ROSSER ORDERINGS
AND
FREE VARIABLES

Dick de Jongh
Franco Montagna

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-89-03

University of Amsterdam
ROSSER ORDERINGS
AND
FREE VARIABLES

Dick de Jongh
Department of Mathematics and Computer Science, University of Amsterdam

Franco Montagna
Dipartimento di Matematica, Universitá di Siena

Received July 1989
1. Introduction. In Guaspari-Solovay (1979) the arithmetical completeness theorem of Solovay (1976) for the modal system L (PRL in Smoryński 1985) was extended to arithmetical completeness for a system R which includes witness comparison symbols $<$ and \leq and which thereby to a certain extent takes Rosser sentences into account. The system R is obtained by first adding Σ-completeness as well as ordering axioms for $<$ and \leq to L to obtain a system R^-, and subsequently adjoining the rule $\Box E$ (i.e. $\Box A/A$) to R^-.

Syntactically as well as semantically the system R compares unfavorably to the system R^-. The rule $\Box E$ makes that the system lacks the subformula property (possibly the best way to think about it is that $\vdash_R A$ iff $\vdash_{R^-} \Box \neg \neg A$ for some n, cf. de Jongh 1987), and modal completeness of R can only be proved with respect to a rather awkward subset of the natural class of Kripke-models for R^-: $\vdash_R A$ iff A is valid on all Λ-sound Kripke-models for R^- (an Λ-sound Kripke-model is one the root of which forces $\Box B \rightarrow B$ for each subformula $\Box B$ of A).

In the first part of this paper we will show that, if one extends arithmetical interpretations by allowing free variables, it is R^- that gets to be the system that is arithmetically complete. It is a well-known fact that for such interpretations the system R is not sound; the rule $\Box E$ is not valid if the restriction to closed formulae is dropped. A counterexample is, for example, the fact that $\vdash_{PA} \neg \neg \text{Prf}(x, \neg \neg \bot)$, whereas not $\vdash_{PA} \neg \neg \text{Prf}(x, \neg \neg \bot)$ (we write $\Box A$ for $\exists y \text{Prf}(y, \neg A)$).

At first sight one might think it impossible for R^- to be arithmetically complete, since $\vdash_{PA} \Box T < \Box \bot$ and $\vdash_R \Box T < \Box \bot$, but $\chi_{R^-} \Box T < \Box \bot$ (Guaspari-Solovay 1979). But that difficulty can be overcome by taking a formulation of R^- without such closed formulae, or alternatively, as will be our choice, by interpreting \bot in PA as $1=0 \land x=x$ and T as $0=0 \land x=x$. To get the general idea, note, for example that, where $\chi_{R^-} \Box (p \vee \neg p) < \Box \bot$, indeed, for each formula $A(x)$ of PA which actually contains x as a free variable, $\chi_{PA} \Box (A(x) \vee \neg A(x)) < \Box \bot$ (we use the convention of automatically interpreting variables like x as dotted: x, unless the opposite is
stated explicitly). The latter is the case, since PA can recognize
that proofs of $A(n) \vee \neg A(n)$ do get arbitrarily large simply by the size
of n, so that $\Box(A(n) \vee \neg A(n)) \not\vdash \Box \bot$ for each n would in PA imply
that $\neg \Box \bot$, which is not provable in PA. In Section 2 this arith-
metical completeness result will be proved. The consequent non-
validity of some rules for PA will be discussed in Section 3. In
Section 4 it is shown that some principles concerning witness
comparisons and free variables cannot be decided, even when one
restricts oneself to "usual" proof predicates.

2. Arithmetical completeness of \mathcal{R}^\neg.

2.1 Definition. An open arithmetical interpretation of the lan-
guage of \mathcal{R} is a mapping \star from \mathcal{R}-sentences into PA-formulae such
that:
$\top_\star \equiv 0 = 0 \land x = x$, $\bot_\star \equiv 0 \land x = x$, \star commutes with \land, \lor, \leq,
and $\Box(A) \equiv \Box fA_\star$, where $\Box fB \equiv \exists v(r B ^\wedge e f(v))$ is such that
$\vdash_{PA} \Box fB \leftrightarrow \Box B$ for each B.

2.2 Theorem. $\vdash_{\mathcal{R}^\neg} A$ iff, for each open interpretation \star, $\vdash_{PA} A_\star$.
Proof. \Rightarrow: Standard.
\Leftarrow: We will mainly follow the Guaspari-Solovay argument, but
there are some differences.
Let $\mathcal{K}^\neg_{\mathcal{R}} A$ and let $M = \langle 1, 2, \ldots, n \rangle, \mathcal{R}, \vdash \rangle$ be a Kripke-model of \mathcal{R}^\neg
for a finite adequate set Γ containing A, such that $M \not\models A$. Add 0 as a
new root to M, but in this case without defining any forcing on it.
(Trying to define forcing with respect to the node 0 would lead to
insuperable problems with Σ-persistence; indeed, we will not need
forcing on it, but we shall need the node in the definition of the
Solovay-function h.)
Define Solovay's function h as usual (writing $\bot = i$ for
$\exists u \forall v > u. h(v) = i)$:
$h(0) = 0$
h(n+1) = \begin{cases}
 i & \text{if } h(n)Ri \text{ and Prf}(n, "\bot \neq i") \\
 h(n) & \text{else}
\end{cases}$
Also define, simultaneously, f and an interpretation * (using the recursion theorem):

1. \(p_j^* = \forall_{i \neq p} (1 = i) \land j = j \land x = x, \)
2. \(T^* = 0 = 0 \land x = x, \land^* = 1 = 0 \land x = x, \)
3. * commutes with \(\forall, \land, \lor, \rightarrow, \prec, \preceq, \)
4. \((\Box B)^* = \Box f B^*, \)

where f is defined in stages as explained below. The idea is that as long as the function h equals 0 everything proceeds normally. During that period certain formulae which are translations of \(\Box \)-formulæ in the adequate set \(\Gamma \), but with numerals substituted for \(x \), are being proved. If \(h \) moves, then at that point there is a largest \(n \) for which such a formula with the numeral \(n \) has been proved. Afterwards we continue treating the relevant formulæ with numerals \(m \leq n \) according to the occurrence of their usual proofs, but we start handling the formulæ with numerals \(m > n \) more or less as in Guaspari–Solovay. The idea is to show

\(\forall_{PA} \forall x (x > t \rightarrow A^*(x)) \) with \(t \) describing \(n \), and hence \(\forall_{PA} \forall x A^*(x). \)

Let us set \(p = \mu z. h(z) = 0 \) and \(n \) equal to the maximal number such that for some subformula \(\Box B \) of \(A \) and some \(p' \leq p \), \(\text{Prf}(p', "B^*(n)") \).

Stage m for \(m < p \): If, for no \(C \), \(\text{Prf}(m, "C") \), let \(f(m) = \emptyset \); if \(\text{Prf}(m, "C") \), let \(f(m) = \{C\} \).

Stage p+2m:
Let \(k_{2m} \) be the smallest number for which \(f \) has not been defined (so, \(k_0 = p \)). If \(\text{Prf}(p+m, "C") \) for no \(C \) let \(k_{2m+1} = k_{2m} \) and go to the next stage. Else, if \(\text{Prf}(p+m, "C") \), let \(f(k_{2m}) = \{C\} \), let \(k_{2m+1} = k_{2m} + 1 \) and go to the next stage, unless the following happens: \(C \equiv B^*(n') \) for some subformula \(\Box B \) of \(A \) and some \(n' > n \). For \(B \) with respect to such a "large" \(n' \) do nothing and go to the next stage.

Stage p+2m+1: Write \(k \) for \(n+m \). Define \(Y = \{B \mid h(m) \vdash \Box B \} \). Do nothing, unless \(Y \neq \emptyset \). If the latter is the case, let \(E_0, ..., E_q \) be the equivalence classes in \(Y \) with respect to the relation \(=_{h(m)} \) (i.e. \(h(m) \vdash \Box B \preceq \Box C \land \Box C \preceq \Box B \)) of \(\Box \)-subformulae of \(A \) forced at \(h(m) \), enumerated according to their ordering by \(\prec \). (Comment: that the \(\Box \)-formulæ forced already "before" \(h(m) \) are in \(Y \) contrary to the
way Guaspari and Solovay do it, makes no difference, since, by \(\Sigma \)-persistence, the right order is preserved.) If \(E_1 = \{ \square B_1, \ldots, \square B_T \} \), then writing \(E_1^*(m) \) for
\[
\{ B_1^*(Sn), \ldots, B_1^*(k), B_2^*(Sn), \ldots, B_2^*(k), \ldots, B_T^*(Sn), \ldots, B_T^*(k) \},
\]
we define
\[
f(k_{2m}) = E_0^*(m), \ldots, f(k_{2m} + q) = E_q^*(m)
\]
and set
\[
k_{2m+2} = k_{2m+1} + q + 2.
\]

It is immediately clear that
(a) \(\vdash_{PA} \forall \forall (\forall (v) \leftrightarrow \forall (v)) \),
(b) \(\vdash_{PA} \forall \forall \forall \forall (\forall (v) \leftrightarrow \forall (v)) \) (with \(t \) a term
describing \(n \) as above).

To obtain the theorem it is as in Guaspari-Solovay sufficient to prove the following claims:

Claim 1: For each subformula \(B \) of \(A \) and \(i \neq 0 \):
\[
\vdash_{PA} \varphi = 1 \land \varphi \rightarrow \forall \forall (\forall (v) \leftrightarrow \forall (v))
\]
\[
\vdash_{PA} \varphi = 1 \land \varphi \rightarrow \forall \forall (\forall (v) \leftrightarrow \forall (v))
\]

Claim 2: For each subformula \(\square B \) of \(A \) and \(i \neq 0 \):
\[
\vdash_{PA} \varphi = 1 \land \varphi \rightarrow \forall \forall (\forall (v) \leftrightarrow \forall (v))
\]
\[
\vdash_{PA} \varphi = 1 \land \varphi \rightarrow \forall \forall (\forall (v) \leftrightarrow \forall (v))
\]

Claim 3: \(\vdash_{PA} \forall \forall (\forall (v) \leftrightarrow \forall (v)) \)

Claim 4: \(PA + \varphi = i \) is consistent.

The last claim can be proven as in Solovay (1976). We will prove claims 1–3.

Proof of Claim 1: By induction on the complexity of \(B \). Reason in
\(PA + \varphi = i \). Only the \(\square - \), \(\varphi - \), and \(\varphi - \) case are of interest. We treat \(\square \) and \(\varphi \) (\(\varphi \) is similar to \(\varphi \)):

If \(\varphi \rightarrow \square C \), then according to the definition of the odd stages \(f \) outputs \(C^*(Sn), C^*(SSn), C^*(SSSn), \ldots \). If \(\varphi \rightarrow \square C \), then \(C^*(j) \) for \(j > n \) is not output by \(f \) (not at the even stages by the manner of the construction and not at the odd ones, because, for no \(m \), \(h(m) \rightarrow \square C \). Since \(h(m) = i \) from a certain point onwards).

If \(\varphi \rightarrow \square C \leq \square D \), then, for \(j > n \), \(C^*(j) \) is output at some odd stage, and, if \(D^*(j) \) is output by \(f \), then this occurs at an odd stage as well.
and the ordering agrees with the forcing in i. If $i \nvdash \Box C \land C$, then, if $i \nvdash \Box C$, then C^j is never output by i, and if $i \Vdash \Box C$, then also $i \Vdash \Box D$ and C^j is output after D^j.

Proof of Claim 2: If $i \Vdash \Box B$, then $\forall j(iRj \vDash j \Vdash B)$, so, by claim 1, $\forall j(iRj \vDash \vdash PA l = j \rightarrow \forall u > t. B^j(u))$. Hence

$\vdash PA \bigvee_{iRj} l = j \rightarrow \forall u > t. B^j(u)$, $\vdash PA \Box \bigwedge_{iRj} l = j \rightarrow \Box \forall u > t. B^j(u)$ and

$\vdash PA \Box \bigwedge_{iRj} l = j \rightarrow \forall u > t. \Box B^j(u)$. By Solovay (1976),

$\vdash PA l = i \rightarrow \Box \bigwedge_{iRj} l = j \land \bigwedge_{iRj} \neg \Box l \neq j$, so

$\vdash PA l = i \rightarrow \forall u > t. \Box B^j(u)$.

If $i \nvdash \Box B$, there is a j with iRj such that j \nvdash B. Hence:

$PA \vdash l = j \rightarrow \forall u > t. \neg B^j(u)$,

$PA \vdash \forall u > t (B^j(u) \rightarrow l \neq j)$,

$PA \vdash \forall u > t (\Box B^j(u) \rightarrow \Box l \neq j)$; but we have $PA \vdash l = i \rightarrow \neg \Box l \neq j$; hence $PA \vdash l = i \rightarrow \forall u > t \neg \Box B^j(u)$.

Proof of Claim 3: Argue in PA: if v does not have the form $B^j(q)$ for some subformula $\Box B$ of A, the claim is obvious. If $l = 0$ the claim follows from (a). If $l \neq 0$ and $v \equiv B^j(q)$ for some subformula $\Box B$ of A with $q \leq t$, the claim follows from (b). So, assume $l = i \neq 0$, $v \equiv B^j(q)$ for some subformula $\Box B$ of A, $q > t$. We have:

$i \Vdash \Box B \leftrightarrow \Box B^j(q)$ by claim 2, and $i \Vdash \Box B \leftrightarrow \Box f B^j(q)$ follows from claim 1 applied to $\Box B$.

3. The non-validity of some rules.

An application of the arithmetic completeness theorem proved in Section 2 is the following Corollary.

3.1 Corollary. For each $n \geq 0$ there is a formula A_n such that

$\vdash PA \Box^{n+1} A_n$, but $K_{PA} \Box^n A_n$.

Proof. As shown in de Jongh (1987), $\vdash_R \Box^{n+1}(\boxdot T < \Box^{n+1} \bot)$, but $K_{R} \Box^n(\boxdot T < \Box^{n+1} \bot)$. By arithmetic completeness this implies that, for some standard proof predicate \Box^*,

$\vdash PA \Box^{n+1}(\Box^*(T \land x = x) < \Box^{n+1} \bot \land x = x)$, but
\(\mathcal{K}_\text{PA} \square \exists n(\square \exists (T \land x=x) \land \square \exists (\bot \land x=x)). \) Since \(\square \exists \) is standard, it immediately follows that \(\vdash \text{PA} \square \exists n(\square \exists (T \land x=x) \land \square \exists n+1(\bot \land x=x)) \) and \(\mathcal{K}_\text{PA} \square n(\square \exists (T \land x=x) \land \square \exists n+1(\bot \land x=x)). \)

Albert Visser suggested in reaction to this proof that a direct example is supplied by: (1) \(\vdash \text{PA} \square \exists n+1(\lnot \neg \text{Prf}(x, \square \exists \bot) \land) \), but (2) \(\mathcal{K}_\text{PA} \square n(\lnot \neg \text{Prf}(x, \square \exists \bot) \land) \). To see that this does indeed check out, reason in \(\text{PA} \):

(1) By cases: if \(\lnot \neg \text{Prf}(x, \square \exists \bot) \), then \(\square \exists n+1(\lnot \neg \text{Prf}(x, \square \exists \bot) \land) \) by \(\Delta_0 \)-completeness. If \(\text{Prf}(x, \square \exists \bot) \), then \(\square \exists n+1 \bot \), so again \(\square \exists n+1(\lnot \neg \text{Prf}(x, \square \exists \bot) \land) \).

(2) Assume to the contrary that \(\vdash \text{PA} \square n(\lnot \neg \text{Prf}(x, \square \exists \bot) \land) \). Assume moreover, \(\square \exists n+1 \bot \). Then, for some \(y \), \(\text{Prf}(y, \square \exists \bot) \), hence \(\square n(\text{Prf}(y, \square \exists \bot) \land) \) which together with the initial assumption immediately gives \(\square \exists \bot \). We have proved \(\square \exists n+1 \bot \rightarrow \square \exists \bot \), which by Löb’s theorem is an impossibility.

One might hope to generalize the non-validity of the rule \(\square n+1 A / \square n A \) to more examples. What comes to mind are those formulae \(\square A(p) \land \square B(p) \), with \(A(p) \) and \(B(p) \) \(L \)-formulae which have only provable fixed points in \(R \) (see de Jongh-Montagna 1988), since \(\square n+1 p \land \square n p \) is a particular example of such a formula. This idea indeed does turn out to lead to a generalization.

3.2. Theorem. If \(A(p) \) and \(B(p) \) are \(L \)-formulae with only \(p \) free and \(\square A(p) \land \square B(p) \) has only provable fixed points in \(R \), then the rule \(\square A(p) / \square B(p) \) is not valid under arithmetic interpretations.

Proof. Suppose \(\square A(p) / \square B(p) \) has only provable fixed points in \(R \). Then, by theorem 3.4 of de Jongh-Montagna (1988), \(\vdash \exists R \, \square A(T) \), \(\vdash \exists R \, \square B(T) \). It is sufficient to show that \(\vdash \exists R \, \square A(T) \land \square B(T) \land \square \exists n \bot \), \(m > n \). It is sufficient to show that \(\exists R \, \square A(T) \land \square B(T) \land \square \exists n \bot \). On any \(L \)-model with a root of depth \(n+1 \) (end points having depth 1), \(\square T \land \square \exists n \bot \) may be made false everywhere. This means then that \(\square B(T \land \square \exists n \bot) \) is everywhere on that model equivalent to \(\square \exists B(\bot) \) and hence to \(\square \exists \bot \) and hence false in the root. So,
$K_R \boxdot B(\Box T < \Box^{n+1} \bot)$ has been shown. Next, take an arbitrary Kripke-model M for R^-. Now, either the depth of the root $\geq n+2$, in which case $\Box T < \Box^{n+1} \bot$ is verified everywhere in the model, so $\Box A(\Box T < \Box^{n+1} \bot)$ is equivalent to $\Box A(T)$ everywhere in the model, and hence, since $\vdash_{R^-} A(T)$, is validated by the model; or else the root has depth $\leq n+1$ in which case $\Box T < \Box^{n+1} \bot$ is, either verified everywhere in the model and the same reasoning obtains again, or falsified everywhere in the model in which case $\Box A(\Box T < \Box^{n+1} \bot)$ is everywhere in the model equivalent to $\Box A(\bot)$ and hence to $\Box^m \bot$ and therefore, since $m \geq n+1$, is validated by the model.

Note that Theorem 3.2 is not a full generalization of Corollary 3.1, since the case $n=0$, $\Box A/A$, is not subsumed under it. A way out may be here to consider formulae like $\Box p < p$ having only provable fixed points (consider a fixed point $Cx \leftrightarrow \exists y < x (\text{Prf}(y, "\exists x Cx"))$ and look at $\exists x Cx$), but we have not pursued the subject.

4. Usual proof predicates, Rosser formulae.

A question that comes to mind in connection with this is, whether, by restricting oneself to more "usual" proof predicates, there are not many more principles than embodied in R^- that can be decided. This may well be the case for some principles, but we will show now that it is not so for one of the obvious candidate principles: $\Box (T \land x = x) < \Box (\bot \land x = x)$. Of course, the whole concept of "usual" proof predicate as introduced by Guaspari-Solovay is somewhat vague. We will accept any proof predicate as usual if it is based on a proof system which might be not unreasonably used in practice (logical, not mathematical) to generate the theorems of PA.

4.1 Proposition. (a) There are usual proof predicates such that

$K_{PA} \Box (T \land x = x) < \Box (\bot \land x = x)$.

(b) There are usual proof predicates such that

$\vdash_{PA} \Box (T \land x = x) < \Box (\bot \land x = x)$.
There are some requirements on the coding too. We will, for example, have to take a coding of formulae as sequences of symbols and proofs as sequences (or trees) of formulae and basing the sequence coding on a monotonic pairing function \(j \), i.e.

\[
a \leq j(a, b), b \leq j(a, b), a \leq a' \land b \leq b' \implies j(a, b) \leq j(a', b').
\]

The point is that we have to be sure that, if \(n \) is considerably larger than the gödel number \(\langle \Pi, \perp \rangle \) of the given proof \(\Pi \) of \(\perp \), then all proofs of \(T \land n = n \) will have to have a proof with a higher gödel number than that of \(\langle \Pi, \perp \land n = n \rangle \). This will certainly be the case if \(\langle \Pi, \perp \land n = n \rangle \) is coded by \(j(m, j(\langle \Pi, \perp \rangle, j(\langle \perp, \perp \rangle, j(\langle \perp, \langle n = n \rangle) \rangle)) \), where \(m \) codes the application of the ex falso rule, and if the following conditions are fulfilled: (1) \(m \) is smaller than the gödel numbers of the other rules, (2) \(\perp \) has a smaller gödel number than \(T \).

It is obvious that this whole proof is a purely combinatorial matter and can easily be executed in PA.

(b) With the above in mind the reader will see that, if we take an axiomatization of PA with, say, all true \(\Delta_0 \)-sentences included, which makes \(T \land n = n \) an axiom for each \(n \), give \(T \) a smaller gödel number than \(\perp \), and have the same coding machinery as above, than PA will be able to prove that \(T \land n = n \) has shorter proofs than any \(\perp \land n = n \) might have.

A similar reasoning as in the above proof may be put to use in the consideration of the following problem. Consider a formula \(Rx \) to be a Rosser formula, if

\[
\vdash_{PA} Rx \iff \square \neg Rx < \square Rx
\]

The question is, whether there exist usual proof predicates for which PA cannot prove all Rosser formulae to be equivalent. We will answer this question in the affirmative. One may consider this to be a very weak positive answer to the difficult problem Guaspari and Solovay stated: do there exist non-equivalent Rosser-sentences with respect to "the" usual proof predicate.

4.2 Proposition. There exists a usual proof predicate such that

(a) for all Rosser formulas \(Rx \) with respect to that proof predicate \(\vdash_{PA} \exists x \forall y \geq x \neg Rx \),
and hence,
(b) for all Rosser formulae Rx and Sx with respect to that proof predicate, $\text{PA} \vdash \exists x \forall y \geq x (Ry \leftrightarrow Sy)$, and
(c) for all such Rosser formulae Rx and Sx, $\text{PA} \vdash \forall x \forall y (Ry \leftrightarrow Sy)$.

Proof. (a) We again take a usual proof predicate as in (a) of the above proof. First note that in $\text{PA} + \neg \Box \bot$, $\forall y \neg Ry$ is provable, and hence also $\exists x \forall y \geq x \neg Ry$. Secondly, note that, arguing in $\text{PA} + \Box \bot$, for n large enough, the shortest proofs of $R(n)$ and $\neg R(n)$ are going to consist of the shortest proof of \bot combined with the formula in question. This means that with the Gödel numbering discussed above $\Box R(n) < \Box \neg R(n)$ holds for such large n, i.e. $\neg R(n)$. So, in any case, $\exists x \forall y \geq x \neg Ry$.
(b) follows immediately from (a), and (c) follows from (b), since for each Rosser formula $R(x)$, $\text{PA} \vdash \neg R(n)$ for any $n \in \mathbb{N}$, by the usual Rosser argument.

The result is somewhat remarkable in that standard proof predicates $\Box \Box$ can be found for which all Rosser-formulas are provably equivalent by extending the Guaspari-Solovay (1979) method (de Jongh A).

Bibliography:
Proof. (a) The idea is the following. If \bot is provable in PA, then, as we will explain, at least for some proof systems and codings thereof by natural numbers the shortest proofs of very large (i.e. non-standard) sentences A which aren't axioms will be $\langle \bot, A \rangle$. (We restrict our attention to natural deduction systems; for, say, Hilbert type systems, even though there is no essential difference, this is of course somewhat more complicated.) If we take $\bot \land n = n$ for the sentence A, then we see that from a certain n onwards $\langle \bot, \bot \land n = n \rangle$ will in such a case be the shortest proof of $\bot \land n = n$. Since in PA it cannot be excluded that \bot is provable, it is now sufficient to make the proof system and coding such that a proof of $T \land n = n$ cannot be shorter than the given proof of $\bot \land n = n$. For this idea to work it has to be so that the only radical increase in length of formulae in a proof step occurs only in applications of the ex falso rule. Usually, however, also application of the $\forall \exists$-rule $\forall x A(x) \land A(t)$ may give a radical increase in formula length. The problem is then that $T \land n = n$ may get short proofs after all, e.g. by concluding it from $\forall x (T \land x = x)$. This blocks the argument, since $\forall x (T \land x = x)$ might have a shorter proof than \bot (in fact, it certainly will!). The $\forall \exists$-rule is the only rule besides the ex falso rule with this property however, so if we exclude it the argument will go through. We just have to be sure that $T \land n = n$ is not an axiom and that any formulae from which it is concluded will have almost the same length as $T \land n = n$ itself.

The above considerations lead to the following solution: choose a formulation of PA with no function symbols (even for the successor function), and take a standard natural deduction system for it. This is slightly awkward for the interpretation of the substitution of numerals, $\Box (T \land x = x)$ e.g. gets rather unwieldy, as e.g. $T \land 2 = 2$ stands for $T \land \exists x_1 \exists x_2 \exists x_3 \exists x_4 (S0x_1 \land Sx_1 \land x_2 \land S0x_3 \land Sx_3 \land x_4 \land x_2 = x_4)$, but there is no fundamental problem. The effect is that $T \land n = n$ cannot have short proofs via $\forall x (T \land x = x)$. An alternative, somewhat unnatural, way is to have a natural deduction system with regard to the propositional connectives, together with axioms and not rules for the quantifiers, in particular e.g., $\forall x A(x) \rightarrow A(t)$.
1986
86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas
86-03 Johan van Benthem
86-04 Reinhard Muskens
86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem

1987
87-01 Jeroen Groenendijk, Martin Stokhof
87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Benthem
87-05 Víctor Sánchez Valencia
87-06 Eleonore Oversteegen
87-07 Johan van Benthem
87-08 Renate Bartsch
87-09 Herman Hendriks

1988
Logic, Semantics and Philosophy of Language:
LP-88-01 Michiel van Lambalgen
LP-88-02 Yde Venema
LP-88-03 LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
LP-88-06 Johan van Benthem
LP-88-07 Renate Bartsch
LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe

Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen
ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra

Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B. Vitanyi
CT-88-02 Michiel H.M. Smid
CT-88-03 Michiel H.M. Smid, Mark H. Overmars
CT-88-04 Dick de Jongh, Lex Hendriks
CT-88-05 Peter van Emde Boas
CT-88-06 Michiel H.M. Smid
CT-88-07 Johan van Benthem
CT-88-08 Michiel H.M. Smid, Mark H. Overmars
CT-88-09 Theo M.V. Janssen
CT-88-10 Edith Spaan, Leen Torenvliet
CT-88-11 Sieger van Denneheuvel

Other prepublications:
X-88-01 Marc Jumelet

1989
Logic, Semantics and Philosophy of Language:
LP-89-01 Johan van Benthem

Mathematical Logic and Foundations:
ML-89-01 Dick de Jongh, Albert Visser
ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet

Computation and Complexity Theory:
CT-89-01 Michiel H.M. Smid
CT-89-02 Peter van Emde Boas
CT-89-03 Ming Li, Herman Neuféglise
CT-89-04 Harry Buhrman, Leen Torenvliet
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
CT-89-06 H.W. Lenstra, Jr.

Other prepublications:
X-89-01 Marianne Kalsbeek
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra