boolean value b. This indicates what
truth valueA hasin mind for p. Then agent Q chosesonetriplet (ai _ bi _ ci ) that
appears in � 3. Agent A then has to choosewhich of thesethree parts it thinks
should be true: either ai or bi or ci . The trick however is that � A is de�ned in
such a way that for all histories h and h0, agent A only knows the length of the
histories: h � A h0 i� jhj = jh0j.

A doesnot know, whenmaking its �nal decision,which answer it hasgiven on
its �rst turn. The agent thus risks giving inconsistent information. For instance
in the history (p;1; (: p _ q _ r ); : p) agent A �rst says that p is true, and then
says that it thinks that : p holds. The goal of agent A in the gameis to avoid
these inconsistent histories. We let P = f eg consist of one proposition and
de�ne for all p 2 P3 the interpretation function such that � ((p;1; i; : p)) = f eg,
� ((pj ; 0; i; pj )) = f eg and � ((p;b;i; x)) = ; otherwise. One can now considerthe
knowledgecondition gameG = kcg0(F; f Ag; ; ; : e). Agent A can win the game
G i� there is a satisfying assignment for � 3. �

The proof given above is very similar to a proof given by Schobbens [91] for
the NP-completenessof ATL with imperfect information. This corroboratesour
claim that this variant of knowledgecondition gamesis closely related to ATL
and thus to ATEL. The proof exploits the fact that in gameswherecoalitions do
not have perfect recall, it is very di�cult for agents and coalitions to coordinate
their own actions.

7.4.1 Tractable Varian ts

In the previous section we proved that, in general, the kcg decisionproblem is
not tractable. In this sectionwe identify someeasiercases.
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7.4.5. Theorem. Let F be an interpreted gameform with perfect recall, � any
coalition of agentsand � an epistemicformula. Deciding whetherw(kcg0(F; � ; ; ; � )) =
1 can be done in polynomial time.

Pr oof. Let M = (� ; W; R; P; � ) = m(F ) be the end state model of F . We can
compute the set S = f w 2 W j M ; w j= � g in polynomial time. De�ne a utilit y
function U such that U(w) = 1 i� w 2 S and U(w) = 0 otherwise. The pair F; U is
now an extensive gamewith perfect recall. The optimal solution � for this game
can be computed in polynomial time [58]. If the expected payo� of � is exactly
one, then w(kcg0(F; � ; ; ; � )) = 1, otherwisew(kcg0(F; � ; ; ; � )) 6= 1. �

For perfect recall frameworks and the variant kcg0 the decisionproblem is thus
tractable. One might wonder whether the sameclaim can be madefor kcg. The
answer is no, becauseonecanmodify the NP-completenessproof for kcg in such a
way that it usesa perfect recall interpreted gameform. The modi�cation is that
onehastwo agents, A and A0, sothat A is the agent that choosesa strategy, and
A0 is the agent that cannot distinguish end states and occurs in the knowledge
condition. In generalonecan always �nd a perfect recall interpreted gameform
that is equivalent for the kcg decisionproblem by choosinga freshagent for each
decisionnode, and usefresh agents in the knowledgecondition.

Instead of asking whether there are interpreted game forms F that make
decisionproblemseasy, onecan alsoask whether there are easyformulas � . The
answer to this question is yes. To seehow this works, we �rst formulate the
notion of positive formulas and negative formulas formulas.

7.4.6. Definition. For any p 2 P, the formula p is both positive and negative.
Falsum ? is also both positive and negative. If � is positive and  is negative,
then � !  is negative. Vice versa,if  is positive and � is negative, then � !  
is positive. If � is positive then K X � is positive.

Positive and negative formulas are both called monotone formulas, becauseone
can prove that they preserve truth in the following way. Suppose that M =
(� ; W; � ; P; � ) and M 0 = (� ; W 0; � 0; P; � 0) are modelssuch that W 0 � W and � 0

and � 0 are the restrictions of � and � to W 0. In this casewe say that M 0 is a
submodel of M . Suppose� + is a positive formula, and � � is a negative formula.
Then the following statements can be proven.

M ; w j= � + implies M 0; w j= � +

M 0; w j= � � implies M ; w j= � �

The proof of thesestatements is done by induction over the formula structure.
The interesting step involves the knowledge operator. Suppose that M ; w j=
K X � + . By de�nition this meansthat 8v 2 W : w � X v =) M ; v j= � + . Since
W 0 is a subsetof W, this meansthat 8v 2 W 0 : w � 0

X v =) M ; v j= � + . Using



148 Chapter 7. KnowledgeCondition Games

the induction hypothesiswe obtain 8v 2 W 0 : w � 0
X v =) M 0; v j= � + and thus

M 0; w j= K X � + .
Knowledgecondition gameswith monotoneformulas are easierto solve than

generalknowledgecondition games.

7.4.7. Theorem. The problemto decide for given F; � , � and a monotonefor-
mula � whetherw(kcg(F; � ; � ; � )) = 1 can be solved in polynomial time.

Pr oof. We prove the casewhere � is a positive formula. The argument for
negative formulas is similar. Recall that by de�nition, w(kcg(F; � ; � ; � )) = 1
i� 9� � 8� � 8w 2 W it holds that m(u(u(F; � � ); � � )) ; w j= � where W is the set
of worlds in the model m(u(u(F; � � ); � � )). Since � is a positive formula, we
know that m(u(F; � � )) ; w j= � implies m(u(u(F; � � ); � � )) ; w j= � . The best thing
for coalition � to do is to use a strategy that does not eliminate any action.
They should usea neutral strategy � 0 such that u(F; � 0) = F . This strategy is
described by � 0(h) = A(H; h).

For coalition � things are exactly opposite. Suppose that � 1 and � 2 are
strategiesso that � 1 is more speci�c than � 2. Formally, this meansthat 8h :
� 1(h) � � 2(h). The monotonicity of � implies that m(u(F; � 2)) ; w j= � implies
m(u(F; � 1)) ; w j= � . Coalition � thus does best be choosing the more speci�c
strategy � 1. For coalition � we thus only have to consider the most speci�c
strategies.Thesemost speci�c strategiesarewhat onecancall pure, becausethey
selectexactly oneaction at each decisionpoint. A backward induction argument
can be used to show that there are as many pure strategiesfor F as there are
terminal histories in F . We can try all pure strategies� p to seeif one satis�es
8w : m(u(F; � p)) ; w j= � . This givesan algorithm that needstime O(kF k2 � k� k).
The �rst kF k is causedby the fact that we needto considerall pure strategies.
The remaining term kF k � k� k is the time neededto determinewhether for all w
it is the casethat u(M ; � p); w j= � . The decisionproblem can thus be done in
polynomial time.

For negative formulas the roles of � and � are interchanged. For a negative
formula � , coalition � can usethe neutral strategy � 0. The opponent coalition �
should now try all pure strategies� p. �

7.5 Related Work

Knowledgeconditionsgamesaregamesbasedon epistemiclogic, that canbeused
for modelling gamesabout knowledge. This makesthem very similar to the logic
ATEL [102, 103]. This logic is an extensionof epistemiclogic with operators to
talk about group abilities and time. It is basedupon ATL, discussedin chapter
2.
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The languageof ATEL contains temporal operatorssimilar to CTL and know-
ledgeoperators. The temporal operators are always precededby an agent oper-
ator.

7.5.1. Definition. Let � be a set of agents, and P a set of atomic propositions.
The logic ATEL contains formulas � generatedby the following rule. In this rule,
p is a typical element of P, X 2 � and � � �

� ::= p j � ! � j ? j hh� ii  j K X �

 ::= 2 � j � U�

This logic is interpreted over alternating epistemictransition systems.Theseare
de�ned astuples (P; � ; Q; � ; � ; � ). As usualP is a set of atomic propositionsand
� a setof agents. The setQ is a setof statesthe systemcanbe in, and � : Q ! P
adds propositions to thesestates. For any agent X the relation � X � Q � Q is
an equivalencerelation, and � : Q � � ! 22Q

assignsto each agent in each state
a set of setsof states. Each agent can chooseoneset of states,and the next state
of the systemwill be from that set.

An example would be a system where Q = f 0; 1; 2; 3; 4g. Suppose that
� (0; X ) = ff 1; 2g; f 3; 4ggand � (0; Y) = ff 1; 3g; f 2; 4gg. Agent X cannow choose
f 1; 2g and Y can choosef 2; 4g. They make thesechoicessimultaneously. The
next state of the systemwill be 2, becausethat is the only commonstate in their
chosensets. It is necessaryto put someconstraints on � so that a next state can
always be chosen.

The interpretation of this logic usesthe notion of strategy to interpret the
coalition operator hh� ii . A strategy for � is any function that makes a choice
� � (X ; q) 2 � (q; X ) for any agent X 2 � in any state q 2 Q. Basedon a strategy
� � , onecan de�ne the set of possiblewalks W(� � ) through Q so that all choices
for agents X 2 � are madeasrecommendedby the strategy. This set of walks is
usedin the following interpretation of ATEL.

M ; q j= ? never

M ; q j= p wherep 2 P i� p 2 � (v)

M ; q j= � !  i� M ; q j= � implies M ; q j=  

M ; q j= K X � i� 8(q; q0) 2� X : M ; q0 j= �

M ; q j= hh� ii � i� 9� � : 8w = v::: 2 W(� � ) : M ; w j= �

M ; w j= 2 � i� 8n > 0 : Q; w(n) j= �

M ; w j= � U i� 9m > 0 : M ; w(m) j=  and

8m > k > 0 : M ; w(k) j= �
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A main advantageof ATEL over kcgis that ATEL extendstemporal logic, and
can thus be usedto expressdi�erent kinds of goalssuch as eventually achieving
something,or avoiding somestate forever. When this logic was presented it was
reported that the logic hasa low model checking complexity [102]. Unfortunately
this only holdsif oneallowsstrategiesthat arenot uniform (seede�nition 3.3.13).
If one demandsuniform strategies,model checking becomesNP-complete,even
without using the knowledgeoperator [91]. Another point of discussionfor this
logic is the fact that the existenceof a strategy, used in the interpretation of
hh� ii � , is a very weak condition. One can comeup with situations were hhX ii �
holds but onewould not expect X to achieve � [54, 55, 109]. Thus, it seemsthat
the interpretation of this logic still needssomesorting out, and indeed ATEL
currently receivesa lot of research attention [3, 87].

Knowledge condition gamesis a less versatile veri�cation framework than
ATEL, becausekcg does not allow complicated temporal reasoning. Only the
special caseof knowledgeat the outcomestageof the protocol is studied. Know-
ledge condition gamesalso do not allow for concurrent moves. This has the
advantage that knowledge condition gamesare easier to understand, and that
the complications that arise in the interpretation of ATEL do not arise in the
context of knowledgecondition games.An interesting di�erence betweenATEL
and kcg is that in kcg nondeterministic (and hencearguably \ric her") strategies
are used,whereasATEL usesdeterministic strategies.

One can also compare knowledge condition gamesto variants of dynamic
epistemic logic, described on page54, sincedynamic epistemic logic allows rea-
soning about the e�ect of actions on the knowledgeof agents. Indeed the quiz
master problem is inspired by Van Ditmarsch' analysis of the Russian Cards
problem [106].

7.6 Conclusion

By combining protocols and knowledgeconditions into games,one can express
properties of multi-agent protocols relating to security and secrecy. In a know-
ledgecondition game,onecanmake �ne distinctions betweenfor instanceneutral
and opponent agents, and onecan give exampleswherethis distinction is signif-
icant. Therefore, thesegamesare a promising direction for future research into
the interaction betweenknowledgeand strategies.

The complexity results reported in this chapter draw an interesting picture.
There seemsto be a computational cost for assumingthat agents know strate-
gies. The single agent decisionproblem is already intractable. The presenceof
opponents makes it even harder to compute whether a coalition can guarantee
a property. If we drop this assumptionand reformulate the notion of winning a
knowledgecondition game, then the extra complexity of adding opponents dis-
appears. However, the problem without opponents is still NP-completeand thus
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intractable, but for di�erent reasons. The complexity proof is no longer based
upon formulating a di�cult knowledgeformula, but on the hardnessof coordi-
nating in an interpreted gameform without perfect recall.

Future research could focus on comparing decisionproblems for knowledge
condition gamesto other game-theoreticdecisionproblems,in order to establish
what exactly the complexity cost is of consideringknowledge goals. It would
also be interesting to �nd out under which assumptionsknowledge condition
gamescan be solved in polynomial time. Other directions include looking at
knowledgecondition gamesfrom a logical viewpoint by searching for axioms,and
to considerthe mechanismdesignproblem to �nd an interpreted gameform with
given properties.





Chapter 8

Entrop y and Priv acy

8.1 In tro duction

Information is valuable,and thusagents do not always want to give it away. Both
organisationsand individuals often want to keepcertain information private. At
the sametime they might want to act upon it. Doesthis reveal the information?
In this chapter we study how agents should act if they want to maximize their
utilit y, while at the sametime not giving away too much information. Unlike
the previous chapter, in this chapter we do this basedon explicit probabilities.
We de�ne two classesof gamesin which the utilit y for each agent doesnot only
depend on the payo� of the chosenaction, but alsoon the information properties
of the strategy used. These gamesare called minimal information gamesand
most normal gamesand might be applied to the following situations.

� Supermarketsande-commerceshopsregisterwhat is bought by each of their
customers. Customersknow this and even assist in this processby using
so-called`bonus cards' (Alb ert Heyn) or `club cards'(Tesco). Nevertheless,
many customersare worried about their privacy. They would prefer it if
the shop knew lessabout them. Customerscan do somethingto minimize
the knowledgeof the shop. First of all they can make their shopping less
regular (i.e. randomly buy items sothat the shopis not surewhich products
the customeractually uses).Secondly, they can sign up for more than one
card(account) or swap cardsbetweeneach other. On the Internet, deleting
cookiesat random intervals and using a di�erent IP number can have the
samee�ect.

� In a secondprice auction it is optimal to bid exactly asmuch as you think
the item is worth [63]. However, you might have spent a lot of time to
estimate the value of the item, soyou do not want to reveal your estimate.
Sinceyour bid hasto bepublic, it seemsthat you might do better by bidding
slightly random. By modeling this asa minimal information game,onecan
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computehow oneshould randomise.A similar argument applieswhen you
sendout an arti�cial agent to do your shopping. If the agent is sent over
an insecurenetwork, everyone can inspect the sourcecode and thus the
bidding strategy of the agent. You might not want to sendan agent that is
exactly optimal for your preferences,in order to hide your preferences.

� Many public placesare now monitored by closedcircuit television systems.
If you cometo one such place regularly, the cameraattendants learn a lot
about your habits and thus about you. You feelthat this is a breach of your
personalprivacy, and decideto hide your habits by changingyour behaviour
often, for instanceby goingto di�erent shopsin a di�erent order every time.
This situation can alsobe modeledas a minimal information game. Again
one can translate this example to the domain of arti�cial agents and the
Internet.

� Considernow the caseof a criminal who wants to steal from a shopguarded
by a closedcircuit televisionsystem. Hewants to look likea regularshopper,
but has di�erent goals. He thus wants to behave so that he can steal the
most, while at the sametime appear to be a normal shopper. This can be
modeledas a most normal game.

As the similar setting of the last two examplessuggest,minimal information
gamesand most normal gamesare related to each other. From theseexamples
it should also be clear that we assumethat the strategies that agents use are
publicly known. This assumptionmakesour resultsstronger(if you have privacy
while your strategy is public, you will have even moreprivacy whenyou can keep
your strategy secret).

Privacy has received a lot of attention from economistsand in legal settings.
Somekey sourceshave beencollectedon a website [1]. The work in this chapter
di�ers from theseeconomicpapers for two reasons.First of all we only deal with
personalinformation privacy, whereasthe word `privacy' alsohasother meanings.
The seconddi�erence is that thesepapers try to explain the needfor personal
privacy in terms of economicutilit y. Odlyzko for instance relates privacy and
price discrimination [77]. It is assumedherethat privacy is a fundamental value,
that is not instrumental to any gain. Privacy itself is a good causethat can be
enjoyed directly.

Distributed constraint optimization techniquescan be usedby agents to solve
coordination problems such as scheduling a meeting at the most suitable time
and place. In theseapplications agents have to reveal information on their pref-
erencesfor the meeting, but this information is also privacy-sensitive [33, 67].
In this application domain there is also a trade-o� betweensolution quality and
privacy, and this can also be modeled using entropy [33]. Thus, privacy-related
research certainly haspractical applications and it would be interesting to study
thesefurther. Therefore,we agreewith Maheswaran and others' [67] `call to arms
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to improve privacy protection algorithms and further research on privacy'. The
results of this chapter can be seenas a responseto this call, sincethe strategies
that are developed in this chapter can be used within privacy protection algo-
rithms. For examplethe agent in the examplesin section8.7 usea randomised
strategy, computedusing the results of this chapter, in order to make it as hard
as possiblefor observers to learn their preferences.

The gamesde�ned in this chapter usea soft (probabilistic, quantitativ e) ap-
proach towards information. They deal with probabilities explicitly, and can
make subtle distinctions betweenpossible,likely and almost certain events. This
soft approach can be contrasted to the hard approach (discrete, qualitativ e) of
logic and model checking. When taking a hard approach in protocol analysis,one
is only interested in what is possibleand what not, with a complete disregard
for the relative likelihoods of di�erent outcomes. Both the soft and the hard
approach have been used for multi-agent systems. The use of epistemic logic
to understand the gameof Cluedo [106] is an exampleof the hard approach, as
well as other logical approaches to reasoningabout knowledge and knowledge
change [6, 9, 32, 102, 115]. Recent work on privacy preserving auctions [18]
and work on the Dining Cryptographer problem [19] or the RussianCards prob-
lem [106,112]canalsobeclassi�ed as`hard'. At the sametime there is somework
on reasoningabout uncertainty [43, 60] that combines logic and a soft approach
to information. The soft approach is more detailed than the hard approach, be-
causeit givesexact probabilities. In certain circumstancesthis is an advantage.
The hard approach can tell us that agents do best by randomising their strat-
egy, but doesnot indicate the exact probabilities of an optimal strategy. On the
other hand the higher level of abstraction of the hard approach makes it easier
to interpret the results.

A quantitativ e approach, basedon information theory, can also be used to
look at natural languagepragmatics. Seefor instancethe ongoingwork by Van
Rooij [116]. Another way to useentropy in a game-relatedsetting is in a searching
gamesuch asMastermind [59].

In this chapter, the focus is on strategic games,whereasin most previous
chapters of this dissertation we use extensive games. The reasonis that it is
quite complicated,starting with the notation, to do a similar exercisefor extensive
games.It is alsonot necessary:An extensive gameis a more detailed description
of a strategic game, so the results of this chapter can be applied to extensive
games.

The layout of this chapter is as follows. Section 8.2 describes a detailed
example problem. The next section, section 8.3, introducesbasic information
theory notions such as entropy. In section 8.4 we de�ne minimal information
games,and calculate the best strategies in these games. In section 8.5 we do
the samefor most normal games. Section8.6 shows that theseconceptscan be
used for de�ning new solution concepts. As application is discussedin section
8.7. Finally, the conclusionsare presented in section8.8.
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8.2 Example

The following problem serves as an example. Alice (agent 1) needsto buy one
box of breakfast cerealsevery week. Every week sheis facedwith the following
choice: whether to buy Allgrain (A), Barley (B) or Cornak es(C). Alice is not
indi�eren t to which brand she eats. In fact she likes A better than B and B
better than C, as is indicated by the following matrix of utilities.

action A B C
utilit y 3.0 2.0 1.0

If Alice is solely interestedin maximising her expectedutilit y, sheshouldbuy
A every week. However, Alice knows that the shop is watching her shopping
behaviour closely, and sheis concernedabout her privacy. Shedecidesthat the
decisionthat shemakesshould be private, and shecan achieve this by ipping a
coin and letting her decisiondepend on this coin ip. This way the shopcannot
predict her decision.

Alice �rst attempts to usethe following random strategy.

action A B C
probability 0.98 0.01 0.01

If Alice usesthis strategy, then the shop doesnot know anything about her
decision:All three actionsmay occur with positive probability. At the sametime
her expectedpayo� is still very high, becausethe suboptimal actionsoccur with a
very low probability. Problem solved, soit seems.But this is not the wholestory.
Even though the shopdoesnot gain any knowledge,it doesgain information from
this strategy. If the shop learns, from repeatedobservation, that Alice usesthis
strategy, then it is quite certain that shewill buy A. The shophas gainedquite
a lot of information. Therefore,the indicated strategy is not the right strategy if
oneanalysesthe situation using information theory.

Onecanarguethat no newtypesof gamesareneeded,becauseonecancapture
Alice's wish for privacy in the utilit y function of somemodi�ed pure or mixed
strategy game.This is not the casebecausein thesegamesthe utilit y of strategies
is determinedsolelyby the utilit y of singleactions: The utilit y function must be
of the form U = � ap(a)u(a), wherep(a) is the probability of action a, and u(a)
the payo� of this individual action. Privacy and uncertainty are not reducible to
certain individual actions,and thereforeno suitable pure or mixed strategy game
can be found.

A more sophisticated idea is to model privacy by adding an extra player G
that tries to guessAlice's actions. In such a game,Alice would gain a high payo�
by randomisingher actions,and thus optimal strategiesfor this gamewould also
be privacy-preservingstrategies. The following payo� matrix givessuch a game.
The parameters� 1; � 2; � 3; and � 1; � 2; � 3 are all positive.
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Gn Alice A B C
A � 1; 3:0 � � 1 0; 2:0 0; 1:0
B 0; 3:0 � 2; 2:0 � � 2 0; 1:0
C 0; 3:0 0; 2:0 � 3; 1:0 � � 3

This strategic game,in which both agent choosetheir strategy independently at
the sametime, hasbeendesignedsuch that agent G hasincentives� i to choosethe
sameaction asAlice, while Alice receivespenalties� i if G has `guessed'her next
action correctly. This gameis thusarguablya good model for a situation in which
A wants privacy. It is however not clearhow oneshouldestimateall the variables
that oneneedsfor this larger game. Theseconsiderationshave convinced us that
it is easierto treat privacy as an independent aspect of an agent's utilit y.

8.3 Information Theory

Information theory is the �eld of sciencethat dealswith the measurement of in-
formation [28]. It hasapplications in signalprocessing,communication networks,
cryptography and error correction codes. In this chapter we useinformation the-
ory, and its central notion entropy, to estimate the amount of information in
strategies.Strategieswill be modeledasstochastic variablesranging over a �nite
set of actions, so we de�ne entropy over stochastic variables. The entropy of a
stochastic variable is the amount of randomnessin, the disorderof, or uncertainty
about the value that the variable will take. The concept of entropy was intro-
duced by Shannon[95], and it is widely seenas the most natural measurefor
information [28]. We de�ne the following function f (x; y), that is helpful for the
de�nition of entropy. Let lg be the base2 logarithm.

f (x; y) =

8
<

:

0 if x = 0 and y = 0
1 if x > 0 and y = 0
� x lg y if x � 0 and y > 0

For a discreterandom variable X we de�ne the entropy E(X ), which is measured
in bits, in the following way.

E(X ) =
X

k

f (p(X = k); p(X = k))

This de�nition of entropy does not work for continuous random variables. A
di�erent de�nition for continuous variables also exists [95, p. 35], basedon in-
tegration rather than summation. Since this is slightly more complicated and
continuous random variables are not used in this chapter, the details are not
discussedhere.

A random variable X with valuesin the domain f 1; 2; : : : ; mg can be speci-
�ed by giving a vector of length m with the probabilities of each value: (p(X =
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Figure 8.1: The function E((x; 1 � x))

1); p(X = 2); : : : ; p(X = m)). For a mixed strategy, the numbers f 1; 2; : : : ; mg
represent the availableactions. A requirement for probability measuresonstochas-
tic variables is that the probabilities should add up to 1. We can thus only use
vectorsx that indeedadd up to 1, so it is convenient to de�ne the set of all these
vectors. The set de�nition of the set P m from page40 is repeatedhere,and we
alsode�ne Qm as the set of nonzerovectors.

Pm = f x 2 [0; 1]m j
X

i

x i = 1g

Qm = f x 2 (0; 1]m j
X

i

x i = 1g

The set Pm contains all vectorsof length m that add up to 1, and Qm contains
all vectorsthat add up to 1 and do not take the value0. The set Qm is important
in someof the proofs, but often we work with the more generalset P m . We can
apply the notion of entropy to probability vectorsx 2 P m .

E(x) =
X

k

f (xk ; xk)

In �gure 8.1 the function E((x; 1 � x)) is displayed (here we apply the function
E to a probabilty vector (x; 1 � x) that dependson a variable x 2 [0; 1]). Thus
the �gure shows the entropy of a two-valued random variable (y1; y2) = (x; 1� x)
, where x is the probability of the �rst action, and 1 � x the probability of the
secondaction. As you can seethe entropy in the two pure strategies, namely
(1; 0) and 0; 1 is zero. The entropy is maximal if both actions are equally likely,
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at (0:5; 0:5). In the context of strategies,a strategy with a higher entropy leaves
observerswith moreuncertainty, and thus givesthe agent that usesthat strategy
more privacy. Below we give �v e examplesof entropy. The example strategy
vectorscan all be seenas strategiesover three basicactions. A strategy (a;b;c)
contains the probability a of selectionthe �rst action, b for the secondaction and
c for the third.

E((1=3; 1=3; 1=3)) = 1:585bits

E((0:5; 0:25; 0:25)) = 1:5 bits

E((0:5; 0:5; 0)) = 1 bit

E((0:98; 0:01; 0:01)) = 0:161bits

E((1:0; 0; 0)) = 0 bits

Pure strategies, in which only one action gets a positive probability, have an
entropy of zero bits. The entropy function is bounded. It cannot be negative,
and a vector x of length m canhaveat most an entropy of lg m. It hasthis entropy
if all the entries x i are equal to 1=m, thus if the vector represents a stochastic
variable with a uniform distribution.

The secondidea that we usefrom information theory is relative entropy [28].
The function E r el(x; y) canbe usedto comparetwo probability vectorsx; y 2 P n .
The underlying idea is that E r el(x; y) measureshow much di�erence one would
notice if probability vector x is usedinstead of y for selectingactions. In order
to compute this di�erence, we add up the di�erences for each action k. The
probability xk corresponds to the probability that action k is chosen,given that
strategy x is used:xk = P(kjx). Similarly yk = P(kjy). UsingBayes' law onecan
calculatethe relative likelihood of strategy x insteadof strategy y whenobserving
that action k is chosen:P(xjk)=P(yjk). Assumingthat the a priori probabilities
P(x) and P(y) are equal, onecan derive that this is xk=yk .

P(xjk)
P(yjk)

=
P(x \ k)P(k)
P(y \ k)P(k)

=
P(kjx)P(x)
P(kjy)P(y)

=
P(kjx)
P(kjy)

This observation is the motive behind the following de�nition.

E r el(x; y) =
X

k

f (xk ; yk=xk)

The function E r el almost behaves as a distance function or metric. It is never
negativeandonly zeroif x = y. It alsosatis�es the triangle inequality. It is in�nite
if for somek it is the casethat xk > 0 and yk = 0. The only di�erence between
this function and a distancefunction or metric is that E r el is not symmetric. In



160 Chapter 8. Entropy and Privacy

many casesE r el(x; y) 6= E r el(y; x).

E r el((0:5; 0:5); (0:75; 0:25)) = 0:2075bits

E r el((0:75; 0:25); (0:5; 0:5)) = 0:1887bits

E r el((0:9; 0:1); (0:75; 0:25)) = 0:1045bits

E r el((0:75; 0:25); (0:9; 0:1)) = 0:1332bits

If x hasa higher entropy than x0, then on averagefor a random vector y it is the
casethat E r el(y; x) < E r el(y; x0). It is harder to notice a di�erence betweeny and
a high entropy vector x than to notice a di�erence betweeny and a low entropy
vector x0.

8.4 Minimal Information Games

The next de�nition of a minimal information gameaims to capture the following
situation. Agents choosea mixed strategy with two goalsin mind. First of all,
they want a high payo�. Secondly, they want privacy. They feel that they have
more privacy if others are more uncertain about the action they will choose,and
thus they prefer strategies with a high entropy. These gamesthus model the
situation whereagents have a fundamental desirefor privacy.

We have to specify how the agent would like to trade privacy against payo�.
This is governed by a parameter � > 0 that indicates the value of privacy. It
expresseshow much expectedpayo� the agent is willing to trade againsta bit of
privacy. The higher � , the more the agent valuesprivacy.

8.4.1. Definition. Let A be a m1 � m2 : : : � mn multi-matrix and � > 0. The
minimal information gameMi � (A) is a tuple (� ; f Sg� ; U) where� = f 1; 2; : : : ; ng,
the strategy setsare SX = PmX and UX (~s) =

P
i sX

i AX
i (~s) + � E(sX )

The parameter � regulateshow much all the agents value the fact that there
is uncertainty over their next action. If we would allow � = 0, then the game
becomesa mixed strategy game: Mi 0(A) = Mx(A). As � approachesin�nit y, the
actual payo� becomeslessand less important. It would have been possibleto
choose� di�erently for each agent, but this would have madethe de�nition less
clear.

As an example,we considerthe shoppinggamefrom the introduction. This
gamehas only one agent, that has three options A; B ; C with respective payo�s
3; 2; 1. The optimal strategiesfor the minimal information gamewith di�erent
valuesof � is given in the next table. It also lists the utilit y of s that the agent
would get in the mixed strategy gameMx(A) for the given strategy s and the
utilit y that the agent would get in the minimal information gameMi � (A).
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� p1 p2 p3 Mx(A) Mi � (A)
0:1 0:999 4 � 10� 5 2 � 10� 9 3:0 3:0
0:5 0:876 0:117 0:015 2:852 3:168
1:0 0:665 0:244 0:090 2:575 3:775

The best payo� that the agent can get is 3:0 by only choosingthe �rst action.
However this would result in no privacy, becauseif everybody knows that the
agent usesthis strategy, then any observer knows beforehandwhat the agent will
do every week. For a low value of � the utilit y of s in Mi � (A) is very closeto
this optimal value of 3. For higher values, the averagepayo� without entropy
becomeslower. We could call this the cost of privacy. From the table we can
seethat if the agent valuesprivacy at one unit per bit (� is expressedin units
per bit) then the agent doesbest by paying 0:425in order to obtain 0:775bits of
privacy.

The question is of coursehow we can calculate the strategiesthat maximize
the utilit y in minimal information games. For the linear functions of the mixed
strategy gamesthis is a solved problem, but for morecomplicatedfunctions, such
as the utilit y function of a minimal information game, this can be di�cult. In
the next theorem the solution for this optimisation problem is shown.

8.4.2. Theorem. Let Mi � (A) be a minimal information gameand ~s a strategy
pro�le. The set bX (~s) is a singleton f bg suchthat

bi =
2� � 1A X

i (~s)

P
k 2� � 1A X

k (~s)

Pr oof. Let Mi � (A) = (� ; f SX gX 2 � ; U) be a minimal information game. We
have to prove that the set bX (~s) contains one element, and that that element is
described by the given formula. We �rst show that all points in bX (~s) are interior
points. Then we derive an equationthat any best responsemust satisfy, and show
that this equation hasa unique solution, namely the onegiven in the theorem.

Let n be the number of actions that agent X can choose from. Take any
vector ~x 2 SX and assumethat ~x 2 P n n Qn . We are going to show that
there is a better vector ~y, and thus ~x is not a best response. There is some
i such that x i = 0 and some j such that x j 6= 0. We will show that there
is some � such that ~y = [[x � i ; � ]� j ; x j � � ] is a better vector: UX ([~s� X ; ~y]) >
UX ([~s� X ; ~x]). To show this, note that the utilit y function UX is continuous and
di�erentiable. Note further that �

� x i
UX ([~s� X ; ~x]) = + 1 and �

� x j
UX ([~s� X ; ~x]) <

+ 1 . Therefore, for su�cien tly small � , the gain from raising x i outweighs the
potential loss from lowering x j . Therefore, for su�cien tly small � we have that
UX ([~s� X ; ~y]) > UX ([~s� X ; ~x]) and thus ~x =2 bX (~s).

Now supposethat b2 bX (~s). We know that b2 Qn . Take i; j 2 f 1; 2; : : : ; mg
astwo di�erent indices. Sincebis optimal, it shouldnot bepossibleto increaseUX



162 Chapter 8. Entropy and Privacy

by increasingbi while decreasingbj , and thereforefor any optimal point it holds
that �

� bi
UX ([~s� X ; b]) = �

� bj
UX ([~s� X ; b]). We canusethis asa starting point for the

following link of equations. First we compute the derivative �
� bi

UX ([~s� X ; b]).

�
� bi

UX ([~s� X ; b]) =

�
� bi

(
X

j

bj AX
j ([~s� X ; b]) + � E(~b)) =

AX
i (~s) + �

�
� bi

(E(~b)) =

AX
i (~s) + � (� lg bi � lg e) =

AX
i (~s) � � lg bi � � lg e

Using this derivative one can reduce the equation given above in the following
way.

�
� bi

UX ([~s� X ; b]) =
�

� bj
UX ([~s� X ; b]) ,

AX
i (~s) � � lg bi = AX

j (~s) � � lg bj ,

AX
i (~s) � AX

j (~s) = � lg bi � � lg bj ,

2A X
i (~s)

2A X
j (~s)

=
b�

i

b�
j

Sinceb 2 Pn it holds that b sums up to
P

i bi = 1. For any b 2 b(~s) one can
�nd somepositive constant c such that bi = c� 2� � 1A X

i (~s) . It now follows from the
above equation that for any bj it is the casethat bj = c2� � 1A X

j (~s) . We can now
calculate

P
k bk = 1 = c

P
k 2� �A X

k (~s) and thus we know that 1
c =

P
k 2� � 1A X

k (~s) .
Thus, we have proven that there is a unique point b 2 bX (~s) which satis�es the
equation in theorem8.4.2 �

8.4.3. Theorem. Every minimal information gameMi � (A) hasa Nashequilib-
rium.

Pr oof. Let f be the function from S1 � : : : � Sn to S1 � : : : � Sn that returns the
strategy vector with the best responsesfor each agent. Thus, f is the function
that for each x returns the uniquepoint f (x) such that f (x) 2 b(x). The previous
theoremshowsthat this is a continuousfunction. The setS1 � : : : Sn is topological
isomorphic to someclosedsphereBm . We can now use Brouwer's �xed point
theorem, which tells us that every continuous function f : Bm ! Bm must have
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a point x with f (x) = x [4]. We thus obtain a strategy vector x with f (x) = x,
and thus a point x such that x 2 b(x). This point is a Nash equilibrium. �

This proof is related to Nash'soriginal proof that Nash equilibria exist in mixed
strategy gamesby the fact that both theoremscan be proven using Brouwer's
�xed point theorem. The di�erence however is that the mixed strategy games
have linear payo� functions. Minimal information gamesdo not have linear payo�
functions, so in this proof the �xed point theorem is usedin a di�erent way.

The two theoremsof this section,theorm 8.4.3di�er in their constructiveness.
Theorem 8.4.2 gives a concreteway to compute optimal responsesin minimal
information games.This theorem can thereforebe applied immediately. Indeed
we have usedthe result formula of this theoremto computethe optimal strategies
in the table on page160. Thus onecan immediately apply this theorem in order
to decide how to act, or to predict how others will act, in situations that can
be modelled as minimal information games. Indeed in section 8.7 we apply the
theoremagain to �nd strategiesfor agents.

Bach or Stra vinsky

Theorem8.4.3is not immediately applicable,becauseit doesnot tell onehow one
should �nd a Nash Equilibrium. It is thus not constructive in a practical sense.
However it is important to know that a Nash equilibrium exists, sincethis can
be a strong motivation for �nding one. In the next examplewe usethe following
bi-matrix A for de�ning a two-personminimal information game.

2,1 0,0
0,0 1,2

This matrix is often used in a gamecalled Bach or Stravinsky[79, p. 16]. The
story behind these payo�s is that both agents can decide where they want to
go tonight, either to a Bach concert or a Stravinsky concert. Both agents enjoy
each others company, and hencethey receive zeropayo� if they do not go to the
sameconcert. The �rst agent prefersBach and thus experiences2 units of value
when both agent choosethe �rst option. The secondagent valuesBach at 1 and
Stravinsky as 2.

Since we are interested in privacy, we assumethat both agents value their
privacy. Hencewe de�ne a minimal information gameMi � (A), where� = 0:5. As
wehaveseenin theorem8.4.2it is optimal for agents to randomizetheir behaviour
somehow. Theorem8.4.3tells us there is at least oneNashequilibrium. We have
usedcomputer search to �nd one for the stated value of � .

Agent prob. action 1 prob action 2
1 0.148 0.851
2 0.042 0.957
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One can seethat in this Nashequilibrium Stravinsky is the most likely outcome.
Both agents choose action 2 most often. However they do not do this with
absolute certainty, in order to leave someuncertainty for observers. The exact
probabilities aredi�erent for both agents sincethey haveslightly di�erent payo�s.

8.5 Most Normal Games

So far we have discussedthe situation in which the agents try to protect their
privacy against an opponent interested in their next action. In this section we
look at another situation, in which agents try to hide their preferences. It is
assumedthat an averagestrategy for `normal' usersis given. One agent however
hasdi�erent preferencesfrom the normal users,but doesnot want to be identi�ed
as not normal. Therefore, the agent is searching for a strategy that appearsas
normal as possibleand maximizesits payo� at the sametime.

We approach the problem in exactly the sameway aswe have approached the
�rst problem. Wede�ne most normal gamesMn � (A) that dependon a parameter
� expressinghow important normal behaviour for the agent is.

8.5.1. Definition. Let A be a m1 � m2 : : : � mn multi-matrix, let � > 0, and
let ~t be a strategy vector for the gameMx(A). The most normal gameMn � (A; ~t)
is a tuple (� ; f SX g; U) where � = f 1; 2; : : : ; ng, the strategy setsare SX = PmX

and UX (~s) =
P

i sX
i AX

i (~s) � � E r el(sX ; tX )

The parameter� again determinesthe trade-o� betweenselectingactionswith a
high payo� and acting normal.

8.5.2. Theorem. Let Mn � (A; ~t) be a most normal gameand ~s a strategy pro�le
for this game. The set bX (~s) is a singleton f bg suchthat

bi =
tX
i 2� � 1A X

i (~s)

P
k tX

k 2� � 1A X
k (~s)

Pr oof. Let Mn � (A; ~t) be a most normal game,~s a strategy pro�le and X 2 �
an agent. Supposethat b2 bX (~s) is the best responsefor agent X and let i beone
of B 's actions. If t i = 0 and bi 6= 0, then the relative entropy becomesin�nite,
and the utilit y thus in�nitely low. This cannot be optimal, thus if b maximizes
the utilit y, then t i = 0 implies bi = 0. Thus, in this casethe optimal point is not
an interior point. It follows that if t i = 1, then for any optimal strategy b we
must have bi = 1.

Considernow the casewheret i > 0. Wecalculatethe derivative of the relative
entropy function.

�
� bi

E r el(b;tX ) =
�

� bi

X

i

� bi (lg tX
i � lg bi ) = lg bi + lg e � lg tX

i
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We seethat if bi > 0 approaches zero, then this derivative becomesnegative
in�nit y. If bi is su�cien tly small, then we would lower the utilit y UX ([~s� X ; b]) by
decreasingbi further. Therefore,for any optimal value of b, it cannot be the case
that t i > 0 and bi = 0.

Sincewe have shown that t i = 0 implies bi = 0, it remainsfor us to �nd the
optimal vector in the spaceS = f b 2 [0; 1]m j

P
i bi = 1 ^ (t i = 0 ! bi = 0)g.

The previousargument has shown that b is an interior point of this set S. Such
points can only be optimal if �

� bi
UX ([~s� X ; b]) = �

� bj
UX ([~s� X ; b]) for any pair i; j

with t i ; t j > 0. The next computation will show that there is a unique point
satisfying this condition. Sinceany continuousfunction on a closeddomain must
have a maximum, this point b will maximizeagent X 's utilit y in the normal form
game.

First we calculate the derivative.

�
� bi

UX ([~s� X ; b]) =

AX
i (~s) � �

�
� bi

E r el(b;tX ) =

AX
i (~s) � � (lg bi + lg e � lg tX

i ) =

AX
i (~s) � � lg bi � � lg e+ � lg tX

i

Now �nd the points b wherethe derivatives �
� bi

UX and �
� bj

UX are equal.

�
� bi

UX ([~s� X ; b]) =
�

� bj
UX ([~s� X ; b]) ,

AX
i (~s) � � lg bi + � lg tX

i = AX
j (~s) � � lg bj + � lg tX

j ,

� lg(bi =bj ) � � lg(tX
i =tXj ) = AX

i (~s) � AX
j (~s) ,

bi

bj
=

tX
i 2� � 1A X

i (~s)

tX
j 2� � 1A X

j (~s)

Again wecanchoosec such that bi = ctXi 2� � 1A X
i (~s) andshow that 1

c =
P

k tX
k 2� � 1A X

k (~s) .
This leadsto the next formula.

bi =
tX
i 2� � 1A X

i (~s)

P
k tX

k 2� � 1A X
k (~s)

This formula givesus bi = 1 if t i = 1, and bi = 0 if t i = 0. Therefore,this formula
givesus the optimal strategy for any normal form game. �
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Discussion

One consequenceof the theorem is the following observation. If a certain action
i is not consideredby normal agents (tX

i = 0) then the non-normal agent should
not consideraction i either (bi = 0). If one had useda hard, logical approach
one could have reached the sameconclusion. In the most extreme caseone can
considerthe casewherenormal agents usea pure strategy. In that casethe non-
normal agent has to usethe samepure strategy. If the non-normal agent values
all actions equally, he alsodoesbest by copying the normal strategy. In all other
casesthe best strategy for the non-normal agent is di�erent. Apparently the
agent doesbest by always taking somerisk and getting a higher utilit y.

8.6 Equilibrium Re�nemen ts

By introducing minimal information gameswe have introduced a gamewith a
new kind of utilit y function. For small values of � the game Mi � (A) is very
similar to the mixed strategy gameMx(A). One can, with someimagination, see
a Nash equilibrium x of Mi � (A) as a solution of Mx(A). In that case,one has a
newsolution conceptfor mixed strategy gamesMx(A). Such a solution x of some
gameMi � (A) is not a Nash equilibrium of Mx(A), but an approximation of it.
How good this approximation is dependson the parameter � . We can de�ne a
Nashequilibrium by letting � approach zero. This way, we can de�ne a `minimal
information' equilibrium.

8.6.1. Definition. The strategy pro�le x is a minimal information equilib-
rium of Mx(A) i� there is a sequence� 1; � 2; : : : of positive numbers such that
lim i !1 � i = 0, a sequencex1; x2; : : : such that x i is a Nashequilibrium of Mi � i (A)
and lim i !1 x i = x.

8.6.2. Theorem. Every mixed strategy gameMx(A) hasa minimal information
equilibrium.

Pr oof. De�ne the sequence� 1; � 2; : : : by � i = 1=i. This sequenceconverges
to zero. By theorem 8.4.3 each game Mi � i (A) has someNash equilibrium yi .
The strategy spaceS1 � : : : � Sn is a closedand boundedsubsetof Rm for some
m. Therefore, sinceany closedand bounded subsetof Rm is compact [121] we
derive that every sequencein S1 � : : : � Sn has someconverging subsequence.
Let x1; x2; : : : be a converging subsequenceof y1; y2; : : : and let x be the limit
of lim i !1 x i . Let � 1; � 2; : : : be the corresponding subsequenceof � 1; � 2; : : :, so
that x i is a Nashequilibrium of Mi � i (A). When � approachesin�nit y, the utilit y
function of Mi � i (A) convergesuniformly to the utilit y function of Mx(A). Since
x i is always maximizing each agents utilit y in Mi � i (A), it must be the casethat x
maximizesthe utilit y of Mx(A) for each agent. Therefore,x is a Nashequilibrium
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of Mx(A). �

Every minimal information equilibrium is a special caseof a proper equilib-
rium as de�ned by Myerson, and therefore it is also a trembling hand perfect
equilibrium [72]. Thesere�nements can thus be motivated (if one wants to) by
an appeal to privacy minded agents. Perhapsthere are other applications where
oneneedsa responseconceptthat selectsinterior solution points, for instanceto
avoid division by zero. In that casethe minimal information best responsesseem
suitable.

8.7 Telecom Net work Example

Modern technology allows governments and other large institution to closelyob-
serve the movement of individuals. In the introduction we mentioned closed
circuit televisionsystems,but it is alsopossibleusing mobile telephonenetworks
and in the near future RFID tags. In this section we therefore assumethat an
observer can monitor the behaviour of agents in a small part of a city. Three
di�erent scenarioshave beenimplemented in a visual computer simulation, that
allows the user to take the role of the observer. The user can try to identify
what group agents belong to basedon their behaviour. The agents have been
programmed to optimize their behaviour using the optimal strategiesof theo-
rems 8.4.2 and 8.5.2. Explicit strategiesthat are basedon these theoremsare
for instancegiven in table 8.7 on page169. Di�eren t agents value their privacy
di�erently and thus usea di�erent value for � . It takesmore time to spot agents
that usea higher valueof � , sothe useof optimal strategiesfor privacy protection
is e�ective in making life harder for an observer. However if the observer has no
time constraints, it can ultimately identify all agents.

The simulation is available asa Java applet on the world wide web, at the ad-
dresswww.bluering.nl/sieuwert/programs/priv acysim/simprivacy.html . One can see
several agents walking betweentheir homeand several shops.The simulator cur-
rently contains three levels. Each level is a new puzzleor challengeto the user.
The user can seeall agents, and monitor which placesthey visit. The user also
knows what groupsof agents exist, and what the preferencesof each group are.
The goal is to guessthe group of each agent.

All agents useoptimal strategiesfor hiding their preferences.One might say
that the agents know that they are being watched, and act in order to make it
di�cult to identify to which groupthey belong. In other words,the agents act asif
they areplaying a minimal information gameor a most normal game. The agents
are however not in competition with each other, but act independently. Below
we quickly describe the settingsof the �rst two levels. For the third level a longer
description is given, in which the strategiesusedby the agents are described in
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Figure 8.2: Sim Privacy

details.

Level 1: Ric h or Poor

The �rst level shows part of a city with two shops. One shop is a cheap shop,
the other oneis an expensive shop. Two groupsof agents live in this city, namely
poor agents and rich agents. The poor agents prefer to go to the cheap shop,
and the rich agents prefer the expensive shop. However, all agents do not want
anybody to know whether they are rich or poor. Therefore,all agents randomize
their shoppingbehaviour, and visit both shopswith someprobability. The goal
of this level is to determinefor each agent whether it is a rich or a poor agent.

The main learningpoint from studying this level in the simulation is that these
puzzlescanbe solved. Sincethe agents adapt their strategy towards their payo�s
(we have shown that it is optimal for them to do so in theorem8.4.2), onegains
someinformation from observingthe agents behavior. If oneis allowed to observe
the agents long enough,onewill gain enoughinformation to determine the type
of each agent with any level of probability. The simulation thereforeshows that
in the long run it is impossibleto protect onesprivacy againstobserverswho have
this much detailed information about onesdaily behaviour. If onebelievesin the
universalhuman right to privacy, it is thereforenecessaryto prevent organisations
from collectingarbitrary largeamounts of data, or to storesuch data for inde�nite
amounts of time.

Level 2: Citizens and Criminals

In this level there are again two groups of agents. The citizens shop in any of
the four shops,and occasionallyhave to go to the bank to withdraw money. The
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citizensgo to each shopwith equalprobability. The criminals have other sources
of income, and thus have no needto visit the bank. However the criminals do
not want others to know that they are criminal, so sometimesthey do walk to
the bank to keepup appearances,but lessoften than they go to the shop. How
often they go to the shop dependson their level of paranoia: Normal agents go
lessthan paranoid agents.

This level demonstratesthe inuence of the parameter � on the behaviour of
agents. The four di�erent types of agents, from normal to paranoid, have the
samepreferencesbut value privacy di�erently. Anyone who has solved this level
hasexperiencedthat paranoidagents areharder to identify . Onecanthusprotect
onesprivacy better by acting more randomly.

Level 3: Cro oks and Spooks

In the third level there are four shops and three groups of agents. The four
shops are the walmart, drugstore, spy shop and the bank. The three groups
are citizens, who are by all consideredto be normal, the crooks, who are the
unorganisedcriminals, and the spooks, who are the organisedcriminals. The
utilit y valuesof each type of agent is given in the table below.

group walmart drugstore spy shop bank
citizens 0 1 1 2
spooks 1 1 2 1
crooks 1 1 2 1

The spooksand the crookshave the samepreferences.The di�erence between
those two groups is that the spooks know what the citizens do, whereasthe
crooks have no idea what normal is. Therefore,the crooks usea strategy that is
asrandom aspossible,whereasthe spooksusea strategy that is assimilar asthe
citizens as possible. The crooks can be said to be playing a most normal game,
and the spooks a minimal information game.

In the next table oneseesthe strategiesthat the agents usein this simulation.
The �rst column lists the type of an agent. The secondlists the value of � that
that agent uses. For each agent type, there is a strategy for a not-so paranoid
agents (� = 1) and for more paranoid agents (� = 1:5). The remaining columns
list the probability that each agent visits a location.

type � walmart drugstore spy shop bank
citizens 1 0:072 0:196 0:196 0:534
citizens 1:5 0:115 0:224 0:224 0:436
spooks 1 0:054 0:146 0:399 0:399
spooks 1:5 0:06 0:165 0:322 0:45
crooks 1 0:174 0:174 0:475 0:174
crooks 1:5 0:202 0:202 0:393 0:202
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For computing the strategy of agent types citizens and crooks we have used
theorem 8.4.2 to compute the optimal strategies. For the spooks agents we have
usedtheorem8.5.2,wherethe strategy of the non-paranoidcitizenshasbeenused
asthe normal strategy. Onecanseein the table that for all three typesof agents,
the moreparanoidagents choosea strategy with a higher entropy. They act more
random. It is also clear that the spooks use a strategy that is more similar to
the citizens strategy, and hencethey are harder to distinguish from the citizens.
For instancethe crooksgo often to walmart, but the other two typesof agents do
not. By determining the frequencyof walmart visits, an observer can determine
whether an agent is a crook or not.

In general,animated simulations such asthis onecan be usedto demonstrate
certain phenomenain a more convincing and entertaining way than calculations
can. One can simulate much larger systemsthan one can solve by analytical
means,and thus simulations can be of more realistic sizethan examplescan. On
the other hand, a proof-by-simulation lacks rigour. One can argue that simula-
tions do not lead to scienti�c knowledgein a way that proof does.

This simulation has beenprogrammedin Java, a languagevery suitable for
interactive graphical programs. No speci�c agent systemslibrary hasbeenused.
The sourcecode is available on request.

8.8 Conclusion

Two new kinds of gameshave been de�ned. First of all, minimal information
games,in which agents want to maximize the uncertainty that observers have
over their next move. Secondly, most normal games,in which agents want to
behave as similar as possible to an existing `normal' agent, while maximizing
their payo�. The de�nitions usethe conceptsentropy and relative entropy which
are borrowed from information theory. In two theorems it is shown what the
optimal best responsesare in thesegames.Theseturn out to be unique in each
situation, and to depend continuously on the payo� matrix and the opponent
strategies.From this continuity onecan derive that Nashequilibria exist in these
games.

Minimal information gamescan be used to analysesituations with privacy-
minded agents. If agents attach somevalue to privacy, the best strategy always
givesthem someprivacy.

In most normal games,the situation is slightly more complicated. How well
the non-normal agent X can do dependsvery much on the strategy that normal
agents use. If the normal agents usea pure strategy, then X hasno choicebut to
adopt the samestrategy. The situation however becomesa lot better if the normal
agents are privacy-minded. In this casethey choosea high-entropy strategy, and
this leavesthe wanting-to-be-normalagent a lot of room to pursueits own agenda.

One can extend the work in these gamesin several ways. It would be in-
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teresting to look at experimental data, to seewhether most-normal or minimal-
information strategiesare usedin the real world. Secondly, onecould implement
thesestrategiesin order to obtain privacy. The questionis then whether the soft
approach to privacy is what userswant.

On a theoretical side, it seemsthat thesegamesgive approximations to the
Nash equilibrium with useful technical properties. Two of theseproperties are
continuity of the best response function and the fact that best responsesare
always interior.





Chapter 9

Conclusion

For many people,veri�cation of software soundslike watching paint dry: Appar-
ently necessary, but quite dull comparedto the creative processthat camebefore
it, and the creative usesthat come after it. The averageuser of the veri�ed
software hardly learnsanything from watching the process:either the program is
�ne, or a bug is found and �xed, after which the program is also �ne.

This dissertation is intented to convince the readerthat veri�cation of multi-
agent protocols is in fact very interesting. First of all becausemulti-agent pro-
tocols are widely used,sometimesat unexpected places. The debate about the
proposedconstitution for the European Union which took place in May 2005,is
essentially a multi-agent protocol problem: what voting procedureshouldbeused
so that every country and person is represented fairly? Often one can capture
requirements such asfairnessin di�erent ways, and decidingwhat is the best way
is not a meretechnical matter.

The secondreasonwhy multi-agent protocols are so interesting is that rea-
soningabout multi-agent systemsis complicatedand can have surprising results.
In software veri�cation, the state-space explosion problem is often cited as the
biggestobstacle: the systemsto be veri�ed often have a hugenumber of di�erent
states. Multi-agent protocolscan have a small number of states,especially when
theseprotocolshave to be explainedto and usedby humans. On the other hand
the requirements for theseprotocols can be subtle and di�cult to interpret: in
many cases,propertiessuch asfairnesscanbe hard to de�ne and verify. Di�eren t
logics basedon extensive gameshave been presented in the previous chapters.
Using three examples,a voting problem, the joint decisionproblem and the inde-
pendent decisionproblem, we have shown that more complex logicscan be used
to identify subtle di�erences in protocols. Thesemore expressive logicscan have
lessfavourable computational properties, making veri�cation intractable. Thus,
besidessocial arguments, there are also technical arguments in favour or against
certain approaches.

An important distinction, that has beenborrowed from gametheory, is the
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one betweenperfect information protocols and imperfect information protocols.
In the �rst classof protocols all actions and all facts about the current state
are public. Knowledge about these aspects thus does not play a role in these
protocols. In imperfect information protocols knowledge is vitally important.
Chapters 4 to 5 are focusedon perfect information protocols, the �nal chapters
7 and 8 on imperfect information protocols.

9.1 Perfect Information Proto cols

Modal logic is a very useful tool for studying perfect information protocols. It
is easyto de�ne logicsthat deal speci�cally with theseprotocols. The �rst logic
presented, efl , can be usedto reasonabout which coalitions can enforcewhat
kind of outcome. It can alsobe usedin practice for veri�cation of existing proto-
cols. Unfortunately it is not very expressive: Many protocols that feel di�erent
satisfy the sameefl properties.

Onecanextendthe languageefl in order to makemoreinterestingproperties.
This leads to two meaningful extensions: efls and efln . The �rst language
can expressmore complex reasoninginvolving side e�ects of adopting certain
strategies: \Suppose I know that you want this, can I then do that?". The
secondlogic, efln , can be usedfor expressingnestedproperties such as \I want
to allow you to allow me to do this". For thesethree logicswe have determined
the computational complexity of model checking. A fourth languageeflns that
combines featuresfrom efln and efls has also beende�ned. This languageis
however is hard to interpret in a conservative way.

In chapter 6 a moreexplicit logic is usedfor reasoningabout preferences.The
languagehas been extendedwith operators reasoningabout gametrees, which
makesit possibleto usethis logic for analysinggame-theoreticreasoningin detail.
As an examplethe conceptof backward induction hasbeenanalysedin this logic.

These di�erent logics illustrate that in order to understand a multi-agent
protocol, one has to understand the background assumptions: what do agents
know about each other and the situation. Onealways hasa choicehow to analyse
a protocol. Even protocols with perfect information, that are often seenas the
easiestcase,can be di�cult to compare.

9.2 Imp erfect Information Proto cols

It is well-known that knowledgeand information are very important for agents,
and it is also commonto usegametheory for analysing the interaction between
agents with di�erent interests. It is therefore a `logical' next step to consider
gamesabout information . A knowledgecondition gameis a gamebetweentwo
groups of agents: one group wants to reach a certain knowledgesituation, the
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other group wants to stop the �rst group from reaching this situation. This situ-
ation that the groupswant to reach or avoid is speci�ed usingordinary epistemic
logic. The fact that a well known logic is usedmakesknowledgecondition games
easierto understand,comparedto logical languageswith newoperators. The fact
that knowledgecondition gamesonly model the knowledgeof the agents in the
�nal situation is alsoan advantage: no temporal reasoningis necessary. Research
in temporal logic has shown that reasoningabout time is complex in itself, so it
is not wise to make things even more di�cult by mixing the aspectsof time and
strategies.

The complexity results for knowledge condition gamesindicate that games
about knowledgecan be intractable. They becometractable whenmonotonefor-
mulasare used. The complexity is thus causedby the fact that in epistemiclogic,
one can mix knowledge demands(Somebody knows something) and ignorance
demands(Somebody doesnot know something).

It often makessenseto assumethat agents areaware of the strategiesthat are
used,for instanceof strategiesthat are so often usedthat they becomeconven-
tions, or when dealing with security protocols. One can alsoassumethat agents
do not know strategies.This hasbeende�ned askcg0. This alternative de�nition
makesdecisionproblemsslightly easier,and is thus a convenient assumption.

In a knowledge condition game where ignorance is demanded,the optimal
strategy is often a random one. The coalition of agents that wants somebody to
be ignorant shouldchoosetheir actions in a random, unpredictableway. The fact
that making random choicescan be optimal has beenknown to gametheorists
before [11], but sometimessurprisespeople: ipping a coin is not often recom-
mendedfor important decisions.The chapter on knowledgecondition gamesdoes
not tell what kind of coin oneshoulduse. It doesnot tell what exactprobabilities
oneshould useto choosebetweenactions,becausethe logical approach doesnot
work with explicit probabilities.

In order to be able to say something about those probabilities, chapter 8
introducesminimal information games. In these gamesagents have two goals:
getting an optimal payo� by choosing the best actions, and randomizing their
behaviour in such a way that an observer is kept ignorant about what the agent
might do in the future. In order to measure`ignorance', information theory is
used. I have computed optimal strategiesfor thesegames,and thesestrategies
give detailed information how one should randomize. The sameis done for the
related notion of most normal games. In thosegames,agents want to behave as
similar to `normal' as possible,but alsogetting the highest payo�. Thus, in this
chapter the questionabout what coin oneshould useis solved.

Comparing thosetwo approaches,onebasedon logic and onebasedon infor-
mation theory, onecanmake two observations. On the onehand onecansay that
the logical approach is more general.Using epistemiclogic onecan expressgoals
that mix knowledgeand ignorance.The gamesbasedon information theory only
deal with ignorance. In generalone needsa logical approach in order to form
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complexgoals. On the other hand, a logical approach has the disadvantage that
it is more abstract: important details, such as the exact probabilities, are often
omitted.

9.3 Results

The next table shows the complexity results stated in this dissertation. The
problemsin the classPSPACE arede�nitely not tractable: no e�cien t algorithms
for theseproblems exist. The sameis probably true, in practical terms, of the
problemsin the class� 2P: Even though � 2P problemsare theoretically easierto
solve, all problemsin both classesare too hard to be solved in practice. The class
NP contains problemsthat are also believed to be hard. No e�cien t algorithms
for these problems are known, but sometimesone can �nd heuristics for those
problems. The problemsin the �nal class,P, are called tractable. They can be
solved in reasonabletime.

number class members
1 PSPACE efl model checking with linear representation
2 efln model checking
3 � 2P kcg decisionproblem with opponents
4 NP kcg without opponents
5 kcg0

6 P efl model checking
7 efls model checking
8 kcg for monotoneformulas

It is clear that analysinggamesis a complexa�air: many of theseproblemsare
intractable. The intractabilit y has di�erent causes. Sometimes,in cases3 and
4 for instance, the presenceof opponents can make a problem much harder. In
other cases,namely 1 and 2, the situation with one agent is already complex.
This is a bit surprising.

In the chapter on logic it hasbeenexplainedthat theoremproving and model
checking are both important techniquesfor multi-agent protocol veri�cation. In
this dissertation the following completeproof systemsare presented.

description logic pro of system
e�ectivit y logic efl SE F L

preferencelogic L P SP

alternative preferencelogic L 2
P S2

P
�nite tree logic L T ST

The �rst result, that there is a completeproof systemfor efl , supports the hope
that logical mechanism design is possible. The completenessproof sketches an
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algorithm for constructing protocols. It would be interesting to implement and
test this procedurein the future.

Preferencelogic L P is a more natural languageto expresspreferencesthan
propositional logic. One can usepreferencelogic to say things such as \co�ee is
better than tea", instead of the lessinformative \co�ee is good" or \tea is bad".
A proof systemfor this logic exists. This logic has beenusedfor constructing a
logic L sol, that can be usedfor characterising game-theoreticsolution concepts.
Interesting future work would be to usethis preferencelogic in an update frame-
work.
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Samenvatting

Multi-agent protocollenzijn collectiesvan regelsdie aangeven hoe meerderepar-
tijen met elkaar in contact kunnen treden. Een veiling bijvoorbeeldheeft strikte
regelsdie aangeven hoe er geboden kan worden. Ook de mogelijke zetten van
eenschaakpartij zijn vastgelegdin eencollectie regels,en vormen dus eenmulti-
agent protocol. Tenslottezijn ook verkiezingeneenvoorbeeldvan eenmulti-agent
protocol. Dezeactiviteiten hebben gemeendat ze in het echte leven, zonderon-
dersteuning van computers gedaankunnen worden. Men kan zich echter ook
voorstellen dat computerprogramma'smeedoen aan veilingen en verkiezingen,
misschien zelfsmet of tegenmenselijke spelers. Aangeziencomputerprogramma's
nog niet zo intelligent zijn als wetenschappers somswensen,is het vaak van be-
lang dat protocollenaanbepaaldeveiligsheidseisenvoldoen. Men wil dus kunnen
nagaanaan welke eigenschappen eenprotocol voldoet.

Het doel van mijn onderzoek is om methodes te ontwikkelen waarmeemen
multi-agent protocollen kan vergelijken en analyseren. Om dit te kunnen doen
moet meneenonderscheid maken tussenverschillende klassenprotocollen,enook
verschillende soorten eigenschappen onderscheiden. Protocollen waarin iedere
`speler' geheelop de hoogte is van de huidige toestand(schaak bijvoorbeeld)wor-
den behandeldin het eerstedeelvan dit proefschrift. Voor dezeprotocollengeldt
dat de eigenschappen die te beschrijv en zijn in de logische taal van hoofdstuk 4,
e�cien t door eencomputerte veri� •erenzijn. Ook kan menformeelredenerenover
dezeeigenschappen. Echter, ook voor dezerelatief eenvoudigeprotocollenzijn er
eigenschappen, die uitgedrukt kunnen worden in logische talen uit hoofdstuk 5,
waarvoor automatische veri�catie erg complex is. Over sommigeingewikkeldere
eigenschappen kan men echter wel formeel redenerenmet het bewijssysteemuit
hoofdstuk 6.

Er zijn ook veel protocollen waarin niet alle spelers van alle details van de
situatie op de hoogte zijn. Denk bijvoorbeeldaan spelenzoalsStrategoof Poker.
In deze protocollen is informatie over de huidige situatie, en kennis over wat
andere spelers weten een belangrijke factor. In hoofdstuk 7 worden situaties
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behandeldwaarin het doel van bepaaldespelersis om bepaaldekennis juist wel
of juist niet te hebben. De complexiteit van het analyserenvan dit soort situaties
kan hoog zijn, afhankelijk van welke aannamesmen maakt.

In al dezeeerstehoofdstukkenwordt kennisalseenkwalitatieveeigenschap be-
handeld: als iets wat men wel of niet heeft. In het laatste hoodstuk gebruiken we
kwantitatiev e methoden uit de informatie-theorie, om de hoeveelheidinformatie
is bepaaldesituaties te minimaliseren. Er worden spelengede�nieerdwaarin het
de bedoeling van bepaaldespelers is om zo weinig mogelijk informatie bloot te
geven, en voor dezespelersworden de optimale strategie•en berekend. Een mo-
gelijke toepassingvan dit onderzoek ligt in de bescherming van privacy tegen
privacy-schendendetechnologie.



Abstract

The research goalbehind this dissertationis to developways to compareand anal-
ysemulti-agent protocols. In order to do soonehasto distinguish di�erent types
of protocols,and onehas to distinguish di�erent classesof properties. Protocols
that canbemodelledasimperfect information gameformsare thereforediscussed
in the �rst part of this dissertation, whereasprotocols that can be modeled as
imperfect information are the subject of the secondpart. In both parts we de�ne
conceptsthat help us to analyseand understand protocols, demonstrate these
conceptson exampleprotocols, and investigate the computational properties of
theseconcepts.

In chapter 4, a logic for reasoningabout what coalitions can achieve in proto-
cols is presented. For this logic, a completeproof systemis given, and the model
checking complexity is determined.

In chapter 5, logicsfor reasoningabout more complicatedproperties are pre-
sented. Speci�cally we comparethe model checking complexity of logics for rea-
soningabout side-e�ectsand nestedabilities.

In chapter 6, protocols are analysedusing logics that deal with preferences
explicitly. For two di�erent variants of preferencelogics we give completeness
proofs, and as an example,a characterisationof backward induction is given.

Protocolswith imperfect information are the topic of the secondpart of this
dissertation. In theseprotocols the knowledgethat agents have plays a leading
role. One can look at knowledgein a qualitativ e way, using epistemiclogic, and
this is done in chapter 7. In this chapter, it is shown how the computational
complexity of protocol veri�cation, depends on the presenceof opponents, on
whether strategiesare known, and on the monotonic nature of the knowledge
requirements. In chapter 8, it is shown that one can also model knowledgein a
quantitativ e way. Using this approach, we computeoptimal strategiesfor privacy
preservation.
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