MULTIPLE REPRESENTATIONS OF DYNAMIC DATA STRUCTURES

Michiel H.M. Smid Mark H. Overmars Léen Torenvliet
Peter van Emde Boas
ITLI Prepublication Series
for Computation and Complexity Theory CT-88-08
MULTIPLE REPRESENTATIONS OF
DYNAMIC DATA STRUCTURES

Michiel H.M. Smid
Centre for Mathematics and Computer Science, Amsterdam

Mark H. Overmars
Department of Mathematics and Computer Science, University of Utrecht

Leen Torenvliet Peter van Emde Boas
Department of Mathematics and Computer Science, University of Amsterdam

Received October 1988

Correspondence to:
Faculteit der Wiskunde en Informatica
(Department of Mathematics and Computer Science)
Roetersstraat 15
1018WB Amsterdam

Faculteit der Wijsbegeerte
(Department of Philosophy)
Grimburgwal 10
1012GA Amsterdam
Multiple Representations of Dynamic Data Structures

Michiel H.M. Smid* Mark H. Overmars† Leen Torenvliet‡
Peter van Emde Boas‡

October 24, 1988

Abstract

We investigate two versions of the problem of maintaining multiple representations of dynamic data structures. In the first version, we maintain copies of the same data structure among a number of processors. In the second version, which is dual to the first one, we maintain a shadow administration in secondary memory, that contains information for the data structure in main memory to be reconstructed after e.g. a system crash. For both versions, we give a general and realistic model to describe solutions. We give general solutions that are especially applicable to data structures in which an update changes only a small part.

1 Introduction

The design of efficient data structures for solving searching problems is an important part of algorithm design. Many types of data structures exist, storing different types of objects and allowing for different types of queries. Data structures and searching problems have been studied in great detail and many properties and general techniques have been found. For example, general techniques exist for turning static data structures that do not allow for insertions and deletions of objects into dynamic structures that do allow for such operations (see [4]).

In most studies it is assumed that the data structure is stored only once in the main memory of a computer and that all operations are performed on this

* Bureau SION, Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. This author was supported by the Netherlands Organization for Scientific Research (NWO).
† Department of Computer Science, University of Utrecht, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands.
‡ Departments of Mathematics and Computer Science, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
one structure. In many situations, however, we store the structure more than once—possibly on different storage media—and have a multiple representation of the data structure.

Consider for example the following case. When we have a network of processors, each having its own memory, there are situations in which each processor holds its own copy of a particular data structure. Changes to the data structure have to be made in all copies. Therefore, we dedicate one processor the task of maintaining the data structure and broadcasting the actual changes to the other processors. Here we have one data structure that should allow for updates, and a set of other structures that answer queries. Of course, the query data structures must be structured in such a way that they can perform updates, but they get the update in a ‘preprocessed’ way that might be easier to handle. The structure that performs the updates will be called the central structure. The other structures are the client structures. Note that since the central and client structures do not have to support the same operations, they might be structured in a different way.

As another example, consider the following cases. If a data structure is stored only in the main memory of a computer, all information will get lost after system or program errors. Also, after the regular termination of an application program that uses a data structure, the copy of this structure that is stored in main memory can get lost.

In these cases we again represent the data more than once. That is, besides the data structure in main memory, we also store information in secondary memory from which it is possible to reconstruct the original data structure. This shadow administration does not have to support the same operations as the main structure. Only insertions and deletions have to be performed, whereas on the main structure also queries have to be carried out. Furthermore, we only require that the shadow administration contains information to make it possible to reconstruct the main structure. Therefore, this shadow administration might be structured in a different way than the original data structure itself.

In this paper, the two problems just mentioned will be studied. We shall give easily analyzable models in which solutions will be described. We give general techniques to design efficient solutions that are widely applicable. For specific solutions we refer the reader to [12,13], where efficient solutions for certain classes of searching problems are given; to [14], where a shadow administration for trie hashing functions is given; to [5,6,8,11], where the problem of maintaining range trees in secondary memory is studied; and to [9], where the union-find problem is investigated.

Clearly, both problems are related to each other. In both cases there is one structure on which the updates are performed. After this update, the other structures that are stored on other media are updated. This is done by transporting data to these other structures. The actual update procedure for the other struc-
tures is somewhat different for both problems. A shadow administration is stored in secondary memory, which is divided into blocks. The only operation allowed here is to replace a block by another one. So in secondary memory no computing is possible. The client structures, however, are stored in a random access machine, on which computing is possible. This makes it possible to replace much smaller pieces of information than just blocks of some predetermined size.

The problems are 'dual' to each other: In the first problem, there is a central structure on which only updates are performed. After this central structure is adapted, we transport data to the client structures that makes it possible to update them. These client structures are also used for answering queries. In the second problem there is a main structure on which queries and updates are performed. After an update has been carried out in the main structure, information is transported to secondary memory, and the shadow structure is updated. In this shadow structure no queries are performed.

Efficient solutions to the problems have applications in the following areas:

- The theory of databases.

- Computational geometry. Since in this area often data structures are used that require more than linear space, it might be possible to improve upon the storage requirements.

- Storing dynamic data structures in write-once memories. The results to the problem of designing efficient client structures give insight in which parts of data structures are actually changed when performing updates.

- Multiprocessing. A system in which several processors execute distinct tasks, and communicate through message passing, might be even more sensitive to crashes than a uni-processor system. To protect a calculation against failure of processors, checkpoints are built in on several places of the calculation. If a checkpoint is reached, the state of all processors, and the interconnection pattern, is transported to secondary memory. If the system crashes, the calculation can be continued from the last reached checkpoint.

- Paging data structures. Techniques to maintain shadow administrations in secondary memory can sometimes be used in cases where the data structure does not fit in main memory and, hence, has to be stored in secondary memory. For an example, see [5,6].

The paper is organized as follows. In Section 2, we introduce a general model in which solutions to the problem of designing efficient client structures will be described. A general technique is given that is particularly useful for data structures in which the size of the changes in an update is much smaller than the time
needed to find these changes. In Section 3 we give the model we use to describe solutions for the reconstruction problem. Again, a general technique is given that is useful in cases where an update changes only a small part of the shadow administration. In Section 4, we give a class of problems for which both versions of the multiple representation problem have efficient solutions. In Section 5 we give some concluding remarks.

2 Maintaining data structures in a network

2.1 The model

We first introduce the general model in which solutions to the problem of designing central and client data structures will be described.

1. There is a network of processors, the clients, each having its own memory. Each client contains a copy of a data structure DS, the client structure, and uses it to solve queries.

2. One of the processors contains a central structure DS'. We assume that all processors are random access machines. An update is performed as follows. We first update the central structure DS'. During this update we obtain information making it possible to update the client structures efficiently. Then we send this information to the clients. Using the received information each client adapts its structure DS.

The complexity of the client structure DS is expressed by its size, query time and update time. This update time is split in transport time, which is proportional to the amount of data that is transported to the client structure, and computing time, which is the time the client needs to perform the update, using the received information. Note that this computing time is at least proportional to the transport time, since the client has to write the received information somewhere. (We assume that the central processor does not have direct memory access (DMA).)

The complexity of the central structure DS' is given by the usual measures, i.e. the size of the structure and the update time. (There is no query time, because in the central structure no queries are performed.)

2.2 A general technique

We will sketch a technique that is applicable to an arbitrary structure.

Let DS be the client structure, and let DS' be the corresponding central structure. Denote the size of DS (resp. DS') by $S(n)$ (resp. $S'(n)$). We assume that DS is a substructure of DS'. That is, DS is a part of DS', containing enough
information such that queries can be solved fast. Let UI be that part of DS' that is not in DS. (Here UI stands for update information.) For example, if DS' is a balanced binary tree, we can take for DS this tree without the balance information of the nodes, and for UI the balance information. (See the examples below.) Let $C(n)$ denote the amount of data that is changed in the client structure DS in an update.

We shall implement this multiple representation, such that an update of the client structure requires $O(C(n))$ transport and computing time. Also the other performances of the structures remain asymptotically the same.

Our processors are random access machines, the memories of which are modeled as arrays. Each entry in the array has a unique index. Data structures are composed of 'indivisible pieces of information' of constant size, such as pointers, integers, etc. Each such indivisible piece will be stored in one array entry.

In the central computer, we store the structure DS' such that DS and UI are in non-interfering parts of the memory. The client structure DS is stored in the client's memory, such that each 'indivisible piece of information' is located in the same position as its corresponding piece in the central memory. Note that data structures contain pointers, which we consider to be indices of array entries. By storing pieces of DS in each memory in the same positions, these pointers indeed 'point' to the correct object.

Suppose we want to perform an update. Then we first update the central structure. Next we send to each client the indices of all entries that are changed, together with the new contents of these entries. Using this information, each client structure is adapted. Since the indices of the entries that have to be changed in the client structure are known, it can be updated in time proportional to the number of changed entries. So the update of each client structure takes $O(C(n))$ transport and computing time. Note that the memory management of the client computers is arranged by the central structure. Clearly, at each moment the client structure is up to date and, hence, can be used to answer queries.

Let us give an example of this technique. Suppose we want to solve the member searching problem. An efficient data structure for this problem is the balanced binary search tree. Since balance information is only used for performing updates, the client versions of the tree do not need this balance information: Updates are first performed in the central structure. Then the nodes where rotations—and what kind of rotations—have to be performed are known.

Now take the binary tree from the class of αBB-trees; see Olivé [3]. These trees can be maintained by performing at most three rotations in the worst case. Hence in the client structure, an update changes only a constant amount of data. (In the central structure the balance information in the nodes has to adapted after an update, hence in this structure $O(\log n)$ data will change.)

Our technique gives client structures, in which updates can be performed
in constant transport and computing time, whereas the central structure needs $O(\log n)$ time. Using this result we can define a class of range trees \cite{1}, such that the corresponding client trees can be updated in $O((\log n)^{d-1})$ transport and computing time, whereas the central tree needs $O((\log n)^d)$ time. (d is the dimension of the stored points.)

3 The reconstruction problem

3.1 The model

For the reconstruction problem, i.e. the problem of designing a shadow administration for a given data structure, we use the following conceptual model.

1. DS is a dynamic data structure, stored in main memory.

2. SH is a shadow administration—stored in main memory—from which DS can be reconstructed.

3. In secondary memory, we store a copy CSH of SH.

4. There might be some extra information INF that is used to update SH and CSH efficiently. Since this information is not needed to reconstruct the structures, it is only stored in main memory.

Note that in practice SH often is not necessary and changes can be made immediately on CSH. The distinction between SH and CSH makes it easier to estimate time bounds.

An update is performed as follows. First the structures DS, SH and INF are updated. Then CSH in secondary memory is updated.

The updates of DS, SH and INF take place in main memory, which is a random access machine. The complexity is expressed in computing time.

To update CSH, data in secondary memory has to be updated. We assume that the file in secondary memory is divided into blocks of some fixed size. Each block has a unique address. We can access a block directly, provided its address is known. To update a file, we can replace a number of (physically) consecutive blocks by at most the same number of blocks. Also, we can add a number of new blocks, at the end of the file.

The copy CSH is updated by transporting data from main memory to secondary memory. More precisely, CSH is updated, by replacing all blocks that have to be changed by the corresponding updated parts of SH. The complexity of this transport process is given by the number of disk accesses that has to be done—for each segment of consecutive blocks we transport, we have to do one disk access—and by the transport time, which is proportional to the total amount of
data that is transported. Remark that the number of disk accesses depends on the way CSH is stored in secondary memory.

After a system crash, the contents of main memory will get lost. Therefore, we transport CSH to main memory, where it takes over the role of the lost SH. Then we reconstruct from SH the structures DS and INF. The entire reconstruction procedure takes one disk access, $O(S_{CSH}(n))$ transport time, where $S_{CSH}(n)$ is the size of CSH, and an amount of computing time. Note that this computing time is $\Omega(S_{CSH}(n))$, since the shadow administration has to be written in main memory. (We assume that secondary memory does not have DMA.)

