Institute for Logic, Language and Computation

ON THE STRUCTURE OF
Kripke models of Heyting arithmetic

Zoran Marković

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-92-03

University of Amsterdam
The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar
LP-90-03 Bobzien and Kaiser Concept Formation and Concept Composition
LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Giuseppe Chiariello The Variability of Imperatival Subjects
LP-90-07 Gemma Ciardelli Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montague Grammar
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague Grammar
LP-90-10 Theo M.V. Jansen Models for Discourse Markers
LP-90-11 Johan van Benthem General Dynamics
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhiheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Maarten de Rijke The Modal Logic of Inequality
LP-90-16 Zhiheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations

ML-90-01 Harald Schellinx Isomorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem
ML-90-03 Yde Venema Relational Games
ML-90-04 Maarten de Rijke Unary Interpretability Logic
ML-90-05 Domenico Zambella Sequences with Simple Initial Segments
ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order
ML-90-07 Maarten de Rijke Arithmetic, and a Solution to a Problem of P. Richman
ML-90-08 Harald Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Dick de Jongh, Duccio Pianigiani Solution of a Problem of David Guaspari
ML-90-10 Michiel van Lambalgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaSet

Computability and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas Associative Storage Modification Machines
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de La Vallée A Normal Form for PCSI Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Efficient Normalization of Database and Constraint Expressions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Reductions
CT-90-06 D. Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Keet Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Glaurt, Evert Rutten, Sieger van Denneheuvel, Peter van Emde Boas Theoretical Concepts of Concurrent Systems

Categorical Logic

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel Conditional, and a case study in conditional rewriting

Other Prepublications

X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal
Formulae
X-90-04 Annual Report 1989
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-07 V. Yu. Shavrovskiy The Lindenbaum Fixed Point Theorem is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Proofs
X-90-09 V. Yu. Shavrovskiy On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL1
X-90-11 Alessandra Carbone Provably Fixed points in \(\mathbb{N} \), revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Duhaparide's Cylindrical Modal Logic: Arithmetical Completeness, Fixed
Point Property, Craig's Property
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic

1991

Logic, Semantics and Philosophy of Language

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frans Veltman Defaults in Update Semantics
LP-91-03 Willem Groenendijk Dynamic Semantics and Circular Propositions
LP-91-04 Makoto Kurokawa The Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhiheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhiheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases
LP-91-08 Donato Ciardelli Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwland Semantics and Compositional Logic
LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindrical Modal Logic
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for
Interpretability Logic
ML-91-04 Raymond Hoofman, Harald Schellinx Collapsing Graph Models by Preorders
ON THE STRUCTURE OF

Kripke models of Heyting arithmetic

Zoran Marković
Department of Mathematics and Computer Science
University of Amsterdam
Matematički Institut
11000 Beograd, Knez Mihailova 35, Yugoslavia, p.f. 367
ON THE STRUCTURE OF KRIPKE MODELS:
OF HEYTING ARITHMETIC

ZORAN MARKOVIĆ

ABSTRACT

Since in Heyting Arithmetic (HA) all atomic formulas are decidable, a Kripke model for HA may be regarded classically as a collection of classical structures for the language of arithmetic, partially ordered by the submodel relation. The obvious question is then: are these classical structures models of Peano Arithmetic (PA)? And dually: if a collection of models of PA, partially ordered by the submodel relation, is regarded as a Kripke model, is it a model of HA? Some partial answers to these questions were obtained in [6], [3], [1] and [2]. Here we present some results in the same direction, announced in [7]. In particular, it is proved that the classical structures at the nodes of a Kripke model of HA must be models of $I\Delta_1$ (PA$^-$ with induction for provably Δ_1 formulas) and that the relation between these classical structures must be that of a Δ_1-elementary submodel.

§0. Introduction

It is easy to see that in a Kripke model of a theory with decidable atomic formulas, old elements can not acquire new atomic properties in later worlds. From a classical point of view, a Kripke model of such a theory may be regarded as a partially ordered collection of classical structures for the same language, where the partial order is introduced by the submodel relation (as opposed to a homomorphic embedding in the most general case). The intuitionistic satisfaction relation in such a model, usually called forcing, may be compared to Robinson's model theoretic forcing,

1The research reported here was supported through a project with the Science Fund of Serbia. The paper was written during the author's stay at University of Amsterdam financed by a Tempus project JEP 1941-91. The author wishes to express his gratitude to the logic group of FWI, UvA for their hospitality and in particular to his host, professor Troelstra and also professor de Jongh with whom he had some very useful discussions.
except that two new logical connectives are also considered: → and ∀, different from their classical counterparts. However, intuitionistic formulas may be regarded as having a meaning also in the classical structures, by the obvious identification of \(\varphi \rightarrow \psi \) with \(\neg \varphi \lor \psi \) and of \(\forall x \varphi(x) \) with \(\neg \exists x \neg \varphi(x) \).

Kripke models for Heyting arithmetic (HA) were explicitly considered for the first time by Smoryński in [8], where he defined a powerful collection operation, which he used to prove a number of metatheoretic results about HA. Collection enables one to construct new Kripke models for HA starting with some given models and even to construct completely new Kripke models starting with models of PA. However, the new models thus obtained can only have ordering with finitely many levels. Further, the universes at all but the terminal nodes (endpoints) must necessarily consist of the standard natural numbers, unless we also introduce the notion of "Kripke model of HA definable in a nonstandard model of PA", which complicates matters considerably.

It looks as if a better understanding of Kripke models of HA requires a better understanding of the classical structures at their nodes. However, forcing at a node coincides with the truth in the corresponding classical structure for a very restricted class of formulas only (it is shown here to be \(\Sigma_1 \)). Each formula whose decidability is not forced at some node may give rise to a whole Rieger-Nishimura lattice of intuitionistically non-equivalent formulas. Therefore the problem of what must hold in all classical structures at the nodes of a Kripke model of HA does not appear to be easy.

The natural assumption is that the classical structures are models of PA. Indeed, it was shown in [3] that a Kripke model of HA on a finite frame (with finitely many nodes) must have a model of PA at each node. However, in a recent paper [2] Buss shows that a Kripke model consisting of classical models for PA, need not even be a model of \(\Pi_1 \) induction. Obviously, the classical structures at the nodes, besides being models of PA or a significant fragment thereof (certainly all prenex theorems of HA have to be satisfied), must also be interrelated in some ways. It is shown here that if a node \(s \) is smaller than the node \(t \) (in the partial ordering of a Kripke model of HA), the classical structure associated with \(s \), must be a \(\Delta_1 \)-elementary submodel of the structure associated with \(t \).

The approach taken here is purely classical and we make an effort to use standard model-theoretic terminology wherever possible. That the results obtained in such a manner may still have intuitionistic relevance (via arithmetization and \(\Pi_2 \)-conservativeness of PA over HA) has been argued in [8] and [9].

§1. Notation

For simplicity, we may define a Kripke model for HA to be a structure

\[\mathfrak{M} = \langle T, 0, \leq; \mathfrak{A}_t : t \in T \rangle \]
where \((T, 0, \leq) \) is a tree with the least element 0 (cf. [5] and [8]) and for each \(t \in T \), \(\mathfrak{A}_t \) is a classical structure for the language of arithmetic such that for any \(s, t \in T \), \(s \leq t \) implies \(\mathfrak{A}_s \subseteq \mathfrak{A}_t \) (\(\mathfrak{A}_t \) is a submodel of \(\mathfrak{A}_t \)). Elements of \(T \) are called nodes.

The forcing (\(\Vdash \)) relation between a node \(t \) and a sentence \(\varphi \) in the extended language containing names for all elements of \(A_t \) (the universe of \(\mathfrak{A}_t \)), is defined in the usual way: forcing for atomic sentences coincides with truth (\(\models \)) in \(\mathfrak{A}_t \) (more precisely: \((\mathfrak{A}_t, A_t) \)), inductive clauses for \(\lor, \land \) and \(\exists \) are just like in standard truth definitions and:

\[
\begin{align*}
t \Vdash \varphi_1 \land \varphi_2 & \iff \text{for every } t' \geq t \ (t' \not\models \varphi_1 \text{ or } t' \not\models \varphi_2), \\
t \Vdash \forall x \varphi(x) & \iff \text{for every } t' \geq t \text{ and every } a \in A_{t'} \ (t' \not\models \varphi(a))
\end{align*}
\]

(We use the same notation for \(a \in A_t \) and its name in \(\varphi(a) \).)

By Heyting arithmetic we understand the intuitionistic first-order logic with the usual axioms for \(PA^- \) (care should be taken to put the obvious bound on the only existential quantifier) and the induction schema. Thus \(PA \) is obtained by adding to \(HA \) the Principle of Excluded Middle (or some other appropriate schema). \(HA \) may be formulated with symbols for all primitive recursive functions (cf. [10] or [11]) or with predicate symbols only (cf. [8]), but for the results presented here this would not make any difference.

If the free variables of a formula \(\varphi \) are not explicitly stated, we shall use \(\forall \bar{x} \varphi \) to denote its universal closure (i.e. we assume that all the free variables of \(\varphi \) are contained in the finite sequence \(\bar{x} \)). Thus we denote the decidability of \(\varphi \) by \(HA \vdash \forall \bar{x} (\varphi \lor \neg \varphi) \). In such contexts we shall use \(\bar{a} \in A_t \) to denote an appropriate finite sequence of elements of the universe \(A_t \), and \(\varphi(\bar{a}) \) to denote the formula in which the appropriate names for the elements of \(A_t \) are substituted.

All the other notation is as in [10] or [11], where also all the results that are invoked may be found.

\section*{§2. \(\Delta_0 \) - Formulas}

It was proved in [6] that in a Kripke model of a theory with decidable atomic formulas, the following holds for every node \(t \):

\textbf{Lemma 1.} (i) If \(\varphi(\bar{x}) \) is a quantifier-free formula and \(\bar{a} \in A_t \) then

\[
t \models \varphi(\bar{a}) \lor \neg \varphi(\bar{a})
\]

(ii) If \(\varphi(\bar{x}) \) is an existential formula (i.e. \(\varphi(\bar{x}) = \exists y_1 \ldots \exists y_n \psi(\bar{x}, y_1, \ldots, y_n) \), where \(\psi \) is quantifier-free) and \(\bar{a} \in A_t \):

\[
t \not\models \varphi(\bar{a}) \iff \mathfrak{A}_t \models \varphi(\bar{a})
\]

3
(iii) If \(\varphi(\bar{x}) \) is in prenex normal form and \(\bar{a} \in A_t \) then:

\[
t \models \varphi(\bar{a}) \quad \text{implies} \quad \mathcal{A}_t \models \varphi(\bar{a}).
\]

As an immediate consequence we have the following:

Corollary 1. If \(\mathcal{M} = \langle \{T, 0, \leq\}; \mathcal{A}_t : t \in T \rangle \) is a Kripke model of HA, then for every \(t \in T \):

\[
\mathcal{A}_t \models PA^-.
\]

However, in Intuitionistic predicate calculus formulas do not necessarily have equivalent prenex normal forms, so (iii) can not provide much information on the induction schema. Using an old Kleene's result that decidable formulas in HA are closed under bounded quantification, we prove:

Theorem 1. If \(\mathcal{M} = \langle \{T, 0, \leq\}; \mathcal{A}_t : t \in T \rangle \) is a Kripke model for HA and \(\varphi(\bar{x}) \) is a \(\Delta_0 \) formula (i.e., with all the quantifiers bounded), the following holds for any \(s, t \in T \) and \(\bar{a} \in A_t \):

(i) \(t \models \varphi(\bar{a}) \lor \neg \varphi(\bar{a}) \)

(ii) \(t \models \varphi(\bar{a}) \iff \mathcal{A}_t \models \varphi(\bar{a}) \)

(iii) \(t \leq s \) implies \(\mathcal{A}_t \models \varphi(\bar{a}) \iff \mathcal{A}_s \models \varphi(\bar{a}) \) (i.e. \(\mathcal{A}_t \vdash \Delta_0 \mathcal{A}_s \))

Proof (i) Starting with Lemma 1(i), we prove that the set of decidable formulas is closed under propositional connectives and bounded quantifiers.

Cases where \(\varphi = \exists x < y \psi \) or \(\varphi = \forall x < y \psi \) for decidable \(\psi \) are theorems *150. and *151. in [4].

If \(\varphi = \varphi_1 \lor \varphi_2 \) where \(\varphi_1, \varphi_2 \) are decidable formulas and \(t \not\models \varphi_1 \lor \varphi_2 \), then \(t \not\models \varphi_1 \) and \(t \not\models \varphi_2 \) and by the decidability of \(\varphi_1, \varphi_2 \), \(t \models \neg \varphi_1 \land \neg \varphi_2 \), which is equivalent to \(t \models (\varphi_1 \lor \varphi_2) \).

If \(\varphi = \varphi_1 \land \varphi_2 \) and \(t \not\models \varphi_1 \land \varphi_2 \), then \(t \not\models \varphi_1 \) or \(t \not\models \varphi_2 \). In the first case \(t \models \neg \varphi_1 \) and in the second \(t \models \neg \varphi_2 \) so \(t \models \neg \varphi_1 \lor \neg \varphi_2 \) which implies \(t \models (\varphi_1 \land \varphi_2) \).

If \(\varphi = \varphi_1 \rightarrow \varphi_2 \) and \(t \not\models \varphi_1 \rightarrow \varphi_2 \), it follows that for some \(s \leq t \), \(s \not\models \varphi_1 \) and \(s \not\models \varphi_2 \). By decidability of \(\varphi_1 \) and \(\varphi_2 \) it follows that \(t \not\models \varphi_1 \) and \(t \not\models \varphi_2 \), so for every \(t' \geq t \), \(t' \not\models \varphi_1 \) and \(t' \not\models \varphi_2 \), i.e., \(t \models (\varphi_1 \rightarrow \varphi_2) \).

(ii) Induction on the complexity of \(\varphi \). By Lemma 1(ii) the Theorem holds if \(\varphi \) is quantifier-free.

Let \(\varphi = \exists x < a \psi(x) \) and suppose \(t \models \exists x < a \psi(x) \). By definition this means that for some \(b \in A_t \), \(t \models b < a \) and \(t \models \psi(b) \). This is equivalent to \(\mathcal{A}_t \models b < a \) and, by induction hypothesis, \(\mathcal{A}_t \models \psi(b) \), which means \(\mathcal{A}_t \models \exists x < a \psi(x) \).

Let \(\varphi = \forall x < a \psi(x) \) and suppose \(t \models \forall x < a \psi(x) \). This implies that for every \(b \in A_t \), \(t \models b < a \) implies \(t \models \psi(b) \). So, if \(t \models b < a \) then, by induction hypothesis,
$\mathfrak{A}_t \models \psi(b)$. If $t \not\models b < a$, we have $\mathfrak{A}_t \models \neg b < a$. In any case $\mathfrak{A}_t \models b < a \rightarrow \psi(b)$, for every $b \in A_t$, so $\mathfrak{A}_t \models \forall x < a \psi(x)$. Suppose now $\mathfrak{A}_t \vdash \forall x < a \psi(x)$ and consider the formula $\exists x < a \neg \psi(x)$. If $t \not\models \exists x < a \neg \psi(x)$ then for some $b \in A_t$, $t \not\models b < a \land \neg \psi(b)$.

By induction hypothesis then $\mathfrak{A}_t \not\models \psi(b)$, so $\mathfrak{A}_t \not\models b < a \land \neg \psi(b)$ contradicting $\mathfrak{A}_t \models \forall x < a \psi(x)$. Therefore, by (i), $t \not\models \exists x < a \neg \psi(x)$. By intuitionistic logic, this is equivalent to $t \not\models \forall x < a \neg \psi(x)$. As ψ is decidable (by (i)) it follows that $t \not\models \forall x < a \psi(x)$.

Let $\varphi = \varphi_1 \rightarrow \varphi_2$. If $t \models \varphi_1 \rightarrow \varphi_2$ then $t \not\models \varphi_2$ or $t \not\models \varphi_1$ and by induction hypothesis we have $\mathfrak{A}_t \not\models \varphi_2$ or $\mathfrak{A}_t \not\models \varphi_1$, so $\mathfrak{A}_t \not\models \varphi_1 \rightarrow \varphi_2$. Suppose now that $\mathfrak{A}_t \models \varphi_1 \rightarrow \varphi_2$. If $\mathfrak{A}_t \not\models \varphi_2$, by induction hypothesis we have $t \not\models \varphi_2$. If $\mathfrak{A}_t \models \neg \varphi_1$, by induction hypothesis we have $t \not\models \varphi_1$ and by (i), $t \not\models \neg \varphi_1$. In either case we get $t \not\models \varphi_1 \rightarrow \varphi_2$. The cases where the principal connective of φ is \lor or \land are trivial.

(iii) The fact that $\mathfrak{A}_t \subseteq \mathfrak{A}_s$ for $t \leq s$ implies that (iii) holds for quantifier-free formulas (with parameters from A_t). The proof proceeds by induction on the number of (bounded) quantifiers in φ.

Let $\varphi = \exists x < a \psi(x)$ and suppose $\mathfrak{A}_t \models \exists x < a \psi(x)$ ($t \leq s$, $s \in A_t$). By (ii), it follows that $s \models \exists x < a \psi(x)$. Then, as $t \leq s$, $t \not\models \exists x < a \psi(x)$, so, by (i), $t \not\models \exists x < a \psi(x)$. Applying (ii) again, we get $\mathfrak{A}_t \models \exists x < a \psi(x)$. The converse is trivial, by classical model theory and induction hypothesis on $\psi(x)$, \mathfrak{A}_t being a submodel of \mathfrak{A}_s.

Let $\varphi = \forall x < a \psi(x)$ and suppose $\mathfrak{A}_t \models \forall x < a \psi(x)$. If $\mathfrak{A}_t \not\models \forall x < a \psi(x)$ then $\mathfrak{A}_t \not\models \exists x < a \neg \psi(x)$ and we may apply the above argument, obtaining the contradiction. Thus $\mathfrak{A}_t \models \forall x < a \psi(x)$. The converse is trivial, as above.

§3. Δ_1 - Formulas

For arbitrary formulas $\psi(y)$ and $\chi(y)$ in the language of arithmetic let us define the sentences:

$$\Delta(\psi, \chi) \overset{\text{def}}{=} \forall x(\exists y \psi(y) \rightarrow \forall y \chi(y)),$$

$$\mathcal{P}_{\Delta}(\psi, \chi) \overset{\text{def}}{=} \forall y \forall x \exists u \exists v ((\psi(y) \rightarrow \chi(x)) \land (\chi(u) \rightarrow \psi(v))).$$

Lemma 2. If ψ and χ are Δ_0 formulas then:

(i) $HA \vdash \Delta(\psi, \chi)$ if $HA \vdash \mathcal{P}_{\Delta}(\psi, \chi)$

(ii) $HA \vdash \Delta(\psi, \chi)$ if $PA \vdash \Delta(\psi, \chi)$

Proof It is easy to check that $\mathcal{P}_{\Delta}(\psi, \chi) \rightarrow \Delta(\psi, \chi)$ is a theorem of intuitionistic logic. Also, HA being a subtheory of PA, $HA \vdash \Delta(\psi, \chi)$ implies $PA \vdash \Delta(\psi, \chi)$. From $PA \vdash \Delta(\psi, \chi)$ it follows, by classical logic, that $PA \vdash P\Delta(\psi, \chi)$. Since $P\Delta(\psi, \chi)$ is a
\(\Pi_2 \) sentence, we may use the fact that \(\text{PA} \) is conservative over \(\text{HA} \) with respect to \(\Pi_2 \) sentences (cf.[10],3.8.6) to obtain \(\text{HA} \vdash P \Delta(\psi, \chi) \).

We may now define \(\Delta_1 \) to be the set of all \(\Sigma_1 \) formulas \(\exists y \psi(x, y) \) such that for

\[
\text{PA} \vdash \Delta(\psi, \chi)
\]

(or equivalently \(\text{HA} \vdash \Delta(\psi, \chi) \)).

Using the preceding results (which includes the theorem that \(\text{PA} \) is conservative over \(\text{HA} \) with respect to \(\Pi_2 \) sentences) we can give a proof of what is sometimes called the Kleene-Post rule, as a formal analogon of the theorem of recursion theory.

Theorem 2. Let \(\varphi(x) \) be a formula in the language of \(\text{HA} \) such that for some \(\Delta_0 \) formulas \(\psi \) and \(\chi \):

\[
\text{HA} \vdash \forall x (\varphi(x) \leftrightarrow \exists y \psi(x, y)) \quad \text{and} \quad \text{HA} \vdash \forall x (\varphi(x) \leftrightarrow \exists y \chi(x, y))
\]

Then \(\text{HA} \vdash \forall x (\varphi(x) \lor \neg \varphi(x)) \).

Proof From the assumptions of the Theorem we may immediately derive:

\[
\text{HA} \vdash \forall x (\exists y \psi(x, y) \rightarrow \forall y \chi(x, y)), \text{ i.e.} \quad \text{HA} \vdash \Delta(\psi, \chi).
\]

Assume now that \(t \) is a node of an arbitrary Kripke model \(\mathcal{M} \) of \(\text{HA} \), and assume for some \(a \in A_t \), \(t \not\models \neg \varphi(a) \). This means that for some \(s \geq t \) in \(\mathcal{M} \), \(s \models \varphi(a) \). By the first assumption of the Theorem, since \(s \models \text{HA} \), it follows that \(s \models \exists y \psi(a, y) \), i.e., for some \(b \in A_s \), \(s \models \psi(a, b) \). By Theorem 1.(ii) this implies \(\mathcal{M}_s \models \psi(a, b) \) and \(\mathcal{M}_s \models \exists y \psi(a, y) \).

For any node \(t \) in \(\mathcal{M} \), by Lemma 2.(i), we have \(t \models P \Delta(\psi, \chi) \). As \(P \Delta(\psi, \chi) \) is a prenex formula, by Lemma 1.(iii), we get \(\text{HA} \models \Delta(\psi, \chi) \) and by classical logic \(\Delta(\psi, \chi) \).

Thus we may derive \(\mathcal{M}_t \models \forall y \chi(a, y) \). By classical model theory, using Theorem 1.(iii), it follows that \(\mathcal{M}_t \models \forall y \chi(a, y) \) and so \(\mathcal{M}_t \models \exists y \psi(a, y) \) and \(t \models \exists y \psi(a, y) \) as above. Using the first assumption of the Theorem we get \(t \models \varphi(a) \).

Remark. It is obvious from the proof that \(\psi \) and \(\chi \) may be taken to be \(\Sigma_1 \) and \(\Pi_1 \) formulas, respectively. Also, each of the exhibited quantifiers may be replaced by a string of quantifiers of the same type.

Corollary 2. If \(\psi \) is a \(\Sigma_1 \) formula and \(\chi \) is a \(\Pi_1 \) formula and \(\text{PA} \models \forall \exists (\psi \leftrightarrow \chi) \) then \(\text{HA} \models \forall \exists (\psi \leftrightarrow \chi) \) and \(\text{HA} \models \forall \exists (\neg \psi \leftrightarrow \neg \chi) \).

Proof Using Lemma 2. we obtain \(\text{HA} \models \Delta(\psi, \chi) \) and may then apply the proof of the preceding Theorem.
Remark. This argument does not extend any further, to arbitrary formula \(\varphi \) which is, provably in PA, equivalent to a \(\Delta_1 \) formula, since such \(\varphi \) may contain, for example, subformulas of the type \(\forall z (\xi \lor \neg \xi) \) for \(\xi \) of arbitrary complexity.

The converse to Theorem 2. actually also holds.

Theorem 3. Formulas decidable in HA are in \(\Delta_1(\text{HA}) \), i.e., if \(\text{HA} \vdash \forall \bar{x} (\varphi(\bar{x}) \lor \neg \varphi(\bar{x})) \) then there exist a \(\Sigma_1 \) formula \(\psi \) and a \(\Pi_1 \) formula \(\chi \) such that:

\[
\text{HA} \vdash \forall \bar{x} (\varphi(\bar{x}) \rightarrow \psi(\bar{x})) \quad \text{and} \quad \text{HA} \vdash \forall \bar{x} (\varphi(\bar{x}) \rightarrow \chi(\bar{x})).
\]

Proof. (provided by de Jongh). Using the standard procedure for eliminating the disjunction in HA we get:

\[
\text{HA} \vdash \forall \bar{x} \exists y ((y = 0 \rightarrow \varphi(\bar{x})) \land (\neg y = 0 \rightarrow \neg \varphi(\bar{x}))).
\]

Since \(y = 0 \) is decidable, we have \(\text{HA} \vdash \forall \bar{x} \exists y (y = 0 \leftrightarrow \varphi(\bar{x})) \).

Using the fact that HA is closed under Church's rule (cf. [10], 3.1.18. or 4.4.6.) and assuming \(\text{HA} \vdash T(x, y, z) \land T(x, y, z') \rightarrow z = z' \) (cf. [10], 1.3.10.), with some manipulation, we get that for some \(e \in \mathbb{N} \),

\[
\text{HA} \vdash \forall \bar{x} (\varphi(\bar{x}) \rightarrow \exists w (T(e, \bar{x}, w) \land Uw = 0)).
\]

The other part proceeds similarly, starting with \(\text{HA} \vdash \forall \bar{x} (\neg \varphi(\bar{x}) \lor \varphi(\bar{x})) \), and obtaining \(\text{HA} \vdash \forall \bar{x} (\varphi(\bar{x}) \leftrightarrow \forall w (\neg (T(d, \bar{x}, w) \land Uw = 0)) \) for some \(d \in \mathbb{N} \).

From Theorems 2. and 3. and the proof of Theorem 1.(i) we may immediately derive that the set of formulas \(\Delta_1(\text{HA}) \) is closed under propositional connectives and bounded quantification.

Lemma 3. If \(t \) and \(s \) are nodes of a Kripke model of HA and \(t \leq s \) then:

\[
\mathcal{A}_t \models_{\Delta_1} \mathcal{A}_s.
\]

Proof. Let \(\psi, \chi \in \Delta_0 \) be such that \(\text{HA} \vdash \Delta(\psi, \chi) \) and assume, for some \(a \in A_t \), \(\mathcal{A}_t \models \exists y \psi(a, y) \). Then \(s \models \forall y \psi(a, y) \), so \(t \notmodels \exists y \psi(a, y) \). By Theorem 2, it follows that \(t \models \exists y \psi(a, y) \) and so \(\mathcal{A}_t \models \exists y \psi(a, y) \).

We may restate now the results of this section as a strengthened version of Theorem 1.

Theorem 4. If \(\mathfrak{M} = (\{T, 0, \leq\}; \mathcal{A}_t : t \in T) \) is a Kripke model of HA and \(\varphi(\bar{x}) \in \Delta_1 \) and \(\psi(\bar{x}) \in \Sigma_1 \), the following holds for any \(t, s \in T \) and any \(a \in A_t \):

(i) \(t \models \varphi(\bar{a}) \lor \neg \varphi(\bar{a}) \)

(ii) \(t \models \psi(\bar{a}) \iff \mathcal{A}_t \models \psi(\bar{a}) \)
(iii) \(t \leq s \) implies \((\mathfrak{A}_t \models \psi(\bar{a})) \iff \mathfrak{A}_s \models \psi(\bar{a}) \) (i.e. \(\mathfrak{A}_t \prec_{\Delta_1} \mathfrak{A}_s \)).

The following two lemmas show that these results are in a sense the best possible, considering that HA+\(\neg \Pi_2 \) is consistent (cf. [10], 3.8.3).

Lemma 4. If in a Kripke model \(\mathfrak{M} = \langle \{T, \emptyset, \leq\}; \mathfrak{A}_t : t \in T \rangle \models \text{HA}, \]
\[s \leq t \text{ implies } \mathfrak{A}_s \prec_{\Delta_1} \mathfrak{A}_t \text{ for any } s, t \in T, \]
then \(\mathfrak{M} \models \text{M} \).

Proof We show that in this case Markov’s principle holds in \(\mathfrak{M} \) for all \(\Delta_1 \) formulas. Suppose for some \(t \in T, \bar{a} \in A_t \) and \(\varphi \in \Delta_1 \) that \(t \models \neg \exists x \varphi(x, \bar{a}) \). This means that for every \(t' \geq t \) there exists \(t'' \geq t' \) such that \(t'' \models \exists x \varphi(x, \bar{a}) \). Since \(\exists x \varphi(x, \bar{a}) \) is in \(\Delta_1 \) it follows that \(\mathfrak{A}_{t''} \models \exists x \varphi(x, \bar{a}) \). As \(t \leq t'' \), by the assumption of the lemma, we have \(\mathfrak{A}_t \models \exists x \varphi(x, \bar{a}) \) and \(t \models \exists x \varphi(x, \bar{a}) \). Therefore
\[0 \models \forall \bar{y} (\neg \exists x \varphi(x, \bar{y}) \to \exists x \varphi(x, \bar{y})). \]

Lemma 5. If in a Kripke model \(\mathfrak{M} = \langle \{T, \emptyset, \leq\}; \mathfrak{A}_t : t \in T \rangle \models \text{HA}, \]
we have for every \(t \in T, \) every \(\Pi_1 \) formula \(\varphi \) and every \(\bar{a} \in A_t \):
\[t \models \varphi(\bar{a}) \iff \mathfrak{A}_t \models \varphi(\bar{a}) \]
then \(\mathfrak{M} \models \text{M} \).

Proof We shall show that \(\mathfrak{M} \) satisfies the condition of Lemma 4. Let \(s \leq t \in T, \varphi \in \Delta_0 \) and suppose \(\mathfrak{A}_t \models \forall x \varphi(x, \bar{a}) \). By the assumption of this Lemma we have \(s \models \forall x \varphi(x, \bar{a}) \) and so \(t \models \forall x \varphi(x, \bar{a}) \) and again \(\mathfrak{A}_t \models \forall x \varphi(x, \bar{a}) \). Thus \(\mathfrak{A}_t \prec_{\Delta_1} \mathfrak{A}_t \).

We end with a theorem which one would not expect to be optimal in the sense in which Theorem 4. is.

Theorem 5. If \(t \) is a node in a Kripke model of HA then \(\mathfrak{A}_t \models 1 \Delta_1 \)

Proof \(\mathfrak{A}_t \models \text{PA}^-, \) by Corollary 1., so let \(\exists y \varphi(x, y) \) be a \(\Delta_1 \) formula and assume \(\mathfrak{A}_t \models \exists y \varphi(0, y) \land \forall x (\exists y \varphi(x, y) \to \exists y \varphi(x + 1, y)) \). If \(\mathfrak{A}_t \not\models \forall x \exists y \varphi(x, y) \) then for some \(a \in A_t \) we have \(\mathfrak{A}_t \not\models \exists y \varphi(a, y) \). Since \(\exists y \varphi(a, y) \) is a \(\Delta_1 \) formula, we derive \(t \not\models \exists y \varphi(a, y) \) and since it is also \(\Delta_1 \), we must have \(t \not\models \neg \exists y \varphi(a, y) \), by Theorem 2. This means \(t \models \exists x \neg \exists y \varphi(x, y) \). But in HA the least number principle holds for decidable formulas (cf. [1], 1.109a), so we may derive:
\[t \models \exists x (\neg \exists y \varphi(x, y) \land \forall z < x \neg \exists y \varphi(z, y)). \]
Therefore, for some \(c \in A_t \) we have \(t \models \neg \exists y \varphi(c, y) \) and \(t \models \forall z < c \exists y \varphi(z, y) \), since \(\exists y \varphi(z, y) \) is decidable. From the first we derive \(\mathfrak{A}_t \models \forall y \varphi(c, y) \) and from the second \(\mathfrak{A}_t \models \forall z < c \exists y \varphi(z, y) \). Obviously \(c \not= 0 \) since we assumed \(\mathfrak{A}_t \models \exists y \varphi(0, y) \).
Then \(t \models \exists y (y + 1 = c) \), i.e., \(c - 1 \in A_t \) and \(\mathfrak{A}_t \models \exists y \varphi(c - 1, y) \). However, by the assumption, this would imply \(\mathfrak{A}_t \models \exists y \varphi(c, y) \) which is a contradiction. Thus \(\mathfrak{A}_t \models \forall z \exists y \varphi(z, y) \).
References

Zoran Marković
Matematicki Institut
Knez Mihailova 35
11000 Beograd
Yugoslavia
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ILLC Prepublication Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-91-05 A.S. Troelstra</td>
<td>History of Constructivism in the Twentieth Century</td>
<td></td>
</tr>
<tr>
<td>ML-91-06 Inge Bethke</td>
<td>Finite Type Structures within Combinatorial Algebras</td>
<td></td>
</tr>
<tr>
<td>ML-91-07 Yde Venema</td>
<td>Modal Derivation Rules</td>
<td></td>
</tr>
<tr>
<td>ML-91-08 Inge Bethke</td>
<td>Going Stable in Graph Models</td>
<td></td>
</tr>
<tr>
<td>ML-91-09 V.Yu. Shavrukov</td>
<td>A Note on the Diagonalizable Algebras of PA and ZF</td>
<td></td>
</tr>
<tr>
<td>ML-91-10 Maarten de Rijke, Yde Venema</td>
<td>Sahni's Theorem for Boolean Algebras with Operators</td>
<td></td>
</tr>
<tr>
<td>ML-91-11 Rineke Verbrugge</td>
<td>Feasible Interpretability</td>
<td></td>
</tr>
<tr>
<td>ML-91-12 Johan van Benthem</td>
<td>Modal Frame Classes, revisited</td>
<td></td>
</tr>
<tr>
<td>Computation and Complexity Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-91-01 Ming Li, Paul M.B. Vitányi</td>
<td>Kolmogorov Complexity Arguments in Combinatorics</td>
<td></td>
</tr>
<tr>
<td>CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi</td>
<td>How to Share Concurrent Wait-Free Variables</td>
<td></td>
</tr>
<tr>
<td>CT-91-03 Ming Li, Paul M.B. Vitányi</td>
<td>Average Case Complexity under the Universal Distribution Equals</td>
<td></td>
</tr>
<tr>
<td>CT-91-04 Sieger van Dennenheuvel, Karen Kwast</td>
<td>Worst Case Complexity</td>
<td></td>
</tr>
<tr>
<td>CT-91-05 Sieger van Dennenheuvel, Karen Kwast</td>
<td>Weak Equivalence</td>
<td></td>
</tr>
<tr>
<td>CT-91-06 Edith Spaan</td>
<td>Weak Equivalence for Constraint Sets</td>
<td></td>
</tr>
<tr>
<td>CT-91-07 Karen L. Kwast</td>
<td>Census Techniques on Relativized Space Classes</td>
<td></td>
</tr>
<tr>
<td>CT-91-08 Kees Doets</td>
<td>The Incomplete Database</td>
<td></td>
</tr>
<tr>
<td>CT-91-09 Ming Li, Paul M.B. Vitányi</td>
<td>Levationis Laws</td>
<td></td>
</tr>
<tr>
<td>CT-91-10 John Tromp, Paul Vitányi</td>
<td>Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity</td>
<td></td>
</tr>
<tr>
<td>CT-91-11 Krzysztof R. Apt, Dino Pedreschi</td>
<td>A Randomized Algorithm for Two-Process Wait-Free Test-and-Set</td>
<td></td>
</tr>
<tr>
<td>CT-91-12 Hub Friat, Remko Scha, Martin van den Berg</td>
<td>Quasi-Injective Reductions</td>
<td></td>
</tr>
<tr>
<td>Computational Linguistics</td>
<td>Reasoning about Termination of Prolog Programs</td>
<td></td>
</tr>
<tr>
<td>CL-91-01 I.C. Scholtes</td>
<td>Kohonen Feature Maps in Natural Language Processing</td>
<td></td>
</tr>
<tr>
<td>CL-91-02 I.C. Scholtes</td>
<td>Neural Nets and their Relevance for Information Retrieval</td>
<td></td>
</tr>
<tr>
<td>CL-91-03 Hub Friat, Remko Scha, Martin van den Berg</td>
<td>A Formal Discourse Grammar tackling Verb Phrase Anaphora</td>
<td></td>
</tr>
<tr>
<td>Other Prepublications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-91-01 Alexander Chagrov, Michael Zakharyashev</td>
<td>The Disjunction Property of Intermediate Propositional Logics</td>
<td></td>
</tr>
<tr>
<td>X-91-02 Alexander Chagrov, Michael Zakharyashev</td>
<td>On the Undecidability of the Disjunction Property of Intermediate Propositional Logics</td>
<td></td>
</tr>
<tr>
<td>X-91-03 V. Yu. Shavrukov</td>
<td>Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic</td>
<td></td>
</tr>
<tr>
<td>X-91-04 K.N. Ignatiev</td>
<td>Partial Conservativity and Modal Logics</td>
<td></td>
</tr>
<tr>
<td>X-91-05 Johan van Benthem</td>
<td>Temporal Logic</td>
<td></td>
</tr>
<tr>
<td>X-91-06 Annual Report 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-91-07 A.S. Troelstra</td>
<td>Lectures on Linear Logic, Errata and Supplement</td>
<td></td>
</tr>
<tr>
<td>X-91-08 Giorgie Dzhaparidze</td>
<td>Logic of Tolerance</td>
<td></td>
</tr>
<tr>
<td>X-91-09 L.D. Beklemishev</td>
<td>On Bimal Provability Logics for (\Pi_1)-axiomatized Extensions of Arithmetical Theories</td>
<td></td>
</tr>
<tr>
<td>X-91-10 Michiel van Lambalgen</td>
<td>Independence, Randomness and the Axiom of Choice</td>
<td></td>
</tr>
<tr>
<td>X-91-11 Michael Zakharyashev</td>
<td>Canonical Formulas for K4, Part I: Basic Results</td>
<td></td>
</tr>
<tr>
<td>X-91-12 Herman Hendriks</td>
<td>Flexible Categorial Syntaxis en Semantiek: de grammatische definities van J.R. Zwarts en M.M. Moortgat</td>
<td></td>
</tr>
<tr>
<td>X-91-13 Max I. Kanovich</td>
<td>The Multiplicative Fragment of Linear Logic is NP-Complete</td>
<td></td>
</tr>
<tr>
<td>X-91-14 Max I. Kanovich</td>
<td>The Horn Fragment of Linear Logic is NP-Complete</td>
<td></td>
</tr>
<tr>
<td>X-91-15 V. Yu. Shavrukov</td>
<td>Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version</td>
<td></td>
</tr>
<tr>
<td>X-91-16 V.G. Kanovei</td>
<td>Undecidable Hypotheses in Edward Nelson's Internal Set Theory</td>
<td></td>
</tr>
<tr>
<td>X-91-17 Michiel van Lambalgen</td>
<td>Independence, Randomness and the Axiom of Choice, Revised Version</td>
<td></td>
</tr>
<tr>
<td>X-91-18 Giovanna Cepparello</td>
<td>New Semantics for Predicate Modal Logic: an Analysis from a standard point of view</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic, Semantics and Philosophy of Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP-92-01 Victor Sánchez Valencia</td>
<td>Lambek Grammar: an Information-based Categorial Grammar</td>
<td></td>
</tr>
<tr>
<td>LP-92-02 Patrick Blackburn</td>
<td>Modal Logic and Attribute Value Structures</td>
<td></td>
</tr>
<tr>
<td>LP-92-03 Szabolcs Múkás</td>
<td>The Completeness of the Lambek Calculus with respect to Relational Semantics</td>
<td></td>
</tr>
<tr>
<td>LP-92-04 Paul Dekker</td>
<td>An Update Semantics for Dynamic Predicate Logic</td>
<td></td>
</tr>
<tr>
<td>LP-92-05 David I. Beaver</td>
<td>The Kinematics of Presupposition</td>
<td></td>
</tr>
<tr>
<td>LP-92-06 Patrick Blackburn, Edith Spaan</td>
<td>A Modal Perspective on the Computational Complexity of Attribute Value Grammar</td>
<td></td>
</tr>
<tr>
<td>Mathematical Logic and Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-92-01 A.S. Troelstra</td>
<td>Comparing the theory of Representations and Constructive Mathematics</td>
<td></td>
</tr>
<tr>
<td>ML-92-02 Dmitri P. Skvortsov, Valentin B. Shehtman</td>
<td>Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate Logics</td>
<td></td>
</tr>
<tr>
<td>ML-92-03 Zoran Markovič</td>
<td>On the Structure of Kripke Models of Heyting Logic</td>
<td></td>
</tr>
<tr>
<td>Composition and Complexity Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-92-01 Erik de Haas, Peter van Emde Boas</td>
<td>Object Oriented Application Flow Graphs and their Semantics</td>
<td></td>
</tr>
<tr>
<td>Other prepublications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-92-01 Heinrich Wansing</td>
<td>The Logic of Information Structures</td>
<td></td>
</tr>
<tr>
<td>X-92-02 Constantin P. Ignatiev</td>
<td>The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of (\Sigma_2)-conservativity</td>
<td></td>
</tr>
<tr>
<td>X-92-03 Willem Groeneveld</td>
<td>Dynamic Semantics and Circular Propositions, revised version</td>
<td></td>
</tr>
</tbody>
</table>