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Chapter 1
Intro duction and musical background

1.1 Questions to address in this thesis

Music hasa long history, being closelyrelated to languageand dance,and being
part of every culture. Sincetonal pitch structures sut as scalesand chords have
ewlved in music tradition, it is not always clear wheretheir origin lies. For ex-
ample,what is the reasonthat the Westerndiatonic scaleconsistsof 7 notes, the
Japanesepenatonic scaleof 5 notes, etc.? Are thesenumbersarbitrary and have
they arisenfrom di erent cultures, or are these numbers related and have they
arisen from a common origin? Many people beliewe that the latter hypothesis
is true and much researt has beendonein a variety of areasto comeup with
a possibleanswer. A researt areaof “ewlutionary musicology' exists to study
the analysisof music ewlution, both its biologicaland cultural forms, seeWallin,
Merker, and Brown (2000)and Mithen (2005). Sethareg1999)proposedthat con-
sonancedependson timbre and concludedthat scalesin di erent cultures have
therefore arisenfrom the timbre of their musical instruments. Another possible
answer to the questionon the origin of scaleshasto do with equaltemperamert.
Equal temperedscaleshave beenconstructedfor seeral reasonsfor example,to
appraximate certain ratios from just intonation, and for its modulation properties.
Finally, there are investigationsin the well-formednessor geometricalgoodness
of scales(Carey and Clampitt 1989), which has led to models that cover large
numbers of existing scales.This thesisdiscusseghe latter two approadesto in-
vestigatea commonorigin of musical scales.Besidesexplaining a possibleorigin,
theseapproatiesmay also serne as an evaluation of certain existing scales,and
nally , the scalesresulting from these approadescan be interpreted as sugges-
tions for new scalesthat have not beenexplored until now. Within thesetwo
approades,the represemation for pitch structures that is used,is a geometrical
tone space. A new notion of well-formednessis proposedand discussed,after
which two nal chaptersare dedicatedto computational applications thereof.
The term “pitch structures' from the title, refersforemostto musical scales,
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2 Chapter1. Introduction and musial backgound

whoseorigin and well-formednessare addressedch. 3,4). Furthermore it refers
to chords whosewell-formednesds also addressedch. 4), which is in turn used
to model the preferredintonation of theseitems (ch. 5). Finally, the term pitch
structures refersto a lesserextert to the music-theoretical notion of harmonic
reductionswhich is alsointerpreted in terms of well-formednesgch. 4).

Methodological preliminaries that are usedin this thesisinclude mathemat-
ics, computation and empirical testing. The questionthat may ariseis: in what
eld doesthis researth t? The eld that is known for music researt is musicol-
ogy, and musicologydoesnot normally use mathematics and computations, but
merely studiesthe history and practice of music. Howewer, sinceas long ago as
Pythagorasthere hasbeeninterestin the mathematicsof musicand it hasplayed
amajor role in the dewelopmern of understandingof the medanicsof music. Fur-
thermore, mathematics has proved to be a useful tool for de ning the physical
characteristics of sound, and also abstractly underlies many recent methods of
analysis. In the rst half of this thesismathematicsis usedto learn more about
temperamen systemsin music. Mathematics canalsobe usedto model a speci ¢
phenomenonn music; the model canin turn be usedfor making predictions. It is
here where computation comesin: the corversion of thesemathematical models
into algorithms. Sincethe seminalwork by Longuet-Higgins (1976), there has
been an increasinginterest in the computational modeling of music cognition.
Therefore, this thesis ts both in the researt area of mathematical musicology
aswell asin the areaof computational musicology Finally, we will test our math-
ematical models and computational algorithms, on empirical, musical data, suc
as scales,chords and musical scoreswhich meansthat our researt ts alsointo
the eld of empirical musicology We will usethe samemusical scoresfor our ex-
perimerts as employed by other researbers, thus allowing for proper systematic
comparison.

Sincethis thesishasbeenwritten in a researt group situated at the faculty
of science] will assumethat the readershave somebadkground in mathematics,
but not necessarilya badkground in music. Sections1.2to 1.5 in this chapter
have beenwritten to provide the readerwith the necessarypadkground on music.
Pitch structures like scalesand chords are embeddedin the conceptof tonality
which is related to consonance.The notion of consonances in turn related to
human perception of musical tones and givesrise to tuning and temperamert
systems.

1.2 Perception of musical tones

\Pitc h is a basicdimensionof a musical tone that is de ned to be that attribute
of auditory sensationin terms of which soundsmay be orderedfrom low to high"
(de nition of American National Standardsinstitute). Therefore,pitch is ertirely
subjective and cannot be obtained in an analytical way; perceptual experimerts



1.2. Perception of musial tones 3

are required. In many caseshoweer, the fundamertal frequencyof a (musical)
soundrepresets the pitch. When referring to a tone of a certain frequency what
is meart is either a simple (sine) tone consisting of only that frequency or a
complextone having that frequencyasits fundamertal frequency Human pitch
perceptionis logarithmic with respect to fundamertal frequency This meansfor
examplethat the perceived distance betweentwo tonesof 220Hz and 440Hz is
the sameasthe perceiwed distance betweentwo tones of 440Hz and 880 Hz.

In this thesis,we will treat tonesand pitchesin an abstract way, referring to
them as frequencyratios or note names. Howewer, before making this “simpli -
cation’, we will addressthe perception of somemusical phenomena,sincethose
cortribute to the notion of consonanceand dissonancewhich is an important
notion is this thesis. This sectionis heavily basedon Rasd and Plomp (1999).

1.2.1 Beats

If two sine tones are equal in frequencyand played simultaneously they sound
as one sine tone which can be louder or softer. If the two tones have the same
phase(starting point) then the amplitudesof the two signalscanbe addedand the
resulting tone hasan amplitude which is the sumof the two individual amplitudes.
If the phasesf the tonesare opposite (the peaksof the onealign with the troughs
of the other) the resulting tone will be softer and the amplitude is the di erence
of the amplitudes of the two individual tones. If the amplitudes of the two tones
(beingin opposite phase)are the same,they can cancelead other.

What happensif two sine tones that are not equal in frequencyare played
simultaneously? If the frequenciesdi er slightly, and the two signalsstart with
the samephase,the result is a signal with an amplitude that slowly oscillates
from large (when in phase)to small (when out of phase),see gure 1.1. Even

amplitude

“H.AIHHH I,

““h,.ll“' M ,
1M

Ll

Figure 1.1: Sum of two sine waveswith frequenciesin the ratio 1: 1:05.

though there are really two sinetones, it soundslike there is only onetone with
a slow amplitude variation. This amplitude variation is called beating, and the
beat frequencyis f; f,, the di erence in frequenciesof the two original tones,
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as we will see. The beat frequencycan be understood by superposition of two
sinewaveswith slightly di erent frequency If the two sinewavesstart in phase,
they go more and more out of phaseuntil they are at opposite phaseand then
turning bad into phaseagain, and soon. The overall shape represets the beat
frequencywhich is a variation in the loudnessof the signal (g. 1.1). A stimulus
equalto the sum of two simple (sine) toneswith frequencies and g, and equal
amplitudes, is represeted by

p(t) = sin[2 ft]+ sin[2 gt] (1.2)

and can be written di erently as:

p(t) = 2cog2 %(g f)t] sin[2 %(f + o)t]: (1.2)

If g f is small, this soundis perceied as a signal with a frequencythat is
the averageof the original primary frequenciesand an amplitude that uctuates
slovly with a beat frequencyofg f Hz.

1.2.2 Critical bandwidth and just noticeable dierence

If two tonesare closeenoughin frequencysud that their responseson the basi-
lar membrane in the ear overlap, thesetones are de ned to be within the same
critical band. The perceptual implication of the (frequency depender) critical
band is related to the nding that the ear can only make senseof one signal
per critical band (Plomp 1964; Plomp and Mimpen 1968). Therefore, critical
bandwidth is saidto be the maximal frequencydi erence betweentwo simultane-
ously presetted notesthat are not resoled by the ear (that means,not processed
separatelybut combined). If for exampletwo tones of 100 Hz and 110 Hz are
played simultaneously then only one beating or unresohed soundis heard (not
two distinct tones) becausehe critical band at 100Hz is larger than 10 Hz. The
width of the critical band is roughly constart belown frequenciesof 500 Hz, and
increasesapproximately proportionally with frequencyat higher frequencieqsee
gure 1.2).

Whereasthe critical bandwidth represetts the ear'sresolvingpower for simul-
taneoustones or partials, the Just Noticeable Di erence (JND) dealswith the
distinction of two consecutie tones. The JND betweentwo notesis the smallest
changein frequencythat a listener can detect. The JND dependson frequency
and is furthermore highly dependert of the method with which it is detected.
Furthermore it varies with duration, intensity of tones and training of the lis-
tener. The JND is roughly a constart perceriage of the critical band for varying
frequency (see gure 1.2). The JND is an important measurefor a number of
matters discussedn this thesis. For examplein the discussionabout a suitable
number for the equal division of the octave (chapter 3), a limit could be set at
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Figure 1.2: Global t of critical band (CB) and just noticeabledi erence (JND) plotted
asa function of their certer frequency shown over a part of the audible frequencyrange
for humans (which is from about 20Hz to about 20kHz).

the division wherely the smallestparts are equalto the JND. Howeer, it would
not be helpful to expresssmall frequency distancesin units of JND since, as
mertioned above, this measuredependson many variables.

1.2.3 Virtual pitch

The perceiwed pitch of a complextone consistingof a fundamertal and a number
of partials, is usually the sameas that of a sine wave with a frequency equal
to the fundamertal of the sound. Howewer, it has turned out that, when this
fundamenal is removed from the sound, this doesn't changethe sound, the fun-
damertal frequencycanstill be obsened. This is calledthe missingfundamertal
or virtual pitch (Terhardt 1974; Terhardt, Stoll, and Seevann 1982). One can
wonderif avirtual pitch canalways be obsened or how many partials are needed
to createa virtual pitch. Experimerts have pointed to a dominanceregion which
goesfrom roughly 500 Hz to 2000Hz (Plomp 1967;Ritsma 1967). The partials
that are falling in this region have a bigger in uence on the pitch than other
partials. Smaoorerburg (1970) shoved that it is possibleto createa virtual pitch
with only two partials in the dominanceregion, and Houtgast (1976) shaved that
virtual pitch could be obtained even with one partial with noise (seealso Rash
and Plomp 1999for the conditions under which this virtual pitch could be per-
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ceived.). The phenomenonof the missingfundamertal was already obsened by

Seeledk (1841)and was brought under the attention of modern psycoacoustians
by Scouten (1938). The obsenations led Scoutento the formulation of the the-

ory of periodicity pitch, accordingto which the pitch is derived from the waveform

periodicity. The periodicity is not changedif the fundamenral is removed. How-

ewer, as early asthe 1950snew obsenations had indicated that the time-domain

model in its original designwas not fully adequate, since non-periodic sounds
can producevirtual pitch aswell. Toneswith inharmonic partials can producea

virtual pitch which will be the fundamertal of the harmonic serieswhich is the

closestto the inharmonic partials in the sound (Rasd and Plomp 1999). When

there is ambiguity about which harmonic seriesthe partials of a sound belong
to, more than onevirtual pitch is possibleand can be perceived (but not at the

sametime) depending on the cortext (see Sdwulte, Knief, Seither-Preisler,and

Pantev 2001). This ambiguous perception of pitch has often beencomparedto

visual illusory contours (seefor example Sethares1999).

1.2.4 Combination tones

Two simple tonesat a relatively high sound pressurelevel and with a frequency
di erence that is not too large can give rise to the perception of so-calledcom-
bination tones (seefor example Jeans1968). These conbination tones arise in
the ear as a product of nonlinear transmissioncharacteristics. The conmbination
tones are not present in the acoustic signal, howewer, they are perceiwed as if
they were presert. The ear cannot distinguish between perceived componerts
that are\real” (in the stimulus) and thosethat are not (combination tones). The
combination tones are simple tonesthat may be cancelede ectively by adding
a real simple tone with the samefrequencyand amplitude but opposite phase.
This cancellationtone can be usedto investigate conbination tones.

The possiblefrequenciesof conbination tones can be derived from a general
transmissionfunction. Assumea stimulus with two simpletones(asin 1.1):

p(t) = cos2 ft+ cos2 gt; (1.3)

f and g beingthe two frequencies.Linear transmissionis descritkedby d = cy+ c1p
(co and ¢y beingconstarts). If transmissionis non-linear, higherorder componerts
areintroduced: d = co+ ¢ p+ Cp?+ czp°+ : :: The quadratic term canbe deweloped
asfollows:

2

Y

(cos2 ft+ cos2 gt)? (1.4)

1 1
1+ écosz 2t + écosz 2gt + cos2 (f + git+ cos2 (f g)t(1.5

It can be seenthat componerts with frequencies2f, 2g, f + g, andf g are
introduced in this way. The componerts f + gandf g are the rst order
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combination tones. Similarly, the cubic term can be dewloped and results in
componerts with frequencies3f;3g;2f + g;2g+ f;2f g;29 f, where the
latter four are the secondorder conbination tones. The higher terms of the
nonlinear transmissionformula can be worked out analogously The componerts
of the form nf + mg are called sum-tones, and the componerts of the form
nf  mg are the di erence tones. The rst order combination tones are more
audible than the higher order combination tones, and the di erence tones are
generally more audible than the sum tones (for information on the audibility
region of conbination tones, seeSmaorerburg 1972). If both main tonesbelong
to a common harmonic series(seesection 1.3), then the combination tones can
easily be calculated. In the harmonic serieson C, the C and E are the fourth
and fth harmonicsrespectively. The rst order di erence tone of a simultaneous
soundingC and E isthe rst (5 4= 1) harmonicC, the summationtone is the
9 (5+ 4= 9) harmonic, D.

1.3 Just intonation and the compromises of tem-
peraments

When two tones have a pitch relation sud that the ratio of their (fundamental)
frequenciesis a rational number, the interval betweenthe tonesis called a just
interval. This meansthat the two notesare menbersof the sameharmonicseries.
Just intonation is any musicaltuning in which the frequencief notesare related
by rational numbers (Lindley 2005). Just intonation is generally referredto as
the tuning systemthat is usedby violinists and other musiciansusing non- xed
note instruments. Howewer, for instrumerts like a piano, it is not possibleto play
in just intonation aswe will see,and a temperamern systemhasto be deweloped.
Sincethe just intonation conceptis asold asPythagoras(as we will see),this
sectionon just intonation and temperamen systemsis precedingthe sectionon
the conceptof consonanceand dissonance(sec. 1.4). In the presen sectionthe
just intonation systemis treated to be the most preferredtuning system;the next
sectionwill then discusspossibleexplanationsof the fact that intervals which are
related by whole number ratios, are said to be consonamn (and thus preferred).

1.3.1 Harmonic series

Harmonics are generatedby all natural vibrating systems. A vibrating string
producesunder normal conditions not only the fundamertal tone but also the
other harmonics,or overtones. The harmonic serieswith fundamertal C is shovn

1Since a di erence tone exist at frequencyf g, which is the sameas the beat frequency
betweentwo toneswith slightly di erent frequencies,onecould think that thesetwo phenomena
are related or arise from a common origin. Howewer, Hall (1981) explained that these two
phenomenaare totally dierent.
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Figure 1.3: Harmonic serieswith fundamertal C.

in gure 1.3. Each harmonic is indicated with a number, starting with the fun-
damenrtal C as number one, the (rst harmonic), the ¢ (octave higher) number
two (secondharmonic) and so on as can be seenfrom gure 1.3. The number
indicating ead harmonicis alsothe denominator of the fraction represeting the
length of the string segmeh producing the tone. For example,if a string pro-
ducesthe fundamertal tone, then the string which is half aslong (length divided
by two) producesthe tone which is an octave higher, the secondharmonic. If
the initial string length is divided by three then the tone soundsan octave and
a fth higher (the third harmonic), as can be seenfrom the harmonic series.By
de nition, the harmonic seriesis that sequenceof frequencieshat represets all
whole-rumber multiples of any particular fundamertal frequency. If the funda-
mertal C hasfrequencyf, then the secondharmonic (c) has frequency2f , the
third harmonic has frequency3f , and soon. Therefore,it is possibleto extract
the frequencyratios for someimportant musical intervals from the harmonic se-
ries. For example,the interval of a perfect fth can be found betweenthe second
and the third harmonic. Therefore, the frequencyof the third harmonic equals
g times the frequency of the secondharmonic: the interval of a perfect fth is
characterizedby the ratio % The frequencyratios of someother basicintervals
are listed in table 1.1.

interv al ratio
octave 2/1
major sixth | 5/3
minor sixth | 8/5
fth 3/2
fourth 4/3
major third | 5/4
minor third | 6/5

Table 1.1: Ratios of seweral intervals derived from the harmonic scale.

Tuning to whole number ratios is referred to as just intonation. The just
intonation major diatonic scaleis de ned by tuning the tonic-, subdominar-
and dominan-triad as4 :5: 6 = 1: 54 : 3=2. This meansthat in a major
diatonic scalethe tones do, mi, sol have frequencyratios 4 : 5 : 6 in relation
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to ead other, as well as the tones fa, la, do and sol, ti, re (the last one an
octave higher). Table 1.2 shows the ratios of the notesin the just major scale
comparedto the fundamertal. The tonesin the just intonation scaleare de ned

Note do |re |mi |fa |sol|la |ti do
Ratio 1:1)1 98| 54| 43| 32|53]|158)| 21

Table 1.2: Frequency ratios between the dierent notes of the major scaleand the
fundamerntal 'do'.

in relation to ead other, if one plays in A major with a 'do' of 440Hz, the 're'
equals9=8 440= 495Hzand soon.

In just intonation, modulations are problematic. Say, for exampleyou play
in C major and want to changekey to G major. In C, the tones of the scale:
c;d;e;f;g;a;b;(c) aretuned asin table 1.2, sofor examplethe a is tuned as 5=3
times the frequencyratio of c. If the key is then switchedto G major, againthe
tones of the scale,now: g;a;b;c;d;e;f]; (g) are tuned to the ratios asin table
1.2. The a is now tuned as 9=8 times the frequencyof g. Howeer, the a in the
scaleof C wastuned as 5=3 times the frequencyratio of ¢, and the g in the scale
of C wastuned as 3=2 times the frequencyratio of c. This meansthat the a (in
the scaleof C) is tuned as (5=3)=(3=2) = 10=9 times the frequencyof g, which is
di erent from the tuning of the a in the scaleof G (9=8 times the frequency of
0). As a result onewould needtwo tunings for the a (and also for other notes),
which is highly impractical, and even impossiblewhen playing on an instrument
with a xed note system,like a piano.

Even when playing in one and the samekey, just intonation may not be
preferable. Considerthe note sequenceagivenin gure 1.4. Starting with the rst

A B i
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Figure 1.4: Pitch drift illustrated by 2 3 3 3= 8L The pitch of the nal G will
be tuned as 81=80 times the frequency of the r

G, in just intonation the D will be tuned a perfect fourth 4=3 below the G. In
the adjacent chord, the A will then be tuned as a perfect fth 3=2 above the D.
In the chord thereafter, the C is to be tuned as a major sixth 5=3 below the A.
The nal G is then tuned as a perfect fth 3=2 above this C. Comparing the
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tuning of the rst and the last G, we can calculate that the nal G is tuned as
3 2 3 2= % ofthe frequencyofthe rst G. This is calleda pitch drift and
is a familiar problem related to just intonation. To solwe the above menioned
problems,a temperamen systemcanbe deweloped, in which a compromiseof the
tunings of notesexists.

1.3.2 Temperament diculties

Temperamert dealswith the division of the toneswithin the octave. The problem
of constructing a good temperamert is generally viewed as how to unite perfect
fths with major thirds. If weadd four perfect fths, likein gure 1.5,the highest
note is a little bit higher than the perfect third from the harmonic series. The
highestnote in the sequencef fths would be a high E whosefrequencyrelative
to the low C would be (%)4 which is bigger than 5, the harmonic number of the
samekE in the harmonicseries.This di erence of % is calledthe syntonic comma.

-5

2 o
== == i

o o

Figure 1.5: Chord from harmonic series(left) and chord of pure fths (right) repre-
serting the syntonic comma betweenthe two highest notes of both chords.

Another commawhich plays a role is the Pythagoreancomma. As we calcu-
lated, the ratio of a perfect fth is g If we start with the lowest C on the piano,
andthen goup in perfect fths twelve times, weendup at aB] ( gure 1.6) whose
frequencyrelative to the low C would be (%)12. We will seethat this note is very

I
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e
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Figure 1.6: Sequenceof twelve fths.

closeto the highest C on the piano, sewen octaves above the lowest. According
to the ratio of a perfect octave the frequencyof this note would be 27 relative to
the low C. A little calculation

3 12
5 = 1297466 2’ = 128
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shows us that the B] will be higher than the C. The di erence in pitch is called
the commaof Pythagorasand measures53144£524288. Although the notesB]

and C have di erent names,it canbe understood that they arein pitch too close
together to make separatekeys on a piano (or another xed tone instrument)

for them?. Furthermore, if we would distinguish these notes from ead other,
this could alsobe donefor B]] and D[, and so on adding more sharpsand ats,

such that a piano would needan in nite number of keys. Notes such asB] and
C are called enharmonically equivalert to ead other. The in nite line of fths

::B[, F;C;G;D;A;E;B;F] :::isconsideredo be a circle consistingof 12 notes
by identifying the enharmonicallyequivalert notesG] and A[.

This problem concerningthe commaswas solved by the introduction of equal
temperamen in the 16" certury. In this “theory' the octave is divided into twelve
egualsemitoneintervals. The ratio betweentwo semitonegconsecutive chromatic
notes) is then:

217 ¢ 1

The major secondthen has the ratio 2% : 1, the minor third the ratio 2 : 1
and soon. The octave hasratio 2 : 1= 2 : 1 and is ‘in tune' accordingto
just intonation. The rest of the tones are slightly out of tune, seetable 1.3.
We note that in equal temperamen the fth is slightly smaller than g which

harmonic series| equaltemperamern
octave 2 217 = 2
fth $ = 1:500 212 = 1:498
fourth 4= 1:333 27 = 1:335
major third | 2 = 1:250 21z = 1:260
minor third | & = 1:200 21 = 1:189

Table 1.3: Someratios from just intonation comparedwith those from equal temper-
amert.

makesthe Pythagoreancommadisappear. A corveniert unit to expressintervals
in, is the cent which is basedon equal tempered tuning. One cert is de ned
as one hundredth part of an equal tempered semitone. That meansthat an
interval expressedn frequencyratios § has a width of 1200 Iogz(§) certs. An
equal tempered minor secondmeasures100 certs, a major second?200 certs,
and soon, until the octave which measuresl200certs. In equal temperamen,
enharmonically equivalert notes are tuned exactly the same, and the circle of
fths is automatically closedsincethe G] and the A[ are equivalert. In any

2However, both the syntonic commaand the Pythagorean commalie, for a large range of the
audible frequencies,above the just noticeable di erence. This meansthat listeners can usually
detect this di erence in frequency
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unequal temperamen there is a problem closing the circle of fths, since the
interval betweenthe G] and E[ (the fth above the A[) which is known as the
wolf fth, is considerablyout of tune comparedto the fth from just intonation.

1.3.3 Tuning and temp erament systems

Various tunings and temperamerts exist as solutions for the comma-problem.A
tuning is a system, all of whoseintervals can be expressedas rational humbers,
which leavesthe commasto fall asthey must. Examplesof tuning systemsare
the just intonation systemfrom table 1.2, and the Pythagoreantuning aswe will
explain below. A temperamert involvesdeliberately mis-tuning someintervals to
obtain a distribution of the commaswhich is more usefulin a given cortext. A
regular systemis a tuning or a temperamer in which all the fths but one are
of the samesize (Barbour 1951).

It is not exactly known when temperamen was rst used. Vicentino (music
theorist and composer,16th certury) stated that fretted instruments have always
beenin equaltemperamen; sinceonefret appliesto morethan onestring this was
the only usefultemperamen (Barbour 1951). For keyboard instruments, Zarlino
(Italian music theorist and composer, 16th certury) declaredthat temperamert
was asold asthe chromatic keyboard (Barbour 1951).

Until about 1500the tuning accordingto Pythagoraswas used. Pythagoras
(sixth certury B.C.) found (using a monachord) the ratios for the octave 2:1
and fth 3:2. With theseratios he calculated the rest of the intervals. For
examplethe major secondis calculatedas3=2 3=2 1=2 = 9=8, the major third
as 9=8 9=8 = 81=64. Pythagoras also calculated that the diatonic semitone
is not equal to the chromatic semitone, the di erence between those tones is
the Pythagoreancommaas we have seenabove. In this tuning, a B] is therefore
higherthan a C, a C] higherthan aD[ and soon. Accordingto this Pythagorean
tuning, the octave, fth and fourth are pure, the thirds and sixths are dissonan.
This tuning was suitable for monophonicmusic and for the medieal polyphonic
music in which only the octave and fth were consideredto be consonan

When harmony had ewlvedto the stagethat a more pure third wasrequired,
a new temperamen was devisedwith all thirds pure and the fourths and the
fths as nearly pure as possible. Quarter-commaMean-tone temperamert was
constructed by tuning C E pure and then tuning ead fth within that third
(C G, G D,D A,A E)agquarter (syntonic) comma at. This (regular)
temperamern is called Mean-tonebecausethe pure major third, which measures
386certs, consistsof exactly two wholetonesof 193certs. Sincethe temperament
had many pure thirds, asa consequenceéhe wolf fth was very large and hence
unusable. There werealsosomewolf thirds which werevery sharp, but thesewere
kept in keys which composerstook careto avoid. There were se\eral di erent
mean-tonetemperamen shemes,ead involved slight adjustmerts to the sizesof
the major thirds and fths. For example,in sixth-comma mean-tone,the thirds
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were slightly worse,the fths and fourths equally slightly better, and the wolves
weresmaller. With theseMean-tonesystems,about 16 of the 24 major and minor
keyswere usable.

From the 17th certury irregular temperamers sut asthose devisedby Val-
lotti, Werdkmeister, Kirn bergerand others were used (for an overview, seeBar-
bour 1951). Thesetemperameris were basedon the keysthat are most used. All
octaveswere pure, keysrelated to C had nearly pure major thirds and fths and
keysdistant from C had much lesspure intervals. In fact, every key had its own
character, which could be usedby the composer. It hasbeendemonstratedthat
Bach's Well-tempered Clavier with 48 prelude and fugues,two in ead of the 12
major and 12 minor keys,usedsud a temperamer, with somemovemeris show-
ing the purity of the better keysand others, with rapid note passagesgisguising
the impurity of the lessgood keys (Montagu 2002).

Oneway to avoid the wolf notesand to keepasmany pure thirds and fths as
possible,wasto increasethe number of notesin the octave. Then, on a keyboard
with separatenotesfor D] and E[, and for G] and A[, (and sometimesfor some
other notesaswell) it was possibleto play in almost every key. A problem with
this was that the more keysthere were on a keyboard, the more di cult is was
for the keyboard player to remenber which key should be usedin which chord.

Since the middle of the 19" certury, the most popular form of tuning has
beenEqual Temperamen. As discussedoefore,this is a scalewith pure octaves,
equally divided into twelve parts.

1.4 Consonance and dissonance

Consonanceis an important conceptsinceit may form the basis for tunings,
temperamens and pitch structures like scalesand chords. Sensoryconsonance
refersto the immediate perceptual impressionof a sound as being pleasan or
unpleasan. It may be judged for soundsin isolation (without a musical cortext)
and by people without musical training (Palisca and Moore 2006). In section
1.4.1we will gointo the history of explanationsof sensoryconsonanceln section
1.4.2we will seethat besidessensoryconsonancemore typesof consonancecan
be distinguished.

1.4.1 Explanations on sensory consonance and dissonance

Playing in just intonation is related to sensoryconsonancesthe frequenciesare
related by small whole number ratios. Explanations of sensoryconsonanceare
concernedwith the fact that commonmusical intervals correspnd - at leastin
Western,Indian, Chineseand Arab-Persianmusic (seeBurns 1999)- to relatively
simple ratios of frequenciesalthough someof these explanationsdo not require
exact integer tunings, only approximations. Pythagoras already found that if
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two similar strings under the samestrength soundtogether, they give a pleasan
soundif the lengths of the strings are in the ratio of two small integers.

Small integer ratios

Galilei (1638) explainedthe preferencefor small integerratios from the regularity
of the resulting signal which is pleasan for the ear. Also Euler (1739) had a
consciousfeeling for ordered as opposedto disorderedrelations of tone, and he
even proposeda measureof consonancebasedon this theory. When complex
tonesare considered two toneswhosefrequenciesare in small integer ratios have
partly overlapping harmonicswhich makesthe sound rich'. Howewer, alsosimple
(sine) tonesare saidto soundmore consonam whentuned to simpleintegerratios
accordingto this theory. Modern expositionsof this ideaexist aswell (Boomsliter
and Creel1961;Partch 1974),in which consonancés viewedin terms of the period
of the combined sound. If two frequenciedorm an interval of a smallintegerratio,
the period of the combined soundis shorter which shouldbe more pleasan for the
ear. This is in fact a testable hypothesisand theseso-calledperiodicity theories
of consonancesssumesometime-baseddetectorin the ear. Neurologicalevidence
for such temporal modelsexist. Cariani (2004)providesevidenceto ground pitch-
basedtheoriesof tonal consonanceén inter-spikeinterval represemtations. He nds
that \for both pure and complextones,maximal saliences highestfor unisonand
the octave separationsand lowest for separationsnear one semitone”. Tramo,
Cariani, Delgutte, and Braida (2001) claim that 1) pitch relationships among
tonesin the vertical direction in uence consonanceerceptionand 2) consonance
cannot be explainedsolely by the absenceof roughnesqseefurther below). They
provide neurophysiological, neurologicaland psydioacousticevidenceto support
theseclaims.

Tonal fusion

Stumpf (1898) proposedthe idea that consonancewas basedon tonal fusion.
The fusion of two simultaneously preserted tonesis proportional to the degreeto
which the tonesare heardasa singleperceptualunit. The ideabehindthis theory
is, that whenenoughharmonicsof two tonescoincide,the tonesperceptually fuse
together.

Virtual pitc h

The existenceof virtual pitch has also been regardedto explain consonance.
Terhardt (1974) and Terhardt, Stoll, and Seevann (1982) emphasizethe role of
learning in the perception of intervals. Dierent learning experienceslead to
di erent intervals and scales,and hence,to di erent notions of consonanceand
dissonance. Virtual pitch tries to locate the nearestharmonic template when
confrorted with a collection of partials (or overtones). This is ambiguousif the
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soundis not harmonic (seesection1.2.3). According to Terhardt's view, disso-
nanceis a negative valancedsensoryexperiencethat ariseswhena soundewvokes
highly ambiguous pitch perceptions. This explanation of consonanceausing vir-

tual pitch is related to the periodicity theory since one of the most important

explanationsof virtual pitch is the periodicity of the sound. Cariani (2004)found
neurologicalevidencesupporting the virtual pitch theory. He concludeghat \the

presern simulation demonstratesthat interval-basedmodels of low, virtual pitch
can plausibly accoun for the consonancef pairs of pure and complextonesthat

are presened in isolation”.

Combination tones

Another possible explanation of consonancewas the existenceof conbination
tones. Among others, Krueger (1904) proposedthat dissonances proportional to
the number of distinct di erence tones. Consonancehen occursif there are only
a few di erence tones. Husmann (1953) looked at the tting of the combination
tonesof two toneswith their overtones. He calculatedthe percertage of over-tones
that coincidedwith the combination tones. This gave an order of consonance.
Plomp (1965) performed experimerts regarding these combination tones, and
argued that the nonlinear distortion of the hearing organ is so small that it
cannot be regardedas a constitutive basisfor consonance.

Roughness

Helmholtz (1863)wasthe rst to proposea consonanceheory basedon the phe-
nomenonof beats. Recall from section1.2.1that two sinetones producebeating
when their frequenciesare closetogether. Slow beating is generally perceived
as being pleasan, fast beating as being rough and unpleasan with maximum
roughnessoccurring at a beat rate of (around) 32 times per second.Sincesound
can be decompsedinto sine wave partials, Helmholtz arguedthat dissonances
due the rapid beating of the partials of a sound. Consonancas then the absence
of suth beats. Helmholtz's theory resulted in a measureof consonancen which
he madethe assumptionsthat 32 Hz gives maximal roughness,and that rough-
nessesan be added. Plomp and Levelt (1965)did experimerts on the perception
of consonancevith musically naive subjects and found that the dissonanceof an
interval is primarily dueto rapid beatsbetweenthe compound tones, which sup-
ports Helmholtz's theory. They found that the minimal and maximal roughnesses
of an interval are not independert of the mean frequencyof the interval. They
arerelated to critical bandwidth with the rule of thumb that maximal tonal dis-
sonanceis produced by intervals subtending 25% of the critical bandwidth, and
that maximal tonal consonances readed for intervals greaterthan about 100%
of the critical bandwidth (see g. 1.7). This isamaodi cation of Helmholtz's 32Hz
criterion for maximum roughnessbecausethe critical bandwidth is not equally
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Figure 1.7: Standard curve from Plomp and Levelt (1965) basedon their experimerts,
represerning the consonanceof two simple (sine) tones as a function of the critical
bandwidth. The consonancescaleis arbitrary .

wide at all frequencies.Due to the dependencyof the critical bandwidth on fre-
guency intervals (like minor thirds) that are consonam at high frequenciescan
be dissonan at low frequencies. Note that this is di erent from the small fre-
guencyratio hypothesis,not all intervals that are in small integer ratios produce
consonan sounds. Similarly to Helmholtz, Plomp and Levelt (1965) claim that
the dissonancecan be calculated by adding up all of the dissonancedbetweenall
pairs of partials. Kameola and Kuriy agava (1969a,1969b) make a reproduction
and an extensionof Plomp and Levelt's tonal consonancadeas. For dyads, con-
sisting of two partials, they nd that the consonancegradually decreasess the
frequency separation increasesand is least when the frequenciesare separated
by appraximately 10% in the middle frequencyrange. They establisha theory
for calculating the subjective magnitudesof the dissonanceof complextones. A
theoretical investigation clearly shoved that the consonanceof chords is greatly
dependern on the harmonic structure. For example,a complextone that includes
only odd harmonics shons no consonan peak for the fth (2:3), but doeshave
consonan peaksfor 3:5and 5:7. Following Helmholtz (1863), Plomp and Levelt
(1965) and Kameolka and Kuriy agava (1969a), who state that the consonance
of a sound dependson the absenceof roughnessof its partials, Sethares(1993)
arguesthat the partials or harmonicsof a soundde ne its timbre, and therefore
consonances dependert on timbre. Hence,the origin of consonancevould be the
instruments of a speci ¢ culture. String and wind instruments naturally produce

3This is consistert with musical practice where small intervals appear in the treble parts and
the larger intervals like octavesand fths appear in the basspart.
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a soundthat consistsof exact multiples of a fundamertal frequency They are
therefore appropriate for playing music in the 12-tonejust intonation scale(or
equaltemperamen, sincethat is a closeappraximation). Howewer, in Indonesian
Gamelanmusic for example,the instruments are all percussie, and do not pro-
duce exact integer multiples of a frequency Therefore,the Western scaleis not
appropriate for that type of instrument, and indeednot used(Sethares1999).

Culture

Finally, a cultural explanation of consonanceexists. Cazden(1980) arguedthat
the wide variety of scalesand tunings usedthroughout the world seresas evi-
dencethat cultural context plays a key role in notions of consonanceand disso-
nance. Cazdenfurthermore arguedthat an individual judgmen of consonance
canbe modi ed by training, and so cannot be due entirely to natural causes.

As may be clear from the above, the notions of consonanceand dissonance
have changedsigni cantly over the yearsand se\eral theoriesexist next to eah
other. How much the perception of consonanceand dissonances due to basic
sensoryand perceptualfactors and how much to learnedonesremainsunresohed
(Paliscaand Moore 2006).

1.4.2 Dieren t types of consonance

We have addressedhe explanationsof sensoryconsonancethat apply to sounds
in isolation, without a musical cortext. One may wonder if the notion of con-
sonancechangeswhen a soundis presened in a musical cortext. Someauthors
have described distinct typesof consonanceand dissonance.
Tenney(1988)identi es v edi erent forms of what he callsthe "consonance/
dissonanceconcept' (CDC). The v e forms are summarizedbelow.

CDC-1: Melodic consonance. This type of consonance/dissonanceefers
exclusiwely to the relatednessof pitchessoundedsuccessigly. This concept
is related to and derived from the pre-polyphonic era, when music was
primarily conceived melodically.

CDC-2: Polyphonic consonanceDuring the early polyphonic period (900
1300) the consonanceconcept becamea function of the interval between
two simultaneously sounding tones. Stumpf's (1898) idea of tonal fusion
was proposedto explain the rank ordering of intervals during this period.

CDC-3: Contrapuntal consonance.In this type, consonancewas de ned
by its role in courterpoint. Theseare the rulesthat descrike voice-leading
techniques. Thus, the cortext of the noteswasimportant here,as opposed
to the physical properties of the sound.
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CDC-4: Functional consonance.Iln uenced by Rameau(1722), notes and
intervals were judged consonan or dissonam accordingto whether they
have a simple relationship to the fundamenal root or tonic. Dissonart
noteshave the implication of ‘'motion’, sincethey set up the expectation to
return to the root.

CDC-5: Psydioacousticconsonance.This is the most recenly deweloped
concept of consonanceand focuseson the perceptual medanisms of the
auditory system. One view on consonancewithin this classis called sen-
sory consonanceand is usually credited to Helmholtz (1863) and Plomp
and Levelt (1965). Another component of psycoacoustic consonances
“tonalness',which is basedon Rameau'sfundamertal bassand Terhardt's
(1984) notions of harmony, which was extendedby Parncutt (1989). A ma-
jor componert of tonalnessis the closenes®f the partials to the harmonic
series.

Terhardt (1977) deweloped a two-commpnert model of musical consonance.
He arguesthat the conceptof consonanceobviously implies the aspect of pleas-
antness, but that pleasannessis not con ned to musical sounds. Therefore, he
has termed this aspect of consonance sensoryconsonance'.He arguesthat, as
sensoryconsonancewas not conceptualizedto explain the essetial features of
musical sounds,there must be another componert to accourn for this. This other
componert was termed "harmory'. Thus, musical consonanceconsistsof sen-
sory consonanceand harmony. Sensoryconsonanceonsistsin turn of roughness,
sharpnessand tonalness,and harmony consistsof "a nit y of tones' and ‘root-
relationship' (virtual pitch). Roughnesgqas de ned by Helmholtz) is the major
componert of the sensoryconsonancesharpnessis a kind of spectral envelope
weighted loudness,and tonalnessis the opposite of noisiness.Tonea nit y means
that tonesmay be perceived as similar in certain aspects. That is, that in some
respect, a tone may be replacedby another one. The conceptof root-relationship
indicates that the root of a musical chord is not merely a theoretical concept,
but that it is an attribute of auditory sensation,i.e., a virtual pitch. Terhardt's
(1977)model is closelyrelated to that of Helmholtz (1863). A di erence between
the two is that Helmholtz did not take the virtual pitch into accoun.

Many di erent conceptsof consonancehave arisen, and a clear distinction
betweenthe consonancef simultaneously preserted tonesand the consonancef
successigly presened tonesseemdo exist. While simpleratios may be preferable
for simultaneously presenied tones, it is not clear whether this is the casefor
tonespresened successigly (Paliscaand Moore 2006). A number of experimens
investigating intonation in performanceshave been performed (seefor example
Kopiez 2003; Rakowski 1990; Loosen 1993) and show that there is no simple
answer. Boomsliter and Creel (1963) found that, within small groupsof melodic
notes, simple ratios are preferred, although the ‘reference'point may vary as
the melody proceeds. Howevwer, others have concludedin cortrast that there is
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no evidencethat performerstend to play intervals correspnding to small integer
ratios for either meladic of harmonic situations (Burns 1999). There is atendency
for small intervals to be tuned smaller and for large intervals to be tuned larger
than equaltemperamen (Burns 1999).

In tonation

A conceptcloselyrelated to the consonanceof both simultaneousand successig
notesis intonation. Intonation has beenextensiwely researbed with the goal of
maximizing harmonic consonance.Howe\er, besidesits role in harmonic conso-
nance, intonation also hasrolesin, e.g., key coloration and harmonic meaning.
An important melodic exampleconcernsupward stepsfrom pitchesthat function
asleadingnotes. The higherthe intonation of this leadingnote, the morea pull is
felt towardsthe pitch above. Fyk (1995)makesa division of intonation in diatonic
music* into four classespasedon a number of experimerts with violinists.

1. Harmonic tuning. Many of the deviations from equal temperamer take
placein trying to tune in just intonation (small integer ratios) with the
underlying harmory.

2. Melodic tuning. It is obsened that the intonation is raisedin the context
of an ascendingand it is loweredin the context of a descendingmelody.

3. Corrective tuning. When a performerperceivesa small deviation in playing
a melady, he/she correctsit by adjusting the note itself or the note that
follows immediately. The former kind of adjustmert occurs frequertly in
string quartet playing in order to createa given chord in just intonation.

4. Colouristic tuning. When the performer plays a rising seriesof two notes
with an octave interval betweenthem, the interval is in precisejust tuning
(2 : 1). Howewer, when the sameseriesof notes has an overlapping period
in betweenthem, it is obsenedthat the performerraisesthe higher note as
soon as the lower note disappears.

