The dissertation of Theo Janssen was defended in April 1983 (UvA). In 1986 it was republished by the former Mathematical Centre (now CWI) in two volumes, the CWI tracts 19 and 28, respectively.

The first volume presents the background of the approach and its application to programming languages. It consists of chapters 1-3 and 10, and appendix 1 of the original dissertation. The second volume presents the consequences of the framework for natural language semantics. It consists of chapters 4-9 and appendices 2 and 3. All the text from the original dissertation is incorporated, only typing errors have been corrected and a small update has been added in chapter IV of vol 1. What we make available here, with permission of the CWI, is the republication of 1986.

CWI tract 19.
Foundations and applications of Montague grammar. Part 1: Philosophy, framework, computer science.
CWI tract 28
Foundations and applications of Montague grammar. Part 2: Applications to natural language.
CWI Tracts

Managing Editors
J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board
W. Albers (Maastricht)
P.C. Baeyen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Eindhoven)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
Foundations and applications of Montague grammar
Part 1: Philosophy, framework, computer science

T.M.V. Janssen
PREFACE

The present volume is one of the two tracts which are based on my dissertation 'Foundations and applications of Montague grammar'. Volume 1 consists of the chapters 1, 2, 3 and 10 of that dissertation, and volume 2 of the chapters 4-9. Only minor corrections are made in the text. I would like to thank here again everyone who I acknowledged in my dissertation, in particular my promotor P. van Emde Boas, co-promotor R. Bartsch, and coreferent J. van Benthem. For attending me on several (printing-)errors in my dissertation I thank Martin van de Berg, Cor Baayen, Biep Durieux, Joe Goguen, Fred Landman and Michael Moortgat, but in particular Herman Hendriks, who suggested hundreds of corrections. The illustrations are made by Tobias Baanders.

The two volumes present an interdisciplinary study between mathematics, philosophy, computer science, logic and linguistics. No knowledge of specific results in these fields is presupposed, although occasionally terminology or results from them are mentioned. Throughout the text it is assumed that the reader is acquainted with fundamental principles of logic, in particular of model theory, and that he is used to a mathematical kind of argumentation. The contents of the volumes have a linear structure: first the approach is motivated, next the theory is developed, and finally it is applied. Volume 1 contains an application to programming languages, whereas volume 2 is devoted completely to the consequences of the approach for natural languages.

The volumes deal with many facets of syntax and semantics, discussing rather different kinds of subjects from this interdisciplinary field. They range from abstract universal algebra to linguistic observations, from the history of philosophy to formal language theory, and from idealized computers to human psychology. Hence not all readers might be interested to read everything. Readers only interested in applications to computer science might restrict themselves to volume 1, but then they will miss many arguments in volume 2 which are taken from computer science. Readers only interested in applications to natural language might read chapters 1-3 of volume 1, and all of volume 2, but they will miss several remarks about the connection between the study of the semantics of programming languages and of the semantics of natural languages. Readers familiar with Montague grammar, and mainly interested in practical consequences of the approach, might read chapters 1 and 2 in volume 1 and chapters 6-10 in volume 2, but they will
miss new arguments and results concerning many aspects of Montague grammar.

Each chapter starts with an abstract. Units like theorems etc. are numbered (eg 2.3 Theorem). Such a unit ends where the next numbered unit starts, or where the end of the unit is announced (2.3 end). References to collected works are made by naming the first editor. Page numbers given in the text refer to the reprint last mentioned in the list of references, except in case of some of Frege's publications (when the reprint gives the original numbering).
CONTENTS

I. The principle of compositionality of meaning
 1. An attractive principle
 2. Frege and the principle
 2.1. Introduction
 2.2. Grundlagen
 2.3. Sinn und Bedeutung
 2.4. The principle
 2.5. Conclusion
 3. Towards a formalization
 4. An algebraic framework
 5. Meanings
 5.1. Introduction
 5.2. Natural language
 5.3. Programming Language
 5.4. Predicate Logic
 5.5. Strategy
 5.6. Substitutional Interpretation
 6. Motivation

II. The algebraic framework
 1. Introduction
 2. Algebras and subalgebras
 3. Algebras for syntax
 4. Polynomials
 5. Term algebras
 6. Homomorphisms
 7. A safe deriver
 8. Montague grammar
 9. Discussion

III. Intensional logic
 1. Two facets
 1.1. Introduction
 1.2. Model-part I
 1.3. Model-part II
 1.4. Laws
 1.5. Method
 2. Two-sorted type theory
 3. The interpretation of Ty2
 4. Properties of Ty2
 5. Intensional Logic
 6. Properties of IL
 7. Extension and intension
IV Montague grammar and programming languages 127
 1. Assignment statements 128
 1.1. Introduction 128
 1.2. Simple assignments 129
 1.3. Other assignments 131
 2. Semantics of programs 133
 2.1. Why? 133
 2.2. How? 135
 3. Predicate transformers 137
 3.1. Floyd’s forward predicate transformer 137
 3.2. Hoare’s backward predicate transformer 139
 3.3. Problems with Floyd’s rule 139
 3.4. Predicate transformers as meanings 141
 4. Semantical Considerations 144
 4.1. The model 144
 4.2. The logic 148
 4.3. Theorems 150
 5. First fragment 152
 5.1. The rules 152
 5.2. Examples 154
 6. Pointers and arrays 156
 6.1. Pointers 156
 6.2. Arrays 158
 7. Second fragment 161
 7.1. The rules 161
 7.2. The postulates 164
 7.3. A model 166
 8. Correctness and completeness 168
 8.1. State transition semantics 168
 8.2. Strongest postconditions 169
 8.3. Completeness 172
 9. The backward approach 176
 9.1. Problems with Hoare’s rule 176
 9.2. Backward predicate transformers 177
 9.3. Weakest preconditions 178
 9.4. Strongest and weakest 179
 9.5. Correctness proof 182
 10. Mutual relevance 185

Appendix Safe and polynomial 189
Index of names 193
References 197
Foundations and applications of Montague grammar
Part 2: Applications to natural language

T.M.V. Janssen
CONTENTS

V. The PTQ-fragment
1. Introduction ... 1
2. John runs ... 2
3. The woman walks 4
4. Mary walks and she talks 16
5. John finds a unicorn 20
6. Every man loves a woman 23
7. Bill walks in the garden 32
8. John tries to find a unicorn 38
9. John believes that Mary will run 42

VI. Variants and deviations
1. Introduction ... 53
2. The use of syntactic information 54
 - 2.1. Introduction 54
 - 2.2. Easy to please 54
 - 2.3. The horse Cannonero 57
3. Non-polynomially defined operators 58
 - 3.1. Introduction 58
 - 3.2. John who runs 59
 - 3.3. Das Mädchen gibt den Apfel dem Vater 61
 - 3.4. Woman such that she loves him 61
4. Operators defined on representants 62
5. New symbols in IL 63
 - 5.1. Introduction 63
 - 5.2. Shake John awake 63
 - 5.3. I and You 73
6. Counting elements 71
 - 6.1. Introduction 71
 - 6.2. Keenan & Faltz count 71
 - 6.3. Partee counts 73
7. The translation language 74
 - 7.1. Introduction 74
 - 7.2. Hausser translates 75
 - 7.3. Lewis translates 75
 - 7.4. Groenendijk & Stokhof translate 76
 - 7.5. Keenan & Faltz on translations 77

VII. Partial rules
1. Restrictions of the framework 79
2. Partial algebras 80
 - 2.1. Partial grammars 80
 - 2.2. Partial models 84
 - 2.3. Discussion 87
3. Incorporating transformations 90
4. Defined for another category 93
 - 4.1. Introduction 93
 - 4.2. He is loved 94
4.3. Give John a book 94
4.4. Mary shakes John awake again 95
4.5. See himself 96
4.6. Easy to see 98
5. Subcategorization and rule schemes 99
5.1. Hyperrules 99
5.2. Metarules 102
5.3. Variables 103
6. The Well-formedness constraint 108

VIII. Constituent structures 115
2. Theoretical aspects 118
2.1. Trees in Montague grammar 118
2.2. Algebraic considerations 121
2.3. Practical differences 122
3. Technical aspects 125
3.1. Introduction 125
3.2. Operations on trees 126
3.3. Features and lexicon 127
3.4. Queries for information 131
4. PTQ syntax 133

IX. Relative clause formation 137
1. Introduction 138
2. The CN-S analysis 138
2.1. The discussion by Partee 138
2.2. The PTQ-rules 140
2.3. Fundamental problems 142
3. The T-S analysis 144
3.1. Cooper on Hittite 144
3.2. Bach & Cooper on English 145
3.3. Fundamental problems 147
4. The proposals of Cooper 148
4.1. Not-there 148
4.2. Left-over, proposal 1 149
4.3. Left-over, proposal 2 150
4.4. Conclusion 154
5. The variable principle 154
6. Many analyses 158
6.1. The CN-S analysis for English 158
6.2. The S-S analysis for Hittite 159
6.3. The T-S analysis for English 161
6.4. The Det-S analysis for English 163
6.5. Conclusion 164
7. Other arguments 165
7.1. Syntax: gender agreement 165
7.2. Semantics: scope 166
7.3. Conclusion 168
8. The general question 169
X. Scope ambiguities of tense, aspect and negation 173
1. Introduction 174
2. The PTQ-approach 174
 2.1. Introduction 174
 2.2. Syntax of PTQ 175
 2.3. Ambiguities 175
 2.4. Model 177
3. Basic verb modifiers 177
4. Compound verb modifiers 184
5. Complex constructions 187
 5.1. Introduction 187
 5.2. Conjoined verb phrases with positive verbs 187
 5.3. Conjoined verb phrases with negated verbs 189
 5.4. Terms 191
 5.5. Embeddings 192
6. One of the rules 194
7. The grammar 199
 7.1. Introduction 199
 7.2. Rules 200
 7.3. Morphology 205
 7.4. Fins and Verb Phrase 205
 7.5. Final remarks 206

Appendix 1. Individual concepts in PTQ 209
Appendix 2. Set manipulation in syntax 223
Index of names 227
References 229