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Preface to the second edition

The first edition appeared in 1973, as volume 344 of the series Lecture Notes in Mathe-
matics of Springer Verlag, and has been out of print for several years now. Since there
is still a small but steady demand for the volume, we decided to produce a new edition
as a report in the Mathematical Logic series of the Institute for Logic, Language and
Information of the University of Amsterdam.

The original typescript has been the basis for this corrected edition; small correc-
tions have been made by hand in the text, and are marked by an “*” in the lefthand
margin. More substantial changes, which could not be inserted or pasted over the
original text, have been indicated by a marker “Z ” in the lefthand margin, and are
collected in a list with errata and additions at the end of the volume.

Producing a completely new typescript might have resulted in a more attractive
typographical product, but would have been a source of new errors and would also
have required a considerable investment of time, hence we refrained from doing this.

New additions and replacements have been typeset in Latex. Wavy underlining in
the original text is now interpreted as boldface, underlining as italics. Double wavy
underlining has been interpreted by a sans serif fount. However, we have retained
double underlining and did not replace it by Fraktur.

There has been no attempt to update the volume or its bibliography — the revision
is limited to corrections and occassionally some additional remarks. A first list of
Errata appeared in 1974 as a report of the Mathematical Institute of the University of
Amsterdam; many more errata have been discovered since then. In particular I should
like to thank Marc Bezem, Susumu Hayashi, Jane Bridge Kister, Jaap van Qosten and
Jeffery Zucker.

The first edition bore a dedication “to Georg Kreisel, who has contributed so much
to the subject of this volume”. This is as true now as it was then, but I should like to
dedicate this corrected version to my former and present Ph.D. students, from whom
I have learned a great deal over the years; their questions often led me to reconsider
parts of the original material. My contacts with them have been the most rewarding
part of my work.

Amsterdam, june 1993

A.S. Troelstra
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Preface to the first edition

The present volume found its origin in a course on functional and realiz-
ability interpretations on intuitionistic formal systems, presented at the
Rijksuniversiteit Utrecht (Netherlands) in the spring of 1970, and a course
on the metamathematics of intuitionistic formal systems at the University of
Amsterdam in 1971 - 1972, The literature on the subject was widely scattered,
the connection between certain rules was often not made explicit in the
literature, and some obvious questions were not answered there,.

Therefore I thought it would be useful to give a coherent presentation of
the principal methods for metamathematical investigation of intuitionistie
formal systems and the results obtained by these methods, connecting results
in the literature, filling gaps and adding some new material., A first attempt
(for realizability and functional interpretations) was made in Troelstra
1971, which, however, because of a rather terse style, was not readily assim-
ilated by readers new to the field. (It still provides a useful survey of
the applications to first-order systems however.) Therefore a more elaborate
presentation, including other techniques of metamathematical research, seemed
to be called for.

Having learnt of the unpublished Ph.D. work of C.Smorynski on applications
of Kripke-models to intuitionistic arithmetic, and of Dr Zucker's thesis on
the intuitionistic theory of higher-order generalized inductive definitioms,
subjects which both fitted very well into the scope of the planned volume,

I asked them to contribute a chapter each ; their contributions appear as
chapters V, and VI respectively. The models for intuitionistic arithmetic
of finite type, functional and realizability interpretations, and normaliza-
tion for natural deduction systems, and also the general editing of the
volume I undertook myself,

Finally, W.A. Howard contributed an Appendix,supplementing discussions in
§ 2.7 and § 3.5.

The organization of the volume is primarily method-centered, i.e. the
material presented is grouped mostly around methods and techniques, and not
arranged according to the results obtained., Hence some results, obtainable
by different methods, appear at various places in the book. This will enable
the reader to compare the relative merits of the wvarious methods.

As regards intuitionistic arithmetic and closely related systems, the

treatment is almost wholly self-contained ; some experience with classical




metamathematics, and the elements of intuitionism, such as may be gleaned
from Kleene'!s Introduction to metamathematics and Heyting's book on
Intuitionism suffices, The parts dealing with arithmetic can therefore be
used in a course for graduate students or a seminar.

The sections dealing with analysis are not self-contained, and serve
more or less as a running commentary on the literature, connecting and com-
paring various approaches and adding new results besides. This part was
thought of primarily as a help to the beginning researcher, to help him to
find his way in the subject. For use in a seminar, these sections should
usually be supplemented by the reading of other papers.

In keeping with this set-up, the listing of applications for intuition-
istic arithmetic and closely related systems is rather extensive, but in
the case of analysis we have often restricted ourselves to some typical
examples 3 further applications can easily be made by the reader himself
once he has understood the method, and its applications to arithmetic.

No special attention has been given to intuitionistic propositional
logic and predicate logic, because as formal systems they exhibit many
properties which do not generalize to arithmetic and analysis, and therefore
would require a separate treatment.

Speedy publication was thought more useful than final polish, so as not
to make the material outdated at the moment of its appearance. Hence also
the choice for publication in the "Lecture Notes in Mathematics', Even
while refraining from a completely self-contained treatment of all parts,
it was not possible to take all relevant work into account, not even on
arithmetic 3§ for example, N. Goodman's work on the theory of constructions
was left out altogether, since it would not easily be fitted into the
framework of the other developments and so ﬁould consume too much space.

We have no doubt that there are still many imperfections in this presen-
tation ; it hardly needs saying that the authors will be grateful for
errors, misprints, additions to the bibliography being brought to their
attention.

The contents of the present volume are primarily technical in character
but it is to be hoped that the material will not inspire a thoughﬁ: and
mind-less multiplication of metamathematical results, without a thought
spent on their possible significance for an analysis of intuitionistic basic
notions and for foundations of mathematics in general. On the other hand,
the "philosophical interest" of the subject is not promoted by uncritical
analysis. (A single example : the interest of the well known disjunction

property |AVB = fA or B, and the explicit definability for existen-
tial statements are frequently overrated, especially as a criterion for the
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"constructive character" of the system considered., See e.g. the discussion
in Troelstra A.) As regards potential "philosophical interest", it seems

to me to be more promising (but also more difficult) to look for new results
for well-known systems (p0ssib1y different in kind from the results dis-
cussed in this volume), instead of trying to extend known results to stronger
and stronger systems. Of course, to be potentially interesting, the new
results should also have a clear intuitive meaning in terms of the intended

interpretation of the systems considered.

Directions for use. In order to help the reader fimd his way, there is

an analytical table of contents at the beginning, a bibliography, and lists
of notions and notations at the end. Reference to the bibliography are
self-explanatory. § 3.5 refers (except in the appendix) %o chapter III,

§ 5, etc.

The parts on arithmetic and closely related systems are more or less
self-contained, As such we mention especially: Chapter I, §§ 1-8, §§ 10,
113 chapter II, §§ 1-4 (2.4.18 excepted), § 5, § 7 (except where results
of § 6 are used) ; chapter III, § 1 (3.1.1-18), § 2 (3.2.1-28; 3.2.33),
§ 4 (3.4.1-143 3.4.29), § 5 (3.5.1-11; 3.5.16 (i), (iii)); § 6 (3.6.1-
3.6.46), § 7 (3.7.1-8), § 8 (except 3.8.7), § 93 chapter IV, §§ 1-4;
chapter V, §§ 1-6.

Chapter I contains all generalities, and should usually be consulted

when needed only.

Acknowledgements. As regards my own contribution to this volume, I am

especially indebted to G. Kreisel, who permitted the use of unpublished
material in his course notes (apart from the general indebtedness expressed
by the dedication), to J.I. Zucker, for his patient and careful reading of
drafts of my chapters, suggesting many stylistic, expository and mathemat-
ical improvements and corrections, and to Miss Judith van Witsen, who
undertook the seemingly endless task of typing the manuscript. Some other

acknowledgements have been made in footnotes.

Amsterdam, June 1973.

A, S. Troelstra
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Chapter I
INTUITIONISTIC FORMAL SYSTEMS

§ 1. Intuitionistic logic.

1.7.1. Contents. In the present section we describe logical notation and
systems for intuitionistic predicate logic to be used in the sequel. The
reader already acquainted with these subjects may skip them and use them for
reference only. We shall presuppose acquaintance with classical predicate
logic and the treatment of "elementary" metamathematics of classical systems,
and elementary recursion theory (for example, as found in Kleene 1952). 1In
the sequel, proofs in formal systems are usually not set out in a completely
formalized form, but we compromise between readability and rigour; i.e. the
proof is described in sufficient detail so as to make full formalization a
routine matter ; but we try to avoid an excess of detail which obscures the
underlying idea.

In view of this aim, we usually freely employ theorems and rules of in-
tuitionistic predicate logic, whose proof is not to be found in this monograph.
For the reader with little previous acquaintance with intuitionistic reason-
ing, we recommend Heyting 1956, Chapter VII and Troelstra 1969, § 2 for in-
tuitive background, and Kleene 1952 for formal details. T remark here only
that in order to convert an intuitive proof of an intuitionistic logical
theorem into a formal argument, the system of natural deduction described in
1.1.7 is usually very convenient.

In agreement with the attitude towards formalization described above, the
description of formal systems for intuitionistic predicate logic below does
not serve as a basis for deductions in the formal systems to be studied, but
as a reference for metamathematical arguments proceeding by induction on the
length of deductions. Nevertheless, the discussion is fairly detailed, to
enable a reader without experience with intuitionistic formal systems to get
accustomed to them. In later sections and chapters the development gradually

becomes more condensed.

1.1.2. Some notational conventions.

(i) As logical symbols we use &, V, H, V, =, A (absurdity) ; as meta-
mathematical abbreviations we use =, @, V, ¥, €, c, etec.

Definitions (or abbreviating expressions) of a more or less permanent char-
acter are usually indicated by Edef; = is used for definitions or abbre-
viations of a more local character (i.e. within a certain argument), and to

express syntactical identity.

)



(ii) x,y, Zyu, v, w (provided with sub- or superscripts if necessary)
will be used as syntactical variables for variables; in systems containing
arithmetic they are usually reserved for numerical variables. In the sequel
we shall often have to introduce other categories of symbols as syntactical
variables for certain sorts of wvariables in the formal systems studied.
Usually we do not use separate sets of symbols for free and bound
variables, with the exception of systems of natural deducti-n, where we feel
the notational distinction between (bound) variables and parameters (free
variables) to be a definite advantage. In this case, lower case letters
8, b, Cy e from the beginning of the alphabet are used to indicate para-
meters.
(iii) Capitals (primarily from the beginning of the alphabet) 4, B, C, ...
are used as syntactical variables for formulae. t, s will be used to
denote terms (with an exception in chapter IV, where s is reserved for
successor). _
Variables X, ¥, Z, «es occurring free (perhaps only as dummy variables) in
a term t are indicated by the use of square brackets t[x], t[x,y], etc.
(iv) In all categories of variables introduced, sub- and superscripts may
be added to create more variables of the same category.
(v) Syntactical descriptions of the classes of formulae and terms, in
our various formal systems, are as usual § if we wish, we may assume the
actual notation to be bracket-free ("Polish" notation, which is convenient
in godelization) and think of the usual notations with brackets as "abbre-
viations" for better readability. Our bracketing conventions are us usal:
unary operators bind stronger than binary ones, V, & bind stronger than
-. In general, we shall omit brackets whenever we can do so without impair-
ing readability.

(vi) Some abbreviations:

TA S e A - A, Ae>B Sief (A-3B) & (B—14),
Vx,‘...an =def V}(1VX2...VXnA , Ex1...an Fdef Hx1...!3'3an ,
VxeA(B) =g ¥x(Ax = B), Tx ¢ A(B) =ief Tx(Ax & B) .

Also in formulae, we sometimes use x€Q as an alternative to Qx, for
unary predicates Q.
(vii) TFor substitution of a term +t for a variable x (t,x of the same
sort) in an expression (generally a term or a formula) or in a deduection
(especially in chapter IV) we write [x/t]E, where E is the expression.
Quite frequently, when there is no danger of confusion, we shall also
use the more imprecise convention that whenever an expression E(x) has
been introduced, E(t) denotes [x/t]E. For variables occurring in terms

we use square brackets: t{x,y], etc.; in contrast, if © is a function,



ot or o(t) stand for ¢ applied to the argument +%.
(viii) TFormal systems will be indicated by capitals or combination of
capitals with a wavy underlining (e.g. HA, qf-—ﬁfggw, H ete.).

The language of a formal system H is denoted by i(g), the set of well-
formed formulae by Fm(g) or Fm,, the set of theorems by Thm(H) or
ThmH.
Deducibility in ¥ is indicated by H |} or, rarely, as #—H'

AeH means the same as g|—A, i.es A 1is a thecrem of H. Hg ' is
also interpreted as usual. If we add to H a set of axioms I', we write
either HUT or H+T.

If £ denotes a given language, and P a predicate letter not occurring
in £, we write #[P] for the language obtained by adding P 1o the
constants of £,

Similarly, if H is a formal system, presented by giving a set of rules,
axioms and axiom schemata, H[P] is the system with language L(H)[P],
with the same rules, axioms and axiom schemata (i.e. the schematic letters in
an axiom schema now stand for formulae of the extended language).

(X)Church's A-notation will sometimes be used informally to indicate

functions or predicates.

1.1.3. Spector'!s system.

The systems for intuitionistic predicate logic described in this and the
next section are "Hilbert-type systemg", i.e. based on logical axioms and
inference rules. The present system, taken from Spector 1962 (leaving out
his A2, in view of footnote 7 on page 10 of Spector 1962), is given by the

following axioms and rules:

PL1) A-A

PL2) A,A-B =B

PL3) A—=3B, B=C = A=

PL4) A&B—A, A&B-EB, A-AVB, B—AVB
PL5) A-=C, B=C = AVB=_

PL6) A-B, A-C = A-B&C

PL7) A&B=C = A= (B-C)

PL8) A-(B—C) = A&B=C

PL9) A-a,

and for predicate logic ( x a variable of sort i, t a term of sort i,
C not containing x free)

Q 1i) BoA(x) = B ¥xA(x)

Q 2') wkAx-at
Q 3') At~ ExAx



Q4') Ax-B = IxAx-3.

In applications of Q11 and Q4; the premiss is supposed not to depend on
assumptions comtaining x free, i.e. has been derived without the use of

such assumptions.

1.1.4. Godel's system.

For the purpose of verifying the soundness of the so-called Dialectica
interpretation (see chapter III), Godel suggested another system, based on
Qt1-Q4, PL2, 3, 7, 8, 9 and

PL10) AVA=A, A-A&A
PL11) A-AVB, A&B=-A
PL12) AVB = BVA, A&B - B&A
PL13) A=B =CVA - CVB.

This system has the advantage of keeping complexities down to a minimum (i.e.
in the rules and axioms there appear fewer logical symbols than in the

previous system).

1.1.5. Bauivalence of Spector's and Godel's system.

In Hilbert - type systems, we may either suppose deductions from assump-
tions be represented as finite sequences of formulae, each formula of the
sequence being an axiom, an assumption, or obtained from formulae appearing
earlier in the sequence by means of a rule of the system. (This form is
often quite convenient for actual arithmetizationsj however, it should be
noted that in some cases it is more natural to suppose the rule or axiom in-
volved to be indicated explicitly at each element of the sequence). A more
pictorial representation is by means of deduction trees, which we shall use
below. '

It is perhaps useful to remark already here, that in case the proof trees
themselves are objects of study (as in chapter IV) we must think of them as
being completely presented by a tree of formulae together with an indication
which rule or axiom is applied at each node. However, in presenting proof
trees pictorially below, we shall not always explicitly indicate the rules
used, so as not to encumber typography.

A proof given as a seQuence may be thought of as being obtained by con-
sistently extending the partial order of the tree to a linear order.