The conceptof harmonic tuning as de ned by Fyk (1995)is in agreemenh with
the notion of sensoryconsonance. Although melodic consonancehas not been
clearly de ned as discussedabove, it is important to note that meladic tuning
and meladic consonancelo not necessarilyhave the sameintention. For example,
in meladic tuning it canbe desirableto tune a leadingnote alittle bit high sothat
the direction to the next note s clear. This doesnot necessarilyresult in the most
consonam melodic interval betweenthosetwo notes. Howewer, Fyk's de nition of
melodic tuning seemsto be consisteh with the obsenations publishedin Burns

4Seealso Kanno (2003) who has written about intonation and performancepractice in non-
diatonic, microtonal and new music.
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(1999) that there is a tendency for small intervals to be tuned smaller and for
large intervals to be tuned larger than equaltemperamen.

1.5 Tonality

Tonality is a term that refersmost often to the orientation of melodies and har-
moniestowardsareferertial (or tonic) pitch class.In the broadestsensehoweer,
it refersto systematic arrangemeits of pitch phenomenaand relations between
them (Hyer 2006). A large number of de nitions for tonality have beenproposed
amongwhich there is no consensusbout whetherit appliesto both Westernand
non-Western music. Another area of disagreemety similar to the discussionon
consonanceand relating to the origin of the term tonality, is whether, and to
what extert, tonality is natural or inherert in music, and whether, and to what
extern, it is constructed by the composer, performer and listener.

The vocabulary of tonal analysis consistsof scalesand chords (in case of
harmory). Tonal music is descrited in terms of a scaleof notes. Chords are
built on the notes of that scale. In the context of a tonal organization, a chord
or a note is said to be \consonart" when it implies (perceptual) stability. Note
that this use of the term consonances di erent from “sensoryconsonanceand
perhapsclosestto what Terhardt (1977) de ned asthe “harmory' component of
musical consonance A tonal pieceof music will give the listener the feelingthat
a particular chord or note (the tonic) is the most stable and nal. Establishing
a tonality in Westerntradition is accomplishedthrough a caden®, somechords
in successiorwhich give a feeling of a completion or rest. When the senseof
a tonic chord is changed,the music is said to have changedkey, or modulated.
In a tonal cortext, a dissonan chord is in tension with the tonic. Resolution
is the processin which the dissonan chord or note movesto a consonam chord
or note in the tonal organization. The majority of tonal music assumesoctave
equivalence,which meansthat the notesan integer number of octavesapart are
perceivedto have the samefunction. In primitiv e music, the tonic hasthree main
determinarts. They are 1) great frequency(number of occurrences)and length
comparedto the other tones,2) nal position in individual sectionsand phrases,
and 3) terminal position in the song(Nettl 1956).

Historically, theories of tonal music have generally beendated from Rameau
(1722),who hasdescriked musicwritten through chord progressions¢cadencesnd
structure. In 1844, Fetis de ned tonality asthe setof relationships, simultaneous
or successig, among the tones of a scale,allowing for other types of tonalities
among di erent cultures. Moreover, Fetis believed that tonality was ertirely
cultural. In corntrast, Riemann believed that tonality was ertirely natural in the
way that all types of tonality can be derived from a single principle basedon
the chordal functions of the tonic, dominant and subdominant (Dahlhaus and
Gjerdingen 1990).
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Reti (1958)di erentiates betweenharmonic tonality and melodic tonality. In
this context hearguesthat in harmonictonality the chord progressiorv | isthe
only step \whic h as sud producesthe e ect of tonality”, and describes melodic
tonality asa type wherein\the wholeline is to be understood as a musical unit
mainly through its relationship to this basic note [the tonic]".

1.5.1 Scales

A scaleis a sequencef notesin ascendingor descendingorder of pitch (Drabkin
2005),that provides material for a musicalwork. In the rest of this thesis,we do
not usethe property of orderednes we will treat a scaleas a set of tones.

Somescales,sud asthe chromatic scaleof the piano, are su cien tly de ned
by a sequencef noteswithin asingleoctave, which canbe extendedwithout limit
in either direction by octave transposition. Others, sud asthe mediewal gamut,
are completein themseles. Scalesmay be descrited accordingto the intervals
they corntain - for examplediatonic, chromatic, whole tone, or by the number of
di erent pitch classeghey cortain - for examplepenatonic, hexatonic, octatonic,
etc. Scalesare often abstracted from performanceor composition, though they
are often usedpre-compositionally to guide or limit composition. Each note in a
scaleis referredto asa scaledegree.The simplestsystemis to nameead degree
after its numerical position in the scale,for example:the rst or |, the fourth or
V. In the Westernmajor diatonic scale,the degreesare namedin order: tonic,
supertonic, mediart, subdominarn, dominart, submediart and leading-tone.

Burns (1999) notesthat \the evidencefrom ethnomusicologicalstudiesindi-
catesthat the use of discrete pitch relationshipsis essetially universal”. One
possibleexplanation of the human propensity to discretize pitch spaceinvolves
the idea of categorical perception (Burns and Campbell 1994; Burns and Ward
1978;Locke and Kellar 1973). The brain tries to simplify the world around it.

In Westerntraditional musictheory, scaleggenerallyconsistof sevennotesand
repeat at the octave. Most familiar scalesare the major and minor (harmonic
and melaodic) diatonic scales.Additional typesinclude the chromatic scale,whole
tone scale,pentatonic scaleand octatonic scale. Many other musical traditions
employ scalesthat include other intervals and/or a di erent number of pitches.
Gamelanmusic usesa variety of scalesncluding Pelog (5 note scale)and Slendro
(7 note scale), neither of which lies closeto the familiar 12-tone equal temper-
amert. In Indian music, ragas- consistingof 5, 6 or 7 notes - are the melodic
framework embeddedin the 22-toneshrutis scale(Burns 1999). In Maquams,the
melodic modesfrom Arab music, quarter tone intervals may be used(Zonis 1973).
Microtonal scalesformed by the division of the octave into intervals smallerthan
a semitone, have long beenusedin Eastern cultures (e.g. in Hindu ragas), and

5The fact that a scaleis de ned asan ordered setis not acknowledgedby everybody, seefor
example: http://launch.groups.yahoo.com/group/tuning/ for a discussionon this topic.
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they have alsobeenadopted by a number of Westerncomposers(Latham 2002).
For example,Partch (1974) proposeda 43-tonescale(in 11-limit just intonation).

Dowling (1982) di erentiated betweena scaleand tonal material by de ning
a psydophysical scaleas the generalsystemby which pitchesare related to the
frequenciesof tones. He de ned tonal material asthe ertire set of pitch intervals
available in a given musical culture. In Western music this would constitute the
set of semitone intervals of the 12-tone equal-tempered scale (Dowling 1982).
Consideringthe 12-tone chromatic scaleto be a valid scale,one can understand
that a scalecan sometimesbe similar to the tonesavailable from a temperameri.

As in the discussionon consonanceand tonality, many conicting opinions
exist about the origin of (traditional) scales.It hasbeenproposedthat the origin
of scaleslies in speed in ections. Nations or regionsadopt a particular type of
in ection which may distinguish them from others. Similarly, in music, groups
of people have adopted characteristic idioms and in ections, which in courseof
time took the form of favoring somepitchesof pitch intervals and avoiding others
(Latham 2002). Howe\er, this view is not restricted to a purely cultural origin of
scales.Natural principles sud as mathematical, psydological and neurophysio-
logical views can be incorporated as well.

Besidesthe various views on the origin of scales,alsomany di erent ways to
evaluate the goodness,reasonablenesstness, well-formednessand quality of a
scaleexist, ead criterion leadingto a di erent set of best scalesor tunings.

1.6 What lies ahead

Now that we have a basicunderstandingof the establishedtheoriesof consonance,
tuning, temperamen and scales,we will seehow to apply these notions and
also investigate these from a di erent viewpoint in the coming chapters. Our
investigations may lead to di erent insights and new explanations on existing
temperamerts and scales.In this thesis,we will discussse\eral criteria to derive
a scale. These criteria can operate as models explaining the existenceof some
scalesor they may sere asan evaluation of certain existing scales.Furthermore,
the resulting scalescan be interpreted as suggestiongor new scaleshat have not
beenexploreduntil now.

In chapter 2 we will interpret the tonal material of Western music in an al-
gebraicway, wherewe focuson just intonation. A geometricaldescription of the
just intonation framework can be made, which leadsalsoto a geometricalinter-
pretation of the Western notation system as well as the familiar 12-tone equal
temperamen. We start by describingtonesin terms of frequencyratios, (West-
ern) note names,or (equal tempered) pitch numbers. Thesethree conceptsare
meart abstractly and are mathematically connectedthrough (homomorphic) pro-
jections. The geometricaldescription of the tone systemwill be usedthroughout
this thesis. Sincese\eral geometricalmodelsfor tone systemshave beenproposed,
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a comparisonwill be made.

Chapter 3 goesinto the details of equaltemperamen, where also microtonal
systemswith n > 12 will be addressed.There are seeral ways to ewvaluate the
‘goodness'of an n-tone equaltemperedsystem. We will addresstwo of them, the
rst beingthe requiremen that an equaltemperamen should appraximate some
ratios from just intonation as well as possible. The secondcondition hasto do
with the application of equal temperamert to a notational systemwhere West-
ern harmory is incorporated. Together, these conditions result in n-tone equal
temperedsystemswheren equalsl2 19; 31; 41 or 53, which have beencoveredby
previous literature aswe will see. The temperamerns can be represeted in the
tone spacedeweloped in chapter 2.

Chapter 4 addresseghe question of the quality and origin of scalesfrom a
mathematical viewpoint. We will focuson the notion of mathematical beauty or
geometricalwell-formednessapplied to pitch structures, that can possibly sene
as the principled basisfor tonal music. It will turn out that there is a highly
persistert principle holding for pitch structures like scales(also non Western
scales),diatonic chords and harmonic reductions: if preserted in the tone space
descriked in chapter 2 they will form compactand convex or star-corvex shapes.
Convexity and star-convexity may be explainedin terms of consonancesud that
in a corvex musical pitch structure the consonances optimized. For the star-
corvex scalesit turns out that consonances optimized accordingto the tonic of
that scale.

In chapters 5 and 6, applications of compactnessand corvexity in the tone
spaceare addressed.In chapter 5 compactnessand corvexity are usedas mea-
suresof consonancewvith which the preferredintonation of chordsin isolation is
modeled. Euler's Gradus function is usedas the measureof consonanceand it
turns out that compactnesgepreseis this measureof consonancéest. Chapter
6 discusseswo computational applications, the rst being a model for modula-
tion nding usingthe notion of convexity and the secondbeing a model for pitch
spelling usingthe notion of compactnesn the tone space.The rst model turns
out to be only moderately successfulHowewer, the secondis much more success
ful. Pitch spelling is the processof disanmbiguating equaltemperedpitch numbers
and transcribing into Western note names. The pitch spelling model basedon
compactnesshas beentested on the rst book of the Well-tempered Clavier by
Bach and hasresultedin a percertage of 99:21% correctly spelled notes.

We will concludeby stating that the principles of corvexity and compactness
may re ect universal properties of tonal pitch structures.






Chapter 2
Algebraic interpretation of tone systems

Attempts to capture musical pitch in geometrical models have a long history.
Represeting pitchesin a geometricalstructure is usefulfor a number of reasons.
The quality of a musical pitch is dependert on its relation to other pitches. This
could berepresered in a geometricalmodel. The spatial featuresof sud a model
are useful when describing relations of distance between pitches. Furthermore,
geometricalmodels are usually possibleto visualize and therefore more easyto
understand.

In this chapter, an algebraicand evertual a geometricalinterpretation of tone
systemsis descrilked. The algebraicinterpretation is important for understanding
the mathematical properties of the tone systemthat we will usein the rest of this
thesis. Thesemathematical properties have implications for the pitch structures
that can be descrited in the tone space. In section 2.2 we will give the formal
derivation of this tone space. To have a full understanding of the mathematics
that is usedin this derivation, section 2.1 introducesthe necessaryterms and
de nitions. Finally, in section 2.3 a comparisonof the derived tone spacewith
other geometrical systemsof musical pitch is made. The readersthat are not
interestedin the mathematical badkground of tone systemscan skip most of this
chapter, but are advisedto read the secondhalf of section2.2.2and section2.3.

2.1 Group theory applied to music

In this section we will provide some basic de nitions from group theory that
we will use especially in the next section,and in a few instancesin someother
chaptersin this thesis. After every de nition an exampleis giventhat appliesto
music.

We start with the de nition of a mathematical group. A group consistsof a
non-emply set G and a binary operation on G (usually written as composition
with the symbol ) satisfying the following conditions.

1The de nition includesthe fact that, if x;y 2 G, the product x y is alsoa member of the
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The binary operationis assiative: (x y) z=x (y z)forany x;y;z 2 G.

Thereis auniqueelemen e 2 G, calledthe identity elemen of G, sud that
X e=xande x=xforanyx2 G.

For every x 2 G thereis a unique elemen x ' 2 G, calledthe inverseof x,
with the property that x x 1=x ! x=e

For example,the integersZ under the operation of addition forms a group, since
1) addition is assaiative: (a+ b) + c= a+ (b+ ¢), 2) the identity elemen is O:
O+a= aforanya?2 Z, and3) the inverseforais asincea+( a)=0=( a)+a
for all a2 Z. This group could represemn a musical tone systemif we say that
ewvery integer represeis a pitch, and consecutie integersrepresem pitchesthat
are a semi-toneaway from ead other. In the MIDI pitch systemthe value of 60
represeis middle C and ead integeris a step on a standard piano keyboard (for
example, 61 is C] above middle C). Actually, MIDI only de nes the pitchesin
the integerrange0 to 127, but in theory, one could go up and down inde nitely .
Another musical interpretation of the group Z could be formed by the line of
fths:

D[ Al E[l B F C G D A E B F] C] G]::: (21

which is an in nite line in both directions represeting all possiblenote names.
If thesenote namesare identi ed with integersin the following way

D[ Al E[f Bl F C G D A E B F] C] G

5 4 3 2 101 2 3 45 6 7 8 (2.2)

the elemerts of the group Z can be usedto indicate the note names.

A group G is alelian if all pairs of elemerts of G comnute, x y =y X, in
which casethe order of the elemerts in a composition is irrelevant. Otherwise,the
group G is non-atelian. The group Z under addition is abelian, sincea+ b= b+ a.

A group G is saidto be nite if it hasa nite number of elemens, and in nite
otherwise. The order of a nite group G is de ned asjGj, the number of elemens
of G. If x is an elemen of G, then for n 2 N, x" is usedto meanthe composition
X ::: Xinvolving n terms. x° is de ned to bee. The elemen x is of nite order
if thereis somen 2 N sud that x" = e. If x is of nite order, then we de ne the
order of x to be the least positive integer n sud that x" = e.

2.1.1 Cyclic groups

A group G is called a cyclic group if there exists an elemen g 2 G, sud that
ewvery elemen in G can be represeted as a composition of g's. The group can

set G, since binary operations are required to satisfy closure. This is sometimesstated as a
separateaxiom (closure).
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then be represered as
hgi = fx 2 Gjx = ¢" for somen 2 Zg (2.3)

and is called the cyclic group generatedby g. If g is of order n, then hgi =
fe;g;:::;g" g. The setZ under addition is an in nite cyclic group sinceevery
elemernt in Z canberepreseted asa compositionof 1's(1+ 1,1+ 1+ 1,1+ ( 1),
etc.). In this casel is the generator. The setsZ, = f0;1;2;:::;ng with addition
modulo n are nite cyclic groups. For example,the group Z3 is the setfO0; 1; 2g
under addition modulo 3. The cyclic group can alsobe denotedby C,.

When the octave is divided into 12 equalsemitonesasin equaltemperamen,
we can court from C, 12 semitonesup to nish at C again. Octave equivalence
meansthat we identify noteswith ead other which di er by a whole number of
octaves. If we asseiate a number with ead pitch, starting from C = 0 then we
can court up to 11, and then start bad from 0. In terms of group theory, we
cansg that the setf0; 1;2;3;4;5;6;7,;8;9; 10, 11g under "addition modulo 12" is
a group. The idertity elemen is O and the inverseof n is 12 n. This group is
written asZi, or Cy, and is a cyclic group. The generatorsfor Z,, are precisely
the numbersi in the range0 < i < n with the property that n and i have no
commonfactor, they are said to be relatively prime. In the casefor n = 12, the
possibilitiesfor i are 1;5;7;11. In terms of musical intervals, this meansthat all
notes can be obtained from a given note by repeatedly going up by a semitone
(1), fourth (5), fth (7) or major seerth (11). In fact, the sequencef semitones
is generatedby 1 (forwards) and 11 (backwards). The elemens 5 and 7 generate
the group in consecutie fths or fourths represeting the circle of fths.

2.1.2 Prop erties of groups and mappings

Let A and B be groups, the binary operationin A, and the binary operation
in B. Themapf : A 7! B isahomomorphismif, for all a;;a, 2 A:

flas a)="f(a) f(a); (2.4)

For example, the map from the integersZ under addition, to the cyclic group
Z1,, formed by projecting ead elemen from the former group onto an elemen
of the latter group by taking the value modulo 12, is a homomorphism.

The kernel of f consistsof the elemerts of A that are mappedonto the identit y
elemen of B:

Kerf :=fa2 Ajf(a) = eg 2 Bg: (2.5)
The image of f is given by:
Imf :=fb2 Bjb= f(a)fora2 Ag; (2.6)

which consistsof those elemerts of B which are maps of elemens of A. If the
homomorphismf is a bijection (one-to-onecorrespndence),then one can shav
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that its inverseis alsoa homomorphism,and f is called a isomorphism In this
case,the groups G and H are called isomorphic: they di er only in the notation
of their elemerts. In an isomorphismf, Kerf = e. An isomorphic projection
of a group onto itself is called an automorphism. For example,the mapping of
Z wherely ewery integer is multiplied by 1, projects Z onto itself and is an
automorphism.

A subsetH of agroup G is saidto be a sulgroup of G if it formsa group under
the binary operation of G. Equivalently, H G is a subgroupif the following
conditions hold:

The identity elemen e of G liesin H.
If x 2 H, then its inversex *in G liesin H.
If x;y 2 H, then their compositionx yin G liesin H.

For example,2Z, the group of all evenintegersunder addition is a subgroupof Z,
the group of integersunder addition. The sete aswell asthe group G itself, are
alsosubgroupsof G. Going bad to the exampleof C,, represeting the 12-tone
scale,we have seenthat the elemens 1, 5, 7 and 11 can generatethe group. The
rest of the elemerns of the setf0; 1;2; 3;4;5;6;7;8;9; 10, 11g generatesubgroups
of Cy,. To illustrate: the elemerts 2 and 10 are both of period 6 (this means
(2)® mod 12 = (10)®* mod 12 = e), they both generatethe set f 0; 2; 4; 6; 8; 10g.
This set can be interpreted as a whole tone scaleand constitutes the group Ce,
a subgroupof Cy,. Similarly, 3 and 9 are of period 4 and generatethe subgroup
C4 : 10;3;6;9g which could represem a diminished sewerth chord. The other
subgroupsof Cy, are Cs : f0; 4; 8g, generatedby 4 and 8 and correspnding to an
augmerted triad, and C, : f0; 6g, the tritone that generatesonly itself and the
identit y.
Given a subgroupH = fhy; hy;:::g of a group G, a (left) cosetof H written

gH, with g 2 G, is de ned asthe set of elemens obtained by multiplying all the
elemens of H on the left by g:

gH = fghy;ghy; g (2.7)
A normal sulgroup H of G is onewhich satis es
gHg 1= H; for all g 2 G: (2.8)

This meansthat the setsof left and right cosetsof H in G coincide. Necessarily
all subgroupsN of an abelian group G are normal sincegHg *= gg *H = H.
The quotient group or factor group, of G over its normal subgroupH is de ned
by the set of all cosetsof a subgroupH, and is intuitiv ely understood asa group
that "collapses"”the normal subgroupH to the identity elemen. The quotient
group is written G=H. For example,the quotient group Z=2Z = Z, is the cyclic
group with two elemens. This quotient group is isomorphicwith the group C,.
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The direct product of the groupsA and B isthe group A B whoseelemers
are orderedpairs (a;b) with a2 A andb?2 B. The group operation is de ned by

(as;br)(a; bp) = (a1az; by): (2.9)

The inverseof (a;b) is (a ;b 1) andthe identit y elemen is formed by the identit y
elemerts of A and B. For example,the direct product Z Z, which is the lattice
Z?, hasidentity elemen (0,0). The group operation is a simple vector addition?:
(a1; b))+ (ag; ) = (au+ az; by + ), andthe inverseof anelemen (a;b) is( a; b).

For a formal description of group theory, one can look at for example Jones
(1990) or Alperin and Bell (1995). Furthermore, both Balzano(1980) and Carey
and Clampitt (1989) have given useful introductions to group theory which has
beendirectly applied to music, and Benson(2006) has written a whole chapter
dedicatedto group theory and music.

2.2 Group theoretic and geometric description
of just intonation

In this section, which is basedon Honingh (2003a) we will use group theory to
descrilke just intonation and our main focuswill be on just intonation to the 5-
limit. We will make a represemation of all intervalsin this tuning systemwithin
one octave. We will seethat this represetation is isomorphicwith Z2 sothat it
can be shavn as a two-dimensionallattice. This two-dimensionalrepresemation
of a tone spacewill form the basisof someconsiderationsin the eld of tuning in
section2.2.2and will be usedas a referencetone systemthroughout this thesis.

2.2.1 Just intonation in group theoretic terms

Musical intervals can be expressedin terms of frequencyratios. Any positive
integera canbe written asa unique product a = pf* p3?:::pg of positive integer
powers g of primesp; < p, < ::: < p,. Hence,any rational number can be
expresseds

P35 1 (2.10)

with p;q;r 2 Z. For example2 '3'(= 2) represets a perfect fth and 2 25(=
2) a major third. Tuning accordingto rational numbers is referred to as just
intonation (Lindley 2005). If the highest prime that is taken into accoun in
describinga set of intervals is n, then we speak about n-limit just intonation.

2We usethe term “vector addition' here, since Z? is consideredas a subgroup of the vector
spaceR?. Howewer, note that the lattice Z?2 itself is not a vector space. SeeMazzola (1990)
for information on linear algebra of modules. We will continue to use the terms “vector' and
“vector addition' in this chapter at occurrencesthat are similar to this.
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Consideringpowers of the rst two primes, we can createthe following set of
numbers and ratios
f2°3p;q2 Zg; (2.11)

in which integerslike 1;2; 3;4;6;::: can be found, but also fractions like %; %;g
etc. It is possibleto rewrite 2°39 as:

2P = 2f’+q(g)q = 2“(:—23)V (2.12)

with u= p+ gandv = g. If we considerall numbers resulting from expression
2.11to be frequencyratios, we seenow that thoseintervals can all be built from

a certain number of octaves@) and fths (%). This is called Pythagoreantuning,

and is a special form of just intonation. The set of numbersin 2.11 form a
subgroup of the positive rational numbers with respect to multiplication. Using
group theory we can make an abstraction of se\eral tuning systems.We will call

(2.11) the group P, (since all elemens are powers of the rst two primes) and
write:

P, = fzp(:—;)qu;q 2 Zg: (2.13)

The group hasidertity elemen 1 and the inverseof an element aisa *. It isan
abelian group (i.e. the elemerns commnute) with an in nite number of elemerts.

The group Pz (taking into accoun the rst three primes) can be de ned by
f2P395 jp;q;r 2 Zg or, equivalertly by

3.5
Ps = f2p(§)q(;1)r1p;q;r 2 Zg: (2.14)

sothat the elemens can be seenas all intervals built from octaves(%), perfect
fths (g) and major thirds (%). More groups like this can be de ned, taking
into accourt multiples of 7 and higher primes. All groupsrepresen a form of
just intonation: P, represets 3-limit just intonation, Pz represems 5-limit just
intonation, P, represeis 7-limit just intonation and soon. Every de ned group
is a subgroupof the group which takesinto accourt higher primes.

f2Pip2 Zg f2P3jp:q 2 Zg f2P395 jp:q;r 2 Zg
f2P395" 7°jp;q;r;s 2 Zg i (2.15)

Our focusis on P3; which represems the intervals in 5-limit just-intonation.
It can be shavn that the group Ps is isomorphic to the group Z3, under the
projection: 2'0(3)‘4(%)r 7! (p;q;r). Forthe proof, seeappendix A.1. Hencewe can
represenm the elemerts of P; in a 3-dimensionallattice labeled by the elemerts of
Z3. For simpli cation howewver, wewant to consideronly the intervalslying within
oneoctave. This means,consideringthe elemens of P3 lying within the interval
[1;2). To accomplishthis, we make a projection ' : P; 7! Z? that divides P3 in
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equivalenceclassef (the same)intervals over all octaves. Of eat equivalence
classa represemativ e is chosenthat lies within the interval [1;2). For example,
the intervals 3=2, 6=2, 3=4, 12=2 and so on, are in the sameequivalenceclass.
The represetativ e of this equivalenceclassis 3=2 sincethis is the interval lying
within [1;2). The projection is given by

3.4,5
: 2 (2) (4) 7 (gr): (2.16)
This map is a group homomorphismsince
xy)= (xX)+ (y) for all x;y 2 P3 (2.17)

The kernel of the map is f 2°jp 2 Zg which are the elemerts that are projected
on the unit elemen (0;0) of Z?. The quotient-group

P; = Ps=f2Pjp 2 Zg (2.18)
is the group of cosetsof the subgroupP; = f2°jp 2 Zg. We write
P; = P3=P, = fxP1jx 2 Psg (2.19)

which meansthat ewery elemen of P;=P; is an equivalenceclassof the elemens
f2°(2) (8) j ; xed;p2 Zg. From every cosetwe canchooseonerepresetativ e
that lies within the interval [1;2) (one octave). The group P3=P; is isomorphic
to Z?

P;=f 2’jp2 zg = Z? (2.20)

sincethe map ' is a homomorphismand f2°jp 2 Zg is its kernel. In gure 2.1
the represemativ esof the elemerts of P; are shovn orderedaccordingto the 2-D
lattice of Z2. The lattice is unboundedbut only part of it is shovn. Notice that
(for r = 0) on the g-axis the (represetativ es of the) group P, = P,=P; can be
found. The represemation of intervals like in gure 2.1 has beenreferredto as
the "Euler-lattice’ or "harmonicnetwork' which we will discussin section2.3. For
a represemation and discussionof the 3-dimensionalEuler-lattice (including the
octave coordinate), seefor exampleNoll (1995).

We seefrom gure 2.1that all frequencyratios (in 5-limit just-intonation) can
be built from perfect fths (3=2) and major thirds (5=4) (and transposingoctaves
badk)3. The g-axis represets the number of perfect fths, the r-axis the major
thirds. Every frequencyratio represems a musical interval, like 3=2 represeting
the perfect fth and 5=4 represeting the major third. Other note intervals can
be obtained from theseintervals aswell. From gure 2.1 we can for examplesee
that two perfect fths and one major third up (and one octave down) givesan
augmerted fourth of ratio 45=32. Interval addition can be seenhere as vector
addition (all vectorswith their origin in (0;0) 2 Z?). In gure 2.2is shown that
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25/18 25/24 25/16 75/64225/128
40/27 10/9  5/3 5/4 15/8 45/32 135/128
32/27 16/9  4/3 1 32 9/8 27/16 81/64?
256/13564/45 16/15 8/5 6/5 9/5 27/20 81/80

256/225128/75 32/25 48/25 36/25 27/25

Figure 2.1: Lattice constructed accordingto projection 2'0(%)‘4(%)r 7! (q;r)

AL AL A5 A2 A

p5 M2 Mé M3 T W M AL
m3 m7 p4 p5 M2 M6
D1 D5 m2 m6 m3 m7 p4

D3 D7 D4 D1 D5

Figure 2.2: Tone spaceof note intervals, the letters p, M, m, A and D mean perfect,
major, minor, augmerted and diminished respectively. It is illustrated that adding a
major third to a major sewerth results in an augmerted second.

a major sewerth addedto a major third resultsin an augmerned second. These
intervals are note intervals, resulting from the Western note name system, as
we will seein the next section. Putting gure 2.2 on top of gure 2.1 with the
(perfect) unison aligned at frequencyratio 1, it becomesclear which frequency
ratios belongto which intervals. Note that the inversesof the intervals lie exactly
at the other side of the certer 1 (point symmetry).

2.2.2 Dieren t realizations of the tone space

There are se\eral ways to make a homomorphic projection from P3 to Z? (asin
expression2.16). The group Z2? hasgeneratingsubsetf (1;0); (0; 1)g. This means
that all elemens from Z? can be represeted as linear conbinations of basis

3seealso Regener(1973, pp. 49,50).
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vectors (1;0) and (0;1). In gure 2.1theseelemerts (or vectors) are asseiated
with the intervals% and?1 meaningthat all intervalsin this gure canbebuilt from
perfect fths and major thirds (and octaves,to get badk to the represematives
from the cosetthat lie in the interval [1; 2)) (seealsoRegenerl973,ch. 8). These
generatingelemerns are not unique. We can for examplewrite:

5 6 5,6
213'5" = 2“+V+2W(Z)"+W(§)" = 2"(21)'(5)”‘; uviwik;lbm2 2z (2.21)

with kK = u+v+ 2w, | = v+w, m = v, sud that (u;v;w) ) (k;I;m) is abijective
map (i.e. a oneto one correspndence),proving that the intervals from P3; can
alsobe built from octaves(2=1), major thirds (5=4) and minor thirds (6=5). One
could ask what all possibilities for generatingelemerns for Pz would be. If the
homomorphicprojection from P53 to Z2 is given by

2?90 7' (qg;r); (2.22)

the elemens a and b correspnd to the generating subsetf (1;0); (0; 1)g of Z2.
The question of which possibilities exist for valuesof a and b hastwo directions.
The rst direction appliesto the possibletransformations of generatingelemerns
of P; (e.g. eq. 2.21) or Z2 sincethesegroupsareisomorphic. The seconddirection
appliesto the possibletransformation of generatingsubsetsof Z2. The transfor-
mations of Z* induce transformations of Z2, and vice versa,the transformations
of Z? can be lifted to Z3. To addressthe point of transformations of Z2, that
is, what are the possiblebasis-\ectorsof this space,it turns out that the areaof
the parallelogram spannedby the two (alternative) basisvectors (or generating
elemens) should equal 1, in order to be able to represen every elemen of Z?2
as a linear conbination of those vectors. This is equivalert to saying that the
determinant of the matrix with the basisvectors as columns should equal 1 or
1. For the proof, seeappendix A.2. Concerningthe transformations of Z3, the
questionis whether the transformationsof Z2 canbelifted to Z3. Fleischer (Volk)
(1998) hasshown that lifted mapsexist, with restrictions only in connectionwith
the torsion parts of the underlying space. In the caseof the projection from z3
to Z2 there is no torsion involved and thus ead map on Z? may be lifted* to Z3.
There exists an in nite  number of possibilities to choosea basisof Z2. By
choosing the map given by (2.16) we accomplishedthat the basis vectors were
correspnding to the perfect fth and major third and obtained the lattice shown
in gure 2.1. Here, we will follow Balzano (1980) and choose major third and
minor third, from which the tone spacecan be build. Hence, we choose the
projection:

PO T (@) (2.23)

In gure 2.3a,the spaceconstructedaccordingto this projection is shavn.

4For other examplesof lifting a musical meaningful map to a richer space,seeNoll (1995).
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216/12527/25 27/20 27/16 Bbb Db F A
144/125 36/25 9/5 9/8  45/32 Ebb Gb Bb D F#
192/125 48/25 6/5 3/2 15/8 75/64 Abb Cb Eb G B D#
128/12532/25 8/5 1 5/4  25/16 125/6¢ Dbb Fb Ab C E G# B#
128/7516/15 4/3  5/3  25/24 125/96 Bbb Db F A c#  E#
64/45 16/9 10/9 25/18 125/72 625/576 Gb Bb D F#  A#  C#t
32/27 40/27 50/27 125/108 Eb G B D#
(a) frequency ratios (b) note names

(c) pitch numbers

Figure 2.3: Three represenations of tone space: frequency ratio space, note-name
space,and spaceof pitch numbers. In gure b, C is chosento be the key.

The frequencyratios in the tone spacecan be identi ed with note namesif a
referencenote is chosenand identi ed with the prime interval 1. In turn, all note
namescanbeidenti ed with the keyson a piano, or numbers0to 11 represeming
all 12 equaltemperedsemitoneswithin an octave. The actual projections can be
made after a referencepoint is chosen. We chooseto map the prime interval 1
onto the note nameC and onto the pitch number 0. The full projectionsare then
obtained by mapping the generatingelemerts 5=4 and 6=5 onto the E and E[ for
the note names,and onto the elemens 4 and 3 for the pitch numbers. With these
unit elemerts the rest of the elemerts are obtained by using vector addition. In
this way, two homomorphicprojections from the group of frequencyratios to the
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@) (b)

Figure 2.4: Construction of cylinder (a) and torus (b). The points in the tone space
that have the samenote name or pitch numbers attached to it can be identied. The
spacecan then be rolled up by identifying the lines like indicated in the gure, to
becomea cylinder or a torus respectively.

group of note namesand pitch numbers arise. In gure 2.3, the tone spaceof
note names and the tone spaceof Z,, pitch numbers are represemed according
to these projections® In gure 2.3, we left out somecomplex frequencyratios
and note nameswith many accidenals; howeer all three spacescan be displayed
in in nite horizontal and vertical directions. We already explainedthat we use
octave equivalencein the interval tone space.We do the samein the note name
spaceand in the pitch number space.

All three gures 2.3a, 2.3b and 2.3c shav di erent realizations of the same
structure: one step to the right meansa major third up, one step up meansa
minor third up. The frequencyratios spaceis an in nite spacein all directions. If
the discretelattice of note namesand pitch numbersare embeddedin the cortin-
uousspaceR, the note-namespacecanberolled up in onedirection by identifying
correspnding note nameswith ead other ( g. 2.4)a;the pitch number spacecan
be rolled up in two directions (to becomea torus) sincethe 12-tonesystemtreats
enharmonically equivalernt notes as the sameelemen (g. 2.4b). For the note

5The terms note-name spaceand pitch number spaceare used throughout this thesis to
indicate gures b and c. Howewer, in a strict mathematical way, these gures would not be
regardedas spacesbut perhapsreferredto astables or charts.

6seealso Regener(1973) for an in-depth analysis of the relation between frequency ratios
and note names.
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name space the dimensionthat is rolled up is generatedby the syntonic comma.
All multiples of the syntonic commabelongto the kernel of this projection and
thus there is only one point on the rolled up circle (indicated by the two D's at
both endsof the dotted line in g. 2.4a). There is no torsion, i.e. there is no
elemen whosemultiple is zero. In the caseof the pitch number spacethere are
two casesof torsion. Three major thirds as well as four minor thirds add up to
zero (or unisonin terms of musical intervals). The linesin g. 2.4bindicate the
two casesof torsion. The pitch numbers within the rectanglerepresem all pitch
numbers on the surfaceof the resulting torus. Thus, we can sa that the note
namespacecan be obtained from the frequencyratio spacemaking an iderti ca-
tion in onedirection; the pitch number spacecan be obtained from the frequency
ratio spaceby making identi cations in two directions. We will further explain
this ideain section3.1.2.

In terms of group theory, the following obsenations about thesethree spaces
can be made. The set R, represeting the real numbers, is a group under ad-
dition. Musically, this group can be interpreted as the pitch cortinuum that
consistsof the logarithms of all possiblefrequencyratios (keepin mind that pitch
perceptionis logarithmic with respectto fundamertal frequency seesection1.2).
Octave classeof pitchescorrespnd the group R=Z, i.e. the real numbersmod 1.
Subgroupsof this group can now be recognizedn the spacesof frequencyratios,
note names,and pitch numbersin the following way. The group consistingof the
(base?2) logarithms of the elemerts of P; (represeiing the frequencyratios from
5-limit just intonation) under addition, will be denotedby log, (P3). The set of
octave classe®f elemerts of this group, denotedby log, (P3)=Z or equivalertly by
flog, (2°3%5") mod 1jp;q;r 2 Zg, forms a subgroupof R=Z. The group Z under
addition, canrepresem the note namesby ordering them in a line of fths, aswe
have seen(eq. 2.2). Sincethis projection from frequencyratios to note names
is generatedby the fth (with frequencyratio 3=2), the note namescan also
be indicated by the group f(2)Pjp 2 Zg. Therefore, the embedding of the note
namesin R=Z yieldsfplog, (%2) mod 1jp 2 Zg. The pitch numbers can be homo-
morphically embeddedinto octave classef pitches(R=Z) by sendingp 2 Z;, to
£ 2 R=Z. The group of pitch numbersis then givenby f 5 mod 1jp 2 Zg, which
is a subgroupof R=Z. But while the embedding of note namesis a subgroup of
the octave classe®f log, (P3) this is not the casefor the pitch number embedding
represeming the 12-toneequaltemperamen. For further discussionon the pitch
cortinuum R and its subgroupsas descriked above, seeCarey (1998, appendix
B).

The projections from the frequencyratio spaceonto the note namespaceand
pitch number spaceasshavn in gure 2.3, are homomorphicprojections. Notice
that the group of note names(Z) canbe represeted on a one-dimensionaln nite
line. The group of pitch numbers (Z,,) can be represerted on a one-dimensional
nite line. Howewer, herewe have chosento represem all three spaceq gure 2.3)
in two-dimensionsto make clear how to project the lattices onto ead other (see
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section4.2.2for more explanation of the note name space,and section4.1.2and
Balzano (1980) for more explanation of the pitch number space)’

We can now understand (and seefrom gure 2.3) that our note name system
is not su cient to distinguish betweenall frequencyratios. From gure 2.3awe
seethat, goingthree major thirds up and four minor thirds up (and two octaves
down), we are not badk on the note we started from - which is suggestedy gure
2.3b - but one syntonic comma (81=80) higher. Therefore,in gure 2.3b ewery
note di ers oneor more syntonic commasfrom another note with the samename.
For example,comparing the ratios 9=8 and 10=9, both correspndingto a D in
gure 2.3b givesus a dierence in pitch of 2= = & which is equalto 21.51
certs.

The four 2's presern in gure 2.3crepresemn the samenote in the pitch number
space but four di erent frequencyratios in the frequencyratio space( gure 2.3a).
The four frequencyratios correspndingto the four 2'sare, from left to right, from
top to bottom: 144=125 9=8; 10=9; 625-576. The note namesof thesefrequency
ratios (comparedto C) are E[[; D;D;C]] respectively. The two D's dier one
syntonic comma(= 2151 certs) from ead other. The di erence in certs between
E[[ and D(10/9), and betweenD(9/8) and C]] is 62 57 certs, which is called
the greaterdiesis. The di erence betweenE][[ and D (9/8), and betweenD (10/9)
and C]] is 4106 certs, which is called the lesserdiesis. Finally the di erence
betweenE[[ and C]] is 10362 certs®, which is more than one (equal tempered)
semitone!

2.3 Other geometrical representations of musi-
cal pitc h

There have beenvarious other proposalsto geometricallyrepresemn musical pitch.
In this sectionwe will give a short overview of someprominent geometricalmod-
els of musical pitch that have beenused. For a more complete overview, see
Krumhansl (1990) or Shepard(1982). Musical pitch is a logarithmic function of
the frequencyof a note. This can be translated to the fact that the ratio of the
frequenciesdescribingan interval is more important for the perception of music
than the physical frequencies. For example,the interval betweena 100 Hz and
150Hz tone soundsmusically similar to the interval betweena 200Hz and 300Hz,
sincetheir ratio is 3=2 in both cases.Therefore,the simplestgeometricalmodel
of pitch can be visualizedas a (one dimensional)line, represeting the logarithm
of ascendingor descendingrequency The note namesin equaltemperamer can

"For further algebraic investigations of tone spaces,seeCafagna and Noll (2003), Balzano
(1980), and Benson (2006).

8The Pythagorean commais not visible here, sincethis commais constructed from 12 fths
and henceneedsmore space.
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be represeted on a line sud that they correspnd to ascendingfrequencies
G A[(G])) A BJ[(A]) B c c|(d) d dieD) ::: (2.24)

where c is an octave higher than C and soon. To represem the line of pitches
from equation 2.24 such that height correspnds to pitch height, a number of
spiral con gurations of this line have been proposed (among others Drobisch
1855 Shepard1982,Bachem 1950). In this represemation, the line is presened
in a spiral, sud that tones at octave intervals are located one above the other
(see gure 2.5). The circle projection on the plane perpendicular to the axis of

C C]=D[ D

Figure 2.5: Pitch represenation of Shepard(1982).

the spiral is sometimescalled the chroma circle.

A disadwantage of the above pitch represemations is howeer, that it does
not re ect the consonanceof the intervals. If proximity should be indicative of
consonancean option would be to represen pitcheson the line of fths, since
the fth is consideredto be a consonan interval.

BL F C G D A E B F] C G :: (2.25)

Note that, on the line of fths, octave equivalenceis assumed,in which case
a C is equivalert to a ¢ and so on. Many other attempts have been made to
model consonanceas proximity in geometrical models. The model which has
been best well-known is shavn in gure 2.6 and emphasizeshe major thirds
and fths. A tone in this model has on its left and right its neighbors from
the line of fths, and above and below neighbors from the tonesin the sequence
of major thirds. This lattice represemation and minor variants of it have been
introduced in numerous articles (Helmholtz 1863, Riemann 1914, Fokker 1949
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D# A# E# B# F## C##t  G##
B F# C# G# D# A# E#
G D A E B F# C#
Eb Bb F C G D A
Cb Gb Db Ab Eb Bb F
Abb Ebb Bbb Fb Cb Gb Db

Fbb Cbb Gbb Dbb Abb Ebb Bbb

Figure 2.6: Geometrical model of musical pitch referred to as the harmonic network
or Euler-lattice.

(who attributes it originally to Leonhard Euler), Longuet-Higgins 1962a1962b
1987b) and are known under the names harmonic network’, "Euler-lattice' and

“Tonnetz'. In this thesis,we will usethe term Euler-lattice. As may be clear, the

spacewe obtained in gure 2.3bis a minor variant of the Euler-lattice. It is the

samelattice under a basis-transformatiorf. We have seenthat this Euler-lattice

of note namescan be derived from the ratios in 5-limit just intonation ( gures

2.3a,b). If the enharmonicequivalert notesareidenti ed with eadt other, spaces
similar to gure 2.3cappear, which have been proposedby Balzano (1980) and

Shepard(1982).

Another geometrical model of musical pitch has been deweloped by Chew
(2000) and is called "the spiral array’. By idertifying the points in gure 2.6
indicating the samenote names,a vertical cylinder having note namessituated
on its surfacecan be obtained'®. Alternativ ely, the spiral array can be seenas
a spiral con guration of the line of fths, sothat pitchesa major third apart
line up above ead other four stepslater. The spiral array is shovn in gure
2.7. Chew (2000) has calibrated the parametersin the model sud that pitch
proximities represem the perceived interval relations in Western tonal music.
Shefurthermore arguesthat the depth added by going to three dimensions(for
example,the key canbe represeted by a point interior to the spiral) \allows the
modeling of more complex hierarchical relations in the spiral array" (Chew and
Chen 2005).

Throughout this thesis,we will usethe three represemations of the tone space
or Euler-lattice, aspreserted in gure 2.3: the tone spaceof frequencyratios, the
tone spaceof note nameswhich is similar to Chew's(2000) spiral array (although

°In the previous section, if we had usedthe space2.1 to project the note namesonto, we
would have obtained gure 2.6

01t may be clear that the implied frequencyratios that di er oneor more syntonic commas
are then identied aswell.
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Figure 2.7: Spiral array model developed by Chew (2000).

we will only usethe surfaceof the cylinder represeting the note names),and the
tone spaceof pitch numberswhich is similar to the torus assuggestedy Balzano
(1980). As already mertioned in the previoussection,the frequencyratios canbe
projectedto the note names,which in turn canbe projectedto the pitch numbers.
The badkwards projections however, are ambiguous. The correct projection from
pitch numbersto note namesand from note namesto frequencyratios represen
two known problemsthat we will addressin chapters5 and 6.



Chapter 3

Equal temp erament to appro ximate just
Intonation

Equal temperamern (ET) isthe temperamert systemin which aninterval (usually
the octave) is divided into a certain number of equal units. The most common
equal tempered system consistsof 12 tonesto the octave. Howewer, in theory,
any equaldivision of the octave is possible. One might wonder, and many music
theorists have, if there exist ETs other than the 12-toneET that can be usedfor
musical practice. Tuning to just intonation can be preferablefor its consonance
properties. Howewer, ET can be preferred for its practical modulation proper-
ties. Combining thesetwo useful properties, an equaltemperedsystemis usually
judged on its quality of how well it approximates certain ratios from just into-
nation. Howeer, other criteria for judging an equaltempered systemhave been
proposedas well (seesection3.1).

Concerningthe questionsraisedin the introduction, an n-tone equaltempered
scalethat resultsfrom imposingcertain criteria, givesa possibleexplanationof the
existenceof somescales.Furthermore, thesecriteria may sere as an evaluation
of certain existing scales,and nally , the resulting n-tone equal tempered scales
can be interpreted as suggestiongor new scalesto explore. In this chapter, we
investigateequaltemperedscaleghat consistof all noteswithin the temperamen
system(lik e the chromatic 12-toneequaltemperedscaleconsistsof all notesfrom
the 12-toneET).!

In the rst half of this chapter which is basedon Honingh (2003b),we will mea-
surethe goodnessof an n-tone equaltemperedsystemwith a designedgoodness
of-t function, basedon how well this temperamen approximates certain ratios
from just intonation. In the secondhalf of this chapter which is basedon Honingh
(2004) we will concenrate on the Westernmusic notation systemconbined with
equal temperamen. We will seethat this music notation system restricts the
possibilities for n in an n-tone ET systemaswell. We focus on the problem of

Linvestigations of scalesembeddedwithin an n-tone equaltempered system have beenmade
by for example Balzano (1980) and Krantz and Douthett (2000).

41
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\whic h pitch number belongsto which note names", which has beenillustrated
by gures 2.3b,cfor 12-toneET.

3.1 Short review of techniques of deriving equal-
temp ered systems

Over the past certuries, much hasbeenwritten about equaltemperedsystemsby
musictheorists, composersand many others. Many conditionsof how to construct
the bestET have beenproposed. One condition most authors agreeon, is to have
an equaldivision of the octave asopposedto an equaldivision of anotherinterval.
Therefore,in this thesiswe restrict ourselesto octave basedETs. Besidesthis,
various other conditions have beenproposedranging from good approximation of
the perfect fth (Schedter 1980; Douthett, Entringer, and Mullhaupt 1992),to
good scaleand chord structures (Erlich 1998) and presenation of the di erence
betweenmajor and minor semitones(Fokker 1955). In this chapter, we do not
intend to give an overview of all literature on ET or proposedtemperameri
systems. Instead we focus on two issuesl) the approximation of just intonation
ratio by ET, and 2) somelimitations on ET causedby Westernharmory and the
music notation system. An overview and explanation on (equal) temperamern
systemscan be found in Bosanquet(1874a,1874b).

A mathematical technique known as the continued fraction compromise was
used by Sdcediter (1980) and Douthett, Entringer, and Mullhaupt (1992) to
derive divisions of the octave that appraximate one speci ¢ ratio from just into-
nation. The perfect fth was usually chosento represen this interval sincethis
was consideredto be the most important interval after the octave. In section
3.1.1a short explanation on cortinued fractions is given. Investigationsof how to
approximate more than oneinterval from just intonation were doneby De Klerk
(1979) and Fuller (1991). Somemathematical functions having the ratios that
areto be appraximated asinput and the desiredn-tone ETs asoutput, have been
designedby Hartmann (1987),Hall (1988)and Krantz and Douthett (1994). Hall
(1973) judged (not necessarilyequal) temperamerns with a goodness-of- t func-
tion on the basisof the approximation of just intonation ratios. Yunik and Swift
(1980) have written an algorithm to derive the most successfukequal tempered
scalesbasedon the appraximations of 50 consonan ratios from just intonation.

Knowing the values of suitable divisions for the octave (that approximate
certain ratios from just intonation), does not explain yet the projection from
just intonation to an equal tempered system. Sdoltz (1998) explains the rela-
tions betweenjust intonation, Pythagoreantuning and equal temperamen by
giving algorithms to project one onto the other. Regener(1973) provides the
conditions for correspndencebetweenpitch notation and regular systems.Con-
structing an equal tempered system by approximating ratios from just intona-
tion can be understood as tempering out certain commas. Recall from sections
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1.3.2and 1.3.3that 12-tone ET closesthe circle of fths and tempers out the

Pythagoreancomma. This meansthat the frequencyratio 53144£524288known

as the Pythagoreancomma, is appraximated by unison (531441524288! 1),

and the width of the commais equally divided over tones (in a fth sequence)
lying betweenthe two tonesB]] and C. Rapoport (1993) calculatesthe values
of n for n-tone equal tempered divisions by approximating se\eral commasby

unison. Erlich (2005) explainsthat temperamen consistsin altering the tuning

of the frequencyratios so that someof the (small) intervals in the tuning sys-
tem becomeperfect unisons. He explainsthat when tempering out one interval

(a comma) from just intonation, the dimensionality of the systemis reducedby

one dimension. The dimensionality of a systemis determined by the number

of generatingelemens of the system. Equal temperamern is a one-dimensional
system: a systemwhereall intervals can be represeted as compositions of only

oneinterval (cf. section2.1.1). Pythagoreantuning is a two dimensionalsystem
(its intervals built from powersof 2 and 3, seesection2.2.1), and can be reduced
to a one dimensionalequal tempered systemby tempering out one interval: the

Pythagoreancomma. To reduce5-limit just intonation, which is a 3-dimensional
systent to an ET system, one needsto temper two intervals to unison. Fokker

(1955) hasdescribed a procedureto project the 5-limit just intonation tone space
(g. 2.3a)to an n-tone equal tempered system, by using periodicity blacks In

section3.1.2a short explanation on periodicity blocks is given.

3.1.1 Contin ued fractions

The corntinued fraction compromisehasbeenusedto nd temperameris that ap-
proximate oneinterval from just intonation (Schedter 1980;Douthett, Entringer,
and Mullhaupt 1992). Especially the fth, which was consideredto be the most
important interval after the octave, has beenused for approximation. Contin-
ued fraction notation is a represemation for the real numbersthat is nite if the
number is rational. Truncating the cortinued fraction represetation early, gives
a very good rational appraximation. This is an important property of cortinued
fractions and an advantage over decimal represemation, sincethe latter usually
doesnot give a good approximation when truncated.

The cortinued fraction of a number x is given by

1
X=a+ — = [ag;a; @ a3;: 7] (3.1)
a+ ag+ L

33+ o

where ag is an integer and the other numbers a are positive integers. For
example, the number 41593 can be written as [4;2;6; 7] in continued fraction
form, since4 + 1=(2 + 1=(6 + 1=7)) = 41593. Another example,to show that

2Note that in gure 2.3 we have shawn this 3-dimensionaljust intonation systemin only 2
dimensionsby dividing the octave out.
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truncations of cortinued fractions yield good appraximations, is the continued
fraction for . It is an innite represemation, the beginning of which given
by [3;7;15;1;292:::]. When this represemation is truncated, the appraxima-
tions yield 3;22=7; 333=106 355=113, which are better appraximations to than
truncations of the decimal form 3;31=10; 314=10Q 314%1000. To calculate the
cortinued fraction represetation of a number r, write down the integer part of
r, subtract this integer part from r, nd the inverseof the di erence, and follow
the sameprocedureagain. For example, for the number 2:45, 2245 2 = 0:45
(write down 2) ! 1=0:45= 2:222: ! 2:222: 2= 0:222: (write down 2) !
1=0:222: = 45! 45 4= 05 (write down4)! 1=05=2! 2 2= 0 (write
down 2). The continued fraction represemation for 2:45is [2;2; 4; 2].

The cortinued fraction of an irrational number is unique. For nite corninued

fractionsthat represemn the samenumber. For example[2;2;4;2] = [2;2;4;1; 1] =
2:45. As already mertioned, for in nite continuedfractions, good appraximations
are given by its initial segmers. Theserational numbers are called the conver-
gentsof the continued fraction. The even numberedcorvergers are smallerthan
the original number, the odd numbered corvergens are bigger. The rst three
corvergernts of [ag; a;;ap;:: ] are

o, oyt marl 1 %@t 1)t a,

1’ a a; a + % aa+ 1

(3.2)

When somesuccessig convergers are found with numeratorshg; h,;::: and de-
nominators ky; k; : : :, the next convergeris can be found by calculating:
hn _ anhn 1+ hn 2.

— = : 3.3
kn ankn 1+ kn 2 ( )

Semi-onvegents include all rational appraximations which are better than
any approximation with a smaller denominator. If E“—i and E—; are successig
convergernts, then the fraction

hn 1+ ahn
kn 1+ akn
is a semi-cowerger, wherea is a nonnegatiwe integer.

Applied to music, cortinued fractions are very usefulto nd the best equal
tempered approximation to a certain interval. In an octave basedsystem, the
fth 3=2 measures

(3.4)

3
log, > = 0:5849625: (3.5)

It may be clear that this irrational number cannot be exactly indicated by an
interval in a certain division of the octave. Howewer, it canbe appraximated, and
to nd the bestappraximations, we write the cortinued fraction as

0:5849625: = [0;1;1;2;3;4;1,5;2; 23, ::] (3.6)
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The cornvergerts of this represetation are given by

113 7 2431
0. I R PR (3.7)

With the semi-cowergeris included, the sequencéecomes

11234 7 1017
O._. R R B PR (3-8)

Musically, this meansthat the fth isbetter and better approximated by ETs with
1,2;3;5;7,12,17,29;.:: notesto the octave. In an ET of for example 12 notes
to the octave, the fth is appraximated by 7 steps. Using the cortinued fraction
approad, possiblegood soundingET systemscan be deweloped. The other way
around, the continued fraction compromisemay explain historical choicesfor
temperamen systems.

3.1.2 Fokker's periodicit y blocks

Periodicity blocks are devicesusedin a technique for constructing musical scales
(Fokker 1969). Although periodicity blocks apply to lattices of just intonation
ratios (such as gure 2.3a), in this chapter, we will only study the implications
of periodicity blocks for ET.

It hasbeenobsenedthat ETs temper certain commasto unison (seesection
1.3.2). When this is turned around, ETs can be obtained by choosing certain
commasthat areto be temperedto unison. As mertioned before,the dimension-
ality of a systemis reducedby onedimension,whena commafrom just intonation
is temperedto unison.

In an equal tempered systema nite number of pitches (within one octave)
exists. Therefore,a nite number of just intonation ratios within one octave is
approximated in sudh a system. Supposethat we want to construct an equal
temperedsystemby choosingratios from just intonation that we want to approx-
imate. We add more and more ratios from just intonation until we nd a ratio
that is very closeto a ratio we already have and decidethat this ratio is there-
fore not worth adding. The di erence betweenthesetwo ratios then de nes the
unison vector. The unison vector represeis the choseninterval or commathat
will be temperedout. In Pythagoreantuning (preseried by the diagonal axis of
the tone space, g. 3.1), whereall ratios are constructedfrom powersof 2 and 3,
one unison vector is enoughto limit the sequenceof ratios. Howewer, in 5-limit
just intonation two unison vectorsare required to limit the group of intervals.

Recallfrom section2.2.2that the 12 tone equaltemperedsystemresults from
identifying the D and the C]], their di erence represeting the smaller diesis
128=125, and identifying the D and E[[ whosedi erence represems the greater
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216/12527/25 27/20 27/16

144/125 36/25 9/5 9/8 45/32

192/125 48/25 6/5 3/2 15/8 75/64
128/12532/25 8/5 1 5/4  25/16 125/6¢
128/7516/15 4/3 5/3  25/24 125/96

64/45 16/9 10/9 25/18 125/72 625/576

32/27 40/27 50/27 125/108

(a) Unison vectors (b) Periodicity block
Figure 3.1: Construction of periodicity block from unison vectors.

diesis648=6253 Thesetwo commasrepresem the unisonvectorsfor constructing
the 12-toneET, and establishthat three major thirds equal one octave (or uni-
son when using octave equivalence)and four minor thirds equal one octave (or
unison). The two vectorstogether spana parallelogram(in this case,a rectangle)
in which exactly 12 ratios lie. The parallelogramcan be moved a certain number
of stepsdownwards or to the left/righ t without changingthe intervallic distances
inside the parallelogram. In gure 3.1 the parallelogramwith the above chosen
unison vectorsis drawn in the tone space. This is an example of a periodicity
block. The wholetone spacecanbe divided into periodicity blocks whenlinesare
drawn parallel to the unison vectorsthat are de ned. Then the spaceis divided
into blocks that all represen the sameintervallic distances. Every block repre-
serts the sameintervals in ET. Sincethe commasare tempered out, the space
can be identied along the lines of the unison vectors. The spacecan therefore
be rolled up to becomea torus. Periodicity blocks can be createdin many ways
by choosingdi erent unison vectors.

The link betweenperiodicity blocksand ET cannow be formulated asfollows.
By choosingunison vectors, the valuesof the remaining notescan be lled in by
linear interpolation to give the ET versionof the scale;the equaltemperedvalues
are then regardedas approximations to the just intonation values.

3.2 Appro ximating consonant interv als from
just intonation

Many di erent temperamen systemshave beendewelopedin the past. Nowadays,
for western music, all keyboard instruments are tuned in equal temperamert

3The Western 12-tone ET can equally well be obtained by using the Pythagorean comma
53144%¥524288and the syntonic comma 81-80 as vanishing commas,and even other combina-
tions of commasare possibleas well, seefor example Erlich (2005).
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wherethe octave is divided into 12 equal parts. Other musicianssud as singers
or string players, tend to play in what is called “just intonation' (see chapter
1). This relieson the widely establishedidea that two tones sound best for the
ear if they have a simple frequencyratio. It is well known that for keyboard
instruments, it is not possibleto tune to just intonation. This is inherert to
the fact that just intonation cannot be descrilked as a closed nite linear system
where intervals can be addedto ead other so as to obtain the requestedsum
interval within that nite system(seesection1.3). For keyboard instruments a
tuning systemhasto be deweloped which approatesjust intonation as well as
possible.In our 12-toneET systemthe ratio of the octave is exactly 2 : 1 and the
fth is appraximated very closely Sincethesetwo intervals are generallyjudged
asthe most important ones,and sinceall other intervals can be matched to the
basicintervals from just intonation by an approximation acceptableto the ear,
this temperamen systemis consideredto be a good tuning system.

Howeer, se\eral researbershave investigatedwhether this temperamen sys-
tem could be improved sudh that more ratios from just intonation can be ap-
proximated more closely One way to do this is to create an ET system with
a division di erent from 12 tones per octave. To investigate what would be a
suitable number of parts to divide the octave into, onehasto nd out what equal
division of the octave appraximates certain intervals from just intonation. To il-
lustrate how well the 12-toneequaltemperedsystemapproximates certain ratios
from just intonation gure 3.2arepresems the octave along a line together with
black points indicating the locations of the ratios of the chromatic scalede ned
by Vogel (1975), and gray points indicating the locations of the equal tempered
tonesaccordingto 12-toneET. Other ETs like 19-tone,31-toneand 53-tonehave
also been proposed. Thesetemperamerns are visualizedin gures 3.2b,c,d. We
want to emphasizethat, on the basison gure 3.2, it is very dicult to decide
on the best temperamen. For example,it is not clear whether the ratios from
the chromatic just intonation scalerepresen the desiredintervals that have to
be approximated (more, lessor other just intonation intervals could have been
chosenaswell). Furthermore, the extert to which an n-tone equaltemperamert
approximates thesejust intonation ratios, is not necessarilypasedon the average
approximation of ead individual interval. For example,it may be desirableto
approximate the consonan intervals closerthan the dissonan intervals. To sum
up, to be ableto selectthe besttemperamen from 3.2, certain assumptionshave
to be made or personaltaste hasto be expressed.

In section 3.1, we have given a short overview of authors who have investi-
gated the possibilities of deriving n-tone ETs by approximating intervals from
just intonation. Remarkably, most authors do not give a formal derivation of the
intervals they chooseto approximate in their ETs. Furthermore, at simultane-
ously tting intervals, weightings are chosenwithout any motivation (Hall 1988;
Krantz and Douthett 1994).

In this section, an attempt is made to formalize the choice of intervals to
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(a) 12tone ET

O—€— 9 —0->» ¢ —>» O —>» 8 —0

(b) 19tone ET

O--€C—-»—->» 0 —-—C-»——-I— -0 € ——»-I)— -0

(c) 31tone ET

(d) 53tone ET

Figure 3.2: Sewral equal tempered approximations to the 12-tone chro-
matic scale in just intonation. Black points indicate the ratios of this scale:
1, 16=15; 9=8; 6=5; 5=4,; 4=3; 45=32, 3=2; 8=5; 5=3; 9=5; 15=8; 2 (represened on the line by
their base-2logarithmic value), gray points indicate their approximations in n-tone ET.

approximate in equaltemperedscales.Furthermore, two di erent weigh models
for simultaneously tting intervals are presened and a number of experimerns
are performed to nd the best equal division of the octave. This procedure
is in accordancewith the following musical intuition: The intervals from just
intonation that shouldbe approximated in equaltemperedscalesarethe onesthat
are important in (Western) music. The more important/preferred the interval,
the more weight should be applied to the tting procedure.

3.2.1 Measures of consonance

As already mertioned, we are interestedin the following question. Which ratios
from just intonation should be appraximated in equaltemperamen? One could
claim that the consonanceg fth, fourth, major third, minor third, major sixth,
minor sixth) accordingto music theory are to be approximated sincethese are
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most important. A more completeanswer to the question perhapsis: all inter-
vals from just intonation that appearin (Western) music. But which intervals
are those? A possibleanswer is: the intervals that appear in the major scalein
just intonation. Table 1.2 shows the ratios of the notesin the just major scale
comparedto the fundamenrtal. Counting also the intervals internal to the scale
(which means,for exampletaking the interval 10=9 into accournt which appears
betweenthe “sol' and the "1a’), theseintervals could represem the set of intervals
most commonin Western music. Let us call this set S; (seeTable 3.1). An-
other possibility is to take the frequencyratios of the intervals appearingin the
harmonic-or overtone serieswithin a certain number of harmonics. Herethe rst

nine harmonicsare considered. Let us call this set S, (seeTable 3.1). These

S Sz

octave (2/1) octave (2/1)

fth(3/2) fth (3/2)

fourth (4/3) fourth (4/3)

major third (5/4) major third (5/4)
minor third (6/5) minor third (6/5)
major sixth (5/3) major sixth (5/3)
minor sixth (8/5) minor sixth (8/5)
major whole tone (9/8) major whole tone (9/8)
minor whole tone (10/9) minor seerth (9/5)
major sewerth (15/8) sub minor sewerth (7/4)
minor seernth (9/5) sub minor third (7/6)
diatonic semitone (16/15) super second(8/7)
augmernted fourth (45/32) sub minor fth (7/5)
diminished fth (64/45) super major third (9/7)
subdominant minor sewerth (16/9)

Pythagorean minor third (32/27)

Pythagorean major sixth (27/16)

grave fth (40/27)

acute fourth (27/20)

Table 3.1: Set S;: intervals coming from the just major scale,and set S,: intervals
appearing in the harmonic seriesup to the ninth harmonic. The namesof the intervals
are taken from Helmholtz (1863).

tables represem the ratios from just intonation to approximate in ET, but what
is the order of importance of theseintervals? For example,is it more important
for a certain ratio to be closely approximated than for another, or are they all
equally important? From the de nition of just intonation, it can be understood
that there is a preferencefor simple frequencyratios. Accordingly, the fth 3=2
is more preferredthan the major second9=8. Sothere is an order of importance.
But how to compareratios like 6=5 and 7=4? For se\eral ratios there is no con-
sensusaccordingto the de nition of just intonation. No unique function exists
that descrikesthe order of preferredratios. A number of hypothesesand theo-
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ries have beenproposedregardingthe origin of consonanceand dissonance.Two

prominert theoriesare the onesby Helmholtz and Euler which are constructed
from a physiological and psydological perspective respectively. In order to let

the tension-resolutionprocessin music have the greateste ect, one could say

that the mostimportant intervals are the most consonan intervals and therefore
those should be approximated most closely Here, Euler's Gradus function and

Helmholtz' roughnessfunction are usedto put the two sets of intervals in an

order of preferenceor, in the way it is called throughout the thesis, an order of

consonance SeeKrumhansl (1990, pp. 55-62)for an overview of se\eral measures
of consonancegad obtaining an order of consonancdor the intervals from the

chromatic 12-tonescale.

Euler's Gradus function

Euler deweloped a Gradus function that appliesto whole frequencyratios x=y
from just intonation (Euler 1739). The function is de ned as a measureof the
simplicity of a ratio.

Any positive integer a can be written asa unique product a= p§* p5:::pd
of positive integer powers g of primesp; < p, < ::: < p,. Euler's formula is
de ned as:

X
(8)=1+ &l 1) (3.9)
k=1

and for the ratio x=y (which shouldbe givenin lowestterms) the valueis ( x ).
Applied to the problem of consonancehis meansthat the lower the value the
simpler the ratio x=y and the more consonan the interval. In accordancewith
eg. 3.9, the order of consonancdor setS; and setS; is givenin Table 3.2.

S; S

2/1 2/1

3/2 3/2

4/3 4/3

5/4 , 5/3 5/4, 5/3
6/5, 9/8, 8/5 6/5, 9/8, 8/5
16/9 7/4

10/9, 9/5, 15/8 | 7/6, 8/7, 9/5
16/15, 27/16 7/5, 97
32/27

27/20
45/32, 40/27
64/45

Table 3.2: Order of consonanceor ratios of setS; and S, accordingto Euler's Gradus
function, from most to least consonar.
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Note that there is not a perfect match with musical intuition. For example
the major whole tone (in music consideredto be a dissonan tone) is placedon
the samelevel asthe minor third (a consonanceccordingto musictheory). This
is becauseEuler's function judgesonly the simplicity of the ratio.

Helmholtz's roughness function

Helmholtz de ned the roughnessof an interval betweentones p and q on the

basisof the sum of beat intensities |, + |, ass@iated with the n™ harmonic of

p and the m"™ harmonic of g (Helmholtz 1863). This roughnessdependson the

ratio n=m, but alsoon the intensity of the harmonics(and thereforeon the type

of sound) and on the register of the tones (in lower positions, intervals tend to

sound more rough). Helmholtz calculated the roughnessof intervals in the c'-c"

octave, and basedthe intensity of the harmonicson violin sound. The roughness
of two tonesis expressedy:

222p2
(2+429(2+p2 3

wherep refersto the pth partial tone, isthe coe cient of damping, and B®and
B%are the greatest velocities of the vibrations which the tones superinducein
Corti's organsin the ear, which have the samepitch. Furthermore, = 15-264
and = % wheren; and n, are the number of vibrations in 2 secondsfor
the two tonesheard. Applying this formula to all the partials of the motion of the
bowed violin string, which Helmholtz had measuredby meansof the vibration
microscope, he obtained a diagram for the predicted dissonanceof pairs of notes
over a cortinuousrangeof two octaves. The order of consonancef setS; and S,
accordingto this roughnessfunction is given in Table 3.3*.

Again, onewould expectthis orderingto coincidewith a musicalintuition, but
an interval known as dissonan (augmeried fourth 45=32) is placedon the same
level astwo consonancegthe minor third 6=5 and the minor sixth 8=5). Note also
that the fth and the octave are judged to be equally consonah The ordering
accordingto Helmholtz di ers from the ordering accordingto Euler (Table 3.2).
Remarlably, for both measuresthe preferencefor lowest numbers suggestedoy
the de nition of just intonation is not ertirely followed. For example,for both
measureghe ratio 16=9 is placedon a more consonan level than the moresimple,
and therefore expectedto be more consonam ratio 9=5.

rp= 1688

(3.10)

3.2.2 Goodness-of-t model

A goodness-of- t model canbe dewelopedto measurewhich ET bestappraximates
ratios from just intonation. Se\eral functions have beende ned to measurethe

4Since Helmholtz (1863) did not considerthe interval ratio 9=7, it is not included in Table
3.3.
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S; S

2/1, 3/2 2/1, 3/2
4/3 4/3

5/3 5/3

5/4 5/4
6/5, 8/5, 45/32 | 7/4
16/9 6/5, 8/5
27/16 9/5, 716, 7/5
9/5 8/7
32/27 9/8
27120

64/45

9/8

10/9

15/8

40/27

16/15

Table 3.3: Order of consonancefor ratios of set S; and S, accordingto Helmholtz's
roughnessfunction, from most to least consonar.

goodnessof a given n-tone equal-tempered scale (Hartmann 1987; Hall 1988;
Krantz and Douthett 1994). Given an n-tone ET (the octave divided into n
equal parts), the ratio R is best approximated by 2™" when the error

E = jlog,R %j (3.11)

is assmall as possible. The number of stepsm in an n-tone scalethat minimizes
eq. (3.11)is
m = bn log, R + 0:5c; (3.12)

wherebxc is the largestintegerlessthan or equalto x. With eq. (3.12) substituted
into eq. (3.11), the function E is de ned as:

E(R;n) = jlog,R %(bn log, R + 0:5¢)j: (3.13)

This is, in fact, already a measureof the goodnessof an n-tone scalefor aratio R;
the lower the error E the better the t. Sincethe function (eq. 3.13) appliesto
ETs, it necessarilyyields the samevaluesfor an interval and its musical inverse
(for examplea fth 3/2 and afourth 4/3). For a perfect t, E = 0, the maximum
errorfora t iIskE = % To obtain the error in certs, one just multiplies eq.
(3.13) by 1200.

Previous models

Measuresbasedon (variation of) the error function (eq. 3.13) have previously
beenmade by Hartmann (1987), De Klerk (1979), and Yunik and Swift (1980).
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Hall (1988) criticizes these measuremets for the fact that for all su ciently

large n, the t is equally good. But, Hall (1988) argues, for reasonsof pitch

discrimination, high valuesfor n are usually rejected. ThereforeHall, and Krantz

and Douthett stated that a correction should be made by multiplying the error

E by n (Hall 1988;Krantz and Douthett 1994). They both deweloped a function

to simultaneously t multiple intervals. Hall (1988) preserted his Remarkability
function:

Y . 2g;

R=( logp) P = <

N

whereSy = 120GN is the smalleststep sizeavailable in N tone ET, and g; =
1200 E (E asin eg. 3.11with R = i=}). Krantz and Douthett (1994) proposed
their generalizedDesirability function:

(3.14)

X
D(R;n)=10 20 pjn log,Ri gj; (3.15)

i=1

P
where p; is the weight of ead target interval R;j, and p = 1, and g =
bnlog, R; + 0:5c (cf. eq. 3.12). In section 3.2.3 someresults of the models
of Hall and Krantz and Douthett are discussed.

Goodness-of-t function

In this thesis, a number of experimerts are carried out with our goodness-of- t
function that builds on thesepreviousmodels. Di erently from the models(3.14)
and (3.15), it is believed that the rejecting rate of an n-tone scaleis not per
selinear in n but can vary depending on the purpose of the scale. Thus, the
correction of multiplying the error E by n is not made here and the decisionas
to what is the best scalecan be madeat a later stage.

Analogousto the previousmodelsa weight p; for ead ratio R; is introduced,
sud that X

Pi = 1 (316)

Di erent ratios can then be weigh'gd accordingto consonance.For ead n-tone
equaltempered scalea total error ; pE(R;;n) cannow be constructed.

Since one rather wants to obtain a high value from our function when the
t is good and a low value whenthe t is bad, @nd to make the di erence be-
tweenthe ts morevisible, it makessenseto use( ; pE(Ri;n)) * asagoodness
measure. Howevwer, the valuesof this goodnessare not bounded. Therefore the
nal expressionof the goodness-of- t function usedfor the ewaluation of n-tone
temperamerts is preserted as:

f(n)= P1

ooTe piE(Ri;n): (3.17)
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The value of P  PE(Ri;n) is bounded between 0 and % therefore f (n) can
vary between (approximately) 2 (worst t for n = 1) and 100 (perfect t). The
measure(eq. 3.17) can be comparedto otherpmeasuresincethe scaling ﬁ 5
a monotonically decreasingfunction for x =, pE(Ri;n) 2 [0;1=2].

3.2.3 Resulting temp eraments

The goodness-of- t model presered in equation 3.17 can now be usedto judge
n-tone ET systems,given a set of intervals and a weight function. The function
in equation 3.17 can be plotted asa function of the number of notesn to be able
to comparethe goodnessvalues. Emphasizingthat a variety of choicesis possible
for the set of intervals and the weight function, we will give someexampleshere.
Sincethe fth (3=2), fourth (4=3), major third (5=4), minor third (6=5), major
sixth (5=3) and minor sixth (8=5) are the consonan intervals accordingto music
theory, this hasbeena generalmotivation to constructtemperamern systemsthat
approximate (subsetsof) theseintervals best (Krantz and Douthett 1994; Hall
1988). Taking theseintervals as input for equation 3.17 with equal weighting,
gure 3.3 shows the result. Consideringthe valuesfor n which yield better and

f consonant vs dissonant
100

5 10 15 20 25 30 35 40 45 50 55

Figure 3.3: Valuesof f calculated from the consonancesaccording to music theory:
fth, fourth, major third, minor third, major sixth, minor sixth, with equal weighting.

better approximations to the chosenintervals, peakscan be seenfor the values
n = 12 19 31 and 53, which are all covered by previousliterature. For example
Krantz and Douthett (1994) get the exact sameresults with their desirability
function except that they do not notice the goodnessof n = 31 due to the
correction they madefor high valuesof n. The good t for n = 12 could explain
the fact that this temperamern is generallyusednowadays. Furthermore, the 19,
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31and 53tone temperamen have alsobeenrecognizedand usedby theorists and
composers(Bosanquet1876;Yasserl975;Huygens1691).

Then, the setsof intervals obtained in section3.2.1together with a weighting
accordingto the measure®f Helmholtz and Euler aretakenasinput valuesfor the
model (eq. 3.17). The goodnessf (n) is calculatedfor n 2 [1; 55]. The weights p;
for the ratios R; are choseninverselyproportional to the valuesof Euler's Gradus
function or Helmholtz's roughnessfunction. The results are shovn in Figures
3.4ato d.

f major scale , Euler f major scale , Helmholtz
100 100

80 80
60 60
40 40

20 20

n n

10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55

(a) (b)

f harmonic  series , Euler f harmonic series , Helmholtz
100 100

80 80
60 60
40 40

20 20

510152025303540455055n 510152025303540455055n

(c) (d)

Figure 3.4: Valuesof f calculated from the set intervals of either the major scaleor
the harmonic serieswith weights according to either Euler's or Helmholtz measureof
consonance.

If the valuesof n are consideredwhich yield better and better approximations
to the chosenintervals, the values12; 19; 31; 41, and 53 appear for all four gures.
These peaksrefer to good ts for these n-tone scales. The values 12 41, and
53 are just the cortinued fraction solutions to the perfect fth, and also the
other valuesare covered by previously published results (Hall 1988;Krantz and
Douthett 1994). In Figures3.4aand 3.4b an extra peak appearsfor n = 34, and
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Figure 3.4d has also three more peaksfor n = 15, n = 27,and n = 46. The
peakfor n = 34is consonah with what Krantz and Douthett (1994)found. The
peakat n = 15is alsoreported by Krantz and Douthett (1994) who was tting
to the minor third (6=5) and minor sewenh (7=4). The good ts for the octave
divided into 27 or 46 equal pieces,are at odds with previously publishedresults.
Howewer, comparedto other peaksthey don't stand out in their quality.

Comparing the gures, it can be seenthat gures 3.4aand 3.4b are rather
similar and di er from Figures3.4cand 3.4d, the latter two being similar aswell.
This meansthat varying the setof intervals hasa greaterimpact than varying the
measureof consonance.This is mainly due to the model's property that judges
inverseratios in the sameway, although none of the intervals are placed at the
samelevel of consonancestheir inverseaccordingto the measuresof Euler and
Helmholtz. Comparing gures 3.4ato gure 3.3,notethat n = 41 (the cortinued
fraction compromisefor the perfect fth) occursin gures 3.4ato d but not in
gure 3.3.

As already mertioned, for reasonsof pitch discriminations, high valuesfor n
are not always favored over lower values. The just noticeable di erence (JND)
expresseghe di erence of two consecutie tones (seesection1.2.2). It hasbeen
shown that the JND can be as small as two or three certs (Zwicker and Fastl
1990), which would motivate us to cut o n at around 400 (1 cert represeis
1=1200part of an octave, therefore 3 certs represemn 1=400 part of an octave).
Howewer, studying gure 1.2 we seethat for examplearound 6000Hz the JND
equals 50 Hz which roughly correspnds to 14 certs and leadsto a maximum
division of 85 notes per octave. Here, we have only shovn the results up to
n = 55to be able to clearly visualize theseresults.

This work suggeststhat testing an n-tone equal-tempered system involves
formally choosinga setof intervals and a measureof consonanceo apply weights.
Thesechoicescanin turn depend on the type of music or a special purpose.

3.3 Limitations on xed equal-temp ered divi-
sions

In this sectionwe addressanother approad to nding a suitable division of the

octave for n-tone ET. Historically, it hasnot always beenclear for what reasons
certain choicesfor n-tone equal tempered systemshave beenmade. Yunik and

Swift (1980) write \Through often corvoluted, di cult-to-follo w logic, various
other valuesfor n have beenproposed”. In this sectionlimitations on the choice
of an n-tone ET are consideredthat are related to the music notational system.
To be able to use an n-tone equal tempered systemfor a keyboard application

using the Westernnotational system,there are somerestrictions to be taken into

consideration.
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In chapter 2, it was shown that the projection from the frequencyratios to
the 12-toneequaltempered pitch numbers constitutes a homomorphicmapping.
It may be clear that alsoin general,the projection from the group of frequency
ratios to the nite group of n-tone equal tempered pitch numbers, should be a
homomorphism(seeeq. 2.4). Ideally, this projection should also be monotonic,
sud that the ordering of the elemers is maintained®. Howe\er, this is not possi-
ble, which we can understandasfollows. Considera homomorphicmapping from
the frequencyratios from just intonation to an n-tone ET. In this ET, a specic
comma(interval from just intonation) is temperedout (seesection3.1.2). When
a frequencyratio is multiplied by sud a comma,the ratio is changed. Howewer,
when the correspnding pitch number from the n-tone ET is raised (or lowered)
by this comma, it stays the same,sincethe commawas appraximated by unison
in this n-tone ET. The pitch number stays constart ewven after adding a high
number of this comma. Howewer, if more and more commasare multiplied with
the frequencyratio, it changesmore and more. Therefore, for somefrequency
ratios a and b, wherea > b, it happensthat they are projected onto the pitch
numbers 1 and 2 respectively (1 < 2), suc that the projection is not monotonic.
Still, monotonicity of the projection may be possiblefor a part of the intervals,
aswe will see.

In this section, our goal is to make a homomorphic projection from the fre-
guencyratio spaceto the pitch number spacesud that a surjective mappingfrom
the note namesto the pitch numbersresult. This surjective mapping is required
in order to have a suitable mapping from a scoreto e.g.the keys of a piano.
An ET systemof this kind was called a "negative system' by Bosanquet(1874a,
1874b). Positive systemsrequire a separatenotation (Bosanquet1874a,1874b).
Howewer, evenif a notation systemis chosenthat represeis every frequencyratio
as a separatenote name, limitations related to interval addition still exist, aswe
will see.This sectionis basedon Honingh (2004).

3.3.1 Attac hing note-names to an octave division

The line of fths represems all possiblenote-namesfor musical tones

Al E[ Bl F C G D A E B F]:: (3.18)

5An ordered group has a binary relation ~ ' satisfying the following:

a

bandb c¢) a ¢
bandb a) a=b
borb a

b) (a+c) (b+0
a b) (c+a (c+h:

Do v D QP

A morphism for ordered groupsis a homomorphismf that is monotonic: a b) f(a) f(b)
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which is an in nite seriesin both directions. In the well-known 12-toneET, the
line of fths is transformedinto a circle of fths by saying that the B] should be
equivalert to the C. After 12 fths, the circleis nished, asisillustrated in gure
3.5a. Placing the note namesin scaleorder, gure 3.5billustrates that the note

F#

(@) (b)

Figure 3.5: Transformation of the line of fths into (a) the circle of fths, and (b) the
chroma circle.

namesare attached to the pitch numbersin the following way:

CCl DD EFF] GG AA B

0 1 2 3 45 6 7 8 9 10 11 (3.19)

Herewe have written all note nameswith sharps(]), but in this 12tone ET these
notes can be interchangedwith their enharmonic equivalerts (seesection 1.3).
When generalizingthe 12 tone equal tempered systemto an n-tone equal tem-
pered system, another mapping from note namesto pitch numbersis necessary
We will now investigate how projection should be made.

When an n-tone ET is constructed, it may be not directly clear which note
name(s) belongto ead unit. Using this line of fths, a possibleway to attach
note-namesto an equaltempered division is to calculate the number of stepsm
in the n-tone temperamen that appraximates the fth R = 3=2 (seeeq. 3.12)
and attach adjacert note-namesfrom (3.18) to every pitch number

kK m mod n; k2Z (3.20)

of the equaltempereddivision. This processs illustrated in gure 3.6for 12-tone
ET. In this case,m = 7 since3=2 27712 (seeeq. 3.12). Starting with C, which
is attached to pitch number 0, the G is attached to pitch number 0+ 7 = 7,
the D is attached to pitch number (7 + 7)mod 12=2, and soon. In this way, all
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Figure 3.6: Beginning of the processof attaching note-namesto the 12-tone equal
tempered division. The fth is approximated by 7 stepsin the 12-tone division.

note-namesare attached to a certain position on the circle. We can say that we
have usedthe interval of the fth asa generatorof the note names.

Another way to attach note-namesto an equal tempered division is to use
another interval (than the fth) as ‘generatorof note-names'. Figure 3.7 gives
an exampleof the major third 5=4 2472 distributing note namesover the 12-
tone division. Using this method of distribution, only one fourth of all possible

Figure 3.7: Beginning of the processof attaching note-namesto the 12-tone equal
tempereddivision using the major third that is approximated by 4 stepsin this division.

note-namesare used, sincethe line of thirds
F[ Al C E G] B] D] :: (3.21)

represems only onefourth of the note namespresett in the line of fths (3.18).
In the exampleof the 12-tonetemperamen, the note namedistributions are
in agreemeh with ead other. This meansthat the note namesselectedby the
major third arein the sameposition asthose note namesselectedby the perfect
fth. For example,the E is attached to unit number 4 in g. 3.6 aswell asin
g. 3.7. This is not the casefor all n-tone divisions. For examplefor the 15-tone
temperamen, the third C E measurest (out of 15) units if calculated from
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Figure 3.8: Example of 15-tone ET. Left: attaching note-namesusing fth, right:
attaching note-namesusing major thirds. Only the beginnings of the distributions
(line of fths and thirds) are shown.

the fth, and 5 units if calculatedfrom the major third (see gure 3.8). The E is
attached to unit number 6 in the left most gure, and attached to unit number
5in the right most gure. If an equaltemperamer is to be usedfor a keyboard
application, this is not desirablesincethere is no consensusabout which keysto
presswhen a scoreis read.

Enharmonicit y condition

Ideally, a surjective mapping is madefrom the note-namesto the units of the n-
tone equal division. This means,two di erent note-namescan refer to the same
unit (and are therefore enharmonically equivalert), but one note name cannot
refer to two di erent units. Furthermore, all units should have a note-name(we
comebad later to this last condition). In this way, reading a score,it is clear
which keys on a piano to press. To gain this result, the fths have to match
with the major thirds asillustrated in the previoussection. Also, other intervals
(besideghe fth andthe major third) canbe chosento generatethe note-names,
and must therefore match with ead other.

To determine whether an n-tone temperamen has a good match of thirds
and fths, one hasto ched if the unit number that approximates the major
third (5/4) is equivalert to the unit number correspnding to the Pythagorean
third (81/64), which is the third constructedfrom four perfect fths (modulo the
octave). The di erence in certs betweenthe two intervals measure21:51 certs.
Therefore,the better theseintervals are approximated, the lesschancethey both
map on the samepitch number of the equaltemperedsystem. And becausehere
is always a better t if n is chosenbig enough,there will be a certain maximum
to n for which the major thirds and the fths still match. The unit-number m
that approximates a frequencyratio R in an n-tone ET is given by (cf eq. 3.12):

mg(n) = bnlog, R + 1=2c; (3.22)

where bxc is the largest integer lessthan or equal to x. Sincefour fths up
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and using octave equivalence gives a major third (C-G-D-A-E), the following
equivalencerelation can be demandedsud that fths and major thirds match®:

4 m%mod n=ms (3.23)

Furthermore, three fths give a major sixth (C-G-D-A), and demanding that
fths should match with major sixths givesthe following condition

3 m%mod n=ms (3.24)

It is possibleto go on writing conditionslike this, but rst we take a look at what
is covered by conditions (3.23) and (3.24).
When we look at the line of fths:

Al E[f Bf F C G D A E B F]:: (3.25)

and we realize that an equal tempered approximation to an frequencyratio R
is just asgood asthe appraximation to the musical inverseof the ratio 2=R, we
understand (and it can be shavn) that the following relations hold for the same
valuesof n:

X m%modn
X m%modn

MR (3.26)
m

2
R

wherex 2 Z* and R 2 [1;2) (R 2 Q). When m stepsappraximate the fth,
n m stepsapproximate the fourth:

msz=n m (3.27)

wld
Nlw

Substituting (3.27) in (3.26) gives
X m%mod n = mg; (3.28)

and comparing(3.26) and (3.28) shavs us that a number of x fths up givesthe
sameinterval as x fourths down (or x fourths up). Thus equations(3.23) and
(3.24) are not only concernedwith the matching of fths, major thirds and major
sixths but alsowith there inverses.Therefore, equations(3.23) and (3.24) make
surethat all intervals 3=2; 4=3; 5=4; 6=5; 8=5; 5=3 match with ead other. We will
refer to conditions (3.23) and (3.24) together as the enharmonicity conditions.
The possiblevaluesfor n sothat (3.23) and (3.24) are true can be obtained by
running a simple Perl script:

n= 5:7:12:19; 24, 26, 31; 36, 38 43; 45,50, 55, 57: 62
69 74; 76,8188 93 100 (3.29)

SRecall the following intervals and their frequency ratios: perfect fth 3=2, perfect fourth
4=3, major third 5=4, minor third 6=5, major sixth 5=3, minor sixth 8=5.
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As we explained,thereis a limit on n for which the intervals match. Apparently,
this limit is reachedat n = 100. This set(eq. 3.29)is a subsetof the valuesfor n
that Rapoport (1993) found when he searted for ETs that usethe Pythagorean
commaand diesis,amongtemperameris that arosefrom requiring the syntonic
commato vanish. All consonan intervals from musictheory ( fth, fourth, major
and minor thirds, major and minor sixths) are consideredwhen constructing the
enharmonicity conditions. We think that it is not realistic to demandthat more
intervals shouldmatch in the n-tone system,becausehere is lessconsensusbout
the frequencyratios. For example,a major secondis denotedby 9=8 but alsoby
10=9.

The fact that we have searted for ETs which are consisten with music nota-
tion, satisfyingconditions3.23and 3.24,doesnot meanthat other ETs cannot be
used. Bosanquet(1874a,1874b)deweloped a notational systemfor so-calledpos-
itiv e systems: systemsthat are not consisten with the familiar Western musical
notation’.

Adding interv als

When playing a chord in an n-tone equaltemperedsystem,it is desirableto have
all the containing intervals represeited by the number of units that approximate
the intervals best. For a chord consistingof three notes, the number of units that
appraximatesan interval addedto the number of units that approximatesanother
interval shouldequalthe number of units that approximatesthe sum-interval. For
example,a major triad cortains the intervals major third, minor third and perfect
fth. Ideally, the number of units in the n-tone ET approximating the major third
adds up to the number of units approximating the minor third and equalsthe
number of units that approximates the perfect fth. In just intonation ratios,
adding a major third to a minor third givesa perfect fth.

54 6=5= 3=2 (3.30)
Translatedto the appraximations in 12-toneET this reads:
iz ¥z = i (3.31)

Sohere,indeed,the number of units in the 12-toneET approximating the major
third (4 units) addsup to the number of units appraximating the minor third (3
units) and equalsthe number of units that approximatesthe perfect fth (7 units).
This is not the casein ewery n-tone ET. For example,in 14-tone temperamert
(3.30) would be translated to

25714 pld g 814 (3.32)

"Positive systems form their major thirds by going 8 fths down (and imposing octave
equivalence)such that the ratio 5=4 is approximated by the interval C  F][.
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which meansthat in 14-tonetemperamert the major and minor third do not add
up to becomea perfect fth. In general,the constrairt on n for the correct way
of adding intervals R; and R; is:

Mg, + Mg, + K N= Mg,; where R3 = R; R,=2%; (3.33)

The addition +k n has the same meaning as ‘'mod n'. The division by 2¢
in the latter equation meansrescalingthe interval so that it stays within one
octave. Although this condition cannot be satis ed for all possibleratios R;; R>
for a given n, it will now be veri ed that for the n-tone systemsfrom eq. 3.29,
the condition 3.33is satis ed for all Ry; R, chosenfrom the (consonan) ratios
3=2; 4=3;5=4; 8=5; 5=3 and 6=5. We can understand this in the following way.
Using eq. 3.26, equations3.23, 3.24 translate into the following six equations:

X mgmod n = mMg; (3.34)
for R=3=2(x=1);
R=4=3(x= 1),

R = 5=4(x = 4);
R=85kX= 4)
R = 5=3(x = 3);

R=65(x= 23):
Combining theseequationswith 3.33,resultsin
X1 ms + Xo Ms = X3 Ms (3.35)
for combinations of x3; X, and x3 from 3.34 satisfying
X1+ X2 = Xa! (3.36)

This meansthat the example of adding major and minor thirds (3.30,3.31)is
always correct for all n from (3.29). The completelist of equationswhere the
addition of intervals is correctly represeted is

5=4  6=5= 3=2 (3.37)
6=5 4=3= 85

5=4  4=3=5=3

(5=3 3=2)=2¢= 5=4

(583  85)=2"= 4=3

(32  8=5)=2¢= 6=5:

These equationsrepresen the addition of all consonan intervals according to
music theory.
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We are now also able to say something about the monotonicity of the pro-
jection from the frequencyratios to the pitch numbers when the enharmonicity
conditions are satis ed. In the hypothetical casethat all frequencyratios are
projected onto the pitch numbersthat appraximate them best, the projection is
monotonic (i.e. the ordering of the intervals is maintained). Sincethe enhar-
monicity conditions establishthat the frequencyratios 3=2, 4=3, 54, 6=5, 8=5,
5=3 are projected onto those pitch numbers that appraximate them best, this
implies that the projection is monotonic for theseintervals.

Generating fth

The enharmonicity conditions (3.23,3.24) allow for enharmonic equivalence of
notes, but prohibit note namesto refer to two di erent units in the equal tem-
peredsystem. Furthermore, we have seenthat the condition for correctly adding
intervals is automatically satis ed for all intervals given in equation 3.34.

The conditions 3.23,3.24do not yet make surethat all units in the n-tone ET
get a note-name. If the note namesare distributed by m, and n is divisible by m
sudh that n=m = t; t 2 Z, only t units of the n-tone division get a note-name.See
for example gure 3.7 whereall notesare mapped onto the units 0, 4 and 8. In
this particular case(where the tonesare only generatedby the major third) the
12-tonesystemcanbereducedto a 3-tonesystem,without changingthe deviation
of the equaltemperednotesto the frequencyratios from just intonation (the notes
are equally well approximated asin the 12-tonesystem).

In our method we have been using the approximation to three intervals:
3=2;5=4;6=5 (or their inverses),to distribute the note-namesover the n units
of the equal tempered system. If one of the numbersms ms or ms establishes
that all units get a note-name,this m is a so- calledgeneratorof n. The number
m is a generatorof n if

GCD[m;n] = 1, (3.38)

that is, the greatestcommondivisor (GCD) of m and n is 1. In this case,m is
said to be relatively relatively prime to n.

It turns out that, if the n-tone equaltemperedsystemdoesnot havegenerators
amongms;ms Or Me, the n-tone temperamert can be simpli ed to an n%tone
temperamen ‘such that

n=k n® k2N: (3.39)

The explanation hereofis given in appendix A.3. If ms is not a generatorof n,
but the enharmonicity conditions hold, then the notes generatedby ms and ms
will belocatedin the samepositionsasthe samenotesgeneratedby ms (smcethe
notesgeneratedby the major and minor third are subsetsof the notesgenerated
by the fth). So,if the enharmonicity conditions are satis ed, and ms is not a

generator, then ms and me (and their inverses)can also not be generatorsof
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the system. Thus, when ms is not a generatorof the system, it can always be
reducedto a simpli ed systemfollowing (3.39).

Sincen-tone systemsthat canbereducedto n“tone systemsarenot interesting
here (becausethey do not approximate the consonan intervals better than the
reducedsystems),we want to nd n-tone equal tempered systemsof which ms,
the number of stepsapproximating the fth, is a generatorof n:

GCD[m%; nj= 1 (3.40)

Now we are able to get to the main result. Combining condition 3.40 with the
enharmonicity conditions, the following valuesfor n result:

n= 57,1219 26,31 43, 45,50, 55,69, 74, 81; 88 (3.41)

Let usrecall that the goodness-of-t approad from the previous sectionhasled
to systemsof size: 12,15;19;27; 31; 34;41; 46, and 53. Combining these results
with eq. 3.41, we seethat divisions of the octave in 12,19 or 31 parts would be
a good choice. Indeed, keyboard applications for thesetemperamerts have been
constructed, like for examplethe 19-toné harmonium in 1854 (Yasser1975)and
the 31-toneorgan by Fokker (1955).

Finally, let us mertion another approad leadingto a closelyrelated result.
Similar to us, Regener(1973)built an ET systemby usingthe fth asagenerator.
He stated that \the determining constart [of an ET] is the base-2logarithm of
the frequencyratio for the perfect fth" (Regenerl973,p.97). Then, heimposed
the following criterion to presene the relationships of frequencyratios as far as
possible: \the frequencyratios of the augmened prime shall not be lessthan
that of the diminished secondand not greater than that of the minor second"
(Regenerl973,p.139). The n-tone systemswith ordersup to 100, satisfying this
criterion, yield:

n= 12193143 50,55 67,69, 74,79 81, 88 91, 98 (3.42)

One can see,that the possiblevaluesfor n from eq. 3.41and eq. 3.42 have a
great overlap. This is understandablesince our conditions 3.23,3.24as well as
the condition imposedby Regener,mply that the relationshipsof the frequency
ratios belongingto the perfect fth, major and minor third, and major and minor
sixth, are presened.

3.3.2 Equal temp ered divisions represented in the tone
space

Sofar, we have seenthat the choice of using the Westernnote name systemhas
resultedin two constrairts (equations3.23,3.24and 3.40)on the possibledivisions

8Chalmers (1989) explained that standard musical notation can be easily extended to the
19-ET setting.
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of the octave. To better understandwhat theserestrictions meanfor the resulting
n-tone ETs, it is usefulto presen them visually in a tone space. In chapter 2
we have seenthat tone-spacescan be represemed as 2-dimensionallattices Z2.
A tone spacecan be made from frequencyratios, note-namesor equaltempered
pitch numbers. The rst two are shavn in gure 3.9. Dierent versionsof the

216/12527/25 27/20 27/16 Bbb Db F A
144/12536/25 9/5 9/8  45/32 Ebb Gb Bb D F#
192/125 48/25 6/5 3/2 15/8 75/64 Abb Cb Eb G B D#
128/12532/25 8/5 1 5/4  25/16 125/6¢ Dbb Fb Ab Cc E G# B#
128/75 16/15 4/3 5/3  25/24 125/96 Bbb Db F A C# E#
64/45 16/9 10/9 25/18 125/72 625/576 Gb Bb D F# A#  CH#
32/27 40/27 50/27 125/108 Eb G B D#

Figure 3.9: Projection of just intonation intervals generatedby major and minor third
on the note-names.

tone spacefor equal tempered pitch numbers exist, depending on the number of
parts the octave is divided into. How is sud a tone spaceconstructed? Ideally,

in a mapping from a pitch number tone spaceto the frequencyratio tone space,
every ratio correspndsto that pitch number that approximate the ratio best.
However, if that is achieved, a speci ¢ interval canhave di erent sizesat di erent

placesin the pitch number tone space.Also, the pitch number tone spaceis then

not a homomorphicprojection from the tone spaceof frequencyratios and note
namesanymore.

As we have seen,the approximation of the fth ms should be a generatorof
the n-tone system,and thereforeit generatesall the note names. Th us, the value
of ms de nes the how the pitch numbersare projected onto the note namespace
of gure 3.9. We can understand this as follows. The pitch number projected
onto the G on lattice point (1;1) is value of ms itself. Then the line of fths
(the diagonalin the tone space)can be represeied in pitch numbers by adding
the value of ms modulo n. Then the value of E (the major third on C) is
automatically determined by adding 4 fths on C, and thus the pitch numbers
of two basisvectors(0; 1) and (1; 1) are known. The remaining lattice points can
be reached by vector addition. For example,in 12-toneET, the vectorsor lattice
points (0;1) and (1;1) correspnd to the pitch numbers 4 and 7. The lattice
point (2;1) reated by adding the vectors (0;1) and (1;1) correspnds thus to
the pitch-number 4+ 7(mod 12) = 11, and soon. A consequencef obtaining
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the pitch numbersin this way, for a generaltone spaceof pitch numbersis, for
pitch-numbers other than ms, one does not know whether they form the right
appraximations for the frequencyratios. Howewer, in an n-tone ET where the
conditions 3.23, 3.24 are satis ed, all intervals from eq. 3.34 are approximated
correctly.

Here, we will study sometone spacesof pitch numbers for an n-tone equal
tempered systemwith n from eq. 3.41. Figures 3.10and 3.11 display the tone
spacesof pitch numbersfor n = 12,n = 19,n = 26 and n = 31. The tone-space

12-tone ET 19-tone ET
1509159 1 16(3)9 152 8 14
10(2)6 10(2)6 10 1117 4 10 16(3 )9
7 113 7 113 7 6 12185 1117 4
480480 4 17 130 6 1218
1509159 1 152 8 141 7 13
10(2)6 10(2)6 10 10 16(3)9 152 8
7 113 7 113 7 5 1117 4 10 16(3)

Figure 3.10: Two examplesof n-tone equal tempered tone spaces.

displayed on the left of gure 3.10can be rolled up along the sidesof the square
(indicated by boldface numbers) to becomea torus. For corveniencewe have
placedcirclesaround a chosennumber to mark the cornersof the spacethat rep-
resen all n pitch numbersin the chosenn-tone temperamen. We seefrom gures
3.10and 3.11that the n-tone temperamerns we obtained can be represeted in
parallelograms. These parallelogramsare in fact just the periodicity blocks dis-

26-tone ET 31-tone ET
@191917257 15 13232 12221 11210 10 20 30
4 12202 10180 8 @15254 14 24 3 13232 12 22
23 5 13213@191 28 7 17 27 6 1626@15254 14
16 24 6 14 22 4 12 20 20309 19298 18287 17 27 6
9 17257 15235 13 12221 11210 10 20 30 9 19 29
2 10180 8 16 24 6 4 14243 13232 12221 1121
213@191 9 17 25 27 6 1626@15254 14 24 3 13
14 22 4 12 20 2 10 18 19298 18287 17 27 6 1626@
7 15235 13213@ 11 22 0 1020 30 9 19 29 8 18 28

Figure 3.11: Tone spacerepresened in a 26 and a 31 tone equal tempered system.

cussedin section3.1.2. A geometricproperty of theseperiodicity blocks is that
the number of elemers n is exactly the areaspannedby the parallelogram.
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We notice that in ead n-tone systemthe length of one diagonalis kept con-
stant. Comparingthis spaceto the note namespacein gure 3.9 we seethat this
makessurethat all notesthat have the samenameareidenti ed with ead other,
which is a consequencef the enharmonicity conditions’. The other diagonal of
the parallelogramindicates which other notes are identi ed with ead other; in
other words, the notesthat are enharmonicallyequivalert.

3.3.3 Extended note systems

Now that we have given a visual represemation for the n-tone systemsresulting
from (3.41), we wonderhow we canextendthis in sud away that every frequency
ratio is represeted by a separatenote-name. This would be very useful since
then we can distinguish betweentwo di erent ratios having the samenote-name
in the Western notational system. If this can be done, the restrictions on the
equal division of the octave can probably be changedsud that more divisions
can be used. Eitz (1891) createda note-namesystemthat distinguishesbetween
di erent ratios from just intonation. Eitz departs from Pythagoreanratios and
givesthem "normal’ note-nameswith the superscript 0. He addsa t superscript
to note namescorresmpnding to ratios di ering by t syntonic commas(or factor
81t=80). See gure 3.12for a represemation. With this new note-namesystem,

+3 +2
Bbb Db Ft A°

+3 +2 +1

Ebb Gb Bb D° F#!

+1 -2

+3 +2
Abb  Cb Eb G° Bl D#

+3 +2 +1

-2
Dbb Fb Ab c’ ET G# B#®

+1

-2
Bb*2 Db FO Al C# E#3

+1 -3 -4

Gb Bb® D'  F#? A# C##

Eb® G! B? D#3

Figure 3.12: Eitz' notation for the namesof the intervals.

what conditions are preferablefor constructing an n-tone ET?

In the new tone-spaceusing Eitz notation, every frequencyratio correspnds
to a unigue note name, suc that note nameidenti cation is not necessaryany-
more. Howeer, the addition of consonan intervals may still be required. From
the origin of the space(indicated by 1 in the frequencyratio spaceand by 0

9The ET systemssatisfying the enharmonicity conditions can therefore be grouped under the
mean-tonetemperamerts which are characterized by tempering the syntonic commato unison.
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in the pitch number space)the intervals major and minor third (or major and
minor sixth) can be seenasthe unit vectorsbuilding the space. Then, the tone
spaceof equal tempered numbers can be constructedwith the valuesof ms and
Me. Ideally, the fth should be connectedto the number that approximates this
interval best. Sincea major third plus a minor third should equala perfect fth,
this is establishedif

m% + mg = m% (3.43)

And if the major and minor third are appraximated correctly, their inverses.the
minor and major sixth are too, sincemg = n  my-g. Furthermore, eq. 3.43
makessurethat all equationsfrom eq. 3.37are correctly translated in the chosen
n-tone temperamen.

When using the Western note hame system, the generating fth condition
was introduced to establish that the resulting ETs could not be reducedto a
lower number system. Using Eitz's note name system, this condition is changed
slightly, which we will explain. Sincethere is no relation betweenthe note names
generatedby the fth and the (major or minor) third anymore, two generating
elemens are (minimally) requiredin order to attach pitch numbersto all points
in the lattice. The vectorsrepreseting these generating elemerts should form
a basis of the lattice in order to attach a pitch number to ewery lattice point.
The generatingelemerts can therefore be chosenfrom the set: perfect fth and
fourth, major and minor third, major and minor sixth. Furthermore, the choice
of generatingelemens from this set establishesthat theseintervals are attached
to the pitch numbers that approximate them best. If, for a certain n-tone ET
that is distributed by the fth, major third and minor third (or their inverses),
not all pitch numbers are used,the systemcan be reducedto an n%tone system
(n = k n%k 2 N) in the sameway as before. To establish that ewery pitch
number (1:::n) can be constructedby a linear combination of ms, ms and ms,
represeiing the pitch numbersthat approximate the fth, major third and minor
third in the n-tone systemrespectively, we have to demandthat

GCD[a ms+b ms+c me;n]= 1 (3.44)

wherea;b;c2 Z. Usingthe Euclideanalgorithm (seefor exampleOno 1987)this
condition can be rewritten as:

GCD[GCD[GCD[mg;mg];mg];n] =1; (3.45)
which in turn can be written shorter as:
GCD[m%;m%;mg;n] =1 (3.46)

This condition together with the adding interval condition (3.43) result in the
following valuesfor n:

n = 3:457:89 10121516 18 19 22 23 25; 26
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27,28, 29 31; 34, 35,37, 39, 41; 42, 43, 45, 46, 47,
48,49, 50; 53, 55, 56; 58, 59; 60; 61, 63; 65; 69, 70;
71,72,73,74,75, 77,78, 79 80, 81; 83, 84; 87, 88,
89 90,91, 94; 95, 96; 97, 99; ::: (3.47)

Here we give only the valuesfor n up to 100, but there is no limit to the value of
n that satis es theseconditions. Comparing theseresultsto (3.41), we seethat
a lot more divisions of the octave can be usedif the restriction to use Western
note-namesis abandoned. Howeer, condition (3.43) was constructed especially
for Western music, sinceit is important to have triads (the building blocks of
Westernmusic) that are in tune. So, the n-tone equaltempered systemswith n
from (3.47) are to be usedfor Western music, but music written in the normal
Western note-namesystemhasto be translated to a systemlike Eitz's beforeit
is possibleto play it.

3.3.4 Summary and resulting temp eraments

We have arguedthat two mathematical conditions should be satis ed for an n-
tone equal tempered systemsuitable for keyboard application. Theseconditions
have ledto a number of valuesfor n. Remarlkably (but intuitiv ely understandable)
there is a certain maximum to the value of n (seeeq. 3.41). As a consequence,
there is a maximum bound to the closenessve can appraximate just intonation
with equaltemperamen, when using the Western notational system. It is clear
that good divisionsof the octaveto appraximate just intonation (asinvestigatedin
section3.2) that do not satisfy the two required mathematical conditions, cannot
be usedin combination with the Westernnote-namesystem. If onestill wishesto
usesud tone systemsthis hasto be in combination with an extendednote-name
systemlike Eitz's system. Combining our results for good equal divisions of the
octave with the generalresults using a goodnessof t approad, we conclude
that possibledivisions for a keyboard are 12,19 or 31 notes per octave. Indeed,
keyboard systemswith theseoctave divisionshave beenconstructed(Partch 1974;
Fokker 1955).

A suitable equaltempered systemthat mapsonto Eitz's extendednote-name
system, is still requiredto satisfy certain conditions. The resulting sequenceof
possiblevaluesof the octave division is an in nite sequencdeq. 3.47). Using the
conditions that apply to the traditional note-names,we did not nd the values
n = 41,53 that resulted from a goodnessof t approat. Howewer, thesevalues
are obtained as part of the results using Eitz's notation (eq. 3.47). The 53-
tone systemwhich was outstanding in the goodness-of- t approat (g 3.4) and
obtained from eq. 3.47,hasbeenrealizedin the 53-toneharmonium built in the
19th certury (Bosanquet1874b;Helmholtz 1863).

Summarizing,to nd suitable n-tone ETs in which Western music could be
played, the rst demand may be that it should appraximate the ratios from
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just intonation well, but an additional condition should be applied if the Western
traditional notational systemis used. In this section,wetried to give someinsight
in the possibilitiesfor usingthe ETs that resultedfrom section3.2. Furthermore,
this approad can sere as a possible explanation for the historical choices of
certain tone-systems.






Chapter 4

Well-formed or geometrically good pitc h
structures: (star-) convexity

In the previous chapters we have focusedon equal-tempered approximations of
just intonation and on limitations on thesesystemswhenthe Westernnote name
systemis applied. This hasled to a number of possiblen-tone temperedsystems,
someof which can indeed be found in musical literature and practice. In this
chapter we will focuson theoriesother than appraximating just intonation ratios,
that may sere asa principled basisfor tonal music. Thesetheoriesare concerned
with the notion of well-formed tone systems,and strive to show that prominen
musical objects are alsoin prominent mathematical positions, if a suitable math-
ematical context is chosen.Although this chapter on well-formed scaletheoriesis
separatedfrom the previous chapter on equal temperamen, this doesnot mean
that the theoriesreviewed in section4.1 cannot be usedto dewelop or judge equal
tempered scales:sometheoriesindeed can.

After an overviewof the literature onthis topic and a review of two prominen
theories, we presen our corvexity model. Where other theories are limited in
that they do not accoun for 5-limit just intonation, the corvexity model does.
Furthermore, it can be applied to more than scales,as we focus on chords and
harmonic reduction as well. Moreover, the notion of corvexity has applications
in an intonation and modulation nding model aswe will seein chapters5 and
6.

4.1 Previous approac hes to well-formed scale
theory

Are there general principles that govern the \w ell-formedness”of tonal pitch
structures? For example,whenis a sequencef notesa well-formed musical scale,

chord or melody? General perceptual principles for musical structuring have
beenproposed. The Gestalt laws (Wertheimer 1923), refer to theories of visual

73
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perceptionthat attempt to describe how peopletend to organizevisual elemerts
into groupsor uni ed wholeswhen certain principles are applied. TheseGestalt
laws have alsobeenapplied to music (Terhardt 1987;Tenneyand Polansky 1980;
Leman 1997). A musical structuring basedon a preferencerule systemhasbeen
formalized by Lerdahl and Jackendo (1983) and Temperley (2001). Dierent
parts of this preferencerule systemaccourt amongothers, for the organization
of grouping (phrasing) and metrical structure. Even stochastic principles have
been applied to music (Bod 2002), where manually annotated folksongswere
usedto train and test a memory basedmodel for phrasing. More psydologically
oriented researt on the goodnessor well-formednes®f melodieshasbeencarried
out by Povel (2002). Furthermore, attempts have beenmadeto simulate music-
theoretical prominencein terms of mathematical prominence. Mazzola (2002)
has discussedhe consonance/dissonancdichotomy preserted astwo symmetric
halvesof the chromatic scaleaccordingto Vogel(1975)in the 3-dimensionalEuler-
lattice. Noll (1995, 2001) measuredthe morphologicalrichnessof chordsin Z,
in terms of the number of transformation classes.Howeer, none of the theories
mertioned above appliesto the goodnessor well-formednesof scales.

Investigations on the mathematical properties' of diatonic scaleshave been
done by Clough and Myerson (1985) and Agmon (1989). In both articles the
diatonic scaleis presenied speci cally as a partial set of integer classesmod
12, (for exampleO; 1;:::;11), while genericallya diatonic scaleis interpreted as
a full set of integer classesmod 7 (0;1;:::;6). This notation is independen
of intonation and temperamen. From the inde nitely large number of specic
diatonic systems,Agmon (1989)selectsthe familiar diatonic system(7 scaletones
embeddedin a systemof 12 semitones)on the basisof the best appraximation
of the perfect fth, and thus presens this as an explanation for the familiar
diatonic scale. The familiar diatonic scalehas furthermore beenpresened in a
mathematical model by Lindley and Turner-Smith (1993).

In this section, we will focus on two theories that belong to the category
of theories that presert music-theoretical prominencein terms of mathemati-
cal prominence. We will review the theories of Carey and Clampitt (1989) and
Balzano (1980) in more detail, sincethey are concernedwith the goodnessof
scalesand they both make predictions about the number of notesinto which the
octave can best be divided.

4.1.1 Carey and Clampitt's well-formed scales

Carey and Clampitt (1989) deweloped a theory about the well-formednessof mu-
sical scales. The well-formednessof a scaleis a single structural principle that
underlies the pentatonic, diatonic and chromatic scales,as well as the 17-tone

1For a summary on mathematical properties of scales seeClough, Engebretsen,and Kochavi
(1999).



4.1. Previousapproachesto wel-formed sale theory 75

Arabic and 53-tone Chinesetheoretical systems. The scalesare represeted by
Z,, sud asthe pertatonic scaleZs, the diatonic scaleZ; and the chromatic scale
Z1. In their paper, Carey and Clampitt (1989) rst provide what they call an
\informal” de nition of a well-formed scale.

4.1.1. Definition.  Scalesgeneratedby consecutie fths in which symmetry is
presened by scaleordering are called well-formed scales.

When the sequenceof fths is represeted asn points regularly spacedaround a
circle, the tones can be connectedby fths or by scaleorder. If both resulting
gures represen the same degreeof rotational symmetry, the n tone scaleis
said to be well-formed. As an example, gure 4.1 shows the well-formed 7-tone
scalein consecutie fths and scaleordering. Both gures display seven degrees
of rotational symmetry. In part Il of their paper, Carey and Clampitt (1989)
provide a formal de nition of a well-formed scale.

A D

Figure 4.1: Well-formed 7-tone scalepresenessymmetry by scaleordering.

4.1.2. Definition. Let Zy = f0;1;:::;N  1g represen a set of pitch classes
of P produced by consecutie fths. Thesepitch classesare the elemerts of a
well-formed scaleif there exists an automorphism which arrangesZy in scale
order.

Recall from chapter 2 that an automorphismis a special kind of isomorphismin
which the setis projected onto itself. For example,there existsa permutation to
rearrangethe group Z;, which represetis the diatonic set, into scaleorder. This
automorphism of Z; is given by multiplication of every elemen by 2 mod 7.
The theory of well-formed scales nds the sequencethat starts with n =
1,2;3;5;,7;,12,:::, of well-formed scalesZ,,, and senesas a model explaining the
existenceof for example the penatonic, diatonic and twelve tone scales. The
theory is generalizedby saying that the pitch classeof a scaledo not needto be
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producedby fths but by aninterval . This is saidto represem a formal fth
which may be xed at any value where

21=2 2: (4.1)
This generalizedPythagoreansystemcan then be represerted by the set
P=1f2 Ya;b2 Zg: (4.2)

It turns out that \in a generalizedPythagorean system P, a scalewith pitch
classed);1;:::;B 1is a well-formed scaleif and only if B is the denominator
in a cornvergert or semi-cowvergert A=B in the cortinued fraction represeta-
tion of log, " (Carey and Clampitt 1989) (for cortinued fractions, seesection

3.1.1). For example,for = 3=2, represeting Pythagoreantuning, the sequence
of (semi) corvergens A=B beginswith 1;1;%;%;4..0-20. 17,28, 3L.::: The se-

quenceZ,;Z,; Z3; Zs etc. genericallyrepresem the well-formedscalesthe speci ¢
generatoris in this caselog, (3=2).

Equal tempered scalesare said to be degeneratewell-formed scales,because
the asymmetry presen in the generalwell-formed scalehasbeensmaoothed out in
the symmetrical equal tempered scale. In well-formed scales,the intervals come
in two sizes. For example, in the diatonic scale,the second,third, sixth and
seerth have two sizes: major and minor; the fourth, fth and unison have two
sizes:perfectand diminished/augmernted. This property hasbeencalled Myhill's
property by Clough and Myerson(1985).

With their descriptionof well-formedscaletheory Careyand Clampitt provide
a new approad to investigate the properties of tone systems. Furthermore the
concept of a well-formed scale can sere as a principled basis for tonal music.
Howewer, the theory does only descrile scalesgeneratedby and 2 (eq. 4.2),
meaningthat it could never describe a scalelike for examplethe major diatonic
scalein 5-limit just intonation?. Neverthelessthis well-formed scaletheory gives
a possibleanswer to the questionasto what principles underlie the musical scales
in the world, and is thereforeimportant to considerhere.

4.1.2 Balzano's group theoretical prop erties of scales

Also Balzano (1980) arguedfor another way of assessinghe resourcesof a pitch
system that is independert of ratio concerns. Balzano (1980) consideredthe
individual intervals as transformations forming a mathematical group. He dealt
with the grouptheoretical propertiesof 12-tonepitch systemsand extendedthis to
micro-tonal pitch systems.The octave divided into 12 semitonescanbe descriled
by the setf0; 1; 2; 3;4;5; 6; 7; 8;9; 10, 11g (seealsosection2.1.1). This settogether

2We have seenin chapters 2 and 3 that tuning systemslike 5-limit just intonation need3
generatorsand is therefore referred to as a 3-dimensional system.
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with the binary operation "addition modulo 12, is a group. The idertity elemert
is 0 and the inverseof an elemen n is 12 n. This group is called C;, and
is a cyclic group. In his paper, Balzano (1980) arguesthat ewvery n-tone equal
temperedsystemaswell asewvery systemof n ratios that canbe approximated by
an equal tempered system, possessethe structure of the so-calledcyclic group
of order n, C,,. The structure of C;, is examinedand it turns out that this it
possessespecial properties. When represetted in the circle of fths, the diatonic
scaleis represeted by a connectedregion ( gure 4.2). When a diatonic scaleis
transposeda fth up, let's say from C to G, it leadsto a scalewith all but one
elemerts the same,the changedelemen altered by a semi-tone: F ! F]. For
more information on this speci ¢ property of the diatonic scaleand its relation to
well-formed scales,seeNoll (2005). Every connected7 tone set within the circle
of fths represems a diatonic scale,12 di erent scalesare possible.

Figure 4.2: Circle of fths with connecteddiatonic scale.

Balzanoshowved that there exists an isomorphismbetweenC;, and the direct
product of its subgroupsCs = f0; 4; 8g (augmerted triad; built from major thirds)
and C4 = f0; 3;6;9g (diminished sewerth chord; built from minor thirds):

This meansthere is a oneto onecorrespndencebetweenthe elemerts of C;, and
the elemerts of C; C,4. The elements of C3  C4 are descrikesas 2-tuples:

(a;b; a f0;1,2g, b f0;1;2;30:

The group C3 C4 hasunit elemen (0;0), the inverseof (a;b) is (3 a;4 b
and the binary operation is given by:

(a;b) (&%) = ([a+ a9mod 3;[b+ Blmod 4):
The isomorphism(the mapping) betweenthe two groupsis given by

(b ! (da+ 30
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It meansthat ewery interval canbe described in terms of major and minor thirds.
For example, A perfect fth can be broken down into one major third and one
minor third, which is indicated by (1;1). In the sameway a minor sewernh can
be broken down into onemajor third and two minor thirds (1;2). Theseelemerts
of C3 C,4 can be plotted in a two dimensionalspace,the minor thirds on the
x-axis and the major thirds on the y-axis, see gure 4.3. Every point denotedby

1 5 9 15 9 1
minor 102 6 10 ‘2 6 10

|
thirds | 7 11/3 7._11|3 7
ya
c, s 8ld Wslo a
1 5]971 50 1
102716 102 |6 10

7 113 7 113 7

major thirds  C,

Figure 4.3: Represemation of Balzano's thirds-space: C3  C,.

the samenumber n canbe identi ed. Thus, the numbersin the squarerepresemn
all 12 semitoneswithin the octave. The numbers at the right of the squareare
identied with the leftmost column in the square. The row above the squareis
identied with the lowest row in the square. Soin fact, a torus is obtained, see
gure 4.4.In gure 4.3the semitonespaceis represeted by the liney = x+ c,

Figure 4.4: Construction of torus.

and the circle of fths is represeted by the line y = x + ¢, wherec is a constart.
Becausethe two axesin the gure consist of major and minor thirds, major
and minor triads are easilyiderti ed. Every upward triangle represets a major
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triad, every downward triangle represems a minor triad. The full diatonic set
f0;2;4,5;7;,9;11g, indicated by the connectedregion cortains three major and
three minor triads. The diatonic scalethat resultsis corvex, compact,and spans
a maximum amourt of spacealong both axes. Therefore, the diatonic set has
emergedas a unique pitch set. Generalizingthis to n-fold systems,it turns out
that groupsthat have the samestructural resourcesas C;, are the onesthat are
of the form

Cn=Ck Cy; n=k(k+ 1) (4.4)

for integer k. The “diatonic' scalewithin this spacecortains 2k + 1 notes. This

approad leadsto octave divisions basedon 20; 30;42; ::: tones. Studying these
resulting tone systems,and emphasizingchordal structure, Zweifel (1996) argues
that the only viable alternative to C,, is Cy. He arguesfurthermore, that within

this 20-tone system, the eleven note scaleis a better candidate for a scalethan

the nine note scaleproposedby Balzano.

Balzanoadmits that the musicfrom thesealternate C,'s will probably \sound
like nothing we have ewer heard before". Howewer, he claimsthat \the recurring
triadic and diatonic setstructuresin changingenvironmernts will almostbe surely
distinguishablefrom random pitch changesand from C,, basedwanderings”,and
\if our hearing facility cannot stretch beyond the C;, categories,then that is
a problem of all micro-tonal systems". To question the importance of ratios in
the origin of the 12-fold system, Balzano states that \it may well be that the
group-theoretic properties [: : :] were the more perceptually important all along"
(Balzano 1980).

With his group theoretic description of tone systems,Balzanogivesa newand
interesting view on the 12-tonesystemand generalizeghis to n-tone systems. It
may be that the group theoretic properties of the 12-fold systemare at least as
important asthe just intonation ratios that are sowell appraximated by this sys-
tem. Howeer, the theory doesnot explain the origin of any other n tone systems
than the 12-tone system. Furthermore, tone systemscan only be described by
cyclic groups C,, in terms of pitch numbers which meansthat the theory only
appliesto equaltempered systemor tone systemsthat can be approximated by
equaltemperedsystems.Yet, we will seethat Balzano'sapproad, appliedto the
tone spaceof frequencyratios (instead of the tone spaceof pitch numbers) will
lead to a new theory which we will nhow go into.

4.2 Convexity and the well-formedness of musi-
cal objects
In the current sectionwhich is basedon Honingh and Bod (2004, 2005) we fo-

cuson empirical principles of \w ell-formedness’of a large number of tonal pitch
structures, that include both 3-limit and 5-limit just intonation. The pitch struc-
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tures we discussrange from anciert Greek scalesto ChineseZhou scales,and
from the major triad to the eleverth and thirteenth chords. Togetherwith other
music-theoretical objects sud as harmonic reductions we will seethat there is
a highly persistent principle holding for all thesepitch structures: if represeted
in the tone spacedescrited in section 2.2, scales,diatonic chords and harmonic
reductions form compact and corvex or star-corvex shapes. The corvexity of
harmonic reductions is due to the corvexity of triads. Compactness,i.e. the
extert to which elemens of a set are closeto the certer of gravity of the set,
is not a boolean valued property (i.e., it either hasthe property or not), but a
cortinuum in which one object can be more compactthan another. We think it
is not suitable to usethe term in this chapter (although Balzano 1980usedthe
term to describe the diatonic scale)wherewe considerproperties of scaleschords
and harmonic reductions. In chapters5 and 6 we will comebadk to the notion of
compactness.nstead, we focus on corvexity.

As we have seen,Balzano(1980)localizedthe scalesn the tone spaceof pitch
numbers. Howewer, the pitch number tone spaceis not suitable for studying 3-
limit and 5-limit just intonation scaleswhich will be our focus. Yardi and Chew
(2004) have investigatedthe shapesof ragasfrom North Indian classicalmusicin
the Euler lattice. Longuet-Higginsand Steedman(1971)have noted the corvexity
of the major and minor scale,and usedthe speci ¢ form of the scalesin a key
nding algorithm, although the property of corvexity was not necessaryfor the
algorithm. 3 The corvexity of triads in the spiral array tone space(seesection2.3)
was noted earlier by Chew (2000, 2003), but the property of convexity it is not
further usedasa componert in her theory. Moreover, neither Balzano, Longuet-
Higgins and Steedman,nor Chew, have translated the property of corvexity into
a musical meaning.

4.2.1 Convexity on tone lattices

Convexity, aswe usethe term, is a notion from mathematical geometry A setin
the Euclidean spaceR" is corvex if it cortains all the line segmets connecting
any pair of its points (see gure 4.5). Formally, a subsetY of R" is said to be
convexif x+ (1 )y isin Y whenewerx andy arein Y and 0 1. Star-
cornvexity is related to convexity. A subsetX of R" is star corvex if there exists
an Xg 2 X sud that the line segmen from Xy to any point in X is cortained in
X (see gure 4.6). A cornvex setis always star-corvex but a star-corvex object is
not always corvex.

We will de ne a discrete corvex set analogousto a corvex setin cortinuous
space,and we restrict ourselhesin this thesisto discretesubsetsof the lattice Z2.
A discretesetis cornvexif, drawing lines betweenall points in the set, all elemens
which lie within the spannedareaare elemeits of the set. Similarly, a discrete

3Convexity hasalso beenobsened in rhythm space(Desain and Honing 2003).
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e <€

(a) corvex (b) concave

Figure 4.5: Convex and concave setin two dimensional space.

% el

(a) star-convex (b) not star-corvex

Figure 4.6: Star-convex and non star-convex setin two dimensional space.

setis star-corvex if there existsa point Xg in the setsud that all points lying on
the line segmen from Xy to any point in the set are cortained in the set ( gure
4.7)%

Thesenotions of corvexity canbe appliedto music. In section2.2the concept
of tone spacewas introduced. In this tone spacetonal pitch structureslike scales
and chords can be found. For corvenience,the three types of tone spacesare
showvn oncemorein gure 4.8. The de nition of a discrete corvex set appliesto
the tone spaceof frequencyratios®. In the next section,we will elaborate on the
de nition of convexity in the two other tone spaces.

