DYNAMIC SEMANTICS AND
CIRCULAR PROPOSITIONS
revised version
Willem Groeneveld
ITLI Prepublication Series X-92-03

University of Amsterdam
The ITLI Prepublication Series

1986
86-01 Peter van Emde Boas
A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem
Category Grammar and Lambda Calculus
86-04 Reinhard Muskens
A Relational Formulation of the Theory of Types
86-05 Johan van Benthem, Dick de Jongh
Sensitivity, Booleanness, Well-founded Time, Forward looking Operators
86-06 Johan van Benthem
Logical Syntax

1987
87-01 Jeroen Groenendijk, Martin Stokhof
Type shifting Rules and the Semantics of Introgatives
87-02 Reinhard Muskens
Frame Representations and Discourse Representations
87-03 Jan Willem Klopu, Roel de Vrijer
Univocal Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem
Polyadic quantifiers
87-05 Víctor Sánchez Valenca
Traditional Logicians and de Morgan's Example
87-06 Eleonore Oeversteegen
Temporal Adverbials in the Two Track Theory of Time
87-07 Jeroen Groenendijk, Johan van Benthem
Category Grammar and Type Theory
87-08 Renate Bartsch
The Construction of Properties under Perspectives
87-09 Herman Hendriks
Type Change in Semantics: The Scope of Quantification and Coordination

1988
88-01 Michel van Lambugen
Logical and Linguistic Information Theory
88-02 Yde Venema
Expressiveness and Completeness of an Interval Tense Logic
88-03
Year Report 1987
88-04 Reinhard Muskens
Going partial in Montague Grammar
88-05 Johan van Benthem
Logical Constants across Varying Types
88-06 Johan van Benthem
Semantic Parallels in Natural Language and Computation
88-07 Renate Bartsch
Tenas, Aspects, and their Scopes in Discourse
88-08 Jeroen Groenendijk, Martin Stokhof
Context and Information in Dynamic Semantics
88-09 Theo M.V. Janssen
A mathematical model for the CAT framework of Eurolog
88-10 Annake Klepper
A Bilingual Translation Program

1989
ML-89-01 Jaap van Oosten
Mathematical Logic and Foundations: Lifschitz' Realizability
ML-89-02 M.G.O. Swaan
The Application of the Lambda Logic to 2-valued Modal Logics
ML-89-04 Dick de Jongh, Frank Veltman
Probabilistic Logic for Relative Interpretability
ML-89-04 A.S. Troelstra
On the Early History of Intuitionistic Logic
ML-89-05 A.S. Troelstra
Remarks on intuitionsism and the Philosophy of Mathematics
CP-89-01 Michel H.M. Smid
Computability and Complexity Theory: Two Decades of Kolmogorov Complexity
CP-89-02 Michael H.M. Smid
General Lower Bounds for the Partitioning of Range Trees
CP-89-03 Michel H.M. Smid, Mark H. Overmars, Leen Torenvliet, Peter van Emde Boas
Maintaining Multiple Representations of Dynamic Data Structures
CP-89-04 Dick de Jongh, Lex Hendriks, Gerard R. Renardel de Lavalette
Computations in Fragments of Intuitionistic Propositional Logic
CP-89-05 Dick de Jongh, Peter van Emde Boas
Machine Models and Simulations (revised version)
CP-89-06 Michel H.M. Smid
A Data Structure for the Union-Find Problem having good Single-Operation Complexity
CP-89-07 Johan van Benthem
Time, Logic and Computation
CP-89-08 Michel H.M. Smid, Mark H. Overmars, Leen Torenvliet, Peter van Emde Boas
Multiple Representations of Dynamic Data Structures
CP-89-09 Theo M.V. Janssen
Towards a Universal Parsing Algorithm for Functional Grammar
CP-89-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas
Non-determinism, fairness and a Fundamental Analogy
CP-89-11 Sieger van Dennehuvel, Peter van Emde Boas
Towards implementing RL
X-88-01 Marc Jumeau
Other prepublications:
- On Solovay's Completeness Theorem

1989
LP-89-01 Johan van Benthem, Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
LP-89-03 Yde Venema
Dynamic Predicate Logic, towards a compositional, non-recursive semantics of discourse
LP-89-04 Johan van Benthem, Language in Action
LP-89-05 Johan van Benthem, Modal Logic as a Theory of Information
LP-89-06 Andrei Predoiu
Intensional Lambda Calculi: Theory and Application
LP-89-07 Heinrich Wansing
The Adequacy Problem for Propositional Temporal Logics
LP-89-08 Víctor Sánchez Valenca
Petri's Propositional Logic: From Algebra to Graphs
LP-89-09 Zhisheng Huang
Computability and Complexity Theory: Explicit Fixed Points for Interpretability Logic
LP-89-10 Dick de Jongh, Albert Visser
Mathematical Logic and Foundations: Fixed Points for Interpretability Logic
LP-89-11 Dick de Jongh, Franco Montagna
Ordering the Lambda Calculus with Surjective Pairing is conservative
LP-89-12 Dick de Jongh, Franco Montagna, Roger Rosser Orderings and Free Variables
LP-89-13 Dick de Jongh, Marc Jumeau, Franco Montagna
On the Proof of Solovay's Theorem
LP-89-14 Sieger van Dennehuvel, E. Winterberg
Completeness and Bound Arithmetic
LP-89-15 Michel van Lamsweerde
The Axiomatization of Randomness
LP-89-17 Dick Roorda
Elementary Inductive Definitions in HA: From Strictly Positive towards Monotone Inductive Definitions
LP-89-18 Dick de Jongh
Investigations into Classical Linear Logic
LP-89-19 Alessandra Carbone
Provable Fixed Points in Lambda Calculus
CT-89-01 Michel H.M. Smid
Computability and Complexity Theory: Dynamic Deferred Structures
CT-89-02 Peter van Emde Boas
Machine Models and Simulations
CT-89-03 Ming Li, Herman Neufangse, Leen Torenvliet, Peter van Emde Boas
On Space Efficient Simulations
CT-89-04 Harry Buurman, Leen Torenvliet
A Comparison of Reductions on Nonderministic Space
CT-89-05 Theo M.V. Janssen, Michel H.M. Smid, Robert H. Grunow, Willem G. Vree
A Parallel Functional Implementation of Range Queries
CT-89-06 H.W. Lenstra, Jr.
Finding Isomorphisms Between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi
A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for Solving Universal Approximation Problems
CT-89-08 Harry Buurman, Steven Homer, Leen Torenvliet
Honest Reductions, Completeness and Non-deterministic Complexity Classes
CT-89-09 Franck van Oosten, Edith Spaan, Sieger van Dennehuvel
On Adaptive Resource Bounded Computation
CT-89-10 Sieger van Dennehuvel
The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Dennehuvel
Towards Functional Classification of Recursive Query Processing

1989
X-89-01 Marianne Kalseke
Other Prepublications:
- An Over Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers
New Foundations: A Survey of Quine's Set Theory
X-89-03 A.S. Troelstra
Index of the Heyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof
Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke
The Modal Theory of Inequality
X-89-06 Peter van Emde Boas
Ben Relatiebeleiding voor Conceptueel Modeleren: Het RL-project

1989
Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
A Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof
Dynamic Montague Grammar
LP-90-03 Sieger van Dennehuvel
Concept Formation and Concept Construction
LP-90-04 Aarno Ranta
Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn
Nominal Type Logic
LP-90-06 Gerhard Schierbeke
The Variability of Impersonal Subjects
LP-90-07 Gennaro Chierchia
Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks
Flexible Montague Grammar
LP-90-09 Paul Dekker
The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
LP-90-10 Theo M.V. Janssen
Models for Discourse Markers
LP-90-11 Johan van Benthem
General Dynamics
LP-90-12 Serge Lapierre
A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang
Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof
Two Theories of Dynamic Semantics
LP-90-15 Maarten de Rijke
The Modal Logic of Inequality
LP-90-16 Zhisheng Huang, Karen Kwast
Awareness, Negation and Logical Omniscience
LP-90-17 Paul Decker
Existential Characterisations of Dynamic Semantics
ML-90-01 Harold Schellinx
Mathematical Logic and Foundations
- Isomorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten
A Semantic Proof of De Jongh's Theorem
ML-90-03 Jaap van Oosten
Relational Games
ML-90-04 Maarten de Rijke
Unary Interpretability Logic
ML-90-05 Domenico Zambella
Sequences with Simple Initial Segments
ML-90-06 Jaap van Oosten
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
DYNAMIC SEMANTICS AND CIRCULAR PROPOSITIONS

revised version

Willem Groeneveld
Department of Philosophy
University of Amsterdam

revised version of LP-91-03
To appear in
The Journal of Philosophical Logic

Received April 1992
1. Introduction

If there is a problem about the Liar paradox, it is not so much the puzzle it presents, but the vast number of solutions that have been proposed for it. In view of the extensive literature on the Liar paradox, the problem is not to solve it, but how to solve it. The large number of purported solutions might even lead to the contention that there is no real solution. Of course, between a particular philosophical puzzle and the opinion that there must be a unique right solution there is a considerable amount of speculation, especially if a completely satisfactory solution has not yet been found. And that seems to be the case for the Liar: there are a number of reasonable proposals, but none of them is obviously the right one.

The present paper is an attempt to add another reasonable proposal to the list. I will not argue that the present proposal is the right one. I will of course make a case for it. The theory of this paper is an extension of Barwise and Etchemendy's Austinian account of truth and circular propositions (Barwise and Etchemendy [1987]). The main ingredient of the present proposal is a form of dynamic semantics. The idea that paradoxical sentences have a certain 'context change potential' also derives from Barwise and Etchemendy. They take the view that one of the lessons of the Austinian account is that the Liar shows that there is a "contextual parameter, one corresponding to Austin's described situation, a parameter whose value necessarily changes [my italics] with the utterance of, or reasoning about, a sentence like the Liar." (BE 175) We will use update semantics for formalizing this idea (Veltman [1991]). Its main ideas are explained in section 2 below.

The theory of this paper is an extension of Barwise and Etchemendy's Austinian account in a very literal sense: we take over the ontology and the formal language, and devise a dynamic semantics for that language. I will assume the reader to be familiar with the Austinian account, as well as the theory of non-well-founded sets that is used to develop it. Nevertheless I will give a short summary of the Austinian account, in the hope that this will give the uninitiated reader a rough idea of its main aspects.

The ontology of the Austinian account comprises four classes of entities: a class SOA of states of affairs, a class SIT of situations, a class TYPE of types, and a class PROP of propositions. States of affairs are of the form <H,a,c;i> (where H is a set theoretic atom, a is Max or Claire, c is one of the standard cards, and i∈{0,1}), or of the form <Tr,p;i> for some proposition p∈PROP (where Tr is a set theoretic atom, i.e {0,1}). The latter states of affairs are called semantical facts. Situations are sets of states of affairs. Types are of the form [σ] for some state of affairs σ, or of the form [ΛX] or [ΛX] for some set of types X. Propositions are
of the form \(\{s;T\} \) for some situation \(s \) and some type \(T \).

These objects are constructed in Aczel's theory of non-well-founded sets. As a consequence there are propositions that are constituents of themselves. For example, there exist a proposition \(p \) satisfying the identity

\[
p = \{s;[Tr,p;1]\}
\]

But what is specifically 'Austinian' of these propositions is that they have two main constituents, the situation the proposition is about and the type. Moreover, the situation the proposition is about can also be a constituent of the type of the proposition, as in a proposition \(q \) satisfying the identity

\[
q = \{s;[Tr,\{s;[Tr,q;1]\};1]\}
\]

Notice that in Aczel's set theory \(p \) and \(q \) are actually identical.

The class of true propositions is defined as follows: a proposition of the form \(\{s;[\sigma]\} \) is true iff \(\sigma \in s \); \(\{s;[\land X]\} \) is true iff \(\{s;T\} \) is true for all \(T \in X \); and \(\{s;[\lor X]\} \) is true iff \(\{s;T\} \) is true for some \(T \in X \).

Next a class of situations of special interest is singled out: a possible situation is a situation that is coherent (that is, if a state of affairs \(\sigma \) is in \(s \) then the dual of \(\sigma \) is not in \(s \)) and respects its semantical facts (i.e., if \(<Tr,p;1> \in s \) then \(p \) is true, and if \(<Tr,p;0> \in s \) then \(p \) is not true).

The formal language has the following structure. The basic formulas are the form \((a \text{ Has } c) \), where \(a \) is Max or Claire, \(c \) is one of the standard cards; or of the form \(\text{True}(\text{this}) \), where \(\text{this} \) is the primitive symbol called propositional reflexive; or of the form \(\text{True}(\text{that}) \), where \(i < \omega \) and \(\text{that} \) is a primitive symbol called a propositional demonstrative. If \(\varphi, \psi \) are formulas then so are \(\text{True}\varphi, \neg \varphi, (\varphi \land \psi), (\varphi \lor \psi) \) and \(\downarrow \varphi \). An occurrence of \(\text{this} \) is loose in \(\varphi \) if it is not in the scope of the symbol "\(\downarrow \)". A sentence is a formula without loose occurrences of \(\text{this} \).

The semantics for this language is developed in two steps. For each \(\varphi \) a parametric proposition \(\text{Val}(\varphi) \) is defined. Such a parametric proposition contains the situation indeterminate \(s \), and may contain the propositional indeterminates \(p \) and \(q_i \) (\(i < \omega \)).

(i) \(\text{Val}(a \text{ Has } c) = \{s;[H,a,c;1]\} \)
(ii) \(\text{Val}(\text{True}(\text{that})) = \{s;[Tr,q_i;1]\} \)
(iii) \(\text{Val}(\text{True}(\text{this})) = \{s;[Tr,p;1]\} \)
(iv) \(\text{Val}(\text{True } \psi) = \{s;[Tr,\text{Val}(\psi);1]\} \)
(v) \(\text{Val}(\neg \psi) = \{s;\text{Type}(\text{Val}(\psi))\} \)
(vi) \(\text{Val}(\psi \land \chi) = \{ s; [\land \{ \text{Type}(\text{Val}(\psi)), \text{Type}(\text{Val}(\chi)) \}] \} \)

(vii) \(\text{Val}(\psi \lor \chi) = \{ s; [\lor \{ \text{Type}(\text{Val}(\psi)), \text{Type}(\text{Val}(\chi)) \}] \} \)

(viii) \(\text{Val}(\downarrow \psi) = p \), where the parametric proposition \(p \) is the unique solution to the equation \(p = \text{Val}(\psi)(p, q_1, \ldots) \).

Here * is a negation operation on parametric types defined by: \([\sigma]^* = [\sigma'] \), where \(\sigma' \) is the dual of \(\sigma \); \([\land X]^* = [\lor \{ \top \land X \}] \); \([\lor X]^* = [\land \{ \top \lor X \}] \). Type(\text{Val}(\varphi)) is the type constituent of the parametric proposition \(\text{Val}(\varphi) \). Aczel's set theory includes a so-called Solution Lemma, which guarantees that equations as in clause (viii) do indeed have unique solutions.

Finally, the parameters in the parametric proposition \(\text{Val}(\varphi) \) are filled in by the context.

On the Austinian account, propositions are the semantic counterparts of statements. A statement is a triple \(<\varphi, s, c> \), where \(\varphi \) is a formula, \(s \) a situation, and \(c \) an assignment (a function of demonstratives to propositions). The proposition expressed by \(\varphi \) in context \(<s, c> \), notation \(\text{Exp}(\varphi, s, c) \), is defined as \(\text{Val}(\varphi)(s; q_1/c(\text{that}_1), \ldots, q_i/c(\text{that}_i), \ldots) \).

For example, the Liar is rendered as the sentence \(\downarrow \text{True}(\text{this}) \), where the scope symbol "\(\downarrow \)" indicates that, in any occasion of use of the sentence, the occurrence of the propositional reflexive \(\text{this} \) refers to the same proposition as the whole sentence. On the Austinian account, if this sentence is used to make a statement about a situation \(s \), it expresses a circular proposition \(f_s \), which has the following form:

(1) \(f_s = \{ s; [\text{Tr}_s f_s; 0] \} \)

So \(\text{Exp}(\downarrow \text{True}(\text{this}), s) = f_s \) (we will usually not mention the assignment \(c \) when discussing formulas that do not contain demonstratives). The Austinian proposition \(f_s \) is true if the semantical fact \(\text{Tr}_s f_s; 0 \) is a member of \(s \). Since by definition a possible situation respects its semantical facts, i.e. it only contains correct semantical information, the proposition \(f_s \) is not true if \(s \) is a possible situation. So suppose \(s \) is indeed a possible situation, and consider the situation \(s' \):

(2) \(s' = s \cup \{ <\text{Tr}_s f_s; 0> \} \)

Then \(s' \) will also be a possible situation, because the additional semantical fact is correct (i.e. \(f_s \) is not true). Moreover, \(s' \neq s \) since \(<\text{Tr}_s f_s; 0> \notin s \) (again, because \(f_s \) is not true). So possible situations are incomplete in the following sense: although their Liar proposition will not be true, the information that this is so cannot be reflected in the situation itself. But it can be reflected in a larger situation: the situation \(s' \) is possible.

The procedure can be repeated ad infinitum: since \(s' \) is a possible situation, the Liar proposition that is about \(s' \), i.e.
(3) \(f_s' = \{ s'; [\text{Tr}, f_s'; 0] \} \)

is not true, so the situation \(s'' \) given by

(4) \(s'' = s' \cup \{ <\text{Tr}, f_s'; 0> \} \)

is a possible situation. And so on.

The analysis is attractive, because without contradiction the fact that a Liar proposition is not true can be actual, although it cannot be a fact of the situation the proposition is about. And the problem with the Liar always seemed to be that once you accept its not being true as a fact, you wind up contradicting yourself. On the other hand, equations (1)-(4) above only report some connections between some objects in Barwise and Etchemendy's ontology. Although the Austinian semantics assigns the proposition in (1) to the Liar sentence if it is used to make a statement about \(s \), and the proposition in (3) if it is used to make a statement about \(s' \), the 'context-shifts' in (2) and (4) are not in any way triggered by the semantics. If it is really so important that the Liar brings about a change, then this 'context change potential' deserves to be regarded as an aspect of the meaning of the Liar. Moreover, saying that an utterance changes the described situation comes down to classifying the utterance as a performative speech act. But in the case of the Liar that seems to be wrong. I would rather say that an utterance of the Liar changes the information state of someone, than say that an utterance changes the described situation. If it changes any situation at all, it changes the discourse situation, or, more precisely, it changes the information of the participants of the discourse.

In this paper we will show that these objections can be met quite easily. The objections point in the direction of a dynamic, information oriented semantics. We will extend Barwise and Etchemendy's semantics with a form of update semantics. Update semantics is precisely what we need, since its central conception is that the meaning of a sentence is a relation between information states. A theoretical pay-off of the extended semantics will be a semantics for discourses with circular cross-references.

2. Basic ideas

In dynamic semantics, the meaning of a sentence is given by update conditions rather than by truth conditions. Veltman uses the following slogan: "You know the meaning of a sentence if you know the change it brings about in the information state of anyone who wants
to incorporate the piece of news conveyed by it" (Veltman [1991]). One way of explicating this is by taking the meaning of a sentence to be a relation between information states.

What are information states? Intuitively, an information state models the information that a cognitive agent has of a real situation. This can be described by the set of situations that the agent cannot distinguish from the actual situation. So a proper information state can be seen as a set of situations. Under this perspective, there are two ways in which there can be lack of information. First, a set of situations that is not a singleton is in some sense 'disjunctive', since for all the agent knows, the actual situation could be one of many she thinks possible. Second, situations are partial, they do not settle all issues. Getting better informed can thus be seen as a combination of two things: elimination of options and filling in more detail of other options.

In concreto, consider the sentence (Max Has ♠️A), and let σ be a set of possible situations. The update of σ with (Max Has ♠️A) can now be explained thus:

\[[[\text{Max Has } \spadesuit A]](\sigma) = \{ t \mid \exists s \in \sigma: t = s \cup \{ \langle H, \text{Max, } \spadesuit A; 1 \rangle \} \text{ and } t \text{ is possible} \} \]

Those situations in σ that cannot be consistently extended with the fact that Max has the ace of spades will be eliminated, and the remaining ones are extended with this fact. In general, the meaning of a sentence in this set-up will be a function from sets of possible situations to sets of possible situations.

Although this is the basic picture, in the implementation below we will follow a different line. We will not define updates as functions on sets of situations, but as relations between situations. It is clear that any binary relation R between situations determines a unique function on the higher level, given by \(F_R(\sigma) = \{ t \mid \exists s \in \sigma: s R t \} \). Conversely, if F is a function on sets of situations that distributes over arbitrary unions, there is a unique binary relation R on situations such that \(F = F_R \), namely \(R = \{ \langle s, t \rangle \mid t \in F(\{s\}) \} \). So the two approaches are interchangeable as long as the functions on the higher level are distributive. But for the fairly simple language we will devise a dynamic semantics for, this is the case.\(^7\)

What kind of relations are we after? The slogan we started with gives the following clue: two situations s and t stand in the update relation \([\phi] \) of a sentence \(\phi \) only if t contains the information already in s and additionally covers the information presented by \(\phi \). From a semantical point of view, this will be the only respect in which t may differ from s: t is an option that is minimal (w.r.t. \(\subseteq \)) in the set of all options that are stronger than s and cover the information of \(\phi \). These considerations give two global constraints on update relations:
Dynamic Semantics and Circular Propositions

(6) for all s and t, if s [φ] t then s ⊆ t \hspace{1cm} \text{(Update)}
(7) for all s and t, if s [φ] t then for no t', t' ⊆ t and s [φ] t' \hspace{1cm} \text{(Minimality)}

It may happen that for some particular option s an update doesn't change anything, that is, s [φ] s. Apparently, s already covered the information of φ. In this case we say that s supports φ.9 On the face of it, then, another reasonable constraint on update relations is success. That is, if you are in state s and φ brings you to state t, then t supports φ.

(8) for all s and t, if s [φ] t then t [φ] t \hspace{1cm} \text{(Success)}

As a consequence of Barwise and Etchemendy's 'dynamic' analysis of the Liar, it turns out that success does not hold in general. That is, we take it that their analysis shows that it is possible to 'incorporate the piece of news' of a statement with the Liar. In section 4 we will see in detail why this is so. We will now proceed to give a precise definition of update relations of sentences of the formal language under consideration.

3 The dynamic semantics

Our informal discussion of update relations gave us the following picture: if t is an update of s with φ, then t is a state stronger than s that covers the information of φ; moreover there is no state weaker than t with this property. In the formal implementation of these ideas, we will take advantage of Barwise and Etchemendy's static semantics. First we estimate in advance the possible updates of a given situation:

1 Definition. Let s be a situation, and c be an assignment of propositions to propositional demonstratives. R(s,c), the set of relevant facts for s under c, is given by

\[
R(s,c) =_{\text{def}} \{ \sigma \in \text{SO} \mid [\sigma] = \text{Type(Exp}(\varphi, s, c)) \text{ for some simple formula } \varphi \}
\]

Here Type(Exp(φ, s, c)) is the type constituent of the proposition Exp(φ, s, c). A formula is simple if it has one of the following forms: (a Has c), (b Has c), True(this), ¬True(this), Trueφ or ¬Trueφ.

The set of possible updates of s for c, is:

\[
U(s,c) =_{\text{def}} \{ t \mid s \subseteq t \subseteq s \cup R(s,c) \}
\]

2 Definition. If P is a set of situations then \(\mu P =_{\text{def}} \{ s \in P \mid \exists t \in P: t \subseteq s \} \)
3 Definition. By simultaneous recursion we define, for any formula φ, and any assignment c, the positive update relation of φ and the negative update relation of φ. In the following, s ranges over situations, t over parametric situations. p is the indeterminate that is used in the static semantics to fix the reference of the propositional reflexive \textit{this}. t is an additional situation indeterminate.

(i) $s\ [\text{a Has c}]^+ t$ iff $t = s \cup \{<\text{H},a,c;1>\}$
 $s\ [\text{a Has c}]^- t$ iff $t = s \cup \{<\text{H},a,c;0>\}$

(ii) $s\ [\text{True(this)}]^+ t$ iff $t = s \cup \{<\text{Tr},p;1>\}$
 $s\ [\text{True(this)}]^+ t$ iff $t = s \cup \{<\text{Tr},p;0>\}$

(iii) $s\ [\text{True(that)}]^+ t$ iff $t = s \cup \{<\text{Tr},c(\text{that});1>\}$
 $s\ [\text{True(that)}]^+ t$ iff $t = s \cup \{<\text{Tr},c(\text{that});0>\}$

(iv) $s\ [\text{True}\varphi]^+ t$ iff $t = s \cup \{<\text{Tr},\text{Exp}(\varphi,s,c);1>\}$
 $s\ [\text{True}\varphi]^+ t$ iff $t = s \cup \{<\text{Tr},\text{Exp}(\varphi,s,c);0>\}$

(v) $s\ [\neg\varphi]^+ t$ iff $s\ [\varphi]^+ t$
 $s\ [\neg\varphi]^+ t$ iff $s\ [\varphi]^+ t$

(vi) $s\ [\varphi \land \psi]^+ t$ iff $t \in \mu\{u \in U(s,c)\} \exists v \subseteq u: s\ [\varphi]^+ v$ and $\exists v \subseteq u: s\ [\psi]^+ v$
 $s\ [\varphi \land \psi]^+ t$ iff $t \in \mu\{u \in U(s,c)\} \exists v \subseteq u: s\ [\varphi]^+ v$ or $\exists v \subseteq u: s\ [\psi]^+ v$

(vii) $s\ [\varphi \lor \psi]^+ t$ iff $t \in \mu\{u \in U(s,c)\} \exists v \subseteq u: s\ [\varphi]^+ v$ or $\exists v \subseteq u: s\ [\psi]^+ v$
 $s\ [\varphi \lor \psi]^+ t$ iff $t \in \mu\{u \in U(s,c)\} \exists v \subseteq u: s\ [\varphi]^+ v$ and $\exists v \subseteq u: s\ [\psi]^+ v$

(viii) $s\ [\Downarrow \varphi]^+ t$ iff there is a t' such that $s\ [\varphi]^+ t'$, and $t = F(t)$ for the unique solution F of the system of equations:

\[
\begin{align*}
1 &= t' \\
\varphi &= \text{Exp}(\varphi,s,c)
\end{align*}
\]
 $s\ [\Downarrow \varphi]^+ t$ iff there is a t' such that $s\ [\varphi]^+ t'$, and $t = F(t)$ for the unique solution F of the system of equations:

\[
\begin{align*}
1 &= t' \\
\varphi &= \text{Exp}(\varphi,s,c)
\end{align*}
\]

Basically, the definition is a dynamic version of the double recursion that has become usual in partial logic. We are mainly interested in the positive update relations, and the negative relations are a technical device that is needed for negation. However, the negative relations do
have an intuitive meaning that resembles the meaning of the positive relations: roughly, $s[\varphi]^{+}t$ can be read as "t is the weakest extension of s that covers the information of φ", and $s[\varphi]^{-}t$ can be read as "t is the weakest extension of s that rejects the information of φ".

The constraints of Update and Minimality we discussed in the previous section are satisfied:

4 Lemma. Let φ be a sentence, s a situation, and c an assignment for φ. Then:

(i) $s[\varphi]^{+}t \Rightarrow s \subseteq t$ (Update)
(ii) $s[\varphi]^{+}t \Rightarrow -\exists u(s \subseteq u \subseteq t \land s[\varphi]^{+}u)$ (Minimality)

This can be shown with formula induction, where the the corresponding versions of Update and Minimality for the negative relations $[\varphi]^{-}$ have to be proven simultaneously. We will omit proofs as simple as this.

The most important non-properties are:

- $s[\varphi]^{+}t \Rightarrow t[\varphi]^{+}t$ (Success)
- $s[\varphi]^{+}s \subseteq s \subseteq t \Rightarrow t[\varphi]^{+}t$ (Persistence)

These properties fail for sentences that are context dependent in the following way. In an update of s with $\text{True} \varphi$, a semantical fact with s as a constituent will be added to s. But $t[\text{True} \varphi]^{+}t$ will only hold if the corresponding semantical fact with t instead of s is a member of t. In fact, this form of context dependency can be seen as an instance of the following connection with Barwise and Etchemendy's static set-up:

$s[\varphi]^{+}t \Rightarrow \{t; \text{Type}(\text{Exp}(\varphi,s,c))\}$ is true (Weak success)

So an output t of an update of s with φ will cover the information of φ about s, but not necessarily the information of φ about t. For sentences like $(a \text{ Has } x)$ everything is 'normal', that is, they are successful and persistent.

Besides Weak success, there are some other important connections between the static and the dynamic semantics. These are given by the next lemmata. The simple proofs are omitted again.

5 Lemma. Let φ be a sentence, s a situation, and c an assignment for φ. Then:

(i) $s[\varphi]^{+}s \iff \text{Exp}(\varphi,s,c)$ is true (Support)
(ii) $s[\varphi]^{-}s \iff \text{Exp}(\neg \varphi,s,c)$ is true (Refutation)
6 Proposition. Statically indiscernible sentences have the same update relation. More precisely, let φ and ψ be sentences, s and t situations, and c an assignment defined for both φ and ψ. Moreover, suppose $\text{Exp}(\varphi, s, c) = \text{Exp}(\psi, s, c)$. Then $s \models [\varphi]_c^+ t$ iff $s \models [\psi]_c^+ t$, and $s \models [\varphi]_c^+ t$ iff $s \models [\psi]_c^+ t$.

4 Dynamic notions of paradoxality

In this section we will investigate the dynamic behaviour of paradoxical sentences. The dynamic semantics of the previous section will only be interesting if we restrict the update relations to possible situations. We want information to be 'consistent' information, and we are interested in those updates that bring us to information states that are 'consistent' too. Let's introduce some terminology.

7 Definition. A sentence is **tangible** if there are possible situations s and t and an assignment c such that $s[\varphi]_c^+ t$; **acceptable** if there is a possible situation s and an assignment c such that $s[\varphi]_c^+ s$.

By lemma 5(i), acceptability comes down to static consistency, whereas tangibility can be seen as dynamic consistency.

Since the paradoxical sentences we deal with in this paper all involve truth, we start our discussion by looking at sentences of the form $\text{True}\varphi$. Let s and t be possible situations, c an assignment, and suppose $s[\text{True}\varphi]_c^+ t$. By definition 3, $t = s \cup \{<\text{Tr}, \text{Exp}(\varphi, s, c); 1>\}$. This means that the information of s is extended with the information that the proposition expressed by φ about s under c is true. Since by assumption t is a possible situation, its semantical information must be correct, that is to say that $\text{Exp}(\varphi, s, c)$ is true. Conversely, suppose s is possible and that $\text{Exp}(\varphi, s, c)$ is true. Then $s \cup \{<\text{Tr}, \text{Exp}(\varphi, s, c); 1>\}$ is a possible situation since s is possible and the additional semantical information given by $<\text{Tr}, \text{Exp}(\varphi, s, c); 1>$ is correct. Summarizing, we see that the dynamic treatment of truth is connected with the static treatment in the following way:

8 Proposition. For all sentences φ, possible situations s and assignments c for φ: there is a possible situation t such that $s[\text{True}\varphi]_c^+ t$ if and only if $\text{Exp}(\varphi, s, c)$ is true.

By lemma 5(i) this implies that $\text{True}\varphi$ is tangible if and only iff φ is acceptable.
Dynamic Semantics and Circular Propositions

On possible situations the update relation of \(\text{True} \phi \) combines 'forward' and 'backward' aspects: the forward aspect is the addition of semantical information, the backward aspect is the test for truth of \(\phi \) in the antecedent of the update; these are combined in the sense that the forward action can only be carried out if the backward test has a positive outcome. Hence we can call \(\phi \) a pre-condition of \(\text{True} \phi \).

The connection between the truth of \(\phi \) and an update of \(\text{True} \phi \) is not a direct consequence of the connection between sentences and update relations, but of the coherence conditions that must be observed by possible situations. In definition 3, we could have taken a clause like

\[
s \models [\text{True} \phi]^{+} t \quad \text{iff} \quad s \cup \{<\text{Tr}, \text{Exp}(\phi, s, c); 1>\} \quad \text{and} \quad \text{Exp}(\phi, s, c) \quad \text{is true}
\]

as definition of the positive update relation of \(\phi \), but in view of proposition 8 above, this gives the same result for possible situations.\(^{10}\)

Consider a situation \(s \) that does not contain the fact that Max has the Ace of Spades nor the fact that he doesn't. An update of \(s \) with \((\text{Max} \quad \text{Has} \quad \triangledown A)\) will yield a situation \(t \) which contains the appropriate fact. An update of \(s \) with \(\text{True}(\text{Max} \quad \text{Has} \quad \triangledown A) \) is not possible, since the relevant fact is missing. So it seems that it is possible to learn that Max has the Ace of Spades by accepting \((\text{Max} \quad \text{Has} \quad \triangledown A)\), although it's not possible to learn this by hearing \(\text{True}(\text{Max} \quad \text{Has} \quad \triangledown A) \). But is that realistic? The argument rests on a false assumption on the meaning of 'learn' in the present setting. If \(\sigma \) is an information state (a set of possible situations), its 'global' update with \(\text{True} \phi \) (see section 2) can be defined as \([\text{True} \phi](\sigma) = \{ t \mid \exists s \in \sigma: s \models [\phi]^{+} t \text{ and } t \text{ is possible }\} \). Now if \(\phi \) is a descriptive sentence (i.e. it is built up from atoms and Boolean connectives only) the following holds: if \(t \models [\text{True} \phi](\sigma) \) then \(\text{Exp}(\phi, t) \) is true. It may well be that not for all \(t \in \sigma \), \(\text{Exp}(\phi, t) \) is true. So we have 'learned' that \(\phi \) is true by the update with \(\text{True} \phi \). We should think of 'learning' in terms of the full information states, not merely in terms of the situations that are the alternatives in such a state.

By some simple considerations similar to those above, it can be seen that sentences of the form \(\neg \text{True} \phi \) behave as follows:

9 Proposition. For all \(\phi \), possible situations \(s \) and assignments \(c \) for \(\phi \): there is a possible situation \(t \) such that \(s \models [\neg \text{True} \phi]^{+} t \) if and only if \(\text{Exp}(\phi, s, c) \) is not true.

We will now discuss some concrete examples.

The Liar: \(\downarrow \neg \text{True}(\text{this}) \). Let \(s \) be a possible situation. We want to find a possible situation \(t \) such that \(s \models [\downarrow \neg \text{True}(\text{this})]^{+} t \). Definition 3 leads to the following calculations. By 3(viii) we
must find a \(t \) such that \(s [\neg \text{True} (\text{this})] \uparrow t \) and \(t' = F(\text{p}) \) for the unique solution \(F \) of the system of equations \(\text{f} = t' \) and \(\text{p} = \text{Exp}(\neg \text{True} (\text{this}), s, c) \). By 3(iv), \(t' = s \cup \{ \langle \text{Tr}, \text{p}; 0 \rangle \} \), and by the static semantics, \(\text{Exp}(\neg \text{True} (\text{this}), s, c) = \{ s; [\text{Tr}, \text{p}; 0] \} \). So we have to solve the system of equations given by:

\[
\text{f} = s \cup \{ \langle \text{Tr}, \text{p}; 0 \rangle \} \quad \text{p} = \{ s; [\text{Tr}, \text{p}; 0] \}
\]

If \(F \) is the unique solution of these equations, then \(F(\text{p}) \) will be the Liar proposition \(f_s \) about \(s \), i.e. \(f_s = \{ s; [\text{Tr}, f; 0] \} \). By the static semantics \(f_s = \text{Exp}(\downarrow \text{True} (\text{this}), s, c) \). So we conclude:

\[
s [\downarrow \text{True} (\text{this})] \uparrow t \iff t = s \cup \{ \langle \text{Tr}, \text{Exp}(\downarrow \text{True} (\text{this}), s, c); 0 \rangle \}
\]

But is \(t \) a possible situation? The answer is a definite YES. If \(s \) is a possible situation, then we know from the static semantics that the proposition \(\text{Exp}(\downarrow \text{True} (\text{this}), s, c) \) is not true. But then the situation \(s \cup \{ \langle \text{Tr}, \text{Exp}(\downarrow \text{True} (\text{this}), s, c); 0 \rangle \} \) is a possible situation, since \(s \) is possible and the additional semantic information is correct. Since \(s \) was arbitrary, this means that every possible situation can be updated with the Liar. Moreover, such an update must be unsuccessful in the sense that it cannot bring you in a state \(t \) such that \(t [\downarrow \text{True} (\text{this})] \uparrow t \), for this would imply by lemma 5(i) that \(\text{Exp}(\downarrow \text{True} (\text{this}), t, c) \) is true, which cannot be if \(t \) is a possible situation. So no update with the Liar can bring you to a state in which it is accepted.

10 Definition. A sentence \(\phi \) is **anti-successful** if \(s[\phi] \uparrow t \) implies not \(t[\phi] \uparrow t \), for all possible situations \(s, t \) and assignments \(c \).

It is not hard to see that anti-success is equivalent with unacceptability. Besides the Liar, all instances of the schemata \(\phi \land \neg \text{True} \phi \) and \(\downarrow (\phi \land \neg \text{True} (\text{this})) \) are anti-successful.

Of course, anti-success would be a trivial property if it did only apply to intangible sentences. The real surprise is that a sentence can be tangible without being acceptable. These kind of sentences do not comply with the basic intuition that updates should be successful. In a sense sentences that are tangible but unacceptbable could be called 'dynamically paradoxical'. But there is no real paradox, just strange, or rather unexpected, behavior. Notice that a classical contradiction like \(\phi \land \neg \phi \) is not in this class, since it is both intangible and unacceptaible.

The Truthterler: \(\downarrow \text{True} (\text{this}) \). Calculations similar to those for the Liar give us that

\[
s [\downarrow \text{True} (\text{this})] \uparrow t \iff t = s \cup \{ \langle \text{Tr}, \text{Exp}(\downarrow \text{True} (\text{this}), s, c); 1 \rangle \}
\]

If \(s \) and \(t \) are possible situations something peculiar happens. Since \(t \) is a possible situation,
Exp(∧True(this), s, c) is true, in which case <Tr, Exp(∧True(this), s, c); 1> ∈ s. But then t=s!

12 Definition. A sentence φ has the property of pre-conditional success if for all c and all possible s.t: s[φ]t implies s=t.

If a sentence φ has pre-conditional success, then you can only accept the information presented by φ if you already have this information. This is a rather strange property, since it expresses something very close to question begging. Besides the Truth-teller, all sentences of the form ↓(φ∧True(this)) have pre-conditional success.

An update of a sentence with pre-conditional success requires initial truth of that sentence. From this it is clear that:

13 Proposition. φ has pre-conditional success if and only if φ∧¬Trueφ is intangible.

Contingent paradoxes: Suppose φ is a closed sentence. Then the sentence of the form ↓(φ∧¬True(this)) behaves much like the Liar, since it is anti-successful. It is tangible if and only if φ is tangible and φ does not have the property of pre-conditional success. The difference with the Liar is that, depending on φ, it need not be the case that every possible situation has an update, for if ¬φ is acceptable, a state that accepts ¬φ cannot have an update with ↓(φ∧¬True(this)).

Sentences of the form ↓(φ∨¬True(this)) can also have Liar-like effects. Let α be ↓(φ∨¬True(this)). By the static semantics, α is indiscernible form φ∨¬Trueα. If φ is intangible, then both φ and α are unacceptable. From this it easily follows that α is anti-successful, and that every possible situation has an update with α (which will be an update with the 'disjunct' ¬Trueα). If φ is tangible the behaviour is as follows. If φ is true in s, then s[φ]s, in which case s[α]s and by update and minimality s will be the only output. If ¬φ is true in s, the only output for an update of s with α is s∪{<Tr, Exp(α,s);0>}. If neither φ nor ¬φ is true in s, then an update of s with α can 'choose' any of the disjuncts.

The intrinsic sentence: next consider the sentence ↓(True(this)∨¬True(this)), the double wide scope reading of

This proposition is true or this proposition is not true

Abbreviate the formula by t. Barwise and Etchemendy's axiom 4 tells us that t is indiscernible from True t ∨ ¬True t. Every possible situation can be updated with every sentence of the
form \((\text{True} \phi \lor \neg \text{True} \phi) \). However, depending on \(\phi \), there need not be a possible situation in which \((\text{True} \phi \lor \neg \text{True} \phi) \) is accepted. But for \(\text{True} \top \lor \neg \text{True} \top \) there are possible situations that accept it, as well as possible situation that don't accept it. We leave the verification of these facts to the reader.

We conclude this section with some logical issues. Technical details and proofs can be found in the appendix. In what follows, we consider the language without demonstratives, so assignments are irrelevant. Barwise and Etchemendy give a deductive characterization of the following relation of indiscernibility:

\[(I) \quad \text{for all } s, \ Exp(\phi,s) = \ Exp(\psi,s) \]

They construct a deductive system that is sound and complete with respect to indiscernibility; moreover indiscernibility is shown to be a decidable relation. Notice that indiscernibility can be seen as an 'intensional' relation, since sentences with the same truth conditions need not express the same proposition. So, another interesting relation is the relation of static equivalence given by

\[(S) \quad \text{for all possible situations } s, \ Exp(\phi,s) \text{ is true iff } Exp(\psi,s) \text{ is true} \]

Moreover, the dynamic semantics naturally gives rise to the following relation of dynamic equivalence:

\[(D) \quad \text{for all possible situations } s,t, \ s[\phi]^t \text{ iff } s[\psi]^t \]

It is possible to give sound and complete proof theoretic characterizations of both (S) and (D). Moreover, both relations are decidable (see appendix). The three notions of equivalence are interrelated as follows:

\[I \subseteq D \subseteq S \]

All inclusions are proper: \(\phi \land \phi \) and \(\phi \) are not indiscernible, but dynamically equivalent; the Liar and its negation are statically equivalent, but not dynamically. The decidability of static and dynamic equivalence has some interesting corollaries, for it turns out that many semantic properties we have discussed above are decidable. That is, the following properties of sentences are all decidable:

- \(\phi \) is tangible
- \(\phi \) is acceptable
- \(\phi \) is anti-successful
- \(\phi \) has pre-conditional success

This can be seen as follows. Let \(\bot \) be short for \((\text{Max} \ \text{Has} \ \square A) \land \neg (\text{Max} \ \text{Has} \ \square A) \). Then \(\phi \) is tangible if and only if \(\phi \) is not dynamically equivalent with \(\bot \); and the latter is decidable. \(\phi \) is
acceptable if and only if \(\phi \) is not statically equivalent with \(\bot \). Decidability of anti-success now follows from proposition 11 and the decidability of acceptability. Decidability of pre-conditional success follows from proposition 13 and the decidability of tangibility. Whether success is also a decidable property is still open (the conjecture being: decidable).

5 Discourses

One of the main achievements of dynamic semantics, if not its 'raison d'etre', has been its ability to account for the semantic structure of discourses, in particular anaphoric structure. In this section we develop a semantics for texts with 'propositional anaphors'. We conceive of a discourse as a sequence of sentences, and develop a conception of a reading of a discourse, in such a way that the propositional demonstratives \(\text{that}_i \) of our formal language get the force of "the proposition expressed by the \(i \)-th sentence of this sequence". Our main objective for doing so is to be able to give a description of texts with circular cross-reference.

15 Definition. A discourse is a finite sequence of sentences. Notation: \(D=\phi_1; \ldots; \phi_n \)

Our notion of a reading of a discourse is governed by the following idea. Reflecting on what happens if someone reads a story, we can say that the result of reading is a sequence of pictures. The next-picture relation corresponds with the effect of processing a sentence of the text. So we can conceive of a reading of a discourse as a sequence of situations produced by a sequence of updates.

We will exploit the fact that the formal language we are working with contains propositional demonstratives by allowing these demonstratives to be linked to sentences in the discourse. This enables us to analyze semantical paradoxes that consist of several sentences that refer to each other.

16 Definition. A discourse \(D=\phi_1; \ldots; \phi_n \) is closed if \(i \leq n \) for all \(\text{that}_i \) occurring in \(D \).

17 Definition. A reading of a closed discourse \(D=\phi_1; \ldots; \phi_n \) consists of a sequence of contexts \(\langle s_1, c_1 \rangle; \ldots; \langle s_{n+1}, c_{n+1} \rangle \) such that:

(i) all \(s_i \) are possible situations, for \(1 \leq i \leq n \)

(ii) \(s_i [\phi_i]_{c_i} s_{i+1} \), for \(1 \leq i \leq n \)
(iii) \(c_{ij}(\text{that}_i) = \text{Exp}(\phi_j, s_i, c_j) \), for all \(1 \leq i, j \leq n \)

Clauses (ii) reflects the sequential nature of a reading of a discourse. Clause (iii) fixes the interpretation of propositional demonstratives in a discourse. The idea behind the clause is that the interpretation of demonstratives is governed by 'paging' through the text. Suppose you are in state \(s_8 \) and you are about to read \(\phi_8 \), but \(\phi_8 \) turns out to have an occurrence of \(\text{that}_{13} \). Clause (iii) tells you that you must interpret \(\text{that}_{13} \) as \(\phi_{13} \) in your current state. This proposal seems to give a correct account of what happens when you read a text and hit upon an expression of the form "the 13-th sentence of this text".

One of the consequences of this procedure is that the interpretation of a demonstrative in a discourse will not be uniform, since different occurrences of the demonstrative may refer to different propositions. But in this respect demonstratives do not behave differently from sentences, because multiple occurrences of context-dependent sentences will also express different propositions.

Of course the condition of clause (iii) is circular, but, as always in Aczel's set theory, the Solution Lemma comes to the rescue.

18 Lemma. If \(D = \phi_1; \ldots; \phi_n \) is a closed discourse and \(s \) a situation, then there is an assignment \(c \) such that \(c(\text{that}_i) = \text{Exp}(\phi_i, s, c) \) for all \(1 \leq i \leq n \). This assignment is unique in its values relevant for demonstratives in \(D \), that is: if \(d(\text{that}_i) = \text{Exp}(\phi_i, s, d) \) for all \(1 \leq i \leq n \), then \(c(\text{that}_i) = d(\text{that}_i) \) for all \(1 \leq i \leq n \).

Proof: Use the solution lemma to obtain the unique solution of the following system of equations in the indeterminates \(a_1, \ldots, a_n \):

\[
\begin{align*}
a_1 &= \text{Val}(\phi_1)(s, a_1, \ldots, a_n) \\
&\vdots \\
a_n &= \text{Val}(\phi_n)(s, a_1, \ldots, a_n)
\end{align*}
\]

Let \(F \) be the solution, and define \(c \) by \(c(\text{that}_i) = F(\phi_i) \) for \(1 \leq i \leq n \), and undefined otherwise. Then \(c(\text{that}_i) = F(\phi_i) = \text{Val}(\phi_i)(s, F(a_1), \ldots, F(a_n)) = \text{Val}(\phi_i)(s, c(\text{that}_1), \ldots, c(\text{that}_n)) = \text{Exp}(\phi_i, s, c) \), where the last identity follows from the fact that \(\phi_i \) can contain no other demonstratives than the ones shown, since \(D \) is closed. Now any assignment \(d \) satisfying \(d(\text{that}_i) = \text{Exp}(\phi_i, s, d) \) for all \(1 \leq i \leq n \) determines a solution of the above system of equations. By the solution lemma, solutions are unique, so for the relevant values we must have \(c(\text{that}_i) = d(\text{that}_i) \). \(\square \)
What happens if some \(\varphi_j \) in D contains \(\text{that}_j \), for example in the case that \(\varphi_j \) is \(\neg \text{True(that}_j) \)? Then for any \(i \), \(c_i(\text{that}_j) = \text{Exp}(\neg \text{True(that}_j), s_i, c_i) = \{ s_i; [\text{Tr.c}_i(\text{that}_j); 0] \} \), i.e. \(c_i(\text{that}_j) \) is the Liar proposition \(s_j \) about \(s_j \). So in this case we could substitute \(\neg \text{True(this) for } \varphi_j \) without changing the reading of the discourse.

What does the semantics of discourses have to say about Liar cycles, for example the discourse

\[(LC1) \quad \text{True(that}_2); \neg \text{True(that}_1)\]

Does it have any readings? If a sequence of contexts \(<s_1, c_1>; <s_2, c_2>; <s_3, c_3> \) is a reading, then by definition 17, the following conditions must obtain:

(i) \(s_2 = s_1 \cup \{ <\text{Tr.c}_1(\text{that}_2); 1> \} \)
(ii) \(s_3 = s_2 \cup \{ <\text{Tr.c}_2(\text{that}_1); 0> \} \)
(iii) \(c_1(\text{that}_1) = \text{Exp}(\text{True(that}_2), s_1, c_1) = \{ s_1; [\text{Tr.c}_1(\text{that}_2); 1] \} \)
(iv) \(c_1(\text{that}_2) = \text{Exp}(\neg \text{True(that}_1), s_1, c_1) = \{ s_1; [\text{Tr.c}_1(\text{that}_1); 0] \} \)
(v) \(c_2(\text{that}_1) = \text{Exp}(\text{True(that}_2), s_2, c_2) = \{ s_2; [\text{Tr.c}_2(\text{that}_2); 1] \} \)
(vi) \(c_2(\text{that}_2) = \text{Exp}(\neg \text{True(that}_1), s_2, c_2) = \{ s_2; [\text{Tr.c}_2(\text{that}_1); 0] \} \)

Moreover, \(s_1, s_2 \) and \(s_3 \) all have to be possible situations. So we must have:

(vii) \(<\text{Tr.c}_1(\text{that}_1); 0> \in s_1 \) by (i) and (iv)
(viii) \(<\text{Tr.c}_1(\text{that}_2); 1> \notin s_1 \) by (vii) and (iii)
(ix) \(<\text{Tr.c}_2(\text{that}_2); 1> \notin s_2 \) by (ii) and (v)

With the help of the Solution Lemma it is not hard to construct possible situations that meet these conditions. So the discourse has readings.

But what do the conditions mean? Condition (vii) means that in any successful reading of the cycle, your initial information \(s_1 \) must already contain the semantic information that the proposition expressed by the first sentence is not true. So suppose \(s_1 \) is a possible situation satisfying (vii). By combining (iii) and (iv) we see that the first sentence expresses that it is true that the first sentence expresses a proposition that is not true:

\[c_1(\text{that}_1) = \{ s_1; [\text{Tr.}, s_1; [\text{Tr.c}_1(\text{that}_1); 0]]; 1] \}

But since you already believe \(c_1(\text{that}_1) \) (i.e. the proposition expressed by the first sentence about \(s_1 \)) not to be true, you can consistently add this additional semantic information. Hence \(s_2 \) (as in (i)) is also a possible situation. Now the second sentence claims that in your current state (i.e. \(s_2 \)) the first sentence still expresses a proposition that is not true. Intuitively, this is correct, since this is what you initially believed and has been acknowledged by the first sentence. Formally, there is an itch: it might be so that in \(s_1 \) you believe that the first sentence
expresses a false proposition of \(s_1 \), but you also believe that once you will be in \(s_2 \) the first sentence will be true. This predicament is described by

\[
\langle \text{Tr}, \text{Exp}(\text{True}(\text{that}_2), s_2, c_2); 1 \rangle \in s_1
\]

But given that \(s_1 \) and \(s_2 \) are possible situations, you cannot have this information, since by (v) and (vi), (x) implies that \(\text{Exp}(\text{True}(\text{that}_2), s_2, c_2) \) is not true.

Summarizing, we see that a possible situation \(s_1 \) is the initial state of a reading of the Liar Cycle if and only if it contains the semantical information that the proposition expressed by the first sentence of the cycle is not true. So although the cycle has readings, it has no unbiased reading, since the initial state of a reading must contain the 'semantic prejudice' that the first sentence is not true.

In Barwise and Etchemendy's treatment of the Liar Cycle the formulas \(\text{True}(\text{that}_2) \) and \(\neg \text{True}(\text{that}_1) \) are used to make statements about the same situation \(s \), and \(\text{that}_2 \) is taken to refer to \(\text{Exp}(\neg \text{True}(\text{that}_1), s) \) and vice versa. The results are: \(\text{Exp}(\text{True}(\text{that}_2), s) \) is not true if \(s \) is a possible situation; there are possible situations \(s \) such that \(\text{Exp}(\neg \text{True}(\text{that}_1), s) \) is true, but if \(s \) is T-closed for expressible propositions, then \(\text{Exp}(\neg \text{True}(\text{that}_1), s) \) is not true.\(^{13}\) The important difference with our analysis of the Liar cycle is not so much the result as the fact that we treat it as a sequence. The problem described by Barwise and Etchemendy involves two speakers who both make a claim about the same situation; the problem described here involves a text and the changes of information it induces upon the reader. These are different problems, so a comparison of the outcomes seems rather senseless (but see below).

As a second example we take a contingent Liar cycle:

\[
\text{Max Has } \▲ A; \text{True}(\text{that}_3); \neg \text{True}(\text{that}_1) \lor \neg \text{True}(\text{that}_2)
\]

This discourse has readings. We will not spell out any detail, but leave it to the reader to verify that: a possible situation \(s_1 \) is the initial state of a reading of the contingent cycle if and only if (a) \(s_1 \) does not contain the information that Max does not have the ace of spades \(\langle \text{H}, \text{Max}, \▲ A; 0 \rangle \not\in s_1 \); moreover (b) \(s_1 \) contains the information that after processing the first sentence (i.e. in the state \(s_2 = s_1 \cup \{ \langle \text{H}, \text{Max}, \▲ A; 1 \rangle \} \)), the proposition expressed by the second sentence is not true (i.e. \(\text{Exp}(\text{True}(\text{that}_3), s_2, c_2); 0 \not\in \varepsilon s_1 \).

The examples have in common that they have no unbiased readings, that is, the initial state of a reading cannot be the empty situation. In this respect, readings of discourses are comparable to updates of single sentences, since the input of an update of True\(\varnothing \) cannot be the empty situation either. There are more similarities. For example, we can call a discourse acceptable if it has a reading in which the first and the last (hence all) situations are the same.
For example, the Liar cycle is unacceptable. This follows immediately from Barwise and Etchemendy's static analysis of the cycle. In effect, a discourse is acceptable if and only if it is consistent in the static analysis. So in a sense the static versions are special cases of the dynamic versions.

The final part of this section deals with manipulations of demonstratives in a discourse. In the informal discussion on the concept of a reading of a discourse, we decided to treat a demonstrative that in a discourse as having the force of "the i-th sentence of this text". We show that our formalization is correct in this respect: substitution of the i-th sentence of a discourse for some occurrence of that doesn't change the descriptive content of the discourse.

19 Definition. If $\langle s_1, c_1 \rangle; \ldots; \langle s_{n+1}, c_{n+1} \rangle$ is a reading of the discourse $\varphi_1; \ldots; \varphi_n$, then $s_1; \ldots; s_{n+1}$ is a trace of $\varphi_1, \ldots, \varphi_n$. Two discourses are strongly equivalent if they have the same traces.

So we abstract from the contribution of the demonstratives, and focus on the descriptive content of a discourse, which can be seen as a labeled graph in logical space. Several weaker notions of equivalence are of interest; for example, we could also abstract from the 'stylistic' features of the discourse and only consider the input-output behaviour of the discourse as a whole. But we will not pursue this here.

20 Citation principle. Let $D=\varphi_1; \ldots; \varphi_n$ be a discourse in which some φ_i has an occurrence of that, where $j \leq n$. Let the discourse E be the result of substituting $\varphi_i(\varphi_j/\text{that})$ for φ_i in D, where $\varphi_i(\varphi_j/\text{that})$ is the result of substituting φ_j for one or more occurrences of that in φ_i. Then D and E are strongly equivalent.

Proof: let $\langle s_1, c_1 \rangle; \ldots; \langle s_{n+1}, c_{n+1} \rangle$ be a reading of D. Use the fact that $c_i(\text{that}) = \text{Exp}(\varphi_j, s_i, c_i)$ to prove with induction on the complexity of φ_i that $\text{Exp}(\varphi_i, s_i, c_i) = \text{Exp}(\varphi_i(\varphi_j/\text{that}), s_i, c_i)$. Conclude that $\langle s_1, c_1 \rangle; \ldots; \langle s_{n+1}, c_{n+1} \rangle$ is also a reading of E. Use the same argument for the converse. □

We can even do better: in some cases, we can eliminate demonstratives altogether.

21 Definition. A discourse $D=\varphi_1; \ldots; \varphi_n$ is well-founded if its referential structure is well-founded (that is, the relation R_D defined as
\[\{<i,j>|i,j \leq n \text{ and that}_j \text{ occurs in } \varphi_i \} \text{ is conversely well-founded}\].

22 Elimination principle. Every closed and well-founded discourse is strongly equivalent with a discourse that doesn’t contain demonstratives.

Proof: since the referential structure \(R_D \) is conversely well-founded, there is a pair \(<i,j> \in R_D \) such that for no \(k < j,k > \in R_D \). What this means is that that_j occurs in \(\varphi_i \), and that \(\varphi_j \) doesn’t contain demonstratives. We now substitute \(\varphi_j \) for every occurrence of that_j in the discourse. By the citation principle we obtain a strongly equivalent discourse \(D' \). Moreover, \(D' \) has no occurrences of that_j anymore, and it is still a well-founded and closed discourse. By repeating this procedure we can get rid of all demonstratives. □

Well-foundedness is not a necessary condition. In some cases we can replace circular reference via propositional demonstratives with circular reference via a propositional reflexive. The following proposition is a generalization of the remarks immediately following lemma 18.

23 Non-well-founded elimination. Suppose \(D=\varphi_1;...;\varphi_n \) is a discourse, and for some \(i (1 \leq i \leq n) \), (a) all occurrences of that_i in \(\varphi_i \) are not within the scope of any \(\downarrow \), or (b) \(\varphi_i \) is of the form \(\downarrow \psi \) and \(\psi \) has no occurrences of \(\downarrow \). Define \(\varphi'_i=\downarrow \varphi_i \text{(this/that_i)} \) if (a) holds, \(\varphi'_i=\downarrow \psi \text{(this/that_i)} \) if (b) holds. The discourse obtained by substitution of \(\varphi'_i \) for \(\varphi_i \) in \(D \) is strongly equivalent with \(D \).

Proof: omitted. □ 14

In general, citation and elimination will increase the average length of the sentences in the discourse. This can be illustrated by the Contingent Liar cycle:

\[
\text{Max Has } \vartriangle A; \text{ True}(\text{that3}); \neg \text{True}(\text{that1}) \lor \neg \text{True}(\text{that2})
\]

Two applications of the citation principle, followed by one application of non-well-founded elimination and one more citation, give the strongly equivalent discourse: 15

\[
\text{Max Has } \vartriangle A; \text{ True}(\downarrow(\neg \text{True}(\text{Max Has } \vartriangle A) \lor \neg \text{True}(\text{True}(\text{this})))); \\
\downarrow(\neg \text{True}(\text{Max Has } \vartriangle A) \lor \neg \text{True}(\text{True}(\text{this})))
\]

The moral to be drawn is a platitude: cross-references in a text allow for a more concise presentation. The effect of citation and elimination is that global computational procedures ('paging' back and forth in order to link demonstratives to sentences) are replaced by longer local procedures (increase of sentence length).
6 Problems and prospects

As it stands, the approach developed in this paper is an extension of Barwise and Etchemendy's Austinian framework. The dynamic semantics formalizes the idea that propositions expressed by sentences like the Liar bring about a change of information. A theoretical pay-off was that we were able to construct a semantics for texts with circular cross-reference. Of course, the Austinian semantics deserves credit for providing the background in which the dynamic semantics could be developed. On the other hand the dependence has two disadvantages. First, it makes the dynamic approach vulnerable to criticism that might be launched against the Austinian set-up. Second, it is not clear to which extent the results depend on the static semantics and the ontology, rather than on the dynamic semantics that is built on top of it; thus it is hard to estimate the value of the dynamic approach. Here I will not attempt to treat these two issues in full detail, but instead I will briefly discuss some important questions and problems.

(1) The logic is too weak. One argument against Barwise and Etchemendy's implementation of the Austinian approach is that the logic is too weak. The reason for this is the fact that the Austinian propositions have too much syntactical structure. For example, a sentence of the form \((\alpha \& \alpha)\) has the same truth conditions as \(\alpha\) but expresses a different proposition. Hence \(\text{True}(\alpha \& \alpha)\) and \(\text{True}\alpha\) do not have the same truth conditions. By contrast, \(\varphi \& \psi\) and \(\neg(\neg\varphi \lor \neg\psi)\) do express the same proposition and thus have the same truth conditions. I see no good reason why de Morgan's Law is more fundamental than idempotency of conjunction. The distinction in behaviour is a consequence of an accidental choice of modeling techniques (conjunction and disjunction signs become 'constituents' of the types of the propositions, but negation is a defined operation). The price to be paid is that the following representation principle does not hold:

(RP) if \(\varphi\) and \(\psi\) have the same truth conditions and the same falsity conditions, then so do \(\text{True}\varphi\) and \(\text{True}\psi\)

(where the falsity conditions of a formula are the truth conditions of its negation). Given the analytic task of providing an account of truth and self-reference, this is too high a price. It is to be hoped that it is possible to equip the Austinian account with a different notion of proposition in such a way that (RP) holds. Notice that I do not claim that propositions should be exhausted by truth conditions. The familiar substitutivity puzzles in intensional contexts suggest they should not. I do claim that non-truth-conditional distinctions between two
sentences φ and ψ cannot induce truth-conditional distinctions between $\text{True}\varphi$ and $\text{True}\psi$. But this is not to deny that there are sentential operators (such as "John believes that ...") which behave differently in this respect.

(2) Non-well-foundedness. Those readers who feel uneasy about non-well-founded sets should notice the following. Working in ZFC^- (i.e. ZFC without the axiom of foundation) Aczel constructs an inner model of $\text{ZFC}^- + \text{the axiom of anti-foundation}$ (Aczel[1988], chapter 3). Trivially, every model of ZFC is a model of ZFC^-. This means that we can translate talk of non-well-founded sets into talk of well-founded sets (of course, the 'translation' of the non-well-founded \in will not be the well-founded \in). So in principle it is possible to do without non-well-founded sets. It is to be expected, however, that the set-theoretical coding would rather obscure than clarify matters. The attractive aspect of the theory of non-well-founded sets is that it provides an elegant mathematical tool for modeling self-reference. Compared to Gödel numbering this modeling is more direct and less artificial.

So the important question is not whether Barwise and Etchemendy really need non-well-founded sets, but whether or not the sort of circularity they model by them really exists. There are at least two basic claims of their theory of truth that imply non-well-foundedness: (1) circular propositions exist; (2) situations can support semantical information about any situation whatsoever, in particular about itself, or even about a larger situation. Gupta has argued that (1) is not essential for the Austinian semantics. But (2) is crucial, especially in connection with the idea that the truth of a statement depends on the situation the statement is about. Much of the results of the dynamic semantics developed in this paper depend on (2) and the use of 'context-dependent' semantical facts for representing truth. For example, in a dynamic version of Barwise and Etchemendy's Russellian semantics the Liar is simply inconsistent (i.e., it has an empty update relation).

(3) Semantical facts. The representation of truth by semantical facts also distinguishes Barwise and Etchemendy's approach from other theories of truth and self-reference, e.g. those of Kripke, Gupta and Herzberger. A sentence $\text{True}\varphi$ is true in a situation s iff the semantical fact $<\text{Tr},\text{Exp}(\varphi,s);1>$ is a member of s. This semantical fact is of the form $<\text{Tr},\{s;X\};1>$. What is represented is not the truth of a sentence but the truth of a statement consisting of a sentence and a described situation. But in Kripke's theory the evaluation clause for sentences of the form $\text{True}\varphi$ is basically: $<D,T,F> \models \text{True}\varphi$ iff $\varphi \in T$ (where T is the extension and F the anti-extension of the truth predicate). What is represented by Kripke's scheme is truth of a sentence.

I favour Barwise and Etchemendy's scheme of representation. The reason is that I
think that partiality is a central feature of most occasions on which we use natural language. In partial semantics the basic notion of truth will be "truth on the basis of the available evidence" (Veltman [1985], p.155). So truth is a relation between available evidence s and a sentence φ. If we want to reflect this relation internally, then both relata will be significant for the representation. This does not force us to adopt all details of Barwise and Etchemendy's Austinian framework. But it does point in the direction of a representation of truth that employs constructions that look a lot like Barwise and Etchemendy's semantical facts.

(4) Revisions and updates. The dynamic semantics of this paper describes a process, and so do the theories of Kripke, Gupta and Herzberger. But the processes are of a different kind. An update s[φ]t is intended to describe the change of information of someone who has initial information s, accepts the message of φ, and so arrives at: a new information state t. The process of the KGH approaches describes a 'revision' of the extension and anti-extension of the truth predicate, and, moreover, in a jump from a model to the successor model in the sequence all sentences are considered. The basic goal of the process is that at some stage a model is obtained with a fairly strong representation of truth.

Granted the different nature of the processes, it might seem that we can mimic the revision process by updates. The important observation is that whenever s is a possible situation, Exp(φ,s) is true if and only if there is a unique possible situation t such that s[Trueφ]t, namely t=s∪{<Tr,Exp(φ,s);1>}; likewise, if Exp(φ,s) is not true, the situation t=s∪{<Tr,Exp(φ,s);0>} is the unique possible situation t such that s[¬Trueφ]t. So maybe we could simulate a revision jump by two parallel simultaneous updates:

\[t (s) = \cup \{ t \text{ is possible and } \exists \phi: s[True\phi]t \} \]

\[n (s) = \cup \{ t \text{ is possible and } \exists \phi: s[\neg True\phi]t \} \]

\[\phi (s) = t (s) \cup n (s) \]

But this proposal fails to achieve its goal. Though the revision \(\phi (s) \) is a possible situation whenever s is, it does not satisfy:

(T) \hspace{1cm} \text{Exp}(\phi,s) \text{ is true } \Rightarrow \text{Exp}(\text{True}\phi, \phi (s)) \text{ is true}

(N) \hspace{1cm} \text{Exp}(\phi,s) \text{ is not true } \Rightarrow \text{Exp}(\neg\text{True}\phi, \phi (s)) \text{ is true}

It is possible to construct an operation that satisfies the first clause (not so for the second) but the connection with updates would be lost.

In conclusion, I do not think that the form of the dynamic semantics of this paper is final. It was motivated by some remarks of Barwise and Etchemendy and initially I thought
that I was just formalizing these ideas, thus obtaining an extension of the Austinian semantics. However, I've come to think that the dynamic approach can stand on its own, and should not be made all-dependent on the peculiarities of Barwise and Etchemendy's Austinian set-up. Under this perspective an improvement of the theory could as well be a revision of the Austinian set-up as a choice for a different framework. But I'm not yet sure what is the right way to go.
Appendix: Logical issues

The following notational conventions are useful: "s ⊨ φ" abbreviates "Exp(φ,s) is true"; "∀pst" abbreviates "for all possible situations s and t". Other symbols used in the meta-language have their usual meaning.

What we are after then, is a characterization of the following two notions of equivalence:

(D) ∀pst(s[φ] → t ↔ s[ψ] → t)
(S) ∀pst(s ⊨ φ ↔ s ⊨ ψ)

Here we take φ to range over sentences that don't contain demonstratives. As usual, we do not characterize these equivalence relations directly, but instead characterize the corresponding notions of implication. For static equivalence (S) this gives:

(s) ∀pst(s ⊨ φ → s ⊨ ψ)

For dynamic equivalence (D) this gives

(*) ∀pst(s[φ]t → s[ψ]t)

(We will drop the superscript + from now on). But this notion is a bit hard to handle. The reason is that (*) requires an exact match between the information change induced by φ and the change induced by ψ. For example, a rule for conjunction like φ ∧ ψ ⇒ ψ fails for (*), since in general an update with φ will require a smaller expansion than an update of φ ∧ ψ. We could use the rule φ ∧ ψ ⇒ (φ ∧ ψ) ∧ φ, which is correct for (*). In effect, all rules for (*) would have a copy of the antecedent in the consequent. This can be avoided by taking the following observation at face value: the gist of φ ∧ ψ ⇒ (φ ∧ ψ) ∧ φ is that "every φ ∧ ψ-jump covers a φ-jump". This gives as notion of implication:

(d) ∀pst(s[φ]t → ∃t' ≤ t: s[ψ]t')

A paraphrase in English: every update with φ involves an update with ψ. The formal justification of this notion is that the equivalence corresponding to (d) is precisely (D). We omit the simple proof of this fact (hint: use minimality of updates).

A.1 Definition Let Γ and Δ be non-empty sets of sentences.

(i) Γ ⊨ S Δ iff there are sentences φ₁,...,φₙ ∈ Γ and ψ₁,...,ψₘ ∈ Δ such that ∀pst(s ⊨ φ₁ ∧ ... ∧ φₙ ⇒ s ⊨ ψ₁ ∨ ... ∨ ψₘ)

(ii) Γ ⊨ D Δ iff there are sentences φ₁,...,φₙ ∈ Γ and ψ₁,...,ψₘ ∈ Δ such that
Appendix: Logical Issues

\[\forall p s t(s[\phi_1 \land \ldots \land \phi_n] t \Rightarrow \exists t' \subseteq t: \ s[\psi_1 \lor \ldots \lor \psi_m] t') \]

Barwise and Etchemendy give a syntactic characterization of indiscernibility, the equivalence relation given by

(I) for all s, Exp(φ,s)=Exp(ψ,s)

The system has has the following axioms and rules:

(A1) \(\phi \Leftrightarrow \neg \neg \phi \)

(R1) if \(\phi \Leftrightarrow \psi \) then \(\psi \Leftrightarrow \phi \)

(A2) \(\neg(\phi \land \psi) \Leftrightarrow (\neg \phi \lor \neg \psi) \)

(R2) if \(\phi \Leftrightarrow \psi \) and \(\psi \Leftrightarrow \chi \) then \(\phi \Leftrightarrow \chi \)

(A3) \(\neg(\phi \lor \psi) \Leftrightarrow (\neg \phi \land \neg \psi) \)

(R3) Substitution: if \(\phi \Leftrightarrow \psi \) then \(\chi \Leftrightarrow \chi[\phi/\psi] \)

(A4) \(\downarrow \phi \Leftrightarrow \phi(\text{this}/\downarrow \phi) \)

(R4) Identity of Indiscernibles

where in (A4) \(\phi(\text{this}/\downarrow \phi) \) is the result of substituting \(\downarrow \phi \) for all loose occurrences of \(\text{this} \) in \(\phi \); and in (R3) \(\chi[\phi/\psi] \) is the result of substituting \(\psi \) for one or more occurrences of \(\phi \) in \(\chi \). It would take up too much space to explain the rule Identity of Indiscernibles (vide BE 111-112). Barwise and Etchemendy also show that indiscernibility is decidable. We will be lazy here and simply make one rule which inputs all equivalences \(\phi \Leftrightarrow \psi \) that are correct for (I). We use "\(\Gamma \vdash \phi \Leftrightarrow \psi \)" as an abbreviation for "\(\phi \Leftrightarrow \psi \) is provable in Barwise and Etchemendy's deductive system".

We present the deductive systems in the form of a sequent calculus.

A.2 Deduction rules

In the following list, \(\Gamma \) and \(\Delta \) are finite sets of sentences. If every occurrence of \(\Gamma \) in a rule is accompanied by a side formula, then \(\Gamma = \emptyset \) is allowed in that rule, otherwise it isn't. Similarly for \(\Delta \). \(\Gamma \cup \{ \phi \} \) is written as \(\Gamma, \phi \). \(\phi[\alpha/\beta] \) is the result of substituting the sentence \(\beta \) for one or more occurrences of the sentence \(\alpha \) in \(\phi \).

Identity: \[\frac{}{\phi \Rightarrow \phi} \]

Weakening: \[\frac{\Gamma \Rightarrow \Delta}{\Gamma, \phi \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \phi, \Delta} \]

Cut: \[\frac{\Gamma, \phi \Rightarrow \Delta \quad \Gamma \Rightarrow \phi, \Delta}{\Gamma \Rightarrow \Delta} \]

Substitution of Indiscernibles: \[\frac{\Gamma \vdash \alpha \Leftrightarrow \beta \quad \Gamma \vdash \gamma \Leftrightarrow \delta}{\phi[\alpha/\beta] \Rightarrow \phi[\gamma/\delta]} \]

\(\land L \): \[\frac{\Gamma, \phi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta} \]

\(\lor R \): \[\frac{\Gamma \Rightarrow \phi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \lor \psi, \Delta} \]
The notions of proof and of provability of a sequent are as usual in sequent calculus.

A.3 Definition An s-proof is a proof in which any of the above rules may be used. A d-proof is an s-proof in which the rule T ex falsc is not used.

In the s-system the rule ¬T can be derived, but only with the help of the T ex falsc rule.

A.4 Definition Let Γ and Δ be non-empty sets of sentences.

(i) $\Gamma \vdash_s \Delta$ iff there are finite sets $\Gamma' \subseteq \Gamma$ and $\Delta' \subseteq \Delta$ for which there is an s-proof of $\Gamma' \Rightarrow \Delta'$.

(ii) $\Gamma \vdash_d \Delta$ iff there are finite sets $\Gamma' \subseteq \Gamma$ and $\Delta' \subseteq \Delta$ for which there is a d-proof of $\Gamma' \Rightarrow \Delta'$.

Notice that the derivability relations are thus compact by definition.

We will prove soundness, completeness and decidability for \vdash_d and \vdash_s. We give details only for the dynamic notion \vdash_d (simplified versions of the techniques below also work for \vdash_s). First some preliminaries.

A.5 Definition Consider the following conditions:

(i) Every occurrence of \neg in φ is immediately in front of a formula of the form (a Has c), True(this) or Trueψ.

(ii) Every occurrence of \downarrow in φ is in the scope of some occurrence of True.

If a formula φ satisfies clause (i) then φ is in negation normal form. If φ satisfies both (i) and (ii) then it is in normal form.
Observe that a formula φ is in normal form if and only if one of the following four conditions obtains:

(i) φ is $(a \text{ Has } c)$ or $\neg(a \text{ Has } c)$;
(ii) φ is $\text{True}(\text{this})$ or $\neg\text{True}(\text{this})$;
(iii) φ is $\text{True}\psi$ or $\neg\text{True}\psi$, where ψ is a formula in negation normal form;
(iv) φ is of the form $\psi \land \chi$ or $\psi \lor \chi$, where both ψ and χ are normal form formulas.

A sentence φ is in normal form if and only if one of the following three conditions obtains:

(i)' φ is $(a \text{ Has } c)$ or $\neg(a \text{ Has } c)$;
(ii)' φ is $\text{True}\psi$ or $\neg\text{True}\psi$, where ψ is a sentence in negation normal form;
(iv)' φ is of the form $\psi \land \chi$ or $\psi \lor \chi$, where both ψ and χ are normal form sentences.

This will enable us to prove properties of normal form sentences with induction on the complexity of these sentences (the base clauses being both (i)' and (iii)').

Next we present a slight strengthening of Barwise and Etchemendy's normal form lemma (BE 110). The proof is an explicitation of Barwise and Etchemendy's proof and is omitted here.

A.6 Normal form lemma

There is an effective operation \cdot^NF such that for every formula φ, φ is indiscernible from φ^NF and φ^NF is in normal form. Moreover, if φ is in normal form, then $\varphi^\text{NF} = \varphi$. \Box

The completeness proof uses techniques familiar from completeness proofs for intuitionistic logic (Aczel [1968], Thomason [1968]). The important difference with completeness proofs for static notions of consequence is that in the dynamic case the model construction has to provide two models (situations) instead of just one, since update relations are binary relations between situations. This is reflected in the notion of *update theory* below. Typically, an update with $\text{True}\varphi$ requires the 'pre-condition' φ to be true in the antecedent of the update; therefore, an update theory consist of two sets of sentences P and U, where P is to keep track of the pre-conditions of the sentences in U (for which an update has to be constructed).

A.7 Definition

Let Δ, Γ, P and U be sets of sentences.

(i) Δ is *d-consistent* iff there is some φ such that $\Delta \not\vdash \varphi$
(ii) Δ is *saturated* iff for every φ and ψ, if $(\varphi \lor \psi) \in \Delta$ then $\varphi \in \Delta$ or $\psi \in \Delta$
(iii) Δ is a *d-theory within* Γ iff for every $\varphi \in \Gamma$, if $\Delta \not\vdash \varphi$ then $\varphi \in \Delta$
(iv) \(<P, U> is an update theory within \Gamma \) iff the following conditions obtain:
(a) both P and U are consistent saturated d-theories within \Gamma
(b) \(P \subseteq U \subseteq \Gamma\)
(c) if Trueφ ∈ U then φ ∈ P
(d) if −Trueφ ∈ U then φ ∈ P

(v) A set of formulas \(\Delta\) is rich iff the following conditions hold:
(a) \(\Delta\) is closed under subformulas
(b) if φ ∈ \(\Delta\) then φ\(^{\text{NF}}\) ∈ \(\Delta\)

A.8 Lemma
(i) For every set of sentences \(\Delta\) there is a rich set of sentences \(\Gamma\) such that \(\Delta \subseteq \Gamma\).
(ii) There is an effective operation \(\gamma\) such that for each finite set of sentences \(\Delta\), \(\gamma(\Delta)\) is a rich and finite set with \(\Delta \subseteq \gamma(\Delta)\).

Proof: The first part is trivial. For (ii) we first define an effective operation that assigns to each formula φ in negation normal form a set of formulas that is finite and rich and contains φ:

\[
\begin{align*}
 f(\text{Has } \varphi) &= \{ (\text{Has } \varphi) \} \\
 f(\text{Has this}) &= \{ \text{Has this} \} \\
 f(\text{True}) &= \{ \text{True} \} \cup f(\varphi) \\
 f(\varphi \land \psi) &= \{ \varphi \land \psi \} \cup f(\varphi) \cup f(\psi) \\
 f(\varphi \lor \psi) &= \{ \varphi \lor \psi \} \cup f(\varphi) \cup f(\psi) \\
 f(\exists \varphi) &= \{ \exists \varphi \} \cup \{ \psi(\text{this/ } \varphi \downarrow) \mid \psi \in f(\varphi) \} \\
 f(\exists \text{this}) &= \{ \exists \text{this}, \exists \text{this/ } \varphi \} \\
\end{align*}
\]

That for each negation normal form formula φ, \(f(\varphi)\) is finite and rich and contains φ, is checked by induction. The only problematic case is closure under \(\text{NF}\) of \(\downarrow \varphi\), where one needs a (long) sub-induction to show that

\[
\text{if } \psi \in f(\varphi) \text{ then } (\psi(\text{this/ } \varphi))^{\text{NF}} = (\psi^{\text{NF}})(\text{this/ } \varphi)
\]

where it is important that \(\downarrow \varphi\) is in negation normal form.

Next, define two operations on finite sets of formulas as follows:

\[
\begin{align*}
 c\Delta &= \{ \psi \mid \psi \text{ is a subformula of some } \varphi \in \Delta \} \\
 n\Delta &= \{ \psi^{\text{NF}} \mid \psi \in \Delta \}
\end{align*}
\]

and define \(\gamma\) by

\[
\gamma(\Delta) = c\Delta \cup nc\Delta \cup cnc\Delta \cup \{ f(\psi) \mid \psi \in cnc\Delta \land \psi^{\text{NF}} \in cnc\Delta \}
\]

Observe that this is well-defined: if we decompose a normal form formula and hit upon a formula not in normal form this can only be because we have a normal form formula Trueψ
and ψ is not in normal form; but then ψ (and its subformulas) will be in negation normal form. It is easy to check that $\gamma(\Delta)$ has the desired properties. \square

A.9 Lemma If Δ is a d-theory within Γ, and Γ is rich, then $\phi^{NF} \in \Delta \cap \Gamma$ for every $\phi \in \Delta \cap \Gamma$.

Proof: If $\phi \in \Delta \cap \Gamma$, then $\phi \in \Gamma$ and $\Delta \vdash d \phi$. So $\Delta \vdash d \phi^{NF}$ by the rule of Substitution of Indiscernibles, and $\phi^{NF} \in \Gamma$ since Γ is rich. So $\phi^{NF} \in \Delta$ since Δ is a d-theory within Γ, so $\phi^{NF} \in \Delta \cap \Gamma$. \square

A.10 Saturation lemma Suppose $\Delta \vdash d \Phi$, Γ is rich and $\Delta \cup \Phi \subseteq \Gamma$. Then there is an update theory $<P, U>$ within Γ such that $\Delta \subseteq U$ and $U \vdash d \Phi$.

Proof: Suppose $\Delta \vdash d \Phi$ and $\Delta \cup \Phi \subseteq \Gamma$. Let $\phi_0, ..., \phi_k, ...$ be an enumeration of all sentences in Γ in which each sentence of Γ occurs countably many times. Define an increasing sequence of sets of sentences in the following way:

\[
U_0 = \Delta \\
U_{n+1} = \begin{cases}
U_n \cup \{ \phi_n \} & \text{if } U_n, \phi_n \vdash d \Phi \\
U_n & \text{otherwise}
\end{cases}
\]

Now put $U = \bigcup U_n$. We use the same technique to construct the set of preconditions P, except that we have an enumeration $\psi_0, ..., \psi_k, ...$ of U in which each sentence occurs countably many times; and the property we want to preserve is $\Phi \vdash d \Psi$, where Ψ is given by:

$$\Psi = \{ \psi \in \Gamma \mid \neg \text{True} \psi \in U \} \cup \{ \psi \in \Gamma \mid \psi \in U \}$$

We start with the set of those preconditions of U we want to be fulfilled:

\[
P_0 = \{ \psi \in \Gamma \mid \text{True} \psi \in U \} \\
P_{n+1} = \begin{cases}
N_n \cup \{ \phi_n \} & \text{if } P_n, \phi_n \vdash d \Psi \\
P_n & \text{otherwise}
\end{cases}
\]

Put $P = \bigcup P_n$. We leave it to the reader to check that U and P have the desired properties. We only show that, given that U is a d-theory within Γ, the d-consistency of P follows from the $\neg \text{T}$ rule. First observe that it is sufficient to show that $P \vdash d \Psi$. By compactness, it is sufficient to show that no finite subset of P proves Ψ; and this will follow if no P_n proves Ψ. First, suppose $P_0 \vdash d \Psi$, i.e.

$$\{ \psi \in \Gamma \mid \text{True} \psi \in U \} \vdash_d \{ \psi \in \Gamma \mid \neg \text{True} \psi \in U \} \cup \{ \psi \in \Gamma \mid \psi \in U \}$$

Then by the rule $\neg \text{T}$

$$\{ \text{True} \psi \psi \in \Gamma, \text{True} \psi \psi \in U \} \cup \{ \neg \text{True} \psi \psi \in \Gamma, \neg \text{True} \psi \psi \in U \} \vdash_d \{ \psi \in \Gamma \mid \psi \in U \}$$
so \(U \vdash d \{ \psi \in \Gamma \} \psi \in U \}, \) which can't be, since \(U \) is a \(\Delta \)-theory within \(\Gamma \). For the induction step use the \text{Cut} \ rule and the induction hypothesis. \(\square \)

The idea is to use update theories for constructing counter examples. In fact, at this point we could go directly to the update construction lemma (A.13). Instead we make a small detour which will facilitate the proof of decidability below. It turns out to be more convenient to construct updates from sets of sentences that are defined without mentioning derivability.

A.11 Definition

Let \(P, U, \Gamma \) be sets of sentences. Then \(<P, U> \) is a \textit{syntactic update} within \(\Gamma \) if the following conditions obtain:

(i) \(P \subseteq U \subseteq \Gamma \), and \(\Gamma \) is rich

(ii) if \(\phi \in \Gamma \), then \(\phi \in P \iff \phi^{\text{NF}} \in P \); if \(\phi \in \Gamma \), then \(\phi \in U \iff \phi^{\text{NF}} \in U \)

(iii) if \(\psi \land \chi \in \Gamma \) then \(\psi \land \chi \in U \iff \psi \in U \) and \(\chi \in U \)

(iv) if \(\psi \lor \chi \in \Gamma \) then \(\psi \lor \chi \in U \iff \psi \in U \) or \(\chi \in U \)

(v) if \(\psi \land \chi \in \Gamma \) then \(\psi \land \chi \in P \iff \psi \in P \) and \(\chi \in P \)

(vi) if \(\psi \lor \chi \in \Gamma \) then \(\psi \lor \chi \in P \iff \psi \in P \) or \(\chi \in P \)

(vii) if \(\text{True} \phi \in U \) then \(\phi \in P \)

(viii) if \(\neg \text{True} \phi \in U \) then \(\phi \in P \)

(ix) there are no \(\phi, \psi \in U \) such that \(\phi \) is indiscernible from \(\neg \psi \)

Remark

If \(\Gamma \) is finite and rich, then the set of syntactic updates within \(\Gamma \) is recursive: clearly, \(\{ <P, U> \mid P \subseteq U \subseteq \Gamma \} \) is finite in this case, and the remaining clauses in A.11 express decidable properties if \(P, U, \Gamma \) are finite (for (ii) it is crucial that \(\phi^{\text{NF}} \) is recursive; for (ix), recall that indiscernibility is decidable).

A.12 Lemma

If \(<P, U> \) is an update theory within \(\Gamma \), then \(<P, U> \) is a syntactic update within \(\Gamma \).

A.13 Update construction lemma

Let \(<P, U> \) be a syntactic update within \(\Gamma \). Then there are possible situations \(s \) and \(t \) such that:

(1) \(\psi \in \Gamma \Rightarrow (\exp(\psi, s) \text{ is true } \iff \psi \in P) \)

(2) \(\psi \in \Gamma \Rightarrow (\exists t : s[\psi]' \iff \psi \in U) \)

Proof:

Consider the equation:

\[s = \{ \sigma \mid [\sigma] = \text{Type}(\val(\psi)) \text{ for some simple sentence } \psi \in P \} \]
Appendix: Logical Issues

Let $s = F(s)$, where F is the unique solution of the equation. It is essential here that the indeterminate s is the situation indeterminate that Barwise and Etchemendy use in the static semantics. Next define t by:

$$t = s \cup \{ \sigma \mid \text{Type}(\text{Exp}(\psi, s)) \text{ for some simple sentence } \psi \in U \}$$

We now show that

$$(1) \quad \psi \in \Gamma \Rightarrow (\text{Exp}(\psi, s) \text{ is true } \iff \psi \in P)$$

First, we show this for normal form sentences ψ. For simple sentences (1) is immediate from the construction of s; and for the disjunction and conjunction cases (1) follows from the induction hypotheses and clauses (v) and (vi) in definition A.11. Secondly, we show (1) in general: if $\psi \in \Gamma$ and $\text{Exp}(\psi, s)$ is true, then $\text{Exp}(\psi^{NF}, s)$ is true, so $\psi^{NF} \in P$ (by (1)), so $\psi \in P$ (by A.11(ii)). Conversely, if $\psi \in \Gamma$ and $\psi \in P$, then $\psi^{NF} \in P \cap \Gamma$, so $\text{Exp}(\psi^{NF}, s)$ is true, so $\text{Exp}(\psi, s)$ is true.

A similar argument shows that:

$$(2) \quad \psi \in \Gamma \Rightarrow (\exists t' \subseteq t : s[\psi]_t' \iff \psi \in U)$$

What remains is to show that s and t are possible situations. Since $s \subseteq t$, it is sufficient to show that t is possible:

- suppose for some state of affairs σ both it and its dual σ^* are in t. By construction of s and t and the fact that $P \subseteq U$, there are simple sentences ψ and χ in U such that ψ and $\neg \chi$ are indiscernible. But this contradicts A.11(ix).

- suppose $<\text{Tr}, p, 1> \Subset t$. By construction of t, $p = \text{Exp}(\psi, s)$ for some sentence $\text{True}\psi \in U$. Hence $\psi \in P$ by A.11(vii), and so by (1) above, $\text{Exp}(\psi, s)$ is true.

- suppose $<\text{Tr}, p, 0> \Subset t$. By construction of t, $p = \text{Exp}(\psi, s)$ for some sentence $\neg \text{True}\psi \in U$. So $\psi \notin P$ by A.11(viii). Moreover $\psi \in \Gamma$, since $\neg \text{True}\psi \in U$, Γ is rich and $U \subseteq \Gamma$. So by (1), $\text{Exp}(\psi, s)$ is not true. □

A.14 Dynamic completeness theorem For all set of sentences Δ and all sentences Φ, $\Delta \vdash_d \Phi$ if and only if $\Delta \not\vdash d \Phi$.

A.15 Theorem \{ $<\Gamma, \Delta> \mid \Gamma \vdash d \Delta$ and Γ and Δ are finite \} is decidable.

Proof: It is sufficient to show that \{ $<\varphi, \psi> \mid \varphi \vdash d \psi$ \} is decidable. Let γ be the effective operation of lemma A.8. Then:

$\varphi \vdash_d \psi$ iff there is a syntactic update $<P, U>$ within $\gamma(\varphi, \psi)$ such that $\varphi \in U$ and $\psi \in U$
The effectiveness of γ and the remark immediately after lemma A.11 guarantee that non-derivability is decidable. Hence derivability is also decidable. □

We conclude with an observation on anti-success, the typical property of the Liar.

A.16 Theorem φ is anti-successful if and only if there is a finite set of sentences $\{\varphi_1, \ldots, \varphi_n\}$ such that $\varphi \vdash_d \varphi_1 \land \neg \text{True}\varphi_1, \ldots, \varphi_n \land \neg \text{True}\varphi_n$

Proof: If $\varphi \vdash_d \forall i \leq m (\psi_i \land \neg \text{True}\psi_i)$ then $\varphi \vdash_s \forall i \leq m (\psi_i \land \neg \text{True}\psi_i)$, but by the T ex falso rule this implies that φ is unacceptable. So for every possible situation t, not $t(\varphi)t$, so a fortiori $\forall_p^s (s(\varphi)t \rightarrow \neg t(\varphi)t)$.

For the converse we argue by contraposition. Suppose that there is no finite set of sentences $\{\varphi_1, \ldots, \varphi_n\}$ such that $\varphi \vdash_d \varphi_1 \land \neg \text{True}\varphi_1, \ldots, \varphi_n \land \neg \text{True}\varphi_n$. Let Φ be the set of *all* sentences of the form $\psi \land \neg \text{True}\psi$. Then by compactness, $\varphi \not\vdash_d \Phi$. By lemma A.10, we can find a consistent saturated d-theory Δ with $\varphi \in \Delta$ and $\Delta \not\vdash_d \Phi$.

Now consider the equation

(a) $s = \{\sigma \mid \sigma \models \text{Type}(\text{Val}(\psi)) \text{ for some simple sentence } \psi \in \Delta\}$

and define t by $t = d_f (s)$, where F is the unique solution of (a). Then show that

(b) $t(\psi)t \text{ iff } \psi \in \Delta$

which is simple (it is again sufficient to consider normal forms only). What remains to show is that t is a possible situation. t must be coherent, by the construction of t and the fact that Δ is d-consistent; moreover, if $\text{True}\psi \in \Delta$ then $\psi \in \Delta$ (since Δ is a d-theory), which together with (b) suffices to show that t respects its positive semantical facts. For the negative semantical facts, suppose that $\neg \text{True}\psi \in \Delta$; if $\psi \in \Delta$, then $\Delta \vdash_d \psi \land \neg \text{True}\psi$, which contradicts $\Delta \not\vdash_d \Phi$, so $\psi \in \Delta$ which by (b) implies that Exp(ψ, t) is not true. □

The theorem shows that our earlier observation that $\downarrow \neg \text{True}(\text{this})$ and all instances of $\varphi \land \neg \text{True}\varphi$ and $\downarrow (\varphi \land \neg \text{True}(\text{this}))$ are anti-successful was not a coincidence.
Notes

1 See the references in Martin [1970], Martin [1984] and Visser [1989].

2 The feeling that there is no real solution to the semantic paradoxes (yet) is also expressed by Kripke and Visser, who write, respectively: "I do not regard any proposal, including the one to be advanced here, as definitive in the sense that it gives the interpretation of the ordinary use of 'true', or the solution to the semantic paradoxes." (Kripke [1975], in Martin [1984], p. 63); "But perhaps there is no true solution, maybe we should be content with a number of ways to block the paradox, the choice among which is to be governed by local considerations of utility and simplicity." (Visser [1989], p. 624).

3 Dynamic semantics gained a lot of momentum with the development of Discourse Representation Theory by Kamp and Heim (Kamp [1984], Heim [1982]), though the basic ideas where already formulated in Stalnaker [1972] and Seuren [1976]. For more recent developments see Barwise [1986], Groenendijk and Stokhof [1990], [1991], van Benthem [1990], Veltman [1991].

4 Throughout this paper, references to Barwise and Etchemendy [1987] will have the form (BE pagenuumber).

5 The Austinian account comprises chapters 8 to 13 of Barwise and Etchemendy [1987], and chapter 3 provides a good introduction to Peter Aczel's theory of non-well-founded sets. More technical information about this set theory can be found in Aczel [1988].

6 So, propositions are modeled as sets of the form \{s;T\}. Barwise and Etchemendy leave it open what kind of construction is meant, as long as \{s;T\} is some set having s and T as components. I think of \{s;T\} as non-standard notation for the ordered pair <s,T>. A similar remark applies to the sequences \{Tr,f;0\} and \{\alpha\X\}.

7 Probably modalities are not distributive. See Veltman's treatment of might in Veltman[1991].

8 We use "\subset" for "is a subset of" and "\in" for "is a proper subset of".

9 Notice that Update and Minimality imply that, if s supports \varphi, then s is the unique update of s with \varphi.

10 As John Etchemendy pointed out, another option is to distinguish the described situation from the antecedent of an update. An update relation would then be a ternary relation between situations. A typical clause would be: \text{ s } [\text{True}\varphi]_{dt} \iff s_0 = s_v \{ \text{Tr,Exp}(\varphi,d,e);1\} ; \text{ here d is the described situation. This is roughly the same semantics as in Groeneveld[1989]; identify s and d, and the result is the semantics of the present paper. So why should we identify s and d? The reason is that we are picturing the information change of an agent which can't tell the difference: she has only partial knowledge of the described situation d, and what she knows about d is modeled as the set of those situations she is not able to distinguish from d.} \text{ Axiom 4 amounts to the indiscernibility of } \downarrow \varphi \text{ and } \varphi(\text{this}/\downarrow \varphi), \text{ where } \varphi(\text{this}/\downarrow \varphi) \text{ is the result of substituting } \downarrow \varphi \text{ for all loose occurrences of this in } \varphi. \text{ For the Austinian completeness theorem see BE 152; but the real work is done in chapter 7, BE 107-115.} \text{ BE 148, proposition 16.}
14 Barwise and Etchemendy observe that in their version of the Liar Cycle,
Exp(\text{True}(\text{that}_2),s) = \text{Exp}(\downarrow\text{True}(\sim\text{True}(\text{this})),s) \text{ and } \text{Exp}(\sim\text{True}(\text{that}_1),s) = \text{Exp}(\downarrow\sim\text{True}(\text{True}(\text{this})),s) \text{ (vide BE 149). For the sequential version of the Liar Cycle, the discourse } \text{True}(\text{that}_2); \sim\text{True}(\text{that}_1), \text{ we find the same correspondence. By non-well-founded elimination the discourse is strongly equivalent to } \downarrow\sim\text{True}(\sim\text{True}(\text{this})); \sim\text{True}(\downarrow\text{True}(\sim\text{True}(\text{this}))). \text{ The last formula of this sequence is statically indiscernible from } \downarrow\sim\text{True}(\text{True}(\text{this})), \text{ hence both formulas also have the same update relation. The indiscernibility can be shown with the rule Identity of Indiscernibles; intuitively, they express the same proposition since the 'unfolding' of the formulas is the same, namely an infinite repetition of } \sim\text{True}(\text{True}).

15 Use the copy and paste options of your favorite word processor to see how this works.

16 Gupta writes: "However, I should note that the idea of circular propositions is not at all central to their diagnosis of the Liar. A philosopher who eschews propositions and takes objects of truth to be sentences can put forward a diagnosis essentially similar to the one they offer. Barwise and Etchemendy's attitude towards the role of propositions is somewhat vacillating. At one point in their book (p.138) they suggest that the ambiguities they claim to find in the Liar cannot be accounted for by the sentential theorist. At another point (p. 175) they allow that such a theorist may take truth to depend on a contextual parameter, one that reflects the situation the statement is about." (Gupta [1989], p.708)

17 Kripke [1975], Gupta [1982], Herzberger[1982].

References

Aczel, P. [1988], Non-well-founded sets. CSLI lecture notes no. 14, Stanford.

Groenendijk, J. and Stokhof, M. [1990], 'Dynamic Montague Grammar. A first sketch.', ITLI Prepublication Series LP-90-02, Department of Philosophy, University of
References

Amsterdam.

Groeneveld, W. [1989], 'A dynamical analysis of paradoxical sentences', master thesis, Department of Philosophy, University of Amsterdam.

Heim, I. [1982], *The Semantics of Definite and Indefinite Noun Phrases*. Dissertation, Department of Linguistics, University of Massachusetts, Amherst.

Seuren, P. [1976], *Tussen Taal en Denken*, Oosthoek, Scheltema en Holkema, Utrecht. (in Dutch)

van Benthem, J. [1990], 'General Dynamics', ITLI Prepublication Series LP-90-11, Department of Mathematics and Computer Science, University of Amsterdam. To appear in *Theoretical Linguistics*.

Veltman, F. [1991], 'Defaults in update semantics' ITLI Prepublication Series LP 91-02, Department of Philosophy, University of Amsterdam.

The ITLI Prepublication Series

ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories
ML-90-08 Maarten de Rijke Some Syntactical Observations on Linear Logic
ML-90-09 Dick de Jongh, Duccio Pianigiani Solution of a Problem of David Guaspari
ML-90-10 Michiel van Lambalgen Randomness in Set Theory
ML-90-11 Paul C. Glimm The Consistency of an Extended NaSet
CT-90-01 John Tromp, Peter van Emde Boas Composition and Complexity Theory
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for FSCJ Expressions
CT-90-03 Van Der Hoek, Leen, Torenvliet, Otsuzo Watanabe, Jos L. Balcazar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constrast Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiologogical Modelling using RL
CT-90-09 D. J. B. Olderog Forms for Combinatory Logic with Partial and Ordinal Rewriting
X-90-01 A. S. Troelstra Other Prepublications
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 Willem van Oostrom On the Complexity of Arithmetical Interpretations of Modal Formulas
X-90-04 Annual Report 1989
X-90-05 R.H. Myrdal, I. M. Thompson, S. Roback An Introduction to the Theory of Interpretability Logic
X-90-06 Valentin Goranko, Solomon Passy Derived Sets in Euclidean Spaces and Modal Logic
X-90-07 R.H. Myrdal, I. M. Thompson, S. Roback An Introduction to the Theory of Interpretability Logic
X-90-08 V.V. Shen, D. A. Skvortsov, V. V. Novikov Annual Report 1989
X-90-09 V.V. Shen, D. A. Skvortsov, V. V. Novikov An Introduction to the Theory of Interpretability Logic
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL1
X-90-11 Maarten de Rijke Provable Logics in \(\Pi_{n+1}^0 \), 1982 revised edition
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Dzhaparidze's Modal Logical: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 S. Odenberg Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic
X-90-16 J.W. Kuhn, W. A. Kirk, C. D. Cuyler, J. R. M. Hoist Logic, Semantics and Philosophy of Language
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groeneveld Dynamic Semantics and Circular Propositions
LP-91-04 L. Lambeek Calculus enriched with Additional Connectives
LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependance Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas Belief Dependance, Revision and Persistence
LP-91-07 J. J. Klap van der Does The Semantics of Plural Noun Phrases
LP-91-08 Victor Sanchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwenhuijse Semantics and Computational Logic
LP-91-10 Bahram van Benthem Logic and the Flow of Information
ML-91-01 Yde Venema Mathematical Logic and Foundations
ML-91-02 Alexey Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schelinx Collapsing Graph Models by Precorders
ML-91-05 S. Odenberg History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Type Structures within Combinatorial Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Inge Bethke Going Stable in Graph Models
ML-91-09 V.V. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
ML-91-10 Maarten de Rijke, Yde Venema Sahalqvit's Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability
ML-91-12 Johan van Benthem Modal Frame Classes, revisited
CT-91-01 Ming Li, Paul M. B. Vitányi Computation and Complexity Theory
CT-91-02 Ming Li, John Tromp, Paul M. B. Vitányi How to Share Concurrent Wait-Free Variables
CT-91-03 Ming Li, Paul M. B. Vitányi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets
CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes
CT-91-07 Karen L. Kwast The IncomL Complete Database
CT-91-08 Kees Doets Levitation Laws
CT-91-09 Ming Li, Paul M. B. Vitányi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul M. B. Vitányi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 M. H. Hamachandara, Edith Spaan Quasi-Injective Reductions
CT-91-12 J. Kraszewski, Z. Pataki Axiom of Choice
CT-91-13 I. M. Thompson, S. Roback, J. R. M. Hoist Computational Linguistics
CT-91-14 J. C. Scotts, S. K. Y. Wang Neural Nets and their Relevance for Information Retrieval
CT-91-15 Hub Prast, Remko Schr, Martin van der Berg A Formal Discourse Grammar Tackling Verb Phrase Anaphora
X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional Logics
X-91-03 V. V. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic
X-91-04 K. N. Ignatiev Paritally Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgio Dziapadzidze Logic of Tolerance
X-91-09 K. N. Ignatiev Bimodal Progability Logics for \(\Pi_1 \)-axiomatic Extensions of Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael Zakharyaschev Canonical Formulas for \(K_4 \), Part I: Basic Results
X-91-12 Max I. Kanovich, Willem van Oostrom, Yde Venema, Thierry Coquand Flexibilizing the Semantics of Semantik: de preefschrijven van Frans Zwarts en Michael Mootgart
X-91-13 Max I. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Horn Fragment of Linear Logic is NP-Complete
X-91-15 R. Watanabe, Jos L. Balcazar Undecidable Hypotheses in Edward Nelson's Internal Set Theory
X-91-16 V.G. Kanovei Independence, Randomness and the Axiom of Choice, Revised Version
X-91-17 Michiel van Lambalgen Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version
X-91-18 R. Watanabe, Jos L. Balcazar Object Oriented Application Flow Graphs and their Semantics
LP-92-02 Piet Buitelaar Modal Logic and Attribute Value Structures
LP-92-03 Szabolcs Mikuics The Completeness of the Lambek Calculus with respect to Relational Semantics
LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic
LP-92-05 J. Beaver Modal Logic and Attribute Value Structures
LP-92-06 Patrick Blackburn, Edith Spaan The Kinematics of Preposition
LP-92-07 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute Value Grammar
LP-92-08 A.S. Troelstra, Martin van der Berg Computability theory of Representations and Constructive Mathematics
LP-92-09 Heinrich Wansing Object Oriented Application Flow Graphs and their Semantics
LP-92-10 R. Watanabe, Jos L. Balcazar The Logic of Information Structures
LP-92-11 Ricardo Govaerts The Closed Fragment of Dzhaparidze's Polynomial Logic and the Logic of \(\Sigma_1 \)-conservativity
LP-92-12 Willem Groeneveld Dynamic Semantics and Circular Propositions, revised version