If f—s denotes deducibility in Spector's system, fb. in Godel's system,
I' a set of assumption formulae, then the two systems are equivalent in the

sense that

F‘-—SAQT}—GA

(for first- and higher-order languages, one-or many-sorted)



Thed =T i—SA follows by *the following deductions :

PL 1) A-A&A (PL10) A&A—A (PL11)
(PL 3)
A=A
PL 4) A& B-A is the second half of PL11

A&B~B&A (PL12) B&A-B (PL11)

(pL 3)
A& B->B

A=~AVB is the first half of PL11

B-BVA (PL11) BVA-AVB (PL12)

(PL 3)
B= AVB

PL 5) - C (ass)

(PL13) A
(pp, 3)CVA=CVE CVC=C (PL10)
B> C (ass)(PL12) AVC=CVA CVA=C
AVB-AVC AVC=C

AVB =» C

(PL13) (PL 3)

(PL 3)

PL 6) (PL 1 deduction)
B&C—~B&C (PL 7)
(ass) A = B B= (C=+B&C) (PL 3)

A= (C>B&C) (71 8)
(PL12) C&A = A&C A&C = B&C
C&A - B&C (PL 7)
(ass) A= C C~(A—-B&C) (PL 3)

A= {(A-B&C) (PL 8)
(PL10) A=A &A A&A-B&C

A - B&C

(PL 3)

(PL 3)

Conversely, we verify that T ]—-SA =T 1—GA by the following deductions :

PL10) A=A A»A(PLS) A-A A A
AVA -4 A= A&A

(PL 6)

PL11) is part of PL 4,

PL42) (P1 5) B> AVE (PL4) A->AVE (PL 4)
BVA - AVB
(PL 6)A&B--»B (PL 4) A&B=-4A (PL 4)

A&B - B&A
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PL13) (ass) A> B B=CVB ((PL z)l)
- = PL 3
(PL 4) C CVB A CVB (PL 5)
CVA = CVB .

1.17.6. Equivalence of Spector's and Kleene's formalization.

Yet another Hilbert-type system is described in Kleene 1952, chapters IV,
V. The equivalence with Spector's system is proved in Spector 1962.

¥arning. In one respect our conventions differ from Kleene's: Kleene
1952 permits application of @1, Q4 also when the variable occurs in
assumption formulae (i.e. the assumption formulae are treated as if they
are universally closed) ; if Kleene wishes to indicate that certain variables
are to be treated as parameters, and hence are not permitted as proper
variables of an application of @1, @4 ("variables held constant") he uses

XqeeeX
the notation f— 1 n .

1.1.7. A natural deduction system.

We now distinguish between parameters and (bound) variables., Below, we
shall use a, b, ¢, ... for the parameters, x,y, z, ... for the variables.
We describe the system briefly (a detailed and rigorous description is in
Prawitz 1965 ; more briefly in Prawitz 1971).

The rules may be schematically described as follows:

&) A B &El) A&B &) A&B £ ]
A& B A B . :
VI ) A VII_) B VE) AVE C C
1" &Vvs A VB C
-I) £ -E) A A-3B
. B
_B
A-3
Y1) Aa VE) ¥xAx
VxAx At 2}
1) At IE) TxAx c
HxAx C
A N
I T -

In the explanations below, it should be taken into account that we are
primarily concerned with formula sccurrences (fo's), i.e. a formula together
with a position in a tree-like arrangement of formulas. "A formula occur-
rence A" means "an occurrence of the formula A" . We shall sometimes
loosely use "formula", when, as is apparent from the context, formula

occurrences are meant.



The I - rules are called introduction rules, the E - rules elimination
rules, since a logical constant is introduced in the conclusion, respective-
ly eliminated from a premiss., So we sometimes write "— introductinn " for
"—=I" etc.

We suppose deductions to be represented in tree form; the top formulas
of the tree are then the assumptions, and the (uniquely determined) end
formula (occurrence) is the conclusion of the deduction. ZEach formula occur-
rence is either a top formula, or the conclusion of an application of one of
the inference rules, its immediate predecessors being the premisses in the
application of the rule., At applications of VE, FE, =I certain assumptions
(of the form indicated by the formulae crossed out in our list of rules)are
discharged ; a discharged assumption is said to be closed (by the inference).
Only assumptions which have not been discharged previously (i.e. at a node
of the proof tree above the one considered) can be discharged. It should
also be stressed that not necessarily all assumptions (possibly even none)
of the same form occurring above the application of VE, HE, =1 are dis-
charged.

We shall think of the assumptions to be grouped into assumption classes i
each assumption class consists of a number of occurrences of the same formula.
All formulas of an assumption class are always treated simultaneously, i.e.
at each application of a rule in the deduction either all formulas of the
class are discharged or none of them is discharged.

A formula occurrence A is said to depend on the assumptions standing
above A that have not been closed by some inference above A.

In the applications of VI +the premiss Aa must not depend on assump-
tions containing a, and in an application of HE of the form 3FxAx c ,
the upper occurrence of C must not depend on assumptions other thaé) Aa
containing the parameter a. In applications of VI, IE a 1is called the
proper parameter of the inference; a parameter is a proper parameter of a
deduction if it is used as the proper parameter of an VI, FE inference.

The open assumptions of a deduction are the assumptions on which the end
formula of the deduction depends. A deduction is said to be closed if there
are no open assumptions.

We shall always assume a completely described deduction to have specified
at each node which rule is being applied, and for the assumptions (top for-
malae), at which inference (if any) they are discharged.

With respect to the rules, we wish to introduce some further terminology.
In an application of an E- rule, the premiss containing the occurrence of
the constant to be eliminated, is called the major premiss of the inference ;

the other premisses, if any, are called minor premisses. So, in our list of



inferences above, A&B, AV3B, A—B, ¥xAx, HxAx are the major premisses of
&, VE, =E, VE, HE respectively. It is convenient to call any premiss of an
application of an I - rule or A‘I also a major premiss,
It will be obvious that deductions which only differ in the naming of their
# Dproper parameters may be regarded as essentially the same. It is easy to
verify that we may always select our proper parameters so as to satisfy the
following requirements, for a given deduction N of A from assumptions T
(ef, Prawitz 1965, chapter I, § 3).
(1) The proper parameter of an application &« of VI in I occurs in
I only in formula occurrences above the consequence of a.
(ii) The proper parameter of an application @ of HE in I occurs in
' only in formula occurrences above the minor premiss of «.
(iii) Every proper parameter in II is a proper parameter of exactly one

application of the VI -rule or the E-rule in I,

1.1.8. Examples. We give some examples of deductions in the system of
natural deduction; the theorems derived will be used later on (§ 10).

In the examples, "(ass)" marks an assumption which is not discharged (i.e.
"open") in the deduction. Assumptions which are discharged are marked by a
number "(1)", (2)", etec., all assumptions in the same class getting the same
nunber. This number is then repeated at the application of a rule where the

assumption is discharged.

I) (1) A A - B (ass)

a“®t B B - Al
A
o (1)
* )

- B = MA

(2) 1 Aa A

a__'E

(3) =~ ¥xax - VxAx

Vx —Ax

~I (3)
1 VxAX = VX -Ax




II1) (1) 4 = (2) Since also (1) —A ——a (2)

A (2 A (2)
(3) -4 A

= TA

A () — (1)

A - TMA
A

—TTA - JA

(3) it follows that
—A e TTT4A

W) (2) A A-3B (1)

B 1B (3)

- (A=B) -=(A-B) (4)
A (3)
-oE (@

A - —7B

—= (A—’B) - (A“’_'I—‘B)

(4)

(1) A s (2)
~
(1 2
A~B - (A-3B) (4) (3) B
‘—A_(Z) A-3B - (A=38) (4)
—1—|_§ -—A - B (5) L(B)
=B - B

== W 5

(mmA===B) =» (A~ 3B)

An application of =I in (I) yields (C=D) - (=D->-C) .

Hence (A= —=mB) = (00 B> —4)
= (02"A > == B)
- (00 A - —B) (111)
and thus
2= (A=B) ¢ (mmA = =7 B) &> (A - —=—B)
V) -1 (A&B) = ——A & -—B may be proved very similarly to II.
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Further (1) A B (2)
(3) "4 & B A&B
(4) ——A & 0B A (1)
—TA - A
A_(2) oTA & 07 (4)
- B =B
— A __ (3
- (A&B) (4) .

DA & 0B~ - (A&B)
Hence ——(A&B) ¢ A & 03B,

1.1.9. Lemma. The following schemata and rules are derivable in Specteor's

system s

(a) A - (B=2)

(v) A= B-A

(¢) A= B, A= (B=C) 2A=-C

(4) [(A= (B=C)) & (A-B)] & A=C

(e) (&= (B=C)) = [(4=B) = (4=0)]

(£) [(A=3B) = (a=C)] = (A= (8=0))

(¢) A= (B=C), A - (C-D) =A== (B-D)

(h) A= (B—=C) =B= (A~0C)

(i) (A=C) & (B=C) = (AVB = ()

(3) (a=3) = [(A=C) = (A=(B&C))]

(k) A= (B& C-D) =4 = (B=(C=D))

(1) A= (B=(C-D)) =4~ (B& C~D)) .

Proof.

(a) From A&B -~ A (PL4), A - (B-A) by (PLT).

(b) Immediate from (=) with PL2.

(¢) A=A (PL1) A - B (ass) A= (B=C) ass

A-> A&B A&B=-C

A=C

= (8=C)] & (a>3),

(d) We put B
K

(PLy) £ =~ B B = (A~B) (rPL4) A-3B (PL4) B=- (A= (B=C)) (PL4)

K- 4 E- (-B) ) L) L), ™ = (s = (3=0)) (o)
A-3 A - (B=0) (c)

A=>C

Here we have used an abbreviated notation for the proof trees (¢) next

to a horizontal line indicates that the line represents a part of the



(e)
(£)

(g)

(h)

(1)

(3)

(k)

11

proof tree of the same form as for tre part of (c¢) above. In other
words, we use (c) as a derived rule to abbreviate our proof trees.
Similar conventions are used below.

Apply PLT twice to (d).

We put D = (A=-3B) - (A—C), E = (D&A) & B.
E -» D (PL4, PL4, PL3) D~ (A=~C) (PL4)
E - A (PL4, PL4, FL3) E = (A-=C) ()
E=C .

(f) is obtained by two applicatioms of PL7 to E-C,

A= (B=C) (ass) A - (C-D) (ass)
(A—»B) — (A—’C) ((e), PL2) (A""C) - (A—‘D) ((e), PLZ)

=5 = G- (¥L3)

A - (B=D)
B&A — A B&A - B A - (B-C) ass
B&A = A&B A&EB - C

(PL3)

B&A = C
B- (A=C) .

]

Let D (A~C) & (B>C), E=AVB-C

D= (A=0) (p) D= (B20) (y)
A= (D-C) B~ (D=C)
AVB ~ (D=C) (n)
D~E

Let D = (A-=3) & (4-C), E=D&A.
E- A E - (A-B) (c) E—-A E= (A-0) (¢)
E~-B E=C

E-3&¢C
D= (A= B&C)
(A-3B) = [(A-C) = (A—B&C)]

By repeated use of PL4, PL3 (A&B)&C - A& (B&C)

A - (B&C - D) (ass)
(A&B) & C = A & (B&C) A& (B&C) =D
(A&B) & C~ D
(A&B) - (C->D)
A - (B=(C~-D)) .
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(1) similar to (k), but arguing in the inverse direction.

1.1.10. Deduction theorem for Spector's system. I, A |_';B =T f—SA—’B .

Proof. We write simply 1— for f—s. We show, by induction on the length
of deductions , that a deduction of B from TU fA} can be transformed
into a deduction of A-3B from T,

Basis. The deduction has length 1; then the deduction consists of B
itself and therefore either Bel, or B=A, or B is an axiom,

In the first case , '} B, hence by 1.1.9 (b) T} A=3B.

In the second case, T A=A by PL1.

In the third case , [} A-B by 1.1.9 (b).

Il:_lél_lgfi_C_)I_}_§E§g. Assume the assertion to have been proved for all deductions
of length <k, and let A1, ceey Ak’ B be a deduction. By induction hypo-
thesis, we have already shown T | A=A, 1<ilk.

If B is an axiom, or belongs to TU fA} s Wwe proceed as for the basis step.
If B is obtained from the Ai by application of a rule, we must distin-
guish various cases.

Case PL2: A, S A, —B. We have F}—A—»Ai , T4~ (Ai—»B) ; also

(1.1.9 (e)) TF [A—»(Ai-B)] - [(A-ﬂAi)-*(A—vB)] , hence T} A-B.

Case PL3: Ai = AT-AT, Aj EA"=AM, B = A'—-A"™_ We have

' (A= (a=a")), T (A= (A"A™)) ; application of 1.1.9 (g) yields
T A-(aram) .,

Case PL5: Assume, by hypothesis I'| A - (B-D), T}l 4~ (C-D).

Then I'|A - [(B-D)&(C-D)] (1.1.9 (j)), and

F{(B=D) & (C->D)] = [(BVC) = D] (1.1.9 (i)). So T A=[(BVC)=D]
(PL3).

Case PL6: Similarly, using 1.1.9 (j).

Case PL7: TUse 1.1.9 (k).

Case PL8: TUse 1.1.9 (1).

Case @1 : Assume TpF A - (C-Bx), I, A not containing x free.

Use PIL8 : I'I— L&C — Bx; then apply Q1: T'— A&C - ¥VxBx, and thus by PLY
P A- (C- VxBx) .

Case Q4 : Assume T | A - (Bx=C). Use 1.1.9 (h), so T'{= Bx= (&=C);
apply Q@4 : T'| &xBx - (A=C); apply 1.1.9 (h) again to obtain

T'F4a - (EBx~C).

1.1.11, Theorem. (Equivalence between natural deduction and Spector's
system.) T '—NA iff T }—5 A (T |—NA indicates that A can be deduced
from assumptions T in the natural deduction system).

Proof. First we show that if T |—SA , then T |—NA . This is a rnutine

matter ; we have to show that (a) for the axioms A of Spector's system,
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fNA., and (b) that for an instance of a rule F,,F, = F; in Spector's
system there is a deduction F,,F, kN F3 (in fact, as we shall see, the
deductions in kN for axioms and rules are uniform in the formula variables

used to describe the axiom (schemata) and rules). For example, A = BVC

is represented by the natural deduction proof A VI and the rule
A VB -7
A= AVSE
(PL5) by A A=-C g B B=C etc., etc.
AVE C C VE
C
AvB-»C"‘I

It remains to be shown thatifr‘—NA s then Tl A. To see this, we
have to cshow that each rule of the natural deduction calculus corresponds
10 & derived rule in Spector's system. For example, for vE we have %o
chow :

If 1‘,A|—Sc, F,B|—Sc, then I‘,AVBf—Sc.

By the deduction theorem, T}, A-C, T f—s B-C, and with PL5,
TlgAVB~=C, sowith PI2 T,AVBC.
The only crucial case is =—I, but this is provided by the deduction

theorem.

1.1.12. Remark on the eguivalence proofs in 1,1.11 and 1.1.5 under addition-

al axioms.

The equivalence proofs remain obviously valid if we add further axioms
(in the case of the natural deduction system, axioms may appear as top
formulas but are not counted as assumptions). In the case of additional
rules, however, the equivalence proofs have to be extended ; e.g. the proof
of the deduction theorem for Spector's system, essential in 1.1.711, has to
be extended with the consideration of further cases corresponding to the

additional rules.

1.1.13. Sequent calculi.

We do not make use of Gentzen's calculus of sequents and its variants
(e®, Gentzen 1935, Kleene 1952, § 77) 3 for an equivalence proof the reader

is referred to Prawitz 1965, Appendix A.

1.%.14. Convention (for indicating the classical equivalent of an intuition-
istic system). If H 4is any formal system based on intuitionistic (many-
sorted) predicate logic, gc denotes the corresponding system with classic-

al (many-sorted) predicate logic ("®" for "classicall).
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§ 2. Conservative and definitional extensions, expansions.

1.2.1. Contents of the section. In this section we have brought together

some theorems on definitional extensions, which are not emphasized in most
text books, but which will be used quite frequently in this volume, either
explicitly or implicitly. For the prevofs, we must refer to Kleene 1952, §74.

Under an intuitionistic (many-sorted) predicate calculus with eguality we

shall understand a system of intuitionistic predicate logic with egquality =

satisfying the axiom
Vx(x =x)
and the schema
x=y ~ (Ax-Ay) .

It readily follows that = 1is symmetric and transitive.

(In what follows equality need not be given for all sorts of variables, if

one makes some obvious stipulations in the theorems ; but we shall leave the
formulation of the theorems in this more general situation to the reader.)

In this section, a formal system H is said to be based on intuitionistic

predicate logic with equality, if g is based on the rTules of intuitionistic

(many-sorted) predicate logic, the equality axiom and schema, and possibly

additional axioms and axiom schemata (the non-logical axicms).

1.2.2. Definition. Let H', H be formal systems based on (many-sorted)
intuitionistic predicate logic, and let HCH! (i.e. the language of a'
is an extension of the langusge of H, and the set of theorems of g is

contained in the set of theorems of g'). Then H' 1is said t» be a con-

servative extension of H (or conservative over H), if
Tho(H') N Fm(H) = Thm(H) .

Let TcFm(H) . Then H' 1is said to be conservative over H relative to

I (or w.r.t. T) if

Thu(H') NT = Tho(E) NT

(we shall sometimes abbreviate this as H'NT = ENT)

1.2.3. Definition. Let H', H be formal systems based on many-sorted in-
tuitionistic predicate logic, and let HcH'. H' is said to be an expansion
of H, if there is a mapping ¢ of those formulae of Fm(H') where the

only free variables are of sorts occurring in Fm(H), such that
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(1) Hhaeoa
(i1) HE s Hta
(iii) @ =A for AeFnm(H).

We say that H' is an expansion of H relative to Iy, FcFm(H) if (iii)
is weakened to
(iii)* @ = A for Ael,

1.2.4., Definition. Let E', H be formal systems based on many-sorted
predicate logic, and let the language of E' be obtained by adding non-
logical constants (i.e. constants assumed to be in the range of certain sorts
of variables, and predicate constants). Then g' is said to be a definition-
al extension of H, if there exists a mapping @ such that (i), (ii), (iii)
hold and

(iv) oA) =A, o(AoB) = @Ao 9B for O = v, &, =

(v) o((Qx)A) = (Qx)gA for Q =V, 3.

(i.e. @ isa homomorphism w.r.t. logical operations)

1.2.5. Remark. A definitional extensicn is an expansion, and an expansion

is a conservative extension.

1.2.6. Theorem (Addition of symbols for definable predicates). Let H be

any theory based on (many-sorted) intuitionistic predicate logic, and let
A(x1,...,xn)e Fn(H) , where all the free variables of A are among
Xgr o009 X 0 Let E' be obtained by addition of a predicate symbol M,

with axiom

Ax ..,xn)é—bM(x1,u.,xn).

1
Then H' is a definitional extensicn of H. (Kleene 1952, § 74, Example 1)
Proof. Trivial; see Kleene 1952, loc. cit. For future reference we de-
scribe the mapping LR required by the definition of definitional extension:
(a) If P is a prime formula, not of the form Mtye.et 5 ©P =P

(®) o (Mb,eit ) = A(t,,000,t)

(e) ¢, is a homomorphism w.r.t. the logical operations.

1.2.7., Theorem (Addition of symbols for definable functions).

Let g be a theory based on (many-sorted) intuitionistic predicate caleculus

with equality. Assume, for a formula A containing free only XqseeesX 9§ ¢
Hib @y A(xyyeeesX s ¥)

where 3!y By abbreviates, as usual, Iy[By& Vz(Bz=z=y)].
Let H' Dbe obtained from H by addition of a new function symbol £,

together with an axiom
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A(X17---7Xn’ f(X,I,...,Xn))

and extension of the axiom schemata to formulae in the extended language.
Let ¢, be the mapping of Fm(H') into Fm(g) defined as follows,
Let us call a term not containing occurrences of f, f-1less; and a term
of the form ft,...t , an fa~term; if t,,...,1% are f -1less, ft,...t
1 n —_— 1 n 1 n
is a plain f - term.
We define ?, for prime formulae P Dby induction on the number g of

P, if qg=0.

i}

occurrences of f - terms in P. ¢1P
Assume q>0 for P; let (on some standard enumeration of term occur-
rences in prime formulae) ft1...tn be the first occurrence of a plain f-
term in P; let v be a variable not occurring in Pj; let C(v) be obtain-
ed from P by replacing the occurrence ft
Then ¢,P = EvD\(t1...tn,v) & w1C(v)].

(The variable v may be assumed to be chosen in a standard manner.)

1"'tn by v.

9, is defined for logically compound formulas by the requirement that it
is a homomorphism w,r.t. the logical operations. w1A is called the £ -1less
transform of A.

Then the assertion of the theorem is as follows :

H' is a definitional extension of ):§ (with 9, as the mapping required by
the definition of definitional extension), provided the additional axiom
schemata satisfy the condition

(a) if A is an axiom by an additional axiom schema, then §|—¢1A.

Proof. Kleene 1952, § 74 (Theorem 42).

1.2.8. Theorem (Replacement of function symbols by predicate symbols).

Let £ be a language containing an n - ary function symbol f and an

(n+1) - ary predicate symbol F. Let ® %, be mappings of the formulae

of # into the formulae of #£ such that wO(A) is obtained by replacing

every occurrence of F(t1,...,tn,t) in A by f(t1,°°.,tn) =t (c¢f. proof

of 1.2.6), and ¢1(A) is the f - less transform of A (see 1.2.7).

Let H, HE' be two formal systems, based on intuitionistic predicate logic

with equality, such that

(i) #(H) is obtained from £ by omitting f, Z(H') is obtained by
omitting F 3

(ii) H contains an axiom !y F(x1,...,xn,y)

(iii) If A 1is a non-logical axiom of H (resp. of H') then H! k-wo(A)
(resp. HFo,(a)).

Then

B o0 (8) €4, H'| o o0,(4) 4,
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1 +1"|—A‘=Ii'+<90r}- P8,

H'+Thae Hegl |- o4,
Note that if g" is the common extension of E and H' in the language i,
containing the axioms and axiom schemata of both, then E" is a definition-

al extension of E as well as H'.
Proof., See Kleene 1952, § 74, theorem 43.

1.2.9. Theorem (Addition of defined sorts of variables).

Let H be a system based on intuitionistic (many-sorted) predicate logic;
let M(x) %be a formula of Fm(g), containing free only x, and

H b @xM(x) .

Let g' be obtained by addition of a new sort of variables (say X9 Ty Zaees),
with rules for term and formula construction also extended to the new vari-
ables, with the axiom schemata and rules of ;! (but where in an axiom or
axiom schema involving quantified variables, the axiom or axiom schema is not
to be generalized by replacing gquantification over the original variables by

quantifiers over the new variables), and with the new axiom and schemata and

rules
Mx, Mt - (VxAx-At), Mt - (At- IxAx),
A - Bx = A - VxBx, Bx = A = ¥xBx = A,

Then E' is an expansion of E.

Proof. (Kleene 1952, § 74, Example 13). We describe the correlation ®,

as follows., Let A be a formula containing a set V of free variables.
We define a mapping mv for the subformulae of A by induction on their
complexity :

@ (P(£1,...,§n) = P(y1,...,yn) for prime formulae P,

CPV(BJ| 0 B2) = ‘:PV(B»]) o wv(Bz) for 0 =-~, v, &,
e (Qx)B) = (Qx) ch(B) for Q =V, %,
o, (Vx;Bx;) = Yy, (My, ~ ¢ Bx;)

Here Fqreeesdy are variables not in V, and XqseeesX ~may be assumed to
be a complete list of the new variables occurring in A.

Then we put q@A = ¢%A.

1.2.10. Alternative approach to defined sorts of variables.

In 1.2.9, the defined sort of variables was treated as a subset of the
original set of individual variables, with respect to the formation rules.
If we wish afterwards to introduce symbols for functions defined on n - tuples.
of elements of {x] fo, it is preferable to treat the new sort of variables

as completely disjoint, and state the formation rules separately.
We then need axioms Vx &y (x=y) (with a primitive or defined =),

¥xeM 8 (x=y). Cf. e.g. Kreisel - Troelstra 1970, Z3.3.4).
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§ 3, Intuitionistic first - order arithmetic.

1.3.1. Contents of the section. In this section we describe intuitionistic

first-order arithmetic and notational conventions, choice of pairing and

sequence codings, and the formalization of elementary recursion theory.

1.3.2. Language of HA. The language of Heyting's arithmetic HA is a
first-order language, Wwith logical constants V, ¥, =, &, VvV, AN (which may
be identified with O=1), numerical variables (indicated by =x,y,z,u, v, %),
a constant O (zero), a unary function constant S (successor), constant
function symbols for all primitive recursive functions (see below in 1.3.4),
and a single binary predicate constant = (equality between numbers). Terms

and formulae are defined as usual.

1.3.3. Axioms and rules of HA.

HA is based on intuitionistic first-order predicate logic and contains

in addition the following axioms :

(X = X

X=y & z=y > X=2

X=X = 0(XypeeeyXpe0esX ) = O(X sy X))
ES { for any n-ary function constant ¢, 1<i<nm

Sx#0,

L Sx=S8Sy = x=y ,

the definining axioms for the primitive recursive functions (see 1.3.4) and

all instances of the schema of induction

IND A0 & Vx(Ax—A(Sx)) = VxAx.

1.3.4, Defining axioms for primitive recursive functions.

The precise selection of initial functions and defining schemata is not
relevant to our discussion of intuitionistic arithmetic in this volume.
A very simple set is as follows:
Initial functions are the zero-place 0, 1-place successor S, and the

n - place projection function I; y 1ifn, for all n, satisfying

i
In(x1,...,xi,...,xn) = X5 .

Our defining schemata are composition and recursion.
Composition is described as follows. If Pqs oees @, are n - place functions
and ¥ an m - place function which have been defined before, then we may

introduce a new n - place function E with axiom
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§(x1,...,xn) = W(m1(x1,...,xn),..., @m(x1,...,xn)).
€ is said to be defined by composition from ¢, Dpseees® -

Recursion: if ¢ is an n - place function and V¥ a n+2 - place function
which have been defined before, then we may introduce a new (n+1) -rplace

function £ with axioms

E(O’ X19"'9Xn) = CP(X1,...,Xn)
§(Sy,x1,---,xn) = ¢(§<Y9X1’~°-9Xn)’ y,x,‘,...,x

) .

In this case, £ is said to be defined by recursion from o, ¢.

n

1,3.5. Rule and axiom schema of induction.

Instead of using IND, we might also have added the rule of induction
Rule - IND BO, Bx — B(Sx) = By

(x not occurring in assumptions on which Bx — B(Sx) depends).

A minor variant :
BO, Vx(Bx=-B(Sx)) = By.

It is obvious that IND implies Rule- IND., TFor the converse, we must

apply the rule to

Bx = A0 & Vy(Ay—~A(Sy)) = Ax.

1.3.6. Natural deduction variant of HA.
The description in 1.3.2-1.3.4 of HA 1is independent of the particular

formalization of intuitionistic predicate logic which is used. However, to
obtain a natural deduction variant of HA which is especially suited to the
proof-theoretic researches in chapter V, we have to make some changes in
the non-logical part also.

As in the discussion of intuitionistic predicate logic, we distinguish
between parameters and variables, We have one individual constant, 0, a
single unary function constant, denoted by S (successor), a binary predi-
cate constant = (equality), and a denumerable sequence of predicate
constants F1, F2, F3, «ee for the graphs of primitive recursive functions.

To the rules of predicate logic we add rules (the basic rules)

t=1 t =t t=1%"! t1=t"
tt=1% t = t"
t, = 1! Fkt1...t....t
1 1 1 1 Fktl ---tn—ltn Fktl '--t‘n-lt;
Fobyeeatlennt ) .
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0 = St t =t St = St
A St = St t =t

and, for example, parallel to the first set of initial functions and defining

schemata given in 1.3.4, we introduce Fk's such that

Fkx1... xi... ani

and if Fk , Fk1’ ceey I have already been introduced, we introduce an
o

P (x > ks kyo ...,km)

km

1 1 ' H 1
P baeee byt 0 B Bpeeebybloee s Py Bpennt B0, Fy bhen bl

Fk t ...tnt

1

and if F , F have already been introduced, we introduce an ¥ (k> m,n)

k
with two rules:

1
Fm t1...tnt Fktot1...tnt Fnttot1...tnt

1
F 0t .eat b Fk(sto)t1...tnt .

(Thus to each n-ary primitive recursive function ¢ there corresponds an
F such that, intuitively, w(x1,...,xn)==yé—+ FX eeeX ¥ .)
Finally, we add a rule of induction ¥ in the form

1)

AO A(Sa)
At

where a 1is a parameter not occurring in assumptions on which A(Sa) depends

IND’

except of the form Aa.
a 1is called the proper parameter of the IND - application.

A proper parameter of a deduction may now be a pr-per parameter of an
application of VI, EE, IND.
We shall also agree to call the premisses of an application of IND minor
premisses ; the premiss of the form A0 is called the zero premiss, the

premiss of the form A(Sa) +the inductive premiss ; the premisses of the

basic rules are regarded as major premisses.

The conditions on variables given in 1.1.7 may now be sharpened by re-
formulating (iii) as
(iii) Every proper parameter in I is a proper parameter of exactly one

application of VI, 3E or IND in 0, and adding

*) In the sequel, IND will be used indiscriminately to refer to the formu-
lation in 1,3.3 and the one given here.
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(iv) The proper parameter of an application of IND in I occurs in I

only in formula occurrences above the inductive premiss of IND.

The present formulation of [TA (say Nat-g&) is equivalent to the one
described in 1.3.2 - 1.3.4 (to be called simply HA below), in the following
sense : obviously, Nat-HA is equivalent %o Nat-—@éf obtained by re-
placing the basic rules by corresponding implications, and IND' by the
schema of 1.3.3. Addition of symbols for the primitive recursive functions
with their axioms is then an expansion E of Nat-—@é* 3 also, E is an
expansion of gé (ef. 1.2.7, 1.2.8). So there exist mappings ¢, @' such
that

BARA © Wat-EA o
(1) Nat-HA A © HA | o'A
Hi (a4 ©4) & (914 ©4) .

1¢3¢7e Eliminability of disjunction in systems containing arithmetic.

In intuitionistic arithmetic, we have
A VB I[(x=0—-4) & (x£0-3B)].

In order to show that this may be taken as a definition for VvV, we have to
show that the axioms and rules for V are derivable for this defined connec-
tive from the rules and axioms for the other logical operators,

In order to see this for the natural deductive formulation, let us first
introduce the following notational convention: [g] stands for a (finite
sequence of) deductions, where [A] indicates a set of open assumptions in

T of the form A. If I is a deduction with conclusion 4,
i
(A]
z
denotes the result of substituting @ for the occurrences of the class [A]

in T.

Now VI can be shown to be a derived rule as follows:

(1) 00 0=0 S040  §0=0

A ag A
A -7 B (1) Y B
0=0 = A 0£0 = B S0=0 = A S0£0 - B
(0=0—-4) & (040 = B) (80=0 =+ A) & (S0#0 = B)
Ax[ (x=0=4) & (x£0 = B)] Tx[ (x=0 = A) & (x#0 = B)] .

VE is obtained as follows:
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(4] [B]
Assume X , I' to be given.
C T
=0
0=b Db=5a
0=Sa
(b=0-8)&(b40-3) A (b=0—A)&(b40~ B)
b=0 Db=0 — A v£0 b#0 - B
(4] (3]
z z
c C
=0 = C b=Sa — C
b=b b=b—C
Zx[ (x=0-A) & (x£0~B)] C
c .

Further we note that we obtain corresponding results for the Spector system
and the Godel system since the proof of equivalence between these systems
also applies if we restrict ourselves to the fragments not involving Vv .

In practice, however, we shall usually treat Vv as a primitive, since

this requires only very little additional effort in our proofs, and moreover
many developments then apply to predicafe logic also, almost without change

or additions.

1.%3.8. Formulation of @& without any function symbols.

It is of course possible to carry the step of eliminating function symbols
in favour of predicate constants one step further than has been done in the
natural deduction formulation of JA , and to replace the successor function
by a binary predicate S(x,y) such that

x=y & S(x,z) = S(y,z)

S(x,2) & S(y,2z) = x=3y

S(x,y) - 074.')’
and the inductive clause for a predicate constant F representing a function
introduced by the recursion schema now appears as

FiX eooX X &F XX .0.x vy & S(xo,z) - FL2X ... X ¥
(where F  has been introduced before F

k)'
Induction appears as

A(0) & Vxy(Ax & Sxy = Ay) = VxAx.

This formulation is equivalent to our original formulations (again by using
§ 1.2) in the same manner as indicated for Nat - HA in 1.3.6 {formulas (1)).

A formulation of this type is used in chapter V.



23

1.3.9. Notational conventions. We list a number of notational conventions

and abbreviations to be used in the sequel.

A) For frequently used primitive recursive functions and pradicates we adopt
notaticns in common use, such as "prd" for the predecessor function, satis-
fying

prd 0=0, prd(Sx)=x;

cut-off subtraction is denoted by =,
x<-0=x, x=S8y =pra(x=y);
signature: "sg", satisfies
sg 0=0, sg(8x) =50 ;

absolute difference " "o

. = 9
|x-y| = (x=y)+ (y=x) ;
maximum and minimum "max", "min" :

max(x,y) = x + (y*+x)

min(x,y) = max(x,y} =~ |x-¥y

For Kleene's T - predicate and the result - extracting function we use T, U

respectively.

B) Pairing.

3 j1,j2 are assumed to be a pairing function from N X N onioc N, with

its inverses:
(1) 340Gy)=x, 3,i(xy)=y, 3(3,2, joz)=2.
1 2 1 2

The use of a pairing function onto the natural numbers is nct essential ;
e.g. Wwe might have used Kleene's 2°3 +to encode the pair (x,y). However,
it is often convenient to assume the pairing to be onto N. In nearly all
cases, the only properties which matter are given by (1), together with the
information that j, j,.,j2 are primitive recursive. For definiteness, we

may fix on some definite pairing function, e.g. by requiring

(2) 2j(xyy) = (x+y)(x+y+1)+2x .

The pairing function represented by (2) has the additional advantages that

(3) x < 3(x,y), ¥ < 3(x,¥y) if x+y > 035 3(0,0) =0

(4) x < x! = jx,y) < J(xt,y), ¥y <y'=ilx,y) < ilx,y")

which we shall assume from now cn.
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For a coding of finite sequences of natural
numbers we also prefer to have a coding onto N (as used in Kreisel and
Troelstra 1970, 2.5.3, in order not to have to specify that a certain variable

is to range overcode numbers of sequences only (as in Kleene and Vesley 1965).

O0f course, an elegant sclution would be to introduce a separate sort of
variables running over finite sequences (obviously a2 conservative extension,
since they can be coded by natural numbers; cf. 1.2.9) 3 but this is rather
a heavy draw on our typographical resources, which we wish to avoid.

For the sake of definiteness, we may assume our coding to be constructed from
the standard pairing function as follows: we first introduce codings Yu

of u - tuples

v1(x)=x
V2(X1,X2) =j(X1,X2)
vu+1(xo’x1’“°’xu) = j(xo’vu(x‘l""’xu));

there exist inverses j? such that

.1 s .u
Jivu(x‘l""”xu):Xi’ Vu(J1Z,---’JuZ)=Z§

now we fix our coding of finite sequences by

<>=0, <> =.p Sj(O,xo),

X seeesx > = Sj(u,vu+1(xo,...,xu)),

where <xo,..,,xu> denotes the code number for xo,...,xu, < > +the code

number for the empty sequence, The present choice of coding implies:

x < <£x eesX 3000
u 09' L u’ *

X jyeceyX D X se0e .o f .
< o? X <K< 0! X o "Xu+v> or v>0

As an abbreviation we introduce
2 Sdef <x>.
1th(n) is used to denote the length of the sequence coded by n, so

1th< >=0, lth<xo,..,,x >=1u.

-1

* denotes the concatenation, so

x X > % <x b4 > = <x b4 >
< 0’ -1 2 AR A VR o’ " uav

We put

n<m = EIn'(nxnf=m)

- def
n<m n<m&nfm,

“def
( >, > are used in different meanings in this volume : 10) as the natural
partial ordering between finite sequences, as just defined ; 20) as a symbol

for an arbitrary primitive recursive well-ordering, in the discussion of the
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principle of transfinite induection TI(<) 3°) as & metamathematical symbol
for "reduces to". In all cases the meaning will be clear from the context.)
Let us write (n)X for a primitive recursive function of n, x such that,

for n = <Xo"'°’xu-1>

(n), =x, for i<u
i~ 71
(n)i=o for iJu.
t1{n) ("tail of n" is a primitive recursive function such that
£1(0)=0, t1(2)=0, +t1(2xn)=n.

The derivation of elementary properties of the codings (a tedious affair,

which the reader might wish to skip) can be found in Kreisel and Troelsira

1970, § 2.

D) P{gof predlcates, godelnumbers, godel- and rogsersentences, numerals.

We shall frequently have to use formalized proof-predicates and formalized

provability. We use
ProofH(x,y), or Proofﬂ(x,y)

for any "canonical" proof-predicate for the formal system I, with intuitive
interpretation: x is the godelnumber of a proof of a formula with gddel-
number Yy. "ProofH" may be assumed to be primitive recursive.

"Canonical" will mean that it satisfies some natural derivability con-
ditions, so as to make it possible to prove Godel's second incompleteness
theorer for them. (For derivability conditions, see Hilbert and Bernays
1970, Vol, II, pp. 294 - 295, where they are described in detail.)

We put

PrH(y) Sder X ProofH(x,y).

"PrH“ is the "provability" - predicate, and may be assumed to be of 23 -
form. (In our versions of HA, "Proof(x,y)" may be represented by a prime
formula. )

A godelsentence for a system E (containing, say HA ) 1is a H:- sentence

(i.e. of the form VxAx, Ax primitive recursive) such that on assumption
of consistency of E, h#VkAx, end on assumption of w- consistency of H,
ff - VxAx .

A Trosser-sentence is described like a godelsentence, but now consistency

of H is sufficient for b/~ - ¥xAx. GOodel- or rosser-sentences are some-
times called centences independent w.r.t. H.

In our standard formulation of HA (the first one described in this
section), Ax may be supposed to be a prime formula.

Numerals. As syntactical variables for numerals we use X, ¥, 2, U, Vy, W

and especially f, @ (in chapter V there is a deviating local convention
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concerning numerals).

If A is a formula, A" denotes its godelnumber ; if +t is a term,
then "t~ denotes its godelnumber. If all the free variables of A(x1,...,x&
are among X,je.esX 5 We shall use the convention (unless indicated other-
wise ) that rh(i1,...,in)ﬂ stands for the godelnumber of A(§1,...,in) as
a function of XyreeesX o (More precisely, if s(rh(x1,...,Xn)j,y1,...,yn)
is the godelnumber of the formula obtained by substitution of the numerals
§1""’§n for x,ye.e,x  in A, then s(rA(x1,...,xn)ﬁ,y1,...,yn) =
= rh(iq,...,in)q) . The notation may cause problems in more complicated
contexts, but suffices for our purposes. DNote that in view of the preceding
conventions, rA(i1,...,in)1, ProofHA(y,rA(i1,...,in)ﬂ) , etc. are in HA

represented by formulae containing LyneeesX) free.

1.3.10. Formalization of elementary recursion theory.

FPor some of our researches, notably in the case of formalized realizability
(chapter IIT, § 2) it is necessary to know that the principal theorems such
as the s-m-n - theorem and the recursion theorem can be formalized in HA .
The reader may take this on faith, or better rely on the detailed formaliza-
tion of recursion theory in Part I of Kleene 1969 ; by omitting there every-
thing pertaining to function arguments (Kleene 1969 discusses formalized
recursive functionals) one obtains a fcrmalization of elementary recursion
theory in HA. (The use of different pairing functions and encodings of
finite sequences is completely irrelevant in this context; ecf. remarks in
Kreisel and Troelstra 1970, 2.4.15 , 2.5.3.)

Below we shall list the principal facts needed.

About the T - predicate we may assume
Hvét—T(X1Y1 z) & T(x,y,2') > z=2".

In our first version of @é’ where symbols for the primitive recursive
functions are present, we may suppose Txyz to be represented by a prime
formula CTxyz==O.

We shall freely use Kleene-brackets {. } as a notation for partial re-
cursive functions and partially defined terms, and also the equality =
between partially defined terms; in Kleene 1969, Part I it is shown in great
detail how these notations can be used as systematic abbreviations.

Let us, following Kleene, denote as p- terms the class of expressions

satisfying the formation rules for terms and in addition:
. n
If ts tyy ..., t ~are p-terms them so is itof (t1,...,tn).

(Actually, we have no need for Kleene-brackets with more than one argument,

but it is no trouble including them.) Instead of fto}1(t1) we usually
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write simply {to}(h) .

Each ©p- term represents a partial recursive function of its free varia-

bles, We use furthermore
= == - = 1 1g s
1t =g Fx(t=>x), t==s der ‘T & s & t=s.
Jote that !t and t=s can be expressed as Zi - formulae.

The s -~m=-n- theorem may now be stated as follows: There exists a

primitive recursive function sﬁ such that
m+n o {.m n
* {21 (x,i,...,xm_m) =~ fsn(z,x,‘,...,xm)} (xm+1,...,xm+n) .

This makes it easy to prove the recursion theorem:

1 ~ n

Vx By Yz ...z (I (3,20, 00002) = 512 (zy,.0002)))
(Consider {xfn+1(s:1(u,u),21,..°,zn) ; we can find a v such that
{van(u,z,|

then {yfn(z1,.,.,zn) o= {s(v,v) fn(z,l,...,zn) ~ {v}

,...,Zn) = {x}n+1(s(u,u),z1,...,z_ﬂ) ; now take y = s{v,v),

n+1
(v,z1,..e,zn)

~ {2 (s(v,v) 55 eeenzy) = P a2z L)

We shall make frequent use of the recursion theorem.
A convenient abbreviation is
led(tyseeert) S4op {...f{t}(t1)}(t2)...}(tn).
(Actually, {x}n(y,l,...,yn) can be defined in such a way that

(P (yy ey ) = bxd(ry e 3) )

# We follow Kleene 1952 and use Az.t, t a p-term, to indicate a godelnumber for ¢ as
partial recursive function of z; if ¢ contains, besides the free variables z,z,,...,z,,
%« Az.t1s a (primitive) recursive function of z,...,z,.
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§ 4. Inductive definitions in HA

s TR S SEESNXISCSRER

1.4.1. We intend to show in this section how certain inductive definitions
of sets of natural numbers may be replaced by explicit definitions. The
result is used repeatedly, especially in § 4.4. The reading of this section

may be postponed until needed.

1.,4.2, Definition. Let £[X] = £(HA)[X] denote the language of HA

extended by & single additional unary predicate symbol X.

I is the least class of formulae of #X] such that

(i) the formulae of HA are contained in T

(i1) formulae Xt', t' a term of HA, are in T

(iii) if A,Be€ T +then A & B, AVBe T

(iv) if A €T, then ExA e ', Vx(tAaeT (t not containing x free,
t a term of HA).

Our next aim is to show that formulae A(X,x) € Z[X] can be shown to be
equivalent to a certain type of standard formula of £[X] (see the statement

of 1.4.4 below) ; we first need a simple lemma :

1.4.3. Lemma. Vx < to[y] vx, < t1[xo,y]A(x°, x,»¥) 1is equivalent to
¥x < t[y] A(cpo(x,y), cp1(x,y),y) , for suitable t, ®,» ©,, Primitive
recursive in x, y, 1:0, t1 .

Proof. For our standard pairing function J onto the natural numbers, and
with its inverses j,, j, we shall assume x<{Xx' = i(x,y) < j(z',y),

y<y' = 3(x,5) <3(x,y') .

We define
W(y) = suplt [x ,y]|= <t [y]]
t(y) = 3(s (v, 4(3)
@o(xyy) =

{:11:: if §,x & t,[5,%y] & 34x <t (]

0 otherwise ,

¢1(x9y) = {321 if 321 _<_ t1[j1x,y] & 311 _<. to[y]
0 otherwise .

Now assume
(1 ve £t [ylvx, < AT SR NCIPR PR )

and let x < tfy].

Now either J,x < to[y] y Jox £ t1[j1x,y] , and then qao(x,y) = 34%,

‘P.'(x, y) = jgx , and by (1) A(cpo(x13f)9 ¢’1(19Y)’y) y OT

Jgx > to[y] Vo oi,x > t1[j1x,y] s in this case, mo(x,y) - cp1(x,y) = 0,

and since by (1) 4(0,0,y), once again A(coo(x,y), o, (x,5),¥) .
Conversely, let
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(2) vx<t[y] Ao (x,5), @,(x,7), ¥)
and assume xOSto[y], x1_<_t1[x°,y] . If we put j(xo,x1) = X, then
x<tlyls o (x,3) = x5 @,(x,5) = x4, s0 by (2) Alx s x4, ¥).

1.4.4. Lemma. Each formula A4(X,z) of I is provably equivalent in
HA[X] (i.e. HA extended to the language #[X] ) to a formula of the

following general form
(1) E[xVy_(_t(x,z) [P(x, yy2) Vv (Q(x) Y z) & Xt'[x9 Y z])] .

Proof., To prove the lemma we have to show that formulae equivalent to a
formula of type (1) satisfy the closure conditions (i) - (iv) in the defini-
tion of T,

Below we shall omit all variables which are redundant in the context of the
argument.

(i) Let Pz be an arbitrary formula of HA. Then obviously

Pz <> HExVy<0 (Pz vV [0=1 & X0])

(x,y are assumed not to occur free in P).

{(i1) Xt' is equivalent to
IxV¥y<0 (0=1V[0=0& Xt'])

(t' does not contain x,y).
(iv) We note the following equivalences
(2) kyv’it[x!y'] A(x,y,3) 31Vz_<_t[j1x, jzx] A(j1x9 3219 z)
(3) ¥x<t 3y A(x,y) <> In¥x<t A(x, (n)x)
(t not containing x).
The closure of [ under existential gquantification is immediate by (2).

The closure under bounded universal quantificatiom follows from (3) and the
previous lemma :

Yu<t* Ty ¥x<t{u,y] A(uw, x, y)

> n Vugt® ¥xltlu, (n),] Aw, x, (n)))

<> ¥n ¥v<t'[n] A(*o(v,n), t1(v,n), (n)to(v,n)) .

(iii) Let

thgto(x) [Po v (Qo & Xté)] ’
Bx Vy<t,(x) [Py Vv (Q & Xt1)].

