V. Kanovei

IST is more than an Algorithm to prove ZFC Theorems

ML-94-05, received: June 1994

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Mathematical Logic and Foundations (ML) Series, ISSN: 0928-3315

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam
Plantage Muidergracht 24
NL-1018 TV Amsterdam
The Netherlands
e-mail: illc@fwi.uva.nl
IST is more than an algorithm to prove ZFC theorems

V. Kanovei *

Moscow Transport Engineering Institute
Moscow State University

May 1993

Abstract

There is a sentence in the language of IST, Nelson’s internal set theory, which is not equivalent in IST to a sentence in the ϵ-language. Thus the Reduction algorithm, that converts bounded IST formulas with standard parameters to provably (in IST) equivalent ϵ-formulas, cannot be extended to all formulas of the IST language.

*This research was partially supported by German grant DFG 436 rus 17/215/93 and Dutch grant NWO PGS 22-262

1kanovei@sci.math.msu.su and kanovei@math.uni-wuppertal.de
Introduction.

Internal set theory IST was invented by Nelson [1977] as an attempt to develop nonstandard mathematics from a unified axiomatic standpoint. This theory has demonstrated its ability to ground various branches of nonstandard analysis, see e.g. van den Berg [1987], F. and M.Diener [1988], F.Diener and Reeb [1989], Reeken [1992].

It is regarded as one of the advantages of IST that there exists a simple algorithm, introduced also by Nelson, to transform sentences in the language of IST to provably equivalent (in the sense of provability in IST) sentences formulated in the ZFC language. This algorithm, together with Nelson's theorem that IST is a conservative extension of ZFC, is used sometimes (see e.g. Nelson [1988]) to give back to the statement that IST is nothing more than a new way to investigate the standard ZFC universe.

This is true, indeed, so far as bounded IST formulas are considered. (The mentioned algorithm works for these formulas only.)

It is the aim of this paper to demonstrate that there is a certain, explicitly given sentence in the IST language which is not provably equivalent in IST to a sentence in the ε-language. Thus the IST truth cannot be completely reduced to the ZFC truth.

A sentence of this kind has to be undecidable in IST; actually the sentence we consider belongs to a type of undecidable sentences discovered and studied in Kanovei [1991]. It is as follows:

\[(*) \forall F [\forall^* n (F(n) \text{ is standard}) \rightarrow \exists^* G \forall^* n (F(n) = G(n))] \]

(\(n \) is assumed to range over integers, \(F \) and \(G \) over functions defined on integers and taking arbitrary values.)

Theorem 1. Let \(\Phi \) be an arbitrary \(\varepsilon \)-sentence. Then the equivalence \(\Phi \iff (*) \) is not a theorem of IST unless IST is inconsistent.

(Take notice that ZFC and IST are equiconsistent.) The idea of the proof is to use a pair of (transitive) models, \(V \) and \(V' \), of a sufficiently large fragment of ZFC, elementary equivalent with respect to \(\Phi \), and then define their extensions, \(\forall V \) and \(\forall V' \) respectively, models of the corresponding finite fragment of IST, such that \((*) \) is false in \(\forall V \) but true in \(\forall V' \). Then, since \(\forall V \) and \(\forall V' \) are elementary extensions of \(V \) and \(V' \) respectively with
respect to ϵ-sentences, Φ is either simultaneously true or simultaneously false in both V and V'. This proves the theorem.

Acknowledgement. The author is in debt to M.Reeken and S.Albeverio for their interest to this research direction and practical help, and to R.Solovay for a suggestion which made it possible to fix a wrong part in the first version of the proof.

Preliminaries

Theory IST was introduced by Nelson [1977]. The IST language contains, together with equality, the membership predicate ϵ and the standardness predicate st. Formulas of this language are called st-ϵ-formulas while formulas of the ZFC language are called ϵ-formulas, and also internal formulas. Two abbreviations are very useful: $\exists^{st}x\ldots$ and $\forall^{st}x\ldots$ (there exists standard $x\ldots$, for all standard $x\ldots$).

IST contains all axioms of ZFC (Separation and Replacement are formulated in the ϵ-language) together with the following three additional principles or (schemes of) axioms.

Idealization I: $\forall^{st}a\exists x\forall a\in A\Phi(x,a) \iff \exists x\forall^{st}a\Phi(x,a)$ for any internal formula $\Phi(x,a)$.

Standardization S: $\forall^{st}X\exists^{st}Y\forall^{st}x\left[x\in Y \iff x\in X \& \Phi(x) \right]$ for any st-ϵ-formula Φ.

Transfer T: $\exists x\Phi(x) \rightarrow \exists^{st}x\Phi(x)$ for any internal formula $\Phi(x)$ with standard parameters.

The formula Φ can, of course, contain arbitrary parameters in I and S.

Thus IST = ZFC + I + S + T.

Definition. Let V be a transitive set. $\langle V; \epsilon, \in, \gamma, \text{st}\rangle$ is an IST-like extension of V if and only if, first, axioms I, S, T hold in V, and second, there exists an 1-1 embedding $\ast: V$ onto a subset of V satisfying

- $x \in y \iff \ast x \in \ast y$ and $x = y \iff \ast x = \ast y$ for all $x, y \in V$,
• $\ast x \mapsto \exists x \in V (\ast x \equiv X)$ for all $X \in \mathcal{V}$.

It is not assumed, in general, that \equiv coincides with the true equality on \mathcal{V}, but \ast has to be an equivalence relation and satisfy the logic axioms for equality with respect to \in and \ast.

Proof of Theorem 1.

Assume on the contrary that Ψ is an ε-sentence such that the equivalence $\Psi \iff (\ast)$ is a theorem of IST, therefore of a theory

$$\text{IST}' = \text{ZFC}' + I + S + T,$$

where ZFC' is a finite fragment of ZFC. Having this fixed, we start to argue in ZFC. The final aim is to obtain a contradiction.

Ground ZFC' models.

It is a consequence of the ZFC Reflection principle that there exist cardinals ϑ of both countable and uncountable cofinality such that \mathcal{V}_ϑ is an elementary submodel of the universe of all sets with respect to Ψ and all formulas of ZFC'.

Let ϑ be the least among the countably cofinal while ϑ' among the uncountably cofinal cardinals of this kind. We use the sets $V = \mathcal{V}_\vartheta$ and $V' = \mathcal{V}_{\vartheta'}$ as the ground ZFC' models. Take notice that Ψ is either true in both V and V' or false in both V and V'.

The next step is to define IST-extensions (therefore models of IST'), \mathcal{V} and \mathcal{V}', of V and V' respectively, such that (\ast) is true in \mathcal{V}' but false in \mathcal{V}. The extensions are constructed as ultrapowers via a kind of adequate ultrafilters of Nelson [1977]. (Original Nelson's construction includes infinite number of successive ultrapowers; we show here that this can be managed an one-step construction.)

The "falsity" extension

Thus we define \mathcal{V} as an ultrapower of V using the index set

$$I = \mathcal{P}^\Delta(V) = \{i \in V : i \text{ is finite}\},$$
and an arbitrary ultrafilter U over I containing all sets of the form $I_a = \{ i \in I : a \in i \}$, $a \in V$.

We introduce a convenient tool, the quantifier "there exist U-many" by

$$U i \varphi(i) \quad \text{if and only if} \quad \{ i \in I : \varphi(i) \} \in U.$$

The following is the list of properties of U implied by the definition of an ultrafilter and (this regards (U5)) the choice of the ultrafilter U.

(U1) $\varphi \iff U i \varphi$ whenever i is not free in φ;

(U2) if $\forall i [\varphi(i) \implies \psi(i)]$ then $U i \varphi(i) \implies U i \psi(i)$;

(U3) $U i \varphi(i) \land U i \psi(i) \iff U i [\varphi(i) \land \psi(i)]$;

(U4) $U i \lnot \varphi(i) \iff \lnot U i \varphi(i)$;

(U5) if $a \in V$ then $U i (a \in i)$.

To introduce the extension, we put

$$\mathcal{V}_r = \{ f : f \text{ is a function, } f : I^r \to V \}, \quad \text{for all } r \in \omega.$$

In particular, $\mathcal{V}_0 = \{ *z : z \in V \}$, where $*z = \{ (0, z) \}$, since $I^0 = \{ \emptyset \}$.

The set $\mathcal{V} = \bigcup_{r \in \omega} \mathcal{V}_r$ is what we call the falsity extension.

To continue notation, we let, for $F \in \mathcal{V}$, $r(F)$ denote the unique r satisfying $F \in \mathcal{V}_r$. If $F \in \mathcal{V}$, $q \geq r = r(F)$, $i = (i_1, ..., i_r, ..., i_q) \in I^q$, then we put $F[i] = F(i_1, ..., i_r)$. Note that $F[i] = F(i)$ whenever $r = q$.

We define finally $*z[i] = z$ for all $*z \in \mathcal{V}_0$ and $i \in I^r$, $r \geq 0$.

Let $F, G \in \mathcal{V}$ and $r = \max\{ r(F), r(G) \}$. We set

$$F \in G \quad \text{if and only if} \quad U i_r U i_{r-1} ... U i_1 (F[i] \in G[i]);$$

$$F \models G \quad \text{if and only if} \quad U i_r U i_{r-1} ... U i_1 (F[i] = G[i]);$$

of course i denotes the sequence $i_1, ..., i_r$.

The definition of standardness in \mathcal{V} is given by:

$$*st F \quad \text{if and only if} \quad \text{there exists } x \in V \text{ such that } F \models *x.$$

So up to the relation \models the level \mathcal{V}_0 is just the standard part of \mathcal{V}.

5
Let, finally, \(\Psi \) be a formula with parameters in \(\mathcal{V} \). We define \(r(\Psi) = \max\{r(F) : F \text{ occurs in } \Psi\} \). If in addition \(r \geq r(\Psi) \) and \(i \in I' \), then let \(\Psi[i] \) denote the result of replacing each \(F \) that occurs in \(\Psi \) by \(F[i] \). Clearly \(\Psi[i] \) is a formula with parameters in \(\mathcal{V} \).

Proposition 2. \(\langle \mathcal{V} ; \models, \in, \ast \rangle \) is a model of \(\text{IST}' \) and an IST-like extension of \(\mathcal{V} \). Finally, \(* \) fails in \(\mathcal{V} \).

Proof. The following principal statement plays the key role.

Lemma 3. [Loš Theorem] Let \(\Psi \) be an internal formula with parameters in \(\mathcal{V} \) and suppose that \(r \geq r(\Psi) \). Then

\[\Psi \text{ is true in } \mathcal{V} \iff U_{i_r} \ldots U_{i_1} (\Psi[i_1, \ldots, i_r] \text{ is true in } \mathcal{V}). \]

Proof of the lemma. The proof goes by induction on the logical complexity of \(\Psi \). We abandon easy parts of the proof, based on properties (U2), (U3), (U4) of the quantifier \(U \), and consider the induction step \(\exists \). Thus the lemma is to be proved for a formula \(\exists x \Psi(x) \) in the assumption that the result holds for \(\Psi(F) \) whenever \(F \in \mathcal{V} \). We denote \(r = r(\Psi) \).

The direction \(\rightarrow \). Suppose that \(\exists x \Psi(x) \) holds in \(\mathcal{V} \). Then \(\Psi(F) \) holds in \(\mathcal{V} \) for some \(F \in \mathcal{V} \). Let \(p = \max\{r, r(F)\} \). To convert the reasoning into a more convenient form, we let \(i \) and \(j \) denote sequences

\[\langle i_1, \ldots, i_r \rangle \ (i \in I') \quad \text{and} \quad \langle i_1, \ldots, i_r, \ldots, i_p \rangle \ (i \in I') \]

respectively. Further let \(U_i \) and \(U_j \) denote sequences of quantifiers

\[U_{i_r} \ldots U_{i_1} \quad \text{and} \quad U_{i_p} \ldots U_{i_r} \ldots U_{i_1}. \]

Thus \(U_j \Psi(F)[j] \) holds by the induction hypothesis. We note that, for all \(j \), \(\Psi(F)[j] \rightarrow \exists x \Psi(x)[j] \). Hence \(U_j \exists x \Psi(x)[j] \) is true by (U2). Moreover the formula \(\exists x \Psi(x)[j] \) coincides (graphically) with \(\exists x \Psi(x)[i] \) because \(r(\exists x \Psi(x)) = r \leq p \). Hence, deleting the superfluous quantifiers by (U1), we obtain \(U_j \exists x \Psi(x)[i] \).

The direction \(\leftarrow \). Let \(\Psi(x) \) be \(\Psi(x, G, H, \ldots) \), where \(G, H, \ldots \in \mathcal{V} \). Suppose that \(U_i \exists x \Psi(x)[i] \) holds, that is,

\[U_i [\exists x \Psi(x, G[i], H[i], \ldots) \text{ is true in } \mathcal{V}]. \]
For each \(i \in I' \), if there exists some \(x \in V \) such that \(\Psi(x, G[i], H[i], \ldots) \)
 is true in \(V \), then we let \(F(i) \) be one of \(x \) of such kind; otherwise let \(F(i) = \emptyset \). By definition, \(F \in \mathcal{V} \), and

\[
\forall i \in I' \ [\exists x \ \Psi(x)[i] \rightarrow \Psi(F)[i]],
\]

therefore \(\bigcup i \ \exists x \ \Psi(x)[i] \rightarrow \bigcup i \ \Psi(F)[i] \) by (U2). Recall that the left-hand side of the last implication has been supposed to be true. So the right-hand side is also true. Then \(\Psi(F) \) holds in \(\mathcal{V} \) by the induction hypothesis, and we are done.

The just proved lemma easily implies logical equality axioms for \(= \), and Transfer, therefore all ZFC, in \(\mathcal{V} \). Standardization is evident because every set \(V \) of the form \(V = V_\varphi \) has the property that if \(Y \subseteq X \in V \) then \(Y \in V \). We prove Idealization.

Thus let \(\varphi(x, a) \) be an internal formula with parameters in \(\mathcal{V} \). We denote \(r = r(\varphi) \) and prove the following:

\[
\forall^{\text{fin}} A \ \exists x \ \forall a \in A \ \varphi(x, a) \rightarrow \exists x \ \forall^{\text{st}} a \ \varphi(x, a)
\]

in \(\mathcal{V} \). (The implication \(\leftarrow \) does not need a special consideration because it follows from Standardization that elements of finite standard sets are standard, see Nelson [1977].) Lemma 3 converts the left-hand side to the form:

\[
\forall^{\text{fin}} A \subseteq V \bigcup i \ \bigcup i_1 \ \exists x \ \forall a \in A (\varphi(x, a)[i_1, \ldots, i]),
\]

Recall that \(I \) consists of all finite subsets of \(V \), so we may replace the variable \(A \) by \(i \), having in mind that \(i \in I \). Further define \(\tilde{A} : I^{r+1} \rightarrow V \) by \(\tilde{A}(i_1, \ldots, i_r, i) = i \). Then \(\tilde{A} \in \mathcal{V} \). The left-hand side takes the form

\[
\forall i \ \bigcup i \ \bigcup i_1 \ (\exists x \ \forall a \in \tilde{A} \ \varphi(x, a))[i_1, \ldots, i_r, i].
\]

Changing \(\forall i \) by \(\bigcup i \), we obtain \(\exists x \ \forall a \in \tilde{A} \ \varphi(x, a) \) in \(\mathcal{V} \) again by the lemma. So, to verify the right-hand side of Idealization, it suffices to prove \(^*a \in \tilde{A} \) in \(\mathcal{V} \) for all \(a \in V \). This is equal to

\[
\bigcup i \ \bigcup i \ \bigcup i_1 \ (a \in \tilde{A}[i_1, \ldots, i_r, i]),
\]

by the lemma, and then to \(\bigcup i \ \bigcup i \ \bigcup i_1 \ (a \in i) \) by the definition of \(\tilde{A} \).

So apply (US) and complete the proof of Idealization in \(\mathcal{V} \).
Thus \(\mathcal{V} \) is an IST' model. One can easily verify the required properties of the embedding \(\ast \). To complete the proof of Proposition 2 it remains to show that \(\ast \) does not hold in \(\mathcal{V} \).

Let \(\langle \kappa_n : n \in \omega \rangle \) be a sequence of ordinals cofinal in \(\vartheta \). (We recall that \(\vartheta \) has countable cofinality.) Let \(F \in \mathcal{V}_0 \) be defined by
\[
F(i) = \{ \langle n, \kappa_n \rangle : \langle n, \kappa_n \rangle \in i \} \quad \text{for all } i \in I.
\]
It is true in \(\mathcal{V} \) by Lemma 3 that \(F \) is a function defined on a subset of integers, and, for every \(n \in \omega \), it is also true in \(\mathcal{V} \) that \(F(\ast n) \) is defined and equal to \(\ast \kappa_n \), hence standard. Thus the left-hand side of \(\ast \) is satisfied by \(F \).

The right-hand side cannot be satisfied since it would imply that there exists \(g \in V \) such that \(g(n) = \kappa_n \) for all \(n \), which is impossible.

Corollary 4. \(\Phi \) is false in \(\mathcal{V} \), therefore in \(V \).

The "truth" extension

Let \(\mathcal{V}' \) be defined the same way as \(\mathcal{V} \) above, but starting from \(V' \).

Proposition 5. \(\langle \mathcal{V}' ; \ast , \in , \ast \text{st} \rangle \) is a model of IST' and an IST-like extension of \(V \). Finally, \(\ast \) holds in \(\mathcal{V}' \).

Proof. We check the last statement. Thus let \(F \in \mathcal{V}' \) be such that the following is true in \(\mathcal{V}' \):

\(F \) is a function, every standard \(n \in \ast \omega \) belongs to the domain of \(F \), and \(F(n) \) is standard for every standard \(n \in \ast \omega \).

By the definition of standardness, there exists a function \(f : \omega \rightarrow V' \) such that \(F(\ast n) \equiv \ast (f(n)) \) for all \(n \in \omega \). By the choice of \(\vartheta' \) (uncountable cofinality) there exists \(\kappa < \vartheta' \) such that \(f(n) \in V_\kappa \) for all \(n \in \omega \). This easily implies that actually \(f \in V' \), and therefore \(F(\ast n) \equiv (\ast f)(\ast n) \) for all \(n \in \omega \), the right-hand side of \(\ast \).

Corollary 6. \(\Phi \) is true in \(\mathcal{V}' \), therefore in \(V' \).

Thus finally \(\Phi \) is true in \(V' \) and false in \(V \), a contradiction with the choice of \(V, V' \) as models elementary equivalent with respect to \(\Phi \).
Question

Does there exist, in \(\text{ZFC} \), a transitive set \(V \), a model of a previously fixed finite fragment of \(\text{ZFC} \), which has \(\text{IST-like} \) extensions of both types, those in which \((*) \) holds and those where \((*) \) fails? The answer is affirmative provided there is a cardinal \(\theta \) such that \(V_\theta \) is a model of the full \(\text{ZFC} \) (then we may take \(V = V_\theta \), where \(\theta \) is the least among such cardinals), but we are unable to get it without extra assumptions. If this is actually impossible, then, perhaps, \((*) \) still corresponds to something in \(\text{ZFC} \), not in the direct form mentioned in Theorem 1, of course.

References

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language; ML = Mathematical Logic and Foundations; CL = Computational Linguistics; CT = Computation and Complexity Theory; X = Technical Notes.
All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact the bureau.

LP-93-01 Martijn Spaan, Parallel Quantification
LP-93-02 Makoto Kanaizawa, Dynamic Generalized Quantifiers and Monotonicity
LP-93-03 Nikolai Pankrat’ev, Completeness of the Lambek Calculus with respect to Relativized Relational Semantics
LP-93-04 Jacques van Leeuwen, Identity, Quarrelling with an Unproblematic Notion
LP-93-05 Jaap van der Does, Sums and Quantifiers
LP-93-06 Paul Dekker, Updates in Dynamic Semantics
LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars
LP-93-08 Zisheng Huang, Peter van Emde Boas, Information Acquisition from Multi-Agent resources; abstract
LP-93-09 Makoto Kanaizawa, Completeness and Decidability of the Mixed Style of Inference with Composition
LP-93-10 Makoto Kanaizawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a Dynamic Setting
LP-93-11 Friederike Moltmann, Resumptive Quantifiers in Exception Sentences
LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases
LP-93-13 Natasha Alechina, Binary Quantifiers and Relational Semantics
LP-93-14 Mati Pentus, Lambek Calculus is L-complete
LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics

ML-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars
ML-93-02 Johan van Benthem, Natasha Alechina, Modal Quantification over Structured Domains
ML-93-03 Mati Pentus, The Conjoinability Relation in Lambek Calculus and Linear Logic
ML-93-04 Andrej Prijatelj, Bounded Contraction and Many-Valued Semantics
ML-93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped \(\lambda\)-calculus in Semi Cartesian Closed Categories
ML-93-06 J. Zaschev, Categorial Generalization of Algebraic Recursion Theory
ML-93-07 A.V. Chagrov, L.A. Chagrov, Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames
ML-93-08 Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors
ML-93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic
ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs
ML-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic
ML-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences
ML-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras
ML-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras
ML-93-15 G.K. Dzhaparidze, Effective Truth
ML-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics
ML-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and Intermediate Logics
ML-93-18 Jaap van Oosten, Extensional Realizability
ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed \(\lambda\)-Calculus
ML-93-20 L.A. Chagrov, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic
ML-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for Intuitionistic Propositional Logic
ML-93-22 Andreja Prijatelj, Connectification for n-contraction

CT-93-01 Marianne Kalsbeek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems
CT-93-03 Johan van Bentham, Jan Bergstra, Logic of Transition Systems
CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database
 Model
CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog
CT-93-07 Janusz A. Pomykalà, Approximation, Similarity and Rough Constructions, Part I. Elementary Intro-
 duction

CL-93-01 Noor van Leusen, László Kálmán, Computerional Linguistics
CL-93-02 Theo M.V. Janssen, An Algebraic View On Rosetta
CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees

X-93-01 Paul Dekker, Existential Disclosure, revised version
X-93-02 Maarten de Rijke, What is Modal Logic?
X-93-03 Michiel Leesenberg, Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing
X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Cor-
 rections to the First Edition
X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Sec-
 ond, corrected Edition
X-93-06 Michael Zakharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic
ML-94-02 Domenico Zambella, End Extensions of Models of Linearly Bounded Arithmetic
ML-94-03 Johan van Benthem, Dick de Jongh, Gerard Renardel de Lavalette, Albert Visser, NNLI, A Study in
 Intuitionistic Propositional Logic
ML-94-04 Michiel van Lambalgen, Independence Structures in Set Theory
ML-94-05 V. Kanovei, IST is More than an Algorithm to Prove ZFC Theorems
LP-94-01 Dimitar Gede, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of
 Qualitative Probabilities
LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators
LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams
LP-94-04 Kazimierz Swirydowicz, A Remark on the Maximal Extensions of the Relevant Logic R
LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling
LP-94-06 Johan van Benthem, Dag Westerståhl, Directions in Generalized Quantifier Theory
LP-94-07 Nataša Rakić, Absolute Time, Special Relativity and ML
CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded
 Injury Method
CT-94-02 Alessandro Panconesi, Marina Papatriantafillou, Philippas Tsigas, Paul Vitányi, Randomized Wait-
 Free Distributed Naming
CT-94-03 Ming Lee, John Tromp, Paul Vitányi, Sharpening Occam's Razor (extended abstract)
CT-94-04 Ming Lee and Paul Vitányi, Inductive Reasoning
CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitányi, Two heads are Better than Two Tapes
CT-94-06 Guido te Brake, Joost N. Kok, Paul Vitányi, Model Selection for Neural Networks: Comparing MDL
 and NIC
CT-94-07 Charles H. Bennett, Péter Gács, Ming Li, Paul M.B. Vitányi, Wojciech H. Zurek, Thermodynamics
 of Computation and Information Distance
CT-94-08 Krzysztof R. Apt, Peter van Emde Boas and Angelo Welling, The STO-problem is NP-hard
CT-94-09 Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xixiong, Resource Bounded Randomness and Weakly Complete Problems
CT-94-10 Klaus Ambos-Spies, Hans-Christian Neis, Sebastiaan A. Terwijn, Genericity and Measure for Exponential Time
X-94-01 Johan van Benthem, Two Essays on Semantic Modelling
X-94-02 Vladimir Kanovei, Michiel van Lambalgen, Another Construction of Choiceless Ultrapower
X-94-03 Natasha Alechina, Michiel van Lambalgen, Correspondence and Completeness for Generalized Quantifiers

Titles in the ILLC Dissertation Series:

1993-1 Transcendental Meditations; Ups and downs in dynamic semantics, Paul Dekker
1993-2 Resource Bounded Reductions, Harry Buhrman
1993-3 Efficient Metamathematics, Rineke Verbrugge
1993-4 Extending Modal Logic, Maarten de Rijke
1993-5 Studied Flexibility, Herman Hendriks
1993-6 Aspects of Algorithms and Complexity, John Tromp
1994-1 The Noble Art of Linear Decorating, Harold Schellinx
1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis Koorn
1994-3 Process Theory and Equation Solving, Nicole Johanna Drost
1994-4 Calculi for Constructive Communication, a Study of the Dynamics of Partial States, Jan Jaspars
1994-5 Executable Language Definitions, Case Studies and Origin Tracking Techniques, Arie van Deursen