Consideringcorvex objects in the tone spaceof frequencyratios, it is impor-
tant to understandhow thesesetstransform under a basis-transformationof the

4The notion of a discreteline is not intro ducedhere. We assumethe lattice Z2 to be a subset
of the cortinuous spaceR? which makesthe introduction of a line intuitiv ely clear.

SNote that the 2-dimensionaltone spaceof frequencyratios (g 4.8a)is not simply equalto a
plane from the 3-dimensionaltone space(group P3, that alsorepreserts the octaves), sincethe
2-D spacewas constructed by picking a represettativ e lying within the interval [1; 2) from every
octave classin the 3-D space(seesection2.2 on the construction of this tone space). Therefore,
a set of frequency ratios that is corvex in the 2-dimensional spacemay be non-corvex when
consideredin the 3-dimensionalspace.
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(a) convex (b) star-
corvex

Figure 4.7: Convex and star-convex set in discrete two dimensional space.

216/12527/25 27/20 27/16 Bbb Db F A 9 1 5 9
144/125 36/25 9/5 9/8 45/32 Ebb Gb Bb D F# 2 6 10 2 6
192/125 48/25 6/5 3/2 15/8 75/64 Abb Cb Eb G B D# 7 11 3 7 11 3
128/12532/25 8/5 1 5/4  25/16 125/6¢ Dbb  Fb Ab C E G# B# 0 4 8 0 4 8 0
128/7516/15  4/3 5/3  25/24 125/96 Bbb Db F A C# E# 9 1 5 9 1 5
64/45 16/9 10/9 25/18 125/72 Gb Bb D F# A#t 6 10 2 6 10

32/27 40/27 50/27 125/108 Eb G B D# 3 7 11 3

(a) tone space of fre- (b) tone spaceof note (c) tone space of
quency ratios names pitch numbers

Figure 4.8: Three represettations of tone space:intervals space,note-namespace,and
spaceof pitch numbers. In gure b), the note namesare chosencorresponding to the
key of C.

tone space(seeagain section2.2). When we choosebasis-\ectorsfor this space
that are di erent from the major and minor third, a (star-)convex set will still
remain a (star-)convex set. This canbe provedasfollows. Considera linear basis-
transformation T. A line betweentwo points x andy isgivenby: x+ (1 )y,
with 2 [0;1] for a cortinuous space,and 2 fO;fq;f,;:::;1g for a discrete
space,with f; represeting the fractions of the line betweenx andy whereother
lattice points are situated. Under a transformation T it transforms into a line
again:

T(x+ (@ y)= Tx)+@ )T(y): (4.5)
Therefore,a convex set transforms under a basistransformation T into a corvex
set again. This property is important to ensurethat corvexity is a meaningful
property and not just an artifact of the chosenbasis. The area of these corvex
setsis alsoinvariant under basistransformations since every corvex set can be
split into a nite number of triangles and the area of an arbitrary triangle is
invariant under basistransformations, if the determinart of the transformation
matrix equalsl or 1. This can easily be veri ed by using the formula for the
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areaA of a triangle given its coordinates (X1; Y1), (X2;Y2) and (Xs;Ya):

1
1 Xl yl 1
A= éDet@ X Vo 1A (4.6)
X3 y3 1
This formula can be worked out into:
1
A= E(Xz)’3 X3Yo Xiys+ Xazy1+ X1Y2  XaY1): (4.7)

After a basis-transformationusing the transformation matrix

ac | = 1
b d wheread bc= 1; (4.8)
the new coordinates x° and y? read:
xX _ ac Xi _ ax;+ cy
Y T bd oy bx+dy (4.9)

The new coordinates can be lled in the formula for the area 4.6 resulting in
the samevalue calculatedin eq. 4.7, which shaws that the areaof a triangle is
invariant under a basis-transformationwith determinart 1 or 1.

4.2.2 Convex sets in note name space

In all three tone spacesfrom gure 2.3 pitch structures can be studied. Tonal
pitch structures sud asscalesand chords can be expressedn terms of frequency
ratios, note namesor pitch numbers. The conceptof convexity as explainedin
the previoussectionappliesto the frequencyratio tone space.In this sectionwe
will discussthe de nition of corvexity in the note name space,which we will use
in this chapter. In the tone spaceof note names,there exists more than onenote
namedC, D], etc, which correspnd with frequencyratios in the interval space
that dier by a syntonic comma. Figure 4.9 illustrates this. When discussinga
set of note names,ambiguity to aswhich location in the planeto consider,arises
at this point, which hasimplications for the notion of convexity.

Howewer, we have seenthat the note namescan be represerted on the line Z
(seechapter 2). In fact, the note name spaceasrepreseted in gure 4.8bis iso-
morphic to Z, represeting the line of fths ® sud that the ambiguity asdiscussed
above is no longer a problem. The isomorphismwith Z can be understood as
follows. Recall from chapter 2 that other basescan be chosenfor the tone space
of frequencyratios. When choosingthe valid basisvectors3=2 (perfect fth) and
81=80 (syntonic comma), the projection to the note nhame spacelooks like gure
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216/12527/25 27120 27/16 Bbb Db F A
144112536125 9/5 918  45/32 Ebb Gb Bb D  F#

102125 4825 665 (312 158 75064 mb co Eb (6) B D
128/12532/25 8/5 1 54 25/16 125/6¢ Dbb Fb Ab C E  G# B#
128/7516/15 4/3 53 2524 125/96 Bb Db F A C# E#
64/45 16/9 10/9 25/18 125/72 Gb B D ¥  A#
32127 (40127 50127 1251108 eb (¢ B D#

7 \Z

Figure 4.9: Example to show that, if all tonesare labeled by their corresponding note
name, multiple occurrencesof the samenote name appear. The corresponding interval
ratios di er by a syntonic comma (81=80).

Eb Bb F C G D A E B F#
Eb Bb F C G D A E B F#
Eb Bb F C G D A E B F#
Eb Bb F C G D A E B F#

Eb Bb F Cc G D A E B F#

Figure 4.10: Note name spaceprojected from frequencyratio spacewith basisvectors
3=2 and 81=80.

4.10. From gure 4.10it may be clearthat the note name spaceis isomorphicto
the line of fths:

BL F C G D A E B F] :: (4.10)

The de nition of convexity aswe have givenit in the previoussectionis applicable
to a discreteline Z, so given a set of note names,it can be judged whether the
setis corvex or not. For examplethe setC G D forms a corvex set on the
line of fths. Howewer, the setC E G is not a corvex set on the line of
fths, while in the frequencyratio spacethe setl 5=4 3=2 (represeting the
notesC E G) is a corvex set. We would rather have a consisten notion of
convexity through the possibletone spacessud that a corvex set of frequency
ratios implies a corvex set of note names,which implies in turn a convex set of
pitch numbers. Therefore,we will introduceherethe conceptof convexliftability .

5Due to personal communication with Thomas Noll it becameclear that the note name
spaceis isomorphic to the line of fths. He furthermore suggestedto introduce the concept of
convex liftabilit y, aswe will see.
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Although the note name spaceis isomorphicto the line of fths, we prefer
to represen it here as the projection of the frequencyratio spaceas given in
gure 4.8a. We can considerthe projection of a set from the frequencyratio
spaceto the unfolded note name space( g. 4.8b). Then we de ne a set of note
namesto be aliftable corvex setif there existsa corvex setin the frequencyratio
spacewhich hasthesenote namesas a projection. Considerfor examplethe set

216/12527/25 27/20 27/16 oAb C) (E)

144/12536/25 9/5  9/8  45/32 Bbb Db F A CF

' Ebb Gb Bb D F# A
192/125 48/25 6/5 ‘\3/} 15/8 75/64

Abb Cb Eb B D#  F##

12811253225 85 (1) (5/4 25016 12506
- - Dbb Fb  Ab

G# B#  D##

128/75 16/15 4/3 5/3  25/24 125/96
Bbb Db F A C# E# G##

64/45 16/9 10/9 25/18 125/72 Gb Bb D F# A% CH##

32/27 40/27 50/27 125/108 Eb G} B  D# Fi#

Figure 4.11: Convex projection of major triad.

C;E;G. This is a liftable convex set becauset can be seenasthe projection of
the corvex set 1; 5=4; 3=2 in the frequencyratio space(see g 4.11). Given a set
of note names,a strategy to nd the projection of a corvex set (if it exists) from
the frequencyratio spaceis to considertwo points that have the samenote name
as two di erent points and to ched all possibilities of compositions of a set of
notesin the note name space. An exampleis given in gure 4.12where a few
possiblecompositions of the triad C; E; G are given. The rst composition hasa
convex projection from the frequencyratio spaceand therefore we say that the
triad C; E; G is liftable corvex. To sumup: if oneof the compositions of a set of

Fb Ab C E FnAnc@ FbAbC@

Bb Db F A c# Bbb Db F A c# Bbb Db F A c#

Fb  Ab C E

Bbb Db F A c#

Ebb  Gb Bb D o A# Ebb Gb Bb D F# A Ebb Gb Bb D F#t A Eb Gb Bb D A%

ab o e (©) B or Fm Abb Cb Eb G B D F## Abb Cb Eb G B D F# ab o e (@) B ok R
@ Gt B# Dp#y Dbb Fb Ab @ @ G# B# D#t Dbb Fb Ab @ E G# B DM pub Ry oAb @ E Gt BE DiE
Bb Db F A C# E# G Bbb Db F A CH BRSO GH Bbb Db F A CHERGHE Bbb Db F A C# E¢ G

G B D F¢ AR G Gb Bb D F# A% CH# Gb Bb D F# A% CH# Gb B D F# A# CHE

Eb G B  D# F# o (@) 8 or e w () 8 or Fm Eb G B  D# F

Figure 4.12: Possiblecompositions of the triad C;E;G.

note namesis the projection of a convex set from the frequencyratio space,the
setis saidto be liftable corvex. Sincethis is the notion of convexity that we will
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usefor a set of note namesin this thesis, from herewe refer to convex liftabilit y
with the normal term corvexity.

A similar de nition can be chosenfor a (liftable) corvex set in the pitch
number space:A set of pitch numbersis corvex, if one of the compositions of a
set of pitch numbers is the projection of a corvex set from the frequencyratio
space.

Musical interpretation of convexity

An important issueis what (star-)convexity actually means(for music). Formally,

in words, corvexity in the frequencyratio tone spacemeansthat all intervals

lying on the line betweentwo points are within the set. In terms of note-names
it meansthat if two notesarein the setand the interval betweenthesetwo notes
can be composed from a multiple of another interval (modulo an octave), all

other notesdescribed by adding this interval (or a multiple hereof) to the lowest

note, should be in the set. For example, the interval betweena C and a G] is

an augmerted fth. This interval can be composedfrom two major thirds. This

meansthat if the C and G] are both presen in a corvex set, the note which is

represeted by a major third above the C (which is an E) should be in the set

aswell. From the above it appearsthat corvexity hasto do with connectivity

of intervals. In a tonal cortext, it is natural to strive to move by the shortest

number of consonance$rom the tonic to any other note in the scale. Therefore
convexity may be a consequencef striving for maximizing connectivity, i.e. to

get as many consonan intervals as possiblewithin the notes de ning the scale
or chord. Star-corvexity can be seenas a lessstrong notion: the consonance
accordingto one tone is maximized.

4.2.3 Convexity of scales

Musical scalesand chords can be described as sets of notes. A description of
the notes in terms of frequencyratios (5-limit just intonation) provides more
information than a description in terms of note names. The note names(in a
speci ¢ key) canbe inducedfrom the ratios (by projecting gure 4.8aonto 4.8b),
howewer it is not trivial to inducethe frequencyratios from the note names.

For sewral scales,de nitions in terms of 5-limit just intonation frequency
ratios can be found. The major scalein 5-limit just intonation is de ned asthe
scalein which eadt of the major triads |, IV and V is taken to have frequency
ratios 4 : 5 : 6 (seetable 1.2). From this it can be calculated that the ratios of
the scaleare given by: 1=1;9=8; 5=4; 4=3; 3=2; 5=3; 15=8. Theseare indicated in
gure 4.13awith solid lines.

In this gure, the (neutral) minor scaleis indicated with dotted lines. These
scalesboth turn out to form corvex regions. The chromatic scale,as de ned by
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216/12527/25 27/20 27/16 216/12527/25 27/20 27/16

45/32 144/12536/25/ 9/5

192/125 48/253-'.6/5 7 75/64 192/125 48/25/ 6/5

1 125/64

128/25 32/25 :'8/5 25/16 125/64  128/25 32/25/ 8/5

128/75 16/15 4/3 25/24 125/96 128/7%°16/15 4/3 25/24 125/96
64/45 16/9 -.1.0/9 25/18 125/72 64/45 16/9 10/9 25/18 125/72
32/27 40/27 50/27 125/108 32/27 40/27 50/27 125/108
(a) major scale(solid line) and (b) chromatic scale as de ned
minor scale(dashedline) by Vogel (1975)

Figure 4.13: Tone spaceof frequencyratios represening someWestern scales.

Vogel (1975) and found in most textb ooks’, can also be found as a corvex setin
the tone space(g 4.13b).

This result triggered us to investigate more 5-limit just intonation scalesand
to chedk whether they form a corvex set in the frequencyratio spaceas well.
From the ScalaHomePage(http://www.xs4all.nl/~huygensf/scala/ ) alarge
collectionof over 3000scale les is available for downloads. From this collectionwe
chosethe 5-limit just intonation scalesand determinedwhetherthey are corvexin
the tone spaceby plotting the scalesonto the lattice. The 5-limit just intonation
scalesinclude the 3-limit just intonation scales.The other scalesin the database
include some 7-limit just intonation scales,equal tempered scales, mean-tone
scales,and many more typesof scales.The scalesthat are not in just intonation
arerepresemed in certs and are thereforedi cult to represem in our tone spacé.
For the scalesin n-limit just intonation with n > 5 we would needto expand
the tone spaceto more dimensions. For example,for 7 limit, we needone extra
dimension. Howeer, relatively few scalesare de ned in 7 (or a higher prime)
limit just intonation, and thus we have concertrated hereon the scalesincluding
3 and 5 limit just intonation. The scalesthat are investigatedare listed in table
4.1 and besideghe number of notesit is indicated whetherthesescalesare corvex
and star-corvex respectively.

Notice that all scalesbut four are corvex. Di erentiating between original'
scaleslike the "Anciert Greek Aeolic' and the “Indian shruti scale’, and “con-

’In other de nitions of the chromatic scalethe minor sewerth is sometimesde ned as 16=9
instead of 9=5. In both casesthe resulting scaleforms a cornvex set.

8The equaltemperedscalescould be represerted in a tone spacein the way we did in chapter
3. The other scales(the onesthat are neither in just intonation or equal temperamert) may
be represened in the tone spaceif they could be approximated by a just intonation or equal
tempered scale. Furthermore, temperamerts such asfor example mean-tonetemperamen may
be represerted by introducing rational coe cien ts in the tone space,seeMazzola (1990).
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name description No. of | convex | star-
notes corvex

aeolic.scl Ancient Greek Aeolic 7 yes yes

chin_5.scl Chinesepentatonic from Zhou period 5 yes yes

cifariello.scl F. Cifariello Ciardi, ICMC 86 Proc. 15-tone5-limit tun- | 15 yes yes
ing

cluster.scl 13-tone 5-limit Tritriadic Cluster 13 yes yes

consb.scl Set of consonan 5-limit intervals within the octave 8 yes yes

coul_13.scl Symmetrical 13-tone 5-limit just system 13 no yes

coul_27.scl Symmetrical 27-tone 5-limit just system 27 yes yes

danielou553.scl | Danilou's Harmonic Division in 5-limit, symmetrized 53 no yes

darreg.scl set of 19 ratios in 5-limit JI is for his megalyra family 19 no yes

fokker-h.scl Fokker-H 5-limit per.bl. synt.comma small & diesis, | 19 yes yes
KNAW B71, 1968

fokker-k.scl Fokker-K 5-limit per.bl.  of 225/224 & 81/80 & | 19 yes yes
10976/10935,KNAW B71, 1968

harrison_5.scl From Lou Harrison, a pelog style pertatonic 5 yes yes

harrison_min.scl | From Lou Harrison, a symmetrical pentatonic with mi- | 5 yes yes
nor thirds

hirajoshi2.scl Japanesepertatonic koto scale 5 yes yes

indian_12.scl North Indian Gamut, modern Hindustani gamut out of | 12 yes yes
22 or more shrutis

indian.scl Indian shruti scale 22 yes yes

ionic.scl Ancient Greek lonic 7 yes yes

ji_13.scl 5-limit 12-tone symmetrical scalewith two tritones 13 yes yes

ji19.scl 5-limit 19-tone scale 19 yes yes

ji_22.scl 5-limit 22-tone scale 22 yes yes

ji_31b.scl A just 5-limit 31-tone scale 31 yes yes

johnston_81.scl Johnston 81-note 5-limit scaleof Sonatafor Microtonal | 81 no yes
Piano

kayolonian.scl 19-tone 5-limit scaleof the Kayenian Imperium on Kay- | 19 yes yes
olonia (reeksvan Sjauriek)

kring1.scl Double-tie circular mirroring of 4:5:6 and Partch's 5- | 7 yes yes
limit tonality Diamond

lummab.scl Carl Lumma's 5-limit version of lumma?, also Fokker | 12 yes yes
12-tone just

mandelbaum5.scl| Mandelbaum's 5-limit 19-tone scale 19 yes yes

monzo-sym-5.scl | Monzo symmetrical system: 5-limit 13 yes yes

pipedum_15.scl 126/125, 128/125 and 875/864, 5-limit, Paul Erlich, | 15 yes yes
2001

turkish.scl Turkish, 5-limit from Palmer on a Turkish musicrecord, | 7 yes yes
harmonic minor inverse

wilson5.scl Wilson's 22-tone 5-limit scale 22 yes yes

wilson_17.scl Wilson's 17-tone 5-limit scale 17 yes yes

Table 4.1: List of 5-limit just intonation scalesfrom Scalaarchive

structed' scaleswe obsene that all original scalesare corvex. Moreover, all
scalesare star-corvex. The two scaleswith the highest number of notes (53 and
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scale corvex | star-corvex
Ramis' Monochord yes yes
Erlangen Monochord yes yes
Erlangen Monochord revised yes yes
Fogliano's Monochord no. 1 yes yes
Fogliano's Monochord no. 2 yes yes
Agricola’'s Monochord yes yes
De Caus's Monochord yes yes
Kepler's Monochord no. 1 yes yes
Kepler's Monochord no. 2 yes yes
Mersenne'sSpinet Tuning no.1 | yes yes
Mersenne'sSpinet Tuning no.2 | no yes
Mersenne'sLute Tuning no.1 no yes
Mersenne'sLute Tuning no.2 yes yes
Marpurg's Monochord no.1 yes yes
Marpurg's Monochord no.3 no yes
Marpurg's Monochord no.4 yes yes
Malcolm's Monochord yes yes
Euler's Monochord yes yes
Montvallon's Monochord yes yes
Romieu's Monochord yes yes
Kinberger | yes yes
Rousseau'sMonochord yes yes

Table 4.2: List of 5-limit just intonation scalesfrom Barbour.

81) are not corvex (but still star corvex). Sewral of the scalesfrom table 4.1
are symmetric around the prime interval 1=1, meaningthat both an interval and
its inverseare presertt in the scale. Two scalesfrom table 4.1 are represeted in
gure 4.14to give an idea of the typical shape of thesescales.The scaleshat are
not corvex still have a similar shape, that is, a coheren object shaped around the
diagonal(from bottom left to top right) of the lattice. The non-corvex scaleshave
only a few intervals not belongingto the scalewhich make the scalenon-corvex.

In his book, Barbour (1951) gives seeral examplesof 5-limit just intonation
12-notesystems.They arelisted in table 4.2. Among the 26 scales23 are corvex.
Again, all of them are star-corvex. The Scalaarchive together with Barbour's
book give a balanceddistribution of both traditionally and ‘recenly’ constructed
scalesand therefore provide a versatile and well-documerted test set.

As explainedin section4.2.2 corvexity may be related to consonancelt can
be understood that there is only a limited number of consonancesnd there are
far more dissonancesamongall possibleintervals. In creating a scaleone usually
aimsto allow for usingconsonabn intervals. All scaleghat are consideredare star-
convex. An interesting property of star-corvexity is that the note represeting
the X, (seede nition of star-corvexity in section4.2.1), is the note to which the
consonancen the set is optimized. Of the scalesthat are star-corvex but not
corvex, the note represeting the x, represets the tonic. This meansthat in
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162/12581/50 81/80 81/64 405/25¢

27/16™435/12&75/51:
144/12536/25 9/5
192/125°48/25 6/5

312

128/12532/25 8/5 1 5/4

512/375 128/79416/15 4/3
256/225 64/45 16/9\ 10/9
256/13532/27 40/27 50/27 125/108

128/81 160/81 100/81 125/81

(a) Wilson's 22-tone scale
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162/12581/50 81/80 81/64 405/25¢

216/12527/25" 27/20 27/16 135/12¢675/51%

144/12536/25" 9/5

9/8

192/125 48/12%" 6/5 3/2  15/8  75/64,/375/256

128/12532/25" 8/5 1 5/4  25/16

512/375 128/7516/15 4/3 5/3  25/24125/96
256/225 64/45 16/9 10/9 25/18 125/72

256/13532/27 40/27 50/27 125/108

128/81 160/81 100/81 125/81

(b) Just intonation 19-tone scale

Figure 4.14: Two examplesof corvex scales.

thesescalesthe consonancas optimized accordingto the tonic of the scale.

Thus, (star)-convexity seemgo be a highly persisten property for scalesand
we conjecturethat it may ewven serwe as a condition for the well-formednessof
scales.In section4.2.6 we will shaw that it is a non-trivial property for an item
to form a corvex set.

4.2.4 Convexity of chords

Now that we have investigateda number of scalesin the tone space,we will look
at smaller tonal pitch structures, like chords. In the area of Neo-Riemannian
theory, chords in the "Tonnetz' (a spacecloselyrelated to our tone space,see
section 2.3) have beenstudied (seefor example Cohn 1998), although not with
respect to the property of cornvexity.

A chord is a set of notes, and usually de ned as a set of note names. The
reasonfor this isthat it isdi cult to say somethinga priori about the intonation
of the chords asthere is no establishedtheory about the intonation of all chords
(seechapter 5). Thereforeit is not possibleto study chordsin the frequencyratio
tone space. We will look at chords in the note name tone spaceand consider
convexity of the chords as explainedin section4.2.2. Contrary to the scaleswe
will here study chords from the Western diatonic scalesonly, as the note name
systemwe useis a consequencef the Western music tradition. It is possible
howewer, to study non-Western chords, provided that the elemerts hereof are
givenin frequencyratios or a format (like note namesor pitch numbers)that can
berepresered in atone spacewhich is a projection of the tone spaceof frequency
ratios.

Considering di erent kinds of chords, a distinction can be made between
chords that are built from diatonic notes, which are notes that are presen in
the scaleof the speci c key, and chords that cortain non-harmonic notes, the
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harmonic chords No. of notes | corvex | star-corvex
major triad 3 yes yes
minor triad 3 yes yes
diminished triad 3 yes yes
augmernted triad 3 yes yes
dominant sewenth chord 4 yes yes
major sewventh chord 4 yes yes
minor seernth chord 4 yes yes
half-diminished seenth chord 4 yes yes
major-minor seerth chord 4 yes yes
augmened sewerth chord 4 yes yes
diminished sewenth chord 4 yes yes
triad with added sixth 4 yes yes
completedominant ninth chord | 5 yes yes
tonic/dominant elewernth chord 6 yes yes
tonic/dominant thirteenth chord | 7 yes yes

Table 4.3: Chords built from harmonic notes.

altered chords No. of notes | corvex | star-
corvex
non dominant diminished sewenth chord 4 yes yes
Neapolitan sixth 3 yes yes
augmerted sixth (Italian) 3 no yes
augmerted six- v e-three (German) 4 no yes
augmerted six-four-three (French) 4 no no
doubly augmerted fourth 4 no yes
chords with raised fth - major 3 yes yes
- minor 3 yes yes
- with minor sewenth 4 no yes
dominant chord with lowered fth 3 no yes
-with sewerth 4 no no
dominant chord with lowered and raised fth | 4 no yes

Table 4.4: Chords containing non-harmonic notes.

so-calledaltered chords. It turns out that all chords built from harmonic notes
discussedy Piston and DeVoto (1989)are convex (and thereforealsostar-corvex)
in the note-namespace. The chords are listed in table 4.3.

Altered chordsaredi cult to study sinceit is possible,through the processof
chromatic alteration, to createa very large number of altered chords. Therefore,
in this paper we reduce the number of these chords to the onesdiscussedby
Piston and DeVoto (1989). In table 4.4 thesealtered chords are listed and it is
indicated whether thesechords are (star-)convex.

Remarlably, most altered chords are not convex, and somealtered chords
are not ewven star-corvex. For most chords it can be chedked immediately in
gure 4.8 whether they are convex or not. For onechord, it is however not that
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obvious. The minor chord with raised fth can be represeted in note namesas
C;E[; G]. On the tone space,it is most logically seenasthe projection from the
frequencyratios 1; 6=5; 25=26, not forming a convex set. Howeer, if it is seen
asthe projection from the ratios 1; 6=5; 12581, it doesform a corvex set. Since
the 1; 6=5; 25=26 setis a much more compactcon guration, it may be strangeto
classifythis chord ascorvex. In chapter 5 we will elaborate on this.

Preciselytwo chords are not star-corvex, the Frendh augmerted sixth chord
and the dominart chord with lowered fth and minor sewerth. Thesechordsin
fact consist of the samenotes (but have a di erent function in harmory) and
thereforedescribe the sameshape in the tone space.Thus convexity roughly dis-
tinguishesbetweenharmonic and altered chords, wherethe harmonic chords are
all convex and the most altered onesare not corvex and sometimesnot even star-
convex. Another surprising fact is, that of the star-corvex (altered) chordsthe xq
(seede nition in section4.2.1) doesnot represen the root of the chord in most
case$. In view of the meaningof star-corvexity: the consonances optimized ac-
cording to oneinterval, this interval is not the root of the chord. Interpreting the
property of convexity in terms of consonancethe fact that many altered chords
arenot corvex canbe related to the tensionin the tension-resolutione ect that is
often found in music. Again, it is a non-trivial property for chordsto be cornvex,
aswe will analyzein the discussion(section4.2.6).

4.2.5 Convexity of harmonic reduction

Harmonic reductionsof music are known to be usefulfor discovering the harmonic
structure of a pieceallowing for an easieranalysis. In this processa scorecan
be reducedto chords and ultimately to triads (Schenker 1906; Salzer1962). Im-
portant theoriesof chord progressiongnclude Traite de I'hnarmonie by Rameau
(1722) and Hugo Riemann's (1914) theory of Tone images(Tonvorstellungen).
Rameaupostulated that harmonic progressionis governedby the fth and thirds
connectionsof roots of triads. Riemannanalyzedharmonic progressionsn terms
of chains of triads through his tone net (which is equivalent under a basistrans-
formation to our tone space). This illustrates that the reduction of music into
triads hasa long tradition in analyzing Westerntonal music.

We will now investigate the progressionof triads in our tone spacé®. It is
di cult to decidewhich tone spacewe should use,the frequencyratio tone space
or the note name space. The major and minor diatonic scalesare de ned in
frequencyratios which meansthat we could usethe former space,however the
tuning of the super-tonic triad (in C: D F A) is not unambiguous when
precededor followed by another chord (seesection 1.3.1 about pitch drift) and

9However, the roots of altered chords are often ambiguous.

10sincewe are using octave equivalencewe are not taking into accourt the di erent inversions
of achord. Schenker (1906) and Salzer(1962) state that it dependson the basswhether a chord
progressionis a harmonic progression. Here we treat all triads ashaving an harmonic function.
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Figure 4.15: (a) Triads from the major scalesituated in the note-namespace, V11 is
the diminished triad B D F. (b) Triads from the minor scale,l | is the diminished
tiad D F A[.

therefore the note name spacemight be preferableto use. To deal with these
problemsthe note namespaceis shovn in gure 4.15a,wherethe major diatonic
scaleis projected from the frequencyratio space. The two possiblesuper-tonic
triads are indicated with dashedlines sothat either onecanbe used. To summa-
rize, the corvexity de nition in the frequencyratio spaceis used,but the scaleis
displayed in the note name spacefor convenience.

We saw in section4.2.4that all triads are corvex. In the major scaleonly
major and minor triads and onediminishedtriad are naturally presen. It canbe
cheked from gure 4.15athat ewery two triads following ead other except for
the progressionl V  V have the possibility to form a corvex set (for sequences
involving the super-tonic triad, using either the oneor the other possibility, keep-
ing notesthat appear in adjacen triads in the sameintonation.). The sequence
IV V doesnot form a corvex set (howewer it does form a star-corvex set),
we will seein chapter 5 that in this casecorvexity is overruled by compactness.
Sincethe major scaleconsistsof only 7 triads (8 if the two possibilities for the
super-tonic triad is courted as 2), sequence®f more than two triads have an
ewven bigger chanceof being corvex. Apart from a sequenceconsisting (only) of
the triads | V and V conmbined with Il and/or V11, all sequencesre convex. In
practice,the sequenceV V is usually conbined with the tonic triad |, resulting
in a corvex structure.

Thus, whatever segmetation of musicin a major key used(segmeration per
chord, bar, phrase, etc), the reduction of the music to triads most of the time
represems a corvex set. For music in a minor key the situation is somewhat
more complicated. From gure 4.15bonecan seethat the neutral minor and the
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Chord is followed by | sometimesby
[ v, V VI
[ \Y IV, VI
i VI \Y,

1 (ma) | VII

\Y, \Y I, 11
Y | IV, VI
VI ", v i, v
VI (ma) | I

VI (dim) | |

Table 4.5: Chord progressionin minor mode from Piston and DeVoto (1989); ‘ma’
indicates major chord, "dim' indicates diminished chord.

harmonic minor scaleform corvex regionsin the tone space. In the harmonic
minor scalethe seernth note of the scaleis raised by a half tone, sudt that the
111,V and VI triads are changed. In the ascendingmelodic minor scalethe
sixth and the sewenth tone of the scaleare raised. Consequetly the triads on
1, IV and VI are adjusted as well. Therefore, music in a minor key and the
harmonic reduction thereoftakesinto accoun many more triads than musicin a
major key. Consideringthe harmonic progressiondor the minor mode as given
by Piston and DeVoto (1989) (seetable 4.5), all progression' form corvex sets
except for the progressionsV  V asin the major scale,and the progression
V11 (diminished)-I. The V11 (diminished)-l progressionis not a corvex set (but
it does form a star-corvex set) if the triads VI1(dim) and | are chosensud
that the triads themsehesare corvex. But the notes of the triads (in C minor:
B D F,C E[ G)canalsobe chosenin the note namespace,sud that
this progressiondoesform a cornvex set (choosingthe F as a perfect fth under
the C). The way the location of the notesis chosendependson the intonation
of the notesas the mapping in gure 2.3 indicates. In just intonation, intervals
are tuned to simple number ratios. The fact that intervals can be harmonic as
well asmeladic can causesomeproblems. It is not always possibleto ensurethat
two adjacert chords are tuned to lowest number ratios in harmonic as well as
meladic form. In the caseof the V11 (dim)-1 progressionwe could arguethat the
meladic just intonation overrulesthe harmonic intonation of the VI chord, and
that thereforethe F of the VI 1 chord shouldnot be tuned as27=-20but as4=3. In
that casethe VIl | progressiondoesform a corvex set. Sincethe overall shape
of notespresen in the (melodic) minor scaledoesnot represem a corvex structure
unlike the major scale(but doesrepresenm a star-corvex structure) it isdi cult to
generalizethe convexity of two note sequenceto all possiblesequences a minor
key. Howewer, above we arguedthat most important progressionsn the minor

1we have left out the progressionsinvolving ||| (harmonic) and VI (ascending melodic),
sincetheseare rarely usedaccordingto Piston and DeVoto (1989).
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mode form convex regions, which meansthat most segmerations constitute a
corvex shape.

When music is harmonically analyzed, harmonic functions are assignedto
groupsof notesin accordancenith people'sperception. The musiccanbereduced
to the triads correspnding to the harmonic functions. Therefore, it is believed
that reduction represets the perceptionof a pieceof music. Sincewe just argued
that the reduction of a piece of music constitutes a corvex body, we conjecture
that this notion of convexity cortributes to the perceptionof harmonic functions.

4.2.6 Discussion

A questionthat may ariseis: how specialis it for a setto be corvex? One could
think that the chanceto obtain a corvex setfrom randomly chosenpoints in our
lattice is higher than average,and that corvexity is therefore an artifact of the
spacewe use. To ched this, we wrote a program in Matlab which calculatesthe
chancethat a randomly chosenset of points is corvex. We started with a5 5
lattice to chooseour setsfrom. For eaty number of elemerts n, a large number of
randomly selectedsetswas chosen,and for ead setit was calculated whether it
was cornvex or not. One point is always chosenin the certer of the lattice, since
that is our referencepoint (1 in the ratio-space). Figure 4.16ashaws that the
probability of corvex setsis a monotonically decreasingiunction.

To simulate a more realistic situation, we created another gure but now
choosing setsfrom a 15 15 lattice. This seemedbig enough (the real "tone
spacellattice isin nitely big) to cover all scales.From gure 4.16bwe seethat the
perceriage of corvex 2-note setsis high (65%). This meansthat if onerandomly
choosesone note (the other is xed in the certer) on the lattice, the chanceto
obtain a cornvex setis 65%. For 3-note setsthis percerage is around 5%, and for
more note sets,the chanceof choosingrandomly a corvex setis negligible.
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We also wrote a Matlab program to calculate the chancethat a randomly
chosenset is star-corvex. The result is given in gure 4.17. Again, this is a
monotonically decreasingfunction. The chancesthat randomly chosensets ap-
pearto be star-corvex are somewhathigher than in the caseof convexity (which
is what we expected), but still the probability to obtain a star-corvex set con-
sisting of seven notesor more is lessthan 20%, and for twelve notesor more the
chancesto get a star-corvex set are negligible.

A seconddiscussionpoint is the discrete lattice we used. One may wonder
whether it is more corvincing to study convexity in a cortinuous spaceinstead
of in a discrete space. Howewer, sud a study is not possiblefor our purposes.
The tone spaceis built from points descriked by f2p(§)q(g)rjp;q;r 2 Zg. In
terms of coordinates, (0; 0) indicates the frequencyratio 1, and (1;0) represefs
the frequencyratio 5=4. Betweenthesetwo there is, among other, the ratio of
6=5 (1 < 6=5 < 5=4) but this ratio can be found at the point with coordinates
(1;0), and thus not between(0; 0) and (0; 1). Therefore,this lattice, although it
is in nite in both directions, cannot be madeinto a cortinuous space.

Instead of chedking whether a scaleor chord is corvex or star-corvex one
might proposeto measurethe degree of corvexity. That is, a round object can
be understood to be more corvex than a stretched oval object. But, due to the
di erent basesthat are possiblefor the tone space,objects may changein their
form. Having provedin (4.5) that a corvex body is still corvexin another basis,
the degreeof convexity canchange. Thereforethe distinction betweenconvex and
star-corvex can be made, but a further division is impossiblein this space. Still,
a measureof corvexity is possiblein a di erent way. In table 4.1, the number of
notes of ewvery scaleis alsoindicated. The more notes, the more possibilities of
arranging thesenotesin the plane, the more specialit is if thesenotesdo form a
convex set. Furthermore, a degreeof compactnesss possible,and we will focus
on this in later chapters.
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Number of tested pitch structures | percertage corvex | percertage star-corvex
53 scales 86:8% 100%
15 harmonic chords 100% 100%
12 altered chords 33:3% 83:3%

Table 4.6: Summary of results.

4.3 Concluding remarks on well-formedness

In the previoussectionwe investigatedthe property of (star-)convexity asa gen-
eral principle or condition for the well-formednessof tonal pitch structures. We
noted that se\eral pitch setsare (star-)corvex. We discoveredthat all 5-limit just
intonation scalesand all chords built from harmonic notes are either convex or
star-corvex. Our results are summarizedin table 4.6.

We saw in the discussiorthat it is highly unlikely for a randomly chosensetto
be corvex or star-corvex. Thereforetheseresultsare far more surprisingthan one
may think at rst glance. Our results suggestan interesting hypothesis,namely
that (star-)convexity senesasa condition for the "well-formednessof tonal pitch
structures. Star-convexity is a lessstrict notion than convexity, but it is intriguing
that nearly all the pitch structures discussecherefollow this property. Thesetwo
notions circumscribe a certain spaceof good chords and scales.We discussedhe
meaning of corvexity and saw that it may be a consequenc®f maximizing the
consonancesn a musical scaleor chord.

We have also showvn that the tonal coherencewhich forms the harmonic re-
duction of a pieceis usually a corvex body. From this, we hypothesizethat the
notion of convexity may cortribute to the perceptionof harmonic functions.

The corvexity property can perhapsbe best comparedto the "Good form’
principle from Gestalt theory. This principle appliesto visual cognition which
prefersto group shapesthat are symmetrical, completed,madeof cleancortours,
and the like. Our results suggestthat this principle can now also be applied to
musical cognition by stating that musical objects prefer an intervallic structure
in which consonances optimized. We conjecturethat the Good form principle
can be formalized by meansof convexity.

The corvexity model di ers from the well-formed scaletheory of Carey and
Clampitt (1989)and the group theoretical description of tone systemsof Balzano
(1980) in the sensethat it speci cally accours for just intonation. All three
theoriescan sere asa (partial) explanation of the origin of certain tone systems,
including the Western 12-tone system with 7-tone diatonic scale. Contrary to
the other two theories, the corvexity model does not immediately predict tone
systemsof a speci c size. Although we found that most tone systemsform a
convex set in the tone space,not every convex set in the tone spacepreserts a
possibletone system. Therefore,convexity might represem a necessarycondition
for a well-formed tone system, but not a su cient condition. Still, corvexity
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can help to make predictions about suitable n-tone systemswhen this condition

is combined with another. Unfortunately, it is not easyto conbine the three

discussedheories. The theory of Carey and Clampitt (1989) only accourts for

scalesgeneratedby the interval (and octave 2), which meansthat thesescales
form a trivial corvex one-dimensionalset if represemed in a tone spacé?. The

diatonic scalesof 2k + 1 elemens embeddedin the spaceof k(k + 1) elemens

aspredicted by Balzanoare corvex scalessincethat was one of the properties of

the 12-tonescalefrom which the theory was generalized.In this perspective, the

convexity condition supports the resulting n-tone systemssuggestedoy Balzano
(1980). Balzano'sand Carey and Clampitt's predictionsfor n-tone systemshave,

besidesn = 12 (which wasthe point of departure for Balzano), no other common
valuesfor n.

In this chapter, only scalesin 5-limit just intonation are investigated with
respect to the property of corvexity. However, using the de nition of convexity
on the note nametone spacefrom section4.2.2 (which also appliesto the pitch
number tone space since,similar to the note names,more than onepitch number
correspnds to one frequencyratio) corvexity of scalescan also be studied in
the tone spacesof note namesand pitch numbers (the latter spacehaving vari-
ous appearancesdepending on the value for n in an n-tone ET asillustrated in
chapter 3). Therefore, also equal tempered scalescan be studied with respect
to the property of corvexity. Howewer, the chanceto obtain a corvex set by
randomly choosing points from an equal tempered pitch number space(with a
nite number of pitches)is higher than doing this in the in nite frequencyratio
space. Therefore, the property of corvexity in the pitch number spaceis some-
what lessinteresting than in the frequencyratio space. Moreover, scalesthat
are constructed from all the notes of the equal tempered systemin which they
are embedded(lik e the chromatic 12-tonescalein ET), form necessarilya corvex
region sincethey cortain the whole (toroidal) pitch number space.

2The property of convexity can however be compared to the property of pair-wise well-
formedness.A scaleis pair-wise well-formed if, when any pair of step intervals is equivalenced,
the resulting pattern is a well-formed scale(Clampitt 1997). Of all the convex scalesdiscussed
in this chapter, we have chedked whether they are pairwise well-formed. It turned out that the
majority of the corvex scalesis not pair-wise well formed. The other way around, we do not
have any evidencepointing in the direction that pair wise well-formed scalesinduce convexity.
There is nothing that makesa small step on the lattice preferableto a large step.



Chapter 5

Convexity and compactness as models
for the preferred intonation of chords

In the previous chapter we have seenthat a diatonic chord represeis a convex
and compactsetin the tone spaceof note names. In this chapter this convexity
and compactnesof chords will be usedasthe basisof a model for the preferred
intonation of chords. Parts of this chapter have beenpublishedasHoningh (20064,
2006c). As explainedin section4.2.4,a chord is a setof notes,and usually de ned
as a set of note names. Therefore,in chapter 4 the corvexity of chords hasbeen
consideredin the tone spaceof note names(contrary to the spaceof frequency
ratios). Howewer, if onemanagedo make a suitablelift of setof note namesto the
spaceof frequencyratios, this set can be represered by frequencyratios as well
which represeis the intonation of the chord. We will presen two hypotheses
that deal with the preferred intonation of a chord, one that is concernedwith
convexity and one that is concernedwith compactness. It will turn out that
compactnessis more indicative of consonancethan corvexity. We will try to
relate the compactnessof a set in the 2 and 3 dimensional tone spaceto the
consonancemeasureproposedby Euler. Finally, in section5.3 the compactness,
convexity and consonanceaccordingto Euler, are calculatedfor all possiblesets
(chords) of 2, 3 and 4 notes within a bounded note hame space,sud that the
relation betweenthesethree measurescan be obtained.

5.1 Tuning of chords in isolation

The preferredintonation of an interval or chord in isolation (without a musical
corntext) is usually given by the most consonan performanceof the chord (seesec-
tion 1.4.2in the introduction). Many functions have beenconstructedto measure
the consonancef an interval or chord, for exampleHelmholtz's (1863) roughness
function, Euler's GradusSuaventatis (Euler 1739;Fokker 1945),Parncutt's (1994)
pitch distanceor Sethares'(1993) dissonancecurve basedon Plomp and Levelt's

99
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(1965) model. Thesefunctions can be usedto put musical intervals in an order
of most consonam to dissonar aswe have seenin section3.2.1. Howeer, few of
thesefunctions have beenused(and are di cult to use)to decideabout di erent

intonations of the samechord. As we have seenin section4.2.2di erent locations
of a note nameexist in the note namespace all giving riseto a di erent frequency
ratio and thereforedi erent intonation. For somechords, like for examplea ma-
jor triad, the intonation may be clear (seetable 1.2), but for others there is no
consensusConsiderfor examplea dominart severth chordC E G BJ[. It

can be tuned choosingthe ratios: 1;5=4; 3=2; 9=5 sud that the minor sewernth is
tuned as minor third 6=5 above the fth; or tuned as 1; 5=4; 3=2; 16=9 sud that

the minor sewenh is chosento be two fourths above the tonic, and many other
possibilities exist. This chapter is concernedwith intonation basedon frequency
ratios from just intonation only. This meansthat the preserted intonation model
appliesto either simpletonesor toneswhosepitch is determinedby the frequency
of the fundamertal; the in uence of other phenomenathat apply to the pitch of
a tone (as descriked in chapter 1) is not consideredhere.

Regener(1973)stated the ambiguity involving just intonation frequencyratios
as follows: Eadh notated interval actually correspndsto an in nite  number of
frequencyratios, since multiplication of a frequencyratio by any integer power
of 81=80 leaves the interval unchanged. Regener(1973) describes furthermore
two criteria that are commonly used or assumedin determining which are the
\preferential® frequencyratiosin just intonation correspndingto a giveninterval:

1. Preferredratios arethoseinvolving the lower numberswhenin lowestterms.

2. Preferredratios are those that can be derived by linear combination from
known preferred valuesfor other intervals (beginning with the ratios 3=2
for a perfect fth and 5=4 for a major third), possiblywith a certain useof
intervalsin mind from somemusical cortext.

It may be clear that thesetwo criteria are not always in agreemeh and do not
constitute a full intonation theory for chordsin isolation.

5.1.1 A model for intonation

In chapter 4 we have seenthat the major and minor diatonic scaleaswell asall
harmonic chords form compactand corvex items in the note name space. From
the projection of the frequencyratio spaceto the note namespaceit becameclear
that the di erence betweentwo ratios having the samenote nameis a factor 81=80
(or multiples hereof), which is known asthe syntonic comma. It canthereforebe
understood that a chord de ned as a set of note nameshas seeral possibilities
for intonation. In terms of the tone spacesof frequencyratios and note names,
the problemis to choosethe right locations of the notesin the tone spacein order
to re ect the right frequencyratios that can be projected from one spaceto the
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other. It hasbeenexplainedin chapter 4 that corvexity can be interpreted in
terms of consonance Therefore,we can hypothesizethat a corvex set represeis
the preferredintonation of a chord in the frequencyratio space.As we explained
in 4.2 we did not quartify compactnessput it may be usefulto elaborate on it
now to be able to distinguish betweenseeral corvex sets. As a matter of fact,
a set of notes can have more than one corvex con guration in the note name
space. By the con guration of a set, we mean the locations of all elemerts in
this set, indicated in the tone space. The con guration of a set of note names
can be changedby moving one or more elemerts of the setby a syntonic comma
(=81=80). The ratio 81=80 is exactly the di erence betweentwo ratios with the
samenote name. Therefore, multiplying one of the ratios in a chord with this,
givesa di erent tuning of the samechord. For example,the two-notesetC G
tuned as1l 3=2 represefs a corvex con guration of this set. Howewer, tuning
the setas1l 40=27, givesa corvex con guration as well (see gure 4.9 in the
previous chapter). In caseslike this, a choice hasto be made betweenthe two
con gurations to presen the preferredtuning, and a possibility is to choosethe
most compactone. Compactnesss intuitiv ely understood asthe extert to which
elemerts of a setare closeto the certer of gravity of the set. In athree dimensional
spacethe most compactobject would be shaped like a ball. In this thesis, we will
de ne the compactnessf a set asthe sum of the euclideandistancesbetweenall
pairs of points in the set. The decisionto choosethe most compactsetis not a
random choice. If two notesare closetogetherin the tone space,they have many
prime factorsin common,asthe tone spacewas built from powers of the primes
2;3 and 5. Therefore, the closertogether two notes are in the tone space,the
smaller are the integersforming the ratio that represets the interval between
the two notes. According to just intonation, ratios with small integer ratios are
preferred. Generalizingthis for chords consisting of more than two notes, the
intonation of a chord whosenotes are the most closetogether in the tone space
should be preferred. Unlike convexity, compactnessis not independen of the
lattice. If a compactround object is viewed in a lattice with other basis-\ectors,
the degreeof compactnesswill change. If we want compactnesof a set of notes
to correspnd aswell as possibleto the lowest powers of primes, the tone space
should be constructedusing the factors 2; 3 and 5 asbasisvectors. Sincethe tone
spacerepresets intervals modulo the octave (factors of 2) this meansthat we use
basisvectors3=2 and 5=4 represeting the perfect fth and the major third. The
resulting tone spaceis shavn in gure 5.1 which presens the spaceas descriked
in chapters 2 and 4 under a basis-transformation.

Now we have motivated why compactnesss a good indication to decidewhich
of the possiblecorvex setsrepreseis the preferredintonation, we can actually
make two hypotheses:

1. the preferredintonation of a chord is represeted by the most compact set
of the possibleconvex con gurations of that chord.
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25/18 25/24 25/16 75/64225/128 F# C# G# D# A#
40/27 10/9  5/3 5/4 15/8 45/32 135/128 G D A E B F# C#
32/27 16/9  4/3 1 3/2 9/8 27/16 81/64 Eb Bb F C G D A E
256/13564/45 16/15 8/5 6/5 9/5 27/20 81/8C Cb Gb Db Ab Eb Bb F C
256/225128/75 32/25 48/25 36/25 27/25 Ebb Bbb Fb Cb Gb Db

Figure 5.1: Tone space of frequency ratios constructed from projection
2'0(3)‘1(%)r I (g;r). The tone spaceof note namesis obtained from the former space
as explained in chapter 2.

2. the preferred intonation of a chord is represeted by the most compact
con guration of that chord.

Note that thesehypothesescortain an empirical componert, since\preferred in-
tonation™ appliesto the perception of humans. Howewer, we will follow herethe
path of investigating the correlation betweenthe hypothesesand an established
consonanceameasure.Thus, the hypotheseswill be applied them to a number of
chords, and the result will be comparedwith an existing consonancemeasure.
The consonancameasurewe will useis Euler's Gradus function, sinceit applies,
similar to the hypotheses,to frequencyratios of chords in isolation. Although
nowadays Helmholtz's (1863) consonanceheory which is basedon the beating
of partials, seemso be most supported (Terhardt 1974;Plomp and Levelt 1965;
Sethares1993; Kameolka and Kuriy agava 1969a,1969b), the di erence between
Helmholtz's and Euler's theory is small in view of our purposesin this chap-
ter. The order from the most to least consonan interval accordingto Euler or
Helmholtz (seesection3.2.1) may di er slightly, but the questionwe will address
in this paper is about the most consonamn frequencyratios given a chord or in-
terval. From all possibilities,Helmholtz and Euler's theorieswill choosevirtually
always one and the sameset of frequencyratios. For example, given the inter-
val C E, what is the frequencyratio that makesthis interval as consonah as
possible?Both Euler and Helmholtz rate 5=4 asthe most preferredintonation.

Euler deweloped his Gradus Suaventatis (degreeof softness). The function
is de ned asa measureof the simplicity of a number or ratio. Any positive integer
a canbe written asa unique product a = p7* p3?:::pS of positive integer powers
e of primesp; < p, < ::: < p,. Euler's formula is then de ned as:

X
(a)=1+ el 1) (5.1)

k=1

( @) is a number that expresseshe simplicity of a. The lower the number the
simpleris a. For intervals and chords, a so-calledexmpnent needsto be calculated
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to obtain from. For an interval x=y the exponern is the ordinary product
X Yy so ( x y) expresseghe simplicity of the interval x=y. For chords where
the frequencyratios are expressedas a : b : ¢, the exponen is given by the
Least Common Multiple (LCM) of thesea, b and c. The Gradus Suaventatis is
then calculatedas ( LC M (a;b;c)). Euler connectedthe simplicity of chordsand
intervals with the consonancehereof. This can be understood by thinking in
terms of frequencyperiodicity. If one hearsfor examplea tone of 300(= 5 60)
Hz and oneof 420(= 7 60) Hz, then per second60 repeated patterns can be
heard in which eat pattern can be subdivided in 5 7 = 35 pieces. The more
‘repetition' can be heard, the simpler or the more consonatn is the sound, was
the argumernt by Euler. Therefore,the lower the value ( LCM (a; b;c)), the more
consonah is the chord a : b: c. Hereis an exampleto calculate the Gradus
Suaventatis. A major triad 1 : 5=4 : 3=2 can be written as4 : 5: 6 which can
in turn be written as2?:5:2 3 (to make the calculation of the LCM easier).
The LCM of these numbersis then 22 3 5 = 60 and the Gradus Suavertatis
of 60is (60) = 1+ 2 1+ 1 2+ 1 4= 9. According to the tonal spacethat
mapsfrequencyratios to note names(see gure 5.1), this chord canalsobe tuned
di erently, for exampleas1: 5=4 : 40=27, the fth of the triad is then changed
by the syrtonic comma (81-80): 3= = 9. The ratios 1 : 5=4 : 40=27 can be
written di erently as108: 135: 160= 22 3°:3% 5:2° 5. Thenthe LCM equals
25 3% 5= 4320which resultsin (4320) = 16. This is obviously higher than the
value for the 4 : 5: 6 chord and this meansthat this chord is lessconsonan than
the 4 : 5: 6 chord accordingto this function.

5.1.2 Comp ositions in the tone space indicating the into-
nation

In the sameway we can compareother chords in di erent tuning to seewhich
tuning is most preferable. We comparedi erent con gurations of a chord. As we
have seen,the con guration of a set of note namescan be changedby moving
one or more elemers of the set by a syntonic comma (=81=80). In the tables
5.1,5.2,and 5.3, the diatonic chords are listed with a number of possibilities for
tuning.

Sincethe tone spaceis in nitely big, there are in nitely many tunings for a
chord, however only somemusically logical onesarelisted hereto give an example.
In the rst column of every table the nameof the chordswith correspnding note
namesis given. In the other columnsdi erent tunings and their compositionsin
the plane are given. The tonesare indicated by circles,the black circle being the
root of the chord (C was chosento be the root in all cases).For every chord, the
Gradus Suavertatis is calculated and given in the tables. We can test our rst
hypothesiswhich says that the convex composition (and if there is ambiguity, the
most compact convex composition) represens the preferredintonation. One can



104 Chapter5. A madel for the preferred intonation of chords

3-note chords convex
major triad 1 54 3=2|1 54 40=27
C-EG pap dppgd
ppd pPppp
ppp
=9 = 16
minor triad 1 65 3=2|1 32227 3=2
C-E[-G ppp pPpppp
ppd Apppd
ppd pPpppp
=9 =15
diminished triad 1 65 36=25|1 32=27 6445
C-E[-G pbpp dppp
papP pApp
ppd
=15 =17
augmerned triad 1 54 25516|1 54 12581
C-E-G] pdp dpppp
pdp pPpppp
pPpp ppppd
PppPPDP
=13 =23

Table 5.1: Harmonic chords consisting of 3 notes. Of ead chord, the corvex con-
guration is given, together with another possiblecon guration. More con gurations
(intonations) are possiblebut only oneis given here. The circles represen the notesin
the frequencyratio space,the black circle represening the tonic C of the chord.

seethat for almost every chord the convex composition of it in the tone space
is more consonam accordingto Euler (i.e., lower value for ) than the other.
There are two exceptionsto this which are the diminished sewerth chord and
the dominart eleverth chord. The diminished sewerth chord can be tuned in
various ways to give the same 'consonanceralue'. This can perhapsbe explained
from the fact that this chord is a dissonam chord and therefore changing one of
the intervals by a comma (81/80) has lessimpact than doing this with a more
consonan chord?.

The dominart elewerth chord is in a sensea reduction of the dominart thir-
teerth chord, only onenote is missing. Filling in the missingnote in the composi-
tion that is most favored, one obtains the most consonan thirteenth chord which
is corvex aswell. In this way, we canunderstandwhy this particular composition
for the elewenth chord is more consonam than the cornvex one. Howewer, this
secondcomposition is more compact than the rst one, supporting hypothesis
number 2, which says to prefer the most compact con guration. This hypothe-

1The syntonic comma 81=80 = 3*=(2* 5) has factors of 2 3 and 5 in it. Therefore, if the
Least common multiple of a chord is already high, the chancethat it changesa lot after one of
the intervals is multiplied by a commais low, sincethe LCM is constructed by multiplying the
highest powers of 2, 3 and 5 form the intervals.
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4-note chords corvex
dominant sewenth | 1:5/4:3/2:9/5 1:54:3=2:16=9
chord C-E-G-BJ dpp ppAap
pdp Appd
ppd pppp
=15 =17
major sewerth | 1:5=4:3=2:158| 1:5=4: 3=2:50=27
chord C-E-G-B pdgd dpppp
ppd pppdp
ppp ppppd
=10 =18
minor seventh | 1:6=5:3=2: 9= 1:6=5:3=2:16=9
chord C-E[-G-B[ ppp dppd
pdp pppd
pad
=11 = 16
half-diminished 1:6=5:36=25:9=5 | 1:6=5:36=25:16=9 | 1:6=5:6445:16=9
se\erth chord | ppp dgpppp dppp
C-E[-G[-B[ pdd pppAp Appd
ppd ppppd
=15 =19 =17
major-minor 1:65:3=2:158| 1:6=5: 3=2:50=27
sewenh chord pd dpppp
C-E[-G-B pd pPpppp
pd ppppd
ppppd
= 15 =23
augmerted 1:5/4:25/16:15/8 1:5/4:125/81:50/27 1:5/4:25/16:50/27
se\erth chord | d p dpppp dppd
C-E-G]-B dd pdppp pppd
pp ppppd Pppp
ppppp
=15 =25 =20
diminished 1:6/5:36/25:216/125| 1:6/5:64/45:128/75 6 gq)36/25 128/75
sewenth  chord | p p pp Pppp pppPp
C-E[-G[-B[[ pdpp Appd ppAap
ppAP pApPpP Appd
pppd
= 22 = 22 = 22
major triad with | 1:5=4 :3=2:5=3 | 1:5=4:3=2:27-16
added sixth gdp dppp
C-E-G-A ppd pdpgd
=11 = 13
minor triad with | 1:6/5:3/2:8/5 1:6/5:3/2:81/50
added sixth ppp pdppp
C-E[-G-A[ ppd pAdppp
pad ppppd
=11 =19

Table 5.2: Harmonic chords consisting of 4 notes.
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5/6/7-note chords | corvex
dominant 1:5/4:3/2:9/5:9/8 1:5/4:3/2:16/9:10/9
ninth chord dpp dpdp
C-E-G-B[-D pdd Appgd
ppd
=16 =17
dominant 1:5/4:3/2:9/5:9/8:27/20 | 1:5/4:3/2:16/9:10/9:4/3
elewverth chord | dppp dpdp
C-E-G-B[-D-F padp gapg
ppdd pPppp
= 18 =17
dominant thir- | 1 :54 :32:95:|1:54:3=2:169:
teerth chord | 9=8 : 27=20 : 27=16 | 10=9 : 4=3 : 5=3
C-E-G-B[-D-F-A |dppp dgagp
paddd pdpgd
ppdd pppp alsocorvex!
=19 =17

Table 5.3: Diatonic chords consisting of 5, 6 or 7 notes.

siswas alsovalidated in all other casesexceptfor the diminished severth chord.
The secondcon guration of the diminished sewernth chord listed in table 5.2 is
the most compact one. The compactnessof a con guration may be di cult to
judgeat rst sight. In the next sectionwe will presen a mathematical formula to
calculate compactness.We cheded (with a Matlab program, aswe will see)all
other tuning possibilities of thesechords by multiplying oneor more of the ratios
with (81=80)" and verifying whether this resulted in a lower value for . Note
that both listed dominart thirteenth chords are corvex. The secondonelisted is
the preferred one accordingto both hypotheses,sinceit is more compact. This
is alsothe con guration which is preferredby Euler's function.

To sum up, we proposedtwo hypothesesin order to presen the best into-
nation, the rst saying to prefer (the most compact) corvex con guration, and
the secondsaying to prefer the most compact con guration. The valuesof con-
sonanceof the chords were calculated using Euler's Gradus function. Of the 16
chords, for 14 of them hypothesis1 was validated. For 15 of them, hypothesis
2 was validated. The exceptionscan be explained from music theory and from
the convexity theory itself. In section5.3the correlation betweenthe conceptsof
consonancegcorvexity and compactnesswill be investigated further. Moreover,
we want to stressthat \preferred tuning” in this caseis only basedon the sound
of the chord in isolation. In musical practice, there can be more than one choice
for the intonation of a chord depending on its musical function in the chord se-
guence.Howeer, this can still be a very useful measurebecauseat can sere as
the beginning of a full tuning theory.
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5.2 Compactness and Euler

In the above sectionswe have shavn that the corvex and compactcon guration
of a setof notesmay give an indication of the most consonam sound,as predicted
by the measureof Euler. In this sectionwe will try to formalize this in a math-
ematical way. Looking at the formula for Euler's Gradus function (eq. 5.1), we
understandthat the value for becomesbigger when there are more factors of
2;3 and 5 in the LCM of the chord. If two notes are closetogether in the tone
space,they have many prime factors in common, as explained in the previous
section. This suggestghat the Gradus function is related to the compactnessof
a set. We will thereforetry to formalize the relation betweencompactnessand
consonanceccordingto Euler's function.

Sinceour 2-dimensionakonal space( gure 5.1) neglectsall factorsof 2, we rst
considerthe 3-dimensionaltonal spacethat allows alsoall octave transpositions.
In this way, we considerall axesrepreseting the powers of primes, that is the
X-axis represeting the powers of 2, the y-axis represeting the powers of 3 and
the z-axis represeting the powersof 5. In this coordinate system,a point with
coordinates (2; 4; 3), represens the number 22 3* 53,

5.2.1 Compactness in 3D

We want to considera set of points (represeting a chord) in the 2-3-5-space
(octave- fth-third-space) and measureits compactness. Seeral de nitions of
compactnessare possible. The most intuitiv e way to measurecompactnessor
our purposesis to sum the distancesbetweenall pairs of points2. The lower the
value of the sum, the more compactthe setis. The compactnessC of a set of
notesis then de ned asfollows:

X X q
C= Xooxj= (Xi1  Xj1)?+ (Xiz  Xj2)2+ (Xis  Xj3)% (5.2)
16 n 16 n

wherex = (X1;X5;X3) de nes the coordinates of a tone in the tone space. The
term X1 X1 now de nesthe di erence in the factor 2, the Xi>  X;, the di erence
in the factors 3, and x;3  X;3 the di erence in the factors 5.

Eadh tone (note name) has more than one position in the tone space,which
meansthat ead chord has se\eral compositions in tone spaceas we saw in the
previoussection. The factor that changesthe frequencyratio but keepsthe note
nameconstart is 81=80= 2 43%*5 1. Multiplying a frequencyratio by this factor
meansmoving a point in the 2; 3; 5-coordinate systemover ( 4;4; 1). Givena
set of points x1%» . %5, every x; hasa number of possiblecoordinates sud that

2Note that this concept of compactnessis di erent from the concept of a ‘compact set' in
topology.
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the point represetts the samenote name:

0 1
Xi1 4ki
%= @x,+ 4k A k2 Z: (5.3)
Xiz K

The compactnes<C canthen be written as:
X

p
X1+ X2+ X3, (54)

O
|

10§ n

(xii X1 4k k))?
X2 = (Xiz X2+ 4k k)2
(xis Xz (ki Kk))?

X
e
|

X
w
|

for which C hasa minimum.

The valuefor Euler's Gradusfunction cannow be calculatedfor a certain con-
guration of points. Therefore,we rst needto nd the Least Common Multiple
(LCM) of the chord. To be ableto nd the LCM of a chord we have to write
the chord in the form a : b: ¢ sud that a;b;c are integers (just like we did in
section2 were the chord 1 : 5=4 : 3=2 waswritten as4 :5: 6). Sincethe point
Xj represefs the j th coordinate (meaningthe multiples of 2,3 or 5) of note x;, a
whole frequencyratio is expressedas 2¢it 4 iz+4ki 5xis ki A (3-note) chord
a: b: c canthereforebe written as

a: b c= 2X11 4ky 3X12+4 k1 5X13 Ky (5 5)
2X21 4k, 3X22+4k2 5X23 ko . 2X31 4k3 3X32+4k3 5X33 k3.

If the chord is alreadyin a form sud that a;b;c are (positive) integers,the LCM
of 5.5 can be found as follows:

wheremaxf aj; :::; a,g picks the largestof numbersa; to a,.

When a; b;c are not integers,the expressiorfor the LCM looksa bit di erent.
To write the chord a: b: cin aform sud that it is represeted by integers,a;b;c
shouldbe multiplied by the Least Common Multiple (LCM) of the denominators
of a;b;c (for exampleto write the chord 1 : 5=4 : 3=2 as4 : 5 : 6 ead ratio
was multiplied by LCM(1;2;4) = 4). The fact that a;b and c are split into
powersof 2; 3 and 5 makesthis processeasier.Instead of nding the LCM of the

30ne of the k; is xed (ki in this case)and set to zero becausethe set needsto have a
referencepoint. If all ki were to be chosenfreely, many setswith the same compactnessbut
di erent locations may exist.
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denominatorswe just needto nd the maximum of all factorsof 2;3 and 5 in the
denominators. The LCM (5.5) then changesas follows:

LCM = 2v12maxfx11 akq;Xn1 4kng 3V23maxfx12+4k1;:::;xn2+4kng SV35maxfx13 ki;:Xn3 kng

(5.7)
where
Vj = maxA; A=f 2zjz2B;j&z<0;j =1,2,3g (5.8)
and 8
[ < Zj1 = X1 4k|
Bj = fZij g where . Zip = X2 4k; (59)
1in " Zz=Xiz kK

and n is the number of notesin the chord. Finally, the valuefor (de ned in eq.
5.1) is given asfollows:

= 1+ vi+ maxfxy 4kg i Xnr  4KngQ (5.10)
+ 2 (vo+ maxfxg+ 4Kg; i Xpe + 4Kn0)
+ 4 (vz+ maxfxiz Ki;:iiijXns  KnQ):

We now have expressiongor C and andwewould liketo seethat the k; ::: k,
that make C minimal, alsomake minimal. This would prove our hypothesis:
the con guration of a chord that is most compactis also most consonah This
turns out to be quite hard to solve. To minimize a function onenormally takesthe
derivative and setsthis to zero. Howeer, the function is of sud a complicated
form (the function "'max' gives a discrete character) that it is not possibleto
take the derivative to k. Also, for n > 2, it is computationally very intensive to
solve the equations@;C = 0. For n = 2, taking onepoint at (0;0; 0) with k; = 0
and oneat (a;b;c) with k, = k:

C P (a 4k)2+ (b+ 4k)2+ (¢ k)3 (5.11)

1+ja 4kj+ 2jb+ 4kj + 4ic  Kj: (5.12)

We can nd the value for k that minimizes C by taking the weighted mean of
the k's that minimize the separateparts. The minimum for the term (a 4K) is
at k = 1=4 a and should be weighedwith a factor 4°. The total is divided by
4 + 4 + 1= 33. The k that minimizesC is

ke = 1=33(4a 4b+ 0): (5.13)
The k that minimizes s calculatedin the sameway and equals

k = 1=14@ 2b+ 40): (5.14)
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Of coursek shouldbe an integer, but simply roundingo the valuesgivenby 5.13
and 5.14hasturned out not to be correct. Still, from theseequationswe can see
that the valuesfor k are not the same: the value for k that minimizes C is not
always equalto the value for k that minimizes .

Therefore,a Matlab programis written that can calculate the valuesfor C,
and the valuesfor k that make both equationsminimal. This is done by varying
the coordinates of point 2 over all points of the 3-Dim spacein which ewery
coordinate runs from 4to 4. Point 1 is taken at the origin. It turns out that in
86:5% of the casesboth C and have a minimum for the samek. For the case
n = 3 canin the sameway alsobe calculatedif the samevalue for k; makesthe
C and minimal. It turns out this is true for 70:1% of the cases.For n > 3
the problem becomescomputationally very intensive®. Howewer, from this we
can concludethat the hypothesis: the more compact, the more consonan, is not
always true, but it is true in the majority of the cases.

5.2.2 Compactness in 2D

In the 2-D spacewhere all chords are projected, the frequency ratios are con-

sidered under octave equivalence. Instead of consideringthe Xj;, Xj> and X3

componert (2,3 and 5 componert) we only considerthe X, and Xj3 componert

(for corveniencewe kept thesenames)in the 2D space. Thus the expressionfor
C becomessimpler:

X 4q

C = (Xi2 Xj2 + 4(k| kj ))2 + (Xi3 Xj3 (k, kj ))2: (515)

16 n

The expressiorfor howewver, becomesnorecomplicated. The rst term maxf x;;
4ki;:: i Xn1 4knag changes.A point in the plane now only is speci ed by its 3-
and 5-componerts: 3%iz*4kigxis ki The factor 2" that together with this speci es
the whole frequencyratio: 2" 3Xiz*4ki 5Xis ki only senesto keepthe frequency
ratio within the interval [1;2). Therefore,to nd an expressionfor n, we needto
sole:

1 20 etk pXis ki < 9 (5.16)

From this n can be analytically solved:

(Xizt+ 4ki) 10g,3 (xiz ki) l0g;5 n<1 (xiz%4k) log,3 (xiz ki) log,5:
(5.17)
Sincen should be an integer, this makes:

n=d (Xi2+ 4k;) log,3 (xiz ki) log,5e (5.18)

4The number of possiblecon gurations of a set consisting of n points, increaseswith n as

:281 , sincethis expresseshe number of possibilities to choosen points from a9 9 9 lattice

where one note is xed in the origin.
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where dxe is the smallestinteger greater or equalto x. We can therefore under-
standthat the rst termin cannow bereplacedby maxfd (xi2+ 4k;) log, 3
(X13 K1) log,5e;d (X22+ 4kp) 100,33 (X3 k2) l09,5€:::;d (Xn2+ 4Kp)
log,3 (Xns Kkn) log,5)eg thus becomes:

= 1+ v+ maxid (Xp2+ 4ky) log,3 (x13 Ki) log,5e::: (5.19)
cind (X + 4k,) log, 3 (Xns  kn) log, 5eg
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;ii5Xns KnQ);
with v; now given by:

v; = maxf zjz2 B &z< Og; (5.20)
B = fd (Xi2+ 4k;) log,3 (Xiz ki) log,5eqg

1in

and v,; v3 asgivenin eq5.8,5.9. Using theseexpressionsyve calculatethe number
of casesfor which the value of k that makes C minimal also makes minimal.
In table 5.4 all perceriagesare given. Surprisingly, the percenagesfor the 2-
D lattice are higher than for the 3-D lattice. Using the Matlab program we

lattice | number of notes | perceriage correct
3-D 2 86.5%
3-D 3 70.1%
2-D 2 97.5%
2-D 3 85.4%
2-D 4 76.8%

Table 5.4: Results of testing the hypothesis: the con guration of a chord that is most
compact is also most consonar.

have also cheded all chordsthat are listed in tables 5.1, 5.2 and 5.3, to be sure
that we indeedlisted the most compactcon gurations in thesetables. It indeed
turns out that the hypothesis\the con guration that is most compact, is the
most consonan accordingto Euler's value" is true for all chords exceptfor the
diminished seerth chord.

Interpretation  of results

How cantheseresultsbe explained,and canthey perhapsberelatedto corvexity?
We have tested the hypothesis\the more compact, the more consonati' for all
possible2,3,4-tonesetswithin a2-D 9 9lattice ora3-D9 9 9 lattice. It
turns out that for neither spacethe hypothesisis 100percert true, but the correct
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perceriagesare newerthelessreasonablyhigh. In the 2-D spacewe gaineda little
higher perceniage than in the 3D space. The fact that the relationship between
consonanceand compactnesss not a oneto one corresppndencehasto do with
the weights in the de nition of and with the measuremen of the syntonic
commain the 2-D and 3-D space. The weights 1;2 and 4 in the de nition for
(eq. 5.10) cause to changemore due to a shift in the 3-coordinate than to
a shift in the 2-coordinate (factor 2).  is changed most due to a shift in the
5-coordinate (factor 4). Thereforewe can also understandthat the percenages
decreaseas the number of notes increase: the more notes, the more directions
in the lattice are involved. In the expressionfor C (eq. 5.4) we seetwo times
a factor 4 (which comesfrom the syrtonic comma?2 43% 1) in the terms that
are concernedwith the distancesin the 2 and 3 direction. This meansthat the
compactnessC is more in uenced by changesin the 2 and 3 direction than by
changesin the 5 direction. We therefore understandthat there cannot be a one
to one correspndencebetweenthe compactnesC and the consonanceaneasure

It was already intuitiv ely clear that consonance could be related to com-
pactnessC in a generalway. We have seenthat for a high percenage of sets,the
most consonamh con guration is alsothe most compactone. Considera corvex
and highly compactsetin the 3-D spacecertered around the origin. If oneof the
elemens of the setis moved by the syntonic commait is moved by the vector
( 4,4, 1)(since81=80= 2 43%5 1). The new set is always lesscompact than
it was if the sizeof the setis lessthan a certain number of elemerts, sincethe
vector ( 4;4; 1) then takesthe elemen outside the areaspannedby the other
elemens (which makesthe set lesscompact). For a setin the 2-D spacethe
syntonic commais represeited by the vector (4; 1) which yields the samecon-
clusion. Considernow a convex and highly compact set certered in the lattice,
and imagine what happenswith the consonance if one or more elemeits are
shifted by a syntonic comma. Again if the number of elemerts is within a certain
range, a shift by 81=80= 2 43*5 ! will increasethe LCM of the chord and the
newchord will belessconsonan Sinceherewe have only obsened setsconsisting
of 2;3 and 4 elemetts it is understandablethat shifting one or more elemerts of
the set by a syntonic commamakesthe setlesscompactand lessconsonan

Now we want to make a connectionto convexity. If we look at table 5.3, the
last column represeis chords that are all introduced as alternative intonations
of the chords mertioned. It is remarkable that thesecon gurations all have the
samevaluefor , namely = 17. By looking at the con gurations, we understand
that it doesn't matter if the inner notesare lled, the valueof just dependson
the boundary notes. This is understandablesincethe value of only depends
on the Least Common Multiple of the frequencyratios (written in integersas
we have shawvn) instead of depending on all frequencyratios. The LCM picks
the highest factors of 2,3 and 5, which preciselyindicate the boundariesof the
chord. Thereforethe value of of a chord equalsthe valueof of the chord that
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represeis the convex hull. The convexhull of a setof points S is the intersection
of all convex setscortaining S. For example,the rightmost chord at the bottom
of table 5.3 represets the corvex hull of the two chords above this chord. It
can now be seenthat whene\er there is a possibility of a corvex con guration
of a chord, this will often be the most compactone. How often that is, we will
investigatein the next section.

5.3 Convexity, compactness and consonance

In the previous experimerts we varied the coordinates of a (2-D or 3-D) space
to represen sets of notes for which we wanted to calculate whether the most
compact con guration correspnded to the most consonah con guration. We
now want to know whether thesesetsdo also correspnd with a convex con gu-
ration. More precisely: which percenage of the setsof notesthat have a possible
convex con guration, have a corvex con guration that correspnds with 1) the
most compactcon guration, and 2) the most consonan con guration. For some
chords, there is no possibleintonation sud that the notesform a cornvex setin
the tone space.For thesechords, only the compactnessan say somethingabout
the preferredintonation. Figure 5.2 illustrates what percertageswe are looking
for. In the gure, the setS consistsof all con gurations of all possiblechords con-

most consonant

Figure 5.2: lllustration of overlap of corvex, most compact and most consonarn con-
guration whentrying to nd the preferred intonation of a chord.



114 Chapter5. A madel for the preferred intonation of chords

sisting of n notes. The set T consistsof all con gurations of the chordsthat have
a possiblecorvex con guration. Within the setT, the set ‘convex represets all
convex con gurations. Then, ‘'most compact is the set consistingof every most
compact con guration of ead chord (in T). Similarly, ‘most consonant' is the
set consisting of every most consonan con guration of ead chord (in T). The
intersection of setsof our interest are given in equation 5.21.

a[ d = convex \ consonant (5.21)
b[ d = compact \ convex
d[ ¢ = compact \ consonant

d = compact \ convex \ consonant

The percertagesthat we are looking for, are obtained by dividing the number
of elemernts of the setsgiven in eq. 5.21, by the number of chords that have a
possibleconvex con guration. Note that the latter value is not equivalert to the
number of elemens in T, sincethis set represeis the number of con gurations
instead of the number of chords.

There could be morethan onecorvex possibility per set(asis the casewith the
dominant thirteenth chord in table 5.3). Also, it is possiblethat more than one
con guration hasthe same(lowest) value for the compactnessor consonancedal-
though this rarely happens). This only meansthat somesolutionsare not unique,
but sincewe court the number of chords and not the number of con gurations,
this doesnot changethe obtained percerages.

We have written a program in Matlab that nds all possible2;3 and 4 note
setsin a9 9 (coordinatesrun from 4to 4) 2-dimensionallattice, and calculates
for ead set 1) whether it has a corvex con guration and which con gurations
are convex, 2) the con guration that is most compact, and 3) the con guration
that is most consonah To distinguish betweenthe con gurations, a variable k
is usedin the sameway asintroducedin equations5.15and 5.19for the expres-
sionsfor compactnessand consonance.The corvexity of a setis calculated from
the coordinates of the elemerts in the set; the coordinates changewith k asin
equation5.3. The variable k is varied from 2 to 2. If a wider rangewas chosen,
the obtained points (5.3) would lie outside the lattice. From short test-runs it
was concludedthat it is sucient to work with a9 9 2-dimensionallattice, a
bigger lattice did not signi cantly changethe percertages. This conformsto our
intuition, sincewe found a high correlation betweenconsonancend compactness
(table 5.4), and the more compacta setis, the better it ts into a smallerlattice.
One point is chosenin the certer (0;0), sofor n = 2 only one point is varied, for
n = 3 two points, and so on. To ensurethat somesetsare not courted twice,
point 3 is varied over the points that point 2 has not beenvaried over® and so
on for the points thereafter (point 1 is xed). The number of possiblesets for

5In pseudocode:
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n points is then calculated as follows: the lattice cortains 9 9 = 81 points.
Onenoteis xed at the origin sothere are 80 points left for notes2 to n to vary
over. The number of possibilities® to choosen 1 point from 80 points is n8°1 .
Table 5.5 shavs the number of setsthat can be chosenfrom the lattice for the

number of notesvarying from 2 to 4. Observingthat this number increasesvery

number of possiblesetsfor n points
% =80
d 8079 = 3160

2!
® _ 88797 = gp160

A W NS

Table 5.5: Number of possiblesetsof n point in a9 9 lattice with point 1 xed in
the origin.

fast asa function of n, one can understandthat it is computationally impossible
to go much beyond n = 4. Thesenumbers of possiblesetswould be the numbers
that are examinedwith our algorithm if all thesesetshave a corvex possibility.
This turns out not to be the case,so the number of examinedsetsis reduced.
The results of the Matlab program are shavn in table 5.6. In this table it is also

perceriage n=2 n=3 n=4

compact& consonah 97.5% 85.4% 85.6%
corvex & consonan 16.3% 41.4% 41.2%
corvex & compact 11.3% 40.8% 36.0%
compact& corvex & consonam | 11.3% 37.3% 34.1%
number of setsexamined 80 1590 14810

Table 5.6: Results of the percertagesasindicated in gure 5.2.

indicated how many sets have a convex possibility and are therefore examined.
We seethat for n = 2 all 80 setshave a possiblecorvex con guration. Forn > 2,
this is not the caseanymore. For examplefor n = 3, only 1590setsof the 3160
possiblesetshave a possibleconvex con guration.

Observingthe results, one can seethat the biggestcorrelation can be found
betweenthe most compactand consonan sets, as we expected. The correlation

for i: from 1 to total number of points do
vary point 2
for j: fromi to total numker of points do
vary point 3
end

end

6N _ n!
k — ki(n k¥
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between convexity and the other items is very low for n = 2 and gets higher

as the number of notesincreases. This agreeswith our intuition too, sinceour

understandingof the relation betweenconvexity and consonancevasthrough the

notion of compactnesyseethe end of the previous section). When considering
only 2 notes, the notion of convexity di ers alot from the notion of compactness,
sincetwo notesform a cornvex set if a line can be drawn betweenthe two notes
on which no other noteslie. Thereforeit is not easierfor two notesto form a

convex set if the noteslie closeto eat other than when the noteslie far from

ead other, as can be seenfrom the low correlation between corvexity and com-
pactnessfor n = 2. Howeer, for increasingn, the correlation betweenconvexity

and compactnessncreasesas well. Note that regionsa and d are really small,

especially for small n (for n = 2, a = 0). This meansthat when the most con-
sonart con gurations are also corvex, they are most likely to be also the most

compact con gurations (a); and when the most compact con gurations are also
convex, they are most likely to be also the most consonan con gurations (b).

The resultsfrom table 5.4 di er from the results\compact & consonati' in table

5.6. This di erence is due to the di erence in setsthat is takeninto accoun. In

the experimert leadingto the results of table 5.6 only the setsthat have a possi-
ble corvex con guration weretakeninto accour. At the end of section5.2.2we

explainedwhy the increaseof n causesa decreaseof the perceriage \compact &

consonati. Remarlkably, there is no decreasingpercenage if n increasesrom 3

to 4, when setswith a corvex possibility are considered(table 5.6).

The reasonthat we only calculated these perceriages on the 2-dimensional
lattice, is that our convexity routine only works for 2-dimensionalsets. We intend
to generalizethis routine to enableit to work for three and higher dimensional
lattices.

5.4 Concluding remarks on compactness and con-
vexity

In this chapter we have investigated whether the notions of corvexity and com-
pactnesscan be usedin an intonation model for chordsin isolation. It hasturned
out that the most compactcon guration of a chord correspndsup to a high per-
certageto the most consonam con guration of a chord whenusingthe consonance
measuregiven by Euler's Gradus function.

Remarlably, the correspndenceof corvexity and consonanceaccording to
Euler is only around 40 percen (table 5.6). This meansthat, although we found
in section5.1.2a correspndenceof 14 out of 16 for the diatonic chords, corvexity
is not asgood a measureof consonanceasinitially thought. The corresppndence
betweenconvexity and compactnessmeasuredasthe perceriage of most compact
setsthat are alsocornvex, is even less(table 5.6).

In section4.2.2in chapter 4, a de nition for a corvex set on a note name
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spacewas given. Sincethere is ambiguity amongthe locations of the note names
in the tone space,we decidedto de ne a setin the note-namespaceto be corvex
if there exists a corvex con guration that can be projected from the frequency
ratio spacecorresmpnding to this set of note names. Sincein the current chapter
it becameclear that compactnesss more related to consonancehan convexity
is, we might want to changethe de nition of a corvex setin the note namespace
into: a setin the note namespaceis corvex if the most compactcon guration of
this setis corvex. To this end, let us considerthe setsfrom table 4.4 with this

new de nition. We noted that the minor chord with raised fth: C;E[; G] wasa
corvex set using the old de nition, but in the new de nition it is not. The most
compact con guration’ of this chord is the set of ratios 1; 6=5; 25=26 projected
on the note name space,which doesnot form a corvex set. This is in line with

our intuition and the non-corvexity of this chord ts into the low percerage of
cornvex altered chords obsened in section4.2.4. Furthermore, we recall that the

IV V progressionin section4.2.5did not form a corvex set. Howewer, it does
form the most compactcon guration of possiblel V.V con gurations projected
from the frequencyratio tone space.

We can concludethat although cornvexity is a useful property to characterize
scalesin the frequencyratio tone space,the de nition of a corvex setin a space
that can be represeted as a cylinder (sudh as the note name space)is open
to adjustmerts to be able to characterize setsin this spaceas well as possible.
Moreover, in a model for consonancegcompactnesgurns out to be a more useful
measure. In the next chapter, we will use both corvexity and compactnessor
two computational applications. Beforeincorporating the notion of convexity we
have to decidebetweenthe two alternative de nitions.

"Although compactnessshould be consideredin the tone spacehaving 3=2 and 5=4 as basis
vectors, in chapter 4 for this chord it doesnot make a di erence.






Chapter 6

Computational applications of convexity
and compactness

In this chapter we will look at two computational applications of the notions
of convexity and compactness,one which turns out to be only moderately suc-
cessful(modulation nding) and the other turns out to be much more successful
(pitch spelling). Both problemshave been previously dealt with by various au-
thors (Chew 2002;Longuet-Higgins1987a;Temperley 2001;Meredith 2003,2006;
Cambouropoulos 2003; Chew and Chen 2005). In the rst part of this chapter
we deal with modulation nding. We have seenthat corvexity is a property
that many pitch structures like scales,chords and harmonic reductions possess.
Therefore,amongchords or setsof noteswithin a certain scale,it may be special
if a chord or setis non-corvex. We will study the meaning of somenon-corvex
setsand will seethat it canindicate a modulation in music.

In the secondpart of this chapter of which a part hasbeenpublishedasHon-
ingh (2006b), we study pitch spelling. In the previouschapter, we usedcompact-
nessto make a projection from the note name space(containing no information
about intonation) to the frequencyratio space(which doescortain information
about intonation). In turn, one can wonder about the projection from the pitch
number space(containing no information about the note names)to the note name
space. The problem of nding sud a projection is known as the pitch spelling
problem. We attempt to formalize this projection by using compactness.

6.1 Mo dulation nding

When a pieceof music is said to be in a speci ¢ key, we usually meanthat the
piecestarts and endsin this key. It rarely occursthat the pieceis entirely in the
samekey, other keyscan occur at se\eral placesin the music. A modulation is
the act or processof changing from one key to another. In the researt of key
nding (seefor exampleKrumhansl| 1990; Temperley 2001;Longuet-Higginsand

119
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Steedman1971),the most di cult part of the analysisis usually formed by the
modulations. The input for a key nding algorithm consistsusually of the note
namesof a piece. The output of sud an algorithm cortains the key of the piece
and sometimeslocal keysof smaller parts of the piece. At the location of a mod-
ulation, it can be preferredto nd two keys being equally present at the point
where oneis changinginto the other. Howewer, sometimesi,it is not possibleto
nd akeyat all at a certain point, sincefor examplethe modulation betweentwo
keysconsistsonly of a chromatic melody. The key nding algorithmsthat are de-
signedto determinethe local key of segmets in the music, have usually the most
problemsat the points where modulations occur. With their key- nding model,
Vos and van Geenen(1996) detectedonly two of the six modulations that were
analyzedby Keller (1976), when the model was tested on the 48 fugue subjects
of Bach's Well-Tempered Clavier. Furthermore, it alsofound modulations in 10
other casesn which there wasno modulation. Temperley (2001)tested his model
on the samecorpusand found two of the modulations correctly. Therefore,a spe-
cially designedprogram to indicate the modulations in a piece of music would
be a helpful tool to implemert in seweral key nding models. Chew (2002,2006)
has described a method speci cally for determining key boundariesand points
out that thesekind of models are furthermore important for computer analysis
of music, computational modeling of music cognition, cortent-based categoriza-
tion and retrieval of music information and automatic generation of expressie
performance.

6.1.1 Probabilit y of convex sets in music

It hasbeenobsened (in chapter 4) that the major and minor scalesas a whole
form a corvex set. Furthermore, the subsetsof these scalesconstituting the
diatonic chords form corvex setsas well. This might suggestthat non corvex
subsetsof the diatonic scalesare not so common. If this is indeed the case,a
non-corvex set within a pieceof music may indicate that this speci c setis not
part of a diatonic scalewhich could indicate a modulation in the music. To
verify the correctnesf this reasoning,we needto investigatethe corvexity of all
possiblesubsetsof the diatonic scales.Hence,we will addressthe question\what
is the chancefor a set of noteswithin a pieceof musicto be corvex?". Assuming
a certain pieceis in oneand the samekey, this meanscalculating the chancethat
a setfrom one scaleis corvex.

Sincemusicis usually written in terms of notes(as opposedto frequencyratios
or pitch numbers), we needto usethe de nition of convexity that appliesto note
names.In chapter 4 (seesection4.2.2) we gave the following de nition, which we
will call de nition 1:

6.1.1. Definition. If (at least) oneof the con gurations of a set of note names
has a corvex projection from the frequencyratio space,the set is said to be
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number of notes | percenage corvex | perceriage corvex
in the set accordingto def. 1 | accordingto def. 2
2 100% 95.24%

3 94.29% 68.57%

4 94.29% 74.29%

5 100% 66.67%

6 100% 100%

Table 6.1: Percertage of n-note setsthat are corvex if chosenfrom a major scale. See
text for details about de nition 1 and 2.

corvex.

Howewer, in chapter 5 (seesection5.4) it was proposedthat the de nition might
be changedto the more intuitiv e de nition 2:

6.1.2. Definition.  if the most compactcon guration of a setof note nameshas
a convex projection from the frequencyratio space,the setis said to be corvex.

To seewhich de nition is most usefulfor our purposes,we calculate the percer-

agesof convex setsof n notesin a certain scaleaccordingto both de nitions. A

Matlab program waswritten for this purpose. The results are displayed in table
6.1. The values1 and 7 are left out becausethe convexity of one note doesnot
mean anything, and there is only one con guration for 7 noteswithin one scale
which is the whole scaleand which is necessarilycorvex. Let us shortly explain
how these values were calculated. The computer program dealt with a9 9
lattice that represeis the note name space. This is big enoughto corntain all

note setsthat we wanted to considerand it contained also enoughcompositions
of a setto calculate whetherit is a corvex setor not. Given a set of note names
to the computer program, the program computed every composition in the 9 9
lattice. In caseof de nition 1 it was calculatedfor every composition whether it

is convex or not (in practice the program stopswhen it has calculateda compo-
sition that is corvex, becauseaccordingto de nition 1 the setis corvex if there
is at leastone corvex projection from the frequencyratio space);for de nition 2,
it was calculated whether the most compact con guration of a setis corvex. In

the 9 9 plane, every note name has 2 or 3 possiblecon gurations. Therefore,
if a set consistsof n notes, the number of possiblecompositions lies between 2"

and 3".

Observingthe percentagesin table 6.1, we can choosebetweenthe two de -
nitions of convexity of note names. We seethat the percertagesof convex sets
accordingto de nition 1 are higherthan the percenagesof convex setsaccording
to de nition 2. Therefore,using de nition 1, the occurrenceof a non-corvex set
is with high certainty an indication of somethingdi erent than a diatonic subset
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(for example,a modulation). Using de nition 2, the chancefor a non-corvex set
to be just a diatonic subsetis greater than when using de nition 1. Therefore,
for the purposeof nding modulations, de nition no. 1 is most useful, and we
will cortinue to usethis de nition.

It canbe obsenedthat the notesfrom a pieceof musicin onekey do not only
comefrom onescale,evenif the pieceof musicis in oneand the samekey. There
are often more notesthat are usedin a pieceof musicthan only the notesfrom the
scaleof the tonic. For example,in the rst fuguefrom the Well-temperedClavier
of Bach, which is written in C major, the notesthat appearthroughout the piece
are the notesfrom the major scalein C plus the additional notesF]; B[; C] and
G] (together forming a convex set). The ideathat the key cortains more notes
than the scaleof the tonic is formalized in the book \De s van Euler" (Van de
Craats 1989). There, Van de Craats claims that in a major key, the augmened
fourth is often usedand should therefore be included in the scale. This means
that in C major, the scalewould cortain the notes (givenin a fth sequence):
F;C;G;D;A;E;B;F]. A pieceof musicin C minor can cortain the notes(given
in a sequenceof fths): DJ[; A[; E[; B[; F;C;G;D;A; E;B;F], accordingto Van
de Craats. In accordancewith the latter claim, Longuet-Higgins(1987a) states
that \a note is regardedasbelongingto a givenkey if its sharpnesgelative to the
tonic liesin the range-5to +6 inclusive". Resultsby other researbers (Young-
blood 1985; Knopo and Hutchinson 1983; Krumhansl and Kessler 1982) are
in agreemeh with Longuet-Higgins'and Van de Craats' suggestions.Statistical
analyseswere accomplishedoy Youngblood (1985) and Knopo and Hutchinson
(1983). Their paperscortained tables giving the total frequenciesof eat tone of
the chromatic scalein a variety of compositions. Table 6.2 represeis a summary
of thesestudieswhich is taken from Krumhansl (1990). In the study by Young-
blood, music from Sdubert, Mendelssohrand Schumann was analyzed. Knopo
and Hutchinson analyzedthree complete songcyclesby Sdubert and piecesby
Mozart, Hasseand R. Strauss. Table 6.2 shows the total number of times that
ead tone of the chromatic scalewas soundedin the vocal lines of the pieces.
All keys have beentransposedto C major or minor. Krumhansl and Kessler
(1982) obtained similar results when measuringthe degreeto which ead of the
12 chromatic scalenotes t in the particular key. In their experimen, the task
wasto rate how well the nal probetone\t with" the cortext in a musicalsense.
This experimert resulted in key pro les for major and minor keys. The corre-
lations betweentone distributions (Youngblood 1985; Knopo and Hutchinson
1983) and perceiwed tonal hierarchies (Krumhansl| and Kessler1982) are strong
for both major and minor keys (comparisonmadein Krumhans| 1990).

We have seenthat the notesfrom a piece of music in one key do not come
from onescale. Howeer, from the above listed resultsit is di cult to formalizea
key content. The results of Youngblood (1985), Knopo and Hutchinson (1983)
and Krumhans| and Kessler(1982) do not directly suggesta dichotomy between
tonesbelongingto a speci ¢ subsetof the chromatic scaleand the rest of the scale
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Tone Piecesin Major | Piecesin Minor
C 16.03% 18.84%
Cl=D[ 0.97% 2.14%
D 14.97% 11.43%
DI=E[ 1.76% 11.73
E 15.52% 2.58%
F 9.71% 8.94%
F1=G[ 2.77% 2.43%
G 18.04% 21.66%
Gl=A[ 1.74% 7.13%
A 9.18% 2.08%
Al=B [ 1.80% 5.38%
B 7.50% 5.65%
Total number | 20,042 4,810
of notes

Table 6.2: Percertage of occurrencesead tone in the chromatic scalein a variety
of compositions (seetext for details) published with tone occurrences(instead of per-
certages) in Krumhansl (1990), source taken from Youngblood (1985) and Knopo
and Hutchinson (1983). All notes within a key have beenscaledto C, suc that the
percenagesare shovn with referenceto tonic C.

(like Van de Craats doeswhen claiming that F;C;G;D;A; E;B;F] is a special
subset of the chromatic scale)! Howewer, the data (both table 6.2 as well as
the key pro les obtained by Krumhansl| and Kessler1982) does not cortradict
the claims of Van de Craats. If the tones of table 6.2 are represeted in order
of decreasingonal frequenciesthe setrepreseting the major scaleproposedby
Van de Craats represefs a coheren subsetof the chromatic scale. For the minor
scalethis is trivial, sincethe minor scaleproposedby Van de Craats embodies 12
elemerts which is as much asthe chromatic scalewhen enharmonicequivalence
is used. Sincethe data represeted in table 6.2 does not distinguish between
enharmonically equivalert notes,it is more cornvenient to usethe diatonic scales
that Van de Craats proposed,to get information about corvex subsetsof these
scales.These scales'of 8 and 12 notesrespectively can be usedasinput for our
Matlab program,to calculatethe percernagesof setsthat are corvex. The results
can be found in tables 6.3 and 6.4.

Of course, the bigger the total set of notesto choosefrom, the higher the
perceriages of non-corvex subsets. Therefore, in table 6.4 the percenages of
corvex sets decreaseto a minimum of 49.03% at n = 6, meaning that there

LIf any, the subsetsC; D ; E; G or the major diatonic scaleC;D;E;F;G;A; B represen sub-
setsof the chromatic scalehaving all substartial high tonal frequencies.
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number of notesin the set | percertage cornvex
100%

92.86%

88.57%

92.86%

100%

100 %

~No obh~hWN

Table 6.3: Percertage of n-note setsthat are corvex if chosenfrom the set of notes
represerning the C major scalewith an additional F].

number of notesin the set | percertage cornvex
100%
80.91%
59.80%
52.02%
49.03%
51.01%
58.79%
71.82%
89.39%
100%
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Table 6.4: Percertage of n-note setsthat are corvex if chosenfrom the set of notes
represerting the C neutral minor scalewith additional D[; A; E;B;F].

is a reasonablechanceof nding a 6 note set that is non-corvex in a piece of
music written in a minor key. From both tables 6.3 and 6.4 we seethat the
highest perceniagesof corvex setsare for the smallestand biggestpossiblesets
in the key. Thereforethe smallestand the biggestnon-corvex setsare the best
indicators of modulations. We recall from the previouschapter that most altered
chordsform non-corvex sets. Thosechordsform an additional di cult y in nding

modulations by indication of hon-corvex sets: a non-corvex set can alsoindicate
an altered chord.

From the above resultswe learnthat if we chooserandomly a setof notesfrom
onekey, thereis a high chancefor the setto be corvex. Therefore,we hypothesize
that, if we analyzea pieceof music by dividing it into setsof n notes, most of
the setsare corvex. It is thus more special in a piece of music for a setto be
non-corvex than corvex. And becausewe have seenthat setsfrom onekey tend
to be convex, a non-corvex set within a piececould point to a changeof key or
modulation.
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6.1.2 Finding modulations by means of convexity

A Matlab programis written that nds modulations in a pieceof music by local-
izing non-corvex sets. The ideais that a high percenage of setsthat are taken
from a speci c key, is corvex (as we saw in tables 6.1, 6.3 and 6.4). Therefore
we expect somethingspecial in the music at locations where setsare not corvex.
The more setsthat are not corvex around a certain location, the stronger the
indication of a changeof key. From tables 6.1, 6.3 and 6.4 we seethat both a
low number of notes and a high number of notes have the highest chanceto be
convex. This meansthat in a pieceof music, for thesenumbers of notesin a set
it is more special to be non-corvex, so this would be a stronger indication to a
changeof key, than for another number of notes. Howewer, when segmeting a
piece of music into a speci ¢ number of notes, we do not know if there are any
notes represeted twice in one set. The numbersin tables 6.1, 6.3 and 6.4 are
only valid for setsof notesin which ewery note is di erent.

To be ableto judge all n-tone setson convexity, we introducea sliding window
of width n moving over the piece. We start with a window of width 2 after which
we enlargeit to 3, etc. We stop at awidth of 7 notes,sincenon-corvex n-tone sets
with n > 7 rarely occur for a major key. Furthermore, for n > 7, the computation
gets highly intensive sinceall possiblecompositions (which is a number between
2" and 3") shouldbe cheded. For eat non-corvex seta vertical bar is plotted at
the position of the notesin the piecethat it a ects. The width of the bar is the
number of notesin the (non-corvex) set. For eat n, a sliding window is moving
over the pieceresulting in a histogram. Thesehistogramsbelongingto n = 2 to
7 are plotted in the same gure sud that the result is one histogram preserting
all non-corvex setsin a pieceof music. The music that we tested the model on
is from the Well-tempered Clavier of Bach. Data les corntaining the notesand
other information from all Preludesand all Fuguesin rst book of J. S. Badh's
Well-tempered Clavier (BWV 846- 869) was madeavailable by Meredith (2003).
We usedthese les asinput for our program. Of all the information cortained
in the les, we were only interestedin the notes under octave equivalence. This
meansfor examplethat we judged a C and a C one octave higher as the same
note. Furthermore, all information on note length was neglected. Altogether, the
only input usedby our model are the note names, so no rhythm, meter, note
length, key information etc. wereinvolved.

As an examplewe considerthe third preludefrom book 1 of the Well-tempered
Clavier. The barsin gure 6.1 shav the position of the non-corvex setsin the
piece. The x-axis represeits the number of notes, the prelude cortains around
800 notes.

The valueson the y-axis do not have any musical meaning, but relative to
eadt other they form an indication for the amourt of notesin a set. The length
of the bars are scaledas1 n=8, with n indicating the number of notesin a
set. Therefore, the bars indicating the (non-corvex) 3-note sets have a length
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Figure 6.1: Histogram of non convex setsin the third prelude from the Well-tempered
clavier. On the x-axis is the number of notes from the piece - the piece endsat note
800, the y-axis is arbitrary .

of 1 3=8 = 0:625, bars indicating 4-note sets have a length of 0:5 etc., until

bars indicating 7-note setshave a length of 0:125. Looking at gure 6.1 we see
three regionsin the music in which a lot of non-corvex sets appear. We will

now seehow theseregionsrelate to the structure of the piece. In "J.S. Badh's
Well-Tempered Clavier: In-depth Analysis and Interpretation” (Bruhn 1993)an
analysis of the third prelude can be found. The analysis states that from bar
31to 35there is a modulation from A] minor to D] minor, from bar 35to 39 a
modulation from D] minor to G] major, from bar 39 to 43 a modulation from
G] major to C] major and from bar 43 to 47 a modulation from C] major to

F] major. Bars 31to 46 correspnd to notes250to 365, which meansthat this
regionof modulation is preciselyindicated by the rst clusterof barsin gure 6.1.
Looking to the secondcluster of barsin gure 6.1 (notes520to 590), onecan see
that this pattern is repeateda bit later at notes 690to 760. Thesetwo regions
correspnd to two (similar) piecesin G] having a pedal on the tonic. There are
no modulations involved but the notesof the sewerth chords are meladically laid
out in a way that in forming setsoften the fth is omitted and therefore some
sets are non-corvex. The last region of barsin gure 6.1 is from note 760 to
800. This represets the last eight (minus the last two) bars of the piecewhere
a meladic line is played in which a lot of chromatic notesare involved. One can
not becomeaware of onespeci ¢ key until the last two barswherethe pieceagain
resohesin C] major. In the regionsin betweenthe marked parts (white spacein
g 6.1) no modulations are preser. In thoseregionsthe musicis in a certain key,
which can vary over time, i.e. there can be (sudden) key changesfrom one bar
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to another. This method of looking at non-corvex setsis therefore only usable
for longer modulation processesWe have seenthat somemelodic parts with no
modulations involved can be wrongly marked as modulation parts. This would
suggestthat piecesthat are harmonically more denseare easierto analyzein this
way. As we have seenin tables6.1, 6.3 and 6.4, from the small and the large sets
we can learn the most about the music. We obsene that the regionsl (notes 250
to 365) and 4 (notes 760to 800) have relatively more 3 note- and 7 note non-
convex setsthan the 2nd (notes 520to 590) and 3rd (notes 690to 760) regions.
Therefore regions1 and 4 have strong(-er) indications of a modulation. Thus,
this third prelude senesas an indication that the modulation nding program
works well.

Unfortunately, the method did not work well on all the pieces.In gure 6.2
the analysisof the tenth prelude of the Well-tempered Clavier is shovn. The key
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Figure 6.2: Histogram of non corvex setsin the tenth prelude from the Well-tempered
clavier. On the x-axis is the number of notes from the piece, the piece ends at note
1139.

of the preludeis E minor. From table 6.4 we understandthat a piecein a minor
key cortains far more non-corvex setsthan a piecein a major key. This makesit
di cult to localizemodulation on the basisof non-corvex setssincethere is more
“badk-ground noise', that is, non-corvex setswhich do not indicate a modulation
but just referto a non-corvex set as part of the key.

According to the analysisby Bruhn (1993),the tenth prelude canbe analyzed
asgivenin table 6.5. The rst three modulations (to G major, A minor and E
minor) can be recognizedin g. 6.2, although not very clearly. G major is the
parallel key of E minor (both have the samenumber of accidenals at the clef), so
a modulation from oneto the other doesnot bring out a lot of extra notes. The
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I bars 1-4m notes 1-98 completecadencein E minor
bars 4m-9m | notes98-235 | modulation to G major
bars 9m-15d | notes235-386 | modulation to A minor

bars 15m-21d
bars 21m-23d

notes401-543
notes557-584

modulation badk to E minor
modulation to A minor

O~NOOY T WNPE

1 bars 23-26m | notes584-695 | completecadencein A minor
bars 26m-28d| notes695-741 | modulation badk to E minor
bars 28-41 notes 741-1139| con rmation of E minor

Table 6.5: Harmonic analysis of tenth prelude of Well-tempered Clavier by Bruhn
(1993). The ‘'m' refersto middle, the "d' refersto downbeat.

modulation to A minor in bars21to 23is not visible at all. Although the analysis
in table 6.5 statesthat bars 28to the end of the piecerepresem a con rmation of
E minor, this doesnot meanthat E minor is the only key that onebecomesaware
of. Indeed, Bruhn (1993)writes that bars27 30 (notes709 860)correspnd to
bars14 17 (notes358 463),andbars31 33 (notes803 916)correspnd to
bars19 21 (notes485 563). This indicatesthat somemodulation is goingon,
which is translated into vertical barsin gure 6.2. Howewer, the gure doesnot
give a very good overall indication of the modulations presen in the prelude. As
may be clear from table 6.4, from the small and the large setswe can learn the
most about the music. Howewer, the large sets(of n = 10, 11) are in the caseof a
minor key too largeto compute, it requirestoo much computational time (again,
sincethe number of possiblecompositions is a number between2" and 3"). For
the small two note sets,almost any combination of notescan be represeted in a
convex sef? which meansthat almost no non-corvex setswill arisein a piece of
music, evenif a modulation occurs. Of the three note sets,only 80:91%o0f the sets
within a minor key represefts a corvex set. This meansthat quite a substartial
part (19:09%) of the non-corvex three note setsdo not indicate modulations.

Overall, we seethat studying non-corvex setscan give a rough analysisof the
modulationsin a piece. The piecesn amajor key are easierto analyzethan pieces
in a minor key, sincein the latter some badkground noise' of non-corvex setsis
presen. This analysis method usesonly little information of the music (only
the note namesunder octave equivalence)which indicates that the method can
still be improved. Furthermore, it can perhapsbe integratedin other modulation
nding theoriesto optimize the results.

2When the tone spaceis in nitely big, all combinations of two notes can be represerted in
a corvex set. This is becausethe line of fths which is represerted as a line in the tone space,
represens all note names. The nearestneighbor parallel line of the line of fths is againaline
of fths, only the note namesare shifted along the line with the length of a syntonic comma.
Therefore there can always be a line drawn from the C on the line of fths to any other note
on the other line of fths without passinganother note, which makesthe two-note set corvex.
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6.2 Pitc h spelling

The processof pitch spelling addresseghe question which note namesshould
be given to specic pitches. In most computer applications tones are encaled
as MIDI pitch numbers which represen the di erent semitones. For example,
middle C is represeted by pitch number 60, the C]=D[ immediately following
middle C is represeted by pitch number 61, and so on. This MIDI notation
is similar to pitch number notation where the 12 semitoneswithin the octave
are indicated by the numbers0 to 11. Both systemsdo not distinguish between
enharmonically equivalert noteslike C] and D[. Howewer, in tonal music, there
is a lot of information in the note nhamesabout harmony, melody, scales,and
intonation. Therefore, it is very useful to be able to disambiguate the music
encadedasMIDI pitch numbersand transcribe it into note names. Pitch spelling
is the processthat dealswith this problem. There hasbeenan increasinginterest
in pitch spelling algorithms over the last decades,and various algorithms have
been proposed(Longuet-Higgins 1987a; Temperley 2001; Meredith 2003, 2006;
Cambouropoulos 2003;Chew and Chen 2003,2005).

As an exampleof the pitch spelling problem, consider gure 6.3, taken from
Piston and DeVoto (1989). The rst dyad in the upper sta in ewery bar is the
same,if represeted in MIDI numbers. In their harmonic cortext howewer, the
di erence becomesclear due to the function of the chords.

H : i | |b ‘ ¢ |
(EEREESEE = m—
& = i =
e —

Figure 6.3: Example from Piston and DeVoto (1989).

Most experts seemto agreethat the pitch name of a note in a passageof
tonal music is primarily a function of 1) the key at the point where the note
occurs, and 2) the voice-leadingstructure of the music in the note's immediate
context (Meredith 2006). To understandthat the local key plays an important
role, imagine a passagein C major. Using the pitch number systemin which
C = 0;C]=DJ[ = 1, etc., a pitch number 4 is most likely spelled as an E since
this note is part of the scaleof C major. Any other possibility to spell the pitch
number 4 (D]]; F[) would not be part of the scaleof C major and therefore
unlikely to be spelled as sudr. To understand that voice leading also has an
in uence on the pitch spelling process,consider gure 6.4 in which a one bar
melody is displayed. In caseof a semi-tonedistancebetweenconsecutiw notes,in
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ascendingdirection the precedingnotesare notated with sharpsandin descending
direction the precedingnotesare notated with ats.

Figure 6.4: Voice leading example: ascendingand descendingchromatic scale.

6.2.1 Review of other models

Longuet-Higgins and Steedman (1971) already touched on the work of pitch
spelling in their paper on key nding algorithm. Thereafter Longuet-Higgins
(1987a) deweloped a pitch spelling program which was part of a program that
takes a melady as input and generatesthe phrase structure, articulation, note
names and metrical structure. Longuet-Higgins states that only monophonic
melodies can sere as input for the program. The spelling algorithm de nes the
value of sharpnessof eat note, which is the integer indicating the position on
the line of fths (C = 0;G = 1, etc.). The local key is derived by assumingthat
the rst note of a melody is either the tonic or the dominart. Then, appropriate
spellings are selectedin the way that the distance on the line of fth between
the note to be spelled and the tonic is lessthan six steps. In this way, diatonic
spellings are favored over chromatic spellings. Later, the choice of the tonic is
chedked again by evaluating a local set of notesto seeif an alternative interpre-
tation of the tonic would result in more diatonic intervals amongthe notes.

Cambouropoulos(2001,2003)deweloped a pitch spelling algorithm which uses
a shifting overlapping windowing technique. All the pitchesin ead window are
spelled, but only the onesin the middle one-third section of the window are
retained. The suggestedsize of the window is 9 or 12 pitches. The spelling pro-
cessis basedon two principles 1) Notational parsimory (i.e., spell notes making
minimum useof accidenals), 2) Interval optimization (i.e., avoid augmened and
diminishedintervals). Penalty scoresareintroducedfor thesetwo principles, sut
that the spelling processresultsin searding through possiblespellingsfor a win-
dow and selectingthe spelling with the lowest penalty score. The speci ¢ penalty
values have been selectedafter trial and error optimization of the test corpus.
Cambouropoulos (2003) used a test corpus consisting of 10 sonatasby Mozart
and 3 waltzesby Chopin. The bestimplemertation of the algorithm gave 98:8%
correctly spelled notesfor Mozart (54418notes)and 95:8% correctly spelled notes
for Chopin (4876 notes).

Temperley (2001) proposeda preferencerule systemfor pitch spelling, which
he called \A preferencerule systemfor tonal-pitch classlabeling”. The system
consistsof three tonal-pitch-classpreferencerules, or TPRs. The rst rule is said
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to be the most important. TPR1: Prefer to label nearby ewvens so that they
are closetogether on the line of fths. Temperley states that in most of the
cases,this rule is su cient to ensurethe correct spelling of the passages.The
secondTPR is a voice leading rule, designedto accourt for the way chromatic
notes are usually spelled when they are a half-step apart in pitch height. TPR
3 statesto prefer tonal pitch class(TPC) represemations which result in good
harmonic represemations. This harmonic feedba& rule says that, when certain
factors favor interpreting a group of ewverts in a certain way (for exampleas a
chord), there will be a preferenceto spell the notesaccordingly The de nition

of \good harmonic represetation” is givenin the chapter on preferencerules for
a theory of harmony. Temperley's tonal-pitch classlabeling systemis therefore
dependert on his theory of harmory, which is in turn dependen on his theory of
metrical structure. The implemertations of the TPC-labeling systemhave been
largely deweloped and written by Daniel Sleator and are described in chapters 5
and 6 of Temperley (2001). The systemwas tested on a 8747 note corpus from
the Kostka and Payne (1995) theory workbook and had a correct spelling rate of
989%. Reviewinga number of pitch spelling models, Meredith (2006) has shown
that a pitch spelling model basedon only the rst TPR givesequally good and
even more robust results when it was tested on a large corpus cortaining music
from 8 baroque and classicalcomposers(Meredith 2006). A consequencef using
only TPR1 is that the model does not require temporal information about the
notesasinput anymore.

Chew and Chen (2002, 2003, 2005) have created a real-time pitch spelling
algorithm usingthe Spiral Array Model which was rst proposedby Chew (2000).
The spiral array is a spiral con guration of the line of fths (seesection2.3). In
the spiral array, note namesare arranged on a helix, sud that adjacent note
nameson the helix are a perfect fth away from ead other, and adjacert note
namesalong the length of the cylinder where the helix is enbeddedin, are a
major third away from ead other. Chew and Chen de ne the certer of e ect
(CE) of a set of notesas the point in the interior of the spiral array that is the
convex conbination of the pitch positionsweighted by their respective durations.
The basic principle in Chew and Chen'smodel is that a pitch should be spelled
asthe note which is closest(in the spiral array) to the certer of e ect of the notes
in a window precedingthe note to be spelled. Chew and Chen then descrike a
boot-strapping algorithm in which they takeinto accoun alocal and a global key.
In this algorithm the notesin a chunk are rst spelled sothat they are closestto
a global certer of e ect calculated over a window cortaining a certain number of
chunks precedingthe chunk currently beingspelled. Then the notesin the chunk
are respelled so that they are closestto a weighted average of two certers of
e ect: alocal certer of e ect calculated from a short window, and a cumulative
certer of e ect constructed from all music precedingthe chunk being spelled.
The overall results of the spiral array pitch spelling model yields 99:37% (Chew
and Chen 2005). Howeer, the test set that was usedincluded only two piano
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Sonatasfrom Beethoven and a piececonsistingof variations for violin and piano
on a popular Taiwanesefolksong. Meredith (2006) and Meredith and Wiggins
(2005) ran Chewand Chen'salgorithm on a large test corpuscontaining music of
8 baroque and classicalcomposers,resulting in a perceriage of 99:15% correctly
spelled notes. Furthermore Meredith (2006) concludedthat this algorithm was
the least dependert on style of all algorithms tested.

Meredith (2003,2006) haswritten a program called ps13 which works in two
stages.In the rst stage,the local senseof key at eat point in a passages repre-
serted by the number of times pitch numbersoccur within a cortext surrounding
that point. This frequencyis usedasa measureof likelihood of the pitch number
beingthe tonic at that point. Then the note nameimplied by the pitch is the note
namethat lies closestto the tonic on the line of fths. The strength with which
a particular note name is implied is the sum of occurrencesof the tonic pitch
numbers that imply that note name, within the cortext surrounding the note.
The size of the cortext is de ned by two parameters,K pre and Kpogt, Which
specify the number of notes precedingand following the note to be spelled. In
Stage?2 of Meredith's algorithm, voice-leadingis takeninto accoun by correcting
thoseinstancesin the output of Stagel wherea neighbor note or passingnote is
predictedto have the sameletter name (for exampleB[, B and B] have the same
letter name) as either the note precedingit or the note following it. Howeer, it
was shown that in somecasesStage 2 failed to correct the neighbor and passing
note errors, becauseof lacking information about voiceleading. Meredith shoved
that removing Stage2 from the algorithm hasbene cial e ects of improving time
complexity, making the algorithm more robust to temporal variations in data
derived from performances,and simplifying the algorithm. The algorithm only
consistingof Stage1, ps13s1, with the parametersK pre and K post adjusted to
the values 10 and 42 respectively spelled 99:44% notes correctly. The test set
Meredith used consistedof piecesby Bach, Beethoven, Corelli, Handel, Haydn,
Mozart, Telemannand Vivaldi, in total consistingof 195972notes. Comparing
his algorithm to the modelsof Longuet-Higgins(1987a), Temperley (2001), Cam-
bouropoulos(2003) and Chewand Chen (2005), his model turned out to perform
best (Meredith 2005;Meredith 2006). With the fact that psl3 performedbetter
without its Stage2, Meredith found that the local senseof key is moreimportant
than voice-leadingconsiderationswhen determining note namesin tonal music.

6.2.2 Pitc h spelling using compactness

We have seenthat the major and minor diatonic scalescan be found in corvex
regionsin the tone space.Also, all diatonic chordsturned out to be corvex sets.
Sincetonal music is usually built from diatonic scalesand chords, the convexity
property may be used as a tool in a pitch spelling algorithm. For example,
the set of pitch numbers 0; 4; 7 can refer to a variety of possiblesets, sincethe
pitch number O couldreferto :::;B]; C;DJ[ :::, the pitch number 4 could referto
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.11, D], E;F[:::, andthe pitch number 7 couldreferto :::;F]]; G;A[[ :::. From
all thesepossiblesetsof note names,only the setC; E ; G (and transformations of
the set resulting from diminished secondtranspositions, like D[[; F[; A[[ ) refers
to a diatonic chord in a certain scaleand it is represeted by a corvex set. The set
0; 4; 7 isthereforemostlikely spelledasC; E ; G, and hencethe convexity of the set
might be a usefultool to nd the right pitches. It is not enoughto just consider
the corvexity of the set, sincethere may exist more cornvex con gurations of a
set. We have seenthat compactnesss closelyrelated to consonance.Therefore,
after extracting the corvex sets, the most compact of the corvex setsis said
to represen the right spelling. In the processof searting for corvex sets, it
becameclear that, especially for small sets,many possiblecorvex con gurations
exist. For thesesets, nding the right spelling was rather a processof nding
the most compactone,than nding the convex one(becausehere were so many
possibilities). Therefore, the idea aroseto neglectthe rst stageof nding the
corvex sets,but directly seart for the most compactsets. Testruns of two pitch
spelling algorithms, one basedon corvexity-compactnessand one basedonly on
compactnessshowved that the algorithm basedonly on compactnessperformed
even better than the algorithm basedon corvexity-compactnessat least up to
runs with maximum 5 notesin a set.

For the simple example of spelling the set 0;4; 7 given above, compactness
appliesjust aswell as corvexity. The set0; 4;7 is most likely spelledasC;E; G
sincethis is the most compactcon guration of the set. As we already mertioned
in section’5.2 compactnessshould be consideredon the lattice constructed from
the projection:

OO (@) 61)

resulting in the tone spaceconstructed from perfect fths and major thirds as
we have seenbefore. For corvenience, gure 6.5 shows again the resulting tone
spacesof frequencyratios, note namesand pitch numbers.

25/18 25/24 25/16 75/64225/128 F# C# G# D# A# 6 1 8 3 10
40/27 10/9 5/3 5/4 15/8 45/32 135/128 G D A E B F# Cc# 7 2 9 4 11 6 1
32/27 16/9 4/3 1 3/2 9/8 27/16 81/64 Eb Bb F C G D A E 3 10 5 0 7 2 9 4
256/13564/45 16/15 8/5 6/5 9/5 27/20 81/8C Cb Gb Db Ab Eb Bb F C 11 6 1 8 3 10 5 0

256/225128/75 32/25 48/25 36/25 27/25 Ebb Bbb Fb Cb Gb Db 2 9 4 11 6 1

Figure 6.5: Tone spacesconstructed from projection 2'“’(%)‘1(%)r I (q;r).

The model we will now descrike, is basedon two very simple rules. When the
music is segmeted into small setsof notes,

1. Choosethe spelling that is represeted by the most compactset.
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2. Among the setsthat are equally compact, the set that is closestin key to
the previoussetis chosen

As may be clear, in the pitch number tone spacethere is always more than one
setwith the sameshape and thereforethe samecompactness.This is illustrated
in gure 6.6. The two rules for pitch spelling given above can be summarizedin
one principle, that of compactnesssincethe secondrule electsthe setthat forms
together with the previous set the most compactstructure.
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Figure 6.6: Piece of the pitch number tone spacewhich illustrates that there exists
more than one set f 0; 4; 7g with the samecompactness.

For the rst set of the piece,amongthe equally compact sets, the set that
hasthe projection on the note namespacewith the leastnumber of accidenals is
chosen. For the setsthereafter, we would want to choosethe set which is closest
in key (number of accidenals) to the the precedingset. Howewer, if the music
is segmeted in very small sets, and there is a suddenchange of key, this may
not work properly. Therefore, the averageis calculated betweenthe number of
accidenals in the previousset and the setsbeforethat set.

In gure 6.8 an exampleis given of the pitch spelling processof the rst bar
from Fuguell from Badh's Well-temperedClavier book I. This bar is displayedin
gure 6.7. The notesofthis bar, givenin pitch numbersare: 0; 11;0; 7; 8;0; 11, 0; 2.
From the most compactsets,the onewith the leastnumber of accidenals is cho-
sen,as can be seenfrom the projection in gure 6.8. This set,C, B, C, G, A[,
C, B, C, D, indeedrepresems the correct notes from the rst bar of the piano
sonata.

It can happen that a complete pieceis spelled (accordingto the algorithm)
in a dierent key than the original. For example, a piecewritten in C] major
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(with 7 sharps) will be spelled by the algorithm as a piecein D[ major (with
5 ats) becausethe latter key contains fewer accidenals. This doesnot mean
that the algorithm wrongly spelled the piece,it may be notated correctly but in
a di erent key. Therefore,we want our pitch spelling algorithm to allow for so-
calledenharmonicspellings. To this end, the de nition we usehere (which is also
usedby Meredith 2003,2006, Temperley 2001and others) for a correctly spelled
pieceof musicis: A pieceis spelled correctly if every note name assignedby the
algorithm is the sameinterval away from the correspnding note name in the
original score. The algorithm therefore generatesthree spellings. One spelling
is directly generatedby the algorithm, one spelling is generatedfrom the rst
by transposing all notes a diminished secondup, and one spelling is generated
from the rst by transposingall notesa diminished seconddown, suc that three
enharmonicspellings result. The spelling with the smallestnumber of errorsis
then consideredto be the correct spelling for the pieceof music. In solving this
problem of enharmonicspellings, we followed Meredith (2006).

Eadh MIDI le is segmeted in setsead consistingof n notes. If the number
of notesthe whole musical piececonsistsof, is not a multiple of n, the last pitches
are undetermined. To overcomethis problem, after the last set of n pitches,the
remainderof pitchesform a set (which cortains lessthan n pitches)to be spelled
using the samealgorithm.

The input to our model are scoresencaled in OPND (onset, pitch-name,
duration) format (Meredith 2003). Each OPND represemation is a set of triples
(t,n,d) giventhe onsetTime, the pitch Name and the Duration of a single note
or sequencef tied notesin the score. The triples are orderedin a le according
to onsettime. For a chord, the triples are orderedfrom the lowestto the highest
note in the chord. The note namesfrom the OPND le are usedat the endto
chedk whether the pitchesare correctly spelled. The actual input of the program
are MIDI numbersthat are obtained from the note names(Meredith 2003). The
compactnessalgorithm usesonly the pitch information of the OPND format; the
onsettime and the duration of the notes are neglected. Furthermore, the pitch
information is transcribed to MIDI numberswhich is in turn transcribedto pitch
numbers modulo 12. The algorithm spells the notes only on the basis of these
pitch numbers, orderedin onsettime and in caseof equalonsettime, and ordered
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Figure 6.7: First bar from Fugue Il from Bach's Well-tempered Clavier book |.
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Figure 6.8: Encoding of rst bar from Fuguell from Bach's Well-tempered Clavier.

from low to high frequency As a consequencehe algorithm doesnot distinguish
simultaneously played notesfrom consecutie notes.

6.2.3 The algorithm

In algorithm 1 the core of the compactnesgprogram is explainedin pseudocode.
In the actual algorithm, note namesare encaled asnumbersaccordingto the line
of fths, C = 0, G = 1, etc., sincenumbers are easierto handle than letters. In
line 1 of the code a number of notesis chosen. The music that is to be spelled
is segmeted into piecescortaining this number of notes. In line 2 the key is
assigned;the number O represets the key of C. With this “initial key', we want
to make surethat the spelling with the least number of sharpsand ats will be
chosenin the rst setof notes. The coordinatesof all possiblecon gurations of a
set on the pitch number lattice are storedin arrays. For ead array represeming
the coordinatesof a setthe induced note namesare determined. The note names
correspnding to the con gurations in the pitch number spaceare found by just
projecting the pitch number spaceonto the note nhame space(see gure 6.5).
In practice, when the coordinates of the con gurations are determined, the note
namescouldjust belookedup in the note namespace usingthe samecoordinates.
Of ewery con guration of a set, the notes in terms of fth line values, are
summed (line 16). When this sum is divided by the number of notesin the set
(line 19), it givesan indication of the “tonal certer', which is important to be able
to spell a setof noteswith a tonal certer closeto the tonal certer of the previous
set of notes. For example, the notes C;D; F; C] are indicated by the numbers
0;2; 1,7andresultin avaluefor the ‘tonal certer' as(0+2 1+ 7)=4= 2(= D).
For every con guration the compactnesss calculated as shavn in algorithm 2.
The compactnessf a set of coordinatesis calculated by summing the euclidean
distancesbetweenall points (after removing the points that are equal to other
points already in the set). The lower the resulting value, the more compactthe
con guration is. The most compact con gurations are selectedby sequetially
calculating the compactnessthereof and comparing whether the con guration
is more compact than or equally compact as the - until then - most compact
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1 n=number of notesin the set
2 Key=0
3 for all setsof n notesin the piece of music do
4 for all possiblecon gurations of a setin the pitch numkber space do
5 Store the coordinatesfrom pitch number spaceof the notesin array
M
for eacharray M do
Calculate the value Compactness

~N o

8 if the value Compactnessis smaler than or equal to a value
MostCompactthen
9 if the value of Compactnessis smaler than a value
MostCompactthen

10 Storethe Compactnessvalue in the variable MostCompact

11 clearthe array Best

12 Set PreferredKey to initial value

13 end

14 for eacharray M do

15 Store the induced note namesin array NoteNames

16 Sum the note valuesand store this in Sum

17 end

18 Store the indexesof the setsthat are most compactin Best

19 Calculate TonalCenter as SumthNumber

20 if the di er ence between TonalCenter and Key is smaller

than value PreferredKey then

21 Store the di erence betweenTonalCenter and Keyin
PreferredKey

22 Store the index from the setsin array Best correspnding
to the setfor which the tonal certer is closestto Key; in
Closest

23 end

24 end

25 end

26 end

27 Store the averageof Keyand TonalCenter(Closest) in Key
28 for all notesin the set do

29 CompareNoteNames(Best(Closest)) with the correspnding note
namein the original score
30 end

31 Sum the number of correctly spelled notesand store in
CorrectSpelling
32 end
33 The total percenage of correctly spelled notesequalsCorrectSpelling
divided by the total number of notesin the pieceof music

Algorithm 1. Simplied version of main code of pitch spelling algorithm.



138 Chapter 6. Computational applications of convexity and compactness

input :setM consistingof n notes

Reducethe setM to the sameset but with no repetitions of elemerts
Compute the distancesbetweenall 7 pairs of points in the set
Sum the distancesand store in value compactness

output : compactness

a A~ W N B

Algorithm  2: Code for function compactness.

con guration (line 7 to 9). The variable "MostCompact' is given a high value
before going through the for-loop the rst time. Then, this value is lowered to

the compactnes®f the most compactsetat that momert (line 10). The indicesof
the con gurations having the samecompactnesg gure 6.6 remindsusthat there
are always con gurations having the samecompactnessyhich are alsothe most
compactat that momen, arestoredin the array "Best' (line 18). If acon guration

appearshaving a higher degreeof compactnessthe array "Best'is cleared(line 11)
and lled with indexesof the con gurations all possessinghe new highestdegree
of compactness . Of the most compactcon gurations, the "TonalCener' of ead is
comparedto the value "Key' by calculating the di erence of thesevalues(line 20).
This di erence hasbeengiventhe name PreferredKey'and is changedevery time

a con guration is closerto the "Key' and setto its initial value (line 12) when a
new array "Best' of most compactcon gurations is created. The value of "Key' is
changedafter every setto provide a value represeting a balancedcombination

of the key of the whole pieceand the “local key' of the previousset (line 27). Of
the most compact con gurations of a set, the onewhose TonalCerter' is closest
to the "Key' is selected(line 22). The notesfrom this con guration are the notes
spelled accordingto the algorithm for one set of notesin the music. To ched

if this represeis the correct notes, ead note in this set is comparedwith the

correspnding note in the original score.If a note is correctly spelled, a goodness
courter is incremerted so that the total of this divided by the total number of
notesin the pieceof music represets the percenage of correctly spelled notesin

this piece(line 28to 33).

The compactnessprogram has been tested on the preludes and fugues of
Badh's Well-tempered Clavier. The fact that more authors have usedthis test
corpusallows us to compareour algorithm with other models. Resultsare given
in table 6.6 for n ranging from 1 to 7. For n = 1, the algorithm reducesto
rule no. 2 descriked in the previous section, sincethe compactnesf one single
point always equalszero. It is thereforeinteresting to seethat, consideringthe
compactnes®f only two notes,increasedhe result already with around 30%. For
the bestresult at n = 7, the goodnessrates for all preludesand fuguesare given
in table 6.7.

While algorithm 2 shows that the computational time of compactnessis
quadratic in the number of notes n (i.e. %n(n 1)), the number of possible
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percenage correctly spelled notes
65.76%

96.57%

96.42%

98.80%

98.58%

98.98%

99.21 %

~NOoO ok WN PR DS

Table 6.6: Resultsfor the pitch spelling algorithm basedon compactnessasa function
of the number of notesn usedin the segmemation.

con gurations in the Euler lattice for which compactnesshasto be computedis
exponertial in n. When usinga 9 9 lattice, pitch numbers appear between
6 and 9 times (for examplethere are 9 locations where the pitch number 0 is
situated - when choosingthis number in the origin). Therefore,a set of n notes
has a minimum of 6" and a maximum of 9" con gurations. For increasingn,
this number becomeshigh very fast, and slovs down the pitch spelling process.
Numberslike n = 20 are not uncommonto represemn oneor two barsin music. A

rst improvemert to diminish the computational time of the algorithm hasbeen
made by rejecting certain con gurations - the onesthat are de nitely not the
most compact- in an early stage. In the algorithm, the compactnesf an n-note
setis comparedwith the most compactsetup to that momern. If a subsetof this

n-note setis lesscompactthan the most compactset, then the particular n-note
setand alsoall other setscortaining this subsetare by de nition (seealgorithm

2) lesscompact than the most compact set. Thus, their compactnessdoes not
needto be ewvaluated. This reasoninghas been incorporated in the algorithm

and increasedthe speedof the spelling processconsiderably Howeer, still, the
algorithm requirestime exponertial in n, thereforen = 7 is the practical limit

here. From table 6.6 it can be seenthat the best performanceoccursat n = 7,
the worst performanceis for n = 3.

6.2.4 Error analysis

Studying the errors,i.e. the pitchesthat werenot correctly spelled, we canobsene
a number of problemswith the compactnesslgorithm. A voiceleading problem
exists due to the fact that the compactnessof a set is independen of the order
of the notesin the set. For example,the model would always prefer the spelling
C D] overthe spelling C C] (in a 2-note set), independern of the order of
thosetwo pitches,while this is important for their spelling (seeagain gure 6.4).

Howeer, the problemthat causegnosterrorshasto do with the local spelling
character of the model. Contrary to Chew and Chen (2005), who report spelling
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no. | prelude fugue
no. of notes | correctness| no. of notes | correctness

1 549 99.45% 729 99.86%
2 1091 99.08% 751 99.47%
3 810 99.26% 1408 99.43%
4 658 99.09% 1311 99.39%
5 718 98.61% 772 100.00%
6 784 96.94% 715 98.46%
7 1411 99.57% 886 99.44%
8 681 98.24% 1378 98.84%
9 421 98.57% 732 99.86%
10 | 1148 99.39% 810 99.26%
11 | 572 99.48% 667 99.55%
12 | 504 99.01% 1309 98.24%
13 | 402 99.75% 853 99.88%
14 | 604 99.01% 807 98.88%
15 | 607 99.01% 1690 99.53%
16 | 534 99.25% 747 98.26%
17 | 661 100.00% 883 99.66 %
18 | 553 99.46% 798 99.75%
19 | 603 98.84% 1172 99.74%
20 | 608 97.86% 2372 99.20%
21 | 632 99.68% 946 99.47%
22 | 775 99.35% 732 99.18%
23 | 417 99.76% 821 99.76%
24 | 720 99.17% 1792 98.88%

Table 6.7: Results of pitch spelling algorithm for n = 7, for all preludes and fugues
from the rst book of Bach's Well-tempered Clavier.

errors due to unexpected local key changes,we obtain errors becauseour algo-
rithm doesnot take into accoun enoughcontext. The compactnessnodel adapts
quickly to local key changessincethe mostimportant part of the algorithm deals
with the compactnessof the spelled set rather than the cortext. Examples of
wrongly spelled pitchesare givenin gure 6.9. The gure represems onemeasure
from the sixth prelude of Bach's Well-tempered Clavier which was spelled using
the compactnesslgorithm with n = 4. The circled 4-note setsin the gure in-
dicate the three setsthat have misspelled notes. The rst set G;G;C]; B[ was
spelled incorrectly as G; G; D[; B[ sincethe latter forms a more compactset in
the tone space. In the other two circled setsall C]'s are incorrectly spelled as
D['s aswell. Howewer, not all C]'s are incorrectly spelled like for examplethe
rst C] in the measure. Therefore, if a larger set would have been spelled by
taking into account more context, theseerrors could probably have beenavoided.
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Figure 6.9: Measureno. 16 from prelude VI of Bach's Well-tempered Clavier, shaving
three 4-note setsfrom which notes were misspelled.

Analyzing all errors from the sixth prelude (which has beenchosenfor analysis
becauseof its many errors: only 96:05% was spelled correctly), it turns out that
the majority of the errorsare dueto the misspelling of three semitonesasa minor
third instead of an augmerned second.In the exampleof gure 6.9,the D[ was
spelled as a minor third above the B[ instead of an augmered secondC] above
the BJ.

6.2.5 Evaluation and comparison to other models

With our pitch spelling model we obtained a perceriage of 99.21% correctly
spelled pitcheson the rst book of Bach's Well-temperedClavier. SinceMeredith
(2003) did a comparative study on pitch spelling algorithms® in which he used
this corpus, our results can be exactly compared (table 6.8). It may be clear

Algorithm percerage correct
Cambouropoulos | 93.74%
Longuet-Higgins | 99.36%

Temperley 99.71%
Meredith 99.74%
Honingh 99.21%

Table 6.8: Comparison of pitch spelling models all tested on the 41544 notes of the
rst book of Bach's Well-tempered Clavier.

3Longuet-Higgins's algorithm (1987a) was not designedto be used on polyphonic music.
Howewer, with ead piece preseried as a sequenceof MIDI note numbers in appearing order
and chords represernied from bottom to top (same input represenation as we used for our
model) his algorithm could still be used. Howewer, results from Meredith (2006) suggestthat
the algorithm works much better when the music is processeda voice at a time than when it is
processeda chord at a time.
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that our compactnessalgorithm doesnot perform outstandingly comparedto the
other algorithms. Howewer, the di erences are small, and we think that this
performanceis promising, given that the algorithm is basedon only one simple
principle. We will discusspossibleimprovemerts of the algorithm.

Although the algorithm performs on averagebetter using a higher value for
n (for examplen = 5 givesan overall better result than n = 2), this does not
meanthat for ewery single prelude and fugue this is the case. For example, for
prelude number 1 the number of correctly spelled notesusingn = 2 is 99:82%,in
corntrast to the number of correctly spelled using n = 5 which equals99.27% If
we could nd out to what feature this is related, we could designthe algorithm
sud that n is variable, to obtain improved results. This investigation belongsto
our plan for future resears.

In a way, our model is congenialto Chew and Chen's model (2005). The
algorithms are both basedon geometricalmodelsof tonal pitch relations. Another
similarity with Chewand Chen'smodel (2005),is that our model usesonly presen
and pastinformation. An advantage hereofis that thesemodelscanbe integrated
into real-time systemsof pitch perception. Di erent from our algorithm, Chew
and Chenusemetrical information by dividing the musicin equaltime slicesand
compute the certer of e ect with useof the durations of the notes. Our model
works without this information. Our algorithm doesnot take into accournt onset
time sothat there is no di erence betweena (harmonic) chord and an arpeggio
of the samechord. We believe the model could be improved by taking this into
accourn. Howeer, neither Cambouropoulos(2003) or Meredith (2006) have used
sudh information. Furthermore, in our model the pieceis divided into chunks.
Since Meredith and Wiggins (2005) found that the windowing scheme of Chew
and Chen's pitch spelling algorithm was critical for high note accuracy changing
our windowing schemecould possibly result in an improved performance.

In our algorithm, the “key' is represeted as a point on the line of fths
instead of a point in the Euler-lattice. Although the key condition (choosethe
setthat is closestto the previouskey) doesnot have that much in uence on the
algorithm as the compactnesscondition (choosethe most compact set) because
the latter condition is applied rst and is the most restrictive, it may still give an
improvemert in the algorithm if the key is represered as a point on the Euler
lattice.

As already mertioned by Meredith (2003), the test-corpus of Bach's Well-
tempered Clavier cannot be consideredto represemn a wide variety of musical
styles and genres. To be able to show that our compactnessalgorithm presens
a robust pitch spelling algorithm over a variety of musical pieces,the test corpus
needsto be enlargedwith other musicto represem a balancedcorpusof a variety
of composerswithin the baroque and classicalmusic.

It wasalreadynoted by Longuet-Higginsand Steedman(1971)that the placing
of the notes on the Euler lattices \indicates how the subject would have to be
played in just intonation". It may be clear that this is an advantage of the
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compactnessnodel over all the other pitch spelling models described above.

Another question is about the statistical signi cance of the results. From
table 6.7, the standard deviation can be calculated which can tell something
about the dispersion of the results. If every prelude and fugue is used as one
data point, the mean correctnessis 99.20% (which is indeed closeto the overall
correctnes9921%),and the standarddeviation = 0:60. Of course the preludes
and fuguesare not at all of equal length so this standard deviation can only
sene as a rough indication. Meredith (2005, 2006) discussedthe problem of
calcultating the statistical signi cance of the di erence between the results of
pitch spelling algorithms. Meredith (2006) explains that the matched-sampled
t-test (Howell 1982)is an appropriate test for measuringthe signi cance of the
di erence betweenthe spelling accuraciesachieved by two algorithms over the
samecorpus. This test involvescalculating the meandi erence betweenpairs of
results using two spelling algorithms. This meanvalue shouldthen be divided by
the standard error in the mean, resulting in the value for t. Howewer, Meredith
(2006) hasconcludedthat \in general,the p valuereturned by the t-test depends
guite heavily on the way that the test corpusis partitioned and that there is no
strong a priori reasonfor choosingone partition over any other". For this reason
this statistical analysishasnot beenincorporated here.

Meredith (2006,2005)and Meredith and Wiggins (2005) gave an overview of
the best performing pitch spelling algorithms of the last decadesand concluded
that mostalgorithms usethe line of fths to nd the correctspelling of the pitches.
One of the few algorithms that do not usethis is Chew and Chen's (2002, 2003,
2005) spiral array model. Howewer, Meredith investigatedthe spiral array model
and implemerted it with the line of fths instead of the spiral array and claims
that it madeno di erence in performance.He raisesthe question: \W ould it be
possibleto improve on existing algorithms by using somepitch spaceother than
the line of fths?". In our compactnesanodel the two-dimensionalEuler-lattice
is usedto nd the correct spelling of pitches. To be sure this model performs
better than the line of fths, we implemerted the line of fths instead of the
lattice in a secondalgorithm, leaving the rest of the code the same. Searting
for compactnessn a two dimensionalspacetranslated naturally to compactness
on the onedimensionalline of fths. For n is 2 to 7, the pitch spelling algorithm
using the line of fths wasusedto calculate the percenagesof correctly spelled
notes. The resulting percenageswere approximately 1% below the perceriages
from table 6.6 for ead n. Although this doesnot seemto be a huge di erence
at rst sight, an increasedperformanceof 10 correctly spelled notesin a piece
of 1000notes makesa good improvemern. A matched-pairedt-test was usedto
calculated the signi cance of this di erence. To perform the test, the corpus,
consisting of 41544 notes, was divided into 8 appraximately equal sets. The
correctnesdor the algorithm using the tone-spaceapplied to set 1 wascompared
with the correctnessfor the algorithm usingthe line of fths, and the di erence
betweenthe percerntageswas notated. This was donefor all sets,and the mean
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of the di erences could be calcultated. With this, the value for t was calcultated
asthe quotient of the meandi erence and the standard error in the mean, and
resultedin a value of t = 3:04. The degreeof freedomwas 8, sincethe corpus
was divided in 8 sets. Thesevaluesgave rise to a chancelevel of p < 0:05. This
meansthat the di erence of 1% is not likely to be a chance nding; we would
expect suth a result to occur by chanceonly 5% of the time. Thus we say that
the obtained di erence of 1% is signi cantly di erent from zero. This statistical
analysishasonly beencarried out for n = 4, but sincethe di erence betweenthe
results was appraoximately 1% for every n, we expect the signi cance nding to
hold for every n. Therefore,we want to make the conjecturethat usingthe two-
dimensionalEuler lattice instead of the line of fths is preferredin the processof
pitch spelling. Howewer, as mertioned before,the p-value returned by the t-test
dependson the partitioning of the corpus. As a consequencemore investigation
on the di erence betweenthe tone-spaceand the line of fths in pitch spelling
algorithms, is desirable.

It would be very interestingto comparethe tone spacewe have usedto Chew's
spiral array in the caseof pitch spelling. The spiral array is calibrated so that
spatial proximity correspndsto perceiwed relations amongthe represeted erti-
ties (Chew and Chen 2005). This is comparablewith compactnessepreseting a
measureof consonancén the Euler-lattice. Howewer, oneof the biggestdi erences
betweenthose tone spacesn the light of pitch spelling, is that the Euler-lattice
canrepresem frequencyratios aswell. The spiral array is a spiral con guration of
the line of fths. As a consequencéhere is only onerepresemativ e of every note
name cortrary to the Euler-lattice, in which there exist more than one of every
note name, correspnding to frequencyratios that di er a number of syntonic
commas.It would be interestingto examinewhether the extra information of the
implied frequencyratios yield improved results in the caseof pitch spelling.
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Concluding remarks

In this thesis, we have discussedse\eral criteria to derive a scale. Thesecriteria
can operate as models explaining the existenceof somescales,or they may sene
as an ewaluation of certain existing scales. Furthermore, scalesresulting from
thesecriteria can be interpreted as suggestiondor new scalesthat have not been
explored until now. The criteria we have focusedon in this thesis have been
concernedwith equaltemperamen and well-formedness.

We have consideredequal temperamen systems,where also microtonal sys-
tems with a division higher than 12 tonesto the octave were addressed.There
are seweral ways to ewaluate the "goodness'of an n-tone equal tempered system,
and we have addressedwo of them. The rst condition wasthat an equaltem-
peramert should approximate a number of ratios from just intonation aswell as
possible. The secondrequiremert had to do with the application of equaltemper-
amert to a notational systemwhereWesternharmory is incorporated. Together,
theseconditions have resulted in n-tone equaltempered systemswheren equals
12,19 31; 41 or 53. Equal temperedsystemsof thesesizeshave indeedbeenfound
in music theory or practice.

The well-formednessapproad to scalesaddresseghe questionof the quality
and origin of scalesfrom another viewpoint. We have focusedon the notion
of mathematical beauty or geometrical well-formednessapplied to tonal pitch
structures, that can possibly sene asthe principled basisfor tonal music. It has
turned out that there is a highly persistent principle holding for pitch structures
like scales(also non Westernscales),diatonic chords and harmonic reductions: if
preserted in the tone spacedescribedin chapter 2 they form compactand convex
or star-corvex shapes. We have explainedcornvexity and star-corvexity in terms of
consonancesud that in a corvex musicalitem the consonances optimized. For
the star-corvex scalesit had turned out that consonancas optimized according
to the tonic of that scale. The property of compactnesswvas not quartied and
usedassud until chapter 5.

In answer to the questionsabove, the convexity model can help to explain the
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existenceof certain scales,and furthermore it can sere asa (boolean) evaluation
function. Contrary to other theoriesof well-formednessthe convexity model does
not immediately predict tone systemsof a speci ¢ size. Although we found that

most tone systemsform a corvex setin the tone space,not ewvery corvex setin

the tone spacepreselts a possibletone system. Still, corvexity may help to make
predictions about suitable n-tone systemswhen this condition is conbined with

others.

Equal temperedscalescan alsobe studied with respect to the property of con-
vexity. Howewer, the property of corvexity in the pitch number spaceis somewhat
lessinteresting than in the frequencyratio space,sincethe nite number of pitch
numbersin the spacegive rise to a high chanceto obtain a corvex set. Moreover,
scalesthat are constructed from all the notes of the equal tempered systemin
which they are enbedded(like the chromatic 12-tonescalein ET, and the above
mertioned 19; 31; 41 and 53 tone scales),form necessarilya convex region since
they contain the whole (toroidal) pitch number space.

The tone lattices as displayed in gure 7.1 have beencertral to this thesis,
and the projections from one spaceto the other have formed the basis of two
problemsaddressedn this thesis. Pitch spelling is the problemthat is concerned

9 1 5 9 Bbb Db F A 216/12527/25 27/20 27/16
2 6 10 2 6 Ebb Gb Bb D F# 144/125 36/25 9/5 9/8 45/32
7 11 3 7 11 3 Abb Cb Eb G B D# 192/125 48/25 6/5 3/2 15/8 75/64
0 4 8 0 4 8 0 Dbb  Fb Ab C E G# B# 128/12532/25 8/5 1 5/4  25/16 125/6¢
9 1 5 9 1 5 Bbb Db F A C# E# 128/7516/15 4/3 5/3  25/24 125/96
6 10 2 6 10 Gb Bb D F# A# 64/45 16/9 10/9 25/18 125/72

3 7 11 3 Eb G B D# 32/27 40/27 50/27 125/108

MIDI =) note names =) preferredintonation

Figure 7.1: Two projections that are concernedwith the problems: pitch spelling and
intonation nding.

with attaching the right note nameto a MIDI number. In other words, pitch
spelling dealswith the projection from the tone spaceof pitch numbersto the tone
spaceof note names. The problem with intonation, and in this caseintonation of
chords in isolation, is how to interpret (as which frequencyratio) a note name:
this problem is concernedwith the projection from the tone spaceof note names
to the tone spaceof frequencyratios. Both problemsweredealt with by lifting the
convex or the most compactsetto the richer spacealong the speci ¢ projection.
It hasbeenshown that usingcompactnessnsteadof convexity gave better results
in both cases.For the preferredintonation of chords, we have seenthat the most
compactset represeis the most consonam setin around 90 percert of the cases,
depending on the number of notesin the chord. In the caseof pitch spelling, a
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perceriage of 99:21%correctly spelled noteswas obtained by testing our algoritm

basedon the notion of compactnesspn the preludesand fuguesof the rst book
of Bach's Well-tempered Clavier. Furthermore, we have seenthat the algorithm

performs worsewhen the line of fths is usedinstead of the 2-dimensionaltone
space. This suggeststhat other pitch spelling algorithms, most of which using
the line of fths, canpossiblybeimproved by usingthe 2-dimensionaltone space
instead.

We concludeby summarizingthat the conceptsof corvexity and compactness
have arisenasimportant principlesre ecting a notion of consonancen scalesand
chords, and have been successfullyapplied to well-known problems from music
researd.






App endix A
Notes on lattices and temp eraments

A.1 Isomorphism between P; and Z3

SinceZ is the setforming a group under addition, the set Z3 can be represeted
asathree dimensionalspaceof all points (a;b;c), wherea;b;c 2 Z, andis a group
under vector addition with unit elemen (0;0;0). As mertioned the elemeits of
the group Z2 are 3-tuples(p;q;r). The group operation is vector addition which
means

Pgr) (PAdr) = (p+ pha+ r+r9 (A.1)

The group P is isomorphicwith Z3, this meansthat there is a oneto onecorre-
spondencebetweenthe elemernts of the groups. The isomorphismis given by the
map

(N 220 1 @O1C)) 2P (A2)

To prove that the two groupsare isomorphicto ead other we have to show that
the map is a group homomorphism:

(p+ pSa+ dir+r9 = ((pgr)  (PIdr9) (A.3)
(where is the group operation in P3), and prove that is injective:
(& b;0);(d;e;f) 2 2%: ((ab;0) = ((diesf))) (asbio) = (diesf)  (A4)

and surjective:
8y 2 P5;9(a;b;0) 2 Z°: ((a;b;0)) =y (A.5)

First we prove that is a homomorphism:

0+ o+ dir+ 1Y) = 2P = 2000 2Z()F0)"

(piar))  (P%%r9) (A.6)

149



150 Appendix A. Noteson lattices and temperaments

We prove injectivity of the map by the knowledgethat every elemer from
Ps; can be written asa unique product of the rst three primes.

(@bo) = (@en) 200 =20 )
290y 0 =1) @bo=(den) (A7)

We prove surjectivity of the map by the de nition of an elemen from P3. The

elemetts in P; arede ned asf 2°(2)9(2)"jp;q;r 2 Zg sothereis always an elemer
(g r) 2 Z sudh that  ((p;apr)) = 2P(2)9(3)".

A.2 Alternativ e bases of 72

The lattice Z? is a subgroupand discrete subspaceof the vector spaceR?. They
sharethe samebasis: e; = (1;0), & = (0;1). We can chooseanother basisfor Z2:

. C ) a c
f b d ja;b;c;d 2 Z; Det b d 6 Og (A.8)
For simplicity we will use

_ ac |

A— b d ] (A'g)
and its inverse
1_ e dg

A l= £ h (A.10)

We warnt to prove the statemert we madein the text: f(a;b);(c;d)g is a basisof
Z2, Det(A) = 1.

First assumingthat Det(A) = 1, we know that A ! consistsof integer ele-
menst: e;f;g;h 2 Z. Then,

,_ ac eg _ 10
A= bd fh T 01 (A.11)
implies that
e 3 + f (d: = (]5 = ey (AlZ)
a c _ O _ .
g b + h d - 1 - €! (A.13)
1Becausefor an 2 2 matrix A = E g Al= ﬁ(m db ac
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And if e; and e, are elemens of the spacespannedup by (a;b) and (c;d), any
elemen of Z? is in that space,so

f E : g g is a basisof Z?2 (A.14)
and the rst part of the proof is done.
To go the other way around, we assumef (a;b); (c;d)ja;b;c;d 2 Zg is a basis
of Z?, therefore:

a c
e=e + f q (A.15)
a c
&=9g + h q (A.16)
with e;f;g;h 2 Z, which is equivalert to
10 _ &eg a c
01 - fh bd (A-17)
and therefore
Det(A )Det(A) = 1: (A.18)

Sinceall elemerts of A * and A are elemerts of Z, and therefore Det(A 1) and
Det(A) shouldboth be elemerts of Z there is no other possibility for Det(A) then
to beequalto 1 or 1.

Det(A)= 1 (A.19)

SeeRegener(1973, ch. 8), for an alternative proof. For more details on linear
algebra, seefor example(Lang 2002).

A.3 Generating fth condition

When the n-tone equaltemperedsystemdoesnot have generatorgamongm%; ms
or ms, the n-tone temperamen can be simplied to an n%tone temperamer
(section 3.3), suc that

n=k n® k2N: (A.20)

This canbe understood asfollows. If the note namesare distributed by m where
m satis es the condition
GCD[m;n] = 1, (A.21)

a distribution like gure A.la arisesin which ewery unit can be identied with
a note name. If equation A.21 is not true, one may wonder if a distribution
like gure A.1b could arise,sud that the note namesare unequally distributed?
Looking at gure A.lb, apparerily one could go from unit number t to unit
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X

X X

(@) (b) (©

Figure A.1: Seweral distributions of note names(herein a division of n = 12), wherehy
the X's represen possible note names. Distribution b is not possible, seetext for
explanation.

numbert+ 1 (t 2 Z), by addingx m modn; x 2 Z. In the sameway, one
should be ableto gofrom t + 1to t + 2. Therefore,an unequaldistribution sud
as A.1b is newer possible. If equation A.21 doesnot hold, (equal) distributions
like for example gure A.1c result, which is reducibleto an n%tone temperamert
(eq. A.20). A temperamern systemthat is generatedby the fth, sud that all
their notes can be arrangedin a cortinuous seriesof equal fths is de ned by
Bosanquet(1874a,1874b)to be a regular system.



Samenvatting

Het onderzaek bestireven in dit proefsdirift concerreert zich rond de oorsprong
van toonstructuren zoalstoonladdersof akkoordenin muziek. Het is vaak ondui-
delijk hoe dit soort toonstructuren zich hebben ontwikkeld en waar ze vandaan
komen. We kunnen denken aan de volgendevragen. Waarom heeft de Westerse
majeur toonladder (do, re, mi, fa, sol, la, si) 7 tonen, en zijn het er niet 6 of 8
of eenander aartal? En waarom bestaat de Japansepentatonische toonladder
uit 5 noten? Met anderewoorden, zijn dezegetallenwillekeurig ontstaan uit ver-
sdillende culturen, of zijn dezegetallen gerelateerden wellicht ontstaan uit een
en dezelfdeoorsprong?Er is veelonderzaek dat de laatste visie ondersteun. Dit
onderzceek kan verdeeldworden in versdillende gebieden. Zo is er bijvoorbeeld
het onderzaeksgebiedewlutionaire musicologiewaarin onderzaek wordt gedaan
naar de ewlutie van muziek vanuit biologisd en cultureel oogpurt. Verder zijn
er studies die suggererendat de toonladdersuit versdillende culturen samen-
hangen met de instrumenten waarop gesgeeld wordt. Ook zou gelijkzwevende
stemming (eenterm die hieronder zal worden uitgelegd) eenrol kunnen spelen.
Bepaaldegelijkzwevende toonladderszijn gewild om versdillende redenen, bij-
voorbeeldomdat ze de reine stemminggoed benaderenen omdat ze tegelijkertijd
de mogelijkheid hebben om te moduleren. Als laatste noem ik hier dan nog het
onderzcek op het gebiedvan de zogenaamdaw el-gevormde” toonladders. Een
toonladder kan wel-gevormd worden geneemd om versaillende redenenbijv oor-
beeld omdat hij eensymmetriste vorm heeft wanneerhij wordt weergegegn op
eentonenrooster of kwintencirkel.

Dit proefsairift focust zich op de laatste tweeonderzaeksgebiederf{gelijkzwe-
vendestemmingenwel-gevormdheid) om eengezamelijle oorsprongvan toonlad-
dersmogelijk te kunnenverklaren. Naast eengezamelijle oorsprongkunnendeze
studiesook dienenals evaluatie van bestaandetoonladders(zijn sommigewellicht
beter dan andere, of meer gestikt voor eenbepaald doel?). Tenslotte kunnen
toonladdersdie voortgebradt worden door de gewormde theorieen, dienen als
suggestiesvoor nieuwe toonladders, die voor muziektheoretici, componisten en
wetenshappers interessam zijn om te bestuderen. In dit proefsdirift is eenge-
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deelte gewijd aan de studie en evaluatie van gelijkzwevendetoonladders. Verder
is er eenniewwe notie van wel-gevormdheid gentroduceerd,waarvan in de laatste
twee hoofdstukken toepassingerworden besprolen.

Gelijkzw evende stemming

Sinds Pythagorasis reedsbekend dat eeninterval waarbij de verhoudingvan de
frequerties is gegeen door 2:1 eenrein (zuiver) interval oplewert: het octaaf.
De kwint met de verhouding 3:2 is eveneenseenrein interval. Deze(en meer)
reine intervallen blijk en onverenigbaarte zijn in een muziekinstrumert. Als je
bijvoorbeeldboven iederetoon op eenpiano eenreine kwint of octaaf wil kunnen
spelen, zoudener eenoneindig aartal toetsennodig zijn. Als oplossingvan dit

probleemis in de 1¥ eew de gelijkzwevende stemming ingewoerd, waarbij het
octaaf verdeeldwordt in 12 gelijke delen. In dezestemming worden bepaalde
intervallen uit de reine stemming goed benaderd. Veel onderzeekers, muziekthe-
oretici en componisten hebben zich daarna afgevraagdof het ook mogelijk is het
octaaf in eenander aartal dan 12 gelijke stukken te verdelen,waardoor mogelijk
meerintervallen uit de reine stemmingbenaderdworden, of sommigeintervallen
wellicht beter benaderdworden. Er zijn veel studies gedaannaar een n-toons
gelijkzwevende stemming of toonladder, waarbij geprokeerdwerd n zo optimaal
mogelijk te kiezen. De vraag is nu, wat is optimaal? Reine stemming besdrijft

een oneindig aartal intervallen. Welke van dezeintervallen moeten benaderd
worden in een (eindige) gelijkzwevende stemming? Om tot eenoptimale keuze
van n te komenmoet dus eenset van intervallen uit de reine stemming gekozen
worden die benaderddient te worden. De volgendevraag is: binnen dezesetvan
intervallen, welk interval moet het beste benaderdworden, en welke daarna, en
daarna? Of zijn alle intervallen even belangrijk? In dezestudie hebik eenpoging
gedaanbovenstaandevragente formaliserenom zo tot eenmodel te komen dat
de optimale waardenvoor n voorspelt. De gevondenwaardenvoor n zijn: 12,15,
19,27,31,34,41,46,53. Inderdaad blijkt de 12 toonsgelijkzwevendestemming,
degenedie tegerwoordig gebruikt wordt, eengoedestemmingte zijn volgensdit

model. Een aartal van de anderestemmingenis ook (in mindere mate dan 12)
gebruikt en onderzaht.

Als de resulterendegelijkzwevendestemmingengebruikt worden om Westerse
muziek meete spelen, dient dezestemming wel consistenh zijn met betrekking
tot het Westersenotatiesysteem.Hiermeewordt bedceld dat eenelemen uit de
gelijkzwevendetoonladder wel naar meerderenootnamen (zoals A; C]) mag ver-
wijzen, maar dat eennootnaam niet naar meerdereelemenen in de toonladders
mag verwijzen. Als dit laatste wel het ge\al zou zijn, zou het bijvoorbeeld niet
duidelijk zijn welke toets op eenpiano in te drukken wanneeriemand je vraagt
om eenA te spelen. Het gegeendat eenelemen naar meerderenoten kan verwij-
zenwordt enharmoniste equivalertie genaemd. Bijvoorbeeld, op een(12-toons
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gelijkzwevende) piano verwijst de toets die naar de C] verwijst, ook naarde D[.
Dezevoorwaardenvormen restricties op het aantal mogelijkhedenvoor n, in een
n-toons gelijkzwevende stemming. Dit betekert dat in sommigen-toons stem-
mingen niet gespeeld kan worden binnen het Westersemuziek-notatiesysteem.
Om toch in deze verboden' n-toons gelijkzwevende stemmingente kunnen spe-
len gegeen bovenstaanderegels,zou eenander notatiesysteemgebruikt moeten
worden. Hoofdstuk 3 van dit proefsdirift gaat in op dezevragen en maakt een
voorspelling van de mogelijkhedenvan waardenvoor n aan de hand van de op-
gelegderestricties door het notatiesysteem.Geconbineerd met de bovenstaande
voorspelde waardenvoor n (die verkregenwaren door goede benaderingvan rei-
neintervallen), voorspelt het Westersenotatiesysteem,dat systemenmet n gelijk
aan 12, 19 of 31 goede keuzeszoudenzijn. Instrumenten in dezestemming zijn
inderdaad vervaardigd.

W el-gevormdheid

In dit onderdeelvan dezestudie is gefacust op toonladdersen akkoordenin reine
stemming. De certrale vraag is hier: wanneernoem je eenset tonen eentoon-
ladder of akkoord en wat maakt een gaede toonladder of akkoord? Er bestaat
(tot op heden)geeneenduidigantwoord op dezevraag, en daarom besdouwen
we eengroot aanal toonladdersin eentoonruimte ( guur 7.1a)enkijkenwe naar
de overeenlomsten. Het blijkt dat vrijw el alle toonladderseencorvexevorm be-
sdrijven in dezeruimte. Een corvexe vorm is eenvorm zonder inhammen of
gaten (bijv oorbeeld eencirkel, vierkant of ovaal hebben eencorvexevorm, maar
eenster of donut hebben geencorvexe vorm). Voor Westerseakkoorden geldt
hetzelfde, alle laddereigenakkoorden (akkoorden uit de toonladder) hebben een
corvexe vorm. Dit proefsdirift betoogt dat de corvexiteit van toonladdersen
akkoordente maken heeft met consonatie. Hoe meerde tonen met elkaar in ver-
binding staan(dus zonderinhammenof gatentussentweetonen), hoe makkelijker
je van de enetoon naar de anderekunt gaanvia consonare intervallen. Hiermee
is nu ook eenevaluatiemodel voor toonladdersgemaakt: is de toonladderconvex,
dan noemenwe hem wel-gevwormd. Convexiteit blijkt onafhanlelijk te zijn van
de gelozenbasisvan de toonruimte, wat dezeeigensbap nog specialer maakt:
het is geenartefact van de ruimte. Doordat convexiteit is aangetamnd voor een
groot aartal toonladderswaaronder ook niet Westersetoonladders, is dit een
goedeaarnwijzing dat convexiteit uni cerende eigensbappen van toonstructuren
weer kan geven. Een eigenshap die verwant is aan corvexiteit is compactheid:
de mate waarin de elemerten van eentoonstructuur dicht bij elkaar zitten in de
toonruimte. In tegenstellingtot cornvexiteit is compactheidwel afhankelijk van
de gelozenbasisvan de toonruimte. Echter, het blijkt dat als de basisgekozen
wordt die de meestconsonate intervallen projecteert op de kleinste afstandenin
deruimte, de compactheideveneengenterpreteerd kan wordenals eenmaat van
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consonatie: hoe compacterde setnoten, hoe consonater. We kunnennu kijken
naar toepassingervan de eigenshappen corvexiteit en compactheid.

Toepassing 1: juiste intonatie van akkoorden

Als we praten over akkoorden, is dat meestalin termen van nootnamen of een
aanduiding van waar een akkoord in eentoonladder zit. We kunnen bijvoor-
beeld spreken over het tonica akkoord, het akkoord dat op de grondtoon van de
toonladder staat. Of we kunnen het hebben over het dominart septiemakkoord,
het akkoord dat in de toonladdervan C, de noten G;B;D;F besdrijft. Zelden
editer, hebbenwe het over akkoordenin termen van frequenie-verhoudingen(zo-
als het akkoord 1; %; g) wanneerwe eenakkoord in eenstuk muziek aanduiden.
Dit komt omdat voor de meesteakkoorden het niet volledig duidelijk is hoe ze
gentoneerd moetenworden. Natuurlijk bestaanhier veelmeningenover, maar er
is geeneenduidigetheorie die iedereernvolgt. Er vanuit gaandedat eenakkoord zo
consonamh mogelijk moet klinken, kunnenwe de mate van corvexiteit encompact-
heid gebruiken om te ontdekken welke intonatie (welke frequertie-verhoudingen)
geprefereerdvordt voor eenaartal akkoorden. Als ewvaluatiemethode gebruiken
we een andere bestaandemaat voor consonatie, de functie voorgesteld door
Euler. Het blijkt dat compactheideenbetere indicator is voor consonatie van
akkoorden dan corwvexiteit.

Toepassing 2: juiste notatie van tonen

In veel computer toepassingenwvorden tonen gecaleerd als MIDI getal. In het
MIDI systeemis de certrale C gecaleerdals het getal 60; de toon die eenhalve
toon hogeris (C]=D[) als 61 en zo verder. DezeMIDI notatie is analoog aan de
12-toons gelijkzwevendestemming. Beide maken geenondersteid tussenenhar-
monisd equivalerte noten zoalsde C] ende D[. Echter, juist dezenootnamen
bevatten veel informatie over bijvoorbeeld de toonsmrt van een stuk, de har-
monie, melodie en intonatie, en zijn dus heel belangrijk voor een muzikant om
te weten. Om dezeredenis het nuttig als er eenmodel zou bestaan, die MIDI

getallenin noothamenzou omzetten. Dit is lastig, want de enekeerrepresereert
eenbepaaldMIDI getal bijvoorbeeldeenA], maar eenanderekeerrepreserteert
datzelfde MIDI getal eenB[, afhankelijk van de muzikale cortext. In de litera-
tuur zijn reedseenaarntal modellen voorgestelddie proberen de noten juist te
“spellen’, gegeen eenmuziekstukin MIDI notatie. Geenvan de voorgesteldemo-
dellen werkt voor 100 procert goed, wat wil zeggendat geenvan dezemodellen
alle noten van alle ingegeen muziekstukken goed codeert. De "gcede’ codering
wordt bij dit probleemgegeen door de notatie van de componist van het stuk.
In dit proefsdirift presenieer ik eennieuw model voor het juist “spellen' van no-
ten, gebaseercp de notie van compactheid. De toonsmrt van eenstuk draagt
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voor eengroot gedeeltebij aan de muzikale cortext die ervoor zorgt dat eennoot
op eenbepaaldemanier gesgeld wordt. Het blijkt dat, door de meestcompacte
vorm van een set noten te kiezen, deze noten zich vaak binnen een toonsaort
bevindenwat er meestalvoor zorgt dat dit de juist spelling van dezeset noten
weergeeft.In het resulterendecompactheids-mdel kan het aartal notenin zo'n
setgewarieerdworden, en het blijkt dat hoe meernotenin de setzitten, hoe beter
het model werkt. Het compactheids-mdel is getest op alle preludesen fuga's
uit het Wohltemperierte Klavier van J.S. Bach dat in totaal 41544noten bevat.
Eenscorevan 99, 21 procert wordt bereikt als de stukken verdeeldwordenin sets
van 7 noten. Dit betekent dat 99; 21 procert van alle noten goed gespeld wordt
met dit model. Hoewel dezescorevergelijkbaar is met die van anderemodellen
bekend uit de literatuur, is het bijzonder dat eenmodel dat sledits gebaseerds
op een principe zulke goederesultaten kan geen.

T enslotte

De bestudeerdeproblemen samewattend, kunnen deze gezienworden als pro-
jecties tussen versdillende aanduidingenvoor tonen. In de studie over de ge-
lijkzwewvende stemming bijvoorbeeld, hebben we een projectie gemaakt van de
frequertie-verhoudingennaar de elemenen van de gelijkzwevende stemming en
van de nootnamen naar de elemenien van de gelijkzwevende stemming. Daar-
na, bij de problematiek rond de juiste stemmingvan akkoorden, hebben we ons
bezig gehoudenmet hoe de nootnamen juist te projecteren op de frequenie-
verhoudingen. Tenslotte draait het probleemvan de juiste notatie van noten om
eengestikte projectie van de elemenen van gelijkzwevendestemming (of MIDI)
naar de nootnamen. We hebben eenaartal algemeneregelmatighedengevonden
in toonstructuren, op basiswaarvan de tweelaatst gencemdeprojectiestot stand
zijn gekomen.

Terugkomendop devragendie in het begingesteldzijn, kan gezegdvordendat
eenaanal aspectenmogelijk heeft bijgedragenaan het ontstaan van versaillen-
de toonladders. De n-toons gelijkzwevendetoonladdersdie theoretisch gevonden
werden door het zoeken naar een goede benaderingvan de reine stemming en
eengestikte notatie, zijn tevensgewndenin de praktijk. Dit ondersteurt de
aannamedat ‘reine stemming' en "‘gesbikte notatie' onderliggendeeisenzijn ge-
weestvoor het ontstaan van dezetoonladders. Verderis convexiteit gevondenals
overkoepelendeeigensbap van eengroot aartal reinetoonladders. Enerzijds sug-
gereertdit dat het principe van corvexiteit eenonderliggendprincipe geweestkan
zijn dat eenrol heeft gesgeeld bij het ontstaan van toonladders. Anderzijds kan
convexiteit gebruikt worden als evaluatiemodel zoalshierboven gestireven. Ten-
slotte kan de corvexiteits-eigenshap gebruikt wordenvoor het verder exploreren
en ontwikkelenvan nieuwe toonladders.
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