COMPARING MODELS OF THE NON-EXTENSIONAL TYPED \(\lambda \)-CALCULUS

Raymond Hoofman

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-93-19

University of Amsterdam
The ILLC Prepublication Series

1990 Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar
LP-90-03 Renate Bartsch Concept Formation and Concept Composition
LP-90-04 Paul de Roeck Infinessitive Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Gennaro Chierchia The Variability of Impersonal Subjects
LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montague Grammar
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers
LP-90-11 Johan van Benthem General Dynamics
LP-90-12 Steven Laurence A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhaibeng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Johan van Benthem The Modal Logic of Inequality
LP-90-16 Zhaibeng Huang, Karen Kwaat Awareness, Negation and Logical Omnipotence
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics
ML-90-01 Harold Schellinx Mathematical Logic Foundations: Isomorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem
ML-90-03 Yde Venema Relational Games
ML-90-04 Maarten de Rijke Unary Interpretability Logic
ML-90-05 Domenico Zambella Sequences with Simple Initial Segments
ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories
ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Michel van Lambalgen Solution of a Problem of David Guaspari
ML-90-10 Michel van Lambalgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

1990 Computer Science
CT-90-02 Sieger van Denneheul, Gerard R. Renardel de Lavalette A Normal Form for PCS1 Expressions
CT-90-03 Ricard Gavalda, Een Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations

1990 Computer Science
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheul, Karen Kwaat Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michel van Lambalgen Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheul, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Maarten de Rijke A Note on the Interpretability Logic with Parallel

Other Prepublications
X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-02 Maarten de Rijke Scene Chapters on Interpretability Logic
X-90-04 L.D. Beklemishev Derived Sets in Euclidean Spaces and Modal Logic
X-90-05 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-06 Y. Yu. Shavrukov The Lindenbaum Fixed Point is Undecidable
X-90-07 S. Y. Shavrukov Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-08 Y. Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Y. Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
X-90-11 Alessandra Carbone Provably Fixed points in Ł_{\omega+1}, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Dependent's Polynomial Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. Chagrov Lectures on Linear Logic
X-90-15 A.S. Troelstra Undecidable Problems in Correspondence Theory

1991 LP-91-01 Logic, Semantics and Philosophy of Language Wiesbe van der Hoe, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groenendijk Dynamic Semantics and Circular Propositions
LP-91-04 Makoto Kanazawa The Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhaibeng Huang, Peter van Emde Boas The Schonhens paradox: Its solution in a Belief Dependence Framework
LP-91-06 Zhaibeng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Pronom Nouns
LP-91-08 Vicente Sánchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwland Semantics and Comparative Logic
LP-91-10 Johan van Benthem The Flow of Information
ML-91-01 Yde Venema Mathematical Logic and Foundations: cylindric modal logic
ML-91-02 Alessandro Berardi, Rineke Verbruggen On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proof of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hooyman, Harold Schellinx Collapsing Graph Models by Predorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Ingo Bethke Finite Type Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Ingo Bethke Going Stable in Graph Models
ML-91-09 Y. Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
ML-91-10 Maarten de Rijke, Yde Venema Sahaykis Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbruggen Feasible Interpretability
ML-91-12 Johan van Benthem Modal Frame Classes, revised
CT-91-01 Ming Li, Paul M.B. Vitányi Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi How to Share Concurrent Wait-Free Variables
CT-91-03 Liu Ming Li, Paul M. B. Vitányi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheul, Karen Kwaat Weak Equivalence
CT-91-05 Sieger van Denneheul, Karen Kwaat Weak Equivalence for Constraint Sets
CT-91-06 Edith Spaan Censor Techniques on Relativized Space Classes
CT-91-07 Karen L. Kwaat The Incompleted Database
CT-91-08 Kees Doets Levitation Laws
CT-91-09 Ming Li, Paul M.B. Vitányi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vitanyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Ian A. Haveland, Edith Spaan Quasi-Injective Reductions
CT-91-12 Krzysztof R. Apt, Dino Podreca Reasoning about Terminations of Prolog Programs
CL-91-01 J.C. Scholzere Computational Linguistics Kohenen Feature Maps in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval
CL-91-03 J.H. Pobst, Remko Scha, Martin van den Berg A Formal Discourse Grammar of Verb Phrase Anaphora
X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Undecidability of the Disjunction Property of Intermediate Propositional Logics

X-91-03 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
COMPARING MODELS OF THE
NON-EXTENSIONAL TYPED λ-CALCULUS

Raymond Hoofman
Department of Mathematics and Computer Science
University of Amsterdam
Comparing Models of
the Non-Extensional Typed \(\lambda \)-Calculus

R. Hoofman*
Department of Mathematics and Computer Science
University of Amsterdam

Abstract
In this paper we compare "powerset models" of the non-extensional
typed lambda calculus. We show that the choice of a certain minimal
interpretation (with respect to a certain class of interpretations) of
the type-constructor \(\Rightarrow \) yields models with a maximal theory (in that
class).

1 Introduction
As opposed to extensional lambda calculi, which require the interpretation
of abstracted terms (within isomorphism) to be functions, non-extensional
calculi allow a large degree of freedom in the choice of their models. This
is already apparent for the untyped non-extensional lambda calculus. For
example, the standard interpretation of a lambda abstracted term in a set-
thoretical model like Engeler's graph model is as follows

\[
[\lambda x.t]_\rho = \{(X, b) \mid b \in [t]_{\rho^{X/X}}, X \text{ finite}\}.
\]

However, a (related) interpretation

\[
[\lambda x.t]_\rho = \{(X, Y) \mid Y \subseteq [t]_{\rho^{X/X}}, X, Y \text{ finite}\},
\]

*raymond@fwi.uva.nl

1
would be equally justifiable (see e.g. [4]).

Similarly, in the typed non-extensional lambda calculus, there is in general no canonical choice for the interpretation of the type $\sigma \Rightarrow \tau$. This can be illustrated by considering the category Pow of powersets and continuous functions, which supports various interpretations of the typed lambda calculus. For example, the above two untyped models are solutions of the recursive equation $D = (D \Rightarrow D)$ in Pow, where we interpret \Rightarrow in the first case as

$$\mathcal{P}A \Rightarrow_m \mathcal{P}B = \mathcal{P}\{(X, b) \mid X \subseteq A \text{ finite}, b \in B\},$$

and in the second as

$$\mathcal{P}A \Rightarrow_n \mathcal{P}B = \mathcal{P}\{(X, Y) \mid X \subseteq A \text{ finite}, Y \subseteq B \text{ finite}\}.$$

Several questions arise concerning the canonicity of the various interpretations and their associated lambda-theories. In this paper we consider, as a particular case study, interpretations of the non-extensional typed lambda calculus in the category Pow. We show that the interpretation \Rightarrow_m mentioned above is minimal for the class of linear interpretations (i.e., interpretations in which the application operator preserves arbitrary lubs in its first argument). As a consequence, the theory of \Rightarrow_m is maximal among the theories of linear interpretations (theorem 25).

2 Preliminaries

Let C be a full subcategory of the category Dcpo of directed complete partial orders (dcpo’s) and continuous (i.e., directed lub preserving) functions. Given objects $D, E \in C$, their function space $[D, E]$ (consisting of the continuous functions $D \to E$ ordered pointwise) is a dcpo but need not be an object in C. Hence we are interested in “approximations” of the function space in C, or, more formally, in objects $D \Rightarrow E \in C$ having $[D, E]$ as a retract. In detail, such a retract is given by the following items:

- a continuous function $\bullet : (D \Rightarrow E) \times D \to E$,
- a continuous function $R : [D, E] \to (D \Rightarrow E)$,
satisfying the requirement

\[R(f) \bullet x = f(x). \]

In case \(C \subseteq \text{Dcpo} \), the category-theoretically notion of a *semi-exponent* in \(C \) exactly corresponds to the above notion of an object approximating a function space. Recall the following definition from [2, 3].

Definition 1 Let \(C \) be a category with finite products and \(D, E \in C \) objects. A semi-exponent of \(D, E \) is an object \(D \Rightarrow E \in C \) together with

- an arrow \(\varepsilon : (D \Rightarrow E) \times D \to E \) in \(C \),
- an arrow \(\Lambda(f) : D' \to (D \Rightarrow E) \) in \(C \),
 for each continuous \(f : D' \times D \to E \),

satisfying the requirements

1. \(\varepsilon \circ (\Lambda(f) \times id) \),
2. \(\Lambda(\varepsilon \circ (f \times id)) \).

Proposition 2 For \(C \subseteq \text{Dcpo} \), there is a bijective correspondence in \(C \) between semi-exponents and objects having function spaces as retracts.

Proof: Given a semi-exponent \(D \Rightarrow E \), there is a retraction between \(D \Rightarrow E \) and \([D, E] \) given by \(\bullet = \varepsilon \) and

\[R(f) = \Lambda(R(1 \times D \xrightarrow{\varepsilon} D \xrightarrow{f} E)). \]

The other way round, an object \(D \Rightarrow E \) having the function space \([D, E] \) as a retract gives rise to a semi-exponent with \(\varepsilon = \bullet \) and for \(f : D' \times D \to E \),

\[\Lambda(f)(d') = R(f(d', -)). \]

It is easily checked that the above defines the required bijection. \(\square \)

Recall that a *weak cartesian closed structure* ([2, 3]) on a category \(C \) assigns to each pair of objects \(D, E \in C \) a semi-exponent \(D \Rightarrow E \). By the above proposition, a weak cartesian closed structure on a category \(C \subseteq \text{Dcpo} \)
chooses an “approximation” in C of the function space $[D, E]$ for each pair $D, E \in C$.

The main example in this paper of a subcategory $C \subseteq Dcpo$ which is not closed under function spaces is the category $\mathcal{P}ow$ of powersets (ordered by subset inclusion) and continuous functions. As the following example shows however, we can define various kinds of semi-exponents in $\mathcal{P}ow$.

Example 3 Define semi-exponents \Rightarrow_m, \Rightarrow_n, and \Rightarrow_S for a set S on $\mathcal{P}ow$ as follows:

- $\mathcal{P}A \Rightarrow_m \mathcal{P}B = \mathcal{P}\{(X, b) \mid X \subseteq A \text{ finite}, b \in B\}$,
 \[\phi \bullet x = \{b \mid \exists (X, b) \in \phi(X \subseteq x)\}, \]
 \[R(f) = \{(X, b) \mid b \in f(X), X \text{ finite}\}.\]

- $\mathcal{P}A \Rightarrow_n \mathcal{P}B = \mathcal{P}\{(X, Y) \mid X \subseteq A \text{ finite}, Y \subseteq B \text{ finite}\}$,
 \[\phi \bullet x = \bigcup \{Y \mid \exists (X, Y) \in \phi(X \subseteq x)\}, \]
 \[R(f) = \{(X, Y) \mid Y \subseteq f(X), X, Y \text{ finite}\}.\]

- $\mathcal{P}A \Rightarrow_S \mathcal{P}B = \mathcal{P}\{(X, b) \mid X \subseteq A \text{ finite}, b \in B \} \cup S$,
 \[\phi \bullet x = \{b \mid \exists (X, b) \in \phi(X \subseteq x)\}, \]
 \[R(f) = \{(X, b) \mid b \in f(X), X \text{ finite}\} \cup S.\]

Many more semi-exponents exist in $\mathcal{P}ow$. As we will see later on, the semi-exponent $D \Rightarrow_m E$ is **minimal** for a certain class of semi-exponents in the sense that it is a retract of each member $D \Rightarrow E$ of that class. Intuitively, the semi-exponent \Rightarrow_m gives a *best* approximation (with respect to the class) of the function space in $\mathcal{P}ow$.

The full subcategory $\mathsf{Alg} \subseteq Dcpo$ of *algebraic* dcpo’s provides a further example of a category lacking function spaces. Recall that an element $x \in D$ is *compact* if for each directed subset $S \subseteq D$, $x \leq \bigvee S$ implies $\exists y \in S(x \leq y)$. A dcpo D is *algebraic* if for each $x \in E$ the set of compact elements below x is directed and has x as least upperbound. It is well-known that for algebraic dcpo’s D, E the function space $[D, E]$ need not be algebraic. Semi-exponents, however, can easily be found in Alg. For example, for algebraic dcpo’s $D, E \in \mathsf{Alg}$ take

- $D \Rightarrow_{fun} E = \mathcal{P}\{f : D \to E \mid f \text{ continuous}\}$,
- $\phi \bullet x = \bigvee \{f(x) \mid f \in \phi\},$
\(R(f) = \{ c \mid c \leq f \land c \text{ compact} \} \),

where a function \(D \rightarrow E \) is compact iff it is compact as an element of the dcpo \([D,E]\). Note that the subcategory \(\text{Pow} \subseteq \text{Alg} \) is closed under the semi-exponent \(\Rightarrow_{\text{fun}} \).

3 Models of the Typed Lambda Calculus

For each weak cartesian closed structure \((\Rightarrow, \bullet, R) \) on a full subcategory \(C \subseteq \text{Dcpo} \), we define an interpretation of the typed lambda calculus (with a base type \(o \)). First, fix an object \(D \in C \). Then, assign to each type \(\sigma \) an object \(D^\sigma \in C \) as follows:

\[
\begin{align*}
\diamond & \quad D^o = D, \\
\diamond & \quad D^{\sigma \Rightarrow \tau} = D^\sigma \Rightarrow D^\tau.
\end{align*}
\]

An environment \(\rho \) is a function \(\text{Var} \rightarrow \bigcup_{\sigma} D^\sigma \) (where \(\text{Var} \) is the set of (typed) variables) satisfying the requirement \(\rho(x^o) \in D^o \). By \(\rho[d/x] \) we denote the environment equal to \(\rho \) except that it yields \(d \) for \(x \). For each lambda term \(t^\sigma \) and each environment \(\rho \), we define an element \([t]_\rho \in D^\sigma \) by the following inductive clauses:

\[
\begin{align*}
\diamond & \quad [x]_\rho = \rho(x), \\
\diamond & \quad [st]_\rho = [s]_\rho \bullet [t]_\rho, \\
\diamond & \quad [\lambda x.t]_\rho = R([t]_{\rho[-/x]}),
\end{align*}
\]

where \([t]_{\rho[-/x]} \) is the (continuous) function given by \([t]_{\rho[-/x]}(d) = [t]_{\rho[d/x]} \). It is left to the reader to check that the above interpretation is well-defined, but note that it corresponds to the (general) notion of an interpretation of the typed lambda calculus in a weak cartesian closed category [2]. We call \(\mathcal{D} = (\{D^\sigma\}, \cdot) \) the interpretation based on \(D \) and the semi-exponent \(\Rightarrow \).

As usual we say that \(\mathcal{D}, \rho \models s = t \) iff \([s]_\rho = [t]_\rho \) in the interpretation based on \(D \) and \(\Rightarrow \). Furthermore, \(\mathcal{D}, \rho \models s = t \) iff \(\mathcal{D}, \rho \models s = t \) holds for all environments \(\rho \). By general results of [2], all the equalities of the typed \(\lambda \beta \)-calculus hold in \(\mathcal{D} \). Moreover since the \(\eta \)-rule need not be satisfied, \(\mathcal{D} \) is a model of the the non-extensional typed lambda calculus.
Let the theory Th_D denote the set of equalities $\{s = t \mid D \models s = t\}$. In this paper we are interested in comparing the theories based on distinguished weak cartesian closed structures \Rightarrow and \Rightarrow' on Pow. The following examples shows that in general these theories need not be the same.

Example 4 Consider $\mathcal{P}\emptyset^{\Rightarrow_\emptyset}$ in the model based on \Rightarrow_m. It is easy to see that this is equal to $\mathcal{P}\emptyset$ and hence that all terms $t^{\Rightarrow_\emptyset}$ have identical interpretations in this model. In particular, $(x^{\Rightarrow_\emptyset} = \lambda y^{\emptyset}.xy)$ holds in the model.

Next consider $\mathcal{P}\emptyset^{\Rightarrow_\emptyset}$ in the model based on \Rightarrow_n. A simple calculation shows that this is equal to $\mathcal{P}\{(\emptyset, \emptyset)\}$. Fix an environment ρ satisfying $\rho(x^{\Rightarrow_\emptyset}) = \emptyset$, then the interpretation of $\lambda y.xy$ in this environment is $\{(\emptyset, \emptyset)\}$ whereas the interpretation of x is \emptyset. Hence $(x^{\Rightarrow_\emptyset} = \lambda y.xy)$ does not hold in the model.

4 The Semi-Exponent \Rightarrow_m is Minimal

In this section we show that each linear semi-exponent in Pow “contains” the semi-exponent \Rightarrow_m. First, a semi-exponent $\mathcal{P}A \Rightarrow \mathcal{P}B$ in Pow is called linear iff the associated function $\bullet : (\mathcal{P}A \Rightarrow \mathcal{P}B) \times \mathcal{P}A \rightarrow \mathcal{P}B$ preserves arbitrary lubs in its first argument, i.e., $(\bigcup S)\bullet x = \bigcup_{\phi \in S}(\phi \bullet x)$. All semi-exponents mentioned till now are linear. Here are two examples of non-linear semi-exponents.

Example 5 Think of $\mathcal{P}A \Rightarrow \mathcal{P}B$ as a set of automatons which take input from $\mathcal{P}A$ and yield output in $\mathcal{P}B$. Each automaton ϕ is determined by a set of instructions of the form (X, b) (“on input X yield output b”) and can furthermore be switched on or off. Accordingly, we define

- $\mathcal{P}A \Rightarrow_{aut} \mathcal{P}B = \mathcal{P}\{(X, b) \mid X \subseteq A \text{ finite}, b \in B\} \cup \{\text{on}\}$,
- $\phi \bullet x = \{b \mid \exists(X, b) \in \phi(X \subseteq x) \& \text{on} \in \phi\}$,
- $R(f) = \{(X, b) \mid b \in f(X), X \text{ finite}\} \cup \{\text{on}\}$.

Note that each function f is represented by an enabled automaton.

Example 6 Fix an element $a \in A$. Define

- $\mathcal{P}A \Rightarrow_a \mathcal{P}B = \mathcal{P}A \Rightarrow \mathcal{P}B$,

6
\[\phi \bullet x = \{ b \mid \exists (X, b) \in \phi (X \subseteq x \land (X \cup \{ a \}, b) \in \phi) \}, \]

\[R(f) = R_m(f). \]

Second, we introduce the notion of elementary members of a semi-exponent (on Pow).

Definition 7 For a continuous function \(f : \mathcal{P}A \rightarrow \mathcal{P}B \) define \([f] \in \mathcal{P}A \Rightarrow_m \mathcal{P}B\) by
\[
[f] = \{(X, b) \mid b \in f(X) \land \mu(X, f, b)\},
\]
where
\[
\mu(X, f, b) \Leftrightarrow (Y \subseteq X \land b \in f(Y) \Rightarrow Y = X).
\]
For an arbitrary \(\phi \in \mathcal{P}A \Rightarrow \mathcal{P}B \), we write \([\phi]\) for \([f_\phi]\) (where \(f_\phi(x) = \phi \bullet x \)).

Proposition 8 The operator \([\cdot]\) satisfies the following items:

1. \([f] \bullet x = f(x)\) (i.e., "\([f]\) represents \(f \)"),

2. \(f \leq g \land [g] \text{ finite} \Rightarrow [f] \text{ finite.} \)

We leave the (simple) proof of this proposition to the reader.

Recall that a continuous function \(f : \mathcal{P}A \rightarrow \mathcal{P}B \) is compact iff \(f \) is compact as an element of the dcpo \([\mathcal{P}A, \mathcal{P}B]\).

Proposition 9 If \(f \) is compact, then \([f]\) is a finite set.

Proof: Suppose that \([f]\) is an infinite set. The set \(S = \{ f_\phi \mid \phi \subseteq [f] \land \phi \text{ finite} \}\) is directed and has \(f \) as lub. However, by proposition 8.2 the function \(f \) is not below any element in \(S \), and hence \(f \) is not compact. \(\blacksquare \)

The other way round,

Proposition 10 If \(\phi \subseteq \mathcal{P}A \Rightarrow_m \mathcal{P}B \) is finite, then \(f_\phi \) is compact.

Proof: Suppose that \(f_\phi \leq \bigcup S \) with \(S \) directed, then \(\phi \bullet x = f_\phi(x) \subseteq \bigcup S(x) = \bigcup_{g \in S} g(x) \) for all \(x \). Hence if \((X, b) \in \phi \), then \(b \in \phi \bullet X \) and there exists \(g^{(X,b)} \in S \) such that \(b \in g^{(X,b)}(X) \). By assumption the set \(\{ g^{(X,b)} \mid (X, b) \in \phi \} \) is finite and hence has upperbound (say) \(g \in S \). For arbitrary \(x \) and \(b \in f_\phi(x) \) we have \(b \in \phi \bullet x \), hence \(\exists (X, b) \in \phi (X \subseteq x) \) and
$b \in g^{(X,b)}(X) \subseteq g(X) \subseteq g(x)$. We conclude that $f_\phi \leq g$.

From the above two proposition follows:

Corollary 11 The continuous function f is compact iff $[f]$ is a finite set.

In general, the (analogue of) proposition 10 need not hold for an arbitrary semi-exponent. We call a semi-exponent $\mathcal{P}A \Rightarrow \mathcal{P}B$ elementary iff each finite subset $\phi \subseteq \mathcal{P}A \Rightarrow \mathcal{P}B$ represents a compact function (i.e., f_ϕ is compact). In other words, a semi-exponent is elementary iff for each finite subset $\phi \subseteq \mathcal{P}A \Rightarrow \mathcal{P}B$ we have that $[\phi]$ is a finite set. Except for $\Rightarrow f_{\text{fun}}$, all the examples of semi-exponents on Pow we have seen are elementary.

For an arbitrary linear semi-exponent \Rightarrow, we call $\phi \in \mathcal{P}A \Rightarrow \mathcal{P}B$ elementary iff for all $n \in \phi$ we have that $\{\{n\}\}$ is finite. Note that the fact that $[\phi]$ is finite, implies that ϕ is elementary. For finite sets ϕ, the reverse of this implication also holds. In elementary semi-exponents, all elements ϕ are elementary, and vice-versa.

We now show that the semi-exponent \Rightarrow_m can be embedded in each linear semi-exponent \Rightarrow. First we define a function $r : (\mathcal{P}A \Rightarrow \mathcal{P}B) \rightarrow (\mathcal{P}A \Rightarrow_m \mathcal{P}B)$ by

$$r(\phi) = \bigcup \{\{n\} \mid n \in \phi\},$$

where $[n]$ denotes $\{\{n\}\}$.

Proposition 12 The function r has the following properties:

1. For all sets V, $r(\bigcup V) = \bigcup_{\phi \in V} r(\phi)$.
2. If ϕ is an elementary finite set, then $r(\phi)$ is finite.
3. For arbitrary x, $\phi \bullet x = r(\phi) \bullet_m x$.
4. For all continuous functions f, $rR(f) \subseteq R_m(f)$.

Proof: We leave the proofs of 1 and 2 as exercises to the reader and consider 3. Suppose $b \in \phi \bullet x$, then by linearity of \bullet in its first argument and continuity in its second, there exists a minimal finite $X \subseteq x$ and $n \in \phi$ such that $b \in \{n\} \bullet X$. Hence $(X, b) \in r\{n\} \subseteq r(\phi)$ and $b \in r(\phi) \bullet x$. The other way
round, suppose that \(b \in r(\phi) \cdot x \), then there exists \((X, b) \in r(\phi)\) such that \(X \subseteq x\). Hence, by definition of \(r\), \(b \in \phi \cdot X \subseteq \phi \cdot x\).

For the proof of 4, suppose that \((X, b) \in rR(f)\), then there exists \(n \in R(f)\) such that \(b \in \{n\} \cdot X\). Hence \(b \in R(f) \cdot X\), from which it follows that \(b \in f(X)\). By definition of \(R_m\), we then have \((X, b) \in R_m(f)\). \(\square\)

Next we show that there exists a right-inverse \(s : (PA \Rightarrow_m PB) \rightarrow (PA \Rightarrow PB)\) for \(r\).

Proposition 13 Suppose \(PA \Rightarrow PB\) is a linear semi-exponent, \(X \subseteq PA\) finite, and \(b \in B\). Then there exists \(n \in \bigcup(\mathcal{P}A \Rightarrow \mathcal{P}B)\) such that \(\{n\} \cdot x = \{b\}\) if \(X \subseteq x\) and \(\emptyset\) otherwise. Moreover, if \(b \in f(X)\), then \(n \in R(f)\).

Proof: Let \(g\) denote the continuous function defined by \(g(x) = \{b\}\) if \(X \subseteq x\) and \(\emptyset\) otherwise. Then there exists \(n \in R(g)\) such that \(\{n\} \cdot X = \{b\}\). It is easy to see that in fact \(f(n) = g\). Furthermore, for arbitrary \(f\), suppose that \(b \in f(X)\), then \(g \leq f\), hence \(n \in R(g) \subseteq R(f)\). \(\square\)

Fix for each \((X, b)\) an element \(n_{(X, b)}\) such as given by the above proposition (there may be many of them), and define

\[s(\phi) = \{n_{(X, b)} \mid (X, b) \in \phi\} .\]

Note that in the definition of \(s\) the axiom of choice is actually needed.

Proposition 14 The function \(s\) has the following properties:

1. For all sets \(V\), \(s(\bigcup V) = \bigcup_{\phi \in V} s(\phi)\).
2. If \(\phi\) a finite set, then \(s(\phi)\) is a finite set.
3. For arbitrary \(x\), \(\phi \cdot_m x = s(\phi) \cdot x\).
4. For all continuous functions \(f\), \(sR_m(f) \subseteq R(f)\).
5. For all \(\phi\), \(s(\phi)\) is elementary.

Furthermore, we have

Proposition 15 \(r \circ s = id\)

Hence, there exists an application preserving embedding of \(\Rightarrow_m\) in an arbitrary linear semi-exponent on \(\text{Pow}\). Informally, we can say that \(\Rightarrow_m\) is a best (linear) approximation of the function space in \(\text{Pow}\).
5 The Theory of Linear Semi-Exponents

Fix an arbitrary linear semi-exponent \(\Rightarrow \) on \(\mathsf{Pow} \) and an object \(\mathcal{P}A \in \mathsf{Pow} \). Let \(\mathcal{L} = (\{L^\omega\},[\cdot]) \) denote the lambda model based on \(\mathcal{P}A \) and \(\Rightarrow \), while \(\mathcal{M} = (\{M^\omega\},\langle \cdot \rangle) \) denotes the corresponding model based on \(\Rightarrow_\mathcal{M} \) (hence, \(L^\omega = M^\omega = \mathcal{P}A \)). In this section we will show that the theory of \(\mathcal{L} \) is included in the theory of \(\mathcal{M} \).

To begin with, say that an element \(\phi \in L^\omega \) is hereditary elementary (or h-elementary) iff

1. \(\sigma = 0 \), or
2. \(\sigma = \sigma_1 \Rightarrow \sigma_2 \), \(\phi \) is elementary, and for all \(x \in L^\sigma_1 \) we have that \(x \) h-elementary implies \(\phi \bullet x \) is h-elementary.

Proposition 16 If \(\phi' \subseteq \phi \in L^\omega \) and \(\phi \) h-elementary, then \(\phi' \) is h-elementary. Moreover, if \(W \subseteq L^\omega \), and each \(\phi \in W \) is h-elementary, then \(\bigcup W \) is h-elementary.

The proof of this proposition is left to the reader (but observe that the linearity of \(\bullet \) is crucial).

We show that the interpretation of the lambda calculus is closed under the property of h-elementariness. First we need the following lemma.

Lemma 17 For all continuous functions \(f \), \(R(f) \) is elementary.

Proof: We have to show that \(\forall n \in \phi([n]) \) is finite. By general domain-theory, the continuous function \(f \) is the lub of the directed set of compact functions below \(f \). Hence \(R(f) = R \vee \{c \mid c \leq f \& c \text{ compact}\} = \bigcup \{R(c) \mid c \leq f \& c \text{ compact}\} \) by continuity of \(R \). It follows that for \(n \in R(f) \) there exists a compact function \(c \leq f \) such that \(\{n\} \subseteq R(c) \). As a consequence we have that \([c] \) is a finite set and \(f([n]) \leq c \). By proposition 8(2), \([n]\) is a finite set.

We say that a \(\mathcal{L} \)-environment \(\rho \) is h-elementary iff \(\rho(x) \) is h-elementary for each \(x \).

Proposition 18 If \(\rho \) is h-elementary, then \(\langle t \rangle_\rho \) is h-elementary.
Proof: By induction on \(t \). We consider the case that \(t = \lambda x.s \), then \((t)_{\rho} = R((s)_{\rho[\cdot/x \cdot]}) \). By the previous lemma, this set is elementary. Furthermore, for a \(h \)-elementary \(S \), \((t)_{\rho} \bullet S = R((s)_{\rho[\cdot/x \cdot]} \bullet S = (s)_{\rho[S/x]} \), which is \(h \)-elementary by induction hypothesis. It follows that \((\lambda s)_{\rho} \) is \(h \)-elementary.

Observe that, as a consequence of this proposition, interpretations of closed lambda terms are \(h \)-elementary. Intuitively, non \(h \)-elementary elements do not play any role in the semantics.

Next we define a function \(r^{\sigma} : L^{\sigma} \to M^{\sigma} \) by induction on \(\sigma \) as follows:

\[
\begin{align*}
\diamond r^{\sigma}(\phi) &= \phi, \\
\diamond r^{\sigma \supseteq \tau}(\phi) &= \{(r^{\sigma}(X), c) \mid \exists (X, b) \in r(\phi)(c \in r^{r^\tau}\{b\} \& X \text{ \(h \)-elementary})\}.
\end{align*}
\]

It is easy to see that \(r^{\sigma} \) is well-defined (use proposition 12(2)). Furthermore, for each type \(\sigma \) the function \(r^{\sigma} \) preserves arbitrary lubs (and hence is monotone).

Proposition 19 Suppose that \(x \in L^{\sigma} \) is \(h \)-elementary and \(\phi \in L^{\sigma \supseteq \tau}, \) then \(r^{\tau}(\phi \bullet x) \subseteq r^{\sigma \supseteq \tau}(\phi) \bullet M r^{\sigma}(x) \).

Proof: The proof is by induction on the type \(\tau \). For the basis of the induction, assume that \(\tau = o \). If \(n \in r^{\sigma}(\phi \bullet x) = \phi \bullet x \), then \(n \in r(\phi) \bullet x \) by proposition 12(3). Hence there exists \((X, n) \in r(\phi)\) such that \(X \subseteq x \) and hence \(X \) is \(h \)-elementary. By the monotonicity of \(r^{\sigma} \), it follows that \(r^{\sigma}(X) \subseteq r^{\sigma}(x) \). We have

\[
\begin{align*}
r^{\sigma \supseteq \tau}(\phi) \bullet M r^{\sigma}(x) &= \{(r^{\sigma}(X), b) \mid (X, b) \in r(\phi) \& X \text{ \(h \)-elementary}\} \bullet M r^{\sigma}(x) \\
&= \{b \mid \exists (X, b) \in r(\phi)(r^{\sigma}(X) \subseteq r^{\sigma}(x) \& X \text{ \(h \)-elementary})\}
\end{align*}
\]

hence \(n \in r^{\sigma \supseteq \tau}(\phi) \bullet M r^{\sigma}(x) \).

For the induction step, assume that \(\tau = \tau_{1} \Rightarrow \tau_{2} \). We now have \(r^{\tau}(\phi \bullet x) = \{(r^{\tau_{1}}(Y), c) \mid \exists (Y, b) \in r(\phi \bullet x)(c \in r^{\tau_{2}}\{b\} \& Y \text{ \(h \)-elementary})\} \). Suppose that \((r^{\tau_{1}}(Y), c) \in r^{\tau}(\phi \bullet x) \). From \((Y, b) \in r(\phi \bullet x)\) it follows by monotonicity of \(r \) and proposition 12(3) that \((Y, b) \in r(r(\phi) \bullet x)\). Hence by linearity of \(r \) there exists \(d \in r(\phi) \bullet x \) such that \((Y, b) \in r\{d\} \). Furthermore, by definition of \(\bullet_{m} \), we find \((X, d) \in r(\phi)\) satisfying \(X \subseteq x \& (Y, b) \in r\{d\} \). From \((Y, b) \in r\{d\}, Y \text{ \(h \)-elementary} and \(c \in r^{\tau_{2}}\{b\} \) it follows that \((r^{\tau_{1}}(Y), c) \in r^{\tau_{1} \Rightarrow \tau_{2}}\{d\}, \) while
from $X \subseteq x$ it follows that $r^\sigma(X) \subseteq r^\sigma(x)$ and X h-elementary. If we now write out

$$r^{\sigma \Rightarrow \tau}(\phi) \circ_m r^\sigma(x) = \{ n \mid \exists (Z, n) \in r^{\sigma \Rightarrow \tau}(\phi)(Z \subseteq r^\sigma(x)) \}$$

$$= \{ n \mid \exists (Z, n) \in \{(r^\sigma(X), e) \mid \exists (X, d) \in r(\phi)(e \in r^\tau\{d\} \& X \text{ h-elementary})\}(Z \subseteq r^\sigma(x)) \}$$

$$= \{ e \mid \exists (X, d) \in r(\phi)(e \in r^\tau\{d\} \& r^\sigma(X) \subseteq r^\sigma(x) \& X \text{ h-elementary}) \}$$

then we see that $(r^{\tau \cap (Y)}, c) \in r^{\sigma \Rightarrow \tau}(\phi) \circ_m r^\sigma(x)$. □

Proposition 20 For each term t^σ and h-elementary environment ρ we have

$$r^\sigma(t) \subseteq [t]_{r^\rho},$$

where $r^\rho(x^\tau) = r^\tau(\rho(x))$.

Proof: By induction on t. The case that t is a variable is trivial. Now suppose that $t = t_1 t_2$. We have

$$r^\sigma((t_1)_{\rho} \circ (t_2)_{\rho})$$

$$\subseteq r^{\sigma \Rightarrow \sigma}(t_1)_{\rho} \circ r^\tau(t_2)_{\rho}$$

$$\subseteq [t_1]_{r^\rho} \bullet [t_2]_{r^\rho}$$

where the second step is by proposition 19, and the third by the induction hypothesis.

Next consider the case that $t = \lambda x. s$. We have

$$r^{\sigma_1 \Rightarrow \sigma_2}(\lambda x. s)_{\rho} = \{ (r^{\sigma_1}(X), c) \mid \exists (X, b) \in r(\lambda x. s)_{\rho}(c \in r^{\sigma_2}\{b\} \& X \text{ h-elementary}) \}$$

$$= \{ (r^{\sigma_1}(X), c) \mid \exists (X, b) \in rR(s)_{\rho[-/x]}(c \in r^{\sigma_2}\{b\} \& X \text{ h-elementary}) \}$$

$$\subseteq \{ (r^{\sigma_1}(X), c) \mid \exists (X, b) \in R_m(s)_{\rho[-/x]}(c \in r^{\sigma_2}\{b\} \& X \text{ h-elementary}) \}$$

""
where the last inclusion is by proposition 12(4). Suppose that \((r^{\sigma_1}(X), c) \in r^{\sigma_1 \Rightarrow \sigma_2} (\lambda x. s)_\rho\), then from \((X, b) \in R_m(s)_\rho[-/x]\) it follows that \(b \in R_m(s)_\rho[-/x] \bullet_m X = \langle s \rangle_\rho(X/x)\). Hence we have
\[
\begin{align*}
c &\in r^{\sigma_2}\{b\} \\
\subseteq r^{\sigma_2}\langle s \rangle_\rho(X/x) \\
\subseteq [s]_r\rho(X/x) \\
= [s]_r\rho(r^{\sigma_1}(X)/x)
\end{align*}
\]
where the third step holds by the induction hypothesis and the fact that \(X\) is \(h\)-elementary. It follows that \((r^{\sigma_1}(X), c) \in R_m[s]_r\rho[-/x] = [\lambda x. s]_r\rho\). ■

Fix an arbitrary left-inverse \(s\) of \(r\) as in the previous section. We define a (collection of) function(s) \(s^\sigma\) running into the opposite direction of \(r^\sigma\). For each type \(\sigma\), define \(s^\sigma : M^\sigma \rightarrow L^\sigma\) by the following inductive clauses:
\[
\begin{align*}
od s^\sigma(\phi) &= \phi, \\
od s^{\sigma \Rightarrow \tau}(\phi) &= s\{(s^\sigma(X), c) \mid \exists(X, b) \in \phi(c \in s^\tau\{b\})\}.
\end{align*}
\]
It is easy to see that \(s^\sigma\) is well-defined and preserves arbitrary lubs. Furthermore, \(s^\sigma\) always yields \(h\)-elementary results.

Proposition 21 For all \(\phi \in M^\sigma\), \(s^\sigma(\phi)\) is \(h\)-elementary.

Proof: By induction to \(\sigma\). The base of the induction is trivial. For the induction step, assume that \(\sigma = \sigma_1 \Rightarrow \sigma_2\). As \(s^\sigma(\phi)\) is of the form \(s(\psi)\) (for some \(\psi\)), it clearly is elementary (proposition 14(5)). Furthermore, for an \(h\)-elementary \(x \in L^{\sigma_1}\), we have
\[
s^\sigma(\phi) \bullet x = s\{(s^{\sigma_1}(X), c) \mid \exists(X, b) \in \phi(c \in s^{\sigma_2}\{b\})\} \bullet x
\]
\[
= \{(s^{\sigma_1}(X), c) \mid \exists(X, b) \in \phi(c \in s^{\sigma_2}\{b\})\} \bullet x
\]
\[
= \{c \mid \exists(X, b) \in \phi(c \in s^{\sigma_2}\{b\} \& s^{\sigma_1}(X) \subseteq x)\}
\]
\[
= \bigcup_{(X, b) \in \phi \& s^{\sigma_1}(X) \subseteq x} s^{\sigma_2}\{b\}
\]
By the induction hypothesis and proposition 16, it follows that \(s^\sigma(\phi) \bullet x\) is \(h\)-elementary. ■
Proposition 22 For all r, $\sigma(s(\phi)) = \phi$.

Proof: The proof is by induction to σ. If $\sigma = o$, then the proposition trivially holds. If $\sigma = \sigma_1 \Rightarrow \sigma_2$ we reason as follows:

$$r^{\sigma} s^{\sigma}(\phi) = \{(r^{\sigma_1}(X), c) \mid \exists(X, b) \in r^{\sigma_1}(\phi)(c \in r^{\sigma_2}\{b\} \& X \text{ h-elementary})\}$$

$$= \{(r^{\sigma_1}(X), c) \mid \exists(X, b) \in \{(s^{\sigma_1}(X), e) \mid \exists(X, d) \in \phi(e \in s^{\sigma_2}\{d\})\}\}$$

$$= \{(r^{\sigma_1}s^{\sigma_1}(X), c) \mid \exists(X, d) \in \phi(c \in r^{\sigma_2}s^{\sigma_2}\{d\})\}$$

$$= \{(X, c) \mid \exists(X, d) \in \phi(c \in r^{\sigma_2}s^{\sigma_2}\{d\})\}$$

$$= \phi$$

Lemma 23 Suppose $\phi \in M^{s^{\sigma}}$ and $x \in M^{\sigma}$, then $s^{\tau}(\phi \bullet_m x) \subseteq s^{s^{\sigma \Rightarrow \tau}}(\phi) s^{\sigma}(x)$.

Proof: For the sake of convenience, we write ψ for the set $\{(s^{\sigma}(X), c) \mid \exists(X, b) \in \phi(c \in s^{\sigma}\{b\})\}$. Hence $s^{s^{\sigma \Rightarrow \tau}}(\phi) = s(\psi)$.

The proof is by induction on τ. First assume that $\sigma = o$. Suppose that $n \in s^{o}(\phi \bullet_m x) = \phi \bullet_m x$, then $n \in \{b \mid \exists(X, b) \in \phi(X \subseteq x)\}$, hence $\exists(X, n) \in \phi(X \subseteq x)$. It follows that $(s^{\sigma}(X), n) \in \psi$ and $s^{\sigma}(X) \subseteq s^{\sigma}(x)$. Hence $n \in \psi \bullet s^{\sigma}(x) \subseteq s(\psi) \bullet s^{\sigma}(x) = s^{s^{\sigma \Rightarrow \tau}}(\phi) s^{\sigma}(x)$.

Next assume that $\tau = \tau_1 \Rightarrow \tau_2$. Suppose $(K, n) \in s^{\tau}(\phi \bullet x) = s\{(s^{\tau_1}(X), c) \mid \exists(X, b) \in \phi \bullet x(c \in s^{\tau_1}\{b\})\}$. Then, by linearity of s, there exists $(X, b) \in \phi \bullet x$ such that $(K, n) \in s\{(s^{\tau_1}(X), c) \mid c \in s^{\tau_1}\{b\}\}$. By definition of application \bullet_m, there exists $(Y, (X, b)) \in \phi$ such that $Y \subseteq x$ and satisfying the above two statements. Because

$$s^{\tau_1 \Rightarrow \tau_2}\{(X, b)\} = s\{(s^{\tau_1}(Z), e) \mid \exists(Z, d) \in \{(X, b)\}(e \in s^{\tau_2}\{d\})\}$$

$$= s\{(s^{\tau_1}(X), e) \mid e \in s^{\tau_2}\{b\}\}$$

it follows that $\exists(Y, (X, b)) \in \phi(Y \subseteq x) \& (K, n) \in s^{\tau_1 \Rightarrow \tau_2}\{(X, b)\}$. Hence $(s^{\sigma}(Y), (K, n)) \in \psi$ and $s^{\sigma}(Y) \subseteq s^{\sigma}(x)$. Finally $(K, n) \in \psi \bullet_m s^{\sigma}(Y) \subseteq \psi \bullet s^{\sigma}(x) \subseteq s(\psi) \bullet s^{\sigma}(x) = s^{s^{\sigma \Rightarrow \tau}}(\phi) s^{\sigma}(x)$.
Proposition 24 For each term t^σ and environment ρ we have

$$s^\sigma[t]_\rho \subseteq \langle t \rangle_{s^\rho},$$

where $s^\rho(x^\tau) = s^\tau(\rho(x))$.

Proof: The proof is by induction on t. We consider the case that $t = \lambda x. s$ of type $\sigma_1 \Rightarrow \sigma_2$. Then

$$s^\sigma[\lambda x. t]_\rho = s\{(s^{\sigma_1}(X), c) \mid \exists (X, b) \in [\lambda x. s]_\rho(c \in s^{\sigma_2}\{b\})\}$$

$$= s\{(s^{\sigma_2}(X), c) \mid \exists (X, b) \in R_m[s]_{\rho[-/x]}(c \in s^{\sigma_2}\{b\})\}$$

$$= s\{(s^{\sigma_2}(X), c) \mid \exists b \in [s]_{\rho[X/x]}(c \in s^{\sigma_2}\{b\})\}$$

$$\subseteq s\{(s^{\sigma_2}(X), c) \mid \exists b(s^{\sigma_2}\{b\} \subseteq s^{\sigma_2}[s]_{\rho[X/x]} \& c \in s^{\sigma_2}\{b\})\}$$

$$\subseteq s\{(s^{\sigma_2}(X), c) \mid c \in s^{\sigma_2}[s]_{\rho[X/x]}\}$$

$$\subseteq s\{\langle s\rangle_{s^\rho[s^{\sigma_1}(X)/x]}\}$$

$$= s\langle s\rangle_{s^\rho[-/x]}$$

$$\subseteq \langle \lambda x. s \rangle_{s^\rho}$$

Finally we state as our main theorem that the theory of \mathcal{L} is included in the theory of \mathcal{M}.

Theorem 25 For arbitrary lambda terms s, t, we have that $\mathcal{L} \models s = t$ implies $\mathcal{M} \models s = t$.

Proof: Suppose that $\mathcal{L} \models s = t$, then $\langle s \rangle_\rho = \langle t \rangle_\rho$ for all \mathcal{L}-environments ρ. For an arbitrary \mathcal{M}-environment π, we have

$$[s]_\pi = r^\sigma s^\sigma[s]_\pi$$

$$\subseteq r^\sigma(\langle s \rangle_{s\pi})$$

$$= r^\sigma(\langle t \rangle_{s\pi})$$

$$\subseteq [t]_{s\pi}$$

$$= [t]_\pi,$$

where the fourth step holds by proposition 20 and 24. Analogously we can show that for each \mathcal{M}-environment $[t]_\pi \subseteq [s]_\pi$. It follows that $[t]_\pi = [s]_\pi$ and
\[\mathcal{M} \models s = t. \]

Hence, the theory of \(\Rightarrow_m \) is maximal among the theories of the linear semi-exponents on \(\text{Pow} \).

6 Conclusion

In this paper we showed that the theory associated to a linear semi-exponent (on \(\text{Pow} \)) always is included in the theory of a particular "minimal" semi-exponent \(\Rightarrow_m \). Many interesting questions concerning extensions and generalizations of this result remain open.

For example, what can we say about non-linear semi-exponents? The semi-exponent \(\Rightarrow_m \) can be embedded in the non-linear semi-exponent \(\Rightarrow_{\text{aut}} \) from example 5, hence our proof can probably be generalized to these kind of "pseudo-linear" semi-exponents. However, the semi-exponent \(\Rightarrow_a \) from example 6 can in general not be shown to contain \(\Rightarrow_m \).

Further questions concern the exact nature of the theory of the minimal semi-exponent. Although it clearly does not hold for finite base sets, it does not seem impossible that the theory based on \(\Rightarrow_m \) and an infinite base set \(\mathcal{P}A \) precisely is the set of provable lambda equations. By the results of our paper, this would imply that the theory of each elementary linear semi-exponent (with infinite base set) is complete for \(\lambda \beta \).

More generally, we can study approximations of function spaces in a subcategory \(C \subseteq \text{Dcpo} \) (e.g., \(\text{Alg} \)). Does there always exists a (class of) best approximation(s) of the function space in \(C \)? And what is the relation between distinguished best approximations of a function space: do they have to be isomorphic?

References

The ILLC Prepublication Series

X-91-06 A.S. Troelstra
Annual Report 1990

X-91-07 A.S. Troelstra
Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgio Dzhaparidze
Logic of Tolerance

X-91-09 L.D. Beklemishev
On Bimodal Provability Logics for P_i-axiomatized Extensions of Arithmetical Theories

X-91-10 Michael van Lambalgen
Independence, Randomness and the Axiom of Choice

X-91-11 Michael Zakharyaschev
Canonical Formulas for K4. Part I. Basic Results

X-91-12 Herman Hendriks
Flexibele Categorale Synaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat

X-91-13 Max I. Kanovich
The Multiplicative Fragment of Linear Logic is NP-Complete

X-91-14 Max I. Kanovich
The Horn Fragment of Linear Logic is NP-Complete

X-91-15 V. Yu. Shavrukov
Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version

X-91-16 V.G. Kanovci
Undecidable Hypotheses in Edward Nelson’s Internal Set Theory

X-91-17 Michiel van Lambalgen
Independence, Randomness and the Axiom of Choice, Revised Version

X-91-18 Giovanni Copena
New Semantics for Predicate Modal Logic: An Analysis from a standard point of view

X-91-20 Philosophy, Semantics and Philosophy of Language

LP-92-01 Victor Sánchez Valencia
Lambek Grammar: An Information-based Categorial Grammar

LP-92-02 Patrick Blackburn
Modal Logic and Attribute Value Structures

LP-92-03 Mika Mikkilä
The Completeness of the Lambek Calculus with respect to Relational Semantics

LP-92-04 Paul Dekker
An Update Semantics for Dynamic Predicate Logic

LP-92-05 David I. Beaver
The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan
A Modal Perspective on the Computational Complexity of Attribute Value Grammar

LP-92-07 Jeroen Groenendijk, Martin Stokhof
A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke
A System of Dynamic Modal Logic

LP-92-09 Johan van Benthem
Quantifiers in the world of Types

LP-92-10 Maarten de Rijke
Meeting Some Neighbours (a dynamic modal logic meets theories of change and knowledge representation)

LP-92-13 Max I. Kanovich
A note on Dynamic Arrow Logic

LP-92-14 Heinrich Wansing
Sequent Calculi for Normal Modal Propositional Logics

LP-92-15 Dag Westerståhl
Interrogatives and Adverbs of Quantification

ML-92-01 A.S. Troelstra
Mathematical Logic and Foundations

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman
Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate Logics

ML-92-03 Michael Makkai
On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimitar Vakarelov
A Modal Theory of Arrows, Arrow Logics I

ML-92-05 Domenico Zambella
Shavrukov’s Theorem on the Subalgebras of Diagonalizable Algebras for Theories containing L A EXP

ML-92-06 M.D. Gabbay, Valentin B. Shehtman
Undecidability of Modal and First-Order Definability with Two Individual Variables

ML-92-07 Harold Schellinx
How to broaden your horizon

ML-92-08 Raymond Hoofman
Information Systems as Coalgebras

ML-92-09 A.S. Troelstra
Realizability

ML-92-10 Y. Yu. Shavrukov
A Smart Child of Peano’s

CT-92-01 Erik de Haas, Peter van Emde Boas
Object Oriented Application Flow Graphs and their Semantics

CT-92-02 Karen L. Kwiat, Sieger van Dennehuvel
Weak Equivalence: Theory and Applications

CT-92-03 Krysztof A. Kees Doets
A New Definition of SDLNP-resolution

X-93-01 Heinrich Wansing
The Logic of Information Structures

X-93-02 Konstantin N. Ignatiev
The Closed Fragment of Dzhaparidze’s Polymodal Logic and the Logic of Σ_1 conservativity

X-93-03 Willem Groenendijk
Dynamic Semantics and Circular Propositions, revised version

X-93-04 Johan van Benthem
Modeling the Kinematics of Meaning

X-93-05 Erik de Haas, Peter van Emde Boas
Object Oriented Application Flow Graphs and their Semantics, revised version

ML-93-01 Martin Spaan
Parallel Quantification

ML-93-02 Makoto Kanazawa
Dynamic Generalized Quantifiers and Monotonicity

ML-93-03 Nikolai Pankrat’ev
Completeness of the Lambek Calculus with respect to Relativized Relational Semantics

ML-93-04 Jacques van Leeuwen
Identity, Quaerrelling with an Unproblematic Notion

ML-93-05 Jaap van der Does
Sums and Quantifiers

ML-93-06 Paul Dekker
Updates in Dynamic Semantics

LP-93-07 Wojciech Buszkowski
On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars

LP-93-08 Zhisong Huang, Peter van Emde Boas
Information Acquisition from Multi-Agent resources; abstract

LP-93-09 Makoto Kanazawa
Completeness and Decidability of the Mixed Style of Inference with Composition

LP-93-10 Makoto Kanazawa
Weak vs. Strong Maksimov Sentences and Dynamic Semantics in a Dialogical Setting

ML-93-01 Maciej Kandulski
Mathematical Logic and Foundations

ML-93-02 Johan van Benthem, Natasha Alechina
Modal quantification over structured domains

ML-93-03 Jan Pietari
The Conjoining Relation in Lambek Calculus and Linear Logic

ML-93-04 Andrej Priajtelj
Bounded Contraction and Many-Valued Semantics

ML-93-05 Raymond Hoofman, Harold Schellinx
Models of the Untyped λ-calculus in Semi-Cartesian Closed Categories

ML-93-06 Wim van den Hooff
Categorial Generalization of Algebraic Recursion Theory

ML-93-07 A.V. Chagrov, L.A. Chagrova
Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames

ML-93-08 Raymond Hoofman, Joek Moerdijk
Remarks on the Theory of Semi-Functors

ML-93-09 A.S. Troelstra
Natural Deduction for Intuitionistic Linear Logic

ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx
The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs

ML-93-11 Lex Hendriks
Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic

ML-93-12 Y. Yu. Shavrukov
Remarks on Uniformly Finitely Precomplete Positive Equivalences

ML-93-13 Y. Yu. Shavrukov
Undecidability in Diagonalizable Algebras

ML-93-14 Dick de Jongh, Albert Visser
Embeddings of Heyting Algebras

ML-93-15 G.K. Dzhaparidze
Effective Truth Quantization

ML-93-16 Maarten de Rijke
Correspondence Theory for Extended Modal Logics

ML-93-17 Alexander Chagrov, Michael Zakharyaschev
On the dependence Axiomatizability of Modal and Intermediate Logics

ML-93-18 Jaap van Oosten
Extensional Realizability

ML-93-19 Raymond Hoofman
Comparing Models of the Non-Extensional Typed λ-Calculus

ML-93-20 Sophie Fischer
Computation and Complexity Theory

ML-93-21 Matthias Baaz, Wilfried Sieg
The Meaning of Duplicates in the Relational Database Model

ML-93-22 Erika Evert
Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time

ML-93-23 Declerative programming in Prolog

ML-93-24 Computational Linguistics

CL-91-01 Norbert Leuen, László Kalmár
An Algebraic View on Rosetta

CL-92-01 Theo M. V. Benthem
Existential Disclosure, revised version

CL-92-02 Paul Dekker
What is Modal Logic?

CL-92-03 Michael Zakharyaschev
Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing

CL-93-01 Mehdi Eslami (editor)
Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition

CL-93-02 Michael Zakharyaschev
Cofinal Subframe Logics