HOW TO BROADEN YOUR HORIZON

Harold Schellinx

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-92-07

University of Amsterdam
The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar
LP-90-03 Bas van Fraasen Concept Formation and Concept Composition
LP-90-04 Ame Ranta Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Gennaro Chierchia The Variability of Impersonal Subjects
LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montague Grammar
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers
LP-90-11 Johan van Bentham General Dynamics
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhiheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Jeanne de Rijke The Modal Logic of Inequality
LP-90-16 Zhiheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations

ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantic Proof of De Jongh's Theorem
ML-90-03 Yde Venema Relational Games
ML-90-04 Maarten de Rijke Unary Interpretability Logic
ML-90-05 Domenico Zambella Sequences with Simple Initial Segments
ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories
ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Dick de Jongh, Ducoo Pianigiani Solution of a Problem of David Guaspari
ML-90-10 Michel van Lambalgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas Associative Storage Modification Machines
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Rees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel Conditional, a case study in conditional rewriting

Other Prepublications

X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulas
X-90-04 Annual Report 1989
X-90-05 Valentine Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-07 Y. Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1
X-90-11 Alessandra Carbone Provable Fixed points in $\omega_1^{\omega_1}$, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic

1991

Logic, Semantics and Philosophy of Language

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groenendijk Dynamic Semantics and Circular Propositions
LP-91-04 Makoto Kanazawa The Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhiheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhiheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Pralural Noun Phrases
LP-91-08 Víctor Sánchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendaik Semantics and Comparitive Logic
LP-91-10 Johan van Bentham Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic
ML-91-02 Alessandro Bernarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Type Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Inge Bethke Going Stable in Graph Models
ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
HOW TO BROADEN YOUR HORIZON

Harold Schellinx
Department of Mathematics and Computer Science
University of Amsterdam
How to broaden your horizon*

by
Harold Schellinx
Department of Mathematics and Computer Science
University of Amsterdam
[harold@fwi.uva.nl]

Abstract
We generalize the proofs in Meyer and Ono(1992) of the finite model property for BCK and BCIW to an infinite collection of extensions of BCI with a 'knotted' rule of contraction or expansion. As a corollary we get that BCI has the finite model property (with respect to the class of models under consideration) only if it is equal to an intersection of these extensions.

1 Introduction
Linear implicational logic or BCI is the fragment of intuitionistic implicational logic obtained by deleting the structural rules of weakening and contraction from the formulation of intuitionistic implicational logic as a sequent-calculus. So we have the identity axiom:

\[[\text{ax}] \quad A \Rightarrow A, \]

the logical rules:

\[[\supset R] \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow AB} \quad [\supset L] \quad \frac{\Gamma_1 \Rightarrow A \quad \Gamma_2, B \Rightarrow C}{\Gamma_1, \Gamma_2, AB \Rightarrow C} \]

and the cut-rule:

\[[\text{cut}] \quad \frac{\Gamma_1 \Rightarrow A \quad \Gamma_2, A \Rightarrow B}{\Gamma_1, \Gamma_2 \Rightarrow B}. \]

(Here Γ, Γ_i denote multisets (so exchange is implicit), while AB abbreviates $A \supset B$.)

*Exercise: Explain the title.
An equivalent Hilbert-type formulation is given by the axiom-schemes

\[\begin{align*}
[B] &\quad (BC)((AB)(AC)) \\
[C] &\quad (A(BC))(B(AC)) \\
[I] &\quad AA
\end{align*} \]

and \textit{modus ponens} as a single rule of inference.

If we extend \textbf{BCI} with the structural rule of \textit{weakening}

\[\text{[weak]} \quad \frac{\Gamma \Rightarrow B}{\Gamma, A \Rightarrow B} \]

(for the Hilbert-system with the axiom-scheme \([K] : A(BA)\)) we obtain the implicational fragment of \textit{affine logic}, a.k.a.\(^1\) \textbf{BCK}.

If we extend \textbf{BCI} with the structural rule of \textit{contraction}

\[\text{[cont]} \quad \frac{\Gamma, A, A \Rightarrow B}{\Gamma, A \Rightarrow B} \]

(for the Hilbert-system with the axiom-scheme \([W] : (A(AB))(AB)\)) we get the implicational fragment of the \textit{relevant logic} \(\mathcal{R}\), a.k.a. \textbf{BCIW}.

Let us write \(A^n\) to denote \(n\) copies of some formula\(^2\) \(A\). We then can define for any pair of natural numbers \((n, k)\) a structural rule as follows:

\[\text{[n \sim k]} \quad \frac{\Gamma, A^n \Rightarrow B}{\Gamma, A^k \Rightarrow B} \]

We will denote the logical system thus obtained by \textbf{BCI}_k^n. Note that \textbf{BCI}_k^n can equivalently be obtained by extending the Hilbert-system for \textbf{BCI} with an axiom-scheme \([n \sim k]\) defined as

\[(X \supset (X \supset (\ldots (X \supset A) \ldots))) \supset (X \supset (X \supset \ldots (X \supset A) \ldots)), \]

(which for \(n = 0\) should be read as \(A \supset (X \supset (X \supset \ldots (X \supset A) \ldots))\), for \(k = 0\) as \((X \supset (X \supset \ldots (X \supset A) \ldots)) \supset A\).)

Clearly \textbf{BCI}_k^n is just \textbf{BCI}, while \textbf{BCI}_0^n for \(n \neq 0\) is weird, to say the least: in \textbf{BCI}_0^n any formula \(\phi\) is derivable; also, for all \(n > 0\) the instance \((p^n \supset p) \supset p\) of the axiom-scheme \([n \sim 0]\) is not valid classically. On the other hand, for all pairs \((n, k)\) such that \(k = 0 \rightarrow n = 0\) what we have is an \textit{extension} of \textbf{BCI} that is a fragment of intuitionistic implicational logic. In fact, for \(n < k\) each logic

\(^1\)I.e. \textit{also known as}

\(^2\)By 'formula' we will of course always mean an \textit{implicational} formula.
BCI_n^k is a fragment of BCI_n^0 (which is just BCK), while for $n > k > 0$ clearly BCI_n^k is a fragment of BCI_n^2 (which is just BCIW).

In Meyer and Ono (1992) it is shown that BCK and BCIW have the finite model property with respect to a certain class of ordered monoids. The purpose of this note is to show that Meyer and Ono’s proof of the finite model property for BCK uniformly generalizes to a proof for BCI_n^k, for all $n < k$, and that their proof of the finite model property for BCIW uniformly generalizes to a proof for BCI_n^k, for all $n > k$. I.e. we will show that for a suitable class of structures, if a formula ϕ is valid on all its finite members, then it is derivable in BCI_n^k. Crucial in this generalization is the construction of finite so-called BCI_n^k-monoids in section 3.

All these logics in fact are proper extensions of BCI (it is easy to show that $\text{BCI}\vdash [n \sim k]$ iff $n = k$) and it seems not too farfetched to conjecture that BCI is their intersection. In the final section we observe that it is an easy corollary of our proof of the finite model property for all the extensions that in fact this is equivalent to the statement that BCI itself has the finite model property (with respect to this class of models).

2 BCI$_n^k$: structures, validity and completeness

We begin by introducing the notion of BCI_n^k-monoid, being an obvious generalization of the BCI-, BCK-, and BCIW-structures of Meyer and Ono (1992).

2.1. Definition. A BCI-structure is a quadruple $(M, \cdot, 1, \leq)$, with M a set and $1 \in M$, such that \cdot is a binary operation on M that is monotonous with respect to the binary relation \leq on M (i.e. for all $x, y, z \in M$ we have that $x \leq y$ implies $x \cdot z \leq y \cdot z$) and $(M, \cdot, 1)$ a commutative monoid with unity 1.

A BCI_n^k-monoid is a BCI-structure of which we moreover demand that, for all $x \in M$, $x^n \leq x^k$ (taking x^0 to denote the unity 1). □

Note that we do not ask anything special of the relation \leq. However, we observe the following.

2.2. Lemma. A finite BCI-structure (\mathcal{X}, \leq) is both a BCI_n^k-monoid and a BCI_n^k-monoid for some $(n \neq k)$ if and only if \leq is reflexive.

Proof: If \mathcal{X} is finite then there are $n \neq k$ such that $x^n = x^k$, for all x. By reflexivity then both $x^n \leq x^k$ and $x^k \leq x^n$, for all x. For the converse, observe that all BCI_n^k-monoids are reflexive. □

We define validity on BCI_n^k-monoids just as validity on BCI-structures: a
valuation \models on a BCI_k-monoid is a relation between elements of M and propositional variables satisfying the monotonicity condition

\[[\text{mon}] \quad x \models p \quad \text{and} \quad x \leq y \quad \text{implies} \quad y \models p. \]

Each valuation has a canonical extension to a relation between elements of M and implicational formulas by \(x \models AB \iff \forall y. y \models A \Rightarrow xy \models B. \)

A formula \(\phi \) is said to be valid on a given BCI_k-monoid \(\mathcal{X} \) (written as \(\mathcal{X} \models \phi \)) if \(1 \models \phi \) for all valuations \(\models \).

With respect to validity on BCI-structures we observe:

2.3. Lemma. A formula \(\phi \) is valid on all (finite) BCI-structures iff it is valid on all (finite) reflexive (even: all discrete) BCI-structures.

Proof: Suppose \((\mathcal{X}, \leq) \not\models \phi \) for some valuation \(\models \). Define \(\models^* \) on \((\mathcal{X}, =) \) by \(x \models^* p \iff x \models p \), for propositional variables \(p \). Then obviously \(x \models^* \psi \iff x \models \psi \) for any formula \(\psi \). Therefore \(1 \not\models^* \phi \), so \(\phi \) is not valid on a reflexive (more so, a discrete) BCI-structure.

2.4. Remark. It seems that in general the condition \(x^n \leq x^k \) does not ensure validity of \([n \sim k]\), so in fact we can not guarantee soundness of all logics BCI_k with respect to validity in BCI_k-monoids. The reader might want to verify however that soundness does hold in case \(k = 1 \).

2.5. Definition. Let \(\Gamma, \Delta \) be multisets of formulas. We say that \(\Gamma \models_k^\Delta \Delta \Rightarrow x \) is obtainable from \(\Gamma \Rightarrow x \) by means of some (maybe no) applications of rule \([n \sim k]\) (\(x \) being an arbitrary formula).

So \(\models_k^\Delta \) is a partial order on the collection of multisets of formulas. Note that for \(k = n \) we have \(\Gamma \models_k^\Delta \Delta \Rightarrow x \) iff \(\Gamma = \Delta \). Also obviously \(\Gamma \models_k^\Delta \Delta \iff \Gamma \models_k^\Delta \Gamma \). So \(\Gamma \) and \(\Delta \) are \(|k|^\Delta \)-comparable if and only if they are \(|k|^\Gamma \)-comparable.

2.6. Proposition. BCI_k-logic is complete with respect to the class of all BCI_k-monoids, for any \(n, k \).

Proof: (This is standard, and as in Meyer and Ono(1992). We give an outline of the proof, for we will need some of the notions and details later on.)

Suppose BCI_k \nvdash A. Let \(S = \{S_1, \ldots, S_m\} \) be the set of all subformulas of \(A \). Let \(\Sigma \) denote the collection of all finite multisets with elements in \(S \).

(Note that each element can be unambiguously represented by a vector \(\langle a_1, \ldots, a_m \rangle \) with entries in the set \(\mathbb{N} \) of natural numbers, and \(a_i \) denoting the number of occurrences of \(S_i \). Clearly, \((\Sigma, \cup, \emptyset, |\cdot|) \) is a BCI_k-monoid, with as isomorphic representation the set of all \(m \)-dimensional vectors with entries in
\[\mathbb{N}, \text{pointwise addition as operation, } 0 := (0, \ldots, 0) \text{ as unity and the obvious interpretation of the relation } [0]_k. \]

Then, for propositional variables \(p \) appearing in \(A \), define

\[\Gamma \vdash p \text{ iff } \text{BCI}_k^p \vdash \Gamma \Rightarrow p. \]

One then shows by induction on the complexity of \(S_i \), that for all subformulas \(S_i \) of \(A \) we have that

\[\Gamma \vdash S_i \text{ iff } \text{BCI}_k^p \vdash \Gamma \Rightarrow S_i. \]

(If \(\Gamma \vdash B \supset C \), note that by induction hypothesis \(\{B\} \vdash B \), so \(\Gamma, B \vdash C \), a.w.a.d.\(^3\) by induction hypothesis. Conversely, if \(\text{BCI}_k^p \vdash \Gamma \Rightarrow B \supset C \) and \(\Delta \vdash B \), then \(\text{BCI}_k^p \vdash \Delta \Rightarrow B \) by inductive hypothesis. So \(\text{BCI}_k^p \vdash \Gamma, \Delta \Rightarrow C \) by an application of cut, and \(\Gamma, \Delta \vdash C \) by inductive hypothesis.)

We conclude that \(\emptyset \not\vdash A \). \(\Box \)

3 Finite \(\text{BCI}_k^n \)-monoids

We are going to construct finite \(\text{BCI}_k^n \)-monoids on intial segments of the natural numbers, for any \(n \neq k \).

Let \(\text{mod}(a, b) \) denote the remainder of \(a \) \(\div \) division by \(b \). For any pair of natural numbers \(R \geq 0 \) and \(r \geq 1 \) define an operation \([R, a]_r \) on natural numbers as follows:

\[
[R, a]_r = \begin{cases}
 a - R & \text{if } a < R \\
 \text{mod}(a - R, r) & \text{otherwise.}
\end{cases}
\]

It is easy to see that then \(R + [R, a]_r \) maps the natural numbers onto the initial segment \(\{0, 1, \ldots, R + r - 1\} \); moreover, it is the identity on this segment, as for \(a \leq R + r - 1 \) we have that \([R, a]_r = a - R \).

We define on \(\{0, 1, \ldots, R + r - 1\} \) an operation \(\oplus_r \) by:

\[a \oplus_r b = R + [R, a + b]_r. \]

3.1. PROPOSITION. \(\{0, 1, \ldots, R + r - 1\}, \oplus_r, 0 \) is a commutative monoid with unity 0.

PROOF: Commutativity is clear because of commutativity of +; neutrality of 0 follows from the remarks above. So it remains to show associativity of \(\oplus_r \).

\(^3\)I.e. and we are done
By definition \((a \oplus_r b) \oplus_r c = R + [R, (a \oplus_r b) + c]_r\). First suppose that \(a + b + c < R\). Then obviously \(a + b < R\), so \((a \oplus_r b) \oplus_r c = R + [R, a + b + c]_r\). Otherwise \(a + b + c \geq R\). If \(a + b < R\) we again have \((a \oplus_r b) \oplus_r c = R + [R, a + b + c]_r\). So let us suppose that \(a + b \geq R\). Then
\[
(a \oplus_r b) \oplus_r c = R + [R, R + [R, a + b]_r + c]_r
= R + \text{mod}(a + b - R, r) + c, r
= R + \text{mod}(a + b + c - R, r)
= R + [R, a + b + c]_r
\]
So \((a \oplus_r b) \oplus_r c = R + [R, a + b + c]_r\) in all cases. Similarly one shows that \(a \oplus_r b \oplus_r c = R + [R, a + b + c]_r\), a.w.a.d. □

The following two lemmas give some properties of the operation \(\oplus_r\).

3.2. Lemma. Let \(a, b, h \in \{0, 1, \ldots, R + r - 1\}\). Then (i) \((a + b) - (a \oplus_r b) \equiv 0 \mod r\); (ii) if \(h \leq (a \oplus_r b)\) and \((a + b) - h \equiv 0 \mod r\), also \((a \oplus_r b) - h \equiv 0 \mod r\).

Proof: For (i), either \(a \oplus_r b = a + b\), or \(a \oplus_r b = R + \text{mod}(a + b - R, r)\). For (ii), just note that \((a \oplus_r b) - h = (a + b) - h - ((a + b) - (a \oplus_r b))\) and use (i).

Let \(\oplus^n_r a\) stand for \(a \oplus_r a \oplus_r \ldots \oplus_r a\).

3.3. Lemma. For all \(x, a \in \{0, 1, \ldots, R + r - 1\}\) we have \((\oplus^n_r a) \oplus_r x \geq x\); moreover \(((\oplus^n_r a) \oplus_r x) - x \equiv 0 \mod r\).

Proof: By the above \(\oplus^n_r a\) equals either \(ra\) or \(R + \text{mod}(ra - R, r)\) which in turn equals \(R + \text{mod}(-R, r)\). In the first case we obtain \(x \oplus_r ra\), which either equals \(x + ra \geq x\), or \(R + \text{mod}(x + ra - R, r) = R + \text{mod}(x - R, r)\).

In the second case we obtain
\[
x \oplus_r (R + \text{mod}(-R, r)) = R + \text{mod}(x + R + \text{mod}(-R, r) - R, r)
= R + \text{mod}(x + \text{mod}(-R, r), r)
= R + \text{mod}(x - R, r).
\]

It therefore suffices to show that for any \(x \in \{0, 1, \ldots, R + r - 1\}\) we have that \(x \leq R + \text{mod}(x - R, r)\). If \(x < R\) this is obvious. Otherwise \(R \leq x \leq R + r - 1\) and \(R + \text{mod}(x - R, r) = R + x - R = x\).

The second claim follows by noting that \(\text{mod}(x - R, r) = r - \text{mod}(R - x, r)\), so \(R + \text{mod}(x - R, r) - x = (R - x) - \text{mod}(R - x, r) + r \equiv 0 \mod r\). □
We will write \mathcal{M} for $\{\{0,1,\ldots,R + r - 1\}, \oplus_r, 0\}$, suppose $r = |n - k|$ for some $n \neq k$ and consider the elements of \mathcal{M} as representing the number of occurrences of some formula ϕ. Let Γ, Δ range over multisets having ϕ as their sole element (when non-empty). Γ, Δ then are uniquely represented by their cardinality and we have a relation $|k|^n_x$ between natural numbers by defining $x \mid^k_y$ iff Γ, Δ have x, y elements and $\Gamma \mid^k \Delta$ in the sense of definition 2.5.

So the following hold:

- if $k > n$ then $x \mid^n_k y$ iff $(x = y$ or $n \leq x \leq y$ and $y - x \equiv 0 \mod (k - n))$;
- if $k < n$ then $x \mid^n_k y$ iff $y \mid^n_k x$ iff $(x = y$ or $k \leq y \leq x$ and $y - x \equiv 0 \mod (n - k))$.

One easily verifies that for any $n \neq k$ any subset of \mathbb{N} without $|k|^n$-comparable elements is finite. Moreover, for $k < n$, there obviously are no infinite ascending chains, while for $n < k$ there are no infinite descending chains. (i.e. for $n < k$ the relation $|k|^n$ is a well-quasi-ordering on the set of natural numbers.)

3.4. Proposition

If $\min(n, k) \leq R$, then (\mathcal{M}, \mid^n_k) is a finite BCI^k-monoid.

Proof: We show monotonicity of $|k|^n$ with respect to \oplus_r. Suppose $x \mid^n_k y$.

If $k > n$ and $x = y$, then $x \oplus_r z = y \oplus_r z$. So let us assume that $n \leq x \leq y$ and $(y - x) \equiv 0 \mod r$. Then $y = x + ar$ for some natural number a. Now

$$x \oplus_r z = R + [R, x + z],$$
and

$$y \oplus_r z = R + [R, y + z] = R + [R, x + ar + z].$$

If $y + z < R$ then $x \oplus_r z = x + z$, $y \oplus_r z = y + z$ a.w.a.d., as obviously $x + z \mid^n_k y + z$. Otherwise $y \oplus_r z = R + \text{mod}(x + ar + z - R, r) = R + \text{mod}(x + z - R, r)$.

If $x + z \geq R$, then in fact $y \oplus_r z = x \oplus_r z$ a.w.a.d. Otherwise $x \oplus_r z = x + z$.

Then $n \leq x \oplus_r z < y \oplus_r z$ and moreover $(y \oplus_r z) - (x \oplus_r z) = R + \text{mod}(x + z - R, r) - (x + z) = R - (x + z) - \text{mod}(R - (x + z), r) + r \equiv 0 \mod r$.

So $x \oplus_r z \mid^n_k y \oplus_r z$ in all cases, q.e.d.

If $k < n$ we reason by duality, as in that case

$$x \mid^n_k y \leftrightarrow y \mid^n_k x \Rightarrow y \oplus_r z \mid^n_k x \oplus_r z \leftrightarrow x \oplus_r z \mid^n_k y \oplus_r z.$$

To complete the proof we need $(\oplus_r^n x) \mid^n_k (\oplus_r^n x)$ for all $x \in \mathcal{M}$. Let us assume that $k > n$. Then $(\oplus_r^n x) = (\oplus_r^n x) (\oplus_r^n x)$. Put $y := (\oplus_r^n x)$. We will show that $y \mid^n_k (\oplus_r^n x) \oplus_r y$. If $x = 0$ we have equality. Otherwise $y = nx \geq n$ or $y = R + \text{mod}(nx - R, r) \geq R \geq n$ by assumption. S.w.a.d. by lemma 3.3.

For $n > k$ we use once more duality. (Here we need the assumption that $R \geq k$).

\footnote{I.e. So we are done}
3.5. Remark. Though the condition \(\min(n, k) \leq R \) is sufficient, it is not necessary. E.g. for \(k > n \) we may have \(n > R \), while nevertheless \((M, \sqsubseteq^k) \) is a finite \(\text{BCI}_k^n \) monoid. This can be the case if \(\text{mod}(nx - R, r) > 0 \), for all \(nx \geq R \).

4 The finite model property

After having shown how one may obtain finite \(\text{BCI}_k^n \)-monoids, we can continue exploiting Meyer and Ono(1992), in order to generalize the proofs there given of the finite model property for \(\text{BCK} \) (which for us is nothing but \(\text{BCI}_1^0 \)) and \(\text{BCIW} \) (which is \(\text{BCI}_1^1 \)) to a proof of the finite model property for \(\text{BCI}_k^n \) for all \(n < k \), respectively to a proof of the finite model property for \(\text{BCI}_k^n \) for all \(n > k > 0 \).

As a starter, we will generalize their notion of \(\phi \)-critical formula.

4.1. Definition. Let \(\phi \) be a formula, \(\Gamma \) a multiset of formulas.

- if \(n < k \) we say that \(\Gamma \) is \((\phi, n, k) \)-critical if

 - (i) \(\text{BCI}_k^n \vdash \Gamma \Rightarrow \phi \);

 - (ii) If \(\Delta \models_k^n \Gamma \) and \(\Delta \neq \Gamma \), then \(\text{BCI}_k^n \not\models \Delta \Rightarrow \phi \).

- if \(k < n \) we say that \(\Gamma \) is \((\phi, k, n) \)-critical if

 - (i) \(\text{BCI}_k^n \not\models \Gamma \Rightarrow \phi \);

 - (ii) If \(\Gamma \models_k^n \Delta \) and \(\Delta \neq \Gamma \), then \(\text{BCI}_k^n \vdash \Delta \Rightarrow \phi \). \(\square \)

4.2. Proposition. Let \(\Sigma \) be the collection of all finite multisets with elements from some finite set of formulas \(S \). Then the set

\[
\mathcal{R}(\phi) := \{ \Gamma \in \Sigma \mid \Gamma \text{ is } (\phi, n, k)\text{-critical} \}
\]

is finite, for any \(n \neq k \).

Proof: If \(\Gamma, \Delta \) are distinct elements in \(\mathcal{R}(\phi) \), then they are neither \(\models_k^n \)-nor \(\models_k^k \)-comparable. The claim then follows from the fact that for \(n \neq k \) either the relation \(\models_k^n \) or the relation \(\models_k^k \) is a well-quasi-ordering, as it is equivalent to the pointwise lifting of the 'singleton-order' to \(|S| \)-tuples. See e.g. Rosenstein(1982).

\(\square \)

We can now more or less copy the finite model property proofs in Meyer and Ono(1992), with just some additional arguments using properties of \(\oplus_r \). To keep this note self-contained, we will nevertheless work through the details.
Suppose $\text{BCI}_k \models A$. Let S, Σ be as in the proof of 2.6. Then $\bigcup_{\phi \in S} \mathcal{R}(\phi)$ is finite, by proposition 4.2.

First we assume that $n < k$.

Let $R := \max\{n, \max\{a_i \mid \langle a_1, \ldots, a_m \rangle \in \bigcup \mathcal{R}(\phi)\}\}$, where $\langle a_1, \ldots, a_m \rangle$ is the vector representing the multiset $\{S_1^{a_1}, \ldots, S_m^{a_m}\}$. Let $r = n - 1$, and take the set \mathcal{V} of m-dimensional vectors with entries $\leq R + r - 1$. Define an operation \otimes_r on \mathcal{V} by $\langle a_1, \ldots, a_m \rangle \otimes_r \langle b_1, \ldots, b_m \rangle = \langle a_1 \otimes_r b_1, \ldots, a_m \otimes_r b_m \rangle$, and a relation \models^*_k by $\langle a_1, \ldots, a_m \rangle \models^*_k \langle b_1, \ldots, b_m \rangle$ iff $\forall i. a_i \models^*_k b_i$.

(In what follows we will write a for $\langle a_1, \ldots, a_m \rangle$, etc.)

By the results of the previous section it is clear that $(\mathcal{V}, \otimes_r, 0, \models^*_k)$ is a finite BCI_k-monoid. Take the refuting valuation \models used in the proof of 2.6. Define a valuation \models^* on $(\mathcal{V}, \models^*_k)$ by $a \models^* p$ iff $a \models p$, for any variable p in A. (Observe that \models^* satisfies [mon], because \models satisfies it.)

Then we apply induction on the complexity of $S_i \in S$ in order to show that for all subformulas S_i of A we have that $a \models^* S_i$ if $a \models S_i$.

Let $S_i = B \supset C$. Suppose $a \models B \supset C$ and $b \models^* B$. Then by inductive hypothesis $b \models B$, and therefore $a \otimes_r b \models C$. Let c be (C, n, k)-critical and such that $c \models^*_k a \otimes_r b$. (Such c has to exist as there are but finitely many vectors x with the property that $x \models^*_k a \otimes_r b$.)

Claim: $c_i \models^*_k (a_i \otimes_r b_i)$. Indeed, as $c_i \models^*_k a_i \otimes_r b_i$, $c_i < n$ would imply that $c_i = a_i + b_i = a_i \otimes_r b_i$; otherwise, by criticality, $n \leq c_i \leq R$; if $a_i + b_i \leq R + r - 1$, then $a_i \otimes_r b_i = a_i + b_i$; otherwise $c_i \leq a_i \otimes_r b_i$ (because $R + r - 1 \geq a_i \otimes_r b_i \geq R$.)

The second part of lemma 3.2 then gives $(a_i \otimes_r b_i) - c_i \equiv 0 \mod r$, a.w.a.d.

As $c \models C$, by inductive hypothesis $c \models^* C$, and thus $a \otimes_r b \models^* C$ by the above claim and [mon]. We thus showed that $a \models^* B \supset C$.

Conversely, let $a \models^* B \supset C$ and $b \models B$. Take a (B, n, k)-critical c such that $c \models^*_k b$.

As $\forall i. c_i \leq R + r - 1$ we have $c \models^* B$, so $a \otimes_r c \models^* C$. The inductive hypothesis then tells us that $a \otimes_r c \models C$.

But $a_i \otimes_r c_i \models^*_k a_i + b_i$: for $c_i \models^*_k b_i$ implies $a_i \otimes_r c_i \models^*_k a_i \otimes_r b_i$ (by monotonicity of \models^*_k with respect to \otimes_r); also $a_i \otimes_r b_i \models^*_k a_i + b_i$, and the result follows by transitivity of \models^*_k. Therefore $a \otimes_r b \models C$ by [mon], and we showed $a \models B \supset C$.

But then $(\mathcal{V}, \models^*_k)$ (for $n < k$) is a refuting finite structure for A.

We proceed to the case that $n > k$.

We now put $R := \max\{k, \max\{a_i \mid \langle a_1, \ldots, a_m \rangle \in \bigcup \mathcal{R}(\phi)\}\}$ and similar to the previous case we take the finite BCI_k-monoid $(\mathcal{V}, \otimes_r, 0, \models^*_k)$, with $r = n - k$ and the refuting valuation \models used in the proof of 2.6. Again we define a valuation \models^* on $(\mathcal{V}, \models^*_k)$ by $a \models^* p$ iff $a \models p$, for any variable p in A.

By induction on the complexity of $S_i \in S$ we show that $a \models^* S_i$ iff $a \models S_i$ for all subformulas S_i of A.

Let $S_i = B \supset C$, $a \models B \supset C$ and $b \not\models B$. By inductive hypothesis $b \models B$, so $a + b \models C$. As $a \oplus_r b \models^k a + b$, we have $a + b \models^k a \oplus_r b$, and therefore $[\text{mon}]$ $a \oplus_r b \models C$. By inductive hypothesis $a \oplus_r b \models^* C$, so $a \models^* B \supset C$.

Conversely, suppose $a \not\models B \supset C$. This means we have $b \in V$ such that $b \models B$ and $a + b \not\models C$. There is a (C, k, n)-critical c such that $a + b \models^k c$, i.e. $c \models^k a + b$. As before we conclude $c \models^k a \oplus_r b$, so $a \oplus_r b \models^k c$, and $a \oplus_r b \not\models C$. Therefore $a \oplus_r b \not\models^* C$ by inductive hypothesis.

Now say $b = \langle b_1, \ldots, b_m \rangle$. We define $b' = \langle b'_1, \ldots, b'_m \rangle$, where $b'_i = R + [R, b_i]_r$. Then $b' \in V$ and $b \models^k b'$ (for if $b_i \leq R + r - 1$, then $b'_i = b'_i$; otherwise $b'_i = R + \text{mod}(b_i - R, r)$, so $k \leq b'_i < b_i$ and $b_i - b'_i = b_i - R - \text{mod}(b_i - R, r) \equiv 0 \mod r$). Moreover

$$a \oplus_r b' = R + [R, a_i + b'_i]_r = R + [R, a_i + R + [R, b_i]_r]_r = R + [R, a_i + b_i]_r = a \oplus_r b.$$

So $b' \models B$ and by inductive hypothesis $b' \models^* B$. However $a \oplus_r b' \not\models^* C$. So $a \not\models^* B \supset C$.

Thus we found also for $k < n$ that $(V, |^k_n)$ is a refuting finite structure for A and we have shown:

4.3. Theorem. (Finite model property for BCI_k^n) BCI_k^n is complete with respect to the collection of all finite BCI_k^n-monoids, for all $n \neq k$. \square

4.4. Proposition. BCI_k^n is complete with respect to the collection of all finite BCI-structures, i.e. if ϕ is valid on all finite BCI-structures then it is derivable in BCI_k^n, for any $n \neq k$.

Proof: If ϕ is valid on all finite reflexive BCI-structures, it is valid on all finite BCI_k^n-monoids. \square

4.5. Corollary. BCI has the finite model property only if it is the same as $\bigcap_{\mathcal{J}} \text{BCI}_k^n$, for some $\mathcal{J} \subseteq \{(n, k) \mid n \neq k\}$. \square

4.6. Remark. The argument given follows a quite general pattern, that might be instructive to sketch.

Let \mathcal{L} be some logic, and suppose we have a collection of logics $L_i \supset \mathcal{L}$. Let moreover classes of structures $\mathcal{M}(\mathcal{L})$ for \mathcal{L} and $\mathcal{M}(L_i)$ for L_i be given, such that $\mathcal{M}(L_i) \subseteq \mathcal{M}(\mathcal{L})$ and each finite \mathcal{L}-structure is an L_i-structure for some i. Then one easily shows:
1. \(\mathcal{L} \) has fmp\(^5 \) \(\Rightarrow \) \(\bigcap_i L_i = \mathcal{L} \);

2. Each \(L_i \) has fmp and \(\bigcap_i L_i = \mathcal{L} \) \(\Rightarrow \) \(\mathcal{L} \) has fmp,

provided (for 1) that \(L_i \) is sound, (for 2) that \(L_i \) is complete with respect to the given collection of \(L_i \)-structures.

Acknowledgement

I would like to thank prof. Anne Troelstra and Andreja Prijatelj, whose work on logics with ‘knotted’ structural rules inspired this note.

References

\(^5\)I.e. finite model property
The ILLC Prepublication Series

ML-91-10 Maarten de Rijke, Yde Venema Sahliav’s Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability
ML-91-12 Johan van Bentham Modal Frame Classes, revisited
Computation and Complexity Theory
CT-91-01 Ming Li, Paul M.B. Vitányi Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi How to Share Concurrent Wait-Free Variables
CT-91-03 Ming Li, Paul M.B. Vitányi Average Case Complexity under the Universal Distribution Equalities
CT-91-04 Sieger van Denneheuvel, Karen Kwast Worst Case Complexity
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets
CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes
CT-91-07 Karen L. Kwast The Incomplete Database
CT-91-08 Kees Doets Le瓦tionsions Laws
CT-91-09 Ming Li, Paul M.B. Vitányi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vitányi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions
CT-91-12 Krzysztof R. Apt, Dino Pedreschi Reasoning about Termination of Prolog Programs
Computational Linguistics
CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval
CL-91-03 Hub Prüst, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

Other Prepublications
X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermedi ate Propositional Logics
X-91-03 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics
X-91-05 Johan van Bentham Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgie Dzhaparidze Logic of Tolerance
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for \(\Pi_1 \)-axiomatized Extensions of Arithmetical Theories
X-91-10 Michel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results
X-91-12 Herman Hendriks Flexible Categorial Syntax in Semantics: de
X-91-13 Max I. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Horn Fragment of Linear Logic is NP-Complete
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson’s Internal Set Theory
X-91-17 Michel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version
X-91-18 Giovanna Ceparrelo New Semantics for Predicate Modal Logic: an Analysis from a standard point of view

1992
Logic, Semantics and Philosophy of Language
LP-92-01 Víctor Sánchez Villegas Valencia
LP-92-02 Patrick Blackburn Lambek Grammar: an Information-based Categorial Grammar
LP-92-03 Szabolcs Mikulás Modal Logic and Attribute Value Structures
LP-92-04 Paul Dekker The Completeness of the Lambek Calculus with respect to Relational Semantics
LP-92-05 David I. Beaver An Update Semantics for Dynamic Predicate Logic
LP-92-06 Patrick Blackburn, Edith Spaan The Kinematics of Presupposition
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Modal Perspective on the Computational Complexity of Attribute Value Grammar
LP-92-08 Maarten de Rijke A System of Dynamic Modal Logic
LP-92-09 Johan van Bentham Quantifiers in the world of Types
Mathematical Logic and Foundations
ML-91-01 A.S. Troelstra Comparing the theory of Representations and Constructive Mathematics
ML-92-02 Dmitrij P. Skovortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate Logics
ML-92-03 Zoran Marković On the Structure of Kripke Models of Heyting Arithmetic
ML-92-04 Dimitar Vakarelov A Modal Theory of Arrows, Arrow Logics I
ML-92-05 Domenico Zambella Shavrukov’s Theorem on the Subalgebras of Diagonalizable Algebras for Theories containing \(\Pi_1 \) + EXP
ML-92-06 D.M. Gabbay, Valentin B. Shehtman Undecidability of Modal and Intermediate First-Order Logics with Two Individual Variables
ML-92-07 Harold Schellinx How to Broaden your Horizon
Computation and Complexity Theory
CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

Other prepublications
X-92-01 Heinrich Wansing The Logic of Information Structures
X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze’s Polynomial Logic and the Logic of \(\Sigma_2 \) -conservativity
X-92-03 Willem Groenendijk Dynamic Semantics and Circular Propositions, revised version