THE VANILLA META-INTERPRETER FOR DEFINITE LOGIC PROGRAMS AND AMBIGUOUS SYNTAX

Marianne Kalisbeek

ILLC Prepublication Series
for Computation and Complexity Theory CT-93-01
The ILLC Prepublication Series

1990
Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinities
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar
LP-90-03 Alexei Bartsch Concept Formation and Concept Composition
LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Gennaro Chierchia The Variability of Impersonal Subjects
LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montague Grammar
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers
LP-90-11 Johan van Bentham General Dynamics
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Maaike de Rijke The Modal Logic of Inequality
LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations

ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh’s Theorem
ML-90-03 Yde Venema Relational Games
ML-90-04 Maarten de Rijke Unary Interpretability Logic
ML-90-05 Domenico Zambella Sequences with Simple Initial Segments
ML-90-06 Jaap van Oosten Extension of Lifschitz’ Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories
ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Dick de Jongh, Duccio Pianigiani Solution of a Problem of David Guispari
ML-90-10 Michiel van Lambalgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaïdSeT

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas Combinatorial Logic with Parallel Bound Curried Functions
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Formal Norm for PCSJ Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osumu Watanabe, José L. Balcazar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Tomasz M. Kowalski, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel Queues

Other Prepublications

X-90-01 Arie Oudshoorn Conditional, a case study in conditional rewriting
X-90-02 Jaap van der Does Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae
X-90-06 Enrico Vittoz, Solomon Passy Using the Universal Modality: Gairs and Questions
X-90-07 Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev Probabilistic Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 X-90-10 Sieger van Denneheuvel, Peter van Emde Boas On Provability and the Rule Language RL/1
X-90-11 Alessandra Carbone Bi-Unary Interpretability Logic
X-90-12 Maarten de Rijke Provable Fixed points in IA+ω, revised version
X-90-13 K.N. Ignatiev Decidable and Poly-modal Logic: Arithmetical Completeness, Fixed Point Property, Craig’s Property
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic

Logic, Semantics and Philosophy of Language

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Velman Defaults in Update Semantics
LP-91-03 Willem Groenendijk Dynamic Semantics and Circular Propositions
LP-91-04 Makoto Kansazawa The Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases
LP-91-08 Víctor Sánchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwenhuijs Semantics and Comparative Logic
LP-91-10 Johan van Bentham Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindrical Modal Logic
ML-91-02 Alessandro Bernarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Smullyan, Harold Schellinx Collapsing Graph Models by Presidencies
ML-91-05 Jeroen Groenendijk History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Type Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Kees Doets Being Stable in Graph Models
ML-91-09 Y. Yu, Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
ML-91-10 Maarten de Rijke, Yde Venema Sahlgren’s Theorem for Boolean Algebras with Operators
ML-91-11 Rijke Vesper Feasible Interpretability
ML-91-12 Johan van Bentham Modal Frame Classes, revisited

Computation and Complexity Theory

CT-91-01 Ming Li, Paul M.B. Vitanyi Kolmogorov Complexity in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitanyi How to Share Concurrent Wait-Free Variables
CT-91-03 Ming Li, Paul M.B. Vitanyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for ConstraintSets
CT-91-06 Hush Skew Census Techniques on Relativized Space Classes
CT-91-07 Karen L. Kwast The Incomplete Database
CT-91-08 Kees Doets Levitation Laus
THE VANILLA META-INTERPRETER FOR DEFINITE LOGIC PROGRAMS AND AMBIVALENT SYNTAX

Marianne Kalsbeek
Department of Mathematics and Computer Science
University of Amsterdam
The Vanilla Meta-Interpreter for Definite Logic Programs
and Ambivalent Syntax

Marianne Kalsbeek

Department of Mathematics and Computer Science
University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam
e-mail: marianne@fwi.uva.nl

Abstract
This paper presents a simple syntax and semantics for the Vanilla meta-interpreter. We discuss ambivalent syntax, which is characterised by the occurrence of formulas as terms, and provide it with a suitable semantics. We show that ambivalent syntax is appropriate for the Vanilla meta-interpreter. We prove correctness of the Vanilla meta-interpreter for definite programs.

1 Introduction: Correctness of Meta-Logic Programming
In this paper we will study the simplest meta-interpreter for definite logic programs, usually known as the Vanilla meta-interpreter. The Vanilla meta-interpreter is a definite logic program which consists of two parts: a general part M, which consists of an intensional formalisation of derivability by SLD-resolution from definite object programs, and an object program-specific part meta-P, which consists of a meta-level description of the clauses of an object program.

Definition 1.1 The standard Vanilla meta interpreter \(M_p \) for definite object programs \(P \).

\[
\begin{align*}
M & \quad [M1] \quad \text{demo(empty)} \leftarrow \\
& \quad [M2] \quad \text{demo}(x) \leftarrow \text{clause}(x,y), \text{demo}(y) \\
& \quad [M3] \quad \text{demo}(x\&y) \leftarrow \text{demo}(x), \text{demo}(y) \\
\text{meta-P} & \quad [M4] \quad \text{clause}(A, B_1\&\ldots\&B_n) \leftarrow \\
& \quad \quad \text{for every clause } A \leftarrow B_1,\ldots,B_n \text{ in } P \\
& \quad [M5] \quad \text{clause}(A, \text{empty}) \leftarrow \\
& \quad \quad \text{for every fact } A \leftarrow \text{ in } P
\end{align*}
\]

* I want to thank Frank van Harmelen for many pleasant discussions and careful commenting on drafts; I want to thank Dov Gabbay for discussions on meta-languages.
Example Consider the following object program P:

\[
\begin{align*}
p(c) & \leftarrow \\
r(x) & \leftarrow \\
q(x) & \leftarrow p(x)
\end{align*}
\]

The associated Vanilla meta-interpreter \(M_p \) is:

\[
\begin{align*}
demo(\text{empty}) & \leftarrow \\
demo(x) & \leftarrow \text{clause}(x,y), \text{demo}(y) \\
demo(x&y) & \leftarrow \text{demo}(x), \text{demo}(y) \\
\text{clause}(p(c), \text{empty}) & \leftarrow \\
\text{clause}(r(x), \text{empty}) & \leftarrow \\
\text{clause}(q(x), p(x)) & \leftarrow
\end{align*}
\]

Now consider the variables which occur in \(M_p \) above. The variables occurring in the second and third clause are intended to range over object level atoms, whereas the variables which occur in the last three clauses are meant to range over the domain of the object program. Thus, intuitively, the Vanilla meta interpreter is a typed program with two types: the variables occurring in the clauses M2 and M3 are intended as meta-variables which range over object level atoms; the variables that occur in the part which represents the object level program, are meant to be object level variables ranging over object level terms. Motivated by the observation that the intuitive interpretation of the Vanilla meta-interpreter is typed, Hill and Lloyd advocate a typed version of the Vanilla meta-interpreter in their paper [HL] and prove its correctness.

However, it is the untyped version of the Vanilla meta interpreter, and extensions of it, that is used in general Prolog-practise and in applications (see [SS] and [KK]). Typically, it does not distinguish between object- and meta-level variables and terms. As a result it employs a non-standard syntax, which is mainly characterised by the occurrence of atoms as terms. This syntax admits atoms like 'demo(c)' and 'clause(q(demo(r(\text{empty}))), q(\text{empty}'))', which are not admissable in any standard syntax. In this paper we will give a definition of this syntax, which was introduced in [R]. We call this syntax 'ambivalent syntax', for the dual role played by atoms. This phenomenon of duality can also be interpreted as overloading of the predicate symbols of the language, which double as function symbols. We will define a suitable (Herbrand style) semantics for first-order logic with ambivalent syntax, which also gives us a (least Herbrand) semantics for the Vanilla meta-interpreter. This enables us to prove satisfying correctness results for the untyped Vanilla meta-interpreter.
The main result of this paper is a proof of the following theorem, which expresses correctness of the Vanilla meta-interpreter with respect to definite object programs, by connecting the least Herbrand model H_P of an object program P with a part of the least Herbrand model H_{MP} of M_P:

Main Theorem (Theorem 5.10) Let P be a definite program and M_P the Vanilla meta-interpreter associated with P. Then for all $p(t)$ in the Herbrand base of P,

$$p(t) \in H_P \iff \text{demo}(p(t)) \in H_{MP}.$$

The part of the main theorem that expresses completeness (if $p(t)$ is derivable from the object program P, then $\text{demo}(p(t))$ is derivable from M_P), has a straightforward proof. Because the Vanilla meta-interpreter may be considered as a formalisation of derivability from a definite object program, each derivation from the object program can be mimicked by a derivation via the associated Vanilla meta-interpreter.

It is not completely trivial, however, to show that M_P is sound with respect to P. The problem partly originates in the ambivalent syntax of the Vanilla meta interpreter, which causes Herbrand models of M_P (even its least Herbrand model) to contain meta-language atoms like $\text{demo}(p(\text{demo}(\text{empty})))$, which cannot be directly related to object level atoms. The main idea behind the soundness proof is made explicit in Lemma 5.6. Subterms occurring in derivations from the Vanilla meta interpreter which are terms of the meta-language but not terms of the object language, have universal force. I.e., within certain boundaries, such terms can be replaced by arbitrary terms.

The outline of this paper is as follows: In Section 2 we will develop some basic theory of languages with ambivalent syntax. In Section 3 we will define a Herbrand style semantics for these languages. In Section 4 we will study some properties of substitutions in ambivalent syntax which we need in the remainder of the paper. In Section 5 we apply the results of the preceding sections to the theory of the Vanilla meta interpreter, and we prove our main theorem, the correctness result. In Section 6 we discuss our results and related results by Hill and Lloyd [HL] and Martens and De Schreye [SM, MS].
2 Ambivalent Syntax

In this paragraph we will give a formal definition of the syntax underlying the Vanilla meta-interpreter. It has the following main features:

1. There is no typing. No distinction is made between object and meta-level variables, nor between object and meta-level function symbols, predicates, and constants.
2. Atoms may occur as terms. This can be interpreted as a naive naming mechanism: instead of using a code to refer to an atom, one uses the atom proper - atoms serve as their own names (the metalevel representation of an object level expression is the object level expression itself).

The first feature is easily established by taking as the predicates of the language of the Vanilla meta-interpreter the (meta-) predicates 'clause' and 'demo' together with the predicates of the object level program, do the same for the constants, and take as function symbols the function symbols of the object program and the conjunction '&&'. We will thus adopt the following convention: The non-logical constants of the underlying language of an object program P are given by a triple (RP, FP, CP), where RP, FP, and CP are, respectively, the set of relation symbols, the set of function symbols and the set of constants occurring in P. The non-logical constants of the underlying language of the associated interpreter MP are then given by a triple (RMP, FMP, CMP), where RMP = RP ∪ \{demo(\cdot), clause(\cdot, \cdot)\}, FMP = FP ∪ \{(\cdot) & (\cdot)\}, CMP = CP ∪ \{empty\}.

The second feature is really where one sees that the syntax involved is non-standard. Because of the double role that formulas play in this syntax, we will call it *ambivalent syntax*. In the Vanilla meta interpreter, there are only two syntactical categories to be dealt with: terms and atoms of the language. We will take a more general approach and define ambivalent syntax for first order predicate logic.

In this paper we will not consider ambivalent syntax for languages with equality.

Definition 2.1 The non-logical constants of a language with ambivalent syntax \(L_{amb} \) are given as a triple \((R_L, F_L, C_L)\), where \(R_L \) is a set of relation symbols, \(F_L \) is a set of function symbols, \(C_L \) is a set of constants. The alphabet of \(L_{amb} \) also contains countably many variables and the usual connectives and auxiliary symbols and one proposition symbol: \(\bot \). The sets of atoms, formulas, and terms of \(L_{amb} \) are defined as follows:

\[
\begin{align*}
\text{ATOM}_{L_{amb}} & \quad (1) \text{p(t) is an atom if } p \in R_{L_{amb}} \text{ and } t \in \text{TERM}_{L_{amb}}; \\
& \quad (2) \text{there are no other atoms.} \\
\text{FORM}_{L_{amb}} & \quad (1) \varphi \in \text{FORM}_{L_{amb}} \text{ if } \varphi \in \text{ATOM}_{L_{amb}}; \\
& \quad (2) \varphi \land \psi, \varphi \lor \psi, \varphi \rightarrow \psi \in \text{FORM}_{L_{amb}} \text{ if } \varphi \text{ and } \psi \in \text{FORM}_{L_{amb}};
\end{align*}
\]
(3) \(\perp \in \text{FORM}_{\Lambda} \);
(4) \(\neg \varphi \in \text{FORM}_{\Lambda} \) if \(\varphi \in \text{FORM}_{\Lambda} \);
(5) \(\forall x \varphi, \exists x \varphi \in \text{FORM}_{\Lambda} \) if \(x \) is a variable

and \(\varphi \in \text{FORM}_{\Lambda} \);

(6) there are no other formulas.

\[\text{TERM}_{\Lambda} \]

(1) \(c \in \text{TERM}_{\Lambda} \) for all \(c \in C_{\Lambda} \);
(2) \(x \in \text{TERM}_{\Lambda} \) for all variables \(x \);
(3) \(t \in \text{TERM}_{\Lambda} \) if \(t \in \text{FORM}_{\Lambda} \);
(4) \(f(t) \in \text{TERM}_{\Lambda} \) if \(t \in \text{TERM}_{\Lambda} \) and \(f \in F_{\Lambda} \);
(5) there are no other terms.

Note that these definitions differ from the corresponding definitions for standard syntax in the following way: the definition for the term set refers to the set of formulas. Also note that \(\text{FORM}_{\Lambda} \subseteq \text{TERM}_{\Lambda} \).

Example Let the nonlogical constants of \(\mathcal{L} \) be \(\{ (p), \{ f \}, \{ c \} \} \). Then \(p(c), f(p(c)) \) and \(f(x) \) are terms of \(\Lambda \), whereas \(f(x) \) is a term of \(\mathcal{L} \) with the standard syntax, but \(p(c) \) and \(f(p(c)) \) are not; \(p(c) \) is both an atom of \(\mathcal{L} \) with standard syntax and of \(\Lambda \); \(p(p(c) \lor p(f(c))) \) is both an atom and a term of \(\Lambda \), but neither of those in \(\mathcal{L} \) with standard syntax.

One part of the Unique Readability Property holds for ambivalent syntax: formulas and terms can only be written in one unique way. We will not give the proof, as it is identical to the corresponding proof for standard syntax. But by the very definition of ambivalent syntax, the part of the Property that states that expressions of the language are either formulas or terms or none of these, does not hold, of course: all formulas are terms. However, if one focuses on occurrences of formulas in well formed expressions, one notes that in each occurrence a formula either serves a formula or as a term, but not as both. A simple way to study occurrences is identifying terms \(t \) with term trees. We then define a formula \(\varphi \) to occur in \(t \) iff \(\varphi \) is a subtree of \(t \). Specific occurrences of \(\varphi \) in \(t \) are identified with specific subtrees \(t' \) of \(t \). We define a subtree \(t' \) of \(t \) to be a term occurrence of \(\varphi \) in \(t \) iff \(t' \) is equal to \(\varphi \) and there is a node \(n \) in \(t \) above \(t' \) which is a predicate or a function symbol; an occurrence \(t' \) of \(\varphi \) in \(t \) is a formula occurrence otherwise. By this definition, an occurrence can never be both a term occurrence and a formula occurrence.
Next we give a definition of the set of free variables of terms and formulas, in order to define ground formulas and closed terms. The definitions are standard.

Definition 2.2 The set FV(t) of free variables of a term t is inductively defined as follows:

\[FV(x) = x \text{ for all variables } x; \]
\[FV(c) = \emptyset; \]
\[FV(f(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), \text{ for } f \in F_L \text{ and } t_1, \ldots, t_n \in \text{TERM}_{L_{\text{amb}}}; \]
\[FV(p(t_1, \ldots, t_n)) = FV(t_1) \cup \ldots \cup FV(t_n), \text{ for } p \in R_L \text{ and } t_1, \ldots, t_n \in \text{TERM}_{L_{\text{amb}}}; \]
\[FV(\varphi \land \psi) = FV(\varphi \lor \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi), \text{ for } \varphi \text{ and } \psi \in \text{FORM}_{L_{\text{amb}}}; \]
\[FV(\neg \varphi) = FV(\varphi), \text{ for } \varphi \in \text{FORM}_{L_{\text{amb}}}; \]
\[FV(\exists x \varphi) = FV(\exists x \varphi) = FV(\varphi) \setminus \{x\}, \text{ for } \varphi \in \text{FORM}_{L_{\text{amb}}}. \]

Definition 2.3 The sets GRFORM_{L_{\text{amb}}}, GRATM_{L_{\text{amb}}} and CLTERM_{L_{\text{amb}}} of ground formulas, ground atoms and closed terms of L_{\text{amb}} are defined as follows:

\[t \in \text{GRFORM}_{L_{\text{amb}}} \text{ iff } \varphi \in \text{FORM}_{L_{\text{amb}}} \text{ and } FV(\varphi) = \emptyset; \]
\[t \in \text{GRATM}_{L_{\text{amb}}} \text{ iff } \varphi \in \text{ATOM}_{L_{\text{amb}}} \text{ and } FV(\varphi) = \emptyset; \]
\[t \in \text{CLTERM}_{L_{\text{amb}}} \text{ iff } t \in \text{TERM}_{L_{\text{amb}}} \text{ and } FV(t) = \emptyset. \]

3 Semantics for Ambivalent Syntax

The semantics we propose for languages with ambivalent syntax is the class of term models in which every closed term of the language is interpreted by the identity function. Herbrand models fall within this class. With respect to this class, strong completeness holds and can be proven in the standard way (Theorem 3.6). We will assume T to be a consistent first order predicate theory with a language \(L = (R_L, F_L, C_L) \) with ambivalent syntax. We will identify theories with sets of axioms, which are closed formulas; a theory need not be closed under derivability. We work with a standard system of natural deduction, in which the deduction rules are defined in a standard way. Note however that \(\forall x p(x) / p(\exists x f(x)) \) is now an instance of the standard rule " \(\forall x \varphi / \varphi(t) \), for all closed terms t ".

Definition 3.1 A pre-interpretation J for \(L \) consists of

a) a domain D such that

(1) CLTERM_\(L \) \(\subseteq \) D.

(2) for all \(t(x_1, \ldots, x_n) \in \text{TERM}_L \) with \(x_1, \ldots, x_n \) free,
and for all \(d_1, \ldots, d_n \in D \), \(t(d_1, \ldots, d_n) \in D \).

b) for each term \(t \in \text{CLTERM}_L \), the assignment of \(t \in D \).

Definition 3.2 An interpretation \(M \) of \(L \) consists of a pre-interpretation \(J \) with domain \(D \) and, for each n-ary predicate symbol in \(P_L \), the assignment of a subset of \(D^n \).

Definition 3.3 Let \(M \) be an interpretation of a language \(L \). Truth of closed formulas of \(L \) in \(M \) is inductively defined as follows:

\[
M \models p(t) \quad \text{for } p \in R_L \text{ and } t \text{ an n-tuple of closed terms of } L, \text{ iff (the interpretation of) } t \text{ is in the subset of } D^n \text{ assigned to } p.
\]

\[
M \models \phi \land \psi \quad \text{iff } M \models \phi \text{ and } M \models \psi,
\]

\[
M \models \neg \phi \quad \text{iff } M \not\models \phi,
\]

\[
M \models \phi \lor \psi \quad \text{iff } M \models \phi \text{ or } M \models \psi,
\]

\[
M \models \phi \rightarrow \psi \quad \text{iff } M \not\models \phi \text{ or } M \models \psi,
\]

\[
M \models \forall x \phi \quad \text{iff } M \models \phi [x/a], \text{ for all } a \in D_M.
\]

\[
M \models \exists x \phi \quad \text{iff } \text{there is an } a \in D_M \text{ such that } M \models \phi [x/a].
\]

Definition 3.4 Let \(T \) be a theory in a language \(L \). Let \(M \) be an interpretation of \(L \). \(M \) is a model for \(T \) if all the axioms of \(T \) are true in \(M \).

Definition 3.5 A Herbrand pre-interpretation \(J \) of \(L \) is a pre-interpretation for which the domain \(D \) consists of \(\text{CLTERM}_L \).

A Herbrand interpretation is an interpretation based on a Herbrand pre-interpretation. A Herbrand model is a model based on a Herbrand interpretation.

Theorem 3.6 First order predicate logic with ambivalent language is sound and complete with respect to the semantics defined in Definitions 3.1–3.4.

Proof We leave the checking of soundness to the reader.

The completeness proof we present here is strikingly similar to the completeness for standard syntax.

Let \(T \) be a consistent first order predicate theory with a language \(L = (R_L, F_L, C_L) \) with ambivalent syntax. Extend \(T \) to a Henkin theory \(T* \) in the following way:

Extend the language of \(T \) with infinitely many fresh constants \(c_n \). The result will be a new language \(L' = (R_L, F_L, C_L) \), with \(R_L = R_L, F_L = F_L \) while \(C_L = C_L \cup \{c_n : \in \omega \} \).
Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be an enumeration of all formulas of \mathcal{L}' with only x free. Define C_n as the set of constants that occur in $\varphi_0 \wedge \ldots \wedge \varphi_n$. Define:

$$
T_0 := T,
$$
$$
m_0 := \min\{k : c_k \in C_0\},
$$
$$
T_1 := T_0 \cup \{\exists x \varphi_0(x) \rightarrow \varphi_0(c_{m_0})\},
$$
$$
m_{n+1} := \min\{k > m_n : t_k \notin C_n\},
$$
$$
T_{n+2} := T_{n+1} \cup \{\exists x \varphi_{n+1}(x) \rightarrow \varphi_{n+1}(c_{m_{n+1}})\},
$$
$$
T^* := \cup T_n.
$$

For all n, consistency of T_{n+1} can be inferred from consistency of T_n in the usual way. So T^* is consistent. Extend T^* to a maximally consistent theory T^m. The language of T^m is \mathcal{L}', the language of T^*. A model M for T^m can now be constructed as follows: Take as the domain D of M the set of closed terms of \mathcal{L}'. (As we are dealing with ambivalent syntax, every closed formula of \mathcal{L}' will be an element of D.) Take the identity function for the interpretation function. Define atoms to be true in M if and only if they belong to T^m. M is a model for T^m (by induction on the complexity of formulas), and thus M is a model for T. Moreover, M is a Herbrand model for T^m and T^*. This concludes the proof. \Box

For infinitely extendible theories a model can be constructed in a slightly more elegant way: the closed terms of the language that do not occur as terms in the theory can be used as Henkin constants themselves. The resulting model is a Herbrand model for the theory. Logic programs, as they are finite, are infinitely extendible. Note that theories that are axiomatised with axiom schemes are not infinitely extendible.

A language with ambivalent syntax was first defined by Richards in his paper [R], in the context of intensional predicate logics. Kim and Kowalski [KK] advanced ambivalent language as appropriate for the Vanilla meta-interpreter, especially for extensions of it in the field of metalogic programming for multi-agent knowledge, and [R] has become a standard reference in the literature on the Vanilla meta-interpreter. However, the semantics for ambivalent syntax proposed in [R] is flawed, due to the fact that the interpretation function is not well-defined. A broader perspective on ambivalent syntax

1) The following example shows what is wrong in the semantics proposed in [R]:

Take an ambivalent language \mathcal{L} with one binary relation symbol R, one unary relation symbol Q, one unary function symbol f, and one constant symbol c. Then $\forall x R(x, Q(x)) \rightarrow \forall x R(f(x), Q(f(x)))$ should be
and its semantics is given in [G], where several meta-languages are proposed which allow for great freedom of expression. Among them is HFP, which is essentially first-order predicate language enriched with meta-level predicate and function symbols. Ambivalent syntax can be considered as HFP with one function symbol f that transforms formulas into terms. A semantics for ambivalent syntax which is more general than the Herbrand semantics proposed in the present paper can be obtained by considering models for HFP (but we must leave this matter to a future occasion).

4 Preliminaries on Substitution

A crucial step in our main proof relies on a shift from (sub)terms of the language underlying M_p into terms of the language underlying an object program P. In the present section we will define and discuss the necessary transformation (Definition 4.3). We will define this transformation not for just the languages of M_p and P, but somewhat more generally for two languages of which one comprises the other.

We will identify languages \(\mathcal{L} \) with pairs \((\mathcal{L}, \mathcal{S})\), where \(\mathcal{L} \) is the triple indicating the non-logical constants of \(\mathcal{L} \), and \(\mathcal{S} \) indicates the particular syntax of \(\mathcal{L} \). For instance, the underlying language \(\mathcal{L}_P \) of an object program \(P \) is identified with \(((R_P, F_P, C_P), \text{ standard syntax}) \), and the underlying language \(\mathcal{L}_{M_p} \) of the associated meta interpreter \(M_p \) is identified with \(((R_{M_p}, F_{M_p}, C_{M_p}), \text{ ambivalent syntax}) \). In order to keep matters simple, we will only consider languages which, like \(\mathcal{L}_P \) and \(\mathcal{L}_{M_p} \), have no logical constants - that is, languages of which the set of formulas consists of atoms only. The theory developed in the present section is thus tailored for languages underlying definite logic programs, but can be generalised to the case of languages with connectives and quantifiers. \(\mathcal{L}_P \) can be considered as a part of \(\mathcal{L}_{M_p} \); all terms of \(\mathcal{L}_P \) are also terms of \(\mathcal{L}_{M_p} \), and, likewise, the set of formulas of \(\mathcal{L}_P \) is included in the set of formulas of \(\mathcal{L}_{M_p} \). We can define this notion of inclusion as follows:

valid in every model. However, one can construct the following model \(M \) according to Richards' definitions which validates the antecedent and in which the consequent is wrong:

Take, according to the definition in [R], as a domain \(D_M = \{c \cup \{\varphi \mid \varphi \in \text{CLFORM}_L\} \). The extension of Q is arbitrary. \(V(f) \) is the identity function on \(D \). The extension of \(R \) is taken as follows: \(V(R) = \{<d, Q(d)> \mid d \in D\} \). By Richards' definition, the interpretation function \(* \) is the identity function on constants and closed formulas. Thus \(\forall x R(x,Q(x)) \) is true in \(M \). However, \((f(c))^* = V(f(c^*)) = c\), while \((Q(f(c)))^* = Q(f(c))\). So \(<(f(c))^*,(Q(f(c)))^*> = <c,Q(f(c))>\), which does not belong to \(V(R) \).
Definition 4.1 For two languages \(L = (L, S) \) and \(L' = (L', S') \), we say that \(L \) is a part of \(L' \) (\(L \subseteq L' \)) if

1. \(R_L \subseteq R_{L'} \), \(F_L \subseteq F_{L'} \), and \(C_L \subseteq C_{L'} \);
2. either \(S \) is standard syntax and \(S' \) is ambivalent syntax, or \(S \) and \(S' \) are both standard syntax, or \(S \) and \(S' \) are both ambivalent syntax.

By this definition we have \(L_P \subseteq L_{MP} \). The property that the sets of terms and formulas of \(L_{MP} \) contain their respective equivalents for \(L_P \) generally holds for two languages of which one is part of the other:

Lemma 4.2 For two languages \(L \) and \(L' \), if \(L \subseteq L' \) then \(\text{TERM}_L \subseteq \text{TERM}_{L'} \) and \(\text{FORM}_L \subseteq \text{FORM}_{L'} \).

Proof Immediate, by the definitions.

In the remainder of this section we will always suppose \(L \) and \(L' \) to be two languages such that \(L \subseteq L' \).

If one takes a closer look at the (tree-) structure of a term \(t \) of \(L' \), one sees that certain subterms of \(t \) are terms of \(L \), while others are proper \(L' \)-terms. By substituting in an \(L' \)-term \(t \) all of its subterms which are proper \(L' \)-terms by variables, one can transform \(t \) into an \(L \)-term. The intuition behind the definition of the \(L'/L \)-abstraction of a term \(t \) in the language \(L' \), is that one can descend in the term tree of \(t \) until one encounters a symbol \(s \) that is in \(L' \) but not in \(L \), replace the subtree starting with \(s \) with a fresh variable which does not occur in \(t \); this procedure yields a term of \(L \). The \(L'/L \)-abstraction thus transforms terms from \(L' \) to terms from \(L \). Moreover, this is done in a systematic way: equal terms are replaced by equal variables. This makes the abstraction procedure reversible (Lemma 4.5).

Definition 4.3 Let \(t \) be a term of \(L' \). The \(L'/L \)-abstraction of \(t \), \(\text{abs}_{L'/L}(t) \), is inductively defined as follows:

\[
\begin{align*}
\text{abs}_{L'/L}(x) &= x, & \text{for all variables } x; \\
\text{abs}_{L'/L}(c) &= c, & \text{for all constants } c \in C_{L'}; \\
\text{abs}_{L'/L}(c) &= x_c, & \text{for all constants } c \in C_{L'} \cap C_L, \\
\text{abs}_{L'/L}(f(t_1, \ldots, t_n)) &= f(\text{abs}_{L'/L}(t_1), \ldots, \text{abs}_{L'/L}(t_n)), & \text{for all function symbols } f \in F_{L'}; \\
\text{abs}_{L'/L}(f(t_1, \ldots, t_n)) &= x(t_1, \ldots, t_n), & \text{for all function symbols } f \in F_{L'} \setminus F_L.
\end{align*}
\]
\[\text{abs}_{L'/L}(R(t_1, \ldots, t_n)) = R(\text{abs}_{L'/L}(t_1), \ldots, \text{abs}_{L'/L}(t_n)), \]

where \(x_{f(t_1, \ldots, t_n)}\) is a variable;

\[\text{abs}_{L'/L}(R(t_1, \ldots, t_n)) = x_R(t_1, \ldots, t_n), \]

for all relation symbols \(R \in R_L\);

for all relation symbols \(R \in R_L \setminus R_L'\),

where \(x_R(t_1, \ldots, t_n)\) is a variable.

Implicitely we have assumed that we have extended the set of variables of \(L\) with a set of fresh variables which are indexed by \(L'\)-terms. This means that, while our purpose was to get a term of \(L\) as the result of the abstraction, we get a term in a language which is in fact an extension of \(L\). However, by renaming the fresh variables in \(\text{abs}_{L'/L}(t)\), we can get a term of \(L\) proper.

The following lemma mentions two properties of the \(L'/L\)-abstraction of \(L'\)-terms which we will need below.

Lemma 4.4 Let \(t\) be a term of \(L'\). Then the following holds:

a) \(\text{abs}_{L'/L}(t)\) is unique.

b) \(\text{abs}_{L'/L}(t)\) is, modulo renaming of variables, a term of \(L\).

Proof Immediate from the definition.

Lemma 4.5 For every term \(v\) in \(L'\) there is an \(L\)-substitution \(\tau_v\), such that

\[v = \text{abs}_{L'/L}(v)\tau_v.\]

Proof We define \(\tau_v\) by induction on the term structure of \(v\).

1) \(\tau_c = \emptyset\),

for all constants \(c \in C_L\);

2) \(\tau_c = \{ x_c/c \} \),

for all constants \(c \in C_L \setminus C_{L'}\);

3) \(\tau_x = \emptyset\),

for all variables \(x\) without an index from \(\text{TERM}_{L'}\);

4) \(\tau_{f(t_1, \ldots, t_n)} = \tau_{t_1} \cup \ldots \cup \tau_{t_n}\)

for all function symbols \(f \in F_L\);

5) \(\tau_{f(t_1, \ldots, t_n)} = \{ x_{f(t_1, \ldots, t_n)}/f(t_1, \ldots, t_n) \}\)

for all function symbols \(f \in F_L \setminus F_{L'}\);

6) \(\tau_{R(t_1, \ldots, t_n)} = \tau_{t_1} \cup \ldots \cup \tau_{t_n}\)

for all relation symbols \(R \in R_L\);

7) \(\tau_{R(t_1, \ldots, t_n)} = \{ x_{R(t_1, \ldots, t_n)}/R(t_1, \ldots, t_n) \}\)

for all relation symbols \(R \in R_L \setminus R_{L'}\).

We have to check that \(\tau_v\) is well-defined. This is clear for all cases except 3) and 5). Suppose, for case 3) that \(v = f(t_1, \ldots, t_n)\), for some \(f \in F_L\), or, for case 5), that \(v = R(t_1, \ldots, t_n)\), for some \(R \in R_L\). Suppose that for some variable \(x, x \in \text{Dom}(t_i) \cap \text{Dom}(t_j)\) for some \(i \neq j\). By definition of \(\tau_v\), \(x\) must be \(x_s\) for some \(s \in \text{TERM}_{L'}\). Then by definition of \(\tau_i\) and \(\tau_i, x_s\tau_i = s = x_s\tau_j\). This shows that \(\tau_v\) is well-defined.
Again by induction on the term structure of ground terms \(v \) we will prove that for \(\tau_v \) thus defined, \(v = abs_{L/L}(v) \tau_v \).

1) For constants \(c \in C_L \), \(abs_{L/L}(c) \tau_c = c \phi = c \).

2) For constants \(c \in C_L \setminus C_L^* \), \(abs_{L/L}(c) \tau_c = x_c \{ x_c/c \} = c \).

3) For variables \(x \) without an index from \(\text{TERM}_L \), \(abs_{L/L}(x) \tau_x = x \phi = x \).

4) Let \(f \in F_L \) and \(t_1, \ldots, t_n \in \text{TERM}_L \). Suppose that for all \(i \), \(abs_{L/L}(t_i) \tau_{t_i} = t_i \). Then
 \[abs_{L/L}(f(t_1, \ldots, t_n)) \tau_{f(t_1, \ldots, t_n)} = f(abs_{L/L}(t_1), \ldots, abs_{L/L}(t_n))(\tau_{t_1} \cup \ldots \cup \tau_{t_n}) \].
 Now, by the same argument that proved \(\tau_v \) to be well defined, \(abs_{L/L}(t_i) (\tau_{t_1} \cup \ldots \cup \tau_{t_n}) = abs_{L/L}(t_i) \tau_{t_i} \).
 Thus, by the inductive hypothesis, \(f(abs_{L/L}(t_1) \tau_{t_1}, \ldots, abs_{L/L}(t_n) \tau_{t_n}) = f(t_1, \ldots, t_n) \).

5) Let \(f \) be a function symbol in \(F_L \setminus F_L^* \) and \(t_1, \ldots, t_n \) \(L^* \)-terms. Then by definition of the \(L^* \)-abstraction of \(f(t_1, \ldots, t_n) \) and \(\tau_{f(t_1, \ldots, t_n)} \), we have \(abs_{L/L}(f(t_1, \ldots, t_n)) \tau_{f(t_1, \ldots, t_n)} = x_{f(t_1, \ldots, t_n)} (x_{f(t_1, \ldots, t_n)} f(t_1, \ldots, t_n)) = f(t_1, \ldots, t_n) \).

The remaining cases 6) and 7) have proofs similar to those of 4) and 5), respectively. \(\Box \)

In the following definition, we generalise the concept of term abstraction to the concept of abstraction of a substitution.

Definition 4.6 Let \(\theta \) be an \(L \)-substitution. The \(L/L \)-abstraction of \(\theta \), written as \(abs_{L/L}(\theta) \),

is defined as follows: \(abs_{L/L}(\theta) = \{ x / abs_{L/L}(t) : x / t \in \theta \} \).

The following lemma characterises the connection between the \(L/L \)-abstraction of an \(L^* \)-ground term \(t \) and \(L \)-terms \(s \) of which \(t \) is an instantiation.

Lemma 4.7 Let \(s \) be a term of \(L \), \(t \) a term of \(L^* \), \(\theta \) an \(L^* \)-substitution such that \(s \theta = t \).

Then \(saabs_{L/L}(\theta) = abs_{L/L}(t) \).

Proof By induction on the term structure of \(s \).

a) \(s = x \), for some variable \(x \). Then \(\theta(x/t) \in \theta \), so \(x / abs_{L/L}(t) \in abs_{L/L}(\theta) \). So \(saabs_{L/L}(\theta) = \).

b) \(s = c \), for some \(c \in C_L \). Then \(t = c \), so \(abs_{L/L}(t) = c \) and \(saabs_{L/L}(\theta) = c \).

c) \(s = f(s_1, \ldots, s_n) \), where the \(s_i \) are \(L \)-terms and \(f \in F_L \). Then \(t = f(t_1, \ldots, t_n) = f(s_1, \ldots, s_n) \theta = f(s_1 \theta, \ldots, s_n \theta) \). So \(s \theta = t_i \), for \(i \in [1, n] \). And \(saabs_{L/L}(\theta) = f(s_1, \ldots, s_n) abs_{L/L}(\theta) = f(s_1 \theta^*, \ldots, s_n \theta^*) \). By the inductive hypothesis, \(s_i abs_{L/L}(\theta) = abs_{L/L}(t_i) \), for \(i \in [1, n] \). Thus \(saabs_{L/L}(\theta) = f(abs(t_1), \ldots, abs(t_n)) = abs(f(t_1, \ldots, t_n)) \). \(\Box \)
Lemma 4.7 says: \(s_{abs_{L'/L}}(\theta) = a_{abs_{L'/L}}(s\theta) \), or, writing \(\theta^* \) for \(a_{abs_{L'/L}}(\theta) \) and \(t^* \) for \(a_{abs_{L'/L}}(t) \):

\(s\theta^* = (s\theta)^* \).

We extend the usual definition of ground substitution in the following way:

Definition 4.8 A substitution \(\sigma \) is \(L \)-ground if \(\sigma = \{ x_i/t_i : i \in [1,n]\} \), and for all \(i, t_i \) is a closed term of \(L \).

The following lemma is an application of a well-known fact about ground substitutions.

Lemma 4.9 Let \(t \) be a ground term of \(L' \). Then for every \(L \)-ground substitution \(\sigma \) for which \(\text{dom}(\sigma) \supseteq \text{Var}(a_{abs_{L'/L}}(t)) \), the following holds: \(a_{abs_{L'/L}}(t)\sigma \) is a ground term of \(L \).

Proof Let \(t, L, \) and \(L' \) be as in the suppositions for the lemma. As \(\sigma \) is a ground substitution, with \(\text{dom}(\sigma) \supseteq \text{Var}(a_{abs_{L'/L}}(t)) \), \(a_{abs_{L'/L}}(t)\sigma \) is a ground term. As \(\sigma \) is an \(L \)-ground substitution, and, by Lemma 4.4.b, \(a_{abs_{L'/L}}(t) \) is an \(L \)-term, it follows that \(a_{abs_{L'/L}}(t)\sigma \) is an \(L \)-ground term. \(\Box \)

5 Proof of the Main Theorem

We are now ready to apply the machinery set up above to the Vanilla meta-interpreter for definite logic programs. We will have to use some of the basic concepts and results of the theory of definite logic programs. We will mainly adhere to the terminology used in [LL], with the single exception that we denote the least Herbrand model of a program \(P \) by \(H_P \), as we have already reserved \(M_P \) to indicate the Vanilla meta-interpreter of \(P \). The basic theory for definite programs as developed in [LL, Chapter 2] holds without any restriction for definite programs with ambivalent language, and thus for the Vanilla meta-interpreter, as long as all the relevant concepts are defined with respect to the underlying ambivalent language. (Herbrand models for such programs are the Herbrand models defined in Section 3; the fixpoint operator \(T \) is then defined with respect to those models; ground instantiations are ground with respect to the ambivalent language.) The main theorem is basically a result about the relation between the least Herbrand model of a program and the least Herbrand model of its associated Vanilla meta interpreter, and its proof proceeds by comparing the different stages of the respective T-operators. Hence we will be only concerned with ground versions of programs. We remarked in Section 1 that variables which occur in the clause-facts [M4] and [M5] of the Vanilla meta-interpreter (the clauses

13
that describe the object program), can be instantiated with terms from the meta-language. We need the following extension of the usual concept of the ground version of a program.

Definition 5.1 Let P be a definite program. Let \mathcal{L} be a language containing the underlying language of P. With \mathcal{L}-ground(P) we mean the set of all clauses that are \mathcal{L}-ground instantiations of clauses of P. The natural ground version of a program P, $\mathcal{L}P$-ground(P), will be indicated simply as 'ground(P)'.

The next lemma is an immediate application of Lemma 4.7 and Corollary 4.10 to clauses of definite programs. It establishes some simple relations between a definite program P, its natural ground version, and \mathcal{L}_{MP}-ground(P). We will speak about P-ground and MP-ground substitutions to refer to respectively $\mathcal{L}P$-ground and \mathcal{L}_{MP}-ground substitutions. We will leave out the indices of the abstraction operator, i.e., we will write $a\delta(\cdot)$ instead of $a\delta_{\mathcal{L}_{\text{MP}}/\mathcal{L}P}(\cdot)$.

Lemma 5.2 Let P be a definite program. Let $C = p(t_0) \leftarrow p_1(t_1), ..., p_n(t_n)$ be a clause of P, let $C' = p(t_0) \leftarrow p_1(t_1), ..., p_n(t_n)$ be in \mathcal{L}_{MP}-ground(P), let θ be an \mathcal{L}_{MP}-ground substitution with $\text{dom}(\theta) \supseteq \text{Var}(C)$, such that $C\theta = C'$. Then

a) $C a\delta(\theta) = p(a\delta(t_0)) \leftarrow p_1(a\delta(t_1)), ..., p_n(a\delta(t_n))$;

b) for all \mathcal{L}_{MP}-ground substitutions σ with $\text{dom}(\sigma) \supseteq \text{ran}(a\delta(\theta))$, $C a\delta(\theta)\sigma$ is in \mathcal{L}_{MP}-ground(P);

c) for all P-ground substitutions σ with $\text{dom}(\sigma) \supseteq \text{ran}(a\delta(\theta))$, $C a\delta(\theta)\sigma$ is in ground(P).

Proof Part a) follows immediately from Lemma 4.7. Part b) follows from the definitions. Part c) follows from a) and Lemma 4.9.

We will first establish some easy facts about H_{MP}, the least Herbrand model of MP. We have to assume that the language of the object programs we consider does not contain any of the predicate and function symbols that are proper to the language of MP, that is, '∧', 'demo', and 'clause' do not belong to $P_{\mathcal{L}P}$ or $F_{\mathcal{L}P}$. If that is the case, the least Herbrand model of MP does not contain atoms of the form demo(demo(t)) and demo(clause(t,s)).

Lemma 5.3 If demo(p(t_1,...,t_n)) $\in H_{\text{MP}}$, and p is not $\&$, then $p \in P_{\mathcal{L}P}$.

Proof Suppose demo(p(t_1,...,t_n)) $\in H_{\text{MP}}$. Then it must have 'entered' the Herbrand model at some stage, that is, there is a d such that demo(p(t_1,...,t_n)) $\in T_{\text{MP}} \uparrow \downarrow \setminus T_{\text{MP}} \uparrow (d-1)$. If p
is not & , demo(p(t₁,...,tₙ)) must have entered by application of the meta-clause [M2], so clause(p(t₁,...,tₙ), C) and demo(C) are in $T_{Mp} \uparrow (d-1)$ for some C. That means that p(t₁,...,tₙ) ← C belongs to Mp-ground(P), or, if C is the constant empty, p(t₁,...,tₙ) ← belongs to Mp-ground(P). But then p must be a predicate from the language of P.

Lemma 5.4 If demo(A&B) ∈ $T_{Mp} \uparrow n$, for some n, then there are m, k < n such that demo(A) ∈ $T_{Mp} \uparrow m$ and demo(B) ∈ $T_{Mp} \uparrow k$.

Proof Let demo(A&B) ∈ $T_{Mp} \uparrow n$. There is a d ≤ n such that demo(A&B) ∈ $T_{Mp} \uparrow d \uparrow T_{Mp} \uparrow (d-1)$, i.e., d is the stage where demo(A&B) enters the Herbrand model. Now suppose there are no m, k < n such that demo(A) ∈ $T_{Mp} \uparrow m$ and demo(B) ∈ $T_{Mp} \uparrow k$. Then demo(A&B) cannot have entered the Herbrand model by application of [M3], as that would require demo(A) and demo(B) in $T_{Mp} \uparrow (d-1)$. So demo(A&B) must have entered by an application of [M2]. That is, clause(A&B,C) and demo(C) are in $T_{Mp} \uparrow (d-1)$ for some C. So A&B ← C belongs to Mp-ground(P) or, if C is the constant empty, A&B ← belongs to Mp-ground(P). This however contradicts the assumption that & is not a predicate symbol in the language of P.

Corollary 5.5 If demo(A₁&...&Aₖ) ∈ $T_{Mp} \uparrow n$, for some n, then demo(Aᵢ) ∈ $T_{Mp} \uparrow (n-i)$, for some i ∈ [1,k], and demo(Aᵢ₊₁&...&Aₖ) ∈ $T_{Mp} \uparrow (n-i)$, for some i ∈ [2, k-1].

Proof By Lemma 5.4 and an easy induction argument.

The next lemma is crucial for the proof of the soundness part of the main theorem. It expresses the main idea behind the soundness proof. Consider a derivation from the Vanilla meta-interpreter starting with an atom demo(p(t)) in which p is a predicate from L_{P}. Then all subterms occurring in this derivation which are terms of the metalanguage but not terms of the object language, can, with certain restrictions, be interpreted as being universally quantified. I.e., subterms which are not object language terms can be replaced by arbitrary terms – under the condition that, in the derivation as a whole, equal metalanguage subterms are replaced by equal terms.

Lemma 5.6 Let P be a definite program, p a predicate from the language underlying P, t a term from L_{Mp}. Suppose demo(p(t)) ∈ $T_{Mp} \uparrow n$, for some n. Then for all Mp-ground substitutions σ with $\text{dom}(\sigma) \supseteq \text{Var}(aβ(t))$, demo(p(aβ(t)σ)) ∈ $T_{Mp} \uparrow n$.

Proof Let P be a definite program, p a predicate from the language underlying P, t a term from the language of Mp. The proof will be by course of values induction on the stages of the T_{Mp}-operator.
• $T_{Mp} \uparrow 1$ only contains the atom demo(empty) and atoms of the form clause(t,s), so the first stage of the T_{Mp}-operator in which atoms of the form demo(p(t)) occur is $T_{Mp} \uparrow 2$.
• Suppose demo(p(t)) \in $T_{Mp} \uparrow 2$. Then there must be an atom clause(p(t), empty) in $T_{Mp} \uparrow 1$. So we must have
 1) clause(p(t), empty) \in ground(Mp),
 2) p(s) \in P, for some s \in TERM_{Lp},
 3) an Mp-ground substitution θ such that sθ = t.
By Lemma 4.7, $ab\delta(t) = ab\delta(t)$. Let σ be an Mp-ground substitution with dom(σ) \supseteq Var($ab\delta(t)$). By Lemma 5.2.b we have that clause(p($ab\delta(t)\sigma$), empty) \in ground(Mp). So by definition of the T_{Mp}-operator, clause(p($ab\delta(t)\sigma$), empty) \in $T_{Mp} \uparrow 1$, and thus demo(p($ab\delta(t)\sigma$)) \in $T_{Mp} \uparrow 2$.

Suppose that for all m < n, the following holds:
If demo(p(t)) \in $T_{Mp} \uparrow m$, and σ is an Mp-ground substitution with dom(σ) \supseteq Var($ab\delta(t)$), then demo(p($ab\delta(t)\sigma$)) \in $T_{Mp} \uparrow m$. [IH]

• Suppose demo(p(t)) \in $T_{Mp} \uparrow n$. Let σ be an Mp-ground substitution with dom(σ) \supseteq Var($ab\delta(t)$). By definition of the T_{Mp}-operator, there are p$_1$, p$_k$ \in P$_{Lp}$, with Lp-terms s,s$_1$, ..., s$_k$, and an Mp-ground substitution θ such that
 1) p(s) \leftrightarrow p$_1$(s$_1$), p$_k$(s$_k$) \in P;
 2) (p(s) \leftrightarrow p$_1$(s$_1$), p$_k$(s$_k$))θ = p(t) \leftrightarrow p$_1$(t$_1$), p$_k$(t$_k$);
 3) clause(p(t), p$_1$(t$_1$)&..., &p$_k$(t$_k$)) \in $T_{Mp} \uparrow (n-1)$;
 4) demo(p$_1$(t$_1$)&..., &p$_k$(t$_k$)) \in $T_{Mp} \uparrow (n-1)$.

Now let σ be an Mp-ground substitution with dom(σ) \supseteq Var($ab\delta(\theta)$), that is, dom(σ) \supseteq Var($ab\delta(t)$) \cup Var($ab\delta(t_1)$) \cup ... \cup Var($ab\delta(t_k)$). By 1), 2), and Lemma 5.2.b we have that p($ab\delta(t)\sigma$) \leftrightarrow p$_1$(ab$\delta(t_1)\sigma$), p$_k$(ab$\delta(t_k)\sigma$) \in Mp-ground(P). So
clause(p($ab\delta(t)\sigma$), p$_1$(ab$\delta(t_1)\sigma$) &..., &p$_n$(ab$\delta(t_n)\sigma$)) \in $T_{Mp} \uparrow 1$, and hence in $T_{Mp} \uparrow (n-1)$. By 4) and Corollary 5.5 we know that demo(p$_i$(t$_i$)) \in $T_{Mp} \uparrow (n-1-i)$, for i \in [1,k]. From the inductive hypotheses we know that demo(p$_i$(ab$\delta(t_i)\sigma$)) \in $T_{Mp} \uparrow (n-1-i)$ for i \in [1,k]. By applying the Mp-clause demo(A&B) \leftrightarrow demo(A), demo(B) k-1 times we have
demo(p$_1$(ab$\delta(t_1)\sigma$)&..., &p$_n$(ab$\delta(t_k)\sigma$)) \in $T_{Mp} \uparrow (n-1)$.

By definition of the T_{Mp}-operator, we may conclude that: p(ab$\delta(t)\sigma$) \in $T_{Mp} \uparrow n$.

Corollary 5.7 Let P be a definite program, p$_1$, p$_k$ \in P$_{Lp}$, t$_1$, t$_k$ terms in L_{Mp}. Suppose demo(p$_1$(t$_1$)&..., &p$_k$(t$_k$)) \in $T_{Mp} \uparrow n$, for some n. Let σ be an Mp-ground substitutions with dom(σ) \supseteq Var(ab$\delta(t_1)$) \cup ... \cup Var(ab$\delta(t_k)$). Then
demo(p$_1$(ab$\delta(t_1)\sigma$)&..., &p$_n$(ab$\delta(t_k)\sigma$)) \in $T_{Mp} \uparrow n$.

16
We are now ready to prove the main theorem. We will split the proof in two parts. Lemma 5.8 is the soundness part, whose proof heavily depends on Lemma 5.6. and its corollary. Lemma 5.9 is the completeness part. With B_p we indicate the Herbrand base of a definite program P.

Lemma 5.8 (Soundness of M_p with respect to a definite program P)

Let P be a definite program and M_p the Vanilla meta interpreter associated with P. Then for all $p(t) \in B_p, \ \forall n \in \mathbb{N} \ [\text{demo}(p(t)) \in T_{M_p} \downarrow n \Rightarrow \exists m \in \mathbb{N}. \ p(t) \in T_p \downarrow m]$.

Proof By induction on n. Let P be a definite program and M_p the Vanilla meta-interpreter associated with P. Let $p(t) \in B_p$ throughout the proof. Again, the base case of the induction is $n = 2$.

- Suppose $\text{demo}(p(t)) \in T_{M_p} \downarrow 2$. Then clause($p(t)$, empty) $\in T_{M_p} \downarrow (1)$. So clause($p(t)$, empty) \leftarrow is an M_p-ground instance of a clause of M_p. So there must be a P-term s such that $p(s) \leftarrow \in P$, and an M_p-ground instantiation θ such that $s\theta = t$. However, by the assumption that $p(t) \in B_p, \ \theta$ must be a P-ground substitution. So $p(t) \leftarrow \in \text{ground}(P)$. Thus, by definition of the T_p-operator, we can conclude that $p(t) \in T_p \downarrow 1$.

- Suppose that for some $n>2, \ \text{demo}(p(t)) \in T_{M_p} \downarrow n$, and suppose that, for all $p'(t') \in B_p$,

 \[\forall n'<n \ [\text{demo}(p'(t')) \in T_{M_p} \downarrow n' \Rightarrow \exists m \in \mathbb{N}. \ p'(t) \in T_p \downarrow m] \quad \text{[IH]}\]

If $\text{demo}(p(t)) \in T_{M_p} \downarrow n'$, for some $n'<n$, we immediately have $\exists m \in \mathbb{N}. \ p(t) \in T_p \downarrow m$. So suppose that for all $n'<n$, $\text{demo}(p(t)) \notin T_{M_p} \downarrow n'$. That means that clause($p(t)$, empty) $\notin T_{M_p} \downarrow (1)$, i.e. $\text{demo}(p(t))$ must have entered the Herbrand model by an application of $[M3]$. So there must be ground atoms $B_1,...,B_k \in B_{M_p}$, such that

1. clause($p(t), B_1\&...\&B_k$) $\in T_{M_p} \downarrow (1)$,
2. $\text{demo}(B_1\&...\&B_k) \in T_{M_p} \downarrow (n-1)$.

As the B_i are terms in L_{M_p}, we cannot expect to apply the inductive hypothesis [IH] directly to the atoms $\text{demo}(B_i)$. But from 1), it follows that there are $p_1,...,p_n \in P_{L_P}$, and P-terms $s,s_1,...,s_n$, and an M_p-ground substitution θ such that

3. $p(s) \leftarrow p_1(s_1),...,p_k(s_k) \in P$,
4. $(p(s) \leftarrow p_1(s_1),...,p_k(s_k)\theta = p(t) \leftarrow B_1,...,B_k$.

Let, for $i \in [1,k], \ t_i = s_i\theta$, i.e. $B_i = p(t_i)$. Now take a P-ground substitution σ such that $\text{dom}(\sigma) = \text{ran}(a\delta(\theta))$. Note that, by the assumption that $p(t) \in B_p, \ t = a\delta(t) = a\delta(t)\sigma$. By Lemma 5.2.c we know that $p(t) \leftarrow p_1(s_1a\delta(\theta)\sigma),...,p_k(s_k a\delta(\theta)\sigma) \in \text{ground}(P)$.

[*]

Also, by Corollary 5.7, $\text{demo}(p_1(a\delta(t_1)\sigma)\&...\&p_n(a\delta(t_k)\sigma)) \in T_{M_p} \downarrow n$. And by Lemma 5.5, $\text{demo}(p_i(a\delta(t_i)\sigma)) \in T_{M_p} \downarrow n$ for $i \in [1,k]$. As $p_i(a\delta(t_i)\sigma) \in B_p$, we can apply the inductive hypothesis to the atoms $\text{demo}(p_i(a\delta(t_i)\sigma))$:
\[\exists m_1, \ldots, m_k \in \mathbb{N}. \, p_i(a \delta(t_i)\sigma) \in T_P \uparrow m_i. \]

Now by \([*]\) and \([**]\) and the definition of the \(T_P\)-operator, we can conclude that there is an \(m\) such that \(p(t) \in T_P \uparrow m\). \(\Box\)

The proof of the following completeness lemma is inspired by De Schreye and Martens, who proved this result in [SM] for a version of the Vanilla meta-interpreter with a different underlying language.

Lemma 5.9 (Completeness of \(M_P\) with respect to a definite program \(P\))

Let \(P\) be a definite program and \(M_P\) the Vanilla meta-interpreter associated with \(P\). Then for all \(p(t) \in B_P\), \(\forall n \in \mathbb{N}. \, [p(t) \in T_P \uparrow n \Rightarrow \exists m \in \mathbb{N}. \, \text{demo}(p(t)) \in T_{M_P} \uparrow m].\)

Proof By course of values induction on \(n\). Let \(p(t) \in B_P\).

The case \(n=0\) holds trivially by definition of \(T_P \uparrow 0\) as the empty set.

- Suppose \(p(t) \in T_P \uparrow 1\). Then \(p(t) \leftarrow \) is a ground instance of a clause of \(P\). So \(\text{clause}(p(t), \text{empty})\) \(\leftarrow \) is a ground instance of a clause of \(M_P\), and \(\text{clause}(p(t), \text{empty})\) belongs to \(T_{M_P} \uparrow 1\). Also, \(\text{demo}(\text{empty}) \in T_{M_P} \uparrow 1\), and \(\text{demo}(p(t)) \leftarrow \text{clause}(p(t), \text{empty})\) is a ground instance of \([M3]\). Thus, by definition of the \(T_P\)-operator, \(\text{demo}(p(t)) \in T_{M_P} \uparrow 2\).

- Suppose \(p(t) \in T_P \uparrow n\). And suppose that, for all \(p'(t') \in B_P\),
 \[\forall n' < n. \, [p(t) \in T_P \uparrow n' \Rightarrow \exists m \in \mathbb{N}. \, \text{demo}(p(t)) \in T_{M_P} \uparrow m]. \quad \text{[IH]} \]

If there is an \(n' < n\) such that \(p(t) \in T_P \uparrow n'\), then by [IH] \(\exists m \in \mathbb{N}. \, \text{demo}(p(t)) \in T_{M_P} \uparrow m\).

So assume that for all \(n' < n\), \(p(t) \notin T_{M_P} \uparrow n'\). Then there are \(p_1(s_1), \ldots, p_k(s_k) \in B_P\), \((k \geq 1)\) such that \(p(t) \leftarrow p_1(s_1), \ldots, p_k(s_k) \in \text{ground}(P)\) and \(p_i(s_i) \in T_P \uparrow (n-1)\) for \(i \in [1,k]\).

Thus from [IH] we can conclude that there are \(m_1, \ldots, m_k\), such that \(\text{demo}(p_i(s_i)) \in T_{M_P} \uparrow m_i\) for \(i \in [1,k]\). By monotonicity of the \(T_P\)-operator, \(\text{demo}(p_i(s_i)) \in T_{M_P} \uparrow m'\) for all \(i \in [1,k]\) and for all \(m' \geq \max(m_1, \ldots, m_k)\). So, applying \([M3]\) \(k-1\) times, we find an \(m'\) such that \(\text{demo}(p_1(s_1) \& \ldots \& p_k(s_k)) \in T_{M_P} \uparrow m'\). Also, \(\text{clause}(p(t), p_1(s_1) \& \ldots \& p_k(s_k)) \leftarrow \) belongs to \(\text{ground}(M_P)\). Therefore, \(\text{clause}(p(t), p_1(s_1) \& \ldots \& p_k(s_k)) \in T_{M_P} \uparrow m'\). So by an application of \([M2]\), \(\text{demo}(p(t)) \in T_{M_P} \uparrow (m' + 1)\). \(\Box\)

Theorem 5.10 (MAIN THEOREM) Let \(P\) be a definite program and \(M_P\) the Vanilla meta-interpreter associated with \(P\). Then for all \(p(t) \in B_P\),

\[p(t) \in H_P \text{ iff } \text{demo}(p(t)) \in H_{M_P}. \]

Proof Combine Lemmas 5.8 and 5.9. \(\Box\)
6 Related Results and Discussion
In this section, we will compare our results with other approaches and results from the literature. First, in paragraph 6.1, we discuss the approach of De Schreye and Martens [SM, MS], who have an interesting result for the Vanilla meta interpreter of a subclass of the class of definite programs and a version of the main theorem in the context of S-semantics. In paragraph 6.2 we discuss a typed version of the Vanilla meta interpreter, as proposed by Hill and Lloyd [HL].

6.1 De Schreye and Martens
In their work on the Vanilla meta interpreter [MS] and [SM], Martens and De Schreye propose two approaches. In [SM] they concentrate on the class of 'language independent' programs, for which they prove a strengthening of our main result. A definite object program P is language independent if for all standard extensions L of \(L_P \), the least Herbrand model for P with respect to L is equal to the least Herbrand model for P with respect to \(L_P \) [SM, Definitions 2.1–2.3]. For this class the following strengthening of our main theorem for the Vanilla meta-interpreter holds:

Theorem 6.1 [SM, Theorem 2.11] Let P be a language independent program and \(M_P \) the Vanilla meta-interpreter associated with P. Then for all \(p \in R_P \) and for all \(t \in U_{M_P} \),

\[
\text{demo}(p(t)) \in H_{M_P} \iff p(t) \in H_P.
\]

By Lemma 5.3 this result can be strengthened in the following way:

Corollary 6.2 Let P be a language independent program and \(M_P \) the Vanilla meta-interpreter associated with P. Then for all \(p(t) \in B_{M_P} \),

\[
\text{demo}(p(t)) \in H_{M_P} \iff p(t) \in H_P.
\]

Theorem 6.1 expresses that for language independent programs, if an atom \(\text{demo}(p(t)) \) belongs to the least Herbrand model of \(M_P \), then \(t \) is necessarily an object level term: this property does not hold for all definite programs. Thus Theorem 6.1 shows that there is a one-to-one correspondence between atoms \(p(t) \) in the least Herbrand model of a definite language independent program P and atoms \(\text{demo}(p(t)) \) in the least Herbrand model of the associated Vanilla meta-interpreter \(M_P \). This correspondence does not hold for general definite programs.

The class of language independent programs essentially consists of the 'range restricted' programs: consider, for a language independent program P, the program \(P^* \) which
consists of the range restricted clauses of P. P and P* have the same success set and both programs have the same set of computed answer substitutions. Moreover, while the class of range restricted programs is syntactically defined, the class of language independent programs is undecidable.

De Schreye and Martens prove their main result for Vanilla meta-interpreters which do not use ambivalent syntax, but, instead, a standard syntax in which the relations of the object level language are represented as functions. They remark that their results also hold for Vanilla meta interpreters with ambivalent syntax, but do not pursue the subject in detail.

After this paper was completed, we learnt about a new paper [MS]. In that paper the Vanilla meta-interpreter for definite programs is studied in the context of S-semantics, which was introduced in [FLPM] as a declarative semantics which fully characterises the procedural behaviour of definite programs. S-semantics for definite programs are Herbrand models which can contain non-ground atoms. In an S-model, atoms which are variable renamings of each other are considered equal. Every definite program P has a unique least S-Herbrand model H^S_P, which can be obtained as the least fixpoint of a suitable T-operator. The main properties of H^S_P are the following:

a) H^S_P is the set of ground instantiations of atoms in H^S_P;
b) if θ is a computed answer substitution for $P \cup \{\leftarrow A\}$, then $A\theta$ is an instantiation of an atom A' that belongs to H^S_P;
c) if A and A' are atoms such that A' belongs to H^S_P and $A\theta = A'$, with $\text{dom}(\theta) = \text{Var}(A')$, then θ is a computed answer substitution for $P \cup \{\leftarrow A\}$.

The main theorem for the Vanilla meta-interpreter for definite programs in the context of S-semantics reads as follows:

Theorem 6.3 [MS, Theorem 8.15] For all $p \in R_P$ and for all t in $\text{TERM}_{\Lambda M_p}$,
$\text{demo}(p(t)) \in H^S_{M_P}$ iff $p(t) \in H^S_P$.

Also in this case our Lemma 5.3 applies. And again, this result establishes a one-to-one correspondence between atoms $p(t)$ in the least S-Herbrand models of, respectively, a definite program P and the associated interpreter M_P. By this theorem the procedural aspects of the Vanilla meta interpreter can be characterised more fully, as follows:

Theorem 6.4 For all $p \in R_P$ and for all t in $\text{TERM}_{\Lambda M_p}$,
θ is a computed answer substitution for \(M_p \cup \{ \leftarrow \text{demo}(p(t)) \} \)
iff θ is a computed answer substitution for \(P \cup \{ \leftarrow p(t) \} \).

This follows from Theorem 6.3 and b) and c) above.

Our main theorem 5.10 can be obtained from Theorem 6.4 by only considering substitutions with an \(L_p \)-ground range. (It is impossible however, to compute the set of pairs of goals and computed answer substitutions from the success set of a program. So clearly one can not derive Theorems 6.3 and 6.4 from our version of the main theorem.) Lemma 5.6, which shows that terms from the meta-language that occur as subterms in atoms in the least Herbrand model of \(M_p \), have universal force, can also be derived from Theorem 6.4.

The value of our main result 5.10 still lies in the fact that it shows there is a suitable standard Herbrand semantics for the Vanilla meta interpreter for definite programs, which is based on ambivalent syntax, and with respect to which correctness can be proved. Together with Lemma 5.6, our main result exhaustively treats the declarative aspects of the Vanilla meta interpreter for definite programs. Also, it shows that ambivalent syntax is useful and appropriate in the context of meta interpreters.

6.2 Hill and Lloyd: A typed Vanilla meta-interpreter

Motivated by the observation that the declarative meaning of the Vanilla meta-interpreter is unclear because the variables in the definition of demo and those in the definition of clause intuitively range over different domains, Hill and Lloyd [HL] propose a typed version of the Vanilla meta interpreter for normal programs. (In the same article Hill and Lloyd propose a typed meta interpreter which uses ncn-ground representation of object level variables in the meta-level.) [HL] has two results on the typed interpreter, which together establish its correctness.

The first result is that the completion of \(V_p \), the typed Vanilla meta-interpreter, is consistent iff the completion of \(P \) is consistent. This result implies that, for normal goals \(G \) and substitutions \(t, t' \) is a correct answer for \(P \cup \{ G \} \) iff \(t' \) is a correct answer for \(V_p \cup \{ \text{demo}(G') \} \). (Here \(t' and G' \) are the translations of \(t \) and \(G \) in the typed meta-language.) The technique used to get this result is a transformation of a model \(I \) for the completion of \(P \) into a model \(I^* \) for the completion of \(V_p \) and vice versa. Although not discussed in [HL], this transformation technique could be used for the typed Vanilla meta-interpreter for definite programs, to transform \(H_v_p \) into \(H_p \) (one can easily
establish $H_p^* = H_{vp}$ and vice versa (for the inverse transformation \sim the following holds: $H_{vp} \sim = H_p$).

The second result is procedural correctness of the typed Vanilla meta-interpreter (a version of Theorem 6.4). This result is obtained by transformations of finitely failed trees for the meta-interpreter to finitely failed trees for its object program and vice versa, using a partial evaluation technique. The same strategy can be used for the untyped Vanilla meta-interpreter using ambivalent syntax; this gives a slightly weaker result because of the 'pollution' of the computed answer substitutions with meta-level terms. Typing typically prevents such pollution.

In general Prolog practice the untyped Vanilla meta-interpreter is used, rather than the typed version, and here our main result is of practical importance. Of course, it is the extensions of the Vanilla meta interpreter, and not so much the Vanilla meta-interpreter itself, where the real interest lies. The correctness of the Vanilla meta-interpreter, demonstrated by the different versions of the main theorem, in fact shows that the Vanilla meta-interpreter proves no more nor less than the object program. In the present paper we do not have any results on extensions of the Vanilla meta-interpreter, but we feel confident that the theory developed here can be used to get the desired results for extensions. An interesting variety of extensions of the Vanilla meta-interpreter is formed by the 'amalgamated' programs. The language of the typed Vanilla meta-interpreter is less suitable for amalgamated programs, whereas the ambivalent syntax underlying the untyped interpreter is especially suitable for amalgamation. Amalgamated programs contain clauses in which both meta- and object level atoms appear. Typical examples of amalgamation are reflection clauses, e.g. demo(X) ← X and X ← demo(X). Kim and Kowalski [KK] propose a formalisation of multi-agent knowledge and belief in the logic programming format. An extension of the Vanilla meta interpreter with a binary demo-predicate formalises knowledge of agents (demo(a,b) for "agent a knows b"), in the context of the three wise man problem. Employing ambivalent syntax, the reflexive knowledge axiom can be formalised as a clause X ← demo(a,X). The language of the typed Vanilla meta interpreter is hardly suitable for those applications, as it can not identify the two variables X.
References

The ILLC Prepublication Series

Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity

A Randomized Algorithm for Two-Process Wait-Free Test-set-and-Set

Quasi-Injective Reductions

Reasoning about Termination of Prolog Programs

Kohonen Feature Maps in Natural Language Processing

Neural Nets and their Relevance for Information Retrieval

A Formal Discourse Grammar tackling Verb Phrase Anaphora

On the Undecidability of the Disjunction Property of Intermediate Propositional Logics

Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic

Partial Conservativity and Modal Logics

Temporal Logic

Annual Report 1990

Lectures on Linear Logic, Errata and Supplement

Logic of Tolerance

On Bimodal Provability Logics for Π_1^1-axiomatized Extensions of Arithmetical Theories

Independence, Randomness and the Axiom of Choice

Canonical Formulas for \mathcal{K}_4. Part I: Basic Results

Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarte en Michael Moortgat

The Multiplicative Fragment of Linear Logic is NP-Complete

The Horn Fragment of Linear Logic is NP-Complete

Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version

Uncountable Hypotheses in Edward Nelson’s Internal Set Theory

Independence, Randomness and the Axiom of Choice, Revised Version

New Semantics for Predicate Modal Logic: an Analysis from a standard point of view

Annual Report 1991

Logic, Semantics and Philosophy of Language

Lambek Grammar: an Information-based Categorial Grammar

Modal Logic and Attribute Value Structures

The Completeness of the Lambek Calculus with respect to Relational Semantics

An Update Semantics for Dynamic Predicate Logic

The Kinematics of Presupposition

A Modal Perspective on the Computational Complexity of Attribute Value Grammar

A Note on Interrogatives and Adverbs of Quantification

A System of Dynamic Modal Logic

Quantifiers in the world of Types

Meeting Some Neighbours (a dynamic modal logic meets theories of change and knowledge representation)

A note on Dynamic Arrow Logic

Sequent Calculi for Normal Modal Propositional Logics

Iterated Quantifiers

Interrogatives and Adverbs of Quantification

Comparing the theory of Representations and Constructive Mathematics

On the Structure of Kripke Models of Heyting Arithmetic

A Modal Theory of Arrows, Arrow Logics I

Shavrukov’s Theorem on the Subalgebras of Diagonalizable Algebras for Theories containing $\Pi_1^1 + EXP$

Undecidability of Modal and Intermediate First-Order Logics with Two Individual Variables

How to Broaden your Horizon

Information Systems as Coalgebras

Realizability

A Smart Child of Peano’s

Computer and Complexity Theory

Object Oriented Application Flow Graphs and their Semantics

Weak Equivalence: Theory and Applications

A new Definition of SLDNF-resolution

The Logic of Information Structures

The Closed Fragment of Dhaparidze’s Polymodal Logic and the Logic of Σ_1 conservativity

Dynamic Semantics and Circular Propositions, revised version

Modeling the Kinematics of Meaning

Object Oriented Application Flow Graphs and their Semantics, revised version

1993

Mathematical Logic and Foundations

Commutative Lambek Categorial Grammars

Modal Quantification over Structured Domains

The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax