KRZYSZTOF R. APT,
PETER VAN EMDE BOAS
AND ANGELO WELLING

The STO-problem is NP-hard

CT-94-08, received: April 1994

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Computation and Complexity Theory (CT) Series, ISSN: 0928-3323

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam
Plantage Muidergracht 24
NL-1018 TV Amsterdam
The Netherlands
e-mail: illc@fwi.uva.nl
The STO-problem is NP-hard

Krzysztof R. Apt
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Peter van Emde Boas, Angelo Welling
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

A finite set of term equations E is called subject to the occur-check (STO) if a sequence of actions of the Martelli-Montanari unification algorithm starts with E and ends with a positive occur-check. We prove here that the problem of deciding whether E is STO is NP-hard.

1 Introduction

For efficiency reasons in most Prolog implementations the so-called occur-check is omitted from the unification algorithm. This naturally calls for a definition of unification without the occur-check and for a characterization of the sets of term equations for which this omission might be of importance for unification purposes. The latter has been offered by Deransart, Ferrand and Téguaia [1], who introduced the notion of a set of equations being STO (Subject To Occur-check). Informally, a set of equations is STO if some sequence of actions of the nondeterministic Martelli-Montanari unification algorithm leads to a situation in which the failure due to the occur-check arises. As the known unification algorithms - see, for example, Robinson [7, 8], Venturini-Zilli [10], Martelli and Montanari [5], Paterson and Wegman [6] - are special cases of the Martelli-Montanari algorithm, this concept describes when unification without the occur-check might lead to problems. This is apparently as close as one can get to a characterization of the sets of equations for which unification might depend on the presence of the occur-check. Therefore, not surprisingly, the definition of an STO set of equations entered the proposal for standard Prolog (see Scowen [9]).

The result of this paper indicates an unexpected difference between the two relevant properties of sets of equations. As was shown by Paterson and Wegman [6] the property of being unifiable can be tested in linear time. We prove that the property of being STO is NP-hard. Recall that a problem is NP-hard, if its solvability in polynomial time implies that every problem in the class NP is solvable in polynomial time. This shows that, for all practical purposes, the definition of standard Prolog refers to a computationally intractable concept.
2 Preliminaries

Throughout the paper, the symbol \equiv (resp. $\not\equiv$) is used to indicate syntactic equality (resp. inequality), the set of variables occurring in any syntactic object O is denoted by $Var(O)$ and the arity of a function symbol f is denoted by $Arity(f)$. A function symbol of of arity 0 is called a constant.

From now on we fix a finite set of function symbols F and a finite set of variables V. The class of terms over F and V is defined recursively as follows:

- a variable is a term,
- if t_1,\ldots,t_n are terms, $f \in F$, $Arity(f) = n$, then $f(t_1,\ldots,t_n)$ is a term.

A substitution is a finite mapping from variables to terms which assigns to each variable x in its domain a term t different from x. We write it as

$$\{x_1/t_1,\ldots,x_n/t_n\}$$

where

- x_1,\ldots,x_n are different variables,
- t_1,\ldots,t_n are terms,
- for $i \in [1,n]$, $x_i \not\equiv t_i$.

The application of a substitution to a (set of) term(s) and the relation "more general than" between the substitutions is defined in the usual way. A set of equations E is a finite set of the form $\{s_1 = t_1, s_2 = t_2,\ldots,s_n = t_n\}$, where s_i and t_i are terms, for $1 \leq i \leq n$. A substitution σ such that $s_i \sigma = t_i \sigma, \ldots, s_n \sigma = t_n \sigma$ is called a unifier of E. A unifier of E is called a most general unifier (in short: mgu) of E if it is more general than all unifiers of E. Finally, we denote by $|E|$ the number of equations in E.

The problem of deciding whether a set of equations has a unifier is called the unification problem. This problem was introduced and solved by Robinson [7] by providing a unification algorithm. For our purposes we need the following nondeterministic unification algorithm due to Martelli and Montanari [5] (and informally introduced by Herbrand [4]).

Martelli-Montanari algorithm. Given a set of equations, choose any equation of a form indicated below and perform the associated action. If no action applies to any equation, stop with success.

1. $E \cup \{f(s_1,\ldots,s_n) = g(t_1,\ldots,t_m)\} \rightarrow$ fail: clash $f \neq g$
2. $E \cup \{f(s_1,\ldots,s_n) = f(t_1,\ldots,t_n)\} \rightarrow E \cup \{s_1 = t_1,\ldots,s_n = t_n\}$
3. $E \cup \{x = x\}$
 $\rightarrow E$
 $x \in V$
4. $E \cup \{t = x\}$
 $\rightarrow E \cup \{x = t\}$
 $x \in V, t \not\in V$
5. $E \cup \{x = t\}$
 \rightarrow fail: positive occur-check
 $x \in V, t \not\in V, x \in Var(t)$
6. $E \cup \{x = t\}$
 $\rightarrow E\{x/t\} \cup \{x = t\}$
 $x \in V, x \in Var(E), x \not\in Var(t)$
The condition $x \not\in \text{Var}(t)$ in action 6. is called the occur-check test. The following result is due to Martelli and Montanari [5].

Theorem 2.1 The Martelli-Montanari algorithm always terminates. If the original set of equations E has a unifier, then the algorithm terminates with success and produces an mgu of E written in an equational form, and otherwise it terminates with failure. \(\Box\).

Deransart, Ferrand and Téguaia [1] introduced the following notion.

Definition 2.2 A set of equations E is subject to the occur-check (STO) iff a sequence of actions of the Martelli-Montanari algorithm starts with E and ends with action 5. E is not subject to the occur-check (NSTO) iff it is not STO. \(\Box\).

Intuitively, E is NSTO iff unification and unification without the occur-check coincide for E. By Theorem 2.1 if an execution of the Martelli-Montanari algorithm terminates with success, the initial set of equations is NSTO. On the other hand, if an execution of the algorithm terminates with failure, the initial set of equations may be NSTO or STO. Consider for example the sets $\{a = f(a)\}$ and $\{x = f(x)\}$ with a a constant. Moreover, for some sets of equations different executions of the algorithm can terminate with failure for different reasons. Consider for example the set $\{a = f(a), x = f(x)\}$.

Scowen [9] lists the requirements for a formal definition of unification within standard Prolog. One of them (see top of page 934), when properly formalized, states that unification is undefined if the original set of equations is STO.

We show in this paper that the problem of deciding whether a set of equations is STO (in short: the STO-problem) is NP-hard.

3 The STO-problem is NP-hard

The following lemma allows us to reduce the STO test to simpler sets of equations.

Lemma 3.1 \([\text{STO}]\)

1. If $f \not\equiv g$, then $E \cup \{f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)\}$ is STO iff E is STO.

2. If $x \in V, x \not\in \text{Var}(E) \cup \text{Var}(t)$, then $E \cup \{x = t\}$ is STO iff E is STO.

3. $E \cup \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\}$ is STO iff $E \cup \{s_1 = t_1, \ldots, s_n = t_n\}$ is STO.

4. If $x \in V$, then $E \cup \{x = t\}$ is STO iff $E \cup \{x = t\}$ is STO.

Proof: Properties 1. and 2. are obvious whereas 3. and 4. were proved in Deransart and Maluszynski [2]. \(\Box\)

Definition 3.2 Given a set of equations E, we denote by $\text{Stand}(E)$ the set of equations which is obtained from E by applying as many times as possible actions 2. and 4. of the Martelli-Montanari algorithm and by deleting the equations according to the STO Lemma 3.1.1 and 3.1.2. \(\Box\)

This brings us to the following conclusion.
Theorem 3.3 \(E \) is STO iff Stand(\(E \)) is STO.

Proof: By the STO Lemma 3.1. \(\square \)

Definition 3.4 Consider a set of equations \(E \). A subset \(E' \) of \(E \) is closed within \(E \) if for some variable \(x \notin \text{Var}(E - E') \) all equations of \(E' \) are of the form \(x = s \), where \(x \notin \text{Var}(s) \). \(\square \)

For example, the set \(E = \{ x = f(y), x = y, z = f(u), y = a \} \) has two subsets closed within \(E \): \(\{ x = f(y), x = y \} \) and \(\{ z = f(u) \} \). Note that \(\{ y = a \} \) is not closed within \(E \) since \(y \in \text{Var}(E - \{ y = a \}) \).