3.2 A general technique

For the reconstruction problem, a general technique exists, that is similar to the one in Subsection 2.2. The technique consists of sending to secondary memory all changes to the shadow administration SH. These changes are not carried out, they are only stored in secondary memory. To reconstruct the data structure DS, we transport the file from secondary memory to main memory. Then we perform the updates in the shadow administration, and finally the structures DS and INF are reconstructed.

Let DS be a data structure and let SH and INF be the corresponding shadow administration. Let $S(n)$, $U(n)$, $C(n)$ and $R(n)$ denote respectively the size of SH, the total update computing time of SH and INF, the amount of data that is changed in SH after an update, and the computing time needed to reconstruct the structures DS and INF from SH. Note that $R(n) = \Omega(S(n))$.

We shall implement this multiple representation, such that the entire shadow structure can be updated in $O(U(n))$ computing time, one disk access and $O(C(n))$ transport time. Also, the other performances remain asymptotically the same. In this new representation the shadow administration in secondary memory is not an exact copy of the one in main memory.

Again, main memory is modeled as an array, the entries of which have unique indices. In each array entry we store an 'indivisible piece of information'.

Let m be the initial number of objects. Initially, SH is stored in the first $S(m)$ entries of main memory. Further, main memory contains DS and INF. In secondary memory we store—in contiguous blocks of size $O(C(m))$—the copy CSH. As in Subsection 2.2, initially CSH is an exact copy of SH, i.e. each indivisible piece is located in the same positions in both memories. Finally, we store in secondary memory an initially empty list UF. (UF stands for update file.)

Consider a sequence of $S(m)/C(m)$ updates. Note that $S(m)/C(m) \leq m$. Each update is performed in the structures DS, SH and INF, as usual. After each update of the structure SH, we send the indices of all changed entries of SH, together with the new contents of these entries, to secondary memory. These
changes—of total size $O(C(m))$—are stored in contiguous blocks at the end of the list UF. The structure CSH is not affected during the updates. So the update of the shadow administration takes $O(U(m))$ computing time, one disk access and $O(C(m))$ transport time.

Suppose we want to reconstruct the structures during these updates. Then we transport CSH and UF to main memory, where we store CSH in the first $S(m)$ positions. Hence pointers in CSH indeed ‘point’ to the correct objects. Next we carry out the at most $S(m)/C(m)$ updates using the list UF. Since we know the indices of the entries in CSH that have to be changed, each update takes $O(C(m))$ computing time. Hence all updates together take $O(C(m) \times S(m)/C(m)) = O(S(m))$ computing time. After these updates, the resulting structure CSH contains the up to date shadow administration. Hence it can take over the role of SH. Finally, we reconstruct from SH the structures DS and INF in $R(n)$ computing time, where n is the current number of objects.

Hence the entire reconstruction algorithm takes one disk access, $O(S(m)) = O(S(n))$ transport time and $O(S(m) + R(n)) = O(R(n))$ computing time.

After these $S(m)/C(m)$ updates, we build all structures anew. Then we continue in the same way with a sequence of $S(m')/C(m')$ updates, where m' is the number of objects at that moment.

Clearly, the space requirements in main and secondary memory do not increase asymptotically. Also, it can be shown that the average update complexity of the shadow administration is bounded by $O(U(n))$ computing time, one disk access and $O(C(n))$ transport time, where n is the current number of objects. These average case bounds can be turned into worst case bounds, see [10]. (Then, the number of disk accesses per update increases to two.)

We apply this technique to range trees with a slack parameter; see Mehlhorn [2]. In such a range tree—with slack parameter m—for a set of n points, range queries can be solved in time $O((\log n)^2 2^m/m + t)$, if t is the number of reported answers. The structure has size $O((n \log n)/m)$, and can be built in $O(n \log n + (n \log n)/m)$ time. Here the first term is the time needed to sort the n points to both coordinates, whereas the second term is the actual building time. Therefore, let the shadow administration SH consist of two lists, one containing the points ordered to x-coordinate, and the other containing the points ordered to y-coordinate. The structure INF consists of two balanced binary trees, having the points in the lists in sorted order in their leaves. Each leaf of such a tree contains a pointer to the corresponding point in the list. Clearly, SH and INF can be updated in $O(\log n)$ time. In SH, an update changes only a constant amount of data.

Hence our technique gives a shadow administration of optimal size $O(n)$, that can be maintained at the cost of $O(\log n)$ computing time, two disk accesses and $O(1)$ transport time in the worst case. Reconstruction takes one disk access, $O(n)$ transport time and $O((n \log n)/m)$ computing time. Now take $m = \log \log n$. Then
the reconstruction computing time is bounded by $O((n \log n)/\log \log n)$, which is asymptotically smaller than the time needed to build the range tree from scratch. Also, the size of the shadow administration is asymptotically smaller than that of the data structure itself!

4 Order decomposable set problems

It turns out that for specific classes of problems efficient solutions for both versions of the multiple representation problem can be designed. In this subsection we consider one such class, the order decomposable set problems.

In a set problem we are given a set of objects, and we are asked some question about this set. More precisely, if T_1 and T_2 are sets, then a set problem is a mapping $PR : P(T_1) \rightarrow T_2$. Here $P(T_1)$ denotes the power set of T_1. For example, in the convex hull problem, we are given a set S of points, and we are asked to compute their convex hull. Here T_1 is the set of points in euclidean space, and T_2 is the set of all convex polytopes.

We restrict ourselves to set problems, the answers of which can be merged efficiently. That is, once the answers for two separated halves of a set are known, the answer for the entire set can be obtained fast. For such a class of set problems, we maintain the answer for the entire set, by decomposing the set into subsets, and by maintaining the answers for these subsets.

Definition 1 A set problem $PR : P(T_1) \rightarrow T_2$ is called $O(n)$-order decomposable, if there is an order ORD on T_1, and a function $\square : T_2 \times T_2 \rightarrow T_2$, such that for each set $S = \{p_1 \leq p_2 \leq \ldots \leq p_n\}$, ordered according to ORD, and for each i, $1 \leq i < n$, we have

$$PR(\{p_1, \ldots, p_n\}) = \square(PR(\{p_1, \ldots, p_i\}), PR(\{p_{i+1}, \ldots, p_n\})),$$

where the function \square takes $O(n)$ time to compute.

For example, as was shown by Preparata and Hong [7], the three-dimensional convex hull problem is $O(n)$-order decomposable, where ORD is the order according to x-coordinate.

Let PR be an $O(n)$-order decomposable set problem. We sketch a dynamic data structure solving PR (for details, see [4]). Let $S = \{p_1 \leq p_2 \leq \ldots \leq p_n\}$ be a set, ordered according to ORD, for which we want to maintain the answer to PR. Let $f(n)$ be an integer function, such that $1 \leq f(n) \leq n$. Partition S into subsets $S_1 = \{p_1, \ldots, p_{f(n)}\}$, $S_2 = \{p_{f(n)+1}, \ldots, p_{2f(n)}\}$, \ldots

The data structure DS consists of the following. Each set S_i is stored in a balanced binary tree T_i. Let r_i be the root of T_i. These roots are ordered according to $r_1 < r_2 < r_3 < \ldots$, and we store them in the leaves of a balanced binary tree T. Each node v of T contains the following additional information. Suppose the
subtree of T with root v has $r_i, r_{i+1}, \ldots, r_j$ as its leaves. Then node v contains the
answer to the set problem PR for the set $S_i \cup S_{i+1} \cup \ldots \cup S_j$.

It will be clear how this structure can be built using the divide-and-conquer
principle.

An insertion of an object p is performed by walking down tree T to find the
appropriate root r_i, and by inserting p in the tree T_i. Then we rebuild the answer
$PR(S_i)$ and walk back to the root of T. During this walk we rebuild for each
node we encounter its additional information by merging the answers stored in its
left and right sons. The deletion procedure is similar. By rebuilding the entire
structure after $f(n)$ updates, it will remain balanced.

An efficient client structure. Clearly, DS has the property that a very
small part of it is used for query answering—the answer to the problem is stored
in the root of T—whereas the rest of the structure is used only to update this
answer efficiently.

Therefore, we take for the client structure the answer $PR(S)$ to the set problem
for the entire set S, and we take for the central structure the full dynamic structure
DS. Updates are first performed in the central structure. Then the new answer
to the set problem is sent to the clients, where it replaces the old answer.

We apply the above to an $O(n)$-order decomposable set problem, e.g. the three-
dimensional convex hull problem; for other examples see [4]. Let $f(n) = \lceil n/\log n \rceil$. Then the central structure has size $O(n \log \log n)$ and an update takes $O(n)$ time
on the average. The client structure, however, has size only $O(n)$, and an update
takes $O(n)$ transport and computing time on the average.

An efficient shadow administration. Consider DS again. In general, the
total size of all trees T_i and all answers $PR(S_i)$ is bounded by $O(n)$. As soon as
we have these parts, the rest of the structure can be built very fast: We only have
to merge the answers to obtain the tree T with the partial answers in its nodes.

This leads to the following shadow administration. The structure CSH consists
of the trees T_i and the answers $PR(S_i)$. (Since the shadow structure consists only
of parts of DS itself, we do not need the structures SH and INF.) We divide
secondary memory into parts of consecutive blocks, such that each part can contain
an answer $PR(S_i)$ and a tree T_i, for a set S_i of cardinality at most $2f(n)$. Then we
store in each such part an answer $PR(S_i)$ and its corresponding tree T_i. In each
leaf r_i of T, we store the address of the corresponding structures T_i and $PR(S_i)$ in
secondary memory.

After an update, only one tree T_i and one answer $PR(S_i)$ will have changed
and, hence, have to be transported to secondary memory. Remark that we know
from the update of the structure DS the position in secondary memory where
these changed structures have to be written. After $f(n)$ updates, all structures
are rebuilt.
We again apply the above to an $O(n)$-order decomposable set problem. Let $f(n) = \lceil n / \log n \rceil$. Then we get a shadow administration of size $O(n)$. An update takes one disk access and an average amount of $O(n/\log n)$ transport time. Reconstruction of the structure DS takes $O(n \log \log n)$ computing time, since the tree T has depth $O(\log \log n)$, and on each level we spend $O(n)$ time to merge the answers stored one level below it.

Again we have a shadow administration of size that is asymptotically smaller than that of the data structure itself (which has size $O(n \log \log n)$), and the original data structure can be reconstructed in asymptotically less time than by building it from scratch (which would take $O(n \log n)$ time).

5 Concluding remarks

We have studied two dual versions of the problem of maintaining multiple representations of data structures, and we have given basic models to describe solutions. For both versions we have given a general technique to obtain solutions, in which the transport time in an update is bounded by $O(C(n))$, which is the size of the changes in the client structure or in the shadow administration. So this technique is particularly useful for structures where $C(n)$ is small compared to the time needed to find the changes. We have given some examples of such structures. It would be interesting, however, to have more of them.

We have given techniques that are applicable to order decomposable set problems. There are also several techniques that can be applied to the related class of decomposable searching problems. See [12,13].

There remain some problems and directions for further research:

In this paper, we perform single updates in the data structures. Is it possible to carry out sets of updates more efficiently, than by just performing them one after another?

Finally, one could investigate other multiple representation problems. For example, what to do if the client structures do not necessarily have to represent the same set of objects?

References

12
The ITLI Prepublication Series

1986

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Institute of Language, Logic and Information</td>
<td>The Institute of Language, Logic and Information</td>
</tr>
<tr>
<td>A Semantical Model for Integration and Modularization of Rules</td>
<td>A Semantical Model for Integration and Modularization of Rules</td>
</tr>
<tr>
<td>Categorial Grammar and Lambda Calculus</td>
<td>Categorial Grammar and Lambda Calculus</td>
</tr>
<tr>
<td>A Relational Formulation of the Theory of Types</td>
<td>A Relational Formulation of the Theory of Types</td>
</tr>
<tr>
<td>Some Complete Logics for Branched Time, Part I</td>
<td>Some Complete Logics for Branched Time, Part I</td>
</tr>
<tr>
<td>Well-founded Time, Forward looking Operators</td>
<td>Well-founded Time, Forward looking Operators</td>
</tr>
<tr>
<td>Logical Syntax</td>
<td>Logical Syntax</td>
</tr>
</tbody>
</table>

1987

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type shifting Rules and the Semantics of Interrogatives</td>
<td>Jeroen Groenendijk, Martin Stokhof</td>
</tr>
<tr>
<td>Frame Representations and Discourse Representations</td>
<td>Frame Representations and Discourse Representations</td>
</tr>
<tr>
<td>Unique Normal Forms for Lambda Calculus with Surjective Pairing</td>
<td>Jan Willem Klop, Roel de Vrijer</td>
</tr>
<tr>
<td>Polyadic quantifiers</td>
<td>Polyadic quantifiers</td>
</tr>
<tr>
<td>Traditional Logicians and de Morgan’s Example</td>
<td>Víctor Sánchez Valencia</td>
</tr>
<tr>
<td>Temporal Adverbials in the Two Track Theory of Time</td>
<td>Eleonore Oversteegen</td>
</tr>
<tr>
<td>Categorial Grammar and Type Theory</td>
<td>Johan van Benthem</td>
</tr>
<tr>
<td>The Construction of Properties under Perspectives</td>
<td>Johan van Benthem</td>
</tr>
<tr>
<td>Type Change in Semantics: The Scope of Quantification and Coordination</td>
<td>Herman Hendriks</td>
</tr>
</tbody>
</table>

1988

Logic, Semantics and Philosophy of Language:

- **LP-88-01** Michiel van Lambalgen: Algorithmic Information Theory
- **LP-88-02** Yde Venema: Expressiveness and Completeness of an Interval Tense Logic
- **LP-88-03** Johan van Benthem: Year Report 1987
- **LP-88-04** Reinhard Muskens: Going partial in Montague Grammar
- **LP-88-05** Johan van Benthem: Logical Constants across Varying Types
- **LP-88-06** Johan van Benthem: Semantic Parallels in Natural Language and Computation
- **LP-88-07** Renate Bartsch: Tenses, Aspects, and their Scopes in Discourse
- **LP-88-08** Jeroen Groenendijk, Martin Stokhof: Context and Information in Dynamic Semantics
- **LP-88-09** Theo M.V. Janssen: A mathematical model for the CAT framework of Eurotra

Mathematical Logic and Foundations:

- **ML-88-01** Jaap van Oosten: Lifschitz’ Realizability
- **ML-88-02** M.D.G. Swaen: The Arithmetical Fragment of Martin Lõf’s Type Theories with weak Σ-elimination
- **ML-88-03** Dick de Jongh, Frank Veltman: Provability Logics for Relative Interpretability
- **ML-88-04** A.S. Troelstra: On the Early History of Intuitionistic Logic

Computation and Complexity Theory:

- **CT-88-01** Ming Li, Paul M.B.Vitanyi: Two Decades of Applied Kolmogorov Complexity
- **CT-88-02** Michiel H.M. Smid: General Lower Bounds for the Partitioning of Range Trees
- **CT-88-03** Michiel H.M. Smid, Mark H. Overmars: Maintaining Multiple Representations of Dynamic Data Structures
- **CT-88-04** Dick de Jongh, Lex Hendriks, Gerard R. Renardel de Lavalette: Computations in Fragments of Intuitionistic Propositional Logic
- **CT-88-05** Peter van Emde Boas: Machine Models and Simulations (revised version)
- **CT-88-06** Michiel H.M. Smid: A Data Structure for the Union-find Problem having good Single-Operation Complexity
- **CT-88-07** Johan van Benthem: Time, Logic and Computation
- **CT-88-08** Michiel H.M. Smid, Mark H. Overmars: Multiple Representations of Dynamic Data Structures

LP-88-09 Theo M.V. Janssen: A mathematical model for the CAT framework of Eurotra