UNARY INTERPRETABILITY LOGIC

Maarten de Rijke

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-90-04

University of Amsterdam
1986
86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas
86-03 Johan van Benthem
86-03 Reinhard Muskens
86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem
86-07 Stokhof
87-02 Renate Bartsch
87-03 Jan Willem Klo, Roel de Vrijer
87-04 Johan van Benthem
87-05 Vicente Sánchez Valencia
87-06 Eleonore Oversteegen
87-07 Johan van Benthem
87-08 Renate Bartsch
88 Herman Hendriks

1988
LP-88-01 Michiel van Lambalgen
LP-88-02 Yde Venema
LP-88-03 Y. Venema
LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
LP-88-06 Johan van Benthem
LP-88-07 Renate Bartsch
LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe
ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen
ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra
CT-88-01 Ming Li, Paul M.B.Vanitay
CT-88-02 Michiel H.M. Smid
CT-88-03 Michiel H.M. Smid, Mark H. Overmars
CT-88-04 Dick de Jongh, Lex Hendriks
CT-88-05 Peter van Emde Boas
CT-88-06 Michiel H.M. Smid
CT-88-07 Johan van Benthem
CT-88-08 Michiel H.M. Smid, Mark H. Overmars
CT-88-09 Theo M.V. Janssen
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas

1989
LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information
LP-89-06 Andrej Prietattel
LP-89-07 Heinrich Wansing
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang
ML-89-01 Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpolability Logic
ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Muleet, Franco Montagna
ML-89-05 Rineke Verbrugge
ML-89-06 Michiel van Lambalgen
ML-89-07 Dirk Roorda
ML-89-08 Dirk Roorda
ML-89-09 Alessandra Carbone
CT-89-01 Michiel H.M. Smid
CT-89-02 Peter van Emde Boas
CT-89-03 Ming Li, Herman Neufêlgise, Leen Torenvliet, Peter van Emde Boas
CT-89-04 Harry Buhrman, Leen Torenvliet
CT-89-05 Pieter H. Hartel, Michiel H. Smid
CT-89-06 H.W. Lenstra, Jr.
CT-89-07 Ming Li, Paul M.B. Vanitay
CT-89-08 Harry Buhrman, Steven Homer
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet
CT-89-10 Sieger van Denneheuvel
CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
X-89-01 Marianne Kaltenick
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
X-89-04 Jeroen Groenendijk, Martin Stokhof
X-89-05 Manuela Dijk
X-89-06 Peter van Emde Boas

1990
SEE INSIDE BACK COVER

Other Prepublications:
- An Orey Sentence for Predicative Arithmetic
- New Foundations: a Survey of Quine's Set Theory
- Index of the Heyting Nachlass
- Dynamic Montague Grammar, a first sketch
- The Modal Theory of Inequality
- Een Relatiesele Semantiek voor Conceptueel Modelleren: Het RL-project
UNARY INTERPRETABILITY LOGIC

Maarten de Rijke
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications
for Mathematical Logic and Foundations
ISSN 0924-2090

Received June 1990

Research supported by the
Netherlands Organization for Scientific Research (NWO)
Unary Interpretability Logic

Maarten de Rijke*

Department of Mathematics and Computer Science
University of Amsterdam

May 1990

Abstract

Let T be an arithmetical theory. We introduce a unary modal operator ‘\top’ to be interpreted arithmetically as the unary interpretability predicate over T. We present complete axiomatisations of the (unary) interpretability principles underlying two important classes of theories. We also prove some basic modal results about these new axiomatisations.

1 Introduction

The language $L(\square)$ of propositional modal logic consists of a countable set of proposition letters p_0, p_1, \ldots, and connectives \neg, \land and \square. $L(\square, \top)$ is the language of (binary) interpretability logic, and extends $L(\square)$ with a binary operator ‘\top’. (‘$A \top B$’ is read: ‘A interprets B’.) The provability logic L is propositional logic plus the axiom schemas $\square(A \to B) \to (\square A \to \square B)$, $\square A \to \square \square A$ and $\square(\square A \to A) \to \square A$, and the rules Modus Ponens ($\vdash A, \vdash A \to B \vdash B$) and Necessitation ($\vdash A \vdash \square A$). The binary interpretability logic IL is obtained from L by adding the axioms

\begin{align*}
(J1) \quad & \square(A \to B) \to A \top B \\
(J2) \quad & (A \top B) \land (B \top C) \to (A \top C) \\
(J3) \quad & (A \top C) \land (B \top C) \to (A \lor B) \top C \\
(J4) \quad & A \top B \to (\Diamond A \to \Diamond B) \\
(J5) \quad & \Diamond A \top A,
\end{align*}

where $\Diamond \equiv \neg \square \neg$. IL is taken as the base system; extensions of IL with one or more of the following schemas have also been studied:

\begin{align*}
(F) \quad & A \top \Diamond A \to \square \neg A \\
(W) \quad & A \top B \to A \top (B \land \square \neg A) \\
(M_0) \quad & A \top B \to (\Diamond A \land C) \top (B \land C) \\
(P) \quad & A \top B \to \square(A \top B) \\
(M) \quad & A \top B \to A \land \square C \top B \land C.
\end{align*}

*Research supported by the Netherlands Organization for Scientific Research (NWO).
We use ILX to denote the system $IL + X$, where X is the name of some axiom schema. $ILMP$ denotes the system $IL + M + P$ plus the additional axiom $A \gg B \rightarrow A \land (C \gg D) \gg B \land (C \gg D)$. Let ILS be one of the systems introduced above; the system ILS^w has as axioms all theorems of ILS plus all instances of the schema of reflection: $\square A \rightarrow A$. Its sole rule of inference is Modus Ponens.

Recall that an L-frame is a pair (W, R) with $R \subseteq W^2$ transitive and conversely well-founded, and that an L-model is given by an L-frame \mathcal{F} together with a forcing relation \Vdash that satisfies the usual clauses for $¬$ and $∧$, and $u \Vdash A$ iff $\forall v (uRv \Rightarrow v \Vdash A)$. A (Veltman-) frame for IL is a triple (W, R, S), where (W, R) is an L-frame, and $S = \{ S_w : w \in W \}$ is a collection of binary relations on W satisfying

1. S_w is a relation on wR
2. S_w is reflexive and transitive
3. if $w', w'' \in wR$ and $w'Rw''$ then $w'S_w w''$.

An IL-model is given by a Veltman-frame \mathcal{F} for IL together with a forcing relation \Vdash that satisfies the above clauses for $¬$, $∧$, and \square, while

$$u \Vdash A \gg B \Leftrightarrow \forall v (uRv \land v \Vdash A \Rightarrow \exists w (uS_w w \land w \Vdash B)).$$

An ILP-model is an IL-model that satisfies the extra condition: if $wRw'RuS_w v$ then $uS_w v$. An ILM-model is an IL-model satisfying the extra condition: if $uS_w vRz$ then uRz. A model is an $ILMP$-model if it is both an ILM- and an ILP-model, while it also satisfies the condition: if $zRyS_z zRuS_y v$ then $uS_z v$.

In the sequel T denotes a theory which has a reasonable notion of natural numbers and finite sequences. The theories we consider are either Σ^0_1-sound essentially reflexive theories (like PA), or Σ^0_1-sound finitely axiomatized sequential theories (like GB).

An arithmetical interpretation $(\cdot)^T$ of $\mathcal{L}(\square, \gg)$ in the language of T is a map which assigns to every proposition letter p a sentence p^T in the language of T, and which is defined on other modal formulas as follows:

1. $(\bot)^T$ is ‘$0 = 1$’;
2. $(\cdot)^T$ commutes with $¬$ and $∧$;
3. $(\square A)^T$ is a formalization of ‘$T \vdash (A)^T$’;
4. $(A \gg B)^T$ is a formalization of ‘$T + (A)^T$ interprets $T + (B)^T$’.

So the operator \gg is interpreted arithmetically as the binary interpretability predicate over T. Interpretability over T may also be studied as a unary predicate on finite extensions of T. Obviously, the modal analysis of the unary interpretability predicate in the spirit of Solovay’s analysis of provability has to be undertaken using a unary modal operator. It was Craig Smoryński who first introduced an operator to be interpreted as the unary interpretability predicate. (The present investigations were inspired by questions of his.) Švejdar was subsequently the first one to introduce a binary operator to be interpreted as the binary interpretability relation.

It is clear that interpretability as a binary relation is the basic notion, since unary interpretability is reducible to it. On the modal side this leads to the following definition:
Definition 1.1 Define in $\mathcal{L}(\square, \rightarrow)$ the unary interpretability operator \mathcal{T} by $\mathcal{I}A := \mathcal{T} \rightarrow A$, and let $\mathcal{L}(\square, \mathcal{I})$ extend $\mathcal{L}(\square)$ with \mathcal{I}.

So $\vDash \mathcal{I}A$ iff $\forall y (xRy \rightarrow \exists z (yS_\varepsilon z \land z \vDash A))$. And given a theory T, it follows from the definition of an arithmetical interpretation that $(\mathcal{I}A)^T$ is a formalization of $\mathcal{T} + (A)^T$ is interpretable in T.

Definition 1.2 The unary interpretability logic \mathcal{IL} is obtained from the provability logic L by adding the axioms

(1) $\square \bot$

(2) $\square (A \rightarrow B) \rightarrow (\mathcal{I}A \rightarrow \mathcal{I}B)$

(3) $\mathcal{I}(A \lor \square A) \rightarrow \mathcal{I}A$

(4) $\mathcal{I}A \land \square A \rightarrow \square A$.

Several axioms have special names:

(f) $\mathcal{I} \square A \rightarrow \square \bot$

(m) $\mathcal{I}A \rightarrow \mathcal{I}(A \land \square \bot)$

(p) $\mathcal{I}A \rightarrow \square \mathcal{I}A$.

We use $\mathcal{IL}m$ to denote the system $\mathcal{IL} + m$, and $\mathcal{IL}p$ to denote $\mathcal{IL} + p$. For other axiom schemas S we will simply refer to $\mathcal{ILS} \cap \mathcal{L}(\square, \mathcal{I})$ as $\mathcal{IL}S$. Let $\mathcal{IL}S$ be one of the systems \mathcal{IL}, $\mathcal{IL}m$ or $\mathcal{IL}p$. The system $\mathcal{IL}S^*$ has as axioms all theorems of $\mathcal{IL}S$ plus all instances of the schema of reflection: $\square A \rightarrow A$. Its sole rule of inference is Modus Ponens.

In Section 2 we prove that $\mathcal{IL} = IL \cap \mathcal{L}(\square, \mathcal{I})$, $\mathcal{IL}m = ILM \cap \mathcal{L}(\square, \mathcal{I})$ and $\mathcal{IL}p = ILP \cap \mathcal{L}(\square, \mathcal{I})$—thereby establishing that $\mathcal{IL}p$ is the unary interpretability logic of all finitely axiomatized sequential theories that extend $\Delta_0 + \text{SupExp}$, and that $\mathcal{IL}m$ is the unary interpretability logic of all essentially reflexive theories. It will turn out that $\mathcal{IL}m$ is in fact the unary interpretability logic of all ‘reasonable’ arithmetical theories. We end Section 2 with some remarks on the hierarchy of extensions of \mathcal{IL}.

Next, in Section 3 we study the closed fragment of $\mathcal{L}(\square, \mathcal{I})$, and investigate the modalities in this language. We then state and prove Interpolation Theorems for \mathcal{IL}, $\mathcal{IL}m$ and $\mathcal{IL}p$—from this we obtain Fixed Point Theorems for these logics in a standard way.

We end this section with two useful Propositions. Let \mathcal{ILS} be one of the systems \mathcal{IL}, $\mathcal{IL}m$ or $\mathcal{IL}p$, and let \mathcal{ILS} be the corresponding binary system. We first show that $\mathcal{ILS} \subseteq \mathcal{ILS} \cap \mathcal{L}(\square, \mathcal{I})$.

Proposition 1.3 Let $A \in \mathcal{L}(\square, \mathcal{I})$. If $\mathcal{ILS} \vdash A$ then $\mathcal{ILS} \vdash A$.

Proof. It suffices to show that for $S = \top, \top, \mathcal{I}$, we have $\mathcal{ILS} \vdash \mathcal{ILS}$. We only show that $\mathcal{IL} \vdash I1$ and that $\mathcal{ILM} \vdash m$.

By $J1$, $J5$ and $J3$ we have

$$\mathcal{IL} \vdash \square \bot \lor \bot \vdash \square \bot$$

Furthermore

$$\mathcal{IL} \vdash \square (\top \rightarrow (\top \land \square \bot) \lor \square (\top \land \square \bot)) \Rightarrow \mathcal{IL} \vdash \square (\top \rightarrow \square \bot \lor \square \bot) \Rightarrow \mathcal{IL} \vdash \top \rightarrow \square \bot \lor \square \bot, \text{ by } J1 \Rightarrow \mathcal{IL} \vdash \top \rightarrow \square \bot, \text{ by } J2 \text{ and } (1).$$
To prove that $ILM \vdash m$, we use the fact that in ILM we can derive $A \rightarrow B \rightarrow A \rightarrow B \land \Box \neg A$. (Cf. [9].) Therefore $ILM \vdash m$. QED.

Here are some theorems and a derived rule of the unary systems:

Proposition 1.4

1. If $il \vdash A$ then $il \vdash !A$. In particular, $il \vdash !\top$.
2. $il \vdash \Box A \rightarrow !A$.
3. $il \vdash !A \rightarrow !A \land \Box (\neg A)$.
4. $il + f \subseteq ilm \subseteq ilp$.

Proof. Items 1, 2 and 3 are left to the reader. To prove item 4, note

\[
\begin{align*}
ilp \vdash !A & \rightarrow \Box !A \\
& \rightarrow \Box (\neg \top \rightarrow \Diamond A), \text{ by } I4 \\
& \rightarrow \Box (A \land \Box \neg A \rightarrow A \land \Box \bot) \\
& \rightarrow !A \land \Box \bot, \text{ by } 3. \\
& \rightarrow !A \land \Box \bot, \text{ by } I2.
\end{align*}
\]

That is, $ilp \vdash m$. This establishes the inclusion $ilm \subseteq ilp$. The inclusion $il + f \subseteq ilm$ is immediate. QED.

Assuming that il does indeed axiomatize $IL \cap L(\Box, !)$, we find that $\vdash !A \Rightarrow \vdash A$ is not a derived rule of il: we have $il \vdash !\Box \bot$, but $il \not\vdash \Box \bot$ because $IL \not\vdash \Box \bot$.

2 Completeness

In this Section we prove il to be modally complete with respect to finite IL-models. We also prove modal and arithmetical completeness results for ilm and ilp. To prove the arithmetical completeness of ilm (ilp) we first show that ilm (ilp) is modally complete with respect to ILM- (ILP)-models; after that we appeal to the existing arithmetical completeness results for ILM (ILP).

2.1 Preliminaries

Our modal completeness proofs use infinite maximal consistent sets instead of the finite ones used, for example, to prove L or IL complete (in [6] and [2] respectively.) Our approach has the advantage that it can do without the large adequate sets employed there. In this subsection we establish some results that will provide us with the building blocks for constructing counter models in our modal completeness proofs.

We start with some definitions. For the remainder of this subsection let ils denote either il, ilm or ilp.

Definition 2.1 Let Γ, Δ be two maximal ils-consistent sets.

1. Δ is called a successor of Γ ($\Gamma \prec \Delta$) if
 - (a) $A \in \Delta$ for each $\Box A \in \Gamma$
 - (b) $\Box A \in \Delta$ for some $\Box A \not\in \Gamma$

2. Δ is called a C-critical successor of Γ if
 - (a) $\Gamma \prec \Delta$
 - (b) $IC \not\in \Gamma$
(c) \(\neg C, \Box \neg C \in \Delta \).

Note that successors of C-critical successors are C-critical successors as well. Moreover, any successor is a \(\bot \)-critical successor.

Definition 2.2 A set of formulas \(\Phi \) is adequate if

1. if \(B \in \Phi \), and \(C \) is a subformula of \(B \), then \(C \in \Phi \)
2. if \(B \in \Phi \), and \(B \) is no negation, then \(\neg B \in \Phi \).

Let \(\Phi \) be an adequate set. Then we say that a formula \(\Diamond B \) is almost in \(\Phi \), if \(\Diamond B \in \Phi \) or \(\Box B \in \Phi \) or \(B \equiv \top \).

Proposition 2.3 Let \(\Gamma \) be a maximal ils-consistent set such that \(\Diamond C \in \Gamma \). Then there is a maximal ils-consistent successor \(\Delta \) of \(\Gamma \) with \(C, \Box \neg C \in \Delta \).

Proof. Well-known (or cf. [6]). QED.

Proposition 2.4 Let \(\Gamma \) be a maximal ils-consistent set with \(\neg IC \in \Gamma \). Then there is a maximal ils-consistent C-critical successor \(\Delta \) of \(\Gamma \) with \(\Box \bot \in \Delta \).

Proof. Let \(\Delta \) be a maximal consistent extension of

\[
\{ D : \Box D \in \Gamma \} \cup \{ \neg C, \Box \neg C \} \cup \{ \Box \bot \}.
\]

Note that if such a \(\Delta \) exists, it must be a C-critical successor of \(\Gamma \); since

\[
\{ D : \Box D \in \Gamma \} \cup \{ \Box \bot \} \subseteq \Delta
\]

it is a successor of \(\Gamma \); and because \(\{ \neg C, \Box \neg C \} \subseteq \Delta \) it is also C-critical.

We only have to prove \(\{ D : \Box D \in \Gamma \} \cup \{ \neg C \} \cup \{ \Box \bot \} \) consistent, since \(\Box \bot \) implies \(\Box \neg C \). Now, suppose that this set is inconsistent. Then there are \(D_1, \ldots, D_m \) such that \(D_1, \ldots, D_m, \neg C, \Box \bot \not\vdash \bot \). Then

\[
D_1, \ldots, D_m \vdash \Box \bot \rightarrow C \quad \Rightarrow \quad \Box D_1, \ldots, \Box D_m \vdash \Box (\Box \bot \rightarrow C)
\]

\[
\Rightarrow \quad \Box D_1, \ldots, \Box D_m \vdash IC, \text{ by I1 and I3}.
\]

So \(\Gamma \vdash IC \). This contradicts the consistency of \(\Gamma \). QED.

Proposition 2.5 Assume that \(IC \in \Gamma \), and that \(\Delta \) is a maximal ils-consistent E-critical successor of \(\Gamma \). Then there is a maximal ils-consistent E-critical successor \(\Delta' \) of \(\Gamma \) such that \(C, \Box \neg C \in \Delta' \).

Proof. Assume that there is no such \(\Delta' \). Then there are \(\Box D_1, \ldots, \Box D_n \in \Gamma \) such that

\[
D_1, \ldots, D_n, \neg E, \Box \neg E, C, \Box \neg C \not\vdash \bot,
\]

so

\[
D_1, \ldots, D_n \vdash C \land \Box \neg C \rightarrow E \lor \Diamond E
\]

\[
\Box D_1, \ldots, \Box D_n \vdash \Box (C \land \Box \neg C \rightarrow E \lor \Diamond E)
\]

\[
\Gamma \vdash \Box (C \land \Box \neg C \rightarrow E \lor \Diamond E).
\]

(2)

Since \(IC \in \Gamma \), it follows from 1.4 that \(I (C \land \Box \neg C) \in \Gamma \). By (2) and J2 it follows that \(\Gamma \vdash I (E \lor \Diamond E) \), which, by J3, implies \(\Gamma \vdash IE \) and \(IE \in \Gamma \)—but this contradicts the fact that \(IE \not\in \Gamma \) by the existence of an E-critical successor of \(\Gamma \). QED.
2.2 Modal completeness of il

Given some (infinite) maximal il-consistent set Γ and a finite adequate set Φ, we define the structure $\langle W_T, R \rangle$, which consists of pairs $\langle \Delta, \tau \rangle$. Here, the maximal consistent sets Δ are needed to handle the truth definition for formulas in $\Gamma \cap \Phi$. And the sequences of (pairs of) formulas τ are used to carefully index the pairs we add to W_T. In this way we make sure that $\langle W_T, R \rangle$ will be a finite tree.

For the time being, let Γ be an infinite maximal il-consistent set, and let Φ be a finite adequate set. We use \bar{w}, \bar{v}, \ldots to denote pairs $\langle \Delta, \tau \rangle$. If $\bar{w} = \langle \Delta, \tau \rangle$, then $\langle \bar{w} \rangle_0 = \Delta$, $\langle \bar{w} \rangle_1 = \tau$. We write $\sigma \subseteq \tau$ for σ is an initial segment of τ, and $\sigma \subset \tau$ if σ is a proper initial segment of τ. Finally, $\langle \bar{w} \rangle_1 \neg \langle \bar{v} \rangle_1$ denotes the concatenation of $\langle \bar{w} \rangle_1$ and $\langle \bar{v} \rangle_1$.

Definition 2.6 Define W_T to be a minimal set of pairs $\langle \Delta, \tau \rangle$ such that

1. $\langle \Gamma, \langle \rangle \rangle \in W_T$
2. if $\langle \Delta, \tau \rangle \in W_T$, $\Diamond B \in \Delta$ is almost in Φ and $C \in \Phi$, and if there is a maximal il-consistent C-critical successor Δ' of Δ with B, $\Box \neg B \in \Delta'$, then $\langle \Delta', \tau \neg \langle \langle B, C \rangle \rangle \rangle \in W_T$ for one such Δ'.

Define R on W_T by putting $\bar{w} R \bar{v}$ iff $\langle \bar{w} \rangle_1 \subset \langle \bar{v} \rangle_1$. Define S on W_T by putting $\bar{v} S_a \bar{u}$ iff for some B, B', C, τ and σ:

$\langle \bar{v} \rangle_1 = (\bar{w})_1 \neg \langle \langle B, C \rangle \rangle \tau$ and $\langle \bar{u} \rangle_1 = (\bar{w})_1 \neg \langle \langle B', C \rangle \rangle \sigma$.

Remark 2.7 In 2.6 the pairs $\langle B, C \rangle$ code the following: if $\langle \Delta', \tau \neg \langle \langle B, C \rangle \rangle \rangle \in W_T$, then for some $\langle \Delta, \tau \rangle \in W_T$, Δ' is a C-critical successor of Δ, and $\langle \Delta', \tau \neg \langle \langle B, C \rangle \rangle \rangle$ was added to W_T because $\Diamond B \in \Delta$ is almost in Φ.

Proposition 2.8

1. W_T is finite.
2. If $\langle \bar{w} \rangle_1 = \langle \bar{v} \rangle_1$ then $\bar{w} = \bar{v}$.
3. If $\bar{w} R \bar{v}$ then $(\bar{w})_0 \prec (\bar{v})_0$.
4. $\langle W_T, R \rangle$ is a tree.
5. $\langle W_T, R, S \rangle$ is an IL-frame.
6. If $\langle \Delta, \tau \rangle \in W_T$ and E occurs as the second component in some pair in τ, then $\neg E, \Box \neg E \in \Delta$.

Proof. 1. Since $|\Phi| = m$ for some finite m, it follows that for some finite n, $|\{ \Diamond B \in \Gamma : \Diamond B \text{ is almost in } \Phi \}| = n$. So Γ gives rise to adding at most $n \cdot m$ new elements to W_T. Now each of these new elements contains at most $n - 1$ formulas of the form $\Diamond B$, where $\Diamond B$ is almost in Φ. Hence, each such element will give rise to adding at most $(n - 1) \cdot m$ new elements to W_T. Continuing in this way we see that $|W_T| \leq 1 + \Pi_{i=0}^{n-1} (n - i) \cdot m < \omega$.

2. Induction on $\text{lh}((\bar{w})_1) = \text{lh}((\bar{v})_1)$.
3. Use item 2 to prove 3 with induction on $\max(\text{lh}((\bar{w})_1), \text{lh}((\bar{v})_1))$.
4. To prove that $\langle W_T, R \rangle$ is a tree, note first that transitivity and asymmetry are straightforward, so we only prove that for each $\bar{w} \in W_T$ the set of its R-predecessors is finite and linear. Finiteness is immediate by item 1. To prove linearity, assume that $\bar{u} R \bar{w}$ and $\bar{v} R \bar{w}$. Then $\langle \bar{u} \rangle_1 \subset \langle \bar{w} \rangle_1$ and $\langle \bar{v} \rangle_1 \subset \langle \bar{w} \rangle_1$, so $\langle \bar{u} \rangle_1 \subset \langle \bar{v} \rangle_1$. If $\langle \bar{u} \rangle_1 \subset \langle \bar{v} \rangle_1$ then $\bar{u} = \bar{v}$ by item 2, and we are done. If $\langle \bar{u} \rangle_1 \neq \langle \bar{v} \rangle_1$ then either $\langle \bar{u} \rangle_1 \subset \langle \bar{v} \rangle_1$ or $\langle \bar{v} \rangle_1 \subset \langle \bar{u} \rangle_1$, that is: $\bar{u} R \bar{v}$ or $\bar{v} R \bar{u}$.

5. Left to the reader.
6. Induction on the construction of W_T. QED.
Theorem 2.9 Let $A \in \mathcal{L}(\square, \top)$. Then $\vdash \neg A$ if and only if for all finite IL-models M we have $M \models \neg A$.

Proof. Proving soundness is left to the reader. To prove completeness, assume that $\not\vdash \neg A$. We want to produce an IL-model that refutes A. Let Φ be a finite adequate set containing $\neg A$, and let Γ be a maximal Φ-consistent set containing $\neg A$. Construct (W_T, R, S) as in 2.6. We complete the proof by putting $\bar{w} \vdash \neg p$ if $p \in \bar{w}$ and by proving that for all $F \in \Phi$ and $\bar{w} \in W_T$ we have $\bar{w} \vdash \neg F$ if F is induced on \bar{w}. We only consider the cases $F \equiv \square B$ and $F \equiv \square C$.

If $F \equiv \square B \in \bar{w}$ we have to show that $\exists \bar{v} (\bar{w} \bar{v} \wedge B \in \bar{v})$. Note first that $\square B$ is almost in Φ, and that $\bot \in \Phi$. By 2.3 there is a successor Δ of $(\bar{w})_0$ with B, $\square \neg B \in \Delta$. Moreover, Δ is a \bot-critical successor of $(\bar{w})_0$. For, $\Delta \in \bar{w}$ implies $\top \in \bar{w}$, so $\bot \in (\bar{w})_0$ would imply $\bot \in (\bar{w})_0$, by axiom I4—which is impossible; therefore, $\bot \not\in (\bar{w})_0$. Furthermore, it is clear that $\neg \bot$, $\square \bot \in \Delta$. Put $\bar{v} := \langle \Delta, (\bar{w})_1 \cdots \langle (B, \bot) \rangle \rangle$. Then we may assume that $\bar{v} \in W_T$. It is clear that $\bar{w} \bar{v}$ and $B \in \bar{v}$ as required.

If $F \equiv \square B \not\in (\bar{w})_0$, then $\square \neg B \in \bar{w}$, and we have to show that $\forall \bar{v} (\bar{w} \bar{v} \rightarrow \neg B \in \bar{v})$. But this is obvious from the definitions.

Assume $\square C \not\in (\bar{w})_0$. Then $\neg \square C \in \bar{w}$, and $C \in (\bar{w})_0$. By the induction hypothesis we have to show that $\exists \bar{v} (\bar{w} \bar{v} \wedge \forall \bar{u} (\bar{v} \bar{u} \rightarrow \neg C \in \bar{u}) \rangle \rangle$). Apply 2.4, with $\Gamma = (\bar{w})_0$, to obtain a C-critical successor Δ of $(\bar{w})_0$, and define $\bar{v} := \langle \Delta, (\bar{w})_1 \cdots \langle (\top, C) \rangle \rangle$. So $\top \in (\bar{w})_0$, and therefore $C \in (\bar{w})_0$ by axiom I4. By construction $\bar{v} \in \Sigma C$. Now, apply 2.5, with $\Gamma = (\bar{w})_0$, $\Delta = (\bar{v})_0$, to obtain an E-critical successor Δ' of $(\bar{w})_0$ that contains $C \not\in \Delta$. Since $C \not\in \Phi$, we may assume that $\bar{u} = \langle \Delta', (\bar{w})_1 \cdots \langle (C, E) \rangle \rangle \in W_T$. Clearly, \bar{u} does the job. QED.

Proposition 2.10 Let $A \in \mathcal{L}(\square, \top)$. Then $A \vdash A$ if and only if $A \vdash A$.

Proof. By [2] we have for all $A \in \mathcal{L}(\square, \Rightarrow)$, $\vdash A$ if and only if for all finite IL-models M, $M \models A$. From this and 2.9 the Proposition follows. QED.

2.3 Modal and arithmetical completeness of $\exists \mathit{il}$

To prove the modal completeness of $\exists \mathit{il}$ we need to adapt the construction used in proving $\exists \mathit{il}$ complete somewhat. The counter model we will construct in the completeness proof will consist of pairs (Δ, τ), where Δ is a maximal $\exists \mathit{il}$-consistent set, and τ is a sequence of triples of formulas.

For the the time being we fix a maximal $\exists \mathit{il}$-consistent set Γ and a finite adequate set Φ.

Definition 2.11 Define W_T to be a minimal set of pairs (Δ, τ) such that

1. $(\langle \Gamma, (\tuple{1}) \rangle) \in W_T$.
2. If $(\Delta, \tau) \in W_T$, $\square B \in \Delta \cap (\Phi \cup \{ \top \})$, $C \in \Phi$ and if there exists a C-critical successor Δ' of Δ with $B \not\in \Delta'$, then for one such Δ', $(\langle \Delta', \tau \rangle \cdots \langle (B, \bot, C) \rangle) \in W_T$.

3. If \((\Delta, \tau) \in W_T \), \(IB \in \Delta \cap \Phi \), \(C \in \Phi \) and if there exists a \(C \)-critical successor \(\Delta' \) of \(\Delta \) with \(B, \Box \bot \in \Delta' \), then \(\langle \Delta', \tau \ltimes \langle \bot, B, C \rangle \rangle \in W_T \), for one such \(\Delta' \).

Define \(R \) on \(W_T \) by putting \(\tilde{w}R\tilde{v} \) if \((\tilde{w})_1 \subset (\tilde{v})_1 \). Define \(S \) on \(W_T \) by putting \(\tilde{v}S_{\tilde{w}}\tilde{u} \) iff for some \(B, B', E, E', C, \sigma \) and \(\sigma' \)

\[
(\tilde{v})_1 = (\tilde{w})_1 \ltimes (\langle B, E, C \rangle \ltimes \sigma) \text{ and } (\tilde{u})_1 = (\tilde{w})_1 \ltimes (\langle B', E', C \rangle \ltimes \sigma')
\]

and

- if \(B \equiv \bot \) then \(B' \equiv \bot \),
- if \(E' \equiv \bot \) then \(B' \equiv B, E' \equiv E \) and \(\sigma \subseteq \sigma' \).

Remark 2.12 In 2.11 the triples \((B, E, C) \) code the following: if \(\langle \Delta', \tau \ltimes \langle \langle B, E, C \rangle \rangle \rangle \in W_T \), then there is some \(\langle \Delta, \tau \rangle \in W_T \) such that \(\Delta' \) is a \(C \)-critical successor of \(\Delta \), and if \(B \not\equiv \bot \) then \(\langle \Delta', \tau \ltimes \langle \langle B, E, C \rangle \rangle \rangle \) was added to \(W_T \) because \(\Diamond B \in \Delta \cap (\Phi \cup \{ \Diamond \bot \}) \); if \(B \equiv \bot \) then \(E \not\equiv \bot \) and \(\langle \Delta', \tau \ltimes \langle \langle B, E, C \rangle \rangle \rangle \) was added to \(W_T \) because \(LE \in \Delta \cap \Phi \).

Proposition 2.13

1. \(W_T \) is finite.
2. If \((\tilde{v})_1 = (\tilde{w})_1 \ltimes (\langle B, E, C \rangle \ltimes \sigma) \) then either \(B \equiv \bot \) or \(E \equiv \bot \) (but not both); and if \(B \equiv \bot \) then \(\Box \bot \in (\tilde{v})_0 \) and \(\sigma = \{ \} \).
3. If \((\tilde{w})_1 = (\tilde{v})_1 \) then \(\tilde{w} = \tilde{v} \).
4. If \(\tilde{w}R\tilde{v} \) then \((\tilde{w})_0 \ltimes (\tilde{v})_0 \).
5. \((W_T, R, S) \) is an ILM-frame.
6. If \(\tilde{v} = (\Delta, \tau) \in W_T \) and \(C \) occurs as the third component in some triple in \(\tau \) then \(\neg C, \Box \neg C \in \Delta \).

Proof. Items 1, 2, 3, 4 and 6 are left to the reader. Let us check that \((W_T, R, S) \) satisfies all the conditions to be an ILM-frame:

- it is easily seen that \(R \) is transitive and irreflexive—so by item 1 it is also conversely well-founded;
- \(S_{\tilde{w}} \subseteq \tilde{w}R \times \tilde{w}R \) is immediate;
- to show that \(S_{\tilde{w}} \) is reflexive and transitive, use item 2;
- to show that \(\tilde{w}R\tilde{v}R\tilde{u} \) implies \(\tilde{v}S_{\tilde{w}}\tilde{u} \), use item 2;
- finally, we have to show that \(\tilde{v}S_{\tilde{w}}\tilde{u}R\tilde{z} \) implies \(\tilde{v}R\tilde{z} \); so assume that \(\tilde{v}S_{\tilde{w}}\tilde{u} \).

By definition there are \(B, B', B'', E, E', E'', C, C', \sigma, \sigma' \) and \(\sigma'' \) such that

\[
(\tilde{v})_1 = (\tilde{w})_1 \ltimes (\langle B, E, C \rangle \ltimes \sigma)
(\tilde{u})_1 = (\tilde{w})_1 \ltimes (\langle B', E', C \rangle \ltimes \sigma')
(\tilde{z})_1 = (\tilde{w})_1 \ltimes (\langle B', E', C \rangle \ltimes \sigma'' \ltimes \langle B'', E'', C'' \rangle \ltimes \sigma''')
\]

Obviously, \(B' \not\equiv \bot \), for otherwise, by item 2, \(\Box \bot \in (\tilde{u})_0 \), and, by item 4, \(\bot \in (\tilde{z})_0 \). Therefore, by item 2, \(E' \equiv \bot \)—but then \(B \equiv B', E \equiv E' \) and \(\sigma \subseteq \sigma' \). In other words: \((\tilde{v})_1 \subset (\tilde{z})_1 \), which means that \(\tilde{v}R\tilde{z} \). QED.

Theorem 2.14 Let \(A \in \mathcal{L}(\Box, I) \). Then \(\text{ilm} \vdash A \) iff for all finite ILM-models \(M \) we have \(M \models A \).
Proof. As before we only prove completeness. Assume ilm \not\vdash A. Let \Phi be a finite adequate set that contains \neg A, and let \Gamma be a maximal ilm-consistent set with \neg A \in \Gamma. Construct \langle W_T, R, S \rangle as in 2.11. Define a forcing relation \models on \langle W_T, R, S \rangle by putting \bar{w} \models p if p \in \langle \bar{w} \rangle_0. As before, we prove by induction on F that for all \bar{F} \in (\Phi \cup \{ \Box \top \}) and \bar{w} \in W_T, we have \bar{w} \models F if F \in \langle \bar{w} \rangle_0. We only consider the case \bar{F} \equiv \Box B. (The case \bar{F} \equiv \Diamond B is similar to the corresponding case in the proof of 2.9.)

Assume \bar{F} \equiv \Box B \not\in \langle \bar{w} \rangle_0. By the induction hypothesis we have to show that
\[\exists \bar{u} (\bar{w} R \bar{u} \limp \forall \bar{v} (\bar{v} S_{\bar{u}} \bar{v} \limp \neg B \in \langle \bar{u} \rangle_0)) \]
Now \Box B \not\in \langle \bar{w} \rangle_0 implies \Diamond \top \in \langle \bar{w} \rangle_0. Moreover, by 2.4 there exists a B-critical successor \Delta' of \langle \bar{w} \rangle_0. Since \Diamond \top \in \langle \bar{w} \rangle_0 \cap \Phi \cup \{ \Box \top \}, we may assume that \bar{v} \in W_T, where

\[\bar{v} := \langle \Delta', (\bar{w})_{\Delta'} \rangle_{\langle \top, \bot, B \rangle} \].

Clearly, \bar{w} R \bar{v}. Finally, if \bar{v} S_{\bar{u}} \bar{u} then (\bar{u})_1 = (\bar{w})_{\Delta'} \langle (B', E', B) \rangle \sim \sigma for some B', E' and \sigma. Therefore, by item 6 of 2.13, \neg B \in \langle \bar{u} \rangle_0, as required.

Assume that \bar{F} \equiv \Box B \in \langle \bar{w} \rangle_0. By the induction hypothesis we have to show that
\[\forall \bar{v} (\bar{w} R \bar{v} \limp \exists \bar{u} (\bar{v} S_{\bar{u}} \bar{u} \limp \neg B \in \langle \bar{u} \rangle_0)) \].
So assume that \bar{v} \in \bar{w} R. Then (\bar{v})_1 = (\bar{w})_{\Delta'} \langle (B', E', C) \rangle \sim \sigma for some B', E', C and \sigma. By item 6 of 2.13, (\bar{v})_0 is C-critical. Now \Box B \in \langle \bar{w} \rangle_0 implies \Box (B \land \Box \bot) \in \langle \bar{w} \rangle_0, by axiom m. Apply 2.5 to find a C-critical successor \Delta' of \langle \bar{w} \rangle_0 with B, \Box \bot \in \Delta'. Since \Box B \in \langle \bar{w} \rangle_0 \cap \Phi, we may assume that \bar{u} \in W_T, where

\[\bar{u} := \langle \Delta', (\bar{w})_{\Delta'} \rangle_{\langle \bot, B, C \rangle} \].

Obviously, we have \bar{v} S_{\bar{u}} \bar{u} and \bar{u} \in \langle \bar{u} \rangle_0 as required. QED.

Proposition 2.15 Let \(A \in L(\Box, \triangleright) \). Then ILM \models A iff ilm \models A.

Proof. By [2] we have for all \(A \in L(\Box, \triangleright) \), ILM \models A iff for all finite ILM-models \(\mathcal{M}, M \models A \). From this and 2.14 the result follows. QED.

Theorem 2.16 Let \(A \in L(\Box, I) \), and let T be a \(\Sigma_1^0 \)-sound essentially reflexive theory. Then ilm \models A iff for all interpretations (\(\cdot \)^T of L(\(\Box, I \)) in the language of T, \(T \models (\mathcal{A})^T \).

Proof. By [1, Theorem 3.8] we have for all \(A \in L(\Box, \triangleright) \), ILM \models A iff for all interpretations (\(\cdot \)^P of L(\(\Box, \triangleright \)) in the language of T, \(T \models (\mathcal{A})^P \). From this and 2.15 the result follows. QED.

Proposition 2.17 Let \(A \in L(\Box, I) \). Then the following are equivalent:

1. ilm \models A
2. ILM \models A
3. ilm \models \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \limp B) \land \bigwedge_{ID \in \text{Sub}(A)} (C \limp \Box \top) \right) \limp A.

Proof. The implication 1 \Rightarrow 2 is trivial. By (the proof of) [1, Theorem 6.5] ILM \models A implies

\[ILM \models \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \limp B) \land \bigwedge_{C \triangleright D \in \text{Sub}(A)} (C \limp \Box D) \right) \limp A. \]

Since \(A \in L(\Box, I) \) this is equivalent to

\[ILM \models \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \limp B) \land \bigwedge_{ID \in \text{Sub}(A)} (\Box \top) \right) \limp A. \]
Together with 2.15 this yields the implication 2 \Rightarrow 3. The implication 3 \Rightarrow 1 is straightforward since \text{ilm}^\omega \vdash \Box B \rightarrow B for all B \in \mathcal{L}(\Box, \mathcal{I}), so in particular \text{ilm}^\omega \vdash \Box \bot \rightarrow \bot, i.e., \text{ilm}^\omega \vdash \Diamond T. Q.E.D.

Theorem 2.18 Let A \in \mathcal{L}(\Box, \mathcal{I}), and let T be a \Sigma_0^0\text{-sound essentially reflexive theory. Then ilm^\omega \vdash A iff for all interpretations } (\cdot)^T of \mathcal{L}(\Box, \mathcal{I}) in the language of T, (A)^T is true in the standard model.

Proof. By [1, Theorem 6.5] we have ILM^\omega \vdash A iff for all interpretations (\cdot)^T of \mathcal{L}(\Box, \mathcal{I}) in the language of T, (A)^T is true in the standard model. By 2.17 this implies the Theorem. Q.E.D.

Proposition 2.19 Let A \in \mathcal{L}(\Box, \mathcal{I}). Then ILW \vdash A iff ilm \vdash A.

Proof. Since m is a substitution instance of the axiom W, the direction from right to left is immediate from 2.10. Conversely, if ilm \not\vdash A, then ILM \not\vdash A by 2.15. Recall from the proof of 1.3 that ILM \vdash W, i.e. that ILM \supseteq ILW. It follows that ILW \not\vdash A. Q.E.D.

Let us call an arithmetical theory a reasonable theory if it is \Sigma_0^0\text{-sound, } R^+_F\text{-axiomatized and its natural numbers satisfy } \Delta_0 + \Omega_1. (Cf. [8] for details and motivation.)

Theorem 2.20 The system ilm is the unary interpretability logic of all reasonable arithmetical theories.

Proof. In [8, Section 6.2] it is shown that ILW is valid for arithmetical interpretations in all reasonable arithmetical theories, hence by 2.19, the same holds for ilm. Therefore, the unary interpretability logic of all reasonable arithmetics contains ilm. Since, by 2.16, ilm is the unary interpretability logic of PA, the converse inclusion holds as well. Q.E.D.

2.4 Modal and arithmetical completeness of ilp

In stead of proving ilp modally complete with respect to ILP-models we prove a stronger result, notably the modal completeness of ilp with respect to ILMP-models. The proof of this result is a slight variation on the modal completeness proof for ilm.

As before we fix a maximal ilp-consistent set \Gamma and a finite adequate set \Phi.

Definition 2.21 Define \text{W} to be a minimal set of pairs \langle \Delta, \tau \rangle such that

1. \langle \Gamma, \langle \rangle \rangle \in \text{W}_T.
2. If \langle \Delta, \tau \rangle \in \text{W}_T, \Diamond B \in \Delta \cap (\Phi \cup \{ \Box \mathcal{T} \}), C \in \Phi and if there exists a C-critical successor \Delta' of \Delta with B, \Box \neg B \in \Delta', then for one such \Delta', \langle \Delta', \tau^- \langle \langle B, \bot, C \rangle \rangle \rangle \in \text{W}_T.
3. If \langle \Delta, \tau \rangle \in \text{W}_T, \Box B \in \Delta \cap \Phi, C \in \Phi and if there exists a C-critical successor \Delta' of \Delta with B, \Box \bot \in \Delta', then \langle \Delta', \tau^- \langle \langle \bot, B, C \rangle \rangle \rangle \in \text{W}_T, for one such \Delta'.

Define \text{R} on \text{W}_T by putting \bar{w}R\bar{v} iff (\bar{w})_0 \subset (\bar{v})_0. Define \text{S} on \text{W}_T by putting \bar{v}S\bar{w} iff for some B, B', E, E', C, \tau and \sigma

\((\bar{v})_1 = (\bar{w})_1 \tau^- \langle \langle B, E, C \rangle \rangle \) and\((\bar{u})_1 = (\bar{w})_1 \tau^- \langle \langle B', E', C \rangle \rangle \) \sigma

and if \(B \equiv \bot \) then \(B' \equiv \bot \)

and if \(E' \equiv \bot \) then \(B' \equiv B, E' \equiv E \).

10
Proposition 2.22 1. W_T is finite.

2. If $(\bar{v})_1 = (\bar{v})_1 \models \tau \lan (B, E, C)\ra \sigma$ then either $B \equiv \bot$ or $E \equiv \bot$ (but not both) and if $B \equiv \bot$ then $\Box \bot \in (\bar{v})_0$ and $\sigma = \bot$.

3. If $(\bar{w})_1 = (\bar{v})_1$ then $\bar{w} = \bar{v}$.

4. If $\bar{w} R \bar{v}$ then $(\bar{w})_0 \prec (\bar{v})_0$.

5. (W_T, R) is a tree.

6. (W_T, R, S) is an ILMP-frame.

7. If $\bar{v} = (\Delta, \tau) \in W_T$ and C occurs as the third component in some triple in τ, then $\neg C, \Box \neg C \in \Delta$.

Proof. We only prove item 6. The proof that (W_T, R, S) is an ILM-frame is similar to the proof of 2.13.(5); to prove that (W_T, R, S) is also an ILP-frame, we have to show that $\bar{w} R \bar{w}' R \bar{u} S \bar{w} \bar{v}$ implies $\bar{u} S \bar{w}' \bar{v}$—but this is immediate. So it remains to be proved that $x R y S_x z R u S_y v$ implies $u S_z v$. Reasoning as in 2.13.(5) we find that $x R y S_x z R u$ implies $x R y z R u$. Now, if $y = z$ then we trivially have $u S_z v$, and if $y R z$ then we have $u S_z v$ because (W_T, R, S) is an ILP-frame.

QED.

Theorem 2.23 Let $A \in L[\Box, I]$. Then $ilp \vdash A$ iff for all finite ILMP-models M we have $M \models A$.

Proof. As before we only prove completeness. Assume that $ilp \not\vdash A$. Let Φ be a finite adequate set that contains $\neg A$, and let Γ be a maximal ilp-consistent set with $\neg A \in \Gamma$. Construct (W_T, R, S) as in 2.21. Define a forcing relation \models on (W_T, R, S) by putting $\bar{w} \models p$ iff $p \in (\bar{w})_0$. As before, we prove by induction on F that for all $F \in \Phi \cup \{\Box \top\}$ and $\bar{w} \in W_T$ we have $\bar{w} \models F$ iff $F \in (\bar{w})_0$. The case $F \equiv \Box B$ is similar to the corresponding case in the proof of 2.9. So we only consider the case $F \equiv IB$.

The case that $F \equiv IB \not\in (\bar{w})_0$ is entirely analogous to the corresponding case in the proof of 2.14.

Assume that $F \equiv IB \in (\bar{w})_0$. By the induction hypothesis we have to show that $\forall \bar{v} (\bar{w} R \bar{v} \rightarrow \exists \bar{u} (\bar{u} S \bar{w} \bar{u} \land B \in (\bar{u})_0))$. So assume that $\bar{v} \in \bar{w} R$. Since (W_T, R) is a tree, we can find a unique immediate R-predecessor \bar{w}' of \bar{v}. By axiom p we must have $IB \in (\bar{w}')_0$, and so by axiom m, $I(B \land \Box \bot) \in (\bar{w}')_0$. By construction there are $B', E', C' \in \Phi$ such that

$$(\bar{v})_1 = (\bar{w}')_1 \models (B', E', C'),$$

that is: $(\bar{v})_0$ is a C'-critical successor of $(\bar{w}')_0$. By 2.5 there exists a C'-critical successor Δ of $(\bar{w}')_0$ with $B, \Box \bot \in \Delta$. Since $IB \in (\bar{w}')_0 \cap \Phi$, and $C' \in \Phi$ we may assume that $\bar{u} \in W_T$, where

$$\bar{u} := (\Delta, (\bar{w}')_0 \models (\Box \bot, B, C')).$$

Obviously, we have $\bar{u} S \bar{w} \bar{u}$ and $B \in (\bar{u})_0$ as required. QED.

Proposition 2.24 Let $A \in L[\Box, I]$. Then ILMP $\vdash A$ iff $ilp \vdash A$.

Proof. If $ilp \vdash A$ then by 1.3 ILP $\vdash A$, and hence ILMP $\vdash A$. Conversely, if ILMP $\vdash A$, then for all (finite) ILMP-models M, $M \models A$. So by 2.23, $ilp \vdash A$. QED.

Proposition 2.25 Let $A \in L[\Box, I]$. Then ILP $\vdash A$ iff $ilp \vdash A$.

Proof. The direction from right to left follows from 1.3. To prove the other direction, note that $ilp \not\vdash A$ implies ILMP $\not\vdash A$, by the previous Proposition, and this in turn implies ILP $\not\vdash A$. QED.
Theorem 2.26 Let $A \in \mathcal{L}(\Box, I)$ and let T be a Σ_0^0-sound finitely axiomatized sequential theory that extends $I\Delta_0 + \text{SupExp}$. Then $ilp \vdash A$ iff for all interpretations $(\cdot)^T$ of $\mathcal{L}(\Box, I)$ in the language of T, $T \vdash (A)^T$.

Proof. By 2.25 we have $ilp \vdash A$ iff $ILP \vdash A$, for all $A \in \mathcal{L}(\Box, I)$. By [9, Theorem 8.2] this is equivalent to: for all interpretations $(\cdot)^T$ of $\mathcal{L}(\Box, \rightarrow)$ in the language of T, $T \vdash (A)^T$. This implies the Theorem. QED.

Proposition 2.27 Let $A \in \mathcal{L}(\Box, I)$. Then the following are equivalent:

1. $ilp^\omega \vdash A$
2. $ILP^\omega \vdash A$
3. $ilp \vdash \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \rightarrow B) \land \bigwedge_{ID \in \text{Sub}(A)} (\Diamond \top) \right) \rightarrow A$.

Proof. The implication 1 \Rightarrow 2 is trivial. By [4, Proposition 1.8.(1)] $ILP^\omega \vdash A$ implies

$$ILP \vdash \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \rightarrow B) \land \bigwedge_{C \rightarrow D \in \text{Sub}(A)} (C \rightarrow D) \right) \rightarrow A.$$

Since $A \in \mathcal{L}(\Box, I)$ this is equivalent to

$$ILP \vdash \left(\bigwedge_{\Box B \in \text{Sub}(A)} (\Box B \rightarrow B) \land \bigwedge_{ID \in \text{Sub}(A)} \Diamond \top \right) \rightarrow A.$$

Together with 2.25 this yields the implication 2 \Rightarrow 3. The implication 3 \Rightarrow 1 is straightforward since $ilp^\omega \vdash \Box B \rightarrow B$ for all $B \in \mathcal{L}(\Box, I)$. QED.

Theorem 2.28 Let $A \in \mathcal{L}(\Box, I)$, and let T be a Δ_2^0-sound finitely axiomatized sequential theory that extends $I\Delta_0 + \text{SupExp}$. Then $ilp^\omega \vdash A$ iff for all interpretations $(\cdot)^T$ of $\mathcal{L}(\Box, I)$ in the language of T, $(A)^T$ is true in the standard model.

Proof. By [4, Theorem 3.2] we have $ILP^\omega \vdash A$ iff for all interpretations $(\cdot)^T$ of $\mathcal{L}(\Box, \rightarrow)$ in the language of T, $(A)^T$ is true in the standard model. By 2.27 this yields the Theorem. QED.

2.5 On the hierarchy of extensions of il

In [2], [8] and [9] the following extensions of IL in $\mathcal{L}(\Box, \rightarrow)$ are considered:

$$ILP \subseteq IL \subseteq ILF \subseteq ILW \subseteq ILW_0 \subseteq ILMP \subseteq ILM$$

(All inclusions are proper.)

As a corollary to 2.19 and 2.24 we find that this hierarchy partly collapses when we only consider formulas $A \in \mathcal{L}(\Box, I)$:

$$il \subseteq ilf \subseteq ilw = ilwm_0 = ilm \subseteq ilp = ilmp.$$

(Recall that $ilx = ILX \cap \mathcal{L}(\Box, I)$.)

To see that there is no total collapse we prove the following result:
Proposition 2.29
1. \(ilm \neq ilp\)
2. \(ilf \neq ilm\)
3. \(il \neq ilf\)

Proof. 1. It suffices to show that \(ilm \not\vdash IA \rightarrow \Box IA\). Consider Figure 1 below. Note first that the model is an ILM-model, but not an ILP-model. We clearly have \(w \vDash Ip\). However, \(b\) does not force \(IP\), for it has an \(R\)-successor (notably \(a\)) that is not \(S_b\)-succeeded by a point at which \(p\) holds—so \(w \not\vDash \Box Ip\).

2. To prove \(ilf \neq ilm\) we use a construction due to Švejdar. (Cf. [7].) It suffices to show that \(ILF \not\vdash m\). Consider Figure 2. We claim that \(w \vDash F\), i.e., that \(w \vDash A \triangleright \Diamond A \rightarrow \Box \neg A\), for all \(A \in L(\Box, I)\). Suppose that \(w \vDash A \triangleright \Diamond A\). Then

 (a) if \(b \vDash A\) then \(a \vDash A\)
 (b) \(d \not\vDash A\)—otherwise \(d \vDash \Diamond A\), which is impossible
 (c) for each \(B\), \(a \vDash B\) iff \(c \vDash B\)
 (d) \(c \not\vDash A\)—otherwise \(c \vDash \Diamond A\), which is impossible
 (e) \(a \not\vDash A\), by (c) and (d)
 (f) \(b \not\vDash A\), by (a) and (e)
 (g) \(w \vDash \Box \neg A\), by (b), (d), (e) and (f).

On the other hand, \(w \not\vDash IA \rightarrow \Box (A \wedge \Box \bot)\), for we have \(w \vDash Ip\) while \(w \not\vDash I(p \wedge \Box \bot)\), since \(b\) has no \(S_w\)-successor at which \(p \wedge \Box \bot\) holds.

3. We have \(ilf \vdash f\), i.e., \(ilf \vdash I \triangleright \top \rightarrow \Box \bot\), but \(il \not\vdash f\), as is clear from the model in Figure 3. QED.

(Plain arrows denote \(R\)-links; dashed arrows denote \(S_w\)-links; reflexive \(S\)-links and \(S\)-links induced by \(R\)-links have been left out.)

3 Answers to some standard questions

In this Section we answer some questions that come naturally with any extension of \(L\). Notably, what are the closed formulas and the modalities in \(L(I)\) and \(L(\Box, I)\)? We also prove interpolation and fixed point theorems for \(il\), \(ilm\) and \(ilp\).
3.1 Closed formulas and modalities

As usual we start with some definitions. A formula C is called closed if it does not contain any proposition letters. Let \mathcal{F} be a frame. Define the depth $d(w)$ of $w \in \mathcal{F}$ by $d(w) = \sup \{ d(v) + 1 : wRv \}$.

Proposition 3.1 Let w, v be two points (not necessarily in the same model). If $d(w) = d(v)$ then $w \models C$ iff $v \models C$ for all closed formulas $C \in \mathcal{L}(\Box)$.

Proof. This is by induction on $d(w) = d(v)$. QED.

Proposition 3.2 Let C be a closed formula in $\mathcal{L}(\Box)$. Then $L \vdash C$ iff C is valid on ω^*. (I.e., iff for every $w \in \omega^*$ and every \models' on ω^*, $w \models' \vdash C$.)

Proof. The direction from left to right is obvious. To prove the other one, assume that $L \not\models C$; then for some finite L-model M with root w, $w \not\models C$. Let $n = d(w)$, and let \models' be any forcing relation on ω^*. It is clear that, in ω^*, the element n has depth n. So by the previous Proposition, $n \not\models' C$. QED.

Proposition 3.3 Let C be a closed formula in $\mathcal{L}(\Box)$. Then $L \vdash (C \lor \Box C) \leftrightarrow \Box^{k+1} \top$, for some $k \in \omega \cup \{ \omega \}$. (Here, $\Box^{\omega} \top \equiv \bot$.)

Proof. By the previous Proposition it suffices to show that for all closed formulas C in $\mathcal{L}(\Box)$, there is some $k \in \omega \cup \{ \omega \}$ such that $(C \lor \Box C) \leftrightarrow \Box^{k+1} \top$ is valid on ω^*. This is left to the reader. QED.

Proposition 3.4 Let X be a logic that extends $\mathcal{I}L + f$. Then every closed formula in $\mathcal{L}(\Box)$ is, provably in X, equivalent to one of $\Box \top, \Box \bot, \bot$, or \top. Hence, every closed formula in $\mathcal{L}(\Box, \mathcal{I})$ is equivalent, over X, to a closed formula in $\mathcal{L}(\Box)$.

Proof. This is by induction on the closed formula C. The only non-trivial case is $C \equiv \mathcal{I}B$, where B is a closed formula in $\mathcal{L}(\mathcal{I})$. Now, by the induction hypothesis, B is a closed formula in $\mathcal{L}(\Box)$. Furthermore, $\vdash \mathcal{I}B \leftrightarrow \mathcal{I}(B \lor \Box B)$. So, $\vdash \mathcal{I}B \leftrightarrow \mathcal{I} \Box^{k+1} \top$, for some $k \in \omega \cup \{ \omega \}$. If $k = 0$, then $\mathcal{I} \Box^{k+1} \top \equiv \mathcal{I} \top$, and $X \vdash \mathcal{I}B \leftrightarrow \top$. If $k = \omega$, then $\mathcal{I} \Box^{k+1} \top \equiv \mathcal{I} \bot$, and

$$
\begin{align*}
\vdash \mathcal{I} \bot \\
\equiv \neg \mathcal{I} \top \lor \mathcal{I} \bot \\
\equiv \mathcal{I} \bot
\end{align*}
$$

So $X \vdash \mathcal{I} \bot$. If $0 < k < \omega$, then

$$
\begin{align*}
X \vdash \mathcal{I} \Box^{k+1} \top & \rightarrow \mathcal{I} \Box \top, \text{ by axiom } \Box A \rightarrow \Box \Box A \\
& \rightarrow \mathcal{I} \bot, \text{ by axiom } f \\
& \rightarrow \mathcal{I} \Box^{k+1} \top, \text{ by 1.4}
\end{align*}
$$

So $X \vdash \mathcal{I} \bot$. QED.

By the Normal Form Theorem for closed formulas in $\mathcal{L}(\Box)$ it follows from 3.4 that in extensions of $\mathcal{I}L + f$ every closed formula in $\mathcal{L}(\Box, \mathcal{I})$ is equivalent to a Boolean combination of formulas of the form $\Box^n \bot$, for some $n \in \omega \cup \{ \omega \}$.

Below $\mathcal{I}L + f$ the situation is more complicated. Note for example that there are infinitely many pairwise non-equivalent closed $\mathcal{L}(\Box, \mathcal{I})$-formulas, none of
which is equivalent to a (closed) formula in \(\mathcal{L}(\Box) \). To see this, let \(A_1 := \Box \top \),
\(A_{n+1} := \Diamond (A_n \land \Diamond^{n+1} \top) \), and consider the following Veltman-frame \(\mathcal{F} \):

\[
\begin{array}{ccccccc}
\cdots & \cdots & a_3 & a_2 & a_1 & a_0 & a_{-1} \\
\cdots & \cdots & \circ & \circ & \circ & \circ & \circ \\
\cdots & \cdots & b_3 & b_2 & b_1 & b_0 & b_{-1} \\
\end{array}
\]

Let \(\models \) be any forcing relation on \(\mathcal{F} \) with, for all \(i \in \omega \cup \{-1\} \), \(a_i \models p \) iff \(b_i \models p \); then for all \(B \in \mathcal{L}(\Box) \), \(a_i \models B \) iff \(b_i \models B \). On the other hand, we have for all \(i \in \omega \cup \{0\} \), \(a_i \not\models A_i \) and \(b_i \models A_i \). This shows that none of the \(A_i \)'s is equivalent to an \(\mathcal{L}(\Box) \)-formula. To see that \(i \not\models A_i \leftrightarrow A_j \), if \(i \neq j \), note that for all \(i \), and all \(j > i \), \(b_i \models A_i \land \neg A_j \).

It is still open whether there exist reasonable normal forms for closed formulas in subsystems of \(\text{il} + f \).

We now examine the modalities in \(\mathcal{L}(\Box, \Box) \). (Recall that a modality is nothing but a sequence consisting of modal operators and/or dual versions of these operators.) We say that two modalities \(\alpha \) and \(\beta \) are equivalent over il's if for all \(A \in \mathcal{L}(\Box, \Box) \), \(il \models \alpha A \leftrightarrow \beta A \). A modality \(\alpha \) is called a constant modality (over il's) if there is a closed formula \(C \) such that for all \(A \), \(il \models \alpha A \leftrightarrow C \) (i.e., if for all \(A, B \), \(il \models \alpha A \leftrightarrow \alpha B \)). We use \(\Box \) as an abbreviation for \(\neg \Box \).

We start with the modalities over extensions of il. Unlike modalities in more traditional modal languages almost all modalities in \(\mathcal{L}(\Box) \) are constant. For example:

Proposition 3.5 Let \(A \in \mathcal{L}(\Box, \Box) \). Then

1. \(il \models \Box A \leftrightarrow \top \);
2. \(il \models \Box A \leftrightarrow \bot \);
3. \(il \models \Box \Box A \leftrightarrow \top \);
4. \(il \models \Box \top \leftrightarrow \bot \).

Proposition 3.6 Let \(A \in \mathcal{L}(\Box, \Box) \). Then \(il \models \Box \Box A \leftrightarrow \Box \top \leftarrow \Box \top \right) \).

Proof. One direction is almost immediate:

\[
il \models \Box \Box A \rightarrow \Box \top \rightarrow \Box \top \rightarrow \Box \top \rightarrow \Box \top \rightarrow \Box \top, \text{ since } il \models \Box (\Box \top \leftrightarrow \top).\]

To prove the other one, we show that \(il \models \Box \Box A \rightarrow \Box \top \):

\[
il \models \Box \Box A \land \Box \Box \bot \rightarrow \Box \top \land \Box \Box \top \rightarrow \Box \top \land \Box \Box \top \rightarrow \Box \top \land \Box \Box \top, \text{ since } il \models \Box (\Box \top \leftrightarrow \Box \top).\]

Now \(il \models \Box \top \land \Box \Box \top \rightarrow \Diamond \Diamond \top \rightarrow \bot \), by 1.4, and \(il \models \Box \Box \bot \rightarrow \Box \Box \bot \). Therefore \(il \models \Box \Box A \rightarrow \Box \Box \bot \). QED.

15
As a corollary we find the following result:

Proposition 3.7 Let X be a logic that extends il. Then

1. every modality in $\mathcal{L}(I)$ is equivalent (over X) to one of $\langle \rangle$, \mathbf{I}, \mathbf{I}, \mathbf{I}, \mathbf{II}, \mathbf{II}, \mathbf{III}, \mathbf{III}, $\neg \mathbf{II}$ or $\neg \mathbf{III}$;
2. if X is il then the only non-constant modalities in $\mathcal{L}(I)$ are $\langle \rangle$, \mathbf{I}, \mathbf{I}, \mathbf{II} and \mathbf{II}.

Proof. Note first that if α, β are one of the modalities mentioned in item 1, and if $\alpha \neq \beta$, then α and β are not equivalent over il. Let α be a modality in $\mathcal{L}(I)$. Then either $\alpha \in \{ \langle \rangle, \mathbf{I}, \mathbf{II}, \mathbf{III} \}$, and we are done, or for some α' we have $\alpha \in \{ \mathbf{II} \alpha', \mathbf{III} \alpha', \mathbf{II} \alpha', \mathbf{III} \alpha', \mathbf{III} \alpha' \}$. In the latter case an application of 3.5 or 3.6 yields item 1.

To prove item 2, note first that $\langle \rangle$, \mathbf{I}, \mathbf{II} and \mathbf{II} are indeed non-constant modalities; that they are the only such modalities in $\mathcal{L}(I)$ is immediate from 3.5, 3.6 and item 1. QED.

Proposition 3.8 Let X be a logic that extends il. Then every modality in $\mathcal{L}(\Box, I)$ is equivalent (over X) to a modality of the form $\alpha_1 \beta_1 \ldots \alpha_n \beta_n$, where the α_i are modalities in $\mathcal{L}(\Box)$ and for $1 \leq i < n$, $\beta_i \in \{ \langle \rangle, \mathbf{I}, \mathbf{II}, \mathbf{III} \}$, while $\beta_n \in \{ \langle \rangle, \mathbf{I}, \mathbf{II}, \mathbf{III}, \mathbf{III}, \mathbf{III}, \mathbf{III} \}$.

We continue with a somewhat simpler case: the modalities over extensions of ilm. Here there are even fewer non-constant modalities in $\mathcal{L}(I)$. For a start, we have the following stronger version of 3.6.

Proposition 3.9 Let $A, B \in \mathcal{L}(\Box, I)$. Then $\text{ilm} \vdash \mathbf{II} A \leftrightarrow \Box \bot$.

Proof. Since $\text{ilm} \vdash \Box \bot \rightarrow \Box \mathbf{II} A$, we have $\text{ilm} \vdash \Box \bot \rightarrow \mathbf{II} A$, by 1.4. To prove the converse, note that $\text{ilm} \vdash \Box (\mathbf{II} A \land \Box \bot) \rightarrow \bot$. So since $\text{ilm} \vdash \mathbf{II} A \rightarrow I (\mathbf{II} A \land \Box \bot)$, by axiom m, we have $\text{ilm} \vdash \mathbf{II} A \rightarrow I \bot$, by axiom I. Thus $\text{ilm} \vdash \mathbf{II} A \rightarrow \Box \bot$. QED.

Proposition 3.10 Let X be a logic that extends ilm. Then every modality in $\mathcal{L}(I)$ is equivalent (over X) to one of $\langle \rangle$, \mathbf{I}, \mathbf{II}, \mathbf{III} or \mathbf{III}. Moreover, if X is ilm or ilp then the only non-constant modalities in $\mathcal{L}(I)$ are $\langle \rangle$, \mathbf{I} and \mathbf{II}.

Proof. Immediate from 3.5 and 3.9. QED.

Proposition 3.11 Let $A \in \mathcal{L}(\Box, I)$. Then

1. ilm $\vdash \Box \langle \rangle A \leftrightarrow \Box \bot$;
2. ilm $\vdash \Box \mathbf{II} A \leftrightarrow \Box \bot$.

Proposition 3.12 Let X be a logic that extends ilm. Then

1. every modality in $\mathcal{L}(\Box, I)$ is equivalent (over X) to a modality of the form $\alpha \beta$, where α is a (possibly empty) modality in $\mathcal{L}(\Box)$, and $\beta \in \{ \langle \rangle, \mathbf{I}, \mathbf{II}, \mathbf{III}, \mathbf{III}, \mathbf{III} \}$;
2. if X is ilm or ilp, then the only non-constant modalities in $\mathcal{L}(\Box, \Box)$ are \Box^k, $\Box^k \mathbf{I}$ and $\Box^k \mathbf{II}$.

Proof. We only prove item 2. Let γ be a non-constant modality in $\mathcal{L}(\Box, \Box)$; by item 1 we may assume that $\gamma \equiv \alpha \beta$, with $\alpha \beta$ as described in item 1. Since γ is assumed to be non-constant, $\beta \in \{ \langle \rangle, \mathbf{I} \}$. Moreover since $\Box \Box$ and $\Box \langle \rangle$ are constant we may assume that $\alpha \equiv \Box^k$, or $\alpha \equiv \Box^k$, for some k.

16
If $\beta \equiv \langle \rangle$, then $\gamma \equiv \Diamond^k$ or $\gamma \equiv \Box^k$; in both cases γ is non-constant for all k.

If $\beta \equiv I$, then $\gamma \equiv \Diamond^k I$ or $\gamma \equiv \Box^k I$. Since $ilm \vdash \Diamond I A \leftrightarrow \Diamond T$, we have that $\Diamond^k I$ is constant for all $k \geq 1$; on the other hand, for any k, $\Box^k I$ is non-constant, as the reader may verify.

Similarly, if $\beta \equiv \bar{I}$, then γ is non-constant iff $\gamma \equiv \Diamond^k \bar{I}$. QED.

For the remainder of this section let T be a Σ^0_1-sound essentially reflexive theory. (Modulo some obvious changes most of the remarks in the sequel hold equally well for Σ^0_1-sound finitely axiomatized sequential theories that extend $\Delta_0 + \text{SupExp.}$) Let \square_T be a formalization (in the language of T) of provability in T; $\Diamond_T \varphi$ is short for $\neg \square_T \neg \varphi$; I_T is a formalization (in the language of T) of the unary interpretability predicate over T.

Assume that φ is a sentence in the language of T that is not of the form $(\neg) I_T \psi$ or $(\neg) \Box_T \psi$. We want to know what the theory T can say about sentences of the form $\beta \varphi$, where β is (the arithmetical version of) a non-empty modality of the form $(\neg) \Box^\beta$. By 3.12 we only have to consider 8 cases.

Note first that no formula of the form $\neg I_T \varphi$ can be provable in T. For, we have $ilm \vdash \Box T \neg I A \leftrightarrow \Box I$, for all $A \in \mathcal{L}(\Box, I)$. So $T \vdash \Box_T \neg I_T \varphi \rightarrow \Box_T (0 = 1)$, for all sentences φ in the language of T. Therefore, if $T \vdash \neg I_T \varphi$ then $T \vdash \Box_T (0 = 1)$. Since T is assumed to be Σ^0_1-sound, this implies that for no φ, $T \vdash \neg I_T \varphi$.

Similarly, since $ilm \vdash I \Diamond A \leftrightarrow \Box \bot$ and $ilm \vdash \Box A \leftrightarrow \Box \bot$, we can not have $T \vdash I_T \Diamond_T \varphi$ or $T \vdash I_T \Box_T \varphi$, for any sentence φ. Moreover, we do have for all sentences φ, $T \vdash I_T I_T \varphi$, because $ilm \vdash \Box \bot$. The only remaining case, then, is $\beta \equiv I$. Here we have the following possibilities:

1. $T \vdash \varphi$, and then $T \vdash I_T \varphi$, $T \not\Vdash I_T \neg \varphi$;
2. $T \not\Vdash \varphi$, and then $T \not\Vdash I_T \varphi$, $T \vdash I_T \neg \varphi$;
3. $T \not\Vdash \varphi$, $T \not\Vdash \neg \varphi$ and $T \vdash I_T \varphi$, $T \vdash I_T \neg \varphi$;
4. $T \not\Vdash \varphi$, $T \not\Vdash \neg \varphi$ and $T \vdash I_T \varphi$, $T \not\Vdash I_T \neg \varphi$;
5. $T \not\Vdash \varphi$, $T \not\Vdash \neg \varphi$ and $T \not\Vdash I_T \varphi$, $T \vdash I_T \neg \varphi$;
6. $T \not\Vdash \varphi$, $T \not\Vdash \neg \varphi$ and $T \not\Vdash I_T \varphi$, $T \not\Vdash I_T \neg \varphi$.

By our previous remarks no strengthening of this classification is possible by replacing $T \not\Vdash$ by $T \not\Vdash \neg$ somewhere.

We leave it to the reader to supply examples of items 1 and 2; the sentence $\Box_T (0 = 1)$ is a sentence that satisfies item 4, and its negation satisfies item 5; below we will provide examples of sentences that satisfy items 3 and 6, respectively. Recall that an Orey sentence for T is a sentence ψ such that both ψ and $\neg \psi$ are interpretable in T. So a sentence satisfying item 3 is an example of a sentence that is provably in T an Orey sentence for T. Our example below of a sentence satisfying item 6 is also an example of a sentence that is—unprovably in T—an Orey sentence for T.

Example 3.13 There is a sentence φ that satisfies item 3.

Proof. Put $A \equiv \neg \Box p \land \neg \Box \neg p \land \Box p \land \Box \neg p$. We prove that $ilm' \not\Vdash \neg A$; then, by 2.18, there is an interpretation $(\cdot)^{T}$ of $\mathcal{L}(\Box, I)$ in the language of T such that $(\neg A)^{T}$ is false in the standard model. Hence $(A)^{T}$ is true. Put $\varphi = (p)^T$ and we are done.
Now, to prove that $ilm \not\vdash \neg A$ we show that

$$ilm \not\vdash \left(\bigwedge_{\square B \in \text{Sub}(\neg A)} (\square B \rightarrow B) \land \bigwedge_{I \in \text{Sub}(\neg A)} \diamond T \right) \rightarrow \neg A. \quad (3)$$

Define \mathcal{M} as in Figure 4:

![Figure 4](image)

![Figure 5](image)

We leave it to the reader to check that $w \vDash \bigwedge_{I \in \text{Sub}(\neg A)} \diamond T$ and that $w \vDash \bigwedge_{\square B \in \text{Sub}(\neg A)} (\square B \rightarrow B)$; from this and $w \vDash A$ we obtain (3). QED.

Example 3.14 There is a sentence φ that satisfies item 6, and such that φ is, unprovable in T, an Orey sentence for T.

Proof. Put $A \equiv \neg \square \neg p \land \neg \square \neg p \land \neg \square p \land \neg \square \neg p \land \neg p \land \neg p$. We only have to show that $ilm \not\vdash \neg A$, then we find an interpretation $(\cdot)^T$ of $L(\square, I)$ in the language of T such that $(A)^T$ is true. Put $\varphi = (p)^T$ and we are done.

We leave it to the reader to check that the model depicted in Figure 5 shows that $ilm \not\vdash \neg A$. QED.

Note that the model used in 3.14 is not an ILP-model. Therefore, the sentence φ given there works only for essentially reflexive theories T. We leave it to the reader to find a φ that satisfies item 6 if T is a Σ^0_1-soured finitely axiomatised theory that extends $\Delta_0 + \text{SupExp}$. He or she won’t be able to find a sentence φ that satisfies 3.14 for such T. For, let T be such a theory, and assume that $T \not\vdash I_T \varphi$ while $T + \varphi$ is interpretable in T. Then $\omega \vDash I_T \varphi$. Hence, $\omega \vDash \square T I_T \varphi$ (since $\omega \vDash I_T \varphi \rightarrow \square T I_T \varphi$), and so $T \vdash I_T \varphi$—a contradiction.

An inspection of the arithmetical completeness proof of ILM shows that the sentences φ found in 3.13 and 3.14 may be taken to be Σ^0_2-sentences.

3.2 Interpolation and Fixed Point Theorems

Our proof of the interpolation theorem for i, ilm and $i \mu$ extends Snoryński’s proof of the interpolation theorem for L. (Cf. [5].)

Definition 3.15 Let $A \in L(\square, I)$. Then L_A is the sublanguage of $L(\square, I)$ consisting of all formulas having only proposition letters occurring in A. A set
$X \subseteq L_A$ is maximal iis-consistent in L_A if for all $C \in L_A$, either $C \in L_A$ or \neg C \in L_A$.

A pair (X, Y) with $X \subseteq L_A$, $Y \subseteq L_B$ is called separable if for some $C \in L_A \cap L_B$, $C \in X$ and $\neg C \in Y$. If (X, Y) is not separable it is inseparable.

A pair (X, Y) with $X \subseteq L_A$, $Y \subseteq L_B$ is called a complete pair if

1. (X, Y) is separable.
2. X is maximal iis-consistent in L_A.
3. Y is maximal iis-consistent in L_B.

Our proof of the interpolation theorem for il (ilm, ilp) is in fact nothing but another modal completeness proof for il (ilm, ilp)—using complete pairs instead of plain maximal il (ilm, ilp)-consistent sets. The construction of a counter model is entirely analogous to the constructions in 2.6, 2.11 and 2.21. The main difference is the result that supplies us with the input for our construction. That is: 2.3, 2.4 and 2.5 have to be restated and reproved for complete pairs.

Definition 3.16 Let (X, Y), (X', Y') be complete pairs.

1. $(X, Y) \prec (X', Y')$ ((X', Y') is a successor of (X, Y) if
 (a) $A \in X' \cup Y'$ for all $\Box A \in X \cup Y$
 (b) $\Box A \in X' \cup Y'$ for some $\Box A \notin X \cup Y$

2. (X', Y') is called a C-critical successor of (X, Y) if
 (a) $(X, Y) \prec (X', Y')$
 (b) $IC \notin X \cup Y$
 (c) $\neg C, \Box \neg C \in X' \cup Y'$

Proposition 3.17 Let $X_0 \subseteq L_A$, $Y_0 \subseteq L_B$ be such that (X_0, Y_0) is an inseparable pair. Then there exists a complete pair (X, Y) with $X_0 \subseteq X \subseteq L_A$ and $Y_0 \subseteq Y \subseteq L_B$.

Proof. See [5], Lemma 1.1. QED.

Proposition 3.18 Let (X, Y) be a complete pair such that $\Diamond C \in X \cup Y$. Then there exists a complete pair $(X', Y') \succ (X, Y)$ with $C, \Box \neg C \in X' \cup Y'$.

Proof. See [5], Lemma 1.2. QED.

Proposition 3.19 Let (X, Y) be a complete pair such that $IC \notin X \cup Y$. Then there exists a C-critical complete pair $(X', Y') \succ (X, Y)$ with $\Box \bot \in X' \cup Y'$.

Proof. Assume that no such (X', Y') exists. We distinguish 3 cases.

Case 1. $IC \in L_A \setminus L_B$. Then by 3.17 and compactness there are $\Box F_1, \ldots, \Box F_m \in X$, $\Box G_1, \ldots, \Box G_n \in Y$ and $D \in L_A \cap L_B$ such that

$$F_1, \ldots, F_m, \neg C, \Box \neg C, \Box \bot \vdash D \quad (4)$$

$$G_1, \ldots, G_n, \Box \bot \vdash \neg D. \quad (5)$$

By (4) we have $\Box F_1, \ldots, \Box F_m \vdash \Box(\Box \bot \rightarrow (\neg D \rightarrow C \lor \Diamond C))$. Now

$$il \vdash \neg IC \land \Box(\Box \bot \rightarrow (\neg D \rightarrow C \lor \Diamond C)) \rightarrow \neg \Box(\Box \bot \rightarrow \neg D).$$

So $X \vdash \neg \Box(\Box \bot \rightarrow \neg D)$. On the other hand, (5) yields $Y \vdash \Box(\Box \bot \rightarrow \neg D)$. So X and Y are separable—a contradiction.
Case 2. $IC \in L_B \setminus L_A$. Similar to Case 1.
Case 3. $IC \in L_A \setminus L_B$. By 3.17 and compactness there exist $\Box F_1, \ldots, \Box F_m \in X$, $\Box G_1, \ldots, \Box G_n \in Y$ and $D \in L_A \cap L_B$ such that
\begin{align*}
F_1, \ldots, F_m, \neg C, \Box \neg C, \Box \bot & \vdash D \quad (6) \\
G_1, \ldots, G_n, \neg C, \Box \neg C, \Box \bot & \vdash \neg D. \quad (7)
\end{align*}

Now $\Box \Box \bot \vdash \neg IC \wedge \Box (\Box \bot \rightarrow (\neg D \rightarrow C \vee \Diamond C)) \rightarrow \neg \Box (\Box \bot \rightarrow (D \rightarrow C \vee \Diamond C))$.
So (6) yields
\begin{align*}
\Box F_1, \ldots, \Box F_m & \vdash \Box (\Box \bot \rightarrow (\neg D \rightarrow C \vee \Diamond C)) \\
\Box F_1, \ldots, \Box F_m, \neg IC & \vdash \neg \Box (\Box \bot \rightarrow (D \rightarrow C \vee \Diamond C)) \\
X & \vdash \neg \Box (\Box \bot \rightarrow (D \rightarrow C \vee \Diamond C)).
\end{align*}

On the other hand (7) gives $Y \vdash \Box (\Box \bot \rightarrow (D \rightarrow C \vee \Diamond C))$. Hence X and Y are separable—a contradiction. QED.

Proposition 3.20 Let (X, Y) be a complete pair with $\neg IC \in X \cup Y$ and $\neg E \in X \cup Y$. Then there exists a C-critical complete pair $(X', Y') \succ (X, Y)$ with $E, \Box \neg E \in X' \cup Y'$.

Proof. Assume that no such (X', Y') exists. We distinguish 9 cases.

Case 1. $\neg E \in L_A \setminus L_B$, $IC \in L_A \setminus L_B$. By 3.17 and compactness there exist $\Box F_1, \ldots, \Box F_m \in X$, $\Box G_1, \ldots, \Box G_n \in Y$ and $D \in L_A \cap L_B$ such that
\begin{align*}
F_1, \ldots, F_m, \neg C, \Box \neg C, E, \Box \neg E & \vdash D \quad (8) \\
G_1, \ldots, G_n & \vdash \neg D. \quad (9)
\end{align*}

Now (8) yields
\begin{align*}
\Box F_1, \ldots, \Box F_m, \Box \neg D & \vdash \Box (E \wedge \Box \neg E \rightarrow C \vee \Diamond C) \\
\Box F_1, \ldots, \Box F_m, \Box \neg D & \vdash I(E \wedge \Box \neg E) \rightarrow I(C \vee \Diamond C), \text{ by axiom I2} \\
\Box F_1, \ldots, \Box F_m, \Box \neg D & \vdash IE \rightarrow IC, \text{ by 1.4.3 and axiom I3} \\
\Box F_1, \ldots, \Box F_m & \vdash IE \wedge \neg IC \rightarrow \neg \Box \neg D \\
X & \vdash \neg \Box \neg D.
\end{align*}

On the other hand (9) yields $Y \vdash \Box \neg D$. So X and Y are separable—a contradiction.

Case 2. $IE \in L_A \setminus L_B$, $IC \in L_B \setminus L_A$. Then by 3.17 and compactness there exist $\Box F_1, \ldots, \Box F_m \in X$, $\Box G_1, \ldots, \Box G_n \in Y$ and $D \in L_A \cap L_B$ such that
\begin{align*}
F_1, \ldots, F_m, E, \Box \neg E & \vdash D \quad (10) \\
G_1, \ldots, G_n, \neg C, \Box \neg C & \vdash \neg D \quad (11)
\end{align*}

As before (10) yields
\begin{align*}
\Box F_1, \ldots, \Box F_m & \vdash \Box (E \wedge \Box \neg E \rightarrow D) \\
\Box F_1, \ldots, \Box F_m & \vdash I(E \wedge \Box \neg E) \rightarrow ID \\
\Box F_1, \ldots, \Box F_m, IE & \vdash ID \\
X & \vdash ID.
\end{align*}
But (11) yields

\[\Box G_1, \ldots, \Box G_n \vdash \Box (D \rightarrow C \lor \Diamond C) \]
\[\Box G_1, \ldots, \Box G_n, \Box D \vdash \Box C, \text{ by axioms I2 and I3} \]
\[\Box G_1, \ldots, \Box G_n, \neg IC \vdash \neg \Box D \]
\[Y \vdash \neg \Box D. \]

And X and Y are separable after all—a contradiction.

Case 3. \(IE \in \mathcal{L}_A \setminus \mathcal{L}_B, IC \in \mathcal{L}_A \cap \mathcal{L}_B \). Then by 3.17 and compactness there exist \(\Box F_1, \ldots, \Box F_m \in X, \Box G_1, \ldots, \Box G_n \in Y \) and \(D \in \mathcal{L}_A \cap \mathcal{L}_B \) such that

\[F_1, \ldots, F_m, \neg C, \Box \neg C, E, \Box \neg E \vdash D \quad (12) \]
\[G_1, \ldots, G_n, \neg C, \Box \neg C \vdash \neg D. \quad (13) \]

By (12) we find \(\Box F_1, \ldots, \Box F_m \vdash \Box (E \land \Box \neg E \rightarrow (\neg D \rightarrow C \lor \Diamond C)). \) Now

\[\text{il} \vdash \neg IC \land IE \land \Box (E \land \Box \neg E \rightarrow (\neg D \rightarrow C \lor \Diamond C)) \rightarrow \Box (D \rightarrow C \lor \Diamond C), \]

so \(X \vdash \neg \Box (D \rightarrow C \lor \Diamond C). \) On the other hand, (13) yields \(Y \vdash \Box (D \rightarrow C \lor \Diamond C). \)

Again, this implies that X and Y are separable—a contradiction.

Case 4. \(IE \in \mathcal{L}_B \setminus \mathcal{L}_A, IC \in \mathcal{L}_B \setminus \mathcal{L}_A \). Similar to Case 1.

Case 5. \(IE \in \mathcal{L}_B \setminus \mathcal{L}_A, IC \in \mathcal{L}_A \setminus \mathcal{L}_B \). Similar to Case 2.

Case 6. \(IE \in \mathcal{L}_B \setminus \mathcal{L}_A, IC \in \mathcal{L}_A \cap \mathcal{L}_B \). Similar to Case 3.

Case 7. \(IE \in \mathcal{L}_A \cap \mathcal{L}_B, IC \in \mathcal{L}_A \setminus \mathcal{L}_B \). Then by 3.17 and compactness there are \(\Box F_1, \ldots, \Box F_m \in X, \Box G_1, \ldots, \Box G_n \in Y \) and \(D \in \mathcal{L}_A \cap \mathcal{L}_B \) such that

\[F_1, \ldots, F_m, \neg C, \Box \neg C, E, \Box \neg E \vdash D \quad (14) \]
\[G_1, \ldots, G_n, E, \Box \neg E \vdash \neg D. \quad (15) \]

By (14) we have \(\Box F_1, \ldots, \Box F_m \vdash \Box (E \land \Box \neg E \rightarrow (\neg D \rightarrow C \lor \Diamond C)). \) Now

\[\text{il} \vdash \neg IC \land IE \land \Box (E \land \Box \neg E \rightarrow (\neg D \rightarrow C \lor \Diamond C)) \rightarrow \Box (E \land \Box \neg E \rightarrow \neg D), \]

so \(X \vdash \neg \Box (E \land \Box \neg E \rightarrow \neg D). \) On the other hand, (15) yields \(Y \vdash \Box (E \land \Box \neg E \rightarrow \neg D). \) So X and Y are separable—a contradiction.

Case 8. \(IE \in \mathcal{L}_A \cap \mathcal{L}_B, IC \in \mathcal{L}_B \setminus \mathcal{L}_A \). Similar to Case 7.

Case 9. \(IE \in \mathcal{L}_A \cap \mathcal{L}_B, IC \in \mathcal{L}_A \cap \mathcal{L}_B \). Then by 3.17 and compactness there exist \(\Box F_1, \ldots, \Box F_m \in X, \Box G_1, \ldots, \Box G_n \in Y \) and \(D \in \mathcal{L}_A \cap \mathcal{L}_B \) such that

\[F_1, \ldots, F_m, \neg C, \Box \neg C, E, \Box \neg E \vdash D \quad (16) \]
\[G_1, \ldots, G_n, \neg C, \Box \neg C, E, \Box \neg E \vdash \neg D. \quad (17) \]

Now \(\text{il} \vdash \neg IC \land IE \land \Box (E \land \Box \neg E \rightarrow (\neg D \rightarrow C \lor \Diamond C)) \rightarrow \Box (E \land \Box \neg E \rightarrow (D \rightarrow C \lor \Diamond C)), \) so (16) yields

\[\Box F_1, \ldots, \Box F_m, IE, \neg IC \vdash \neg \Box (E \land \Box \neg E \rightarrow (D \rightarrow C \lor \Diamond C)) \]
\[X \vdash \neg \Box (E \land \Box \neg E \rightarrow (D \rightarrow C \lor \Diamond C)). \]

But (17) yields \(Y \vdash \Box (E \land \Box \neg E \rightarrow (D \rightarrow C \lor \Diamond C)). \) And again, X and Y are separable—a contradiction. QED.

Theorem 3.21 (Interpolation Theorem) Let ils be one of il, ilm or ilp. If ils \(\vdash A \rightarrow B, \) then there is a formula C having only proposition letters occurring in both A and B such that ils \(\vdash A \rightarrow C \) and ils \(\vdash C \rightarrow B. \)
Proof. The proof is by contraposition. Fix A and B and assume that no interpolant exists. We will show that $\models A \rightarrow B$ by constructing a counter model to the implication.

Note that the assumption that no interpolant between A and B exists, means: $\{A\}$ and $\{\neg B\}$ are separable. So by 3.17 there exists a complete pair (X, Y) with $\{A\} \subseteq X \subseteq \mathcal{L}_A$ and $\{\neg B\} \subseteq Y \subseteq \mathcal{L}_B$.

Put $\Gamma := (X, Y)$ and construct W_Γ as in 2.6 (or 2.11 if $\models im$, and 2.21 if $\models ip$)—starting with $(\Gamma, (\{\}\))$ and adding pairs (Δ, τ) consisting of complete pairs Δ and sequences τ of pairs (or triples) of formulas. Using 3.18, 3.19 and 3.20 one can then mimic the proof of 2.9 (or 2.14 or 2.23) to find a counter model to the implication $A \rightarrow B$. QED.

To state Beth's Theorem and the Fixed Point Theorem for im, im and ip, we first introduce some notation and terminology. We use $A(p)$ for a formula in which p possibly occurs; A is said to occur modalized in $A(p)$ if p occurs only in the scope of a \Box or a \Diamond. $A(C)$ denotes the result of substituting C for p in $A(p)$.

Theorem 3.22 (Beth's Theorem) Let $A(r) \in \mathcal{L}(\Box, I)$ contain neither proposition letter p nor q. If $\models A(p) \land A(q) \rightarrow (p \leftrightarrow q)$ then, for some $C \in \mathcal{L}_{A(r)} \setminus \{\tau\}$, $\models A(p) \rightarrow (p \leftrightarrow C)$.

Proof. The Theorem may be derived from 3.21 in a standard way. Cf. [5]. QED.

Proposition 3.23

1. $\models \Box(A \leftrightarrow B) \rightarrow (IA \leftrightarrow IB)$

2. $\models \Box^+ (B \leftrightarrow C) \rightarrow (A(B) \leftrightarrow A(C))$.

If p occurs modalized in $A(p)$ and B is a conjunction of formulas of the form $\Box E$ and $\Box^+ E$ then

3. $\models \Box(C \leftrightarrow D) \rightarrow (A(C) \leftrightarrow A(D))$

4. $\models B \rightarrow (\Box A \rightarrow A)$ implies $\models B \rightarrow A$

5. $\models \Box^+(p \leftrightarrow A(p)) \land \Box^+(q \leftrightarrow A(q)) \rightarrow (p \leftrightarrow q)$.

Theorem 3.24 (Explicit Definability of Fixed Points) Let p occur modalized in $A(p)$. Then there is a formula B with only those proposition letters of A other than p and such that $\models B \leftrightarrow A(B)$.

Proof. The Theorem may be derived from 3.22 and 3.23 in a standard way. Cf. [5]. QED.

4 Concluding remarks

In [6] the bi-modal provability logic PRL_1 is defined in a modal language $\mathcal{L}(\Box_1, \Box_2)$ with two provability operators. Besides Modus Ponens it has as a rule of inference Necessitation for \Box_1; its axioms are the usual L-axioms for \Box_1 plus $\Box_2(A \rightarrow B) \rightarrow (\Box_2 A \rightarrow \Box_2 B)$, $\Box_1 A \rightarrow \Box_2 A$ and $\Box_2 A \rightarrow \Box_1 \Box_2 A$. Define a translation $(\cdot)^! : \mathcal{L}(\Box, I) \rightarrow \mathcal{L}(\Box_1, \Box_2)$ by

$p^! := p$

$(\neg A)^! := \neg A^!$

$(A \land B)^! := A^! \land B^!$

$(\Box A)^! := \Box_1 \Box_2 A^!$

$(IA)^! := \Box_1 (\Box_2 T \rightarrow \Box_2 A^!)$.
Using Albert Visser’s alternative semantics for ILP (cf. [9]) one may then show that for all $A \in \mathcal{C}(\square, \square)$, $i\vDash A$ iff $PRL \vDash A^t$.

This much about a connection of (one of) our new logics with a previously known one. Let’s look in the opposite direction now, and consider an extension of the language $\mathcal{L}(\square, \Box)$. Montagna and Hájek [3] show that ILM is the logic of Π_1^0-conservativity in the following sense: given a Σ_0^0-sound extension T of Σ_1 define the interpretation $(A \vdash B)^*$ of a formula $A \vdash B$ in the language of T to be ‘$T + B^*$’ is Π_1^0-conservative over $T + A^*$; then $ILM \vdash A$ iff for all such $(\cdot)^*$, $T \vdash A^*$. It is well-known that in essentially reflexive theories like PA relative interpretability and Π_1^0-conservativity (in the above sense) are provably extensionally equivalent. However in finitely axiomatized theories like Π_1 the two notions no longer coincide. So it is natural to extend $\mathcal{L}(\Box, \Box)$ with an operator \vdash_M to be interpreted arithmetically as Π_1^0-conservativity. (It’s convenient in this context to write \vdash_P instead of \vdash for the ‘old’ operator \vdash.) As axioms we take the usual L-axioms and rules plus the ILM-axioms for \vdash_M, and the ILP-axioms for \vdash_P. In addition we have the following ‘mixed’ axiom: $A \vdash_M B \rightarrow A \wedge (C \vdash_P D) \vdash_M B \wedge (C \vdash_P D)$. The resulting system is called ILM/P. The relevant models are tuples (W, R, S^M, S^P, \vdash) where (W, R, S^M, \vdash) is an ILM-model, (W, R, S^P, \vdash) is an ILP-model, while the following extra condition holds: if $\varepsilon RS^M \varepsilon RU S^P \varepsilon$ then $u S^P v$. It is still open whether ILM/P is modally complete with respect to such ILM/P-models. The unary counterpart ilm/p of ILM/P is defined in a language $\mathcal{L}(I_M, I_P)$ with two unary interpretability operators; its axioms and rules are those of L plus the ilm-axioms for I_M and the ilp-axioms for I_P; ilm/p has no ‘mixed’ axioms. It has been shown by the present author that ilm/p is modally complete w.r.t. ILM/P-models.

We end with a remark on the method used here to prove modal completeness results for the unary logics. Recall that it employs infinite maximal consistent sets and a ‘small’ adequate set instead of finite maximal consistent sets that are contained in a ‘large’ adequate set (as used, for example, in [6] and [2]). Our method has already been used to prove the modal completeness of several of the binary interpretability logics mentioned in this paper—however, it is still open whether ILM may be proved modally complete using this method (cf. [4]).

Acknowledgment

Some of the results listed in this paper were obtained as part of my Master’s Thesis written at the Department of Mathematics and Computer Science of the University of Amsterdam under the supervision of Dick de Jongh; I want to thank him for his questions and suggestions.

References

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denmeuvel
CT-90-03 Ricard Gavalda, Leen Torenvliet
CT-90-03 Osamu Watanabe, José L. Balcázar

Other Prepublications
X-90-01 A.S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04
X-90-05 Valentin Shehtman

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
Relational Games
Unary Interpretability Logic
Associative Storage Modification Machines
A Normal Form for PCSJ Expressions
Generalized Kolmogorov Complexity
in Relativized Separations
Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version
Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic