PROVABLE FIXED POINTS IN $\text{I}\Delta_0 + \Omega_1$
revised version

Alessandra Carbone
ITLI Prepublication Series
X-90-11
The ITLI Prepublication Series

1986
86-01 Peter van Emde Boas
86-03 Johan van Benthem
86-04 Reinhard Muskens
86-05 Ken A. Bowen, Dick de Jongh
86-06 Johan van Benthem
86-07 Jan Willen Kim, Roel de Vrijer
86-07 Johan van Benthem
86-08 Roger D. Bartsch
86-09 Herman Hendriks
86-10 LP-88-01 Michiel van Lanbalgen
86-11 LP-88-02 Yde Venema
86-13 LP-88-03
86-14 LP-88-04 Reinhard Muskens
86-15 LP-88-05 Johan van Benthem
86-16 LP-88-06 Johan van Benthem
86-17 LP-88-07 Renate Bartsch
86-18 LP-88-08 Jeroen Groenendijk, Martin Stokhof
86-19 LP-88-09 Theo M.V. Janssen
86-20 LP-88-10 Anneke Kleppe
86-21 ML-88-01 Jaap van Oosten
86-22 ML-88-02 C.G.W. Bochmans
86-23 ML-88-03 Dick de Jongh, Frank Veltman
86-24 ML-88-04 A.S. Troelstra
86-25 ML-88-05 A.S. Troelstra
86-26 CT-88-01 Ming Li, Paul M.B.Vitanyi
86-27 CT-88-02 Michiel H.M. Smid
86-28 CT-88-03 Michiel H.M. Smid, Mark H. Overmars
86-29 CT-88-04 Dick de Jongh, Lex Hendriks
86-30 CT-88-05 Peter van Emde Boas
86-31 CT-88-06 Michiel H.M. Smid
86-32 CT-88-07 Johan van Benthem
86-33 CT-88-08 Michiel H.M. Smid, Mark H. Overmars
86-34 CT-88-09 Theo M.V. Janssen
86-35 CT-88-10 Roel Spaan, Lex Toenvliet, Peter van Emde Boas
86-36 CT-88-11 Sieger van Dennehevel, Peter van Emde Boas
86-37 X-88-01 Marc Jumelet
86-38 LP-89-01 Johan van Benthem
86-39 LP-89-02 Jeroen Groenendijk, Martin Stokhof
86-40 LP-89-03 Yde Venema
86-41 LP-89-04 Johan van Benthem
86-42 LP-89-05 Johan van Benthem
86-43 LP-89-06 Andreja Prijatelj
86-44 LP-89-07 Heinrich Wensing
86-45 LP-89-08 Victor Szoer Eising
86-46 LP-89-09 Zhisheng Huang
86-47 ML-89-01 Dick de Jongh, Albert Visser
86-48 ML-89-02 Roel de Vrijer
86-49 ML-89-03 Dick de Jongh, Franco Montagna
86-50 ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna
86-51 ML-89-05 Rinke Verbrugge
86-52 ML-89-06 Michiel van Lanbalgen
86-53 ML-89-07 Dick Koorda
86-54 ML-89-08 Dick Koorda
86-55 ML-89-09 Alessandra Carbone
86-56 CT-89-01 Michiel H.M. Smid
86-57 CT-89-02 Peter van Emde Boas
86-58 CT-89-03 Marne Neufggise, Roel Spaan, Willem G. Vree
86-59 CT-89-04 Harry Buhrman, Leon Torenvliet
86-60 CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
86-61 CT-89-06 H.W. Lenstra, Jr.
86-62 CT-89-07 Ming Li, Paul M.B. Vitanyi
86-63 CT-89-08 Harry Buhrman, Steven Homer
86-64 CT-89-09 Harry Buhrman, Edith Spaan, Leon Torenvliet
86-65 CT-89-10 Sieger van Dennehevel
86-66 CT-89-11 Zhisheng Huang, Sieger van Dennehevel
86-67 LP-90-01 Marianne Kalsbeck
86-68 LP-90-02 G. Wagemakers
86-69 LP-90-03 A.S. Troelstra
86-70 LP-90-04 Jeroen Groenendijk, Martin Stokhof
86-71 LP-90-05 Maarten de Rijke
86-72 LP-90-06 Peter van Emde Boas

The Institute of Language, Logic and Information
A Semantical Model for Integration and Modulization of Rules
Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branching Time, Part I, Well-founded Time,
Logical Syntax
Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
Unique Normal Forms for Lambda Calculus with Surjective Pairing
Polyadic quantifiers
Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
Type Change in Semantics: The Scope of Quantification and Coordination
Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987
Going partial in Montague Grammar
Logical Constants across Varying Types
Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scope in Discourse
Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
A Blissymbols Translation Program

The Arithmetical Fragment of Martin Lof's Type Theories with weak E-elimination
Provability Logics for Relative Intertapativity
On the Early History of Intuitionistic Logic
Remarks on Intuitionism and the Philosophy of Mathematics
General Lower Bounds for the Partitioning of Range Trees
Maintaining Multiple Representations of Dynamic Data Structures
Computations in Fragments of Intuitionistic Propositional Logic
Machine Models and Simulations (revised version)
Time, Logic and Computation
Multiple Representations of Dynamic Data Structures
Towards a Universal Parsing Algorithm for Functional Grammar
Non-determinism, Fairness and a Fundamental Analogy
Towards implementing RL
On Solovay's Completeness Theorem
Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
Language in Action
Modal Logic as a Theory of Information
Intensional Lambda Calculi: Theory and Application
The Adequacy Problem for Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems

Mathematical Logic and Foundations: Explicit Fixed Points for Intertapativity
Extending the Lambda Calculus with Surjective Pairing is conservative
Restrict Ordering and Free Variables
On the Proof of Solovay's Theorem
\Sigma-completeness and Bounded Arithmetic
The Axiomatization of Randomness
Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
Investigations into Classical Linear Logic
Provability Fixed points in IA_2 + \Sigma^0_1
Machine Models and Simulations
On Space Efficient Simulations
A Comparison of Reductions on Non-deterministic Space
A Parallel Functional Implementation of Range Queries
Finding Isomorphisms between Finite Fields
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Honest Reducibilities, Completeness and Non-deterministic Complexity Classes
On Adaptive Resource Bounded Computations
The Rule Language RL/I
Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas

Other Prepublications:
An Orec Sentence for Predicative Arithmetic
New Foundations: a Survey of Quine's Set Theory
Index of the Heyting Nachlass
Dynamic Montague Grammar, a first sketch
The Modal Theory of Inequality
Een Relatiele Semantiek voor Conceptuel Modelleren: Het RL-project

1990 SEE INSIDE BACK COVER
PROVABLE FIXED POINTS IN $\text{I} \Delta_0 + \Omega_1$

revised version

Alessandra Carbone
Department of Mathematics and Computer Science
University of Amsterdam
Department of Mathematics
Graduate School and University Centre, CUNY
33 W. 42nd Str., New York, NY 10036

Received July 1990

revised version of
ITLI ML-89-09
1. INTRODUCTION

This work should be considered as part of the general investigation into the arithmetical system $I\Delta_0 + \Omega_1$. We will present a refinement to $I\Delta_0 + \Omega_1$ of a result stated in [deJongh-Montagna, 1988], on witness comparison formulas having only provable fixed points in PA.

Briefly, let us introduce the arithmetical system and some of its properties: $I\Delta_0 + \Omega_1$ (Cf. [Paris-Wilkie, 1987]) is a set of axioms expressing the elementary arithmetic properties of the basic symbols $0, ', +, \times, \leq$ (in the following we will refer to the obvious first order language containing these symbols as S) together with the bounded induction schema $I\Delta_0$ (defined in S):

$$\forall x,z \ (\varphi(x,0) \land \forall y \leq z. \ (\varphi(x,y) \rightarrow \varphi(x,y')) \rightarrow \forall y \leq z \ \varphi(x,z)) \quad (\varphi \in \Delta_0)$$

plus the S-sentence Ω_1 expressing $\forall x \exists y. \omega_1(x) = y$ where $\omega_1(x) := x^{\lfloor x \rfloor}$ and $\lfloor x \rfloor$ is the length function for the binary representation of x.

We note that by the following result of [Verbrugge, 1989]

If NP \neq CO-NP then

$$\forall a,b,c. (\exists a. (Prf(a,c) \land \forall z \leq a \neg Prf(z,b)) \rightarrow Pr(\exists a. Prf(a,c) \land \forall z \leq a \neg Prf(z,b)))$$

it seems highly unlikely that the principle of Σ_1-completeness, i.e.

$$\varphi \rightarrow Pr(\varphi') \text{ for } \varphi \in \Sigma_1$$

1 Prerequisites: the reader is supposed to be familiar with [Smoryński, 1985]; knowledge of [deJongh-Montagna, 1988] will be helpful.
is provable in \(\text{I}\Delta_0 + \Omega_1 \). However, it can be shown that \(\text{I}\Delta_0 + \Omega_1 \) proves *Svejdar’s principle* (Cf. [Svejdar, 1983]): i.e.

\[
\vdash_{\text{I}\Delta_0 + \Omega_1} \Pr(\neg \varphi) \rightarrow \Pr(\neg \exists a(\Pr(a, \neg \psi) \land \forall z \leq a \neg \Pr(z, \neg \psi))) \rightarrow \psi
\]

(for all \(\varphi, \psi \))

(Cf. [Verbrugge, 1989]) and *Visser’s principle* (Cf. [Visser, 1989])

\[
\vdash_{\text{I}\Delta_0 + \Omega_1} \Pr(\neg C(s) \rightarrow s') \rightarrow \Pr(\neg s')
\]

where \(C(s) = \bigwedge \{ s \rightarrow \Pr(\neg s') : s \in S \} \), \(S \) is a finite set of \(\Sigma_1 \)-sentences and \(s' \) is a \(\Sigma_1 \)-sentence.

In [Paris-Wilkie, 1987], [Buss, 1986] and [Verbrugge, 1989] ample motivation for the general study of \(\text{I}\Delta_0 + \Omega_1 \) is given; therefore we will turn our attention here directly to the more specific aim of this paper.

In [Parikh, 1971] it is shown that for each primitive recursive function \(g \), there is a \(\Sigma_1 \)-sentence \(s \) such that \(\vdash_{\text{PA}} s \) and

\[
g(\mu z. \Pr_{\text{PA}}(z, \Pr_{\text{PA}}(\neg s'))) < \mu z. \Pr_{\text{PA}}(z, \neg s') \tag{*}
\]

In [deJongh-Montagna, 1988] Parikh’s result is analyzed in the modal context \(R \) (Cf. [Guaspari-Solovay, 1979]) when \(g \) is the identity function; a simpler proof is presented, based on the fact that (*) has only provable fixed points. Furthermore, a characterization is given for pairs of modal formulas \(B(p) \) and \(C(p) \) such that for each arithmetical interpretation *, if \(\vdash_{\text{PA}} p* \leftrightarrow (\Box B(p) \land \Box C(p))^* \) then \(\vdash_{\text{PA}} p^*: \Box B(p) \land \Box C(p) \) has only provable fixed points in PA. In [deJongh-Montagna, 1989] the result is extended to arbitrary \(g \) which are provably recursive in PA.

Our aim is to refine the positive part of the proof of [deJongh-Montagna, 1988], the part in which it is shown that the formulas specified do indeed have only provable fixed points in PA, to a weaker modal system in which the \(\Sigma \)-completeness axiom (i.e. the
corresponding modal version of the \(\Sigma_1 \)-completeness principle) does not hold.

In section 3, it is shown that the modal version of Visser's principle; i.e.

\[
\forall \diamond (C(s) \rightarrow s') \rightarrow \diamond s'
\]

where \(C(s) = \bigwedge \{ s \rightarrow \diamond s : s \in S \} \),

\(S \) is a finite set of \(\Sigma \)-formulas

\(s' \) is a \(\Sigma \)-formula,

playing the role of a weak version of \(\Sigma \)-completeness, suffices to obtain the refined theorem we are looking for.

What is provable in the weak modal system including Visser's schema, is clearly provable in \(\Pi_0 + \Omega_1 \) under every arithmetical interpretation; therefore, it follows that \(\text{PA} \) has no witness comparison formulas having only provable fixed points which the system \(\Pi_0 + \Omega_1 \) does not already have.

Based on the result obtained in section 3, in section 4 we present the independence between \(\forall \) and the modal version of Švejdar's principle

\[
\forall \forall A \rightarrow \forall \forall (\forall B \leq \forall A \rightarrow B)
\]

for all formulas \(A, B \).

In particular we give a counterexample to show that \(\forall \forall \) does not imply Visser's schema: that gives an insight to understand why Švejdar's schema cannot play much of a role in the study of formulas having only provable fixed points.

In an appendix we give some proofs, mainly due to Visser [1989], of modal principles derivable from Visser's principle.

2. MODAL SYSTEMS AND KRIPKE SEMANTICS

In this section we will briefly introduce the modal systems that we are going to work with, together with the associated Kripke semantics.
Formulas of our system are built up from propositional atoms using the boolean connectives \land, \lor, \neg, \rightarrow, \leftrightarrow, \top, \bot, a unary modality \square and binary witness comparisons \ll, \lll, where \ll and \lll are applicable only to those formulas having \square as principal connective. The following definition will introduce the list of modal systems.

DEF 2.1:

(a) B^- (Basic System) is the modal system L (Pr1 in [Smoryński, 1985]) (including its rules: modus ponens and necessitation) to which the following order axioms are added (see [deJongh, 1987]):

(01) $\square A \rightarrow (\square A \lll \square B \lor \square B \lll \square A)$
(02) $\square A \lll \square B \rightarrow \square A$
(03) $\square A \lll \square B \land \square B \lll \square C \rightarrow \square A \lll \square C$
(04) $\square A \lll \square B \leftrightarrow (\square A \lll \square B \land \neg(\square B \lll \square A))$

(b) Z^- (Cf. [Švejdar, 1983]) is the system B^- plus Švejdar's schema:

(Šv) $\square A \rightarrow \square(\square B \lll \square A \rightarrow B)$ for all formulas A, B

(c) BV^- is the system B^- plus Visser's schema:

(V) $\square (C(S) \rightarrow s') \rightarrow \square s'$

where $C(S) = \bigwedge \{s \rightarrow \square s : s \epsilon S\}$, S is a finite set of Σ-formulas and s' is a Σ-formula

(d) B, BV, Z are respectively the systems B^-, BV^- and Z^- with the rule $\square E$ (see Definition 2.1.3 Part A) added.

Let $A(p)$ be some formula of B of the form $\square B(p) \lll \square C(p)$. As in [deJongh-Montagna, 1988] we take BC^-, BVC^- and ZC^- to be the systems B^-, BV^- and Z^- respectively, plus the axiom $c \leftrightarrow A(c)$ (analogous notation is used for the systems B, BV and Z). Since a different system is defined for different choice of A it would be more appropriate to name the systems $BC(A)^-$, $BVC(A)^-$ and $ZC(A)^-$. But, as it will always be clear in the sequel which formula A is
intended, we will refrain from doing so, in order not to unnecessarily complicate the notation.

DEF 2.2: a model for \(B^- \) is a finite, tree-ordered Kripke-model for \(L \) in which witness comparison formulas are treated as atomic formulas and in which every instance of (01)-(04) is forced at each node.

DEF 2.3: models for \(BV^- \), \(Z^- \) are Kripke-models for \(B^- \) where respectively \((v), (\tilde{v}) \) is forced at each node.

It is appropriate to remark that, just as is pointed out in [Verbrugge, 1989] for the system \(Z^- \), also for \(BV^- \) the forcing for witness comparison formulas in \(BV^- \) Kripke-models is not persistent, i.e. it does not necessarily hold that if \(j \vDash \Box A \leq \Box B \) (resp. \(j \vDash \Box A < \Box B \)) and \(jRk \) then \(k \vDash \Box A \leq \Box B \) (resp. \(k \vDash \Box A < \Box B \)).

No model-completeness theorem or even a general extension lemma has been established for \(BV \) (for \(Z \), Švejdar did establish these [Švejdar, 1983]).

3. WITNESS COMPARISON FORMULAS HAVING ONLY PROVABLE FIXED POINTS IN BV

Theorem 3.3 of [deJongh-Montagna, 1988] reads:

If \(B(p) \) and \(C(p) \) are \(L \)-formulas (i.e. do not contain witness comparisons), possibly containing propositional variables other than \(p \), then \(A(p) \equiv \Box B(p) \leq \Box C(p) \) has only provable fixed points in \(R \) iff

(i) \(\vdash_L B(T) \)

(ii) \(\vdash_L \Box^+ (\Box B(\bot) \rightarrow \Box C(\bot)) \rightarrow \Box^{k+1} \bot, \) for some \(k \)

(where \(\Box^+ D \) abbreviates \(D \land \Box D \))
Our aim is to obtain a characterization for a witness comparison formula to have only provable fixed points in BV. The result presented in this section constitutes a refinement of the theorem proved by de Jongh and Montagna; the proof that we present is syntactical and based on a different approach characterized by the proof of the following theorem:

THEOREM 3.1: Let $B(p)$ and $C(p)$ be L-formulas. If
(i) $\vdash_L B(T)$
(ii) $\vdash_L \Box^+(\Box B(\bot) \rightarrow \Box C(\bot)) \rightarrow \Box^{k+1} \bot$, for some k,
then $A(p) = \Box B(p) \leq \Box C(p)$ has only provable fixed points in BV.

Some preparatory lemmas are needed. In the following we assume that (i) and (ii) of theorem 3.1 hold, the systems BC^-, BVC^- and BVC refer to the $A(p)$ of this theorem. Some results already proved by Visser (Cf. [Visser, 1989]) for his principle and used in the proof of the following lemmas are given in the appendix.

LEMMA 3.2: $\vdash_{BC^-} \Box^+ \neg c \rightarrow \Box^{k+1} \bot$

Pf:
1. $\vdash_B \Box \neg c \rightarrow \Box (c \leftrightarrow \bot)$
 $\rightarrow \Box^+(\Box (c \leftrightarrow \bot) \land (\Box C(c) \leftrightarrow \Box C(\bot)))$
 $\rightarrow (\Box^+(\Box B(c) \rightarrow \Box C(c)) \rightarrow \Box^{k+1} \bot)$
 (by (b) and the Substitution Lemma(Cf. [Smoryński, 1985]))
2. $\vdash_{BC^-} \Box^+ \neg c \rightarrow \Box^+(\Box B(c) \rightarrow \Box C(c))$ (by obvious properties of \leq)
3. $\vdash_{BC^-} \Box^+ \neg c \rightarrow \Box^{k+1} \bot$ (by 1 and 2)

\Box
Lemma 3.3: \(\vdash_L \Box c \rightarrow \Box B(c) \)

Pf:
1. \(\vdash_L c \rightarrow B(T) \) (by (i))
2. \(\vdash_L \Box c \rightarrow \Box B(T) \)
3. \(\vdash_L \Box c \rightarrow \Box (c \leftrightarrow T) \) (by 2 and 3)
4. \(\vdash_L \Box c \rightarrow \Box B(c) \)

Lemma 3.4: \(\vdash_L \Box^+ c \rightarrow \Box^+ B(c) \)

Pf:
1. \(\vdash_L c \rightarrow B(T) \) (by (i))
2. \(\vdash_L \Box^+ c \rightarrow \Box^+ B(T) \)
3. \(\vdash_L \Box^+ c \rightarrow \Box^+ (c \leftrightarrow T) \)
 \[\rightarrow (\Box^+ B(c) \leftrightarrow \Box^+ B(T)) \]
4. \(\vdash_L \Box^+ c \rightarrow \Box^+ B(c) \) (by 2 and 3)

Lemma 3.5: \(\vdash_L \Box^{k+1} \bot \rightarrow (\Box C(\bot) \rightarrow B(\bot)) \)

*Pf: We claim that, if \(\vdash_L \Box^+ (\Box B \rightarrow \Box C) \rightarrow \Box^{k+1} \bot \), then \(\vdash_L \Box^{k+1} \bot \rightarrow (\Box C \rightarrow B) \), where B,C are arbitrary L-formulas. For suppose not, then a model M exists such that \(M \models \Box^+(\Box B \rightarrow \Box C) \rightarrow \Box^{k+1} \bot \) and w \(\not\models \Box^{k+1} \bot \land \Box C \), w \(\not\models B \), for some node w in M. Take the submodel of M generated by w and add a tail of nodes below w of such a length that the new model gets a root x of level greater than or equal to k+1 (end nodes are counted as having level 0). Clearly none of the nodes added below w can force \(\Box B \) but all of them force \(\Box^+(\Box B \rightarrow \Box C) \). By hypothesis, x \(\not\models \Box^{k+1} \bot \) and this gives a contradiction, which proves our claim.

By the claim and (ii) it follows that: \(\vdash_L \Box^{k+1} \bot \rightarrow (\Box C(\bot) \rightarrow B(\bot)) \).
Lemma 3.6: \(\vdash_{BC} \Box^+ c \rightarrow \Box^+ B(c) \)

Pf:
1. \(\vdash_L \Box^+ c \rightarrow (\Box B(c) \leftrightarrow \Box C(\bot)) \land (B(c) \leftrightarrow B(\bot)) \)
2. \(\vdash_{BC} \Box^+ c \rightarrow (\Box C(c) \rightarrow B(c)) \) (by lemma 3.2 and lemma 3.5)
3. \(\vdash_{BC} \neg c \rightarrow (\Box B(c) \rightarrow \Box C(c)) \) (by obvious properties of \(\prec \))
4. \(\vdash_{BC} \Box^+ c \rightarrow (\Box B(c) \rightarrow B(c)) \) (by 2 and 3)
5. \(\vdash_{BC} \Box^+ c \rightarrow (\Box (\Box B(c) \rightarrow B(c)) \rightarrow \Box B(c) \rightarrow B(c)) \) (by formalized Löb)
6. \(\rightarrow B(c) \) (by 4)

Lemma 3.7:
\[\vdash_{BV} \Box \Box A \lor \Box B \rightarrow \Box (\Box^+ (\Box A \prec \Box B) \lor \Box^+ (\Box B \prec \Box A)) \]

Pf:
1. \(\Box \Box A \lor \Box B \rightarrow \Box (\Box A \prec \Box B \lor \Box B \prec \Box A) \)
2. \(\rightarrow \Box ((\Box A \prec \Box B \rightarrow \Box (\Box A \prec \Box B) \land \Box B \prec \Box A \rightarrow \Box (\Box B \prec \Box A)) \rightarrow \Box^+ (\Box A \prec \Box B) \lor \Box^+ (\Box B \prec \Box A)) \)
3. \(\rightarrow \Box (\Box^+ (\Box A \prec \Box B) \lor \Box^+ (\Box B \prec \Box A)) \) (by \(\lor \))

Corollary 3.8:
\(\vdash_{BV} \Box A \lor B \rightarrow \Box (\Box A \prec B \rightarrow \Box (\Box A \prec B)) \)

Pf: Trivial.

Lemma 3.9: \(\vdash_{BVC} \Box^{k+2}c \rightarrow \Box^n B(c) \) for each \(0 \leq n \leq k+1 \)

Pf: by downward induction on \(n \):

\(n = k+1: \) \(\vdash_L \Box^{k+2}c \rightarrow \Box^{k+1}c \)
\(\rightarrow \Box^{k+1} B(c) \) by lemma 3.3;

\(n < k+1: \) recall that by induction hypothesis we have
\(\vdash_{BVC} \Box^{k+2}c \rightarrow \Box^{n+1} B(c), \) i.e.
\(\vdash_{BVC} \Box^{k+2}c \rightarrow \Box B(c). \) So,

1. \(\vdash_{BV} \Box^{k+2}c \rightarrow (\Box^{n+1} B(c) \rightarrow \Box^{n+1}(\Box B(c) \prec \Box C(c)) \lor \Box^+(\Box C(c) \prec \Box B(c))) \) (by lemma 3.7)
2. \(\vdash_{\text{BC}} \Box^{k+2}c \rightarrow (\Box^{n+1} \Box B(c) \rightarrow \Box^{n+1}(\Box^+c \lor \Box^+-c)) \)
 \(\rightarrow (\Box^{n+1} \Box B(c) \rightarrow \Box^{n+1} B(c)) \) (by lemma 3.4 and lemma 3.6)
 \(\rightarrow \Box^{n+1} B(c) \) (by modus ponens with the induction hypothesis)

We are now ready to prove theorem 3.1:

\textbf{Pf (theorem 3.1):}

1. \(\vdash_{\text{BC}} \Box^{k+2}c \rightarrow \Box B(c) \) (by lemma 3.9 where \(n=0 \))
 \(\rightarrow \Box B(c) \land \Box C(c) \lor \Box C(c) \land \Box B(c) \) (by obvious properties of \(\land \))

2. \(\vdash_{\text{BC}} \Box (\Box B(c) \land \Box C(c)) \lor \Box (\Box C(c) \land \Box B(c)) \rightarrow \Box^+c \lor \Box^+-c \)
 \(\rightarrow \Box c \lor \Box^+-c \)
 \(\rightarrow \Box^{k+1}c \lor \Box^{k+1} \bot \) (by lemma 3.2)
 \(\rightarrow \Box^{k+1}c \) (by 1, 2)

3. \(\vdash_{\text{BC}} \Box^{k+1}c \)

4. \(\vdash_{\text{BC}} c \) (by \(\square E \))

The refinement that we were looking for is an immediate consequence of theorem 3.1:

\textbf{THEOREM 3.10:} Let \(B(p) \) and \(C(p) \) be \(L \)-formulas; then
\(A(p) \equiv \Box B(p) \land \Box C(p) \) has only provable fixed points in \(\text{BV} \)
iff
(i) \(\vdash_{L} B(T) \)
(ii) \(\vdash_{L} \Box^+(\Box B(\bot) \rightarrow \Box C(\bot)) \rightarrow \Box^{k+1} \bot \), for some \(k \).

\textbf{Pf:} (\(\Rightarrow \)) If \(c \) is a fixed point for \(A(p) \) then \(\vdash_{\text{BC}} c \), therefore \(\vdash_{\text{RC}} c \) and by lemma 2.3 in [deJongh-Montagna, 1988]
\(\vdash_{R} \Box^+(c \leftrightarrow A(c)) \rightarrow \Box^{k+1}c \) for some \(k \). Now apply theorem 3.3 in [deJongh-Montagna, 1988].

(\(\Leftarrow \)) by theorem 3.1.
By theorem 3.10 and theorem 3.3 (Cf. [deJongh-Montagna, 1988]) it follows that the formulas of the form \(A(p) \equiv \Box B(p) \wedge \Box C(p) \) having only provable fixed points in \(R \) are exactly the formulas having only provable fixed points in \(BV \). In other words, to obtain the formulas having only provable fixed points we do not need the strong \(\Sigma \)-completeness schema (i.e. \(A \rightarrow \Box A \), for every \(\Sigma \)-formula \(A \)) but we can replace it by the weaker \((V) \).

Although theorem 3.10 is formulated with \(iff \) one should note that, unlike with \(R \) and \(PA \), \(A(p) \equiv \Box B(p) \wedge \Box C(p) \) having only provable fixed points in \(I\Delta_0 + \Omega_1 \) for all arithmetical interpretations does not imply that \(A(p) \) has only provable fixed points in \(BV \), since arithmetical completeness even of \(L \) is unknown for \(I\Delta_0 + \Omega_1 \) (see [Verbrugge, 1989]). At the present, theorem 3.10 does imply that each formula of \(R \) having only provable fixed points in \(PA \) has only provable fixed points in \(I\Delta_0 + \Omega_1 \) when arithmetical interpretations are restricted to sentences. The restriction to sentences is essential; otherwise Visser's principle loses its validity (see [Visser, 1989]).

4. INDEPENDENCE OF VISSER'S AND ŠVEJDAR'S SCHEMAS

As already announced in the introduction, it can be shown that \(I\Delta_0 + \Omega_1 \) proves Švejdar's principle. Because the principle appears as a weak version of the \(\Sigma \)-completeness axiom it may be of some interest to study its relations with Visser's principle: in this section we will prove the independence of the two principles.

First of all we show that Švejdar's schema does not imply Visser's schema, i.e. \(Z \not\vdash (V) \). To prove that, consider the formula \(\Box^3 p < \Box^2 p \) having only provable fixed points in \(R \), as proved in [deJongh-Montagna, 1988]. By theorem 3.10 it follows that this formula has only provable fixed points in \(BV \). On the other hand\(^2\), note that

\(^2\) the argument was suggested to the author by F. Montagna.
$\Box^3p < \Box^2p$ cannot have only provable fixed points in \mathbb{Z}, because by Švejdar's essential reflexivity interpretation of $\Box A < \Box B$ as "there exists a proof of A using axioms with smaller Gödel numbers than in any proof of B" (Cf. [Švejdar, 1983]) that would mean that for the fixed point c in PA, \Box^2c would have a proof in PA using axioms with smaller Gödel numbers than any proof of $\Box c$ would use. This is impossible because being a provable Σ-sentence, $\Box c$ wouldn't need any but the axioms of Q and we could take those as the zero base of our interpretation. This proves our claim.

At this point it may be of interest to remark that the formula $\Box^2p < \Box p$ has only provable fixed points in \mathbb{Z}.

The following argument is due to Visser: in BC it is provable that $\Box^2c \rightarrow \Box (\Box c < \Box^2c \lor \Box^2c < \Box c)$. Thus, in \mathbb{Z}^{-}, $\Box^2c \rightarrow \Box c$ is provable, from which with Löb in \mathbb{Z}^{+}, immediately the follows. Under the same arithmetical interpretation used in the previous argument, the result is not very surprising: it is well known that there are theorems provable in PA and not in Q. From these observations we can see that Švejdar's schema can by itself hardly be useful in studying formulas having only provable fixed points in BV. Recall also that in the proof of theorem 3.10, the schema (\Box^v) is not used.

To obtain our second claim, that Visser's schema does not imply Švejdar's schema (i.e. BV $\vdash (\Box^v)$, it is enough to exhibit a countermodel of BV to the formula $\Box p \rightarrow \Box (\Box q < \Box p \rightarrow q)$ (i.e. an instance of (\Box^v) where p and q are propositional variables).³

Let A be the formula $\Box p \rightarrow \Box (\Box q < \Box p \rightarrow q)$ and consider the following A-sound model $\langle \{1,2,3,\ldots\}, R, \vdash \rangle$ where the forcing relation is restricted to subformulas of A:

³ Observe that $\vdash_{\mathbb{B}V} \Box A \rightarrow \Box (\Box B < \Box A \rightarrow B)$, for all formulas A, B. The proof is an immediate consequence of lemma 3.7.
where E and F stand for $\Box p \leq \Box q$ and $\Box q \leq \Box p$ respectively.

From the forcing relation indicated in the figure note that: 2 does not force p or q; 4 does not force p or $E \rightarrow \Box E$, but does force $F \rightarrow \Box F$; for $kR5$ and $k=5$, k does not force p, q, E, F, but does force $E \rightarrow \Box E$ and $F \rightarrow \Box F$. In particular note that 4 does not satisfy $\Box p \rightarrow \Box(\Box q \leq \Box p \rightarrow q)$.

Observe that the role of node 1 is crucial to obtain a model forcing all the instances of Visser's principle; consider the formula $\Box \neg p$ and suppose that node 1 did not exist. It is easy to check that $6 \not\vdash \Box((E \rightarrow \Box E) \rightarrow \Box \neg p) \rightarrow \Box \Box \neg p$.

We claim that under a suitable forcing extension given to the model, every instantiation of Visser's principle holds on the model. Before
giving the procedure to define the appropriate forcing relation, let us fix some notation and definition which will be used in the sequel. We write P to denote the set of all propositional variables except p and q; S^0 for $\{p, q, p\land q, p\land q, q\land q, q\land p\}$; S^{2m+1} to denote the closure of $S^{2m}\cup P$ under the propositional connectives and \Box (obviously P is effective only when $m=0$); S^{2m+2} for $S^{2m+1}\cup \{\Box A, \Box B, \Box A\land \Box B, \Box A, \Box B\in S^{2m+1}\}$.

DEF 4.1: let k, k' nodes of $\langle 1, 2, 3, \ldots \rangle$, R, $I\rightarrow$; we write:

$\Box A < k\Box B$ iff $\exists k' ((k'Rk$ or $k'=k$) and $k'R\Box A$ and $k'R\Box B)$

$\Box A < k\Box B$ iff $kR\Box A$ and $\forall k'$ (if $(k'Rk$ or $k'=k$) and $k'R\Box A$ then $k'R\Box A$)

Here is the procedure to construct the forcing relation:

stage 0: for all $r\in P$ fix

kRr iff kRp for all nodes k

stage $2m+1$: automatically and uniquely define a forcing relation for all members of the closure S^{2m+1};

stage $2m+2$: call (as in [deJongh, 1987]) a boxed formula $\Box A$ old if $\Box A\in S^{2m}$ and new if $\Box A\notin S^{2m+1}\setminus S^{2m}$. To give an extension of the forcing relation to S^{2m+2}, it is enough to define the forcing on witness comparison formulas $\Box A < \Box B$ and $\Box A \land \Box B$ (belonging to S^{2m+2}) for $\Box A$, $\Box B$ both new, $\Box A$ old and $\Box B$ new, and for $\Box A$ new and $\Box B$ old. Before giving the way to construct the forcing let us recall two definitions occurring in [deJongh, 1987]:

(i) $kR\Box A < \Box B$ iff $\Box A < k\Box B$ or, $\Box A < k\Box B$ and $\Box A$ old, $\Box B$ new

(ii) $kR\Box A < \Box B$ iff $\Box A < k\Box B$ or, $\Box A < k\Box B$ and $\Box B$ new.

We are now ready to present the procedure, to repeat for all nodes k.

Here it is:

If $k\in \{1, 2, 3, 4, 5\}$ and $5R\Box A$ and $5R\Box B$

then let $kR\Box A < \Box B$ and $kR\Box A < \Box B$

else fix the forcing on $\Box A < \Box B$, $\Box B < \Box A$, $\Box A < \Box B$ and $\Box B < \Box A$ as defined in (i) and (ii), respectively.
Apply the procedure repeatedly (i.e. for all $m \in \mathbb{N}$) so as to cover all formulas, and call the resulting model M.

Note that points 1 and 3 satisfy the same formulas since they are always treated alike by the construction.

CLAIM 1: $\forall s \in \Sigma. \ 5 \vdash \ s \Rightarrow \ k \vdash \ s \quad \text{where} \ k \in \{1, 2, 4\}$

Pf: suppose $s \in \Sigma$ and $5 \vdash s$; by cases:
- $s = \Box B$: by the previous observation points 1 and 3 force the same formulas, therefore the claim;
- $s = \Box B < \Box C$: by stage $2m+2$ of construction and definition (i);
- $s = \Box B \ll \Box C$: by definition (ii) on stage $2m+2$ of construction;
- $s = \text{"boolean combination of } \Sigma\text{-formulas"}$: by the previous cases.

Using claim 1 and definition 4.1, it is easy to check that stage $2m+2$ excludes the existence of two boxed formulas $\Box A$, $\Box B$ for which $\Box A < \Box B$ and $\Box B \ll \Box A$ are both forced at node 4.

CLAIM 2: $5 \vdash C(S)$ for all finite sets S of Σ-formulas

Pf: straightforward from claim 1.

CLAIM 3: *(Persistency property)* let $\Box A$, $\Box B$ be two boxed formulas such that at least one of them is new at some stage $m \geq 1$;

- if ($k \vdash \Box A < \Box B$ and kRk') then $k' \vdash \Box A < \Box B$ and
- if ($k \vdash \Box A \ll \Box B$ and kRk') then $k' \vdash \Box A \ll \Box B$

Pf: immediate from the forcing procedure and the following consequences of definition 4.1:

- if ($\Box A < k \Box B$ and kRk') then $\Box A < k' \Box B$
- if ($\Box A \ll k \Box B$ and kRk') then $\Box A \ll k' \Box B$.

Note that the only witness comparison formulas that do not satisfy the persistency property are E and F (see definition of forcing at nodes 3 and 4).
CLAIM 4: all instances of Visser's schema are forced in each node of M.

Pf: obviously points 1, 2, 3 satisfy the claim; moreover notice that Visser's principle is always satisfied at level 1 in any Kripke model since each C(S) is always satisfied at terminal nodes, therefore 4 and 5 satisfy the claim. By induction we check the tail of points k:

k=6: suppose there exist C(S) and s' such that \(6 \not\models \Box s' \) and \(\forall k (\text{if } 6Rk \text{ then } k \models C(S) \rightarrow s') \); it follows that \(\exists h (6Rh \text{ and } h \not\models s' \text{ and } h \not\models C(S)) \); but \(k \models C(S) \) for \(k \in \{1, 2, 3, 5\} \) therefore h must be 4. By claim 1 we get a contradiction.

k+1: (with \(k+1 > 6 \)) assume the claim holding for all h such that \(k+1Rh \) and suppose there exist C(S) and s' such that \(k+1 \not\models \square s' \) and \(\forall h (\text{if } k+1Rh \text{ then } h \not\models C(S) \rightarrow s') \); it follows that \(\exists h (k+1Rh \text{ and } h \not\models s' \text{ and } h \not\models C(S)) \); this node must be k since, by induction hypothesis, every instance of Visser's schema holds at k, so \(k \models \square s' \). Therefore \(k \not\models C(S) \), i.e. for some \(s \in S \), \(k \models s \) but \(k \not\models \square s \). By cases:

\(s = \square B \text{ or } k \not\models \square s \), a contradiction;

\(s = \Box B \land \Box C \): \(k \not\models \Box B \) and \(B \) can be neither p nor q since \(\Box p \) and \(\Box q \) are not forced at any point kR6.

Therefore by claim 3, the forcing on witness comparison formulas must be persistent and this gives a contradiction.

\(s = \square B \land \square C \): similar to the previous case;

\(s = " \text{boolean combination of } \Sigma \text{-formulas}" \): by the previous cases.

To show that M is a model for BV it suffices to prove the following

CLAIM 5: for all formulas A,

if \(M \models \square A \) then \(M \models A \),

Pf: trivial.

\[\square \]
APPENDIX: SOME THEOREMS PROVED BY VISSE's PRINCIPLE

In [Visser,1989] the following theorems, proved using the principle \((V) \), are pointed out:

\((V1) \quad \Box \Box S \rightarrow \Box \Box S^+ \)
\((V2) \quad \Box(\Box A \rightarrow \Box S) \land \Box(\Box S^+ \rightarrow A) \rightarrow \Box A \)
\((V3) \quad \Box(\text{C}(S) \rightarrow (A \rightarrow s')) \rightarrow \Box A \rightarrow \Box s' \)
\((V4) \quad \Box(\text{C}(S) \rightarrow (\Box s' \rightarrow s')) \rightarrow \Box s' \)

where \(S \) is a finite set of \(S \)-formulas, \(\text{C}(S) = \bigwedge\{ s \rightarrow \Box s : s \in S \} \),
\(S^+ = \{ s \land \Box s : s \in S \} \) and \(s' \) a \(\Sigma \)-formula.

We will give the proof of them in the modal system \(\text{BV}^- \):

\((V1): \)

1. \(\Box \Box S \rightarrow \Box(\text{C}(S) \rightarrow \Box \Box S^+) \)
2. \(\Box(\text{C}(S) \rightarrow \Box \Box S) \rightarrow \Box(\Box \Box S) \) (by \((V) \))
3. \(\Box \Box S \rightarrow \Box(\Box \Box S) \) (by 1 and 2)

\((V2): \)

1. \(\Box(\Box A \rightarrow \Box S) \rightarrow \Box(\Box \Box A \rightarrow \Box \Box S) \)
 \(\rightarrow \Box(\Box \Box A \rightarrow \Box(\Box \Box S)) \) (by \(V1) \))
2. \(\Box(\Box \Box S \rightarrow A) \rightarrow \Box(\Box \Box \Box S \rightarrow \Box A) \)
3. \(\Box(\Box A \rightarrow \Box S) \land \Box(\Box \Box S \rightarrow A) \rightarrow \Box(\Box \Box A \rightarrow \Box A) \) (by 1 and 2)
 \(\rightarrow \Box \Box A \) (by formalized Lofb)
 \(\rightarrow \Box S \)
 \(\rightarrow \Box(\Box \Box S) \) (by \(V1)))
 \(\rightarrow \Box A \)

16

(V3):
1. \(\Box(C(S) \rightarrow (A \rightarrow s')) \rightarrow \Box(A \rightarrow (C(S) \rightarrow s'))\)
 \(\rightarrow \Box A \rightarrow \Box(C(S) \rightarrow s')\)
 \(\rightarrow \Box A \rightarrow \Box s'\)
 (by \((V)\))

(V4):
1. \(\Box(C(S) \rightarrow (\Box s' \rightarrow s')) \rightarrow \Box(\Box(C(S) \rightarrow (\Box s' \rightarrow s'))))\)
 \(\rightarrow \Box(\Box\Box s' \rightarrow \Box s')\)
 (by \((V3)\))
 \(\rightarrow \Box\Box s'\)
 (by formalized Löb)
 \(\rightarrow \Box(C(S) \rightarrow \Box s')\)
 \(\rightarrow \Box(C(S) \rightarrow s')\)
 \(\rightarrow \Box s'\)
 (by \((V)\))

REFERENCES

17
ACKNOWLEDGEMENTS

The present result have been found during my visit to (the Department of Mathematics and Computer Science of the University of) Amsterdam and in direct interaction with the research by Albert Visser on Σ_1-conservativity of Σ_1-completeness of $I\Delta_0+\Omega_1$. My special thanks are given to Dick de Jongh for his nice way of supervising me during my presence in Amsterdam and for many helpful remarks that he made during the research and the drafting of the paper. I am grateful to Rineke Verbrugge and Albert Visser for a number of corrections and suggestions. Finally, I would like to thank Franco Montagna for the stimulating discussions on provable fixed points.
The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta
LP-90-05 Patrick Blackburn
LP-90-06 Gennaro Chierchia
LP-90-07 Gennaro Chierchia
LP-90-08 Herman Hendriks
LP-90-09 Paul Dekker
LP-90-10 Theo M.V. Janssen

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
CT-90-03 Ricard Gavalda, Leen Torenvliet
CT-90-04 Harry Buhrman, Leen Torenvliet

Generalized Kolmogorov Complexity
in Relativized Separations
Bounded Reductions

Other Prepublications
X-90-01 A.S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04
X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V.Yu. Shavrukov
X-90-10 Sieger van Denneheuvel
X-90-11 Alessandra Carbone

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variability of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse,
towards a flexible dynamic Montague grammar
Models for Discourse Markers

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version
Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical
Theories
On Rosser's Provability Predicate
An Overview of the Rule Language RL/1

Provable Fixed points in $\Delta_0 + \Omega_1$, revised version