B
After contraction of two existential quantifiers, we obtain

ALgB =
Bx Wy o < bl 39x] W74t [3px] [P (54%03) V(@ (34%,3) &X83[54x,3])] &
&[P1(33:,5'1) v (Q1(jgx,y1) & Xt."[jzx,y‘])] } .
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We put
P(x, ¥y, u) = (Po(j1x,y,u)&u=0) v (P1(j2x,y,u)&u,40)
Q(xy y,u) = (Qo(j1x,y,u)&u=0) v (Q1(;jzx,y,u)&u;40)
t[x, u] = (1:-u)t°[x] + sg(u) . t,[x]
t'[x,y,u] = (1.‘.u)té[x,y] + sg(u).ta[x,y] .
Then

A&B = ¥x Vugl Vy<t[x,u] [PV (Q&Xt')].
By the previous lemma, this is equivalent to a formula of type (1).

AvB & 8 {¥y<s [x] (P V(R &Xt!)) V
v iy<t,(x] (P, V(R &xE)) ) .

We put

Pt(x,¥,u) (Po&u-o) v (P1&.u,£o)
Q' (x,y,u) (Qo&:u-o) \ (Q,‘&u,éo)
t"[x,y,u] = (1:.u)t8 + sg(u) . 3

t"[x,u] = (1..'-u)t° + sg(u) . ty .

Then A VB ¢ IxTu Vy<t"[x,u] [P'V(Q'&Xt™)]; by (2) this is equivalent
to a formula of the form (1).

1,4.5. Theorem. Let A(X,z) be a formula of the class I'; then there is

an arithmetical predicate (i.e. definable in HA) P,z such that

(1) A(PA,z) - P,z
and for each arithmetical predicate Q
(2) Vz[A(Q,z) = Qz] = Vz[PAz - Qz]

are derivable in HA.
Proof. By lemma 1.4.4, we may restrict our attention to a predicate A(X,z)
of the form

(3) ExVy_gt[x,z][P(x,y,z) v (Q(x,y,z) & Xt'[xvy’z])] .

A proof that z satisfies (3) may be supposed to be in tree form: the
proof 0 provides an x, and for each y<t(x,z] I contains a sub-proof
H’ which either establishes P(x,y,z) (end then represents an end node of
the tree T associated with ) or establishes Q(x,y,z) and Xt'[x,y,z];
in the latter case, with Hz is associated a subtree Tz of T, which
establishes

EI'Vy'S_t[x"t'[x,y’z]](P(x'9Y',t'[x9y,z]) v
v (Q(x',y'st'[xvyvz])&Xt'[x',y'yt'[x73'9z]])) ’
and so on.

It is this intuitive idea which suggests the explicit definition which will
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be given below.
Any natural number may be supposed to code a finite tree; < > codes the
empty tree, and if n = <x°,...,xu> s then the tree Tn represented by n

has the structure

where So,...,Su are the trees coded by xo,...,xu, respectively.
Below we adopt the following notations: we write n, for (n)u, and define

[n]u1 inductively on 1th (m) by
[n]g=ms [n)eyy = (n)“= fy? [n]m* <w * [[n]m]<u> = ([n]y)y -
Now we put for PAz s
z = In3n3p[nf0&m = z& Vu¥y<t(p, ,m ] {([n]
= Upsyom )&t [p,ym J=n  0) &
& ([], ¢y - 0& [n] 40 = P(p,7,m)) 1]

Part I. We have to show A(PA,z) - P,z

ExVy_(_t[x,z)[P(x,y,z) v (e(x,y,z) & EIndm3p B(n,m,p,t‘[x,y,z]))] ’

Py ax<y> 7 07

where @nimdp B(n,m,p,z) = P,z , implies that for a suitable x

Vyit[xo,z][P(xo,y,z) v (Q(xo,y,z)&ﬂnﬂm'ap B(n,m,p,t'[xo,y,z]))] .
Hence we can find w, n, my p such that

Vy_(_t[xo,z][(wy,{ 0= P(xo,y,z)) &
& ('y= 0 - Q(xo,y,z) &B(ny,my,py,t'[IO»Y’z]))] .

Now we define n', m', p' such that

n' = <n°,...,nt(x°’z)>

with iy=o for wy,(o, ﬁy-ny for v =0.

f m") = 2
m! satisfiesl

' =
m(y) *u (my)u
p' = xo

p' satisfies ° .

péy) su " (py)u

Then obviously
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n' 40 & [m!' =2z & Vu'v'y_(_t(pc",z) {([n']u*<y>,éo -

"Q(P.&)Y1ml'1) & t'[P&’yym‘;] =m1'1*<y>) &

& ([n']u#O & [n']u*<y>=0 - P(Pl'lyyvml'l)) H
i.e. B(n',m',p',z), which implies P,z.

Part II. Assume

-

(4) Vz[A(R,z) = Rz],

Ix Vy<t[x,2z ][ P(x,¥,2) V (Q(x,¥y,2) & Rt'[x,¥y,2])] = Rz .
We shall prove by induction on n
(5) VmVpVz{B(n,m,p,z)=Rz] .

Basis: For mn=0 (5) is trivially fuifilled, because the antecedent is then
false,

Induction step: Now assume (5) to have been proved for all n<n', hence
for all x such that [n']<x>,éo .

We may rewrite B(n',m,p,z) as
n' £0 & o=z &
& Vv Vu Vy-<-1;(p<w>*u’m(w)%u.] { ([n' ]<w>*u*<y> 7‘ 0=

- Q(p<'>*u, Y m<w>*u) & t'[p<w>*u’ I m(w)*u] = m<w>*u*<y>)

& ([n']<v>*u*<y> =0& [n']<w>*u’(o - P(p<w>*u’ T m<w>*u)) P&
& VY.S_t[Poomo] [ ([n']<y> 7! 0= Q(P°9Y1m°) & t'[PODy'mo] = m<y>) &
& ([n']<y>- 0 & [n|]°7{0 - P(Pov ¥ mo)) .

It follows that

[n']<‘>,10 - B([n']<'>, Ty Py m<w>)

hence

(6) [n']<"> F0= R(m<'>) (induction hypothesis)

and

(1) { Vyit[pO,Z]{([n']<y> #0=Q(p s7s2) & t'[p »7,2] = n<y>) &
& ([n']¢yy=0& (nt] £ 0= B(p,,7,2)) 1,

therefore, combining (6) and (7):
Vy<t[p z](B(p s¥s2) V (Qp s¥,2) &R '[P »¥,2])) -

By assumption (4), Rz .
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§ 5. Partial reflection principles.

1.5.1. Contents of the section. Let Proofn(x,rA“) indicate the proof-
predicate of HA (e.g. for Spector's system), restricted to derivations zon-
taining formulae of logical complexity <n only. In other words, if the
logical complexity of a proof is described as the maximum of the logical
complexities of the formulae occurring in it, then Proofn(x,rAﬁ) holds iff
ProofHA(x,rAj) and the logical complexity of the deduction represented by
x is £{n.

The principal aim of this section is to establish in HA reflection
principles for the subsystems of HA obtained by putting a bound on the

complexity of the formulae considered, i.e.
(1) HA |- 8x Proofn(x,rA1) - A .

The main step towards establishing (1) is the construction of a "valuation-
function" which assigns to (the godelnumber of) a closed term its intended

value (and which can be shown to do so in HA ).

1.5.2. Godelnumbering of function constarts and terms.

For definiteness in the formal description, we specify scme details of the
godelnumbering.

We put ©® for the code number of the function constant @, where

6 =<0

S =<

Tril =<2, 1, i>

g =<3, 1, 51,..., 5m> if § is defined by composition from ¥, ®,y.eey @ .
E =<4, 9, P if € is defined by recursion from o, ¥.

The godelnumber of an arbitrary closed term is defined as follows.
Each closed term is of the form §t1°"tn (n possibly 0), where E is a
function constant of our language. We put r§t1...t£1 = <§, t1 g soey tn ).
(Note that O as a function constant has number <0>, as a lerm number
<LO>> )

The sequence of godelnumbers of numerals is primitive reecursive s if wvx

is to denote the godelnumber assigned to the numeral X, v 1is given by
VO = <K0>>, v(Sx) = K1, vx>.

1.5.3. Evaluation of closed terms.

Any closed term t in g& can be evaluated by a standard procedure, and
has a standard deduction of t=3% for a numeral ¥ in g&. This procedure

may be described as follows,
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A contractible term is a term of the form w§1...in, ® a constant
introduced by coaposition or recursion, or a projection.

For closed terms t, we define the "right most contractible subterm

occurrence of t" (abbreviated: reso(t) ) inductively as follows:

1°) 0 does not have an reso(t) ;

2°) reso(St) 1is the occurrence in St corresponding to rTeso(t),
if this exists

oy . = - - .

37) if t = w(t1,...,ti,xi+1,...,xn), ¢ a function constant, +, not
a numeral, then rcso(t) is the occurrence corresponding to rcso(ti);

4°) if t = w(§1,.n.,§n), ¢ a function constant, not S, 0, then
reso(t) is t itself.

A contraction is the replacement of I;i1...§n by Ei, or of a term of the

form w(§1,,.,,in), if ¢ defined by composition from ¥, ®,, ..., ® s by

WP, (Xy90e09X )y eeny @ (X, 90009%_)), and if ¢ is defined by recursion from
11 n m 1 n _

¥, X, by “P(X-"--"Xn) if Xq =0, and by X(m(yaxza--ovxn)9y, X29---’Xn)

if x, =sy.

A "standard reduction sequence for +" is a sequence t1,..., tn,

t15't, tn a numeral, such that ti+ results from ti by a2 contraction

applied to the rcso(ti). We then c;ll y, if tnfEi , a value for t.
Since the construction of ti+1 out of ti is uniquely determined, the
value is obviously unique.

Let SRED(z,z') be the Z?-—arithmetical predicate expressing: the
term with godelnumber 2z has a standard reduction sequence to the term with

godelnumber =z!'.
Let us write, for each n -ary function constant o:

(1) Val(®) " VX1...XHSRED(rw i1...iﬁ‘, v(w(x1,..o,xn))).

Ede
For n=0, we may put Val(op) =ief SRED( o7, v(o)) .

Now we establish, for each function constant o

(2) BA | Val(o) .

a) TFor ® =0, this is immediate.

b) For @ =5 also, from the definition of v.

¢) Suppose ¢ is defined by composition from ¥, Pgreees qm, and assume
HA - Vel(y), BAfR Val(e) (i=1,...,m).
Then we easily verify HA | Val(e) .

d) Suppose o is defined by recursion from ¢ and X, and assume Val(y),
Val(x) in HA. We now establish (1) by induction on Xy

In the verification of (a) - (d) we have to use repeatedly that a standard

reduction sequence for ¢t1...tn always "contains" standard reduction se-

quences for t1,..., tn'
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We have established (2), and now we readily prove, by induction on the logi-
cal complexity of +, for any term t[x1,...,xn] whose free variables are

2IWONE  Xyy eeoy X

(3) HA |- SRED(rt[}_c1,...,}_:n]-', Vi eee,x 1) .

1.5.4. Construction of partial truth definitions.

By induction on n we construct truth definitions Tn s such that in HA,

for all formulae A of logical complexity <=,
(1) B T AR F)Y) A (el xy)

).

(the variables free in A are among  XyseeesX)

For prime formulze we put
T (T (Fyeeer® ) = 8(Xyseuas & ) By[SRED(4(Xy,...)","F7) &
& SRED("s(X,s...)", ¥ D] .

Assume Tn to have been defined. Then we define Tn+1 such that for

A, B, (Qx)Cx closed (where Q stands for T or V)

(2)

r a T () = .
{Tn_'_,‘(AoB)i—)Tn(A)oTn(B) (for o y & V)

Tn+1(’(Qx)0x‘) — (Qx)Tn(rci‘) (for Q

2, ¥) .

Such a definition is possible, since for the usual standard godelnumberings
of _a formula,
it is primitive recursively decidable what the main lo: .cal operator¥is; so
we may define T ., by cases in agreement with (2). Now (1) is readily
proved by induction over n. For n=0, (1) is immediate by the result (3)

of 1.5.3, and the induction step is given by (2).

1.5.5. Lemma.
(a) (For Spector's or Godel's version of HA.)
[ o r - = \1
HA | Proofn(y, A(x1,...,xn)“) = Vxge..x Tn( A(x1,...,xn) ).
(b) (For the natural deduction version of HA.) Let us write

)l

T(a1,...,an) =.A(a1,...,an), where T = {01(a1,...,an),..., Cp(a1,..,an

for: A(a1,...,an) can be deduced from assumptions ['; 1let Bqs eees B
be a list containing all parameters free in Iy A. Then
HA Proofn(x,rr(a1,...,an) :‘A(a1,...,an)1) -
norz = 32 = z
- vx1"'fn(Tn( ?1(x1,...,xn) Y& oo & Tn(GC(x1,...,xn)1) -
- Tn(rA(x1 sesce ’xn)-‘) .

Proof. We consider case (a); the treatment of ease (b) is entirely similar.

Let us write o(z,x) for the function whiech is such that

CP(rA(ViO"-09Vim)-‘9 x) = rA((—;)_io’”"mim)ﬁ'
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Then we prove by induction on 1thx  that
Proof (x,z) = VT (o{z,y)) .
n n
To give an example of the argument for the induction step, assume
Vx¥v < u(lth(x) =v & Proofn(x,z) - Yy Tn(cp(z,y))°
Now assume
1th(x)=u & Proofn(x,z).

We have to distinguish various cases, depending on the last rule applied in
the proof with number x. For example, assume x to be the number of a
proof obtained by application of Q1 to some subproof X, of x of an
assertion of the form

E ( LN ] C * o0 -
A(vio,...,vim) B(vi1,. ,vim) - (vio,vi1, ,vim)

Note that x,, TA", "B7, "¢" and the numbers i se+esip can be found re-

cursively (in fact, for the usual godelnumberings, primitive recursively)

from x. So by induction hypothesis
W T (oA, 3))
in HA, which implies in turn (in HA) :

Vy{T (rB((;s- 3 seey C;S- )y -1 (rc((;j. ’ (;Si 3 soey C;y- y )},
n iq ip n i, iq in

l.€,

TR (B, 5 vees ()0) ) = L00E s () s e Gy )
hence

T, ("B 0ee s (90, 0 = W, 2 (O, ()59 +ees GRS
hence

vyir (o("B%,5)) = T (o("vv, ¢7,y))},
n n ig
i.e, by the properties of Tn
£ 1
W T, (e("B = Vv, Chy))

as desired.

1.5.6, Theorem (Partial reflection principles).
(a) For Godel's or Spector's formulation of HA:

HA | Proofn(x,rA(i1,...,in)’) - A(x1,...,xn),
(b) TFor the natural deduction formulation of HA:

HA |- Proofn(x, r=.A(i1,...,in)1) - A(X19'°-’Xn)-
Proof. We consider (a) 3 (b) is treated similarly.
Assume Proofn(x,rA(i1,...,in)1), then by 1.5.5
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Tn(rA(i1,...,}En)")
and therefore by 1.5 4
A(X1,...,Xn).

Q. e. d.

1.5.7. Remark on refinements. We may introduce a more refined measure of

complexity, e.g. by contracting conjunctions, disjunctions and successive

occurrences of the same type of quantifiers. TI.e. we define a degree d by

a("A?) = 0 for prime formulae

A(FA-B") = max(a("a"), d("E")) + 1

d("A1o cee oAI;‘) = max(d(rA,"‘), cres d(rAn")) + 1
where A‘l O vee oAn stands for any formula obtained from A‘!""’An by in-
sertion of brackets and the binary cperator o (either o 1is everywhere &,
or everywhere V), A‘l""’An not being of the form Bo B'.

a("(Qx,) vee (Qx )A(xy,000,% )7) = d("A(x1,...,xn)‘) + 1,

where A is not of the form (Qy)B, and either all Q are YV or all Q

are H. It is easy to adapt the definition of Tn to this new measure.

1.5.8., Remark on quantifier-free systems.

In the various quantifier-free systems discussed here and in the sequel,
(namely qf -HA, being described as arithmetic restricted to quantifier-free
formulae, with a rule of induction, and the systems qf—lj\-géw, qf-!Em-gA;w,
qf-g-%w, qf—HAw described in 1.6,13 -1,6.15) there are two possidble
variants in the formulation:

(i) We state axioms such as e.g. X=x with free variables, snd have a
rule of substitution of terms for free variables; the induction rule may
then be stated as AC, A(x) - A(sx) = :2.y), or

(ii) we state the axioms for arbitrary terms (as schemata), e.g. t=t,
and formulate induction as A(0), A(x)=A(Sx) = A(t); then we may omit the

substitution rule.

1.5.9. [Theorem. Let qf-HA be vHé_ restricted to gquantifier-free formulae,

with Rule - IND instead of induction. Then

) .

Proof. We may reformulate af -HA as an equational ealculus (i.e. each

L = - )
IE.&{- Prooqu_HA(x, A(Xgpeeer® )V) = A(xyrene,x
quantifier-free formula corresponds to an equation t=s, cf. 1.6.14), or
what amounts to the same, we can adapt the definition of ‘I‘O « We then prove

as in 1.5.6 the present theorem.
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1.5.10. Corollary to 1.5.3. Let H be qf-HA with Rule- IND 1left out.
(i) IVI:A:I_t[x’l’...’xn]:y—'PrH(rt[i']"'.’;{:n]zi-‘)°
(ii) There exists a (primitive) recursive ¢, such that
HA |— t[x,l,...,xn] =y = ProofH(cpt(x,‘,...,xn,y),rt[i,[,...,}_cn] =5).
Proof. (i) is immediate from (3) making use of
HA | SRED("t 7, "t'7) = PrH(“t=t-‘) .
(ii) A more detailed inspection of the proof of (2), (3) in 1.5.3 yields (ii).
One first establishes
ro,= =\ ="
(4) I\{’é '_ g(x19---sxn) =y = PIOquf-I{A()\E(X’I"”’Xn’y)’ §(x1,...,xn)=y )

for the constants £ of HA, suitable recursive )‘g’ and then establishes
(ii) by induction on the complexity of +t.
For example, in the proof of (4), we have to consider the case that § is

defined by recursion from ¥, ’1’, and assume as induction hypotheses
- = - =7
vH-é "' X(X1’--~’Xn) =y = PI‘OOfH(lx(X,I,...,Xn,y), ' X(X1s---9xn) =y )
.,H“‘; |_ ¢(2$X09X1’°--9xn) =y = PTOOfH(:q,(-Z.’xO’o-o,anY) ’1
\V(z,xo,...,xn) =3') .

Now we note
§(09 X1, ceey Xn) =y - X(X19-o-,xn) =3

hence ProofH(lx(x,‘,“, ’X s ), r)((J'E,‘,... ,}'tn) =5") .

There exists a primitive recursive §1 which transforms the godelnumber of
a proof of x(x1,...,xn) =y 1into a number of a proof of E(O, 521,...,3-(!1):37
(since the new proof is obtained by adding §(O,3_(1,...,}_cn) = x(l-c1,...,5cn)

(instantiation of an axiom) and applying the equality axioms). Now take

)\g(O, X1,ooa,xn

’ y) = §1AX(X1’°°0,Xn9y)'

Suppose )\g(z,x1,...,xn, ¥) to be defined.
Let- §(Sz,x1,.,..,xn) =y. Then

¥(E(z, X1,...,Xn), Z, X1’-°°!Xn) =Y

and (abbreviating E&(z, X‘I"’”’xn) as E)
PrOOfH(k¢(§(Z9x1’~ov,Xn); 2, X19-0°3Xn9 ), T (E, z, 5219--093’_511) =3-’1)

PI‘OOfH()\g(Z, X1,.-.,Xn, §(Z, X190°-9Xn)) ] r 5(519 i‘l""’in) =§1) .

Combining the proofs of ¥(%, z, §1,...,3_cn) =y and of §&(z, i,l,. ..,in) =
and the instantiation §(SE,§C1,.“ ,J—cn) = W(E,Z,}'{,‘,.,. ,in) , we obtain, primitive
recursively in the numbers of these proofs, the proof number

)\g(Sz,x1,...,xn,y) of a proof of §(S§,J-c1,...,}_cn) =y, etc, etec.
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§ 6. Intuitionistic arithmetic in all finite types.

e P e S -t £ T e P e -y

1.6.1. Contents of the section. This section deals with extensions of E&

to theories involving objects of finite type. The type structure is defined
inductively in 1.6.2.

Subsections 3~ 7 describe the basic system g-géw of intuitionistic
arithmetic in all finite types ("N" from "neutral"). Subsection 8 intro-
duces the combinatorially defined A\ - operator, in subsection 9 it is shown
that HA is properly contained in g-g&w

In subsections 10 - 14 the extensions of N-HA® to an intensional variant
I-H"
("E" from "extensional", "WE" from "weakly extensional") and the quantifier-
free fragments qf -N- H_Am, qf - I - H_Aw, qf - WE - gé\w are described,

("I" from "intensional") and extensional variants Eg-g&w, §-—g&w

Subsection 15 describes a weak system g&w, with its quantifier-free part
qf..gﬁw, in a language with only equations between type zero terms as prime
formulae., The system is of interest in connection with the Dialectica inter-
pretation. The reader who is not interested in the Dialectica interpretation
(§ 3.5) may decide to skip this section, and also the material in § 1.7
dealing with HA"

Subsection 16 discusses pairing operators and simul taneous recursion in
general, and subsection 17 describes a pairing for qf-ﬂE-g&m, which can
even be used in a suitable version of N-ggw with the X - operator instead
of combinators as a primitive. More material on these subjects in § 1.7.

Subsection 18 gives historical notes and a discussion of the literature.

Directions for use. The reader who is primarily interested in HA, may

skip §§ 1.6, 1.7, 1.8 altogether. If the reader has no previous acquaintance
with the intuitionistic theory of finite types, he may find it enlightening,
after a brief glance at subsection 1 - 14, to-have a look at the models HRO,
HEQ0 of these theories described in chapter II.

1.6.2, Type structure I.

The type structure T is defined inductively by the following two
clauses :
T1) 0 € T

=

T2) @,7el = (e)r € T.

Remarks. (i) Intuitively, each type Tepresents a class of objects: type O
represents the natural numbers, and if ¢, T are types, then (©)T represents
a class of mappings from objects of type © 1o objects of type 7.

(ii) There are many alternative notations for (¢)T in the literature, such
as (o,T), o=rT, Tc, (1), etec.

(iii) Bach o€ T is of the form (01)...(cn)0, as is readily verified by
induction over g.
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1.6.3-1.6.7. Description of the neutral theory N-HA".

o

1.6.3. Language of N-HA”.
. . s A c c c o c o

The language contains variables (indicated by x , 3y , 2 , u 4, v , W )
for each type ¢ € T. (Type superscripts are often omitted.)
There is a symbol = for equality between objects of type ¢, for each
¢ € T we usually omit the type subscript.

Furthermore, there are constants for objects of certain types: a constant
0O of type 0 (zero)s; S of type (0)0 (successor), and constants O, o

’

Zp .1’ Rc for all p,0,T € T, whose types will be described below.
'V, - (<4

As logical constants we use &, =, V, an, Hx o

(for each variable x ,

oeT).

1.6.4. Terms.
Let Tm, denote the class of terms of type o, Tm = LJ{Tmcl ceT} .
Terms are defined inductively as follows
Tm 1) Constants and variables of type © Dbelong to Tma
T™m 2) 1t € Tm(c)‘r, t' € Tmy = (tt1) € Tm,_ .

1.6.5. Notational conventions.

We will reserve s, t, T &8s syntactical variables for terms, if necessa-
ry provided with primes or subscripts to create more variables, and provided
with a type superscript: sc, tc for clarity.

We abbreviate (...((t1t2)t3)...tn) as t1t2t3...tn. So t.ltzt3 abbre-
viates ((t1t2)t3), but t1(t2t5) stands for (t1(t2t3)).

We shall use X, y, 2, 4, ¥, ¥, X, ¥, 2, U, ¥, ¥ for finite (possibly empty)
strings of var;ables. So if x = (x1,...,xn), VxA, TxA abbreviate
Vx1...Van, 3x1...ﬂan respectively.

sy &, T will be used to denote finite (possibly empty) strings of terms.

) I1f we wish to indicate that a term is of type ¢, we often simply write
t € . We shall often omit type superscripts; but it is always assumed in
writing down an expression, that the terms are well-formed (i.e. the types
are fitting). So, for example,6 if we write xyz « u, and if we assume
ye€Eo,uerT,z€p, then x e (¢)(p)r.

Let 8 = 8,5000s8 5, t = t,.00,t , 8, € (71)...(¢m)ai, tj €Ty
(1€ign, 1 j<m), then

SE Eief s1t1...tm, cesy snt1...tm.

Immediately after variable-binding operators (V, T, A) juxtaposition indeed
indicates concatenation however, so Vxy where x = (x1,...,xn),

y= (y1,...,ym) stands for Vk1...an vy1...vym etc.
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1.6.,6., Formulae.

Let us denote the class of formulae as Fm, Prime formulase are expres-
sions of the form t° = s° . Fm is defined as usual by two inductive
clauses :

Fm 1) Prime formulae belong to Fm

Pm 2) If A,Bé€ Pm, then also (A&B), (AVB), (4=3B),
(vx°4), (3x°h).

In bracketing we follow the usual conventions.

1.6.7. Axioms and rules.

(a) Axioms amd rules for many-sorted intuitionistic predicate logic.
(1) Axioms for equality :

~) <

X =X ,
L ey’ ey ",

L % - z(c)'r L Z(C)T v
x(")":y(")"' - x(tv)'rza=y(r.'r)-rzc:: ,

and the usual equality axioms for successor
SxO;lO, x° = y° > 5x° = 55°.
(¢) The rule or axiom schema of induction (for arbitrary formulae of the

language).

(d) Defining axioms for Hp,c’ Zp’a’.r, Rc :
p.0 p
Hp,ox Yy =X, np,c € (p)(o)p
L, g, = xx(yz), x e (p)(e)r, y e (p)e, z € p,
p0,r € ((D)E@)T)((2)0)(p)7 -
Rxy 0 =x } xeo,y¢€ (6)(0)e, z€ 0,

chy(Sz) = y(chyz)z

Ry € (¢)((2)(0)0)(0)e .

1.6.8. Theorem (Definition of the A-operator).

To each term tT[xo] we can construct a term M7 (x°] such that
(1)  (aC.aT[°])(t1) = t7[t1] (treo),
(1i) A . tx° =t for t not containing x°,
(iii) if x°¢+¢',t", then
' £ =t - [/t ]t - am°.[y/t"]t, y a variable different from x.
Proof. x%.t is defined by induction on the complexity of t:

(-} T (-] T = T
(a) x a;{ : =AWt Fy e H'r,ct
(b) Ax.x Zaef Eo,(o)c,anc,(o)cnd,o
c (] (- 2.
(¢) x ¢ t; then Ax .tx fier ¥

% (d) x®*et, or (x € t' and t';:‘xc); then Mx7.tt' =

= 5 (Al t) (C.t1) . def
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Now (ii) is immediate by clause (c¢) of the definition. (i) and (iii) can be
proved simultaneously by induction on the complexity of .

As an example, we prove (i).

(a) Let x* ¢ t'. Then (Ax’.t")(t7) =1
c

o4 T
1=t

c c ¢
x (Ho,ox ) = x .

r
r,ot

(®) za,(o)c,anc,(o)ana,ox = na,(o)c

(¢) Let x° ¢ t, then (7. 8x%) (t1) = ttr.
(@) Let x° €t, or (x° € t' and %' £ x°);

([T Je [t = st (T e[ ])en -
= (Axc.t[xa])t“ ((lxa.t'[xa])t") = t[t"]t![¢t"] (induction hypothesis).

Etc., etc.

Remark. In combinatory 1logic, the defined A\ -operator is usually written
with square brackets: [x]t for Mx.t. We find it more suggestive to use
the A-notation instead 3§ but if one has to discuss in a single context
defined and primitive )\ - operators, there should be a notational distinction.
Abbreviation: Ax.t, where x = (x1,...,xn), stands for

kx1.(kx2.(... (Axn.t)... ).

1.6.9. HA as a subsystem of §-§&w.

Let us associate to each function constant o of Eﬁv a term Tw of
w

N-HA", as follows,
(1) T =0, I, =S, and if Ul ie the function such that

i
Un(x1v-~09xn) = xi ’ :‘

(ii) If ¢ is explicitly defined from V,1Pq4s+0.,9 such that

we put TU. = Ax1...xn.xi.

q"(x1,o--axn) = *o(q’a.(x.]v---9xn)9"ovwm(x11---,xn) s We put

Ty = AX geeeX o T'O(Tw1x1...xn)...(Twmx1...xn).

(iii) If o is defined by primitive recursion from ¥,, ¥, such that

17 %
9 (O,X1,.--,Xn) = *1(x19---9xn)
m(Sz,x1,...,xn) = tz(m(z,x1,...,xn)z,x1,...,x

)

n
= R A . .

we put T T*1( xyz th(yf)zg)
Then, for any n-ary function constant o of HA, T¢3t1...xn "behaves
like" w(x1,..o,xn). More precisely, if we define a mapping A on terms
and formulae of HA by induction on the complexity :
(iv) Ap = To for each function constant ¢ of HA, ax°
(V) Bw(tyaeenty) = (80)(8t,)een (88)
(vi) A(t=8) = (0t =as),

(vii) 4 is a homomorphism w.r.t, logical operators,

]
x ,

then HA translates under A4 into a subsystem of g-—g&w.

Note that A is bi-unigue.
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1.6.10. Intensional identity or equality.

A basic feature of intuitionism is that we have to deal with mathematical
objects as they are given to us; for example, a species (set) of natural
numbers is given by a description (definition) of a property of natural
numbers ; the extension of the set (in the classical sense) may then be
conceived either as a mode of speech, to avoid spesking about equivalence
w.r.,t. membership, or as an equivalence class, i.e. a species of higher type;
the latter point of view makes sense if we accept the concept of a power
species.

Similarly, a (lawlike) function is given as a rule; its extension (graph)
in the clessical sense is a derived notion, From a foundational point of
view, it is therefore natural to pay attention to the concept of definitional
or intensional equality: two objects are said to be definitionally or in-
tensionally equal, if they are given to us as the same object.We do not a
priori suppose the concept of "definition" or "description" to be restricted
to definition in a given language.

Whatever the precise content of the concept of intensional identity, it
seems clear that it should be decidable whether two objects are definitional-
ly equal or not. This is expressed in the extension 5-g§w of g-g&w

described below.

1.6.11. Description of ;-—g&w.

In ;-—g&w, the intended interpretation of =0 is: intensional equal-

ity between objects of type o l‘_%&w is obtained from N-g&? by asdding
a constant E € (¢)(e)0 for each type o € T such that
E xayc = 0 &> x°=y°,
°s 0 -]
ony =0VE°xy =1,
which implies decidability of equality at all types:
-y v 4o,
1.6.12. Description of ‘E‘-H\Aw, @-g&w.

Another way of interpreting equality in g-—g&m is assuming it to be

extensional equality : two objects of type (o)T are equal if for every

argument of type ¢ they yield equal values. This amounts to
(1) ()T u(a)T(hu — % (zy =uy)) .

Adding (1) to E-—g&w yields an extensional version of intuitionistic
arithmetic in all finite types, which we may denote by §-—§é:.

For some purposes (notably the study of the Dialectice - interpretation
in Chapter III) it is more convenient to use another version of E-—g&?, to
be denoted by §-—§é?. Here egquality between objects of type O is the only
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primitive concept, equality for all other types is a defined notion (in-
ductively on the complexity of the types)

Z(G)T - u(a)T Edef Vya(zy=uy) .

The axioms for equality of g-l\-’L\A;‘w are retained (but some of them become

redundant, such as 2z = V=2zy=uy, which now holds by definition) ; the full

force of extensionality is now in
(2) =y - z(o)Tx=z<°)Ty.

Note that E-VH\é: may be interpreted as a definitional extension of g_%w’

obtained by addition of new symbols =g for definable equality of type ¢

to E-H.Aw.

@-]\E{Aw is obtained from E - H_Aw weakening (2) to the following rule
of extensionality

EXT-R. | BXeeeX = X eeX FA(t) = FA(s).

At quantifier-free, X, ,y..e3X a sequence of variagbles not occurring
1 n

in A, t, s, such that tx1...xn and sx are of type O. The nota-

.OQX

1 n
tion f-—F indicates that F has been derived without assumptions.) A
s€emingly stronger (buk in Fack equivalenk ) voriank is

EXT-R'. | P = PR eeeX = SXyielX FA(t) = P~ A(s).

( P quantifier-free, other conditions as before.)

Note also that EXT-R is equivalent to the following rule

(3) f—tx1...xn=sx1...xn = +F[t]=F[s],
where F[xc] is a term in the language of E-%w. For, if A[xc] is a
formula, we can always find a term FA[XQ] such that F [xc] =O<—>A(x°)

(see 1.6.14) 3 therefore, from (3)

Fixgeeex =sx,0x = FF,[t]=F,[s],

A

hence

ftxgeeex =sxo0x , FF[t]=0 = {F[s]-0.
Conversely, apply EXT-R with F[t]:F[xc] for A(x°), then A(%t) ob-
viously holds, and A(s)=F[t]="F[s].

0o <3



o<1

* %
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1e6.13. Description of qf-y-%w, qf-;-}}éw, qf-@-@éw.
The quantifier-free part of N-HA, I-HA", WE-HA , denoted as

qf-g-@w etc., may be obtained from the corresponding theories with

quantifiers as follows.

(i) From logic we drop gquantifier rules and - axioms. In discussing

deductions in qf-W_‘g-}“Ig.w ’ t°- " is then to be conceived as an
abbreviation for t°x1...xn= sax,'...xn , x1,...,xn variables not occurring
in t, s or (open) assumptions of the deduction, such that 'bx,]...xn is
of type O.

{ii) The induction schema is replaced by the induction rule:

A(0), A(x) = A(Sx°) = 4x°, for A quantifier free, x not occurring free
in assumptions of the deduction.

(iii) AXS '—‘«Atc, if x does not occur in (open) assumptions.

(Cf. our remark on quantifier-free systems in 1.58.)

1.6.14., qf -I- Iéé_w, qf - WE - Iiéw as equational calculi.

Since in aqf - g-}ié_w, qf-Wv}g_—.;H._A;w prime formulae are decidable, all
propositional formulae are decidable, and therefore the propositional oper-
ators may be represented by certain constant terms expressing the classical
truth functions.

We consider the case of qf—_IA-I:I’A:_w: Let c¢on, dis, imp be primitive

recursive functions (of type (0)(0)0) such that

con(sx,y) = con(x,Sy) = S0, con(0,0) = O,
dis(0,x) = dis(0,x) =0 , dis(Sx,Sy) = SO,
imp(Sx,y) = imp(x,0) =0 , imp(0,Sx) = SO.

Now we construct, for any propositional A, a term TA such that
= > H
TA 0 A

For T, . we take Ets. T,.. = con(TA,TB) s Thug = dis(TA,TB);

Tpop = 1mp(TA,TB) .

Similarly for qf-ﬂEv-I}A;w; here we only need to put T, _ = |t -s].

t=
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1.6.15, The systems EA;_w, qf-H“}:w,

In connection with the Dialectica interpretation in § 3.5, the following
subsysten ‘E‘A;w of y_%w is of interest. (The reader who is not interest-
ed in the Dialectica interpretation can omit this section, or postpone it
til1l he arrives at studying the Dialectica interpretation.)

The only prime formulae of "H{\:w are equations between terms of type O3
the constants are those of X- IiA;_w , except that we now only need equality of
type O as a primitive. The logical basis is many-sorted intuitionistic
predicate logic. The nonlogical axioms consist of the induction schema, the
usual axioms for type O equality and successor

o ) o o o o o _o
X =X 4, X =2 &y =2 =X =%

sx° # , x° = yPessx®-sy°,

substitutivity for type O objects:

% = 3% = t[xo] - t[yo]

and the following schemata (which may be viewed as very special instances of

the extensionality rule), for all t€O:

t[Ixy ] = t[x]
SUB t[zxyz] = t[xz(yz)]
§[Rxy0] - +(x], H[Ray(Sz)] - 4[y(Rayz)z] .

%m is clearly a subsystem of E—@w. (We do not know whether H-]_&’Aw is
conservative over gA;w) qf-VH_.;A_w is defined in the obvious way, similarly
to af -N-mA".

Remarks. (i) The schemata SUB give us for the defined A- operator:

[ (. 81)t"] =4[[x°/t"]t'] (te0), and especially (M .t)t' = [x°/t']t
for t€0.

(ii) If we use t: = t; as a metamathematical abbreviation for FrFlt,] =

F(t,] for all type O terms F[xo] , then we see that t: = t; amounts to
bx °)°t: = x(c)ot;’ . TFor t‘,’| = t7 implies the latter assertion, and con-

versely, taking for X(C)O= =" . F[x°], we obtain Frlt,) = F{t,], in
view of the preceding remark.

(iii) HA 1is of course also a subsystem of VH&w.

1.6.16, Simultaneous recursion and pairing : a comparison of various

treatments.

We have formulated our system li-HAw with a primitive Ro for each ¢,
For certain applications, however, (cf. § 3.4, 3.5) one requires constants for
simultaneous recursion: for each sequence of types o* = <c1,...,cn> ’

o, € g for 1{ifn, one requires a sequence of constants R;*, ceesy R:*

(to be abbreviated as Rgx or 5) satisfying
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(1) Rx

ne
o
1]
K]
W
1134
<
Py
&)
N
I
e

(Bxy =)z

U*

where X € ¥y = (y1,...,yn), yiETiE(c1)...(cn)(O)ci, 1<ilny
1 - - ;
Rox € (94) .. (cn)(n‘) (Tn)(o)ci sy 1<i<n.

It has been shown by Schutte (see Hindley - Lercher -~ Seldin 1972, p.156)

e

that constants for simultaneous recursion satisfying (1) can be defined in
H-Hvéw (1.7.7) 3 the proof that they satisfy (1) can be given in the guanti-
fier-free fragment of qf-y\-vHé\w (1.5.13).

A more complicated way of constructing constants R, via simultaneous

course-of-values recursion is described in Diller - Schutte 1971.

If one wishes to avoid the fairly long and ad hoc argument needed to obtain
R from Rc sy there are various possibilities.

(A) One may include constants R satisfying (1) as primitives in the de-

*
scriptions of &-vﬁé‘w. Sin;: quite consistently sequences of variables
and terms can be dealt with in complete analogy to the treatment of single
variables and terms, this causes no particular difficulties apart from a
certain awkwardness in notation now and then. (This alternative has been
followed in Troelstra 1971%.)

(B) One may extend the type structure I to a structure g' including

Cartesian-product types, adding to T1 , T2 a third closure condition

( X binds stronger than application) :

T3): 0,7 € T' =0 XT € T

“
=

(and replacing T by T' in T1, T2 ),
and to the set of constants one adds pairing operators D, . € (o) (1) xT
?
with inverses DI _ € (¢ xr)e, DI . € (e xt)T (for all o,TeT') with
’ ’ R

axioms

(2) »p(Ddxy) = x, D"( Dxy) =7y,

(3) D(D'z)(D"2) = z.
It is shown in 1.8.2 that this enlargement PI.‘H..‘Q‘:;, ("p" for "pairing) is an
expansion (and a fortiori a conservative extemsion) of E-UHg}\w.

In the presence of pairing operators satisfying (2) (but not necessarily

(3)), we are able to define operators Doxs D;* for mn - tuples

o* = (645+0059,) such that

i X
D (Dx1...xn)=xi, 1<i<n.
By a standard trick well known from recursion theory, simultaneous re-
cursion operators may then be defined; we illustrate the process for double

recursion. We put
T = R°1xo.2(Dx1x2)()\uz . D(y1(D'u)z)(y2(D"u)z)) .

Theo we readily prove by induction



48

D'(TO) = x,, D"(TO)= x,
D' (T(52)) = y4(D'(T2))z, D"T(Sz) = y,(D"(T2))z

and therefore we may take

1 = 2
R = AKXV, V7 . D'(Tz), Ry

= "
0449, 1 MgXSY 4752« D" (T2)

1299

It has been shown in Barendregt A that it is impossible to define in ;[‘-H_..f:w
types oXxT € T, and operators D € (o)(r)oex7, D' e (9Xr)o, D" € (0XT7)7
satisfying (2)?

In suitable versions of u-;ﬂéw with the X -operators as a primitive it
is possible to construet o Xxt, D, D', D" such that (2) is satisfied (see
end of 1.6.17) ; then, of course, the constants R can be defined.

A fortiori, in the extensional system qf-ll__E-—Hwéw, it is possible to
define product types and pairing operators such that (2) is satisfied (cf.
1.6.17), so in extensional contexts simultaneous recursion does not cause any
problems.

It should be noted that the methods of Schutte from Hindley - Lercher -
Seldin 1972 , or of Diller and Schutte 1971 do not extend automatically to

other schemata for defining functionals which have "simultaneous" and "single"
versions, such as bar-recursion, or definition by induction over well-founded
trees sy in such cases, we are forced to fall back on the methods of treatment
described under (A) and (B). For this reason, we have e.g. in § 2.3 indicated

a treatment of computability including pairing operators.

1.6.17, Pairing operators in aqf -WE - EA;w .

A pairing operator for the extensional theory, with inverses, is implicit
reduckion ko
in theYpure types (1.8.5-1.8.8), since in the description of the reduction
pairing operators with inverses for the pure types are given.

Assume a product type 0 X0 € T, and operators D ’ DC') 0! D(‘j‘ to be
23 ’ s [ae

0,40
given such that

] 0.0 _ o " 0_0 _ s}
(1) Do,o(Do,ox y)=x, DO,O(DO,OX y) =3 .
Then product types ¢ XT, and operators D, _ € (8)(t)e xr, D! € (¢ x1)o,
? ’
Dy . € (e x1)1 (satisfying 1.6.16 (2)) may be constructed relative to
9

D , D , D" as follows. Let
0,0 0,0 0,0

6 = (¢,) e (500, T = (7)) aee (10
Ve put
o XT = o (61) (am)(1'1) ces ('rn) 0 X0
and define

o (o) - I T
0" Fger O ° def 'r,co ’

[



o
e 4, O T "1 m T4 T™n
Dc,,r KTy Ky eee X Ty oeee ¥, .Do,o(xx1...xm)(yy1...yn),
e o T T
bt o=, L x®.D1 ax....x. O ...0%,
C,T ; m 0,0 71 m
W o= a,ox T ™ . 1 Cm
o, Az, Yq eV, - Do,ozo eee O Yqeee¥,-
Then
o o} T T
oT 1 m 1 n
9 = 1 =
DU,T(DC,TX y ) = My eeeX . Do,o(Do,o(XX1"‘xm)(yO .0 7)) =
o, o
= KX1 ceeX W XXyl X = X
o "
and similarly for Da,T'

We may take OX(C =0, and D , D' , D" to be given by the standard
0,0 0,40 0,40

pairing function J with inverses j,, Jj, (1.3.9)

. . = s w o= s .. ~ . s _
0,0 - Myed(x,y), DL S Gy D = dps 3930ny) =% §oi(ny) -y
Alternatively, if we take 0X0 = ((0)(0)0)0, and we define

Axoyoz(o)(o)o.

Do,o “def BXY s
' = " = n*
Do,o def A(o)(o)o,o no,o’ Do,o def A(o)(o)o,o 0,0
where
- oT 10O *
bo,r Tder MV T E, no,o def MV -V

then (1) is satisfied againj in fact, we can now establish 1.6.16 (2) in a
variant of qf-g-g&w with the A - operator as a primitive, with rules
t=1t' = A&x.t=Ax.t', Ax.tx=t if t dces not contain =x, but without use
of the induction rule (cf. also the discussisns in 4.8.4, 2.2.27-34).

1,6.18, Historical notes ; variants in the literature.

A quantifier-free theory of primitive recursive functionals (corresponding
to qf-;-g&w) was first intro>duced in Qéggl 1958. The system is sketched
only, i.e. no detailed list of primitives, axioms and rules is given., TFrom
footnote 3 in Godel 1958, however, it is obvious that an intensional, not an
extensional version was intended.

In Kreisel 1959, Spector 1962, and Grzecorczyk 1964 an extensional version
of the quantifier-free theory is studied. If we disregard the schema of bar-
recursion, Spector's system corresponds to qf-—@ﬁ-g&w. His primitives for
functionals contain 0, S, constants 8 (substitution) satisfying ¢ Xyz =

E(IE) , constants §§ (projection) satisfying §2X ceeX =X and schemata

1 n 1°?
for defining functionals by composition and (primitive) recursion. Spector's

paper also contains the generalized induction rule (1.7.10).
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In Kreisel 1959, the type structure includes product types. As noted in
section 5 of Spector 1962, Kreisel's schémata are very similar to Spector's
schemata, but have to be supplemented by a schema permitting A - abstraction.

Grzecorczyk 1964 describes two variants of the quantifier-free theory.

The first set is based on c¢closure under composition, and contains ©, S, and
I, B, C, D, R! satisfying Ix=x, Bxyz-=x(yz), OCxzy=xyz, DXy=Xyy,

R'xy0 =%, R'xy(Sz)=yz(R'xyz). The second set is based on 0, S, I, and
five schemata for defining new functionals from previously defined ones.
Grzecorczyk also describes pairing operators in detail.

In Tait 1967, the full intensional theory, with logical operators is
studied 3§ Tait's formalism corresponds to a-géw, but with x°==yc ch;éyc
as an axiom instead of having Ec as a primitive.

Diller and Schutte 1971 seems to be the first paper where a neutral theory

(contained in qf-y;-g&w) is taken as a starting point.

The pairing operators described in 1.6.17 seem to belong to the "folklore"
of the subject; the first variant in 1.6.17 is e.g. found in Luckhardt 19?%??.
This variant has the advantage of being consistent with a notion of 1inkension-
al equality for the typed A-calculus (cf. end of 1.6.17, Barendregt A).

Other studies of the functionals of Eﬁ'gﬁw’ in the context of a typed
theory of combinators, are e.g. Sanchis 1967, Stenlund 1371, 1972.
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§ 7. Induction and simultaneous recursion.

1.7.1. Contents of the section. The section discusses various points of

detail concerning induction and simultaneous recursion in qf-l\r‘-HAw, g“’
and extensions of these systems, The reading of the section may be post-
poned until the need arises.

In 1.7.2-~-1.7.7 we describe a method, due to Schutte, for obtaining
constants for definition by simultaneous recursion from the constants for
simple recursion. Proofs are carried out in qf-g-géw. If the reader is
interested say in a discussion of modified realizability, or the Dialectica
interpretation (in § 3.4, 3.5 respectively), and wishes to avoid the tedious
details of 1.7.7, he may either simply believe the result, or use the type
structure extended by Cartesian product of formation (ecf. 1.8.2), or
simply postulate in the description of \I"{-H\Aw simultaneous recursion
outright.

In 1.7.8-1.7.10 we obtain an induction lemma, needed for the Dislectica
interpretation in § 3.5, taken from Spector 1962.

In 1.7.11 we briefly discuss (following Diller and Schutte 1971) how the

iterator may replace the recursor as a primitive.
Subsection 1,7.12 discusses the treatment of simultaneous recursion and

the induction lemma for Ijﬁw.

1e7e2-1.7.7. Simultaneous recursion in qf-y\-%w.
1.7.2. Definition. We put
prd =; . Ax. RO(M\yz . ¥)x,
= ief Rx(Auv . prd(u))y

XDy Sgop XY £0, x<y Sief YO X
X275 Fger (x>y) Vx=y, x<{¥ Zjer Y2X -

XLy

The following two lemmas will be needed in part in 1.7.7 below, but espec-
ially in 1.7.10. The reason for explicitly proving all these elementary
properties is that we wish to verify that they indeed have quantifier-free

proofs.

1.7.3. Lemma. In qf-N-EA":

(i) prd(0) = 0, prd(sx) = x

(i) x20=x, x2Sy = prd(xzxy)
(iii) pra(x) 0= x40

(iv) Sx=o8y = x=y

(v) =x=2x=0

(vi) Sx*x = 1
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(vii) x££ 0= x=Sprdx
(viii) Sy{x=y<«x

(ix) y<{x = x2y=5(x=<Sy)
(x) Sxty=0=x>+y=0.

Proof. (i), (ii) immediate from the definition.

(iii) : Contraposition of x=0 = prd(x)=0.

(iv) : Induction on y: Sx=S0=prd(Sx>0)=prd(Sx)=x=x+0; assume
Sx~Sz = x>z, then Sx2SSz = prd(Sx=Sz) = prd(x>z) = x=852; apply
rule of induction.

(v) : By (iv) and induction on x.

(vi) : Induction on x.

(vii) :+ Induction on x: OO0 = 0=Sprd0; assume z4#0 = z=Sprdz,
then Sz £ 0 = Sprd(Sz) =Sz.

(viii) : To show X2Sy#0 Vx=Sy=x=y£0.

X=8Sy = y=prdx, so x>y=Sprdx =prdx=1 (by vi).

x2Sy £0 = prd(x=y)§03 so x=SyF0—=x=y#0 (by iii).

(ix) s+ y<x=x2y34#0; x2y£ 0= Sprd(x+y)=S(x=8y) .

{(x) : By induction on y.

1.7.4. Lemma. In qf—g-HAw y<x = x* (x2y)=y.

Proof. Induction on y.

(1) 0<x = x> (x+0)=x2x=0 (v.7.5, (v)),
(2) S0<x = x> (x2S0)=x=>prdx =1 (1.7.3, (vid).
Assume

(3) Sz<{x = x=2 (x2S5z)=S5z.

If SSz<{x, then SSz<x, hence Sz<x (1.7.3, (viil)) s with 1.7.3(i%
x+Sz = S(x+8S5z) .

prd(x= (x+552)) = x> S(x2552) =x=(x=852)=5z4£0, so x=(x~5SSz)=SSz
(1.7.3, (vii)).

Hence
(4) (3) = [(SS2<x) = x=~ (x=5Sz) =SSz] .
(2), (4) give the induction rule

(5) Sy<x = (x+(x+8sy) = Sy.

Hence also by induction from (1), (5), the assertion of the lemma.

1.7.5. Simultaneous recursion in qf -} - %w .

For each sequence of types Oys sees cn we wish to construct a sequence
i

of constants R
Tqsees ,cn !

i = 1,...,n (abbreviated as R) such that for
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sequences of variasbles x = XqreossX
vy € (01) (an)(o)ci

(1) RxyO =z, Rxy(sz) -y (R

= w . .
» Y Yqo ,yn, here xl € ol,

z2)z .

I
[N

In order to obtain constants R as required in (1), it is sufficient to

establish the recursion rule:

If %, s are sequences of closed terms (of fitting types), there
(2) is a sequence of closed terms T such that T0 - t,

T(Sz) = Sz(Tz) .
To obtain (1) from (2), we apply (2) with AxXy . X, )\voggz. ,z_(g)gtz)v
(with uw and x having the same types) for t, s respectively. Then T

satisfies the equations for Azgz +.Rxyz, i.e,
T0xy = X, T(Sz)xy = z(l‘z:_tz)z ,
and therefore Myz.Tzxy satisfies the equations (1) for R,

The method for establishing (2) below seems to be due to Schutte * (cf.
Hindley, Lercher and Seldin 1972, page 156); a stronger result (simulta-

neous course - of - values recursion) is established in Diller and Schutte
1971; this implies (2).

1.7.6. Pairing functions for objects of equal type.

Let P, be a pairing function of type (o)(¢)(0)o, satisfying
Px°3°0=x", P x3°(8z) =y .
o c
For Pc we may take
Mayazo < Rx(Wv° . ¥)z .

Pa Edef

1.7.7. Theorem * (Schiitte). The recursion rule (2) of 1.7.5 holds.

Proof. We establish this by induction on the length of the sequences t, 3.
For length 1 the solution is given by Rt(luv. svu) . Assume (inductior_x )
hypothesis) (2) to have been established for t, s of length n. We wish
to construct "61, vees :En+1 such thet B

[%(0) = 2

(3) l
Ei(Sz) = biz(f1z) eee (%

)

where 8 bi (1_<_i_<_n+1) are constants of the appropriate type.

z
n+1

Let R' = Axyz . Rx(Mv.yvu)z, so that R'xy0 = z, R'xy(Sz) = yz(R'xyz) .

- ——— -

J am indebted to R, Hindley for communicating to me a correction to page
156 of Hindley, Lercher and Seldin 1972, together with {the proof given below.
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We put
t o= Augeeou . R'an+1()\v . bn+1v(u1v) cee (unV))
5y = AVu,..ou W, P(uiw)(biv(u1v) ees (unv)(tu1...unv))(w-'-v) .

By induction hypothesis, there are t:, ceesy t; such that, for 1<{i<n

tfo =nai ’ t;(Sz) = tiz(t:z) ces (t;z) .

i
We put
fiEKz.t;zz, 1{ign
Y = * *,
L Az . t(t1z) (tnz)z .

Now (3) is proved by induction.

Case a, 1<{i<n.

£.0=1t00 =Ta.0 = =
1 1
fi(Sz)

i
t;(Sz)(Sz) = tiz(t:z) (t;z)(sZ) =

P(ti*z(Sz))('biz(t:zz) cee (t;zz)(t(u’;z) cee (u;z)z))1
biz(t:zz) cee (t;zz)(t(u:z) cee (u;z)z)

" noe

fn

= biz(fiz) eee (fnz)(tn+1z) .
Case b, i =n+1,
We first establish
(4) t’i‘(z+w)z = t*i‘zz for 1{in, all w,.

We prove thie by induction on w., For w=0 (4) is immediate.
For w)>O0,

t;(z+Sw)z = t;(S(z+w))z =
= ti(z+w)(t‘1‘(z+w)) ces (t;(z+w))z =

= P(t;’(z +w)z)¥(z 2 (z+w)) = t;(z+w)z = tIzz ,

(the exact form of the expression Y 1is irrelevant here; we must use
z (z+w) = 0, derived by induction on w from 1,7.3 (v) as basis).

Now we establish, for all z, w

(5) ¥n+1z = R'an+1()\v. b4 V(til*(zur)v) cee (t;(znv)v))z .

We use induction on =z.

1

I *
ne1® = t(t10) (tno)o =

* *
= R'an+1(7\v. bn+1v(t10v) (tnOv))O =a 4

which is equal to the right hand side of (5) for z=0.

€n+1(Sz) = t(t:(Sz)) (t;(Sz))(Sz) =
R'am_.l(kv.bm_'_1 V(t‘f“(Sz)v) eee (t;(Sz)v)(Sz) =
b 4z(t%(Sz)z) ... (tX(S2)2) Y,
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where

Y=Ra (Wb v(5(S2)v) ... (£%(52)V))z.

+1

By the induction hypothesis for z, using w=1,

Yy=-% z.
n

+1

Also, by the induction hypothesis for =z, using Sw for w

¥n+1z = ¥ = R'an+1[)\v.bn+1 V(t:(z-f-Sw)v) ces (t;(z+Sw)v)]z ,

hence

€n+1(Sz) bn+1z(t:(Sz)z)... (t;(Sz)z)Y‘
b z(35(Sz+¥)z) c.. (£2(Sz4m)) ¥ (by (4))

R'an+1[)‘v’bn+1 V(t";(Sz+w)v) ces (t;(Sznv)v)](Sz) .

This establishes (5). Now we can complete the proof :

fn+1(Sz)

t(t:(Sz)) (t;(Sz))Sz =
R'an+1[}‘v‘bn+1 V(t:(Sz)v) cee (t;(Sz)v)](Sz) =
z(t‘_’,l‘(Sz)z) coe (t;(Sz)z)\!’" ,

bn+1

where

¥y E R'anM(Mr. bn“z(t:(Sz)v) ces (t;(Sz)v)z =

=% .z, hence
n+1
En“(Sz) = bn+1z(f:zz) cee (t;zz)(fn+1z)
= bn+12(t1z) o e (tnz)(£n+1z) ]

* *
and since also fn+1o = t(t10) (tno)o = Rla ,80=-a

is irrelevant) the proof is completed.

n+ (the form of €

1.7.8-1.7.10. The induction lemms for qf-g-yw.

1.7.8. Lemma. Let Z be a sequence of terms of H-gyA‘w, and let t be

a sequence of terms defined by means of the recursion operator such that

t0xv =

<

y 2(Sy)xy = Nx=5y)(tyxvy),

where x,y € O, Let Q be a predicete such that (x, v not free in TI)
in qf—ﬁ-%wz

Tk Q(x, Ixy) = (S5, 1), THQ(O, 7).
Then in qf-g—gﬁw
Th z<x = [Q(z,8(x+2)xv) = Q(Sz, t(x=5z)x )] .

Proof. 1In order not to encumber our typography we let =%, vEv, TET,
% Assume z<x, T, Then =x2z = S(x=25z) (1.7.3, (ix)) ;
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t(S(x=8z))xv =
T(x=S(x=8z))(t(x=8z)xv) =
T(x+ (x=2))(t(x
Tz(t(x=Sz)xv.

t(x+z)xv

[

< Sz)xv) =

L]

Since Q(x, Txv) = Q(Sx,v), it follows that
Q(z, Tz (t(x=Sz)xv)) = Q(Sz, t(x=Sz)xv).
This implies Q{z,t(x%z)xv) = Q(Sz,t(x=Sz)xv).
1¢7.9. Lemma. When @ satisfies the conditions of the previous lemnma,
then in qf—g-HAw
bk y<x=a(y,t(xxy)xy) .

Proof. Induction on y.

0Lx = Q(O,:xxz) (since [ $-Q(0,v)).
Assume
z2<x = Q(z,4(x+2)xy) .
Then
Sz{x=2z<{x, hence Sz{x— (Q(z,t(x=z)xv) = Q(Sz,t(x_'.Sz)xz)) )
Sz{x=z2<{x, hence Sz<{x = Q(z,t(x=z)xy).
hence

Sz<{x = Q(Sz,l(x: Sz)xz) .

1.7.10. Induction lemma., In qf -N- %w , if T} Q(O’Z)’ I Q(x,Txv) =
- Q(sx,v), then T} Q(x,v) (x,z not occurring free in TI) ., )
Proof. —By the previous le;una, Fbx<{x =~ Q(x,:(x-’—x)xz) , hence
I"i—Q(x,l;Oxz) y i.ec T Q(x,v).

Note that for v consisting of a single variable, the proof only requires

simple recursion.

1.7.11, Theorem. (Replacement of R, by the iterator J_; Diller and
Schutte 1971.) If we replace in qf-g-géw the constants R, with its
corresponding axioms by a constant J_r s, the iterator of type Tt (for each

T€l) satisfying
J xy0 = x, JTxy(Sz) = y(JTxyz) (xer, ye (1)1),

then a constant satisfying the axioms for Rc becomes definable.
Proof. The A-operator can be defined as before. In terms of Ja we may
define P_ as kxcyo.J xo(H yc) ; then obviously

c o ©,0

c

[+
Pox"y"o - x, P°x°y (sz) = y°
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Next we define U
Ux10
ux'(S0)

Axt, Jo(x1(SO))S. Then
x'(s0)
S(x'(s0)).

This function enables us to define a predecessor function:
prda = ay°. 3(0_ 0)uy°o0.
0,0
We prove by induction on ¥y
J(HO,OO)Uy (s0) = y.
Then it follows that

prd0o = J(_ 0Q)U0QO =10 00 =20
0,40 0,0
prd(Sy) = J(B_ 0)U(Sy)o = U(J(N_ 0)Uy)O =
0,0 0,0
= J(HO’OO)Uy(SO) =3.
Now define QT as

Axyz[x(y(prdz))(prdz)] (z€0, ye (0)r, xe (7)(0)7).

Q

r
Then
QTxy(Sz) = x(yz)z .
Finally we put
R = AxTy(T)(O)TZO[J(°)¢(HT,01)(QTy)zz]

and then
RTxTy(T)(O)TO = xT, RTxTy(T)(O)T(Sz) = y(Rxyz)z .
Q.e.d.
Remark. In the sequel we have usually dealt directly with R° as & primi-

tive; occasionally, in applications, there might be a slight advantage in

using the iterator as a primitive.

1.7.12, Simultaneous recursion and the induction lemma in qf-gé?.

We note that the proof of the induction lemma (1.,7.410), provided simulta-
neous recursion is available, can be carried over to qf-gé? without
difficulty. For the case ¥=v (i.e. Y consists of & single variable) we
only need simple recursion.

In the proof of closure under simultaneous recursion, the crucial step is
in establishing (5) in 1.7.7. Let us abbreviate (5) as

A(z,w) = (%

ne1? = S[z,¥])
where s[z,w] represents the left hand side of (5) in 1.7.7.
Assume fn+1z€ o, = (7)0. Inspection of the argument in 1.7.7 shows that

by the following sequence of equalities:
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w’ (%, ,(s2))

ua(bn+1z(t".{(Sz)z) cee (t;“l(Sz)z)s[z,w]) =
w’ (b, 4z(t5(52)2) ... (£2(52)2)(F, ,2)) =
w’ (b ,z(t%(52)z) ... (£%(S2)2)s[z,5%]) =

= uos[Sz,w]

n+1

the assertion ua('En+1(Sz)) = ucs[Sz,w] can be obtained from

{r[ua,s[z,w],z] = r[u°,€n+1z,z] ,

o - c
rlu,¥ 4z, z] = r[u,s[z,5v]},z2],

(1)

o T c * * T
where rfu ,vo,z] stands for u (bn+1z(t1(Sz)z) (tn(Sz)z)vo) .

Let us put To = Xuozv: . r[uo,v:,z]; then (1) is equivalent to
T wz(E z) = T vz s[z,5w)
0, n+1 04
T u z(% L4 z) = TU Z s{z,1] .

Therefore, intuitively:

o
n+,‘z) =T uz s[z,w]) =

2 { Vngsx (T 'z (%

- wwex(u’ (4 (52)) = w’s[sz,v]) .
In the quantifier-free system bounded quantification can be expressed by
introducing 2 function f by primitive recursion, such that

o o, o
fuz 0 = |u (tn+1z) - u s[z,0]]

c o c o
fu z(Sx) = fu zx + |u (fn+1z) - u sz,sx]]| .
Then (2) can