Observe that when \(E' \) is closed within \(E \), then only action 6. can be applied to an equation from \(E' \). This brings us to the following definition.

Definition 3.5 Consider a set of equations \(E \) and its subset \(E' \) closed within \(E \). Let \(|E'| = k \). The set \(\text{Reduce}(E') \) consists of \(k \) sets of equations, each of which is obtained from \(E' \) by applying action 6. to a different equation from \(E' \). We denote by \(\text{Reduce}(E')(m) \), with \(1 \leq m \leq k \), the \(m \)th element of \(\text{Reduce}(E') \) in some enumeration. \(\square \)

Lemma 3.6 Consider a set of equations \(E \) and its subset \(E' \) closed within \(E \). Then \(E \) is STO iff for some \(m, 1 \leq m \leq |E'| \), the set \((E - E') \cup \text{Reduce}(E')(m) \) is STO.

Proof: \((\Rightarrow) \) Suppose \(E \) is STO. Consider a sequence of actions which leads to action 5. If this sequence does not select (an instance of) an equation from \(E' \) somewhere, the same sequence can be applied to \(E - E' \), so a fortiori to \((E - E') \cup \text{Reduce}(E')(m) \), for each \(m \). So suppose now that this sequence selects (an instance of) an equation \(x = s \) from \(E' \). Consider the first such selection. By the form of \(E' \) the performed action is then action 6.

Let \(E_1 \) be the resulting set of equations. Thanks to the fact that \(x \notin \text{Var}(E - E') \) the actions preceding this selection of \(x = s \) do not introduce new occurrences of \(x \) in the considered sets of equations. Consequently, \(E_1 \) can also be obtained from \(E \) by a transposed sequence of actions in which the equation \(x = s \) is selected first and then the original sequence of actions up to the selection of \(x = s \) is performed. Consequently for some \(m, 1 \leq m \leq |E'| \), the set \(E_1 \) can be obtained from \((E - E') \cup \text{Reduce}(E')(m) \), so \((E - E') \cup \text{Reduce}(E')(m) \) is STO.

\((\Leftarrow) \) By the fact that for all \(m, 1 \leq m \leq |E'| \), the set \(E \) reduces to \((E - E') \cup \text{Reduce}(E')(m) \) by action 6. \(\square \)

Intuitively, this lemma states that to determine whether \(E \) is STO it is sufficient to limit one's attention to the sequences of actions which start with action 6. applied to an equation in a subset of \(E' \) which is closed within \(E \). We are now in position to prove the desired result.

Theorem 3.7 The STO-problem is NP-hard.

Proof: We provide a reduction from the known NP-Complete Satisfiability Problem (see e.g. Garey and Johnson [3]) to the STO-problem. Let \(U = \{ u_1, u_2, ..., u_n \} \) be a set of variables and \(C = \{ c_{11}, ..., c_{m} \} \) be a set of clauses making up an arbitrary instance of the Satisfiability Problem. A set of equations \(E \) is constructed such that \(E \) is STO if and only if \(C \) is satisfiable. \(E \) is a union of \(n \) disjoint subsets \(E_1, E_2, ..., E_n \). Each \(E_i \) consists of four equations; two of them are associated with \(u_i \) and two with \(\overline{u}_i \), the complement of \(u_i \).
First, we define a set V of variable symbols and a set F of function symbols over which the terms occurring in E are built:

$$V = \{x_i \mid 1 \leq i \leq n\} \cup \{z_j \mid 1 \leq j \leq m\}, F = \{f^i, g^i \mid 1 \leq i \leq n\} \cup \{h\}.$$

The arity of h is independent of the form of the particular instance of Satisfiability and is equal to one, whereas the arities of f^i and g^i do depend on this form in a way which will be described below. In the following, "+1" denotes the "increment modulo m" over the set $\{1, \ldots, m\}$, so $m + 1 = 1$.

We are now ready to define the sets $E_i, 1 \leq i \leq n$. Let C_i be the set of clauses of C which contain u_i. Two terms, $s_{i,1}$ and $s_{i,2}$, are constructed with the function symbol f^i as the outer constructor, whose arity is now defined to be equal to the cardinality of C_i. Suppose the j^{th} clause of C_i is c_k. Then

$$s_{i,1} \equiv f^i(..., z_k, \ldots)$$
$$and$$
$$s_{i,2} \equiv f^i(..., h(z_{k+1}), \ldots),$$

with z_k and $h(z_{k+1})$ being the j^{th} arguments of, respectively $s_{i,1}$ and $s_{i,2}$. C_i contributes to E_i two equations

$$x_i = s_{i,1}$$
$$x_i = s_{i,2}.$$

Let \bar{C}_i be the set of clauses of C which contain \bar{u}_i. In the same way as above two terms $t_{i,1}$ and $t_{i,2}$ are constructed using the function symbol g^i. \bar{C}_i contributes to E_i two equations

$$x_i = t_{i,1}$$
$$x_i = t_{i,2}.$$

As an example of this construction, consider the following instance of the Satisfiability Problem: $U = \{u_1, u_2\}, C = \{c_1, c_2\}$, with $c_1 = \{u_1, \bar{u}_2\}$ and $c_2 = \{u_1, u_1, u_2\}$. It yields the following set of equations:

$$\{x_1 = f^1(x_2), x_2 = f^2(h_2), h(z_1)\}$$
$$\cup \{x_2 = h^1(z_2), x_2 = h^2(z_1), x_2 = h^3(z_2)\}.$$

Given a truth assignment $T : U \rightarrow \{T, F\}$ we denote below its restriction to the variable u_i by $t[u_i]$. Each subset E_i is closed within E, so applying Lemma 3.6 n times we get

E is STO iff there are $l_1, \ldots, l_n, 1 \leq i \leq 4$, such that $\bigcup_{i=1}^n \text{Reduce}(E_i)(l_i)$ is STO.

Fix such a sequence l_1, \ldots, l_n. By Theorem 3.3

$$\bigcup_{i=1}^n \text{Reduce}(E_i)(l_i)$$

is STO iff $\text{Stand}(\bigcup_{i=1}^n \text{Reduce}(E_i)(l_i))$ is STO.

Now for some truth assignment $t : U \rightarrow \{T, F\}$, (namely the one defined by $t(u_i) = \text{if } l_i \leq 2 \text{ then } T \text{ else } F$ for $1 \leq i \leq n$)

$$\text{Stand}(\bigcup_{i=1}^n \text{Reduce}(E_i)(l_i)) = \bigcup_{i=1}^n \{z_j = h(z_{j+1}) \mid c_j \text{ is true under } t[i]\}.$$

But for every truth assignment $t : U \rightarrow \{T, F\}$

$$\bigcup_{i=1}^n \{z_j = h(z_{j+1}) \mid c_j \text{ is true under } t[i]\} = \{z_j = h(z_{j+1}) \mid c_j \text{ is true under } t\},$$

and the latter set is STO iff it equals $\{z_j = h(z_{j+1}) \mid 1 \leq j \leq m\}$. Now the equality between these last two sets holds iff all clauses of C are true under t. Thus E is STO iff C is satisfiable.

It is clear that the construction of E from C can be accomplished in polynomial time, as for each variable $u_i \in U$ at most m clauses have to be checked for the occurrences of u_i and \bar{u}_i. \square
References

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language; ML = Mathematical Logic and Foundations; CL = Computational Linguistics; CT = Computation and Complexity Theory; X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact the bureau.

LP-93-01 Martijn Spaan, Parallel Quantification
LP-93-02 Makoto Kanazawa, Dynamic Generalized Quantifiers and Monotonicity
LP-93-03 Nikolai Pankrat’ev, Completeness of the Lambek Calculus with respect to Relativized Relational Semantics
LP-93-04 Jacques van Leeuwen, Identity, Quarrelling and an Unproblematic Notion
LP-93-05 Jaap van der Does, Sums and Quantifiers
LP-93-06 Paul Dekker, Updates in Dynamic Semantics
LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars
LP-93-08 Zhigeng Huang, Peter van Emde Boas, Information Acquisition from Multi-Agent resources; abstract
LP-93-09 Makoto Kanazawa, Completeness and Decidability of the Mixed Style of Inference with Composition
LP-93-10 Makoto Kanazawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity

LP-93-11 Friederike Molhmann, Resumptive Quantifiers in Exception Sentences
LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases
LP-93-13 Natasha Aleschina, Binary Quantifiers and Relational Semantics
LP-93-14 Mati Pentus, Lambek Calculus is L-complete
LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics

ML-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars
ML-93-02 Johan van Bentheim, Natasha Aleschina, Modal Quantification over Structured Domains
ML-93-03 Mati Pentus, The Conjoinability Relation in Lambek Calculus and Linear Logic
ML-93-04 Andreja Prijatelj, Bounded Contraction and Many-Valued Semantics
ML-93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped l-calculus in Semi Cartesian Closed Categories
ML-93-06 J. Zashev, Categorial Generalization of Algebraic Recursion Theory
ML-93-07 A.V. Chagrov, L.A. Chagrova, Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames
ML-93-08 Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors
ML-93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic
ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs
ML-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic
ML-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences
ML-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras
ML-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras
ML-93-15 G.K. Dzhaparidze, Effective Truth
ML-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics
ML-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and Intermediate Logics
ML-93-18 Jaap van Oosten, Extensional Realizability
ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed l-Calculus
ML-93-20 L.A. Chagrova, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic
ML-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for Intuitionistic Propositional Logic

1
ML-93-22 Andreja Prijatelj, Connectification for n-contraction

CT-93-01 Marianne Kalibek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems
CT-93-03 Johan van Benthem, Jan Bergstra, Logic of Transition Systems
CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database Model
CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog
CT-93-07 Janusz A. Pomykala, Approximation, Similarity and Rough Constructions, Part I. Elementary Introduction

CL-93-01 Noor van Leusen, László Kálmán, Computational Linguistics
CL-93-02 Theo M.V. Janssen, An Algebraic View On Rosetta
CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees

X-93-01 Paul Dekker, Existential Disclosure, revised version
X-93-02 Maarten de Rijke, What is Modal Logic?
X-93-03 Michiel Leesenberg, Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing
X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition
X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition
X-93-06 Michael Zacharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic
LP-94-01 Dimitar Gilev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of Qualitative Probabilities
LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators
LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams
LP-94-04 Kazimierz Świądowicz, A Remark on the Maximal Extensions of the Relevant Logic R
LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling
CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativisation: the Resource Bounded Injury Method
CT-94-02 Alessandro Panconesi, Marina Papatriantafillou, Philippis Tsiqas, Paul Vitányi, Randomized Wait-Free Distributed Naming
CT-94-03 Ming Lee, John Tromp, Paul Vitányi, Sharpening Occam’s Razor (extended abstract)
CT-94-04 Ming Lee and Paul Vitányi, Inductive Reasoning
CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitányi, Two heads are Better than Two Tapes
CT-94-06 Guido te Brake, Joost N. Kok, Paul Vitányi, Model Selection for Neural Networks: Comparing MDL and NIC
CT-94-07 Charles H. Bennett, Péter Gács, Ming Li, Paul M.B. Vitányi, Wojciech H. Zurek, Thermodynamics of Computation and Information Distance
CT-94-08 Krzysztof R. Apt, Peter van Emde Boas and Angelo Welling, The STO-problem is NP-hard
X-94-01 Johan van Benthem, Two Essays on Semantic Modelling
Titles in the ILLC Dissertation Series:

1993-1 Transsentential Meditations: Ups and downs in dynamic semantics, Paul Dekker
1993-2 Resource Bounded Reductions, Harry Buhrman
1993-3 Efficient Metamathematics, Rineke Verbrugge
1993-4 Extending Modal Logic, Maarten de Rijke
1993-5 Studied Flexibility, Herman Hendriks
1993-6 Aspects of Algorithms and Complexity, John Tromp
1994-1 The Noble Art of Linear Decorating, Harold Schellinx
1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis Koorn
1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost