INSTITUTE FOR LANGUAGE, LOGIC AND INFORMATION

FINITE TYPE STRUCTURES
WITHIN COMBINATORY ALGEBRAS

Inge Bethke

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-91-06

University of Amsterdam
The ITLI Prepublication Series

1986
86-01 Peter van Emde Boas
86-02 Johan van Bentham
86-03 Reinhard Muskens
86-04 Kenneth A. Bowon, Dick de Jongh
86-05 Johan van Bentham
86-06 Jeroen Groenendijk, Martin Stokhof
1987
87-01 Jeroen Groenendijk, Martin Stokhof
87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Bentham
87-05 Vicent Sanchez Valencia
87-06 Eleonore Oversteegen
87-07 Johan van Bentham
87-08 Renate Bartsch
87-09 Herman Hindriks
1988
88-01 Michel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
88-02 Yde Venema
88-03 Reinhard Muskens
88-04 Johan van Bentham
88-05 Johan van Bentham
88-06 Johan van Bentham
88-07 Renate Bartsch
88-08 Jeroen Groenendijk, Martin Stokhof
88-09 Theo M.V. Janssen
88-10 Anneke Kleppe Mathematical Logic and Foundations: Lifschitz Realizability
88-11 Jaap van Oosten
88-12 M.D.G. Swaen
88-13 Dick de Jongh, Frank Veltman
88-14 A.S. Troelstra
88-15 A.S. Troelstra
88-16 Ming Li, Paul M.B. Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity
88-17 Michiel H.M. Smid
88-18 Michiel H.M. Smid, Mark H. Overmars
88-19 Theo M.V. Janssen
88-20 Leen Torenvliet, Peter van Emde Boas
88-21 Dick de Jongh, Lex Hendriks
88-22 Gerard R. Renardel de Lavalette
88-23 Peter van Emde Boas
88-24 Michiel H.M. Smid
88-25 Johan van Bentham
88-26 Johan van Bentham
88-27 Michiel H.M. Smid, Mark H. Overmars
88-28 Leen Torenvliet, Peter van Emde Boas
88-29 Theo M.V. Janssen
88-30 Edith Spaan, Lex Hendriks, Peter van Emde Boas
88-31 Sicco M. van Vliet
88-32 Roel de Vrijer
88-33 Dick de Jongh
88-34 Dick de Jongh, Franco Montagna
88-35 Dick de Jongh, Marc Jumelet, Franco Montagna
88-36 Rinke Verbrugge
88-37 Michel van Lambalgen
88-38 Dirk Roorda
88-39 Dirk Roorda
88-40 Alessandra Carbone
88-41 Michiel H.M. Smid
88-42 Peter van Emde Boas
88-43 Ming Li, Herman Neufgêlise, Lex Hendriks, Peter van Emde Boas
88-44 Harry Buhrman, Leen Torenvliet
88-45 Peter H. Hartel, Michiel H.M. Smid
88-46 Leen Torenvliet, Willem G. Vree
88-47 H.W. Lenstra, Jr.
88-48 Ming Li, Paul M.B. Vitanyi
88-49 Harry Buhrman, Steven Homer
88-50 Leen Torenvliet
88-51 Harry Buhrman, Edith Spaan, Leen Torenvliet
88-52 Roger Ahlswede, Leen Torenvliet
88-53 Robert M. Hierons
88-54 Tennis
88-55 Peter van Emde Boas
1989
89-01 R. van Nooren, T. Vissers
89-02 J. van Dongen, J. van Renssen, J. van den Berg
89-03 A.A.ten Cate, J. van den Berg, J. van den Berg
89-04 Jeroen Groenendijk, Martin Stokhof
89-05 Maarten de Rijke
89-06 Peter van Emde Boas
1990
SEE INSIDE BACK COVER

The Institute of Language, Logic and Information
A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I: Well-founded Time,
Logical Syntax: Forward looking Operators
Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
Unique Normal Forms for Lambda Calculus with Subjective Pairing
Polyadic quantifiers
Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
Type Change in Semantics: The Scope of Quantification and Coordination
Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987
Going partial in Montague Grammar
Logical Constants across Varying Types
Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse
Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Euraora
A Blisssymbolic Translation Program
Mathematical Logic and Foundations: Lifschitz Realizability
The Arithmetical Fragment of Martin Löf's Type Theories with weak Σ-elimination
Probabilistic Logic for Relative Interpretation
On the Early History of Intuitionistic Logic
Remarks on Intuitionism and the Philosophy of Mathematics
General Lower Bounds for the Partitioning of Range Trees
Dynamic Data Structures
A Theory of Computational Models of the Real Number System
Machine Models and Simulations (revised version)
Solving the Union-find Problem having good Single-Operation Complexity
Time, Logic and Computation
Multiple Representations of Dynamic Data Structures
Towards a Universal Parsing Algorithm for Functional Grammar
Towards implementing SL
On Solovay's Completeness Theorem
Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone Investigations into Classical Linear Logic
Provable fixed points in IA_441
Computation and Complexity Theory: Dynamic Deferred Data Structures
Machine Models and Simulations
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Finding Isomorphisms between Finite Fields
The Role Rule Language RL/I
Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
FINITE TYPE STRUCTURES
WITHIN COMBINATORY ALGEBRAS

Inge Bethke
Department of Mathematics and Computer Science
University of Amsterdam
Finite Type Structures within Combinatory Algebras

Inge Bethke
Faculteit Wiskunde en Informatica, Universiteit van Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

Abstract

Inside a combinatory algebra, there are 'internal' versions of the finite type structure over $\omega$, which form models of various systems of finite type arithmetic. This paper compares internal representations of the intensional and extensional functionals. If these classes coincide, the algebra is called ft-extensional. Some criteria for ft-extensionality are given and a number of well-known ca's are shown to be ft-extensional, regardless of the particular choice of representation for $\omega$. In particular, $D_A$, $P_\omega$, $T^\omega$, $H_\omega$ and certain $D_{\infty}$-models all share the property of ft-extensionality. It is also shown that ft-extensionality is by no means an intrinsic property of ca's, i.e. that there exists a very concrete class of ca's - the class of reflexive coherence spaces - no member of which has this property. This leads to a comparison of ft-extensionality with the well-studied notions of extensionality and weak extensionality. Ft-extensionality turns out to be completely independent.

1 Introduction

Combinatory logic contains the means for introducing natural numbers, functions on the natural numbers, functions on functions on the natural numbers and so on. Any model of combinatory logic, i.e. any combinatory algebra, comes therefore along with an internal representation of the natural numbers and finite type functionals. In particular, it comes along with an intensional and an extensional finite type structure.

At first sight, there is no immediate reason for expecting that these classes of functionals are closely related or even coincide. After all, extensional functionals are locally determined by the restricted graph of a lower type argument, whereas intensional functionals may also take other data, such as the different ways of representation, of a lower type functional into consideration in order to
determine the value. In particular, as we are in an untyped structure, it is to be expected that the value an intensional functional is assigning to a lower type argument may depend on its extended graph, i.e. the applicative behaviour of that argument outside the type structure. However, behind the scenes, this turns out to be not always the case. In quite a number of very well-known models the two type structures do coincide. The purpose of this paper is therefore to compare internal representations of the intensional and extensional finite type structures. It is organized as follows:

In section 2, we collect some well-known notions and facts concerning combinatorial algebras. The notion of a $cA^+$ is taken from Beeson [1985]. The section ends with the introduction of finite type extensionality: a combinatorial algebra is called ft-extensional if the internal representations of the intensional and extensional finite type structure coincide.

In section 3, a criterion for ft-extensionality is given. Here, we only consider monotone combinatorial algebras, i.e. combinatorial algebras in which application is monotone. Such a combinatorial algebra is called finite type connected, if every pair of equivalent functionals is connected via a zigzag consisting of functionals of the same type.

In section 4, we exploit the notion of ft-connectedness: $D_A$, $P_\omega$, $D_\infty$ obtained from a complete lattice, $H_\omega$ and $T^\omega$ all turn out to be ft-connected and therefore ft-extensional.

Finally in section 5, we show that ft-extensionality is by no means an intrinsic property of combinatorial algebras. However, finding combinatorial algebras that are not ft-extensional, does not seem to be an easy business. We had to resort to so-called reflexive coherence spaces, and it is worth pointing out that this kind of semantics was not conceived as models of combinatorial logic or pure λ-calculus, but provided the first denotational model of second order λ-calculus. Section 5 also includes a comparison of ft-extensionality with the well-studied notions of extensionality and weak extensionality. It turns out to be completely independent.

2 Preliminaries

To fix our terminology and notation, we shall collect in this preliminary section a few well-known notions and facts.

**Definition 2.1** (i) An applicative structure is a structure $(A, *)$ with $*$ a binary operation on $A$, called application.

(ii) A combinatorial algebra (ca) is a structure $(A, *, K, S)$ with $(A, *)$ an applicative structure and $K, S \in A$ such that for all $a, a', a'' \in A$

1. $Kaa' = a$,
2. $Sad'a'' = aa''(a'a'').$
As in algebra $a * a'$ is usually written as $aa'$ and $((a_1a_2)a_3)\ldots a_n$ will be abbreviated by $a_1a_2\ldots a_n$.

(iii) A $ca^+$ is a structure $(A, *, K, S, 0, S_N, P_N, D, N)$ with $(A, *, K, S)$ a $ca$, $0, S_N, P_N, D \in A$ and $N \subseteq A$ satisfying

$$(3) \quad 0 \in N \wedge \forall a \in N (SNa \in N \wedge P_N(SNa) = a \wedge SNa \neq 0),$$

$$(4) \quad \forall a \in N (a \neq 0 \rightarrow PNa \in N \wedge SN(PN a) = 0),$$

$$(5) \quad \forall a, a' \in NVb, b' \in A (Dbb' a a = b' \wedge (a \neq a' \rightarrow Dbb' a a = b)). \square$$

A common and important feature of nontrivial $ca's$, i.e. $ca$'s the cardinality of which exceeds 1, is that in them one can define the additional combinator

$0, S_N, P_N$ and $D$ with the aid of the combinator $K$ and $S$. These are standard tricks in combinatory logic of which we shall now give a flavour (cf. also Barendregt [1984, ch.6,§2]).

**Proposition 2.2** Every nontrivial $ca = (A, *, K, S)$ can be expanded to a $ca^+$.

**PROOF.** First recall that for any given term $t$ over $M$ one can define a term $\lambda x.t$ over $M$ such that for all $a \in A$ one has that

$$(1) \quad (\lambda x.t)a = t[x := a]$$

(cf. e.g. Barendregt [1984, ch.5,§1]). We now abbreviate

$I := SKK, \top := K, \bot := KI$

and introduce the combinatory numerals, the successor $S_N$ and predecessor $P_N$:

$$0 := I,$$

$$\overline{0} := 0, \overline{n} + \overline{1} := \lambda y.\bot \overline{n}, N := \{\overline{n} | n \in \omega\}$$

$$S_N := \lambda y.\bot \lambda x.\bot, P_N := \lambda x.\bot.$$ 

Obviously $0, S_N \overline{n}, P_N \overline{n} + \overline{1} \in N$, $P_N(S_N \overline{n}) = \overline{n}$ and $S_N(P_N \overline{n} + \overline{1}) = \overline{n} + 1$. It is also readily checked that $S_N \overline{n} \neq 0$. Note, however, that nontriviality is essential for this inequality to hold.

To prove (5) we shall use for $t_1t_2t_3$ the suggestive notation if $t_1$ then $t_2$ else $t_3$, for if $t_1 \equiv \top$ (true) then $t_1t_2t_3 = t_2$, and if $t_1 \equiv \bot$ (false) then $t_1t_2t_3 = t_3$.

Now observe that by (1) there exists the fixed point operator $FIX \equiv \lambda x.\chi \chi$ with $\chi \equiv \lambda x.\chi x(\chi x)$ in $M$ satisfying

$$FIXa = a(FIXa)$$

for all $a \in A$. If we thus put

$$R := \lambda xyz.\text{if } z \top \text{ then } x \text{ else } y(P_N z)uzy(P_N z))$$

and $REC := FIX(R)$ then $REC$ behaves as a recursor, i.e.
$REC a^0 = FIX(R) a a^0$
$= R(FIX(R)) a a^0$
$= if \top then a else a'(P_N \bar{0})(FIX(R)a a'(P_N \bar{0}))$
$= if \bot then a else a'(P_N \bar{0})(FIX(R)a a'(P_N \bar{0})) = a$

and

$REC a^n + 1 = FIX(R) a a^n + 1$
$= R(FIX(R)) a a^n + 1$
$= if \bar{n} + 1 then a else a'(P_N \bar{n} + 1)(FIX(R)a a'(P_N \bar{n} + 1))$
$= if \bot then a else a'n(FIX(R)a a'n)$
$= a'n(FIX(R)a a'n) = a'n(REC a a'n)$

Hence on the set $N$ of numerals we have explicit definition (via $\lambda x$) and primitive recursion; $Z := K0$ represents the zero-function and $\Pi^* := \lambda x_1...x_n.x_i$ a projection. We thus have all primitive recursive functions available and can therefore construct a term $t$ such that $t\bar{m} = [n - m]$. The numerical definition-by-cases operator $D$ can then be defined by

$D := \lambda xyuv.\text{if } tuv\top \text{ then } z \text{ else } y. \square$

The reason why we define the expansion separately is that we don’t want to restrict ourselves in the choice of models by the special relationship between the additional constants and the combinators $K, S$.

**Example 2.3** (Engeler [1981]) Let $A$ be any nonempty set, and let $G(A)$ be the least set containing $A$ and all ordered pairs $(B, b)$ consisting of a finite set $B \subseteq G(A)$ and an element $b \in G(A)$, assuming that elements of $A$ are distinguishable from ordered pairs. On $P(G(A))$ one can define an application operation $\ast$ by

$X \ast Y = \{b | \exists B \subseteq Y((B, b) \in X)\}$.

$D_A = (P(G(A)), \ast)$ is called the graph model. It can be made into a ca by taking e.g.

$K := \{(B, (C, b)) \in G(A) | b \in B\}$,

$S := \{(B, (C, (D, b))) \in G(A) | b \in BD(CD)\}$.

$D_A$ is clearly nontrivial and can thus be expanded to a ca$^+$. Consider the special case where $A = \omega$. Here instead of appealing to the combinatorial construction in proposition 2.2 one can define $N, 0, S_N, P_N$ and $D$ directly by

$N = \{n \mid n \in \omega\}$,

$0 = \{0\}$,

$S_N = \{(n, n + 1) \mid n \in \omega\}$,

$P_N = \{(n + 1, n) \mid n \in \omega\}$,
\[D = \{(B, (C, (\{n\}, (\{m\}, b)))) \in G(\omega) | n, m \in \omega \land
\]
\[((n = m \land b \in C) \lor (n \not= m \land b \in B))\}.\]

We leave the verification of 2.1 (1)-(5) to the reader. \(\square\)

Inside a \(\text{ca}^+\) \(M\) there are internal versions of finite type structures over \(\omega\), which form models of various systems of finite type arithmetic. In this paper we shall only consider the following standard finite type structures of pure types\(^1\):

**Definition 2.4** *Pure types*, denoted by natural numbers, are 0 and with \(n\) also \(n + 1\). \(\square\)

Intuitively, we think of 0 as the set of natural numbers; the induction step then permits the formation of the collection of functions from the elements of type \(n\) into \(\omega\). The following gives the two standard interpretations of pure types.

**Definition 2.5** Let \(M\) be a \(\text{ca}^+\).

(i) The *intensional type structure over \(M\), IT\((M)\),* is the collection \(< IT_n >_{n\in\omega}\) where

\[IT_0 = N,\]

\[IT_{n+1} = \{a \in A | \forall a' \in IT_n (aa' \in N)\} \].

(ii) The *extensional finite type structure over \(M\), ET\((M)\),* is the collection

\[< ET_n >_{n\in\omega}\]

where

\[ET_0 = N,\]

\[ET_{n+1} = \{a \in A | \forall a', a'' (a' =_n a'' \rightarrow aa' = aa'')\},\]

and

\[a =_0 a' \iff a, a' \in N \land a = a',\]

\[a =_{n+1} a' \iff a, a' \in ET_{n+1} \land \forall a'' \in ET_n (aa'' = aa''). \square\]

Note that these type structures always coincide at level 0 and 1, i.e. \(IT_0 = ET_0\) and \(IT_1 = ET_1\), and that therefore, moreover, \(ET_2 \subseteq IT_2\). What, however, can be said about the coincidence or divergence of these type structures at levels higher up in the hierarchy of types? Let us consider \(D_\omega\), as described in example 2.3:

**Example 2.6** In \(D_\omega\) one has that any type 2 object is extensional, i.e. \(IT_2 \subseteq ET_2\), so that the two type structures also coincide at level 2. To understand this coincidence observe the following:

Any function \(f : \omega \rightarrow \omega\) can be canonically represented in \(D_\omega\) by the type

\(^1\)For a treatment of arbitrary finite types, the reader is referred to Bethke [1988].
1 object \( F \equiv \{(n, f(n))|n \in \omega\} \), since by the definition of application \( F \ast \{n\} = \{f(n)\} \). This representation, however, is by no means unique. If, for example, \( f \) is constant, it is also represented by \( \{(0, f(0))\} \), and, in general, it is also irrelevant what pairs of the form \((B, b)\), where \(B\) is neither empty nor a singleton, are contained in any representation of \( f \). This means that every type 1 function \( f \) has a whole range of representations in \( D_\omega \). But note that if \( X_1 \) and \( X_2 \) both represent the same function, i.e. \( X_1 =_1 X_2 \), then \( X_1 \cup X_2 \) also represents that function, since application is additive in the first argument, i.e. \((X_1 \cup X_2) \ast Y = (X_1 \ast Y) \cup (X_2 \ast Y)\). Hence \( X_1 =_1 X_1 \cup X_2 =_1 X_2 \). Since application is monotone in the second argument, it then follows that any type 2 object must be extensional, i.e. if \( Z \in IT_2 \), and \( X_1 =_1 X_2 \), then \( Z \ast X_1 = Z \ast X_2 \); for \( Z \ast X_1 \subseteq Z \ast (X_1 \cup X_2) \), \( Z \ast X_2 \subseteq Z \ast (X_1 \cup X_2) \) and as the results of these application are all singletons, we have in fact that \( Z \ast X_1 = Z \ast (X_1 \cup X_2) = Z \ast X_2 \).

\( \square \)

We shall see in the next section that this particular coincidence at level 2 extends in \( D_\omega \) to all pure finite types and that \( D_\omega \) is therefore extensional on finite types.

**Definition 2.7** A \( ca^+ \) \( M \) is called ft-extensional (extensional on finite types) iff

\[
IT(M) = ET(M). \square
\]

In the next section we shall present sufficient conditions on \( ca^+ \)'s in order to be ft-extensional.

**3 F'T-Connected \( ca^+ \)'s**

The crux of the proof that every type 2 object in \( D_\omega \) is extensional is threefold: firstly, every pair of equivalent type 1 objects is bounded above by another type 1 object, namely it's union; secondly, application is monotone; thirdly, the numerals are consistent, i.e.

\[
\forall X, Y \in N \,(X \subseteq Y \rightarrow X = Y).
\]

The latter property, however, is independent of the special choice of \( N \) in \( D_\omega \) and is shared by all monotone \( ca^+ \)'s, i.e. \( ca^+ \)'s that are monotone as applicative structures.

**Definition 3.1** A monotone applicative structure is a structure \((A, \ast, \sqsubseteq)\) where \((A, \sqsubseteq)\) is a poset satisfying for all \( a, a', a'' \in A \)

\[
a \sqsubseteq a' \rightarrow aa'' \sqsubseteq a'd'' \land a''a \sqsubseteq a'd'. \square
\]

**Lemma 3.2** Let \((M, \sqsubseteq)\) be a monotone \( ca^+ \). Then \( M \) satisfies the following consistency property

\[
\forall a, a' \in N \,(a \sqsubseteq a' \rightarrow a = a').
\]
PROOF. Let \( a, a' \in N \) be such that \( a \sqsubseteq a' \). Assume \( a \neq a' \). Then it follows from the monotonicity of \( M \) that \( a' = Daa'aa \sqsubseteq Da'a'aa' = a \). Hence \( a' \subseteq a \) and therefore \( a = a' \). Contradiction. \( \square \)

So monotonicity guarantees consistency, or to put it in another way, the incomparability of the numerals. Monotonicity, however, does not guarantee that, as in the case of \( D_\omega \), \( IT_2 \), or in general \( IT_n \), is closed under the joins of equivalent objects. This property is an important ingredient of the proof that \( D_\omega \) is \( ft \)-extensional. It can, however, in a more general setting be weakened to the notion of \textit{finite type connectedness}.

**Definition 3.3** Let \((M, \sqsubseteq)\) be a monotone \(ca^+\). Then
(i) \( a, a' \in IT_n \) are called \( n \)-\textit{connected} iff there exists a sequence \( a_0, \ldots, a_{m+1} \) in \( IT_n \) such that \( a = a_0, a_{m+1} = a' \) and \( a_i \sqsubseteq a_{i+1} \) or \( a_i \supseteq a_{i+1} \), for all \( 0 \leq i \leq m \).
If \( a, a' \) are \( n \)-connected, we shall write this as \( a \leftrightarrow_n a' \).
(ii) \( M \) is called \( ft \)-\textit{connected} iff for all \( n \in \omega \) and all \( a, a' \in IT_n \)

\[ IT_n = ET_n \land a =_n a' \rightarrow a \leftrightarrow_n a' \]. \( \square \)

As the numerals are incomparable, one then has

**Theorem 3.4** Let \((M, \sqsubseteq)\) be a \( ft \)-\textit{connected} \( ca^+ \). Then \( M \) is \( ft \)-extensional.

**PROOF.** As \( IT_0 = ET_0 \), it is sufficient to prove that

\[ IT_n = ET_n \rightarrow IT_{n+1} = ET_{n+1} \].

Assume \( IT_n = ET_n \). Then \( ET_{n+1} \subseteq IT_{n+1} \). For the converse let \( a \in IT_{n+1} \) and \( b, b' \in ET_n \) be such that \( b =_n b' \). Since \( M \) is \( ft \)-connected there is a sequence \( b_0, \ldots, b_{m+1} \in IT_n \) such that \( b = b_0, b' = b_{m+1} \) and \( b_i \sqsubseteq b_{i+1} \) or \( b_{i+1} \supseteq b_i \), for all \( 0 \leq i \leq m \). Then \( ab_0, \ldots, ab_{m+1} \in N \) and, since application is monotone, \( ab_i \sqsubseteq ab_{i+1} \) or \( ab_{i+1} \supseteq ab_i \), for all \( 0 \leq i \leq m \). Hence \( ab = ab_0 = \ldots = ab_{m+1} = ab' \), by lemma 3.2. Thus \( a \in ET_{n+1} \). \( \square \)

Having seen that \( ft \)-\textit{connectedness} is a sufficient condition on \( ca^+ \)'s in order to be \( ft \)-extensional, we can also seek for sufficient conditions for \( ft \)-\textit{connectedness}. The one we shall give below is again inspired by the algebraic structure of and the behaviour of application in \( D_\omega \).

**Definition 3.5** A monotone applicative structure \( M = (A, \ast, \sqsubseteq) \) is called \textit{finitely additive in the first argument} (\( fafa \)) iff for all \( a, a', a'' \in A \)

(i) \( a \cup a' \) exists in \((A, \sqsubseteq)\),

(ii) \( (a \cup a')a'' = aa'' \cup a'a''. \square \)

**Proposition 3.6** Let \( M \) be \( fafa \) and \( M' \) be a \( ca^+ \)-expansion of \( M \). Then \( M' \) is \( ft \)-connected.
PROOF. One proves by induction on \( n \) that for all \( a, a' \in IT_n \)
\[
IT_n = ET_n \land a \equiv_n a' \longrightarrow a \cup a' \in IT_n.
\]

For the induction step let \( a, a' \in IT_{n+1} \) be equivalent and assume that \( IT_{n+1} = ET_{n+1} \). In order to prove that \( a \cup a' \in IT_{n+1} \), it is sufficient to prove that \( a \cup a' \in ET_{n+1} \), and for this it suffices to show that \( (a \cup a')b = ab \), for all \( b \in ET_n \). Thus let \( b \in ET_n \). Then, as \( a \) and \( a' \) are equivalent, it follows that
\[
ab = a'b.
\]

Whence \( (a \cup a')b = ab \cup a'b = ab \). \( \square \)

Corollary 3.7 Let \( M \) be fafa and \( M' \) be a \( ca^+ \)-expansion of \( M \). Then \( M' \) is ft-extensional. \( \square \)

4 Examples.

In this section we shall discuss several examples of ft-extensional \( ca^+ \)-s such as \( DA, P_\omega \), certain \( D_\omega \)-models, \( H_\omega \) and \( T^\omega \).

The Graphmodels \( DA \). Every graphmodel \( DA \) is clearly fafa and thus ft-extensional. \( \square \)

The Graphmodels \( P_\omega \). (Plotkin [1972], Scott [1975]) \( P_\omega \) is a coded version of \( DA \) and has been extensively studied in the context of models for the \( \lambda \)-calculus. Its universe is \( P(\omega) \) and application is defined by
\[
X * Y = \{ m | \exists n \subseteq Y \ (n, m \in X) \}
\]

where \( (, ,) \) is some bijective coding of pairs of natural numbers and \( \{ e_n | n \in \omega \} \) is some enumeration of the finite subsets of \( \omega \). The structure of these models, as has been shown by Baeten and Boerboom [1979], depends heavily on the specific coding used in the construction. Although \( P_\omega \)-models and \( DA \)-models are never isomorphic as \( ca^+ \)-s (see Longo [1983]), they enjoy the same sufficient properties in order to be ft-extensional: again \( P_\omega \) is closed under unions and application satisfies \( (X \cup Y)Z = XZ \cup YZ \). \( \square \)

Additive Reflexive Complete Lattices. (Scott [1969]) The first structures used as a mathematical foundation for the semantics of the untyped \( \lambda \)-calculus were reflexive complete lattices. Let us briefly recall the key concepts.

Let \( A \) be a complete lattice. A subset \( A' \subseteq A \) is directed if, for every finite set \( A'' \subseteq A' \), there is an upper bound \( a \in A' \) for \( A'' \). Given complete lattices \( A, B \), a function \( f : A \rightarrow B \) is said to be \( Scott \)-continuous if \( f \) is monotone and preserves joins of directed subsets of \( A \). \([A \rightarrow B], \) the set of \( Scott \)-continuous functions between \( A \) and \( B \), partially ordered pointwise is then itself a complete lattice with \( \bigcup F = \bigcup \{ f(a) | f \in F \} \).

A reflexive complete lattice is a triple \( \langle A, F, G \rangle \) with \( A \) a complete lattice such that the set of \( Scott \)-continuous self-maps, \( [A \rightarrow A] \), is a retract of \( A \) via
\(F, G, \text{i.e. } F : A \to [A \to A], \ G : [A \to A] \to A\) are Scott-continuous maps such that \(F \circ G = \text{id}_{[A \to A]}\). These structures define in a natural way \(\lambda\)-models where the application operation \(*\) is given by

\[a * a' = F(a)(a').\]

As \(*\) is continuous (and hence monotone), \((A, *)\) can be made into a monotone ca by defining the combinators in terms of \(\lambda\)-abstraction as follows:

\[S = \lambda xyz.x(yz) \quad K = \lambda xy.x\]

One can restrict the class of reflexive complete lattices by the additional requirement \(\text{id}_A \subseteq G \circ F\). This yields the class of so-called \textit{additive} reflexive complete lattices the members of which, as we shall show below, are fafa and therefore enjoy the property of ft-extensionality.

**Lemma 4.1** Let \(<A, F, G>\) be an additive reflexive complete lattice. Then \(F\) preserves \(\sqcup\), i.e.

\[\forall a, a' \in A \quad F(a \sqcup a') = F(a) \cup F(a').\]

**Proof.** Let \(a, a' \in A\). Since \(F\) is monotone, we have \(F(a), F(a') \subseteq F(a \sqcup a')\). Now suppose that \(f \in [A \to A]\) is an arbitrary upper bound of \(\{F(a), F(a')\}\), i.e. \(F(a) \subseteq f\) and \(F(a') \subseteq f\). Thus

\[a \sqsubseteq G(F(a)) \sqsubseteq G(f)\]

and

\[a' \sqsubseteq G(F(a')) \sqsubseteq G(f),\]

since \(G\) is monotone and \(<A, F, G>\) is additive. Therefore \(a \sqcup a' \sqsubseteq G(f)\), whence \(F(a \sqcup a') \subseteq F(G(f)) = f\). This shows that \(F(a \sqcup a')\) is indeed the least upper bound of \(\{F(a), F(a')\}\). \(\Box\)

Now let the ca \(M\) be obtained in the canonical way from an additive reflexive complete lattice \(<A, F, G>\). Then

**Theorem 4.2** Let \(M'\) be a ca\(^+\)-expansion of \(M\). Then \(M'\) is ft-extensional.

**Proof.** It suffices to prove that \(M\) is fafa. Clearly, \((A, *, \sqsubseteq)\) is monotone and, as \(A\) is a complete lattice, \(a \sqcup a' \in A\), for all \(a, a' \in A\). Moreover, by the preceding lemma we have that

\[(a \sqcup a')a'' = F(a \sqcup a')(a'')
= (F(a) \sqcup F(a'))(a'')
= F(a)(a'') \sqcup F(a')(a'')
= a a'' \sqcup a' a''. \Box\]
Note that this also covers Scott’s famous inverse limit spaces $D_\infty$ where the initial space $D_0$ is a complete lattice. □

All the examples discussed so far are complete lattices and ft-extensional by virtue of corollary 3.7. The situation is slightly more complicated with respect to the last two examples, the hypergraphmodel $H_\omega$ and the model $T^\omega$.

The Hypergraphmodel $H_\omega$ (Sanchis [1979]) Sanchis’ $H_\omega$ is the monotone ca $(\mathcal{P}(\omega), \star, \subseteq)$ where application is defined by

$$X \star Y := \{m | \forall p \exists e_n \subseteq Y (\prec \bar{f}(p), n, m \in X)\}.$$

Here, $\prec \ldots \prec$ is some bijective coding of triples of natural numbers, $\{e_n | n \in \omega\}$ is some enumeration of the finite subsets of $\omega$ and, if $f$ is a function from $\omega$ to $\omega$, then $\bar{f}(p)$ is some code for the sequence $f(0), \ldots, f(p-1)$. $H_\omega$ is a complete lattice but not fafa.

Proposition 4.3 $H_\omega$ is not fafa.

Proof. Put (assuming $e_0 = \emptyset$)

$$X := \{\prec \bar{f}(1), 0, 0 \succ f : \omega \to \omega \land f(0) > 0\},$$

$$Y := \{\prec \bar{\lambda x.0(1), 0, 0 \succ}\}$$

and let $Z \subseteq \omega$. Then

(i) $(X \cup Y)Z = \{0\}$, since, if $f(0) = 0$ then $\prec \bar{f}(1), 0, 0 \succ \in Y \subseteq X \cup Y$, and, if $f(0) > 0$ then $\prec \bar{f}(1), 0, 0 \succ \in X \subseteq X \cup Y$.

(ii) $XZ = \emptyset = YZ$, since $\prec \bar{\lambda x.0(p), n, m \succ X}$, and $\prec \bar{\lambda x.1(p), n, m \succ Y}$, for every $e_n \subseteq Z$, $p, m \in \omega$.

Whence $(X \cup Y)Z \neq XZ \cup YZ$. □

There exists, however, a closure function $\gamma : H_\omega \to H_\omega$ which associates with each subset of $\omega$ its closure under ‘extensions’ of triples while preserving its applicative behaviour.

Definition 4.4 If $X \in H_\omega$, define

$$\gamma(X) := \{\prec \alpha, n, m \succ | \exists \beta \leq \alpha \exists e_k \subseteq e_n \{\prec \beta, k, m \in X\}\},$$

where we let $\alpha, \beta, \gamma$ range over codes of finite sequences and write $\alpha \leq \beta$ if $\alpha$ codes a sequence that is an initial segment of the sequence coded by $\beta$. □

$\gamma$ as defined above has the following properties:

Proposition 4.5 For any $X, Y, Z \in \mathcal{P}(\omega)$:

(i) $X \subseteq \gamma(X)$

(ii) $\gamma(X)Z = XZ$,
(iii) $XZ = YZ \rightarrow (\gamma(X) \cap \gamma(Y))Z = XZ$.

**Proof.** We leave (i) and (ii) to the reader. For (iii) observe that, since $\gamma(X) \cap \gamma(Y) \subseteq \gamma(X)$, it follows that $(\gamma(X) \cap \gamma(Y))Z \subseteq \gamma(X)Z = XZ$, by monotonicity and (ii). For the converse, let $m \in XZ$ and $f$ be any function from $\omega$ to $\omega$. As $m \in YZ$, there are $p, q \in \omega$ and $e_n, e_l \subseteq Z$ such that $f(p), n, m \in X$ and $f(q), l, m \in Y$. Hence $f(r), k, m \in \gamma(X) \cap \gamma(Y)$, for $r = max\{p, q\}$ and $e_k = e_n \cup e_l$. Whence $m \in (\gamma(X) \cap \gamma(Y))Z$. □

From proposition 4.5 it now follows that every pair of equivalent functionals is connected by a sequence of functionals of the same type.

**Theorem 4.6** Let $M$ be a $ca^+$-expansion of $H_\omega$. Then $M$ is ft-extensional.

**Proof.** We shall prove that $M$ is ft-connected. Equivalent type-0-objects are trivially 0-connected. Assume that $IT_{n+1} = ET_{n+1}$ and let $X, Y \in IT_{n+1}$ be equivalent. Then $\gamma(X), \gamma(Y) \in IT_{n+1}$, by 4.5(ii). Moreover, as $X =_{n+1} Y$, it follows from 4.5(iii) that $(\gamma(X) \cap \gamma(Y))Z = XZ$, for all $Z \in ET_n$. So $\gamma(X) \cap \gamma(Y) \in ET_{n+1} = IT_{n+1}$. Hence constitutes an $n + 1$-connection by 4.5(i). Therefore $X \leftrightarrow_{n+1} Y$. □

**The Model $T^\omega$.** (Plotkin [1978]) $T^\omega$ was first introduced by Plotkin. However, here we refer to the description given by Barendregt and Longo in [1980].

$T^\omega$ is a subset of $P(\omega)^2$ equipped with a very special application operation. The importance of this model lies in the effectiveness properties of its semantics and the way its natural order matches the partial order on $B$, the $\lambda$-model of Böhm-like trees. We shall neither use nor comment on these properties. The only reason for including this model in our list of examples is that it is, as opposed to the preceding examples, not a complete lattice. For a thorough investigation of $T^\omega$ we refer the reader to Barendregt and Longo [1980].

The universe of $T^\omega$ is $\{ < A, B > | A, B \in P(\omega) \wedge A \cap B = \emptyset \}$. If $a \in T^\omega$ we write $a = < a_-, a_+ >$ and call $a \in T^\omega$ finite if $a_- \cup a_+$ is so. We let $\{ e_n | n \in \omega \}$ be some enumeration of the finite elements of $T^\omega$ and $(.,.)$ be some bijective coding of pairs of natural numbers.

On $T^\omega$ one can define a partial order by $a \subseteq b \iff a_- \subseteq b_-$ and $a_+ \subseteq b_+$.
It is readily checked that \( (\mathcal{T}^\omega, \sqsubseteq) \) forms a complete partial order with bottom \( \langle \emptyset, \emptyset \rangle \) and \( \forall D = \langle \sqcup \{d_\rightarrow | d \in D\}, \sqcup \{d_\leftarrow | d \in D\} \rangle \), for directed \( D \subseteq \mathcal{T}^\omega \).

\( \mathcal{T}^\omega \) belongs to the class of reflexive complete partial orders and defines - in the same way as reflexive complete lattices - a \( \lambda \)-model where application is continuous, and therefore a monotone ca. \( F: \mathcal{T}^\omega \rightarrow [\mathcal{T}^\omega \rightarrow \mathcal{T}^\omega] \) and \( G: [\mathcal{T}^\omega \rightarrow \mathcal{T}^\omega] \rightarrow \mathcal{T}^\omega \) are defined as follows:

**Definition 4.7** For \( n, m \in \omega \), \( a, b \in \mathcal{T}^\omega \) and \( f \in [\mathcal{T}^\omega \rightarrow \mathcal{T}^\omega] \), define

(i) \( n \uparrow m \longmapsto \exists a \in \mathcal{T}^\omega (e_n \sqsubseteq a \land e_m \sqsubseteq a) \),

(ii) \( D_{(n,2m+1)} := \{(n',2m) | n' \uparrow n \land (n',2m) \leq (n,2m+1)\} \),

\( D_{(n,2m)} := \{(n',2m+1) | n' \uparrow n \land (n',2m+1) \leq (n,2m)\} \),

(iii) \( (F(a)(b))_- := \{m \mid \exists e_n \subseteq b((n,2m) \in a_- \land D_{(n,2m)} \subseteq a_+)\} \),

\( (F(a)(b))_+ := \{m \mid \exists e_n \subseteq b((n,2m+1) \in a_- \land D_{(n,2m+1)} \subseteq a_+)\} \),

(iv) \( (G(f))_- := \{(n,2m) \mid m \in (f(e_n))_- \} \cup \{(n,2m+1) \mid m \in (f(e_n))_+ \} \),

\( (G(f))_+ := \{(n,2m) \mid \exists e_n \subseteq e_l \land m \in (f(e_l))_+ \} \cup \{(n,2m+1) \mid \exists e_n \subseteq e_l \land m \in (f(e_l))_- \} \).

\( \Box \)

To prevent any misgivings as to the relationship between the sets \( D_n \) and the numerical definition-by-cases operator \( D \), let us stress that there is none. We just keep close to the notations introduced in Barendregt and Longo [1980].

\( \mathcal{T}^\omega \) is not fasta. First of all, \( \mathcal{T}^\omega \) is not closed under finite joins: e.g. \( \langle \emptyset, \{0\} \rangle < \langle \{0\}, \emptyset \rangle \in \mathcal{T}^\omega \), but if \( \langle \emptyset, \{0\} \rangle < \langle \{0\}, \emptyset \rangle \sqsubseteq a \), then \( \emptyset \in a_- \cap a_+ \).

But even if \( a \cup b \) does exist it does not necessarily satisfy \( (a \cup b)c = ac \sqcup bc \).

Observe, however, that \( \mathcal{T}^\omega \) is closed under finite meets, i.e. for all \( a, b \in \mathcal{T}^\omega \)

\[
a \sqcap b = \langle a_- \cap b_-, a_+ \cap b_+ \rangle \in \mathcal{T}^\omega.
\]

But \( \sqcap \) does not in general satisfy \( (a \sqcap b)c = ac \sqcup bc \) either, so that the whole enterprise is not merely a matter of reversing the order. Application does, however, preserve meets of certain elements which we, for the purpose of this paper, shall call sober and saturated.

**Definition 4.8** For \( a \in \mathcal{T}^\omega \), define

(i) \( a \) is sober if, for all \( m \in \omega \)

\[
m \in a_- \Rightarrow D_m \subseteq a_+,
\]

(ii) \( a \) is saturated if, for all \( n, m, l \in \omega \)

\[
(n,m) \in a_- \land e_n \subseteq e_l \Rightarrow (l,m) \in a_-. \quad \Box
\]
a is sober, if every \( m \in a \) actually contributes to \( a \)'s applicative behaviour, and it is saturated, if it is - in a certain way - upwards closed. These two properties are, in particular, shared by all canonically chosen representatives of continuous self-maps, i.e.

**Lemma 4.9** Let \( f \in [T^\omega \to T^\omega] \). Then \( G(f) \) is sober and saturated.

**PROOF.** To prove that \( G(f) \) is sober, let \( m \in (G(f))_+ \). Say \( m = (n, 2l) \) (the case \( m = (n, 2l + 1) \) is proved similarly). Then \( l \in (f(e_n))_+ \). Now suppose that \((n', 2l + 1) \) is an arbitrary element of \( D_{(n, 2l)} \). Then \( e_n \) and \( e_{n'} \) have an upper bound in \( T^\omega \), and hence \( e_n \cup e_{n'} \in T^\omega \). Say \( e_n \cup e_{n'} = e_k \). Then \( e_{n'} \subseteq e_k \) and, since \( f \) is monotone, \( l \in (f(e_n))_+ \subseteq (f(e_k))_+ \). Whence \((n', 2l + 1) \in (G(f))_+ \). The fact that \( G(f) \) is saturated follows from the monotonicity of \( f \).

**Lemma 4.10** For all \( a, b, c \in T^\omega \):

(i) If \( a \) and \( b \) are both sober and saturated, then \((a \cap b)c = ac \cap bc \).

(ii) \((G(F(a)) \cap G(F(b)))c = ac \cap bc \)

(iii) If \( a \) is sober and saturated, then

\[
\forall c' \subseteq c \quad ac' = bc' \to (a \cap b)c = ac
\]

(iv) \( (G(F(a)) \cap a)b = ab \)

**PROOF.** (i) Clearly \((a \cap b)c \subseteq ac \cap bc \), since application is monotone. For the converse, let \( m \in (ac \cap bc)_+ = (ac)_+ \cap (bc)_+ \). Then there are \( e_n, e_l \subseteq c \) such that \((n, 2m) \in a_-, (l, 2m) \in b_-, D_{(n, 2m)} \subseteq a_+ \) and \( D_{(l, 2m)} \subseteq b_+ \). Now put \( e_k := e_n \cup e_l \). Then, as \( a \) and \( b \) are both saturated, it follows that \((k, 2m) \in a_+ \) and \((k, 2m) \in b_+ \). Moreover, by sobriety, we have that \( D_{(k, 2m)} \subseteq a_+ \) and \( D_{(k, 2m)} \subseteq a_+ \). Whence \((k, 2m) \in a_+ \cap b_+ = (a \cap b)_+ \), and \( D_{(k, 2m)} \subseteq a_+ \cap b_+ = (a \cap b)_+ \). Therefore \( m \in (ac \cap bc)_+, \) since \( e_k \subseteq c \). Thus \((ac \cap bc)_- \subseteq ((a \cap b)c)_- \).

\((ac \cap bc)_+ \subseteq ((a \cap b)c)_+ \) is proved similarly.

For (ii) combine the preceding lemma with (i) and the fact that \( T^\omega \) is reflexive, i.e. \( F \circ G = id_{[T^\omega \to T^\omega]} \).

(iii) \((a \cap b)c \subseteq ac \) follows by monotonicity. For the converse, let \( m \in (ac)_- \). Then \( m \in (bc)_- \) and therefore \((n, 2m) \in b_- \) and \( D_{(n, 2m)} \subseteq b_+ \), for some \( e_n \subseteq c \). Then also \( m \in b e_n = ae_n \). Thus \((l, 2m) \in a_- \) and \( D_{(l, 2m)} \subseteq a_+ \), for some \( e_l \subseteq e_n \). Hence \((n, 2m) \in a_- \) and \( D_{(n, 2m)} \subseteq a_+ \), since \( a \) is sober and saturated. This proves that \((n, 2m) \in (a \cap b)_- \) and \( D_{(n, 2m)} \subseteq (a \cap b)_+ \), for certain \( e_n \subseteq c \). Whence \( m \in ((a \cap b)c)_- \). So \((ac)_- \subseteq ((a \cap b)c)_- \) and \((ac)_+ \subseteq ((a \cap b)c)_+ \) is proved similarly.

(iv) follows again from (iii).

In the same way as in the case of \( H_\omega \), we can apply this lemma in order to show that every pair of equivalent functionals is connected by a sequence of functionals of the same type.
**Theorem 4.11** Let $M$ be a $ca^+$-expansion of $T^\omega$. Then $M$ is ft-extensional.

**PROOF.** Let $a, b \in IT_{n+1}$ be equivalent. Then

\[
\begin{array}{ccc}
  a & \quad & G(F(a)) \\
  \quad & / \quad & / \\
G(F(a)) \cap a & \quad & G(F(a)) \cap G(F(b)) \\
\quad & / \quad & / \\
G(F(b)) \cap b & \quad & b
\end{array}
\]

constitutes a $n + 1$-connection by lemma 4.10. Hence $a \leftrightarrow_{n+1} b$. □

In the next section we shall show that ft-extensionality is by no means an intrinsic property of ca's, i.e. that there exists a very concrete class of cas no member of which has this property.

## 5 Coherence Spaces

We have so far seen that quite a number of well-known ca’s exhibit the property of ft-extensionality. The question then is whether this is necessarily so, i.e. whether ft-extensionality is an intrinsic property of ca’s, or whether this is due to the particular choice of examples. In this section we shall show that the latter is the case, that, as a matter of fact, there is a whole class of ca’s - the class of reflexive coherence spaces - each member of which is not ft-extensional.

There is a second question which we wish to address in this section, namely the question of the interdependencies between certain degrees of extensionality within the hierarchy of ca’s.

In ca’s, every algebraic function is representable. In so-called $\lambda$-algebras, this representation of algebraic functions can be given uniformly by the interpretation of $\lambda$-terms. In $\lambda$-models - or, equivalently, *weakly extensional* $\lambda$-algebras - there is even a canonical representation for every representable function, the association of which to any representable function being representable itself. In the ultimate structures of this hierarchy, *extensional* ca’s, every representable function has a unique representative. We thus end up with three degrees of extensionality: ft-extensionality, weak extensionality and (global) extensionality. There is the well-known fact that extensionality implies weak extensionality. This however - and showing this is the second aim of this section - is the only dependency. That is,
(1) is known from the literature: e.g. $P_\omega$ is weakly extensional without being extensional (cf. Barendregt [1984, ch.18, §1]), and in the previous section we have already encountered an example for (2): $H_\omega$ is ft-extensional but not weakly extensional (cf. Koymans [1984]). (3) will follow from the remainder of this section.

Let us first recall some of the definitions concerning coherence spaces and briefly review the theory of $\lambda$-structures obtained from them. Our exposition is based in part on Girard [1986] and Girard, Taylor and Lafont [1989].

**Definition 5.1** A coherence space is a set (of sets) $\mathcal{A}$ which satisfies:

i) **Down-closure**: if $X \in \mathcal{A}$ and $X' \subseteq X$, then $X' \in \mathcal{A}$,

ii) **Binary completeness**: if $\mathcal{A} \subseteq \mathcal{A}$ and if for all $X, X' \in \mathcal{A}' (X \cup X' \in \mathcal{A})$, then $\bigcup \mathcal{A}' \in \mathcal{A}$. $\square$

In particular, we have the undefined object, $\emptyset \in \mathcal{A}$. One may therefore consider $\mathcal{A}$ as a cpo (partially ordered by inclusion), and as such it is algebraic, i.e. any set is the directed union of its finite subsets. So coherence spaces are a very special sort of cpos. However, they are better regarded as undirected graphs.

Elements of the set $\bigcup \mathcal{A}$ are called atoms. This set will also be denoted by $|\mathcal{A}|$. The compatibility relation between atoms is defined by

$$a \preceq a' \ (\text{mod} \ \mathcal{A}) \iff \{a, a'\} \in \mathcal{A}.$$  

This constitutes a reflexive symmetric relation on $|\mathcal{A}|$, so $|\mathcal{A}|, \preceq$ is a graph, called the web of $\mathcal{A}$.

The construction of the web of a coherence space is a bijection between coherence spaces and (reflexive symmetric) graphs. From the web one can recover the coherence space by

$$X \in \mathcal{A} \iff X \subseteq |\mathcal{A}| \land \forall a, a' \in X (a \preceq a').$$

So a coherence space $\mathcal{A}$ is the set of all coherent subsets of $|\mathcal{A}|$.

Whereas in Scott-style domain theory the functions between domains are exactly those which preserve directed joins, this is no longer the case here.

**Definition 5.2** Given two coherence space $\mathcal{A}$ and $\mathcal{B}$, a function $f$ from $\mathcal{A}$ to $\mathcal{B}$ is stable if

15
i) if $X \subseteq X' \in \mathcal{A}$, then $f(X) \subseteq f(X')$ (monotonicity)

ii) if $\mathcal{A}'$ is a directed subset of $\mathcal{A}$, then $f(\bigcup \mathcal{A}') = \bigcup f(\mathcal{A}')$ (directed union)

iii) if $X, X', X \cup X' \in \mathcal{A}$, then $f(X \cap X') = f(X) \cap f(X')$ (stability). □

Whereas the first two conditions are entirely familiar from the topological setting, the third - the stability property itself - does not have any obvious topological significance. However, if the ordered sets $\mathcal{A}$ and $\mathcal{B}$ are considered as categories, then i) states that $f$ is a functor, ii) that it preserves directed joins and iii) that it also preserves pullbacks.

Example 5.3 Clearly, every stable function is Scott-continuous. A typical example of a function which is continuous but not stable is the following: Let $2$ be the coherence space obtained from the set of atoms $\{0, 1\}$ and the universal compatibility relation. $2$ can be represented pictorially by

```
  {0, 1}  \\
   \downarrow \downarrow \\
{0} \quad {1}  \\
   \downarrow \downarrow \\
\emptyset
```

Let furthermore $\mathcal{B}$ be an arbitrary but not atomless coherence space and pick $b \in [\mathcal{B}]$. Define $f : \mathcal{A} \to \mathcal{B}$ by

$$f(X) = \begin{cases} 
\{b\} & \text{if } X \neq \emptyset \\
\emptyset & \text{otherwise}
\end{cases}$$

Then $f$ is Scott-continuous, as it is monotonic and preserves directed unions. However, $f$ does not meet the stability condition:

$$f(\{0\} \cap \{1\}) = f(\emptyset) = \emptyset \neq \{b\} = f(\{0\}) \cap f(\{1\}). □$$

As such, the collection of stable functions from $\mathcal{A}$ to $\mathcal{B}$ is not presented as a coherence space. However, it can be considered as belonging to this very special class of spaces. Here the crucial observation is that for a given stable function, a fixed argument and a finite portion of its value there is a finite least part of that argument which suffices to give that value portion. Or loosely speaking, if one has some information on the output, one knows which part of the input was used to get it.
Lemma 5.4 (Normalisation Lemma) If $f$ is a stable function from $A$ to $B$, $X \in A$ and $b \in f(X)$, then there is a finite $Z \subseteq X$ such that $b \in f(Z) \land \forall Y \subseteq X (b \in f(Y) \rightarrow Z \subseteq Y)$.

PROOF. See e.g. Girard [1986]. □

Since a stable function $f$ from $A$ to $B$ is determined by its values on least finite sets, $f$ has a unique graph representation, called trace. This gives a bijection $T$ between the set of stable functions and the coherence space of traces with an obvious inverse $F$ which maps traces onto stable functions.

Theorem 5.5 (Representation Theorem) Let $A$ and $B$ be coherence spaces and $A_{fin}$ be the set of finite sets in $A$.

i) Define a compatibility relation on $A_{fin} \times |B|$ by $(Z, b) \sqsubseteq (Z', b')$ iff

1. $Z \cup Z' \in A \rightarrow b \sqsubseteq b'$,
2. $Z \cup Z' \in A \land b = b' \rightarrow Z = Z'$.

Moreover, let $[A \rightarrow, B]$ be the set defined by

$$X \in [A \rightarrow, B] \iff X \subseteq A_{fin} \times |B| \land \forall z, z' \in X (z \sqsubseteq z').$$

Then $[A \rightarrow, B]$ is a coherence space.

ii) Let $f$ be a stable function from $A$ to $B$. Define the trace of $f$, $T(f)$, by $T(f) = \{(Z, b) \in A_{fin} \times |B| \mid b \in f(Z) \land \forall Z' \subseteq Z (b \in f(Z') \rightarrow Z' \sqsubseteq Z)\}$.

Then $T(f) \in [A \rightarrow, B]$.

iii) Let $X \in [A \rightarrow, B]$. For $Y \in A$, define $F(X')(Y)$ by $F(X')(Y) = \{b \in |B| \mid \exists Y' \subseteq Y (Y', b) \in X\}$.

Then $F(X)$ is a stable function from $A$ to $B$.

iv) $T$ and $F$ are mutually inverse constructions, i.e. for all stable functions $f$ from $A$ to $B$ and all $X \in [A \rightarrow, B]$ one has $f = F(T(f))$ and $X = T(F(X))$.

PROOF. See e.g. Girard [1986]. □

Being a coherence space, $[A \rightarrow, B]$ is naturally ordered by inclusion. The bijection between $[A \rightarrow, B]$ and the stable functions from $A$ to $B$ then induces an order relation on the set of stable functions by $f \sqsubseteq g \leftrightarrow T(f) \subseteq T(g)$.

$\sqsubseteq$ is strictly coarser than the pointwise ordering. Note that $f \sqsubseteq g$ implies $f(X) \subseteq g(X)$ for all $X$. However, the reverse is false:
Example 5.6 Let 1 be the coherence space consisting of ∅ and {0}. Then there are three stable functions from 1 to itself:

\[ f_1(∅) = f_1(\{0\}) = ∅ \]
\[ f_2(∅) = f_2(\{0\}) = \{0\} \]
\[ f_3(∅) = ∅ f_3(\{0\}) = \{0\}. \]

Their respective traces are \( T(f_1) = ∅, T(f_2) = ∅(∅, 0) \) and \( T(f_3) = ∅(∅, 0) \). Typically, \( f_3 \subseteq f_2 \) fails, while \( f_3(X) \subseteq f_2(X) \) for \( X \in 1 \). Hence \([1 →∗, 1]\) can be represented by

\[
\begin{array}{c}
\{∅, 0\} \\
\downarrow \\
∅ \\
\{∅, 0\}
\end{array}
\]

Roughly speaking, a function which is \( \subseteq \)-bigger is just 'wider' (in that more elements have at least a given value), whereas a pointwise-bigger function can be 'higher' as well.

Coherence spaces can be used to give a semantics to the untyped λ-calculus. Here one can proceed in the same way as in the case of reflexive complete lattices or reflexive complete partial orders, that is

Definition 5.7 Let \( A \) be a coherence space.

1. \( A \) is reflexive if \([A →∗, A]\) is a retract of \( A \), i.e. there are stable functions

\[ F : A →∗ [A →∗, A] \]
\[ G : [A →∗, A] → A \]

such that \( F \circ G = id_{[A →∗, A]} \).

2. Let \( A \) be reflexive via the maps \( F \) and \( G \).

1. For \( X, Y \in A \), define

\[ X * Y = \{a ∈ A| ∃ Y' ⊆ Y((Y', a) ∈ F(X))\}. \]

2. Let \( ρ \) be a valuation in \( A \). Define the interpretation \( [ ]_ρ : A → A \) by induction as follows

\[ [x]_ρ = ρ(x) \]
\[ [MN]_ρ = [M]_ρ * [N]_ρ \]
\[ [λx.M]_ρ = G(T(λX ∈ A[M]_{ρ(x := X)})). \]

□
Checking that $\square$ is well-defined is a boring but straightforward exercise. For this and the following theorem we refer the reader: to e.g. Girard [1986].

**Theorem 5.8** Let $\mathcal{A}$ be a reflexive coherence space via $F$, $G$ and let $\mathcal{M} = (\mathcal{A}, \ast, \square)$. Then

i) $\mathcal{M}$ is a $\lambda$-model.

ii) $\mathcal{M}$ is extensional iff $G \circ F = id_{\mathcal{A}}$. □

Whereas $\ast$ is continuous in both its arguments in the case of e.g. complete lattices, it is stable here.

**Proposition 5.9** Let $\mathcal{A}$ be a reflexive coherence space via $F$, $G$. Then $\ast$ is stable in both its arguments. In particular, one has that for all $X, X', Y, Y' \in \mathcal{A}$, if $X \cup X', Y \cup Y' \in \mathcal{A}$, then

$$(X \cap X') \ast (Y \cap Y') = X \ast Y \cap X' \ast Y'. $$

**PROOF.** Since $X \ast Y = F(F(X))(Y)$ and $F(F(X))$ is stable, it follows that $\ast$ is stable in its second argument, and, since $F$ is monotone and preserves directed unions, it follows that $\ast$ is monotone and directed union preserving in its first argument. In order to prove the stability condition for the first argument, it is sufficient to prove the second claim.

Thus let $X, X' \in \mathcal{A}$ and $Y, Y' \in \mathcal{A}$ be bounded above. Then

$$(X \cap X') \ast (Y \cap Y') \subseteq X \ast Y \cap X' \ast Y'$$

follows by monotonicity. Conversely, if $a \in X \ast Y \cap X' \ast Y'$, this means that

$$(Y_1, a) \in F(X), (Y_2, a) \in F(X'),$$

for some $Y_1 \subseteq Y$ and $Y_2 \subseteq Y'$. Then

$$(Y_1, a) \subseteq (Y_2, a),$$

since $(Y_1, a), (Y_2, a) \in F(X \cup X')$. Whence $Y_1 = Y_2$, since $Y_1 \cup Y_2 \subseteq Y \cap Y' \subseteq \mathcal{A}$. It follows that $Y_1 \subseteq Y \cap Y'$, and, as $F$ is stable, also

$$(Y_1, a) \in F(X) \cap F(X') = F(X \cap X').$$

Therefore $a \in (X \cap X') \ast (Y \cap Y')$. □

Coherence spaces and rigid embeddings form a category. Girard [1986] showed that the stable function space constructor $[\cdot, \rightarrow, \cdot]$, the cartesian product constructor $\times$ and the coalesced sum constructor $+$ are functorial in this category. Moreover, these functors are well-behaved in the sense that recursive equations in this category written using them can be solved using standard limit constructions. In particular, the equation $\mathcal{A} = [\mathcal{A} \rightarrow, \mathcal{A}]$ has nontrivial solutions which, according to theorem 5.8, provide us with nontrivial extensional $\lambda$-models or equivalently, nontrivial extensional $\ast$’s.

**Example 5.10** Let $\mathcal{A}_{0} = 1$ and $\mathcal{A}_{n+1} = [\mathcal{A}_{n}, \mathcal{A}_{n}]$. One can define two stable functions $\phi_{S}, \phi_{P}$ between $\mathcal{A}_{0}$ and $\mathcal{A}_{1}$ by $\phi_{S}(\emptyset) = \phi_{P}(\emptyset) = \emptyset$, $\phi_{S}(\{\emptyset\}) = \{(\emptyset, 0)\}$ and $\phi_{P}(\{\emptyset\}) = \{(\emptyset, 0)\}$. One then obtains two solutions $\mathcal{A}_{S}, \mathcal{A}_{P}$ to the equation $\mathcal{A} = [\mathcal{A} \rightarrow, \mathcal{A}]$ by taking the inverse limit $\lim_{\rightarrow} (\mathcal{A}_{n}, \phi_{n})$ with initial
projection \( \phi_S \) and \( \phi_P \), respectively. The subscripts \( S \) and \( P \) are reminiscent of the two analogue solutions which were given respectively by Scott [1972] and Park [1976] to the equation \( D = [D \to D] \) in the category of Scott domains.

In the remainder of this section we shall now assume that \( \mathcal{M} \) is a nontrivial (not necessarily extensional) ca which is obtained in the canonical way from a reflexive coherence space. That is, \( \mathcal{M} = (\mathcal{A}, *) \), \(|\mathcal{A}| \neq 0\), \( \mathcal{A} \) is a reflexive coherence space (via \( F,G \)) and \( * \) is as in definition 5.7. We shall prove that \( \mathcal{M} \) is not \( \mathcal{R} \)-extensional.

The first thing to note about \( \mathcal{M} \) is that \( \mathcal{A} \) is not closed under arbitrary unions or, to put it in another way, the web of \( \mathcal{A} \) is not the universal one.

**Lemma 5.11** There are \( a, a' \in |\mathcal{A}| \) such that \( \neg (a \subseteq a') \).

**Proof.** If the web of \( \mathcal{A} \) would be the universal one, then \( \mathcal{A} \) would be a complete lattice, and, as \( \mathcal{A} \) is reflexive, \([\mathcal{A} \to, \mathcal{A}]\) would be a complete lattice too. It is therefore sufficient to observe that \([\mathcal{A} \to, \mathcal{A}]\) is not closed under arbitrary unions.

Let \( a \in |\mathcal{A}| \). Then \( \{a\} \in \mathcal{A} \). So \((\emptyset, a), (\{a\}, a) \in \mathcal{A}_{\text{fin}} \times |\mathcal{A}| \) and therefore \( \{(\emptyset, a), (\{a\}, a) \} \in [\mathcal{A} \to, \mathcal{A}] \). But as \((\emptyset, a) \) and \((\{a\}, a) \) are incompatible by 5.5i1, it follows that \( \{(\emptyset, a), (\{a\}, a) \} \notin [\mathcal{A} \to, \mathcal{A}] \). \( \Box \)

Let us now expand \( \mathcal{M} \) to a \( \mathcal{C} \)-ca, say \( \mathcal{M}' \). Then, the next thing to note about such an expansion is that our natural numbers are not bounded above.

**Proposition 5.12** \( \forall X, X' \in \mathcal{N}(X \cup X' \in \mathcal{A} \to X = X') \).

**Proof.** Let \( a, a' \in |\mathcal{A}| \) be incompatible and \( X, X' \in \mathcal{N} \) be bounded above. Assume \( X \neq X' \in \mathcal{A} \) and put \( Y = D \star \{a\} \star \{a'\} \star X \). Then
\[
\{a\} = Y \star X' \subseteq Y \star (X \cup X'),
\]
\[
\{a'\} = Y \star X \subseteq Y \star (X \cup X'),
\]
since application is monotone. Thus \( a, a' \) are compatible. Contradiction. \( \Box \)

As a matter of fact, this already holds for finite approximants of the natural numbers. That is, we can carefully choose finite subsets of the natural numbers such that no pair in the resulting collection has an upper bound. This construction makes again essentially use of the fact that we have at our disposal incompatible atoms in \(|\mathcal{A}|\) together with the \( D \) operator.

**Definition 5.13** Choose incompatible \( a, a' \in |\mathcal{A}| \) and put
\[
Y_\Gamma = D \star \{a\} \star \{a'\} \star 0.
\]
Define \( \Gamma \subseteq \mathcal{A}_{\text{fin}} \) by
\[
Z \in \Gamma \iff (Z, a) \in F(Y_\Gamma) \lor (Z, a') \in F(Y_\Gamma).
\]
Lemma 5.14
i) $\forall X \in N \exists Z \subseteq X (Z \in \Gamma)$
ii) $\forall Z, Z' \in \Gamma (Z \cup Z' \in \mathcal{A} \rightarrow Z = Z')$
iii) $\emptyset \not\in \Gamma$

PROOF. (i) Depending on whether $X = 0$ or $X \neq 0$, one has that $Y_\Gamma \ast X = \{a\}$ or $Y_\Gamma \ast X = \{a'\}$. Thus $(Z, a) \in F(Y_\Gamma)$ or $(Z, a') \in F(Y_\Gamma)$, for some $Z \subseteq X$. Hence $Z \in \Gamma$, for some $Z \subseteq X$.
(ii) Let $(Z, a_1), (Z', a_2) \in F(Y_\Gamma)$ for $a_1, a_2 \in \{a, a'\}$. As $F(Y_\Gamma)$ is a set of compatible atoms, it follows that $(Z, a_1) \subset (Z', a_2)$. Assume $Z \cup Z' \in \mathcal{A}$. Then $a_1 \subset a_2$ and hence $a_1 = a_2$, since $a$ and $a'$ are incompatible. So $Z = Z'$.
(iii) If $(0, a) \in F(Y_\Gamma)$, then $a \in Y_\Gamma \ast \emptyset \subseteq Y_\Gamma \ast 0 = \{a'\}$, and if $(0, a') \in F(Y_\Gamma)$, then $a' \in Y_\Gamma \ast \emptyset \subseteq Y_\Gamma \ast 1 = \{a\}$, i.e. $a = a'$. Hence $\emptyset \not\in \Gamma$. □

The existence of this set of finite approximants allows us to construct two $\subseteq$-incomparable but equivalent type-1 functions. They will be both constant 0 on $N$, however, whereas one will be constant 0 on the whole of $\mathcal{A}$, the other will exhibit this behaviour only for those arguments which are approximated by members of $\Gamma$.

Proposition 5.15 There are equivalent $X, X' \in IT_1$ such that $X \ast \emptyset = 0$ and $X' \ast \emptyset = \emptyset$.

PROOF. Put $X := G(T(\lambda Y.0))$ and define $f : \mathcal{A} \rightarrow \mathcal{A}$ by

$$f(Y) = \begin{cases} 0 & \text{if } \exists Z \in \Gamma Z \subseteq Y \\ \emptyset & \text{otherwise} \end{cases}$$

Observe that $f$ is stable: for the stability condition apply lemma 5.14(ii). Thus $X' := G(T(f)) \in \mathcal{A}$. Moreover, $X' \ast Y = 0$ for all $Y \in N$, by lemma 5.14(i). Thus $X =_1 X'$. But $X' \ast \emptyset = \emptyset$ by lemma 5.14(iii). □

Finally, we shall show that the finite type structures do not coincide in $\mathcal{M}'$. The reason for this disagreement is that we have in $\mathcal{M}'$ a type-2 functional which distinguishes type-1 functions according to how much input is needed to compute the value at 0, i.e. a functional that takes the trace of a type-1 function into consideration rather than its applicative behaviour on $N$.

Definition 5.16 Define $h : \mathcal{A} \rightarrow \mathcal{A}$ by

$$h(X) = \begin{cases} 0 & \text{if } \exists Z \in \Gamma (Z \subseteq X \ast \emptyset) \\ 1 & \text{if } \exists Z \in \Gamma (Z \not\subseteq X \ast \emptyset \land Z \subseteq X \ast 0) \\ \emptyset & \text{otherwise} \end{cases}$$

Proposition 5.17 $h$ is stable.
PROOF. First observe that, if \( X, X' \in \mathcal{A} \) are bounded above, \( Y, Y' \in \{\emptyset, 0\} \) and \( Z, Z' \in \Gamma \), then
\[
Z \subseteq X * Y \land Z' \subseteq X' * Y' \longrightarrow Z' \subseteq (X \cap X') * (Y \cap Y'). \tag{1}
\]
For, if \( Z \subseteq X * Y \) and \( Z' \subseteq X' * Y' \), then \( Z, Z' \subseteq (X \cup X') * (Y \cup Y') \), and hence, \( Z = Z' \), by lemma 5.14(ii). Thus
\[
Z' \subseteq X * Y \cap X' * Y' = (X \cap X') * (Y \cap Y')
\]
by proposition 5.9.

It follows that \( h \) is well-defined (in (1), take \( X = X', Y = \emptyset \) and \( Y' = 0 \)).

**Monotonicity:** Observe that the only nontrivial case, where \( X' \subseteq X \) and \( h(X') = 1 \), is again covered by (1).

**Directed union:** Let \( \mathcal{A}' \subseteq \mathcal{A} \) be directed. Then \( \bigcup h(\mathcal{A}') \subseteq h\left(\bigcup \mathcal{A}'\right) \), since \( h \) is monotone. The converse inclusion follows from the fact that \( Z \in \Gamma \) is finite and the preservation of directed unions by \( * \).

**Stability:** Let \( X, X' \in \mathcal{A} \) be such that \( X \cup X' \in \mathcal{A} \). Clearly, \( h(X) \cap h(X') = h(X \cap X') \) if \( h(X) = 0 \) or \( h(X') = 0 \). So assume that \( h(X), h(X') \in \{0, 1\} \). Then there are \( Z, Z' \in \Gamma \) such that \( Z \subseteq X * 0 \) and \( Z' \subseteq X' * 0 \). Hence \( Z' \subseteq (X \cap X') * 0 \) by (1). Therefore \( h(X \cap X') \in \{0, 1\} \). Thus, as \( 0 \not\leq 1, 1 \not\leq 0 \) and \( h(X \cap X') \subseteq h(X), h(X') \), it follows that \( h(X) = h(X \cap X') = h(X') \).

Whence \( h(X \cap X') = h(X) \cap h(X') \). □

We have now arrived at the position where we have all the necessary ingredients at our disposal in order to prove that

**Theorem 5.18** \( IT(\mathcal{M}') \neq ET(\mathcal{M}') \)

**PROOF.** \( G(T(h)) \in \mathcal{A} \), since \( h \) is stable. Moreover, \( G(T(h)) \in IT_1 \); let \( X \in IT_1 \). Then \( X * 0 \in \mathcal{N} \). Hence \( Z \subseteq X * 0 \) for some \( Z \in \Gamma \). Thus
\[
G(T(h)) * X \in \{0, 1\}.
\]

Now let \( X, X' \in IT_1 \) be as in proposition 5.15. Then \( h(X) = 0 \) and \( h(X') = 1 \). Thus
\[
G(T(h)) * X \not= G(T(h)) * X',
\]
and therefore \( IT_2 \neq ET_2 \). □

What we have shown is that the class of \( \lambda \)-models obtained in the canonical way from reflexive coherence spaces lacks the property of ft-extensionality. And as this class is rich enough to include extensional models, we may conclude that

**Corollary 5.19** Extensionality does not imply ft-extensionality, i.e. there is an extensional \( \mathcal{M} \) such that \( IT(\mathcal{M}) \neq ET(\mathcal{M}) \). □
References

J. Baeten and B. Boerboom, \( \Omega \) can be anything it shouldn't be, *Indagationes Mathematicae*, vol. 41 (1979), pp. 111-120.


The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartisch
LP-90-04 Arne Ranta
LP-90-05 Patrick Blackburn
LP-90-06 Gennaro Chierchia
LP-90-07 Gennaro Chierchia
LP-90-08 Hermann Hendriks
LP-90-09 Paul Dekker
LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serge Lapierre
LP-90-13 Zhiheng Huang
LP-90-14 Jeroen Groenendijk, Martin Stokhof
LP-90-15 Maarten de Rijke
LP-90-16 Zhiheng Huang, Karen Kwant
LP-90-17 Paul Dekker

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten
ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellinx
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 Paul C. Gilmore

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van DEN NEHEUVEL, Gerard R. Renardel de la Valette
CT-90-03 Ricardo Gallavotti, Leen Torenvliet
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet
CT-90-05 Miquel Moro, Miquel Moro, Miquel Moro
CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-07 Kees Doets
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer

Other Prepublications
X-90-01 A.S. Troelstra
X-90-02 Jaap van Oosten
X-90-03 L.D. Beklemishev
X-90-04 Y. Nakamura, Solomon Passy
X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V. Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V. Yu. Shavrukov
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev
X-90-14 L.A. Chagrov
X-90-15 A.S. Troelstra

1991

Mathematical Logic and Foundations
ML-91-01 Yde Venema
ML-91-02 Alessandro Berarducci, Rineke Verbrugge
ML-91-03 Domenico Zambella
ML-91-04 Raymond Hoofman, Harold Schellinx
ML-91-05 A.S. Troelstra
ML-91-06 Inge Bethke

Computation and Complexity Theory
CT-91-01 Ming Li, Paul M.B. Vitanyi
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitanyi
CT-91-03 Ming Li, Paul M.B. Vitanyi

Other Prepublications
X-91-01 Alexander Chagrov, Michael Zakharyaschev
X-91-02 Alexander Chagrov
X-91-03 V. Yu. Shavrukov
X-91-04 K.N. Ignatiev
X-91-05 Johan van Benthem
X-91-06 A.S. Troelstra
X-91-07 A.S. Troelstra

The Disjunction Property of Intermediate Propositional Logics
On the Undecidability of the Disjunction Property of Intermediate Propositional Logics
Subalgebras of Diagonizable Algebras of Theories containing Arithmetic Partial Conservativity and Modal Logics
Temporal Logic
Annual Report 1990

Lectures on Linear Logic, Errata and Supplement