CONNECTIFICATION FOR n-CONTRACTION

Andreja Prijatelj

ILLC Prepublication Series
for Mathematical Logic and Foundations ML-93-22
CONNECTIFICATION FOR n-CONTRACTION

Andreja Prijatelj
Department of Mathematics and Computer Science
University of Amsterdam
Connectification for n-Contraction

Andreja Prijatelj
Department of Mathematics and Computer Science
University of Amsterdam

January 17, 1994

Abstract

In this paper, we introduce connectification operators for intuitionistic and classical linear algebras corresponding to linear logic and to some of its extensions with n-contraction. In particular, n-contraction ($n \geq 2$) is a version of the contraction rule, where $n+1$ occurrences of a formula may be contracted to n occurrences. Since cut cannot be eliminated from the systems with n-contraction considered most of the standard proof-theoretic techniques to investigate meta-properties of those systems are useless. However, by means of connectification we establish the disjunction property for both intuitionistic and classical affine linear logics with n-contraction.

1 Introduction

The idea of connectification has often been used in the literature to give a model-theoretic proof of the disjunction property (DP) and of the existence property (EP) for various intuitionistic theories. Besides the well-known connectification operators for Ω models (see Troelstra, van Dalen [10]), Smorynski in [8] used connectification for Kripke models to prove (DP) and (EP) and many other closure properties for Heyting arithmetic. Further, there are well-known generalizations of Smorynski's method, corresponding to intuitionistic higher order theories, the Freyd-cover of a topos (see Moerdijk [5], Scedrov, Scott [7]) and an alternative to the Freyd-cover introduced by Moerdijk [4]. These so-called glueing techniques, i.e. connectification methods, also have corresponding syntactic counter-parts known as "slashing-relations", such as the Aczel slash (see Troelstra, van Dalen [10], Smorynski [8]) and the Friedman slash (see Scedrov, Scott [7]).
In this paper, we shall introduce a suitable connectification operator for intuitionistic and classical algebras corresponding to linear logic and some of its extensions with n-contraction ($n \geq 2$), i.e. affine case: IPL_n^a, CPL_n^a, and non-affine case: IPL_n, CPL_n. To be specific, n-contraction ($n \geq 2$) is a version of the contraction rule, where $(n+1)$ occurrences of a formula may be contracted to n occurrences. A variant of CPL_n^a was first considered in Prijatelj [6], while IPL_n appeared, soon after that, in a slightly more general guise in Hari, Ono and Schellinx [2]. Moreover, we shall introduce a connectification operator for a non-commutative version of IPL_n^a-algebras, corresponding to extended directional Lambek calculi, L_n^a (for a comparison, see Kanazawa [3]).

However, it will become clear later on that only the connectification operators for affine linear algebras are useful to prove the disjunction property for the underlying intuitionistic and classical systems. The crucial reason is that the presence of weakening in the systems enforces the top element of a lattice to coincide with the unit of a monoid in the corresponding algebras. The shortcoming of the connectification operators for the non-affine algebras to handle (DP) will be discussed in the last section.

Since none of the extensions of linear logic considered here, enjoys cut-elimination (witness counter-examples in Hari, Ono and Schellinx [2] and in Prijatelj [6]), it is difficult to establish almost any of their meta-properties syntactically. Thus, we shall in what follows focus on a model-theoretic proof of (DP) for the systems IPL_n^a and CPL_n^a by means of connectification.

In the last section we shall introduce connectification operators for the rest of linear algebras discussed above. We shall show that for a particular subclass of IPL_n-models the valuation of any \bot-free IPL_n-formula is preserved under the connectification considered. Moreover, this distinguished class of IPL_n-models is complete for the \bot-free IPL_n system, as pointed out in the sequel.

Let us finally mention that Troelstra's notation for the operators of linear logic will be used in this paper (see Troelstra [9]).
2 Intuitionistic Systems with n-Contraction and Weakening

For any $n \geq 2$, an intuitionistic system of affine propositional logic with n-contraction, IPL_n^a, is given by the following axioms and rules. Throughout the below, Λ denotes the empty multiset, Φ denotes either an occurrence of an IPL_n^a-formula or the empty multiset, and $\Gamma, \Gamma_1, \Gamma_2$ stand for finite multisets of IPL_n^a-formulas.

Axioms

\[
A \Rightarrow A \quad 0 \Rightarrow \Lambda \quad \Lambda \Rightarrow 1
\]

Logical rules

\[
\begin{align*}
L^* & \quad \frac{\Gamma, A, B \Rightarrow \Phi}{\Gamma, A \ast B \Rightarrow \Phi} \\
R^* & \quad \frac{\Gamma_1 \Rightarrow A}{\Gamma_1, \Gamma_2 \Rightarrow A \ast B} \quad \frac{\Gamma_2 \Rightarrow B}{\Gamma_1, \Gamma_2 \Rightarrow A \ast B}
\end{align*}
\]

\[
L \Rightarrow \quad \frac{\Gamma_1 \Rightarrow A}{\Gamma_1, \Gamma_2, A \rightarrow B \Rightarrow \Phi} \\
R \Rightarrow \quad \frac{\Gamma_1, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}
\]

\[
L \cap \quad \frac{\Gamma, A_i \Rightarrow \Phi}{\Gamma, A_1 \cap A_2 \Rightarrow \Phi} \quad (i = 1, 2) \\
R \cap \quad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \cap B}
\]

\[
L \cup \quad \frac{\Gamma, A \Rightarrow \Phi}{\Gamma, A \cup B \Rightarrow \Phi} \\
R \cup \quad \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \cup A_2} \quad (i = 1, 2)
\]

Structural rules

\[
LW \quad \frac{\Gamma \Rightarrow \Phi}{\Gamma, A \Rightarrow \Phi} \\
RW \quad \frac{\Gamma \Rightarrow \Lambda}{\Gamma \Rightarrow A}
\]

\[
LC_n \quad \frac{\Gamma, A^{(n+1)} \Rightarrow \Phi}{\Gamma, A^{(n)} \Rightarrow \Phi}
\]

where $A^{(k)} \equiv A, A, \ldots, A$, i.e. k copies of formula A.

\[
CUT \quad \frac{\Gamma_1 \Rightarrow A}{\Gamma_1, \Gamma_2 \Rightarrow \Phi} \quad \frac{\Gamma_2 \Rightarrow A}{\Gamma_1, \Gamma_2 \Rightarrow \Phi}
\]
Remark: A non-involutive negation can be defined by $\sim A = A \rightarrow 0$. Note that the respective left and right rules

$$
\frac{\Gamma \Rightarrow A}{\Gamma, \sim A \Rightarrow \Lambda} \quad \frac{\Gamma, A \Rightarrow \Lambda}{\Gamma \Rightarrow \sim A} \quad \text{R~}
$$

are derivable in IPL_n^a.

3 Algebraic Models for IPL_n^a

Definition 3.1 $X = \langle X, \ast, \rightarrow, \sqcap, \sqcup, 0, 1 \rangle$ is an IPL_n^a algebra, if:

1. $\langle X, \ast, 1 \rangle$ is a commutative monoid with unit 1;
2. $\langle X, \sqcap, \sqcup, 0, 1 \rangle$ is a lattice with bottom 0 and top 1;
3. \ast is monotone with respect to the lattice order \leq, i.e. for all $x, y, z \in X$, if $x \leq y$, then $x \ast z \leq y \ast z$;
4. for all $x, y, z \in X$, $x \ast y \leq z$ if and only if $x \leq y \rightarrow z$;
5. for all $x \in X$, $x^n \leq x^{n+1}$, where $x^k = x \ast \cdots \ast x$ with k copies of x.

Remark: Note that, an IPL_n^a-algebra is in fact an intuitionistic linear algebra with zero (see Troelstra [9]), satisfying in addition:

- $\bot = 0$ and $x \leq 1$ for all $x \in X$ (corresponding to weakening);
- clause (5) (corresponding to n-contraction).

However, for the notational perspicuity in the next two sections we shall here adopt the above given formulation of an IPL_n^a-algebra.

Lemma 3.2 In any IPL_n^a-algebra $X = \langle X, \ast, \rightarrow, \sqcap, \sqcup, 0, 1 \rangle$, the following are satisfied for all $x, x', y, y', z \in X$:

(a) $x \ast (y \sqcup z) = (x \ast y) \sqcup (x \ast z)$, and moreover,
\[x \ast \bigsqcup_{i \in I} y_i = \bigsqcup_{i \in I} (x \ast y_i), \text{ provided } \bigsqcup_{i \in I} y_i \text{ exists}; \]
(b) if $x \leq x'$ and $y \leq y'$, then $x' \rightarrow y \leq x \rightarrow y'$;
(c) $y \rightarrow z = \max\{x \in X | x \ast y \leq z\}$;
(d) \(x \star y \leq x; \)
(e) \(x \star 0 = 0; \)
(f) \(x^n = x^{n+1}. \)

Proof: The proof of (a)-(c) is standard (see Troelstra [9]), (d) and (f) are straightforward consequences of the affine character of an \(\text{IPL}_n \)-algebra. ☐

The following corresponds to a fact well-known from the theory of Heyting algebras.

Fact 3.3 Let the clauses (1)-(3) of the definition of an \(\text{IPL}_n \)-algebra be satisfied for some \((X, \star, \sqcap, \sqcup, 0, 1) \). If \(\neg \) is well-defined on \(X \times X \) by

\[
y \neg z = \max \{ x \in X | x \star y \leq z \},
\]

then also (4) of definition 3.1 is fulfilled for \((X, \star, \neg, \sqcap, \sqcup, 0, 1) \).

Definition 3.4 \(M = \langle X, [\] \rangle \) is an \(\text{IPL}_n \)-model, if

(1) \(X \) is an \(\text{IPL}_n \)-algebra;

(2) \([\]\) is a valuation satisfying:
 (i) \([P]\) \in X, for every propositional variable \(P \);
 (ii) \([0]=0, [1]=1;\)

\([\]\) is extended to arbitrary \(\text{IPL}_n \)-formula inductively, as follows:

\[
[A \bullet B] = [A] \bullet [B], \quad \text{with} \quad \bullet \in \{\star, \neg, \sqcap, \sqcup\}.
\]

Moreover, \([\]\) is extended to multisets by:

\[
[\Lambda] = 1 \quad \text{and} \quad [\Gamma, \Delta] = [\Gamma] \star [\Delta].
\]

A sequent \(\Gamma \Rightarrow A \) is valid in \(M \), denoted by \(\models_M \Gamma \Rightarrow A \), if and only if \([\Gamma] \leq [A]. \) Moreover, we stipulate that a sequent of the form \(\Gamma \Rightarrow \Lambda \) is valid in \(M \) if and only if a sequent \(\Gamma \Rightarrow 0 \) is valid in \(M \), i.e. if and only if \([\Gamma] \leq 0. \)

Remark: A sequent of the form \(\Lambda \Rightarrow A \) is valid in \(M \) if and only if \([A] = 1, \) since 1 is the top element in \(X. \)
Proposition 3.5 (Soundness) Given an IPL_n^a-sequent $\Gamma \Rightarrow \Phi$,

$$\text{if } \text{IPL}_n^a \vdash \Gamma \Rightarrow \Phi, \text{ then } \models_{M} \Gamma \Rightarrow \Phi,$$

for every IPL_n^a-model M.

Proof: By induction on the length of a derivation of $\Gamma \Rightarrow \Phi$. ◊

Proposition 3.6 (Completeness) There exists an IPL_n^a-model M_L, such that

$$\text{if } \models_{M_L} \Gamma \Rightarrow A, \text{ then } \text{IPL}_n^a \vdash \Gamma \Rightarrow A.$$

Proof: Observe that the Lindenbaum algebra of IPL_n^a is an IPL_n^a-algebra. The rest of the proof is standard. ◊

4 Connectification with a new top element

Definition 4.1 Let $X = (X, *, \to, \land, \lor, 0, 1)$ be an IPL_n^a-algebra. The connectification of X with a new top element $1_c \not\in X$ is the IPL_n^a-algebra $X_c = (X \cup \{1_c\}, *, c, \to_c, \land_c, \lor_c, 0)$, given by:

1. $*_c$ is the extension of $*$ on $X \cup \{1_c\}$, defined by:
 $$x *_c 1_c = 1_c *_c x = x \text{ for all } x \in X \cup \{1_c\}.$$

2. \leq_c is the extension of the lattice order \leq on $X \cup \{1_c\}$, given by:
 $$\text{for all } x \in X \cup \{1_c\} : x \leq_c 1_c$$

3. \neg_\to_c is defined on $(X \cup \{1_c\}) \times (X \cup \{1_c\})$ by:
 $$y \neg_\to_c z = \text{max}\{x \in X \cup \{1_c\} | x *_c y \leq_c z\}.$$

Remark: Note that, explicitly:

$$y \neg_\to_c z = \begin{cases} 1_c & \text{if } y \leq_c z \\ z & \text{if } y = 1_c \\ y \to z & \text{otherwise} \end{cases}$$
Hence, $-\circ_c$ is in fact well-defined on $(X \cup \{1_c\}) \times (X \cup \{1_c\})$.

Next we verify that $X_c = (X \cup \{1_c\}, \ast_c, -\circ_c, \cap_c, \cup_c, 0)$ is an IPL^a_n-algebra. By (1) and (2) above, clauses (1) and (2) of the definition of an IPL^a_n-algebra are satisfied. To justify monotonicity of \circ_c with respect to \leq_c, clause (d) of lemma 3.2 is to be used. So far, clauses (1)-(3) of the definition of an IPL^a_n-algebra are satisfied for $(X \cup \{1_c\}, \ast_c, \cap_c, \cup_c, 0)$. Moreover, $-\circ_c$ is well-defined on $(X \cup \{1_c\}) \times (X \cup \{1_c\})$, and therefore, by fact 3.3, clause (4) of definition of an IPL^a_n-algebra is fulfilled for X_c as well. Since 1_c is the unit for \ast_c in $X \cup \{1_c\}$, clause (5) of definition 3.1 is satisfied for X_c too.

Next, we shall introduce the connectification of an IPL^a_n-model with a new top element.

Definition 4.2 Let $M = \langle X, [\cdot] \rangle$ be an IPL^a_n-model. The connectification of M with a new top element 1_c is the IPL^a_n-model $M_c = \langle X_c, [\cdot]_c \rangle$, given by:

1. X_c is the connectification of X with a new top element 1_c;
2. $[\cdot]_c$ is the valuation, defined by: $[P]_c = [P]$, for any propositional variable P.

5 Disjunction Property for IPL^a_n

We are now ready to prove a useful

Lemma 5.1 Let $M = \langle X, [\cdot] \rangle$ be an IPL^a_n-model and $M_c = \langle X_c, [\cdot]_c \rangle$ the connectification of M with a new top element 1_c. Then the following holds true for any IPL^a_n-formula A:

(i) if $[A]_c = 1_c$, then $[A] = 1$;

(ii) if $[A]_c <_c 1_c$, then $[A]_c = [A]$.

Proof: By induction on the complexity of A.

To illustrate the proof, we will here work out the only tricky case. Assume $A = B \rightarrow D$.

(i) If $[B \rightarrow D]_c = 1_c$, then the following two possibilities are to be distinguished:

7
(1) $[D]_c = 1_c$, then by induction hypothesis we get: $[D] = 1$. Thus, due to lemma 3.2(c) and the fact, that 1 is the top element in X, we get: $[B \rightarrow D] = [B] \rightarrow [D] = [B] \rightarrow 1 = 1$, what was to be shown.

(2) $[D]_c <_c 1_c$. Then, due to assumption (i) and definition of \neg_c, we know: $[B]_c \leq_c [D]_c$, yielding $[B]_c <_c 1_c$. Using now the induction hypothesis, we get: $[D]_c = [D]$ and $[B]_c = [B]$. And therefore, $[B] \leq_c [D]$. Hence, $[B \rightarrow D] = [B] \rightarrow [D] = 1$, due to lemma 3.2(c) and the fact, that 1 is the top element and the unit for \star in X.

(ii) If $[B \rightarrow D]_c <_c 1_c$, then the following two possibilities are to be distinguished:

(1) $[B]_c = 1_c$, then by definition of \neg_c, assumption (ii) and the fact that 1_c is the top element in $X \cup \{1_c\}$, we know: $[D]_c <_c 1_c$. Now we can use induction hypotheses yielding: $[B] = 1$ and $[D]_c = [D]$. And hence, $[B \rightarrow D] = [B] \rightarrow [D] = 1 \rightarrow [D] = [D]$, due to lemma 3.2(c) and the fact, that 1 is the unit for \star in X. But, $[D] = [D]_c = 1_c\neg_c [D]_c = [B]_c \neg_c [D]_c = [B \rightarrow D]_c$, what was to be shown.

(2) $[B]_c <_c 1_c$, then by induction hypothesis we have: $[B]_c = [B]$. Moreover, due to assumption (ii), and definition of \neg_c, we know that $[B]_c \leq_c [D]_c$, yielding $[D]_c <_c 1_c$. Using induction hypothesis once again gives: $[D]_c = [D]$. From that and definition of \neg_c, we get: $[B \rightarrow D]_c = [B]_c \neg_c [D]_c = [B]_c \neg [D]_c = [B] \rightarrow [D] = [B \rightarrow D]$. And we are done.

Remark: The above lemma shows that the class of all M_c-valid formulas is a subclass of M-valid formulas.

Lemma 5.2 Let $M = (X, \{\cdot\})$ be an IPL_n^a-model and $M_c = (X_c, \{\cdot\}_c)$ the connectification of M with a new top element 1_c.

If $[A] \leq 1$ and $[B] \leq 1$, then $[A \sqcup B]_c \leq_c 1$,

where A and B are IPL_n^a-formulas.
Proof: Suppose $M = (X, [\])$ is an IPL_n^α-model, such that for some IPL_n^α-formulas A and B, $[A]_c < 1$ and $[B]_c < 1$. Then, by contraposition of the statement (i) of lemma 5.1, we get $[A]_c \leq c 1$ and $[B]_c \leq c 1$, since 1 and 1_c are the top elements in X and in X_c respectively. Hence, $[A \cup B]_c = [A]_c \cup_c [B]_c \leq c 1$, and we are done. \

Remark: The above lemma can be rewritten as follows. Given an IPL_n^α-model M such that $\not\models_M \Lambda \Rightarrow A$ and $\not\models_M \Lambda \Rightarrow B$, then $\not\models_{M_c} \Lambda \Rightarrow A \cup B$, where M_c is the connectification of M with a new top element.

Lemma 5.3 The product of IPL_n^α-models, $M_1 = (X_1, [\ . \]_1)$ and $M_2 = (X_2, [\ . \]_2)$, is the IPL_n^α-model $M_1 \times M_2 = (X_1 \times X_2, ([\ . \]_1, [\ . \]_2))$, with the operations in $X_1 \times X_2$ defined component-wise.

Proposition 5.4 The system IPL_n^α enjoys the following disjunction property:

\[
\text{if } \text{IPL}_n^\alpha \vdash \Lambda \Rightarrow A \cup B, \text{ then } \text{IPL}_n^\alpha \vdash \Lambda \Rightarrow A \text{ or } \text{IPL}_n^\alpha \vdash \Lambda \Rightarrow B.
\]

Proof: Suppose that $\not\models_{\text{IPL}_n^\alpha} \Lambda \Rightarrow A$ and $\not\models_{\text{IPL}_n^\alpha} \Lambda \Rightarrow B$. Then, due to completeness, see proposition 3.6, there are IPL_n^α-models $M_1 = (X_1, [\ . \]_1)$ and $M_2 = (X_2, [\ . \]_2)$, such that:

$\not\models_{M_1} \Lambda \Rightarrow A$ and $\not\models_{M_2} \Lambda \Rightarrow B$.

This means, that

$[A]_1 < 1_1$ and $[B]_2 < 2_2$,

where 1_1 and 2_2 are the top elements in the corresponding IPL_n^α-models respectively. But, by lemma 5.3, $M_1 \times M_2 = (X_1 \times X_2, ([\ . \]_1, [\ . \]_2))$ is again an IPL_n^α-model. Moreover, we know that

$([A]_1, [A]_2) < (1_1, 1_2)$ and $([B]_1, [B]_2) < (1_1, 1_2)$,

with $(1_1, 1_2)$ being the top element of the model $M_1 \times M_2$. And hence, using lemma 5.2, we may conclude that

$[A \cup B]_c \leq c (1_1, 1_2) < c 1_c$,

where $M_c = (X_c, [\ . \]_c)$ is the connectification of the IPL_n^α-model $M_1 \times M_2$ with a new top element 1_c. Thus, $\not\models_{M_c} \Lambda \Rightarrow A \cup B$. Hence, due to soundness, see proposition 3.5, $\not\models_{\text{IPL}_n^\alpha} \Lambda \Rightarrow A \cup B$ and we are done. \

9
A natural question arising at this point is whether the disjunction property can be generalized to some suitable class of IPL_n^a-formulas that may occur in the antecedent of the sequents considered. For that purpose, consider the following modification of the connectification of an IPL_n^a-model. Let clause (2) of definition 4.2 be replaced by:

(2') for any propositional variable P,

$$[P]_c = \begin{cases} 1_c & \text{if } [P] = 1 \\ [P] & \text{otherwise} \end{cases}$$

It is easy to see that also for this version of connectification lemma 5.1 holds and so does the rest of the proof establishing (DP) of IPL_n^a. Moreover, the following preservation result can be obtained.

Proposition 5.5 Let A be any \sqcup-free IPL_n^a-formula. Given an IPL_n^a-model M and its connectification M_c, in the sense above,

$$[A]_c = \begin{cases} 1_c & \text{if } [A] = 1 \\ [A] & \text{otherwise} \end{cases}$$

Proof: By induction on the complexity of A. \diamond

Remark: Clearly given an IPL_n^a-model M the validity of any \sqcup-free formula A is preserved under the connectification just introduced, i.e. $\models_M \Lambda \Rightarrow A$ if and only if $\models_{M_c} \Lambda \Rightarrow A$.

Definition 5.6 Let \mathcal{I} be the class of those \sqcup-free IPL_n^a-formulas D with the property:

for every IPL_n^a-formula F, such that $\text{IPL}_n^a \not\vdash D \Rightarrow F$ there is an IPL_n^a-model M satisfying $\models_M \Lambda \Rightarrow D$ and $\not\models_M \Lambda \Rightarrow F$.

Remark: First, observe that \mathcal{I} is not empty, since every \sqcup-free IPL_n^a-formula provably equivalent to 1 is an element of \mathcal{I}. Further, note that \mathcal{I} is not a subclass of IPL_n^a-formulas provably equivalent to 1, since any \sqcup-free IPL_n^a-formula provably equivalent to 0 also belongs to \mathcal{I}. Further, we are going to show that \mathcal{I} is just a proper subclass of all \sqcup-free IPL_n^a-formulas. For that purpose, we proceed, as follows. Given a propositional variable P, we know that $\text{IPL}_n^a \not\vdash P \Rightarrow P \ast P$, for $n \geq 2$ (see Prijatelj [6] for a counter-model). However, for any IPL_n^a-model M the following holds: if $\models_M \Lambda \Rightarrow P$ (i.e. $[P] = 1$), then $\models_M \Lambda \Rightarrow P \ast P$ (i.e. $[P] \ast [P] = 1$). Hence,
P does not belong to \mathcal{I}.

Proposition 5.7 Given $D \in \mathcal{I}$ the following holds for any IPL_n^α-formulas A and B:

if $\text{IPL}_n^\alpha \vdash D \Rightarrow A \sqcup B$, then $\text{IPL}_n^\alpha \vdash D \Rightarrow A$ or $\text{IPL}_n^\alpha \vdash D \Rightarrow B$.

Proof: Suppose that $\text{IPL}_n^\alpha \nvdash D \Rightarrow A$ and $\text{IPL}_n^\alpha \nvdash D \Rightarrow B$. Since by assumption $D \in \mathcal{I}$, we know that there are IPL_n^α-models M_1 and M_2 satisfying:

$\models_{M_1} \Lambda \Rightarrow D$, $\not\models_{M_1} \Lambda \Rightarrow A$, and $\models_{M_2} \Lambda \Rightarrow D$, $\not\models_{M_2} \Lambda \Rightarrow B$. Using the same arguments as in the proof of proposition 5.4 one can show that $[A \sqcup B]_c <_c 1_c$, where $M_c = (X_c, [\cdot]_c)$ is the connectification of the IPL_n^α-model $M_1 \times M_2$ with a new top element 1_c. Moreover, by the preservation proposition 5.5 we get $[D]_c = 1_c$. Thus clearly, $[D]_c \not< [A \sqcup B]_c$, i.e. $\not\models_{M_c} D \Rightarrow A \sqcup B$. Hence, $\text{IPL}_n^\alpha \nvdash D \Rightarrow A \sqcup B$. And we are done. \(\diamond \)

Summing up the results of this section, i.e. proposition 5.4 and a straightforward generalization of proposition 5.7, we obtain

Proposition 5.8 The system IPL_n^α enjoys the following disjunction property:

if $\text{IPL}_n^\alpha \vdash \Gamma \Rightarrow A \sqcup B$, then $\text{IPL}_n^\alpha \vdash \Gamma \Rightarrow A$ or $\text{IPL}_n^\alpha \vdash \Gamma \Rightarrow B$,

provided that either Γ is the empty multiset or the ∗-product of all the formulas in Γ is provably equivalent to some element of \mathcal{I}, in particular to 0 or 1.
6 Classical Systems with n-Contraction and Weakening

For any $n \geq 2$, a classical system of affine propositional logic with n-contraction, CPL^n_ω, is given by the following axioms and rules. Throughout the below, Λ denotes the empty multiset and $\Gamma, \Gamma_1, \Gamma_2, \Delta, \Delta_1, \Delta_2$ stand for finite multisets of CPL^n_ω-formulas.

Axioms

$$A \Rightarrow A \quad 0 \Rightarrow \Lambda \quad \Lambda \Rightarrow 1$$

Logical rules

$$L\sim \quad \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \sim A \Rightarrow \Delta} \quad \frac{\Gamma, A \Rightarrow \Delta}{\sim A \Rightarrow \Delta} \quad R\sim$$

$$L* \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \ast B \Rightarrow \Delta} \quad \frac{\Gamma_1 \Rightarrow A, \Delta_1 \quad \Gamma_2 \Rightarrow B, \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow A \ast B, \Delta_1 \ast \Delta_2} \quad R*$$

$$L+ \quad \frac{\Gamma_1, A \Rightarrow \Delta_1 \quad \Gamma_2, B \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2, A + B \Rightarrow \Delta_1 \ast \Delta_2} \quad \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A + B, \Delta} \quad R+$$

$$L\cap \quad \frac{\Gamma, A_i \Rightarrow \Delta}{\Gamma, A_1 \cap A_2 \Rightarrow \Delta} \quad (i = 1, 2) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \cap B, \Delta} \quad R\cap$$

$$L\cup \quad \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \cup B \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A_i, \Delta}{\Gamma \Rightarrow A_1 \cup A_2, \Delta} \quad (i = 1, 2) \quad R\cup$$

Structural rules

$$LW \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta} \quad RW$$

$$LC_n \quad \frac{\Gamma, A^{(n+1)} \Rightarrow \Delta}{\Gamma, A^{(n)} \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A^{(n+1)}, \Delta}{\Gamma \Rightarrow A^{(n)}, \Delta} \quad RC_n$$
where $A^{(k)} \equiv A, A, \ldots, A$, i.e. k copies of formula A.

\[
\text{CUT} \quad \frac{\Gamma_1 \Rightarrow A, \Delta_1 \quad \Gamma_2, A \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}
\]

Remark: A linear implication can be defined by $A \rightarrow B = \sim A + B$. Note that, the respective left and right rules

\[
L \rightarrow \quad \frac{\Gamma_1 \Rightarrow A, \Delta_1 \quad \Gamma_2, B \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2, A \rightarrow B \Rightarrow \Delta_1, \Delta_2}
\]

\[
R \rightarrow \quad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \rightarrow B, \Delta}
\]

are derivable in CPL_n^a.

7 Algebraic Models for CPL_n^a

Definition 7.1 $X = (X, \sim, *, +, \sqcap, \sqcup, 0, 1)$ is a CPL_n^a-algebra, if:

1. $(X, *, 1)$ and $(X, +, 0)$ are commutative monoids with units 1 and 0 respectively;
2. $(X, \sqcap, \sqcup, 0, 1)$ is a lattice with bottom 0 and top 1;
3. \sim is involution, i.e. $\sim x = x$ for all $x \in X$;
4. $*$ and $+$ are monotone with respect to the lattice order \leq, i.e. for all $x, y, z \in X$, if $x \leq y$, then $x * z \leq y * z$ and $x + z \leq y + z$;
5. for all $x, y, z \in X$, $x * y \leq z$ if and only if $x \leq \sim y + z$;
6. for all $x \in X$, $x^n \leq x^{n+1}$ and $(n + 1)x \leq nx$, where $x^k = x * \cdots * x$ and $kx = x + \cdots + x$ with k copies of x respectively.

Remark: Note that, a CPL_n^a-algebra is just a classical linear algebra (provided \rightarrow is taken as primitive while \top, \sim and $+$ are defined in a usual way, see Troelstra [9]), satisfying in addition:

- $\bot = 0$ and $\top = 1$ (corresponding to weakening);
- clause (5) (corresponding to n-contraction).

However, we will here choose the fully symmetric formulation of CPL_n^a-algebra establishing a proper intuition for defining, later on, the connectification operator for the classical algebras considered.
Lemma 7.2 In any CPL_n^a-algebra $X = (X, \sim, \ast, +, \cap, \cup, 0, 1)$, the following are satisfied for all $x, y, z \in X$:

(a) $x \ast \sim x = 0$ and $x + \sim x = 1$;

(b) $\sim 0 = 1$ and $\sim 1 = 0$;

(c) for all $x, y, z \in X$, $x \ast (y + z) \leq (x \ast y) + z$;

(d) De Morgan laws expressing that the following pairs of operators are dual to each other: (\sim, \ast), $(\ast, +)$, (\cap, \cup), $(0, 1)$;

(e) \sim is anti-monotone with respect to \leq, i.e. $x \leq y$ iff $\sim y \leq \sim x$;

(f) distributivity of \ast and of $+$ over \cup and over \cap respectively; and moreover,

\[x \ast \cup_{i \in I} y_i = \cup_{i \in I} (x \ast y_i), \text{ provided } \cup_{i \in I} y_i \text{ exists;} \]

\[x + \cap_{i \in I} y_i = \cap_{i \in I} (x + y_i), \text{ provided } \cap_{i \in I} y_i \text{ exists;} \]

(g) $y + z = \max\{x \in X| x \ast \sim y \leq z\}$;

(h) $x \ast y \leq x$ and $x \leq x + y$;

(i) $x \ast 0 = 0$ and $x + 1 = 1$;

(j) $x^n = x^{n+1}$ and $(n+1)x = nx$.

Proof: Straightforward. ◊

Fact 7.3 Let the clauses (1)-(4) of definition 7.1 be satisfied for some $(X, \sim, \ast, \cap, \cup, 0, 1)$. If $+$ is well-defined on $X \times X$ by

\[y + z = \max\{x \in X| x \ast \sim y \leq z\}, \]

then, also, (5) of definition 7.1 is fulfilled for $(X, \sim, \ast, +, \cap, \cup, 0, 1)$.

Definition 7.4 $M = (X, [\cdot])$ is a CPL_n^a-model, if:

(1) X is a CPL_n^a-algebra;

(2) $[\cdot]$ is a valuation satisfying the same conditions as an IPL_n^a-model;
[.] is extended to CPL^n-formulas inductively, by: \[\sim A \equiv [A] \] and \[A \cdot B = [A] \cdot [B], \text{ with } \cdot \in \{\ast, +, \cap, \cup\}; \]
Moreover, a CPL^n-sequent \(A_1, \ldots, A_k \Rightarrow B_1, \ldots, B_m \) (where \(k, m \) may not both be zero) is valid in \(M \) if and only if \([A_1] \ast \cdots \ast [A_k] \leq [B_1] + \cdots + [B_m] \).

Finally, the soundness and the completeness theorem for the classical case considered can be established in an analogous way to the previously discussed intuitionistic case.

8 Connectification with new top and bottom elements

Definition 8.1 Let \(X = \langle X, \sim, \ast, +, \cap, \cup, 0, 1 \rangle \) be a CPL^n-algebra. The connectification of \(X \) with a new top element \(1_c \notin X \) and with a new bottom element \(0_c \notin X \) is the CPL^n-algebra \(X_c = \langle X \cup \{0_c, 1_c\}, \sim_c, \ast_c, +_c, \cap_c, \cup_c \rangle \), given by:

1. \(\sim_c \) is the extension of \(\sim \) on \(X \cup \{0_c, 1_c\} \), defined by:
 \[\sim_c 0_c = 1_c \text{ and } \sim_c 1_c = 0_c. \]

2. \(\leq_c \) is the extension of the lattice order \(\leq \) on \(X \cup \{0_c, 1_c\} \), given by:
 \[0_c \leq_c x \leq_c 1_c, \text{ for all } x \in X \cup \{0_c, 1_c\}. \]

3. \(\ast_c \) is defined on \((X \cup \{0_c, 1_c\}) \times (X \cup \{0_c, 1_c\}) \) by:
 \[y \ast_c z = \begin{cases} 0_c & \text{if } y \leq_c z \sim_c z \\ y & \text{if } z = 1_c \\ z & \text{if } y = 1_c \\ y \ast z & \text{otherwise} \end{cases} \]

4. \(+_c \) is defined on \((X \cup \{0_c, 1_c\}) \times (X \cup \{0_c, 1_c\}) \) by:
 \[y +_c z = \begin{cases} 1_c & \text{if } \sim_c y \leq_c z \\ y & \text{if } z = 0_c \\ z & \text{if } y = 0_c \\ y + z & \text{otherwise} \end{cases} \]
Figure 1: The connectification of affine linear algebras: (I) intuitionistic case, (C) classical case.

Remark: To verify that X_c is indeed a CPL^a_n-algebra, observe the following facts. Note that $*_c$ and $+_c$ are duals of each other and moreover, that they are commutative operations in $X \cup \{0_c, 1_c\}$. Observe also that (4) is just spelling out the effects of

$$y +_c z = \max\{x \in X \cup \{0_c, 1_c\} | x*_c \sim_c y \leq_c z\}.$$

By fact 7.3 this yields clause (5) of the definition of an CPL^a_n-algebra. Now, the verification is a trivial matter.

The connectification of a CPL^a_n-model with new top and bottom elements is introduced, as follows.

Definition 8.2 Let $M = (X, \llbracket \cdot \rrbracket)$ be a CPL^a_n-model. The connectification of M with a new top element 1_c and with a new bottom element 0_c is the CPL^a_n-model $M_c = (X_c, \llbracket \cdot \rrbracket_c)$, given by:

1. X_c is the connectification of X with 1_c and 0_c;
2. $\llbracket \cdot \rrbracket_c$ is the valuation, defined by: for every propositional variable P,

$$[P]_c = \begin{cases}
1_c & \text{if } [P] = 1 \\
0_c & \text{if } [P] = 0 \\
[P] & \text{otherwise}
\end{cases}$$

16
9 Disjunction Property for \(\text{CPL}_n^a \)

In this section, we are going to show that also classical systems of affine linear logic with \(n \)-contraction \((n \geq 2) \) enjoy the disjunction property. For that purpose, we shall first elaborate the necessary prerequisites.

To start with the central

Lemma 9.1 Let \(M = \langle X, \models \rangle \) be a \(\text{CPL}_n^a \)-model and \(M_e = \langle X_e, \models_e \rangle \) the connectification of \(M \) with a new top element \(1_e \) and with a new bottom element \(0_e \). Then, the following holds true for any \(\text{CPL}_n^a \)-formula \(A \):

(i) if \([A]_e = 1_e \), then \([A] = 1 \);

(ii) if \(0_e \not<_c [A]_e \not<_c 1_e \), then \([A]_e = [A] \);

(iii) if \([A]_e = 0_e \), then \([A] = 0 \).

Proof: By induction on the complexity of \(A \).

To illustrate the proof, we will here consider only the case for the connective \(\sim \). Assume \(A = \sim B \). Suppose that \(0_e \not<_c [\sim B]_e \not<_c 1_e \). Then, by definition \(0_e \not<_c [\sim B]_e \not<_c 1_e \), yielding \(0_e \not<_c [B]_e \not<_c 1_e \), due to the fact that \(\sim \) is involution, anti-monotone with respect to \(\leq_c \) (see lemma 7.2(e)), and that \(\sim_c 0_e = 1_e \) and \(\sim_c 1_e = 0_e \). We can now use induction hypothesis and get \([B]_e = [B] \). Hence, \([\sim_c B]_e = \sim_c [B]_e = \sim_c [B] \). But \(\sim_e \) restricted to \(X \) is just \(\sim \). Therefore \(\sim_c [B] = \sim [B] = [\sim B] \). This verifies clause (ii) of the lemma while (i) and (iii) are left to the reader as well as the rest of the proof. \(\diamond \)

Next, the following preservation result can be established.

Proposition 9.2 Let \(A \) be any \(\cap \perp \)-free \(\text{CPL}_n^a \)-formula. Given a \(\text{CPL}_n^a \)-model \(M \) and its connectification \(M_e \),

\[
[A]_e = \begin{cases}
1_e & \text{if } [A] = 1 \\
0_e & \text{if } [A] = 0 \\
[A] & \text{otherwise}
\end{cases}
\]

Proof: By induction on the complexity of \(A \). \(\diamond \)

Remark: Clearly given a \(\text{CPL}_n^a \)-model \(M \) the validity of any \(\cap \perp \)-free formula \(A \) is preserved under the connectification, i.e. \(\models_M \Lambda \Rightarrow A \) if and only if \(\models_{M_e} \Lambda \Rightarrow A \).

To continue with
Definition 9.3 Let C be the class of those $\land \lor$-free CPL_n^a-formulas D with the property:

for every CPL_n^a-formula F, such that $\text{CPL}_n^a \not\vdash D \Rightarrow F$ there is an CPL_n^a-model M satisfying $\models_M \Lambda \Rightarrow D$ and $\not\models_M \Lambda \Rightarrow F$.

Along the lines analogous to those for the intuitionistic case the following result can now be established:

Proposition 9.4 The system CPL_n^a enjoys the following disjunction property:

\[\text{CPL}_n^a \vdash \Gamma \Rightarrow A \lor B, \quad \text{then} \quad \text{CPL}_n^a \vdash \Gamma \Rightarrow A \quad \text{or} \quad \text{CPL}_n^a \vdash \Gamma \Rightarrow B, \]

provided that either Γ is the empty multiset or the \ast-product of all the formulas in Γ is provably equivalent to some element in C, in particular to 0 or 1.

10 Some Variations of the Connectification Operator

In this section, we shall briefly introduce the connectification operators for:

1. intuitionistic algebras corresponding to linear logic, ILZ-algebra, and to its extension with n-contraction, IPL_n^a-algebra;

2. classical algebras corresponding to linear logic, CL-algebra, and to its extension with n-contraction, CPL_n^a-algebra.

3. non-commutative versions of IPL_n^a-algebras, corresponding to the directional Lambek calculi extended by additional operators, weakening and n-contraction, L_n^a-algebra.

Ad (1): The underlying systems IPL_n (IPL) are obtained from IPL_n^a by restricting weakening only to 0 and 1 in the succedent and in the antecedent respectively,(omitting also n-contraction), and by adding the axiom for \perp. Moreover, an IPL_n^a-algebra is an ILZ-algebra with the additional clause corresponding to n-contraction.

Definition 10.1 Let $X = \langle X, *, -\circ, \land, \lor, 0, 1, \perp \rangle$ be an ILZ (IPL_n^a)-algebra. The connectification of X with a new top $\top_\circ \not\in X$ is the ILZ (IPL_n^a)-algebra $X_{\circ} = \langle X \cup \{\top_\circ\}, *, -\circ, \land, \lor, 0, 1, \perp \rangle$, given by:
(1) \star_c is the extension of \star on $X \cup \{\top_c\}$, defined by:
 for all $x \in X \cup \{\top_c\}$:

 $$\top_c \star_c x = x \star_c \top_c = \begin{cases}
 \top_c & \text{otherwise} \\
 \bot & \text{if } x = \bot
 \end{cases}$$

(2) \leq_c is the extension of \leq on $X \cup \{\top_c\}$, given by:
 for all $x \in X \cup \{\top_c\}$: $x \leq_c \top_c$;

(3) \neg_c is defined on $(X \cup \{\bot_c\}) \times (X \cup \{\top_c\})$ by:

 $$y \neg_c z = \begin{cases}
 \top_c & \text{if } y = \bot \text{ or } z = \top_c \\
 \bot & \text{if } y = \top_c \text{ and } z \in X \\
 y \neg z & \text{if } y \in X \setminus \{\bot\} \text{ and } z \in X
 \end{cases}$$

Ad (2): The underlying systems CPL_n (CPL) are obtained from CPL_n^*, by restricting weakening as in (1) above, (by omitting n-contraction), and adding the corresponding axioms for \bot and \top.
Moreover, a CPL_n-algebra (CPL-algebra) is obtained from a CPL_n^*-algebra by replacing 0 and 1 with \bot and \top in the lattice respectively (omitting also the clause corresponding to n-contraction.)

Definition 10.2 Let $X = \langle X, \sim, *, +, \neg, \cup, 0, 1, \bot, \top \rangle$ be a CL (CPL_n)-algebra. The connectification of X with a new top $\top_c \notin X$ and with a new bottom $\bot_c \notin X$ is the CL (CPL_n)-algebra $X_c = \langle X \cup \{\bot_c, \top_c\}, \sim_c, \star_c, +, \neg, \cup, 0, 1, \bot, \top \rangle$, given by:

(1) \sim_c is the extension of \sim on $X \cup \{\bot_c, \top_c\}$, defined by:

 $$\sim_c \bot_c = \top_c \text{ and } \sim_c \top_c = \bot_c.$$

(2) \leq_c is the extension of the lattice order \leq on $X \cup \{\bot_c, \top_c\}$, given by:

 $$\bot_c \leq_c x \leq_c \top_c, \text{ for all } x \in X \cup \{\bot_c, \top_c\}.$$

(3) \star_c is defined on $(X \cup \{\bot_c, \top_c\}) \times (X \cup \{\bot_c, \top_c\})$ by:

 $$y \star_c z = \begin{cases}
 \bot_c & \text{if } y = \bot_c \text{ or } z = \bot_c \\
 \top_c & \text{if } y = \top_c \text{ and } z \neq \bot_c \text{ or } (z = \top_c \text{ and } y \neq \bot_c) \\
 y \star z & \text{if } y, z \in X
 \end{cases}$$
(4) $+_c$ is defined on $(X \cup \{\bot_c, \top_c\}) \times (X \cup \{\bot_c, \top_c\})$ by:

$$y +_c z = \begin{cases}
\top_c & \text{if } y = \top_c \text{ or } z = \top_c \\
\bot_c & \text{if } (y = \bot_c \text{ and } z \neq \top_c) \text{ or } (z = \bot_c \text{ and } y \neq \top_c) \\
y + z & \text{if } y, z \in X
\end{cases}$$

Ad (3): For any $n \geq 2$ an extended directional Lambek calculus, \mathbf{L}_n^a, is a version of \mathbf{IPL}_n^a based on sequences, with the linear implication being split into the left slash and into the right slash. The corresponding left and right introduction rules are, as follows:

$$\frac{\Gamma \Rightarrow A}{\Delta_1, \Gamma, A \backslash B, \Delta_2 \Rightarrow \Phi} \quad \frac{\Gamma \Rightarrow A}{\Delta_1, B \backslash A, \Delta_2 \Rightarrow \Phi} \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \backslash B} \quad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow B \backslash A}$$

We also emphasize that weakening is now built into the axiom schemes in order to prevent derivability of empty antecedent and of empty succedent sequents in the underlying systems.

Definition 10.3 $\mathbf{X} = \langle X, \ast, \backslash, /, \cap, \cup, 0, 1 \rangle$ is an \mathbf{L}_n^a-algebra, if:

(1) $\langle X, \ast, 1 \rangle$ is a monoid with unit 1;
(2) \((X, \cap, \cup, 0, 1) \) is a lattice with bottom 0 and top 1;

(3) \(\ast \) is left and right monotone with respect to the lattice order \(\leq \), i.e. for all \(x, y, z \in X \), if \(x \leq y \), then \(z \ast x \leq z \ast y \) and \(x \ast z \leq y \ast z \);

(4) for all \(x, y, z \in X \), \(x \ast y \leq z \) iff \(y \leq x \setminus z \) iff \(z \leq y \setminus x \);

(5) for all \(x \in X \), \(x^n = x^{n+1} \), where \(x^k = x \ast \cdots \ast x \) with \(k \) copies of \(x \).

Definition 10.4 Let \(X = (X, \ast, \setminus, \cup, \cap, 0, 1) \) be an \(L^a_n \)-algebra. The connectification of \(X \) with a new top element \(1_c \not\in X \) is the \(L^a_n \)-algebra \(X_c = (X \cup \{1_c\}, \ast_c, \setminus_c, \cup_c, \cap_c, 0) \), with clauses (1) and (2) identical to those in the commutative counter-part, but with the clause (3) being split into:

- \((3') \setminus_c \) is defined on \((X \cup \{1_c\}) \times (X \cup \{1_c\}) \) by:
 \[
 y \setminus_c z = \max\{x \in X \cup \{1_c\} | y \setminus_c x \leq_c z\}.
 \]

- \((3'') /_c \) is defined on \((X \cup \{1_c\}) \times (X \cup \{1_c\}) \) by:
 \[
 z /_c y = \max\{x \in X \cup \{1_c\} | x /_c y \leq_c z\}.
 \]

Remark: Note that, explicitly:

\[
y \setminus_c z = \begin{cases}
1_c & \text{if } y \leq_c z \\
z & \text{if } y = 1_c \\
y / z & \text{otherwise}
\end{cases}
\]

\[
z /_c y = \begin{cases}
1_c & \text{if } y \leq_c z \\
z & \text{if } y = 1_c \\
y / z & \text{otherwise}
\end{cases}
\]

At this point, the reader himself should be able to verify that each of the connectification operators introduced above is indeed well-defined. Moreover, by analogy with the previous cases of affine logics with \(n \)-contraction (DP) can also be established for the system \(L^a_n \). Let, in this case, \(\mathcal{L} \) be the class of \(\sqcup \)-free \(L^a_n \)-formulas, defined in an analogous way to the class \(\mathcal{I} \) (see definition 5.6). We shall here write down only the main
Proposition 10.5 The system L_n^α enjoys the following disjunction property:

$$\text{if } L_n^\alpha \vdash \Gamma \Rightarrow A \cup B, \text{ then } L_n^\alpha \vdash \Gamma \Rightarrow A \text{ or } L_n^\alpha \vdash \Gamma \Rightarrow B,$$

provided the *-product (respecting the order) of all the formulas in Γ is provably equivalent to some element of L, in particular to 0 or 1.

We could prolong the story by specifying suitable connectification operators for the non-commutative algebras corresponding to the non-affine systems L and L_n. However, we believe that the reader has got the sufficient routine to accomplish this task on his own. Instead, we are going to state a preservation result for \bot-free IPL_n-formulas with respect to a certain subclass of IPL_n models and their connectification with a new top. For that purpose we proceed, as follows.

First, an IPL_n-model $M = \langle X, [\ . \] \rangle$, as well as the connectification of M with \top_c, $M_c = \langle X_c, [\ . \]_c \rangle$, are defined in a usual way, with $[P]_c = [P]$, for every propositional variable P.

Next, let $\mathcal{M}_{>\bot}$ be the class of IPL_n-models $M = \langle X, [\ . \] \rangle$ satisfying $\bot < [A]$ for any \bot-free formula A.

Proposition 10.6 Let A be any \bot-free IPL_n-formula. Given $M \in \mathcal{M}_{>\bot}$ and its connectification M_c, $[A]_c = [A]$.

Proof: By induction on the complexity of A. \hfill \diamond

Remark: Clearly, by the theorem above, $1 \leq [A]$ yields $1 \leq_c [A]_c$, and vice versa, resulting in the following

Corollary 10.7 For any \bot-free formula A, $\models_M A \Rightarrow A$ iff $\models_{M_c} A \Rightarrow A$.

with $M \in \mathcal{M}_{>\bot}$. We are now going to show that, in fact, $\mathcal{M}_{>\bot}$ is complete with respect to \bot-free IPL_n system (based on the language without the constant \bot). We shall work out the completeness proof by means of a suitable connectification of the Lindenbaum model of \bot-free IPL_n.

First note that the Lindenbaum algebra, X_L of \bot-free IPL_n is an IPL_n-algebra without bottom (top). Moreover, by standard arguments, one can prove that the Lindenbaum model, M_L, is complete for \bot-free IPL_n.

Next we introduce the connectification of X_L, X_{L_c}, with a bottom, \bot, and top, \top, as follows.

22
(1) for all \(x, y \in X \cup \{\bot, \top\} \):
\[
x \ast_c y = \begin{cases} \bot & \text{if } x = \bot \text{ or } y = \bot \\ \top & \text{if } (x = \top \text{ and } y \neq \bot) \text{ or } (y = \top \text{ and } x \neq \bot) \\ x \ast y & \text{otherwise} \end{cases}
\]

(2) \(\leq_c \) is the extension of \(\leq \) on \(X \cup \{\bot, \top\} \), given by:
for all \(x \in X \cup \{\bot, \top\} \): \(\bot \leq_c x \leq_c \top \);

(3) for all \(y, z \in X \cup \{\bot, \top\} \),
\[
y \rightarrow_c z = \begin{cases} \top & \text{if } y = \bot \text{ or } z = \top \\ \bot & \text{if } (y = \top \text{ and } z \neq \top) \text{ or } (z = \bot \text{ and } y \neq \bot) \\ y \rightarrow z & \text{otherwise} \end{cases}
\]

Remark: Observe that \(X_{L_c} \) is an \(\text{IPL}_n \)-algebra.
Further the connectification of \(M_L \) with \(\bot \) and \(\top \), \(M_{L_c} \), is defined in a usual way, by putting \(\lfloor P \rfloor_{L_c} = \lfloor P \rfloor_L \).
We continue with a useful preservation result concerning \(M_L \) and \(M_{L_c} \).

Proposition 10.8 Given a \(\bot \)-free \(\text{IPL}_n \)-formula \(A \), \([A]_{L_c} = [A]_L \).

Proof: By induction on the complexity of \(A \).

Due to the theorem above the completeness of \(M_{> \bot} \) with respect to \(\bot \)-free \(\text{IPL}_n \) system is now established by

Corollary 10.9 \(M_{L_c} \) is complete for \(\bot \)-free \(\text{IPL}_n \) system and \(M_{L_c} \in M_{> \bot} \).

We conclude the paper with some general remarks. First, we shall point out why in the affine case the connectification operator is useful to prove the disjunction property as opposed to the non-affine case. For the affine case, a formula \(F \), i.e. a sequent of the form \(\Lambda \Rightarrow F \) is valid in a model if and only if \(\lfloor F \rfloor = 1 \), since \(1 = \top \). Thus, the connectification of any such a model with a new top (i.e. unit) \(1_c \) (witness Figure 1) yields the following conclusion, essential to establish (DP):
for any formulas \(A \) and \(B \), if \(\lfloor A \cup B \rfloor_{c} = 1_c \), then \([A]_c = 1_c \) or \([B]_c = 1_c \).
For the non-affine case, however, the validity condition in the corresponding models amounts to \(1 \leq [F] \). And therefore, the connectification of such a model with a new top (see Figure 2) does not generally permit the conclusion
below:
for any formulas A and B, if $1 \leq_c [A \sqcup B]_c$, then $1 \leq_c [A]_c$ or $1 \leq_c [B]_c$
(note that 1 is preserved by the connectification operator).
Let us finally emphasize that for any of the systems considered in this paper
omitting the cut rule (DP) can easily be established by a purely syntactic
reasoning.

Proposition 10.10 Let T denote the cut-free system of ILZ, IPL_n, IPL^*_n,
CL, CPL_n, CPL^*_n, L, L_n, L^*_n.
If $T \vdash \Gamma \Rightarrow A \sqcup B$, then $T \vdash \Gamma \Rightarrow A$ or $T \vdash \Gamma \Rightarrow B$, where no formula in Γ
contains a strictly positive part of \sqcup.

Proof: By induction on the length of a derivation of $\Gamma \Rightarrow A \sqcup B$. ◊

Remark: Note that in the presence of cut such a syntactic reasoning must
be given up. Namely, whatever restriction is imposed on Γ, following a
derivation of a sequent $\Gamma \Rightarrow A \sqcup B$ bottom up, the cut rule may introduce
a formula which violates the restriction in question.

Acknowledgement: Concerning this paper I would like to express my debt
of gratitude to Professor Troelstra. I would also like to thank Professor van
Benthem for his useful comments on the manuscript.
References

The ILLC Prepublication Series

X-91-10 Michiel van Lambalgen
Independence, Randomness and the Axiom of Choice

X-91-11 Michael Zakharyaschev
Canonical Formulas for K4, Part I: Basic Results

X-91-12 Herman Hendriks
Flexibele Categoriale Syntax en Semantiek: de proefschriften van Fran Zwarts en Michael Moortgat

X-91-13 V. Yu. Shavrukov
The Multiplicative Fragment of Linear Logic is NP-Complete

X-91-14 Max I. Kanovich
The Horn Fragment of Linear Logic is NP-Complete

X-91-15 V. Yu. Shavrukov
Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version

X-91-16 I. M. MacNee
Undecidable Hypotheses in Edward Nelson's Internal Set Theory

X-91-17 Michiel van Lambalgen
Independence, Randomness and the Axiom of Choice, Revised Version

X-91-18 Giovanna Battaglini
New Semantics for Predicate Modal Logic: an Analysis from a standard point of view

1992 Logic, Semantics and Philosophy of Language

LP-92-01 Victor Sánchez Valencia
Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn
Modal Logic and Attribute Value Structures

LP-92-03 Szabolcs Mikulás
The Completeness of the Lambek Calculus with respect to Relational Semantics

LP-92-04 Paul Decker
An Update Semantics for Dynamic Predicate Logic

LP-92-05 David J. Beaver
The Kinematics of Preposition

LP-92-06 Patrick Blackburn, Edith Spaan
A Modal Perspective on the Computational Complexity of Attribute Value Grammar

LP-92-07 Jeroen Groenendijk, Martin Stokhof
A Note on Inexpressiveness of Attribute Grammar

LP-92-08 Monk.
A System of Dynamic Modal Logic

LP-92-09 Johan van Benthem
Quantifiers in the world of Types

LP-92-10 V. Yu. Shavrukov
Meeting Some Neighbours: A Dynamic modal logic meets theories of change and knowledge representation

LP-92-11 Johan van Benthem
A Note on Dynamic and Adverbs Quantification

LP-92-12 Heinrich Wansing
Sequential Calculi for Normal Modal Propositional Logics

LP-92-13 Adrian Rothe
Instability

LP-92-14 Jeroen Groenendijk, Martin Stokhof
Interrogatives and Adverbs of Quantification

ML-92-01 A.S. Troelstra
Comparing the Theory of Representations and Constructive Mathematics

ML-92-02 Dimitrij F. Skvorov, Volodymyr B. Shemet
Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate Logics

ML-92-03 Zoran Mirkovic
On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimitri Vakarelov
A Theorem on the Subalgebra of Diagonalizable Algebras for Theories containing \(L_0 + \exists X \)

ML-92-05 D.M. Gabbay, Volodymyr B. Shemet
Undecidability of Modal and Intermediate First-Order Logics with Two Individual Variables

ML-92-07 Harold Schellinx
How to broaden your Horizon

ML-92-08 Raymond Hoofman
Realizability

ML-92-10 V. Yu. Shavrukov
A Short Cut to Peano's

CT-92-01 Erik de Haas, Peter van Emde Boas
Computation and Complexity Theory

CT-92-02 Karen L. Kast, Sieger van Denneheuvel
Weak Equivalence: Theory and Applications

CT-92-03 Kryzstof R. Apt, Kees Doets
A New Definition of SDLNF-Resolution

CT-92-06 Eelke van Heeringen
The Logic of Structural Specifications

X-92-02 Konstantin N. Ignatiev
The Closed Fragment of Dzhanparidze's Polymodal Logic and the Logic of \(\mathsf{E}_2 \) Conservativity

X-92-03 Willem de Rooi
Dynamic Semantics and Circular Proposionals, revised version

X-92-04 Joh van Benthem
Modeling the Kinematics of Meaning

X-92-05 Erik de Haas, Peter van Emde Boas
Object Oriented Application Flow Graphs and their Semantics, revised version

1993 LP-93-01 Martijn Spaan
LP-93-02 Makoto Kanazawa
LP-93-03 Nikolaos Pankratiev
LP-93-04 Jacques van Leeuwen
LP-93-05 Jaap van den Doel
LP-93-06 Paul Decker
LP-93-07 Wojciech Buszkowski
LP-93-08 Zbigniew Hauser, Peter van Emde Boas
LP-93-09 Makoto Kanazawa
LP-93-10 Makoto Kanazawa
LP-93-11 Frederike Mollmann
LP-93-12 Jaap van den Doel
LP-93-13 Mieke Alechina
LP-93-14 Patrick van Harmelen
LP-93-15 Jan van den Oever
LP-93-16 David I. Beaver
What comes first in Dynamic Semantics

ML-93-01 Maciej Kandulska
ML-93-02 Johan van Benthem, Mieke Alechina
ML-93-03 Mieke Alechina
ML-93-04 Andreja Prijatelj
ML-93-05 Raymond Hoofman, Harold Schellinx
ML-93-06 J. van der Meiden
ML-93-07 A.V. Chagrov, L.A. Chagrov
ML-93-08 Raymond Hoofman, Mieke Alechina
ML-93-09 A.S. Troelstra
ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx

ML-93-11 Lex Hendriks
ML-93-12 V.Yu. Shavrukov
ML-93-13 V.Yu. Shavrukov
ML-93-14 G.K. Dzhaparidze
ML-93-15 M.C. Rietz
ML-93-16 Jaap de Jongh, Albert Visser
ML-93-17 M.C. Rietz
ML-93-18 Jaap de Jongh
ML-93-19 Raymond Hoofman
ML-93-20 Raymond Hoofman, Jaap de Jongh
ML-93-21 M. I. Kanovich
ML-93-22 Andreja Prijatelj

CT-93-01 Marion Koelbeke
CT-93-02 Sophie Fischer
CT-93-03 Johann van Benthem, Jan Bergstra
CT-93-04 Karen L. Kast, Sieger van Denneheuvel
CT-93-05 Erik Aarts
CT-93-06 Kryzstof R. Apt
CT-93-07 Janusz A. Polak
CT-93-08 Norbert Bezem
CT-93-09 Marie-Jeanne Potgieter
CT-93-10 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol
CT-93-11 Paul Decker
CT-93-12 Jaap de Jongh
CT-93-13 Michiel Leenzenberg
CT-93-14 A.S. Troelstra (editor)
CT-93-15 A.S. Troelstra (editor)
CT-93-16 Michael Zakharyaschev

X-93-06 Canonical Formulas for K4, Part II: Cofinal Subframe Logics

The Structure of the Exponentials: Uncovering the Dynamics of Linear Logic Proofs

Remarks on Uniformly Finitely Precomplete Positive Equivalence Relations

The Meaning of Duality in the Database Model

Approximation, Similarity and Rough Constructions, Part I: Elementary Introduction

Computational Logics

The Interpretation of Free Focus

An Algebraic View on Rosetta

Talking about Trees

Existential Disclosure, revised version

What is Modal Logic?

Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing

Mathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition

Mathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition

Canonical Formulas for K4, Part II: Cofinal Subframe Logics