CHARLES H. BENNETT, PÉTER GÁCS,
MING LI, PAUL M.B. VITÁNYI,
WOJCIECH H. ZUREK

Thermodynamics of Computation
and Information Distance

CT-94-07, received: April 1994
Thermodynamics of Computation and Information Distance

Charles H. Bennett† Péter Gács† Ming Li§

Paul M.B. Vitányi¶ Wojciech H. Zurek‖

October 15, 1993

Abstract

Intuitively, the minimal information distance between \(z \) and \(y \) is the length of the shortest program for a universal computer to transform \(z \) into \(y \) and \(y \) into \(z \). This measure will be shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities \(E_t(x, y) = \max\{K(y|x), K(x|y)\} \).

Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of \(x \) and \(y \) satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that \(E_t \) is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures.

A third information distance, based on the idea that one should aim for energy dissipationless computations, and hence for reversible ones, is given

†T.J. Watson IBM Research Center, Yorktown Heights, NY 10598, USA. Email: benne@watson.ibm.com.
‡Computer Sci. Dept., Boston University, Boston, MA 02215 USA. Email: gacs@cs.bu.edu. Part of this research was done during the author's stay at IBM Watson Research Center. Partially supported by NSF grant CCR-9002614, and by NWO through NFI Project ALADDIN under Contract number NF 62-376 and Scientific Visitor Award B 62-394.
¶Computer Sci. Dept., University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada. Email: mil@math.uwaterloo.ca. Partially supported by NSERC Operating grant OGP-046506.
‖CWI and University of Amsterdam. Address: CWI, Kruislaan 413 1098 SJ Amsterdam, The Netherlands. Email: paul@ewi.nl. Partially supported by NSERC International Scientific Exchange Award ISE0046203, and by NWO through NFI Project ALADDIN under Contract number NF 62-376.
¶¶Theor. Div., Los Alamos National Laboratories and Santa Fé Inst.. Address: LANL, Los Alamos, NM 87545, USA. Email: whs@lanl.gov
by the length $E_2(x, y) = KR(y|x) = KR(x|y)$ of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also $E_2 = E_1$, up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion.

Another information distance, E_3, is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, $E_3(x, y) = K(y|x) + K(x|y)$.

Finally, using the physical theory of reversible computation, the simple difference $K(x) - K(y)$ is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process.

1991 Mathematics Subject Classification:
60A99, 68Q30, 80A05, 82B03, 82C03

Keywords and Phrases: entropy, description complexity, Kolmogorov complexity, algorithmic entropy, randomness test, reversible computation, information.
1 Introduction

We write string to mean a binary string, unless explicitly stated otherwise.\footnote{Part of the results were announced in M. Li and P.M.B. Vitányi, pp. 42-46 in: IEEE Proc. Physics and Computation Workshop, 1992.} Other finite objects can be encoded into binary strings in natural ways. The set of binary strings is denoted by $\{0,1\}^*$. The Kolmogorov complexity, (or algorithmic entropy), $K(x)$ of a string x is the length of the shortest binary program to compute x on a universal computer (such as a universal Turing machine). Intuitively, $K(x)$ represents the minimal amount of information required to generate x by any effective process. The conditional Kolmogorov complexity $K(y|x)$, of y relative to x, may be defined similarly as the size of a minimal-sized program to compute y if x is furnished as an auxiliary input to the computation. The functions $K()$ and $K()$, though defined in terms of a particular machine model, are machine-independent up to an additive constant and acquire an asymptotically universal and absolute character through Church’s thesis, from the ability of universal machines to simulate one another and execute any effective process.

Our goal is to find the most appropriate informational “distance” between two strings, i.e. the minimal quantity of information sufficient to translate between x and y, generating either string effectively from the other. We first look at the length of the shortest binary program which computes x from y as well as computing y from x. Being shortest, such a program should take advantage of any redundancy between the information required to obtain from x to y and the information required to obtain from y to x. Therefore, we would like to know to what extent the information required to compute x from y can be made to overlap with that required to compute y from x. In some simple cases, complete overlap can be achieved, so that the same minimal program suffices to compute x from y as to compute y from x. For example if x and y are independent random binary strings of the same length n (up to additive contents $K(x|y) = K(y|x) = n$), then their bitwise exclusive-or $x \oplus y$ serves as a minimal program for both computations. Similarly, if $x = uv$ and $y = uvw$ where u, v, and w are independent random strings of the same length, then $u \oplus w$ is a minimal program to compute either string from the other. Now suppose that more information is required for one of these computations than for the other, say,

$$K(y|x) > K(x|y).$$

Then the minimal programs cannot be made identical because they must be of different sizes. Nevertheless, in simple cases, the overlap can still be made complete, in the sense that the larger program (for y given x) can be made to contain all the information in the shorter program, as well as some additional information. This is so when x and y are independent random strings of unequal length, for example u and uvw above. Then $u \oplus v$ serves as a minimal program
for u from vw, and $(u \oplus v)w$ serves as one for vw from u.

Section 3 exhibits a principal result of this paper that, up to logarithmic error terms, the information required to translate between two strings can always be represented in this maximally overlapping way. Namely, let

$$k_1 = K(x|y), \quad k_2 = K(y|x),$$

$$l = k_2 - k_1.$$

Then there is a string d of length $k_1 + O(\log k_1)$ and a string q of length $l + O(\log l)$ such that d serves as the minimal program both from xq to y and from y to xq. This means that the information required to pass from x to y is always maximally correlated with the information required to get from y to x. It is therefore never the case that a large amount of information is required to get from x to y and a large but independent amount of information is required to get from y to x. This demonstrates that $E_1 = \max\{K(y|x), K(x|y)\}$ equals the length of the shortest program (d, q) to compute x from y and y from x, up to a logarithmic additive term. 2 (It is very important here that the time of computation is completely ignored: this is why this result does not contradict the idea of one-way functions.)

The process of going from x to y may be broken into two stages. First, add the string q; second, use the difference program d between qz and y. In the reverse direction, first use d to go from y to qz; second, erase q. Thus the computation from x to y needs both d and q, while the computation from y to x needs only d as program. The foregoing is true of ordinary computations, but if one insists that the computation be performed reversibly, that is by a machine whose transition function is $1:1$ [17, 3], then the full program $p = dq$ is needed to perform the computation in either direction. This is because reversible computers cannot get rid of unwanted information simply by erasing it as ordinary irreversible computers do. If they are to get rid of unwanted information at all, they must cancel it against equivalent information already present elsewhere in the computer. Reversible computations are discussed further in section 5.

Let us note that the programs for going between independent random x and y can, if one wishes, also be made completely independent. For example use y to go from x to y and x to go from y to x. This holds for arbitrary x, y, as will be shown at the end of the section, but only with respect to an "oracle": a certain constant string that must be in all the conditions. This theorem can be considered a generalization of the Slepian-Wolf Theorem of classical information theory [8].

Section 4 develops an axiomatic theory of 'picture distance' and argues that

2The situation is analogous to the inverse function theorem of multidimensional analysis.

This theorem says that under certain conditions, if we have a vector function $f(x, d)$ then it has an inverse $g(y, d)$ such that in a certain domain, $f(d, x) = y$ holds if and only if $g(y, d) = x$.

In the function going from y to x, the parameter d remains the same as in the function going from x to y.

the function

\[E_1(x, y) = \max \{ K(x|y), K(y|x) \} \]

is the most natural way of formalizing the notion of a universal effective 'picture distance' between \(x \) and \(y \). This function is symmetric, obeys the triangle inequality to within an additive constant, and is minimal among a class of functions satisfying a normalization constraint appropriately limiting the number of distinct strings \(y \) within a given distance of any \(x \).

Section 5 defines a reversible distance \(E_2 \) representing the amount of information required to program a reversible computation from \(x \) to \(y \). The \(E_2 \) distance is equal within an additive constant to the length of the conversion program \(p = dq \) considered above, and so is at most logarithmically greater than the optimal distance \(E_1 \). The reversible program functions in a catalytic capacity in the sense that it remains unchanged throughout the computation.

Hence, three very different definitions arising from different concerns turn out to define the same fundamental notion of optimal effective information distance.

Section 6 instead considers reversible computations in which additional information \(r \) besides \(x \) is consumed, and additional information \(s \) besides \(y \) is generated in the course of the computation. The sum, \(E_3(x, y) \), of these amounts of information represents the minimal number of irreversible bit operations in a computation from \(x \) to \(y \) in which the program is not retained. \(E_3 \) is shown to be equal to within a logarithmic term to Zurek's sum metric \(K(y|x) + K(x|y) \), which is typically larger than our proposed optimal metric because of the redundancy between \(r \) and \(s \). However, using the program involved in \(E_1 \) we both consume it and are left with it at the end of the computation, accounting for \(2E_1(x, y) \) irreversible bit operations, which is typically larger than \(E_3(x, y) \).

Section 7 compares the dimensional properties of the optimal and sum metrics.

Finally Section 8 considers the problem of defining a thermodynamic entropy cost of transforming \(x \) into \(y \), and argues that it ought to be an antisymmetric, transitive function, in contrast to the informational metrics which are symmetric. Landauer's principle connecting logical and physical irreversibility is invoked to argue in favor of \(K(x) - K(y) \) as the ideal thermodynamic cost of transforming \(x \) into \(y \).

2 Kolmogorov Complexity

Let \(l(p) \) denote the length of the binary string \(p \). Let \(\#S \) denote the number of elements of set \(S \). We give some definitions and basic properties of Kolmogorov complexity. (Some of us prefer the name 'algorithmic entropy'.) For details and attributions, we refer to [23, 12, 13, 19]. We say that a real-valued function \(f(x, y) \) over strings is upper semicomputable if the set of triples

\[\{ (x, y, d) : f(x, y) < d, \ d \ \text{rational} \} \]
is recursively enumerable. A function \(f \) is lower semicomputable if \(-f\) is upper semicomputable.

A prefix set is a set of strings such that no member is a prefix of any other member. A partial recursive function \(F(p, x) \) is called a prefix machine (interpreter) if for each \(x \), \(\{ p : \exists y \ F(p, x) = y \} \) is a prefix set. The argument \(p \) is called a self-delimiting program for \(y \) from \(x \), because, owing to the prefix property, no punctuation is required to tell the machine how much of \(p \) to use.

We define the conditional Kolmogorov complexity, (the 'self-delimiting' version) \(K_F(y|x) \) of \(y \) with condition \(x \), with respect to the machine \(F \) as the minimal \(l(p) \) where the minimum is take over all strings \(p \) with \(F(p, x) = y \). It is well-known that there is a prefix machine \(U \) with the property that for all other prefix machines \(F \) and for all \(p, x \) there is an additive constant \(c_F \) such that \(K_U(p|x) \leq K_F(p, x) + c_F \). Such a prefix machine will be called optimal.

We fix such an \(U \) and write

\[
K(x|y) = K_U(x|y).
\]

We will call \(K(x|y) \) the Kolmogorov complexity, of \(x \) with respect to \(y \).

From now on, we will denote by \(\prec \) an inequality to within an additive constant, and by \(\preceq \) the situation when both \(\prec \) and \(\sim \) hold.

Let us give a useful characterization of \(K(x|y) \). It is easy to see that \(K(x|y) \) is an upper semicomputable function with the property \(\sum_y 2^{-K(x|y)} \leq 1 \). But also, if \(f(x, y) \) is an upper semicomputable function with \(\sum_y 2^{-f(x,y)} \leq 1 \) then \(K(y|x) \preceq f(x, y) \).

Kolmogorov complexity has the following addition property.

\[
K(x, y) \equiv K(x) + K(y|x, K(x)). \tag{2.1}
\]

Let us introduce the notation

\[
\overline{x} = (x, K(x)).
\]

We call the mutual information between \(x \) and \(y \) the quantity

\[
I(x, y) = K(x) + K(y) - K(x, y).
\]

The addition theorem implies that

\[
I(x, y) \equiv K(x) - K(x|y) \equiv K(y) - K(y|\overline{x}).
\]

This equation can be interpreted as saying that \(I(x, y) \) is the amount by which the information needed to produce \(y \) is decreased if \(\overline{x} \) is given, i.e., this is the amount of information in \(\overline{x} \) about \(y \). The presence of \(K(x) \) in \(\overline{x} \) is just a technical matter and can be considered as a "logarithmic correction term", i.e.
we are essentially talking about the amount of information in \(x \) about \(y \). We can consider \(x \) and \(y \) “independent” when this quantity is (nearly) 0. Mutual information should not be confused with “common information”, which (when appropriately defined) is generally very low even if mutual information is large [11].

3 Conversion Programs

Maximum overlap We show that \(E_1(x, y) = \max\{K(x|y), K(y|x)\} \) equals the length the shortest program for the universal computer to compute \(x \) from \(y \) and \(y \) from \(x \), up to a logarithmic additive term.

3.1 Difference Theorem With the notation of the Introduction, suppose \(k_1 \leq k_2 \). Then there is a string \(p \) of length \(k_2 + O(\log k_2) \) such that

\[
U(p, 0x) = y, \quad U(p, 1y) = x.
\]

This is equivalent to asserting that there is a string \(p \) of length \(k_2 \) such that both \(K(y|x, p) \) and \(K(x|y, p) \) are bounded by \(O(\log k_2) \). We call this theorem the Difference Theorem since it asserts the existence of a difference string \(p \) that converts both ways between \(x \) and \(y \) and at least one of these conversions is optimal. If \(k_1 = k_2 \) then the conversion is optimal in both directions.

Proof Let \(S \) be the set of all binary strings. Let \(X, Y \) be two disjoint sets whose elements are in a one-to-one correspondence with the elements of \(S \): we could e.g. set \(X = \{(s, 0) : s \in S\} \) and \(Y = \{(s, 1) : s \in S\} \). Let \(G = (X \cup Y, E) \) be the following infinite bipartite graph over \(X \cup Y \) with set of edges \(E \) where

\[
E = \{(x, y) : K(x|y) \leq k_1, \ K(y|x) \leq k_2\}.
\]

By definition, the maximum degree of the nodes in \(X \) is at most \(2^{k_2+1} \) and in \(Y \) is at most \(2^{k_1+1} \). Two edges are adjacent if they have common endpoints. A matching is a set of nonadjacent edges. We can partition \(E \) into at most \(2^{k_2+2} \) matchings \(M_1, M_2, \ldots \). If we can do this constructively we have a program \(p \) of length \(k_2 + O(\log k_2) \) that takes \(0x \) into \(y \) and \(1y \) into \(x \). Indeed, for a pair \((x, y) \in E \), the number \(i \) of the matching \(M_i \) containing \((x, y) \) has length at most \(k_2 + O(1) \). Knowing \(i \) and \(x \) gives \(y \) while knowing \(i \) and \(y \) gives \(x \).

Let us do the partitioning constructively, in the most simple-minded way. By its definition, the set \(E \) can be enumerated into a sequence \(e_1, e_2, \ldots \) of edges. In step \(t \), a new edge \(e_t \) is given. We will put it into one of the nonempty matchings created so far, (it does not matter into which one) if this is possible; if it is not we create a new matching. For clarity, here is a formal definition. We define, recursively, a function \(n(t) \) for each \(t \) such that \(M_t = \{ e_t : n(t) = i \} \).

Let

\[
M^*_t = \{ e_u : n(u) = i, \ u < t \}.
\]
Then \(n(t) \) is the first \(i \) such that \(e_i \) is not adjacent to any edge of \(M_i \). Let us show that the number of nonempty matchings is indeed at most \(2^{k_1} \). Let \(M_i \) be a nonempty matching: then there is a \(t \) such that \(i = n(t) \). The edge \(e_t \) is adjacent to some edge in each matching \(M_j \) for \(j < i \). But the number of edges that an edge can be adjacent to is at most the sum of the degrees of the endpoints—actually, 2 less than that. Hence, \(i - 1 \leq 2^{k_1+2} - 2 \).

More explicitly, we describe the program \(p \) such that \(U(p, bx) = y \) if \(b = 0 \) and \(U(p, by) = x \) if \(b = 1 \). It contains the following parts.

- The numbers \(k_1 \) and \(i \).
- Procedure generating the sequence \(e_1, e_2, \ldots \).
- Procedure generating simultaneously the matchings \(M_1, M_2, \ldots \).
- Procedure generating \(M_i \).
- Procedure to find \(y \) using \(x, M_i \) if \(b = 0 \) and to find \(x \) using \(y, M_i \) if \(b = 1 \).

\[
(3.2) \text{Remark} \quad \text{Suppose } k_1 = k_2. \text{ The difference program } p \text{ of the above theorem is independent of } x \text{ as well as } y \text{ in the sense that their mutual information is nearly } 0. \text{ This follows from } K(x) + K(p) = K(x, y) + O(\log K(x, y)). \text{ It is at the same time completely dependent on the pair } (x, y). \quad \square
\]

\[
(3.3) \text{Excess Theorem} \quad \text{Let us use the above notation, with } l = k_2 - k_1. \text{ There is a binary string } q \text{ of length } l + O(\log l) \text{ such that}
\]
\[
K(y|qx) = K(qx|y) = k_1 + O(\log k_1).
\]

Proof
Similarly to the above proof, let the graph \(G = (X \cup Y, E) \) be now such that
\[
E = \{ (x, y) : K(x|y) \leq k_1 \}.
\]

Its edges are enumerated again as \(e_1, e_2, \ldots \). Now the degree of the nodes in \(Y \) is still \(\leq 2^{k_1+1} \). Let us define a new graph \(G' = (X' \cup Y, E') \) such that in it, the degree of the degree of nodes in \(X' \) is also bounded by \(2^{k_1} \). To do this, we will simply split the nodes in \(X \) as soon as their degree would rise above \(2^{k_1} \). For each node \(x \in X \), let \((x, y_1), (x, y_2), \ldots \) be the natural enumeration (in the order of the edges \(e_1, e_2, \ldots \)) of the set of edges \(\{ (x, y) : (x, y) \in E \} \). Let
\[
m(n) = \lceil n / 2^{k_2} \rceil.
\]
We split each node \(x \) into a sequence of nodes \(z_1(x), z_2(x), \ldots \). We have

\[
X' = \{ z_m(x) : x \in X, \ m = 1, 2, \ldots \}, \\
E' = \{ (z_{m(i)}(x), y_i) : x \in X, \ i = 1, 2, \ldots \}.
\]

Thus, at node \(x \), the first group of \(2^{k_1} \) edges \((x, y_i) \) will be attached to the new node \(z_1(x) \), the second group to \(z_2(x) \), etc. Now the binary string \(q \) is a self-delimiting program for the number \(m \) such that \((z_m(x), y) \in E' \). By definition, \(m < 2^{k_1 + 1} \), therefore \(l(q) \leq l + O(\log l) \). The pair \(x, m \) determines the node \(z_m(x) \). Since the maximum degree of the graph \(G' \) is at most \(2^{k_1} \), we have the desired upper bounds on the conditional Kolmogorov complexities.

Minimum overlap The topic of the rest of this section is independent of the rest of the paper and can be skipped at first reading.

For a pair \(x, y \) of strings, we found that shortest programs converting \(x \) into \(y \) and \(y \) into \(x \) can overlap maximally. Let us see in what sense it is possible to make such programs overlap minimally. Our initial discussion will be somewhat informal, serving only to motivate later precise statements. When we say that two strings are independent, we mean that their mutual information is very small. When we say that \(y \) is a simple function of \(x \) we mean that \(K(y|x) \) is small.

Let us have a minimal program \(q \), of length \(k_2 \), converting \(x \) to \(y \) and a minimal program \(p \) of length \(k_1 \) converting \(y \) to \(x \). It is easy to see, just as in Remark 3.2 above that \(y \) is independent of \(p \). Also, any simple function of \(y \) is independent of \(p \). So, if \(q \) is a simple function of \(y \), it is independent of \(p \). The question whether \(q \) can be made a simple function of \(y \) is interesting in itself since it would be a generalization of the Slepian-Wolf Theorem (see [8]). And it sounds just as counterintuitive at first as that theorem. It implies that for each \(y \) there is a \(k_2 \)-bit program \(q(y) \) such that for any \(x \) such that \(K(y|x) \leq k_2 \), the pair \((x, q(y)) \) has all information about \(y \). This implication turns out to be true: \(q \) can be made a function of \(y \). The answer to the original question is, however, negative: \(q \) cannot be made a simple function of \(y \). Before making these statements formal we introduce a combinatorial lemma whose proof was obtained with the help of Zoltan Füredi.

3.4 Coloring Lemma On a set \(Y \), let us be given a set system with \(M \) sets \(S_i \) of size \(N \). For \(B > 0 \), a \(B \)-coloring of this system is a partition \(V = \bigcup_j V_j \) such that \(\#(S_i \cap V_j) \leq B \), i.e. there are at most \(B \) points of the same color in a set \(S_i \). There is a \(B \)-coloring with at most

\[
(N/B) \max\{2, (16\log(MN))/B\}
\]

colors.

Notice that \(N/B \) colors are trivially needed.
Proof Let us choose the color of each element of V independently, with a uniform distribution among the given number of colors. For each i, j, we can upperbound the probability that $\#(S_i \cap V_j) > B$, using the Chernoff bound for the large deviations in the law of large numbers. In application to the present case, this bound says that if in an experiment of N coin-tosses, the success probability is p then for some $p' > p$, the probability that there are more than Np' successes is at most c^N with

$$c = \left(\frac{p}{p'} \right) \left(\frac{1 - p}{1 - p'} \right)^{1-p'}. $$

Multiplying the bound obtained from here by MN, we upperbound the probability that the random coloring is not a B-coloring. If the number of colors is chosen as in the statement of the lemma then this upper bound can be seen to be less than 1, so there is a B-coloring.

(3.5) Theorem There is a program r such that for every $m, k > 0$ there is a string ω of length $\leq m + k + 4 \log(m + k)$ such that the following holds for $q(y) = U(r\omega, y)$ and $b < 2\log(m + k)$:

(a) $l(q(y)) < k$;

(b) If $K(x) \leq m$ and $K(y|x) \leq k$ then

$$K(y|x, q(y), \omega) \leq b.$$

Moreover, if

$$b < m - 3 \log(m + k) \quad (3.6)$$

then for large enough $m + k$, every string ω with the above properties has length

$$\geq \min(m, k - b) - 3 \log(m + k).$$

Thus, q can be made a function of y but this function is not "simple" since it must depend on a long "oracle" string ω.

Proof

1. Let us first show the existence of ω with the above properties. Let G be the bipartite graph defined in the proof of Theorem 3.1 and let $G(m, k)$ be its subgraph consisting of those edges (x, y) with $K(x) \leq m$ and $K(y|x) \leq k$. Let

$$M = 2^m, \quad N = 2^k,$$

$$S_a = \{ y : K(y|x) \leq k \},$$

$$B = 8(m + k).$$
Then \(\#S_x < N \), and the number of \(x \)'s with nonempty \(S_x \) is at most \(M \). According to the Coloring Lemma, there is a \(B \)-coloring with at most
\[
\left(\frac{N}{B} \right) \max \{2, (16\log(MN))/B \} = 2N/B
\]
colors. Let \(\omega \) be a string containing a prefix-free binary code of \(m, k \) and the number of edges in \(G(m, k) \). Since the number of edges in \(G(m, k) \) is at most \(MN \), its prefix code needs at most \(\log(MN) + 1.5\log\log(MN) = m + k + 2\log(m + k) \) bits. The length needed to code \(m \) and \(k \) is at most \(2.5\log(m + k) \), so the total length of \(\omega \) is still \(\lesssim m + k + 4\log(m + k) \).

Let \(r \) be the program that causes our universal prefix machine to work as follows, in order to produce a color \(q(y) = U(r\omega, y) \). It first reads the string \(\omega \) and determines the numbers coded into it. Using these numbers, it reconstructs the graph \(G(m, k) \). Then it finds (if there is no better way, by exhausting search) a \(B \)-coloring. Finally, it outputs the color of \(y \).

Let us estimate \(K(y|x, q(y), \omega) \). Given \(\omega, x \) and \(q(y) \), we can list the set of all \(y \)'s with color \(q(y) \). Since its size is at most \(B \), the program to determine \(y \) in it needs only its number in the enumeration, with a prefix-free code of size \(\lesssim 2\log B \lesssim 2\log(m + k) \).

2. Suppose now that there is a string \(\omega \) with the desired properties with length
\[
n < \min(m, k - b) - 3\log(m + k).
\]

We will arrive from here at a contradiction. First note that
\[
\log \#Y > m + k - 2\log(m + k).
\]

Indeed, we can take all possible prefix-free programs \(x \) of length \(\leq m \) and attach to them all possible prefix-free programs of length \(k \): the resulting strings will all belong to \(Y \).

For any possible value \(z \) of \(q(y) \), let \(Y_z = \{ y : q(y) = z \} \). Then the above inequality implies that there is a \(z \) with \(\log \#Y_z > m - 2\log(m + k) \) which is \(\geq m - 3\log(m + k) \) for large enough \(m + k \). Let \(x \) be the first such \(x \) found when enumerating all the sets \(Y_z \). Since the enumeration can be done with the help of \(m, k, \omega \), we have \(K(x) > n + 2\log(m + k) \) which is \(> m - \log(m + k) \), by the indirect assumption (3.7). For large enough \(m + k \), we have therefore
\[
K(x) \leq m.
\]

Given \(m, k, \omega \), we can enumerate \(Y_x \). If \(y_i \) is the \(i \)-th element in this enumeration then \(K(y_i|x) < n + 1.3\log(m + k) + \log i + 1.3\log\log i < n + \log i + 2.6\log(m + k) \).

Hence for \(\log i < k - n - 3\log(m + k) \) and large enough \(m + k \) we have
\[
K(y_i|x) \leq k.
\]
Let \(t = \min(m, k - n) \). Then there are at least \(\exp_2(t - 3\log(m + k)) \) values of \(i \) with \(K(y_i|x) \leq k \). At least one of these has \(K(y_i|x, q(y), m, k, \omega) \geq t - 3\log(m + k) \). Hence

\[
\min(m, k - n) - 3\log(m + k) \leq b.
\]

If \(m < k - n \) then this contradicts (3.6), otherwise it contradicts (3.7). ■

4 Distance Axioms

Let us identify digitized black-and-white pictures with binary strings. There are many distances defined for binary strings. For example, the Hamming distance and the Euclidean distance. Such distances are sometimes appropriate. For instance, if we take a binary picture, and change a few bits on that picture, then the changed and unchanged pictures have small Hamming or Euclidean distance, and they do look similar. However, this is not always the case. The positive and negative prints of a photo have the largest possible Hamming and Euclidean distance, yet they look similar in our eyes. Also, if we shift a picture one bit to the right, again the Hamming distance may increase by a lot, but the two pictures remain similar. Many approaches to pattern recognition try to define picture similarity. Let us show that the distance \(E_1 \) defined above is, in a sense, minimal among all reasonable similarity measures.

A distance measure must be nonnegative for all \(x \neq y \), symmetric, and satisfy the triangle inequality. This is not sufficient since a distance measure like \(D(x, y) = 1 \) for all \(x \neq y \) must be excluded. For each \(x \) and \(d \), we want only finitely many elements \(y \) at a distance \(d \) from \(x \). Exactly how fast we want the distances of the strings \(y \) from \(x \) to go to \(\infty \) is not important: it is only a matter of scaling. For convenience, we will require the following normalization property:

\[
\sum_y 2^{-D(x,y)} < 1.
\]

We consider only distances that are computable in some broad sense. This condition will not be seen as unduly restrictive. As a matter of fact, only upper semicomputability of \(D(x, y) \) will be required. This is reasonable: as we have more and more time to process \(x \) and \(y \) we may discover new and new similarities among them, and thus may revise our upper bound on their distance. The upper semicomputability means exactly that \(D(x, y) \) is the limit of a computable sequence of such upper bounds.

A permissible distance, \(D(x, y) \), is a total nonnegative function on the pairs \(x, y \) of binary strings that is 0 only if \(x = y \), is symmetric, satisfies the triangle inequality, is semicomputable and normalized. The following theorem shows that \(E_1 \) is, in some sense, the optimal permissible distance. We find it remarkable that this distance happens to also have a "physical" interpretation
as the approximate length of the conversion program of theorem 3.1, and, as shown in the next section, of the smallest program that transforms x into y on a reversible machine.

(4.1) Theorem For an appropriate constant c, let $E(x, y) = E_1(x, y) + c$ if $x \neq y$ and 0 otherwise. Then $E(x, y)$ is a permissible distance function that is minimal in the sense that for every permissible distance function $D(x, y)$ we have

$$E(x, y) \leq D(x, y).$$

Proof The nonnegativity and symmetry properties are immediate from the definition. The addition property of complexity implies that there is a nonnegative integer constant c such that

$$E_1(x, z) \leq E_1(x, y) + E_1(y, z) + c.$$

Let this c be the one used in the statement of the theorem, then $E(x, y)$ satisfies the triangle inequality without an additive constant. The normalization property as well as the minimality follow from the characterization of complexity mentioned in Section 2. ■

5 Reversible Computations

Reversible models of computation, in which the transition function is 1:1, have been explored especially in connection with the question of the thermodynamic limits of computation. Reversible Turing machines were introduced by Lecerf[17] and independently but much later by Bennett [3, 4]. Further results concerning them can be found in [4, 5, 18].

Reversibility of a Turing machine's transition function can be guaranteed by requiring disjointness of the ranges of the quintuples, just as determinism is guaranteed by requiring disjointness of their domains. To assure that the machine's global input:output relation is also 1:1, it is necessary to impose a standard format on the initial and final instantaneous descriptions, in particular requiring that all working storage other than that used for the input and output strings be blank at the beginning and end of the computation. Let $\{\psi_i\}$ be the partial recursive function computed by the i'th such reversible Turing machine. As usual, we let $\{\phi_i\}$ denote the partial recursive function computed by the i'th ordinary (in general irreversible) Turing machine. Among the more important properties of reversible Turing machines are the following:

- There is a universal reversible machine, i.e. an index u such that for all k and x, $\psi_u(k|x) = k\uparrow \psi_u(x)$. (Here $k\uparrow$ denotes a self-delimiting representation of the index k).
• Two irreversible algorithms, one for computing \(y \) from \(x \) and the other for computing \(x \) from \(y \), can be efficiently combined to obtain a reversible algorithm for computing \(y \) from \(x \). More formally, for any two indices \(i \) and \(j \) one can effectively obtain an index \(k \) such that, for any strings \(x \) and \(y \), if \(\phi_i(x) = y \) and \(\phi_j(y) = x \), then \(\psi_k(x) = y \).

• From any index \(i \) one may obtain an index \(k \) such that \(\psi_k \) has the same domain as \(\phi_i \) and, for every \(x \), \(\psi_k(x) = (x, \phi_i(x)) \). In other words, an arbitrary Turing machine can be simulated by a reversible one which saves a copy of the irreversible machine’s input in order to assure a global 1:1 mapping.

• The above simulation can be performed rather efficiently. In particular, for any \(\epsilon > 0 \) one can find a reversible simulating machine which runs in time \(O(T^{1+\epsilon}) \) and space \(O(S \log T) \) compared to the time \(T \) and space \(S \) of the irreversible machine being simulated.

• From any index \(i \) one may effectively obtain an index \(k \) such that if \(\phi_i \) is 1:1, then \(\psi_k = \phi_i \). The reversible Turing machines \(\{ \psi_k \} \), therefore, provide a Gödel-numbering of all 1:1 partial recursive functions.

The connection with thermodynamics comes from the fact that in principle the only thermodynamically costly computer operations are those that are logically irreversible, i.e. operations that map several distinct logical states of the computer onto a common successor, thereby throwing away information about the computer’s previous state [15, 3, 10, 4]. The thermodynamics of computation is discussed further in section 8. Here we show that the minimal program size for a reversible computer to transform input \(x \) into output \(y \) is equal within an additive constant to the size of the minimal conversion string \(p \) of theorem 3.1.

The theory of reversible minimal program size is conveniently developed using a reversible analog of the universal prefix machine \(U \) defined in Section 2. A partial recursive function \(F(p, x) \) is called a reversible prefix machine if

for each \(p \), \(F(p, x) \) is 1:1 as a function of \(x \);

for each \(x \), \(\{ p : \exists(x) F(p, x) = y \} \) is a prefix set;

for each \(y \), \(\{ p : \exists(y) F(p, x) = y \} \) is a prefix set.

Such an \(F \) may be thought of as the function computed by a reversible Turing machine which performs a 1:1 mapping on \(x \leftrightarrow y \) under the control of a program \(p \) which remains on the program tape throughout the computation. Any other work tapes used during the computation are supplied in blank condition at the beginning of the computation and must be left blank at the end of the computation. The program tape’s head begins and ends scanning the leftmost square of the program, which is self-delimiting both for forward computations from each input \(x \) as well as for backward computations from each output \(y \). A
<table>
<thead>
<tr>
<th>Stage and Action</th>
<th>Program Tape</th>
<th>Work Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Initial configuration</td>
<td>prog</td>
<td>x</td>
</tr>
<tr>
<td>1. Append 0 to beginning of x</td>
<td>prog</td>
<td>0x</td>
</tr>
<tr>
<td>2. Compute y, saving history</td>
<td>prog y</td>
<td>(y</td>
</tr>
<tr>
<td>3. Copy y to blank region</td>
<td>prog y</td>
<td>(y</td>
</tr>
<tr>
<td>4. Undo comp. of y from x</td>
<td>prog 0x</td>
<td>y</td>
</tr>
<tr>
<td>5. Remove 0, swap x and y</td>
<td>prog</td>
<td>y</td>
</tr>
<tr>
<td>6. Append 1 to y</td>
<td>prog 1y</td>
<td>x</td>
</tr>
<tr>
<td>7. Compute x, saving history</td>
<td>prog x</td>
<td>(x</td>
</tr>
<tr>
<td>8. Cancel extra x</td>
<td>prog x</td>
<td>(x</td>
</tr>
<tr>
<td>9. Undo comp. of x from y</td>
<td>prog 1y</td>
<td></td>
</tr>
<tr>
<td>10. Remove 1 from y</td>
<td>prog</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Combining irreversible computations of y from x and x from y to achieve a reversible computation of y from x.

The universal reversible prefix machine UR, whose program size is minimal to within an additive constant, can readily be shown to exist, and the reversible Kolmogorov complexity $KR(y|x)$ defined as $\min\{l(p) : UR(p, x) = y \}$.

In Section 3, it was shown that for any strings x and y there exists a conversion program p, of length at most logarithmically greater than

$$\max\{K(y|x), K(x|y)\}$$

such that $U(p, 0x) = y$ and $U(p, 1y) = x$. Here we show that the length of this minimal conversion program is equal within a constant to the length of the minimal reversible program for transforming x into y.

(5.1) Theorem

$$KR(y|x) \equiv \min\{ l(p) : U(p, 0x) = y, U(p, 1y) = x \}.$$

Proof. This proof is an example of the general technique for combining two irreversible programs, for y from x and for x from y, into a single reversible program for y from x. In this case the two irreversible programs are almost the same, since by theorem 3.1 the minimal conversion program p is both a program for y given 0x and a program for x given 1y. The computation proceeds by several stages as shown in Table 1. To illustrate motions of the head on the self-delimiting program tape, the program p is represented by the string “prog” in the table, with the head position indicated by a caret.

Each of the stages can be accomplished without using any many-to-one operations. For example, appending a zero to the beginning of x in stage 1 is can be undone by changing the zero to a blank. In stage 2, the computation of y
from x, which might otherwise involve irreversible steps, is rendered reversible by saving a history, on previously blank tape, of all the information that would have been thrown away. In stage 3, making an extra copy of the output onto blank tape is an intrinsically reversible process, and therefore can be done without writing anything further in the history. Stage 4 exactly undoes the work of stage 2, which is possible because of the history generated in stage 2. Perhaps the most critical stage is stage 7, in which x is computed from y for the sole purpose of generating a history of that computation. Then, after the extra copy of x is reversibly disposed of in step 8 by cancellation (the inverse of copying onto blank tape), stage 9 undoes stage 7, thereby disposing of the history and the remaining copy of x, while producing only the desired output y.

Not only are all operations reversible, but the computations from x to y in stage 2 and from y to z in stage 7 take place in such a manner as to satisfy the requirements for a reversible prefix machine. Hence the minimal irreversible conversion program p, with constant modification, can be used as a reversible program for UR to compute y from x.

Conversely, the minimal reversible program for y from x, with constant modification, serves as a program for y from x for the ordinary irreversible prefix machine U, because reversible prefix machines are a subset of ordinary prefix machines. This establishes the theorem.

We define the reversible distance between x and y as

$$E_2(x, y) = KR(y|x) = \min \{ l(p) : UR(p, x) = y \}.$$

As just proved, this is within an additive constant of the size of the minimal conversion program of theorem 3.1. Although it may be logarithmically greater than the optimal distance E_1, it has the intuitive advantage of being the actual length of a concrete program for passing in either direction between x and y. The optimal distance E_1 on the other hand is defined only as the greater of two one-way program sizes, and may not correspond to the length of any two-way translation program.

E_2 may indeed be legitimately called a distance because it is symmetric and obeys the triangle inequality to within an additive constant (which can be removed by the additive renormalization technique described at the end of Section 4).

(5.2) Theorem

$$E_2(x, z) + E_2(z, y) < E_2(x, y)$$

Proof We will show that, given reversible UR programs p and q, for computing $(y|x)$ and $(z|y)$ respectively, a program of the form spq, where s is a constant supervisory routine, serves to compute z from x reversibly. Because the programs are self-delimiting, no punctuation is needed between them. If this were
<table>
<thead>
<tr>
<th>Stage and Action</th>
<th>Program tape</th>
<th>Work Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Initial configuration</td>
<td>pprog</td>
<td>z</td>
</tr>
<tr>
<td>1. Compute (y</td>
<td>x), transcribing pprog.</td>
<td>pprog</td>
</tr>
<tr>
<td>2. Space forward to start of qprog.</td>
<td>pprog</td>
<td>y pprog</td>
</tr>
<tr>
<td>3. Compute (z</td>
<td>y).</td>
<td>pprog</td>
</tr>
<tr>
<td>4. Cancel extra pprog as head returns.</td>
<td>pprog</td>
<td>z</td>
</tr>
</tbody>
</table>

Table 2: Reversible execution of concatenated programs for (y|x) and (z|y) to transform x into z.

An ordinary irreversible U computation, the concatenated program spq could be executed in an entirely straightforward manner, first using p to go from x to y, then using q to go from y to z. However, with reversible UR programs, after executing p, the head will be located at the beginning of the program tape, and so will not be ready to begin reading q. It is therefore necessary to remember the length of the first program segment p temporarily, to enable the program head to space forward to the beginning of q, but then cancel this information reversibly when it is no longer needed. A scheme for doing this is shown in Table 2, where the program tape’s head position is indicated by a caret. To emphasize that the programs p and q are strings concatenated without any punctuation between them, they are represented respectively in the table by the expressions “pprog” and “qprog”, and their concatenation pq by “pprogqprog”.

6 Sum Distance

The reversible distance E_2 defined in the previous section, is equal to the length of a “catalytic” program, which allows the interconversion of x and y while remaining unchanged itself. Here we consider noncatalytic reversible computations which consume some information p besides x, and produce some information q besides y. Even though consuming and producing information may seem to be operations of opposite sign, we can define a distance based on the notion of information flow, as the minimal sum of amounts of extra information flowing into and out of the computer in the course of the computation transforming x into y. For a function ψ computed on a reversible Turing machine, let

$$E_\psi(x, y) = \min\{ l(p) + l(q) : \psi((x, y)) = (y, q) \}.$$

It follows from the existence of universal reversible Turing machines mentioned in Section 5 that there is a universal (non-self-delimiting) reversible Turing machine ψ_u such that for all functions ψ computed on a reversible Turing machine, we have

$$E_{\psi_u}(x, y) \leq E_\psi(x, y) + \gamma_\psi.$$
for all \(x \) and \(y \), where \(c_\psi \) is a constant which depends on \(\psi \) but not on \(x \) or \(y \). We define the sum distance as

\[
E_3(x, y) = E_{\psi, x}(x, y).
\]

(6.1) Theorem

\[
E_3(x, y) = K(x|y) + K(y|x) + O(\log E_3(x, y)).
\]

Proof Let us show first the lower bound \(E_3(x, y) \geq K(y|x) + K(x|y) \). To compute \(y \) from \(x \) we must be given a program \(p \) to do so to start out with. By definition, \(K(y|x) \leq l(p) + O(\log l(p)) \). The last term reflects the fact that \(p \) is externally delimited, while the minimal program used to define \(K \) is self-delimiting and may therefore need to be logarithmically longer. Assume the computation from \(x, p \) ends up with \(y, q \). Since the computation is reversible we can compute \(x \) from \(y, q \). Consequently, \(K(x|y) \leq l(q) + O(\log(l(q))) \). Let us turn to the upper bound and assume \(k_1 = K(x|y) \leq k_2 = K(y|x) \) with \(l = k_2 - k_1 \). According to Theorem 3.3, there is a string \(q \) of length \(l + O(\log l) \) such that \(K(qz|y) = k_1 + O(\log k_1) \) and \(K(y|qz) = k_1 + O(\log k_1) \). We can even assume \(q \) to be self-delimiting: the price of this can be included into the \(O(\log l) \) term. According to Theorem 3.1 and Theorem 5.1 there is a program \(p \) of length \(k_1 + O(\log k_1) \) going reversibly between \(qz \) and \(y \). Therefore with a constant extra program \(s \), the universal reversible machine will go from \((pq, z) \) to \((p, y) \). And by the above estimates

\[
l(pq) + l(p) \leq 2k_1 + l + O(\log k_2) = k_1 + k_2 + O(\log k_2).
\]

Note that all bits supplied in the beginning to the computation, apart from input \(z \), as well as all bits erased at the end of the computation, are random bits. This is because we supply and delete only shortest programs, and a shortest program \(p \) satisfies \(K(p) \geq l(p) \), that is, it is maximally random.

The metrics we have considered can be arranged in increasing order. Here, the relation \(\leq \) means inequality to within an additive \(O(\log) \), and \(\log \) means \(\leq \) and \(\geq \).

\[
E_1(x, y) = \max\{K(y|x), K(x|y)\}
\]

\[
\log E_2(x, y) = KR(y|x)
\]

\[
\mathbin{\hat{=}} \min \{ l(p) : U(p, 0x) = y, U(p, 1y) = x \}
\]

\[
\log < K(x|y) + K(y|x) \log E_3(x, y)
\]

\[
\log \leq 2E_1(x, y).
\]
The sum distance E_3, in other words, can be anywhere between the optimum distance E_1 and twice the optimal distance. The former occurs if one of the conditional complexities $K(y|x)$ and $K(x|y)$ is is zero, the latter if the two conditional complexities are equal.

7 Dimensional Properties

In a discrete space with some distance function, the rate of growth of the number of elements in balls of size d can be considered as a kind of "dimension" of the space. The space with distance $E_1(x, y) = \max\{K(x|y), K(y|x)\}$ behaves rather simply from a dimensional point of view. For a binary string x, let $B_1(d, x)$ be the set of strings y with $E_1(x, y) \leq d$.

(7.1) Theorem We have

$$d - K(d) < \log \#B_1(d, x) \leq d - K(d|x).$$

The same bounds apply to $B_1(d, x) \cap \{ y : l(y) = l(x) \}$.

Proof The upper bound is not difficult, a proof is given in [13]. For the lower bound, let $i < 2^{d-K(d)}$, let p_i be the i-th binary string of length $l(x)$. Let us consider all strings $y_i = x \oplus p_i$ where \oplus means bitwise mod 2 addition. The number of such strings y_i is $2^{d-K(d)}$. We clearly have $E_1(x, y_i) \leq K(i) \leq d$. ■

It is interesting that a similar dimension relation holds also for the larger distance $E_3(x, y) = K(y|x) + K(x|y)$. The proof is omitted.

(7.2) Theorem Let x be a binary string. There is a positive constant c such that for all sufficiently large d, the number of binary strings y with $E_3(x, y) \leq d$ is at most $2^{d/c}$ and at least $2^{d/d^2}$.

Proof The upper bound follows from the previous theorem since $E_3 \geq E_1$. For the lower bound, consider strings y of the form yx where p is a self-delimiting program. For all such programs, $K(x|y) \leq 0$, since x can be recovered from y. Therefore $E_3(x, y) \leq K(y|x) = K(p|x)$. Now just as in the argument of the previous proof, we obtain the lower bound $2^{d/d^2}$ for the number of such strings p with $K(p|x) \leq d$. ■

For the distance E_3, for the number of strings of length n near a random string x of length n, (i.e. a string with $K(x)$ near n) the picture is a little different from that of distance E_1. In this distance, "tough guys have few neighbors". In particular, a random string x of length n has only about $2^{d/2}$ strings of length n within distance d. The following theorem describes a more general situation. Its proof is omitted here.
(7.3) **Theorem** Let the binary strings \(x, y \) have length \(n \). For each \(x \) the number of \(y \)'s such that \(E_3(x, y) \leq d \) is \(2^\alpha \) with
\[
\alpha = \frac{n + d - K(x)}{2} \pm O(\log n),
\]
while \(n - K(x) \leq d \). For \(n - K(x) \geq d \) we have \(\alpha = d \pm O(\log n) \).

Proof Let \(K(x) = n - \delta(n) \). In the remainder of the proof all (in)equalities involving Kolmogorov complexities hold up to an \(O(\log n) \) additional term.

(\(\geq \)) We show that there are at least \(2((d + \delta(n))/2) \) elements \(y \) such that \(E(x, y) \leq d \) holds. Let \(y = x^*z \) with \(l(x) = \delta(n) \) and let \(x^* \) be the first program for \(x \) which we find by dovetailing all computations on programs of length less than \(n \). We can retrieve \(z \) from \(y \) using at most \(O(\log n) \) bits. There are \(2^\delta(n) \) different such \(y \)'s. For each such \(y \) we have \(K(x|y) = O(1) \), since \(x \) can be retrieved from \(y \) using \(x^* \). Now suppose we further divide \(y = uw \) with \(l(u) = l/2 \) for an appropriate \(l \) and choose \(u \) arbitrary. Then, the total number of such \(y \)'s increases to \(2^\delta(n) + l/2 \).

These choices of \(y \) must satisfy \(E_3(x, y) \leq d \). Clearly, \(K(y|x) \leq \delta(n) + l/2 \).

Moreover, \(K(x|y) \leq l/2 \) since we can retrieve \(x \) by providing \(l/2 \) bits. Therefore, \(K(x|y) + K(y|x) \leq l/2 + \delta(n) + l/2 \). Since the left-hand side has value at most \(d \), the largest \(l \) we can choose is, up to the suppressed additional term \(O(\log n) \), given by \(l = d - \delta(n) \).

This puts the number of \(y \)'s such that \(E(x, y) \leq d \) at least at
\[
2^{((d + \delta(n))/2 + O(\log n))}.
\]

(\(\leq \)) Assume, to the contrary, that there are at least \(2((d + \delta(n))/2 + c) \) elements \(y \) such that \(E_3(x, y) \leq d \) holds, with \(c \) some large constant. Then, for some \(y \),
\[
K(y|x) \geq \frac{d + \delta(n)}{2} + c.
\]

By assumption, \(K(x) = n - \delta(n) \), \(K(y) \leq n \). By the addition theorem (2.1) we find \(n + (d - \delta(n))/2 + c \leq n + K(x|y) \). But this means that
\[
K(x|y) \geq \frac{d - \delta(n)}{2} + c,
\]
and these two equations contradict \(K(x|y) + K(y|x) \leq d \). \(\blacksquare \)

It follows from our estimates out that in every set of low Kolmogorov complexity almost all elements are far away from each other in terms of the distance \(E_3 \). Here, the Kolmogorov complexity \(K(S) \) of a set is the length of the shortest binary program that enumerates \(S \) and then halts.

(7.4) **Theorem** For a constant \(c \), let \(S \) be a set with \(\#S = 2^d \) and \(K(S) = c \log d \). Almost all pairs of elements \(x, y \in S \) have distance \(E_3(x, y) \geq d \), up to an additive logarithmic term.
The proof of this theorem is easy. A similar statement can be proved for the
distance of a string x (possibly outside S) to the majority of elements y in S.
If $K(x) \geq n$, then for almost all $y \in S$ we have $E_1(x, y) \geq n + d - O(\log dn)$.

8 Thermodnamic Cost

Thermodnamics, among other things, deals with the amounts of heat and work
ideally required, by the most efficient process, to convert one form of matter to
another. For example, at 0 C and atmospheric pressure, it takes 80 calories of
heat and no work to convert a gram of ice into water at the same temperature
and pressure. From an atomic point of view, the conversion of ice to water at
0 C is a reversible process, in which each melting water molecule gains about
3.8 bits of entropy (representing the approximately $2^{3.8}$-fold increased freedom
of motion it has in the liquid state), while the environment loses 3.8 bits. During
this ideal melting process, the entropy of the universe remains constant, because
the entropy gain by the ice is compensated by an equal entropy loss by the
environment. Perfect compensation takes place only in the limit of slow melting,
with an infinitesimal temperature difference between the ice and the water.
Rapid melting, e.g. when ice is dropped into hot water, is thermodynamically
irreversible and inefficient, with the environment (the hot water) losing less
entropy than the ice gains, resulting in a net and irredeemable entropy increase
for the universe as a whole.

Turning again to ideal reversible processes, the entropy change in going from
state X to state Y is an antisymmetric function of X and Y; thus, when water
freezes at 0 C by the most efficient process, it gives up 3.8 bits of entropy per
molecule to the environment. When more than two states are involved, the
entropy changes are transitive: thus the entropy change per molecule of going
from ice to water vapor at 0 C (+32.8 bits) plus that for going from vapor to
liquid water (−28.8 bits) sum to the entropy change for going from ice to water
directly. Because of this antisymmetry and transitivity, entropy can be regarded
as a thermodynamic potential or state function: each state has an entropy, and
the entropy change in going from state X to state Y by the most efficient process
is simply the entropy difference between states X and Y.

Thermodnamic ideas were first successfully applied to computation by Lan-
dauer. According to Landauer's principle [15,4,21,22,6] an operation which
maps n states onto a common successor state must be accompanied by an en-
tropy increase of $\log_2 n$ bits in other, non-information-bearing degrees of freedom
in the computer or its environment. At room temperature, this is equivalent
to the production of $kT \ln 2$ (about $7 \cdot 10^{-22}$) calories of waste heat per bit of
information discarded.

Landauer's principle follows from the fact that such a logically irreversible
operation would otherwise be able to decrease the thermodynamic entropy of
the computer's data without a compensating entropy increase elsewhere in the
universe, thereby violating the second law of thermodynamics.

Converse to Landauer's principle is the fact that when a computer takes a physical randomizing step, such as tossing a coin, in which a single logical state passes stochastically into one of \(n \) equiprobable successors, that step can, if properly harnessed, be used to remove \(\log_2 n \) bits of entropy from the computer's environment. Models have been constructed, obeying the usual conventions of classical, quantum, and thermodynamic thought-experiments [15, 14, 3, 4, 10, 16, 20, 1, 9] showing both the ability in principle to perform logically reversible computations in a thermodynamically reversible fashion (i.e. with arbitrarily little entropy production), and the ability to harness entropy increases due to data randomization within a computer to reduce correspondingly the entropy of its environment.

In view of the above considerations, it seems reasonable to assign each string \(x \) an effective thermodynamic entropy equal to its Kolmogorov complexity \(K(x) \). A computation that erases an \(n \)-bit random random string would then reduce its entropy by \(n \) bits, requiring an entropy increase in the environment of at least \(n \) bits, in agreement with Landauer's principle.

Conversely, a randomizing computation that starts with a string of \(n \) zeros and produces \(n \) random bits has, as its typical result, an algorithmically random \(n \)-bit string \(x \), i.e. one for which \(K(x) \approx n \). By the converse of Landauer's principle, this randomizing computation is capable of removing up to \(n \) bits of entropy from the environment, again in agreement with the identification of the thermodynamic entropy and Kolmogorov complexity.

What about computations that start with one random string \(x \) and end with another \(y \)? By the transitivity of entropy changes one is led to say that the thermodynamic cost, i.e. the minimal entropy increase in the environment, of a transformation of \(x \) into \(y \), should be

\[
W(y|x) = K(x) - K(y),
\]

because the transformation of \(x \) into \(y \) could be thought of as a two-step process in which one first erases \(x \), then allows \(y \) to be produced by randomization. This cost is obviously antisymmetric and transitive, but is not even semicomputable, being at best expressible as the non-monotone limit of a computable sequence of approximations. Invoking the identity [12] \(K(x,y) \equiv K(x) + K(y|x^*) \), where \(x^* \) denotes the minimal program for \(x \), the above cost measure \(W(x|y) \) can also be interpreted as a difference in conditional complexities,

\[
W(y|x) = K(x|y^*) - K(y|x^*).
\]

Such indirect conditional complexities, in which the input string is supplied as a minimal program rather than directly, have been advocated by Chaitin[7] on grounds of their similarity to conditional entropy in standard information theory.
An analogous antisymmetric cost measure based on the difference of direct conditional complexities

\[W'(y|x) = K(x|y) - K(y|x). \]

was introduced and compared with \(W(x|y) \) by Zurek [21], who noted that the two costs are equal within a logarithmic additive term. Here we note that \(W'(y|x) \) is non-transitive to a similar extent.

These remarks lead one to consider a more general issue of entropy changes in nonideal computations. Bennett[4] and especially Zurek[22] have considered the thermodynamics of an intelligent demon or engine which has some capacity to analyze and transform data \(x \) before erasing it. If the demon erases a randomly looking string, such as the digits of \(\pi \), without taking the trouble to understand it, it will commit a thermodynamically irreversible act, in which the entropy of the data is decreased very little, while the entropy of the environment increases by a full \(n \) bits. On the other hand, if the demon recognizes the redundancy in \(\pi \), it can transform \(\pi \) to an empty string by a reversible computation, and thereby accomplish the erasure at very little thermodynamic cost. More generally, given unlimited time, a demon could approximate the semicomputable function \(K(x) \) and so compress a string \(x \) to size \(K(x) \) before erasing it. But in limited time, the demon will not be able to compress \(x \) so much, and will have to generate more entropy to get rid of it. This tradeoff between speed and thermodynamic efficiency is superficially similar to the tradeoff between speed and efficiency for physical processes such as melting, but the functional form of the tradeoff is very different. For typical physical state changes such as melting, the excess entropy produced per molecule goes to zero inversely in the time \(t \) allowed for melting to occur. But the time-bounded Kolmogorov complexity \(K'(x) \), i.e. the size of the smallest program to compute \(x \) in time \(< t \), in general approaches \(K(x) \) only with uncomputable slowness as a function of \(t \) and \(x \).

References

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language; ML = Mathematical Logic and Foundations; CL = Computational Linguistics; CT = Computation and Complexity Theory; X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact the bureau.

LP-93-01 Martijn Spaan, Parallel Quantification
LP-93-02 Makoto Kanazawa, Dynamic Generalized Quantifiers and Monotonicity
LP-93-03 Nikolai Pankrat'ev, Completeness of the Lambek Calculus with respect to Relativized Relational Semantics
LP-93-04 Jacques van Leeuwen, Identity, Quarrelling with an Unproblematic Notion
LP-93-05 Jaap van der Does, Sums and Quantifiers
LP-93-06 Paul Dekker, Updates in Dynamic Semantics
LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars
LP-93-08 Zisheng Huang, Peter van Emde Boas, Information Acquisition from Multi-Agent resources; abstract
LP-93-09 Makoto Kanazawa, Completeness and Decidability of the Mixed Style of Inference with Composition
LP-93-10 Makoto Kanazawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a Dynamic Setting
LP-93-11 Friederike Moltmann, Resumptive Quantifiers in Exception Sentences
LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases
LP-93-13 Natasha Alechina, Binary Quantifiers and Relational Semantics
LP-93-14 Mati Pentus, Lambek Calculus is L-complete
LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics

ML-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars
ML-93-02 Johan van Benthem, Natasha Alechina, Modal Quantification over Structured Domains
ML-93-03 Mati Pentus, The Conjoinability Relation in Lambek Calculus and Linear Logic
ML-93-04 Andrej Priajatelj, Bounded Contraction and Many-Valued Semantics
ML-93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped l-calculus in Semi Cartesian Closed Categories
ML-93-06 J. Zaszev, Categorial Generalization of Algebraic Recursion Theory
ML-93-07 A.V. Chagrov, L.A. Chagrov, Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames
ML-93-08 Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors
ML-93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic
ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs
ML-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic
ML-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences
ML-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras
ML-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras
ML-93-15 G.K. Dzhaparidze, Effective Truth
ML-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics
ML-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and Intermediate Logics
ML-93-18 Jaap van Oosten, Extensional Realizability
ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed l-Calculus
ML-93-20 L.A. Chagrov, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic
ML-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for Intuitionistic Propositional Logic
ML-93-22 Andreja Prijatelj, Connectification for n-contraction

CT-93-01 Marianne Kalbeek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems
CT-93-03 Johan van Benthem, Jan Bergstra, Logic of Transition Systems
CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database Model
CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog
CT-93-07 Janusz A. Pomykala, Approximation, Similarity and Rough Constructions, Part I. Elementary Introduction

CL-93-01 Noor van Leusen, László Kálmán, Computational Linguistics
CL-93-02 Theo M.V. Janssen, An Algebraic View on Rosetta
CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees

X-93-01 Paul Dekker, Existential Disclosure, revised version
X-93-02 Maarten de Rijke, What is Modal Logic?
X-93-03 Michiel Leezenberg, Goran Influence on Central Kurdish: Substratum or Prestige Borrowing
X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition
X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition
X-93-06 Michael Zacharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic
LP-94-02 Dimitar Golev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of Qualitative Probabilities
LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators
LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams
LP-94-04 Kazimierz Świrszcz, A Remark on the Maximal Extensions of the Relevant Logic R
LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling
CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded Injury Method
CT-94-02 Alessandro Panconi, Marina Papatriantafilou, Philippas Tsigas, Paul Vitányi, Randomized Wait-Free Distributed Naming
CT-94-03 Ming Lee, John Tromp, Paul Vitányi, Sharpening Occam's Razor (extended abstract)
CT-94-04 Ming Lee and Paul Vitányi, Inductive Reasoning
CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitányi, Two heads are Better than Two Tapes
CT-94-06 Guido to Brake, Joost N. Kok, Paul Vitányi, Model Selection for Neural Networks: Comparing MDL and NIC
CT-94-07 Charles H. Bennett, Péter Gács, Ming Li, Paul M.B. Vitányi, Wojciech H. Zurek, Thermodynamics of Computation and Information Distance
X-94-01 Johan van Benthem, Two Essays on Semantic Modelling
Titles in the ILLC Dissertation Series:

1993-1 Transcendental Meditations; Ups and downs in dynamic semantics, Paul Dekker
1993-2 Resource Bounded Reductions, Harry Buhrman
1993-3 Efficient Metamathematics, Rineke Verbrugge
1993-4 Extending Modal Logic, Maarten de Rijke
1993-5 Studied Flexibility, Herman Hendriks
1993-6 Aspects of Algorithms and Complexity, John Tromp
1994-1 The Noble Art of Linear Decorating, Harold Schellinx
1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis Koorn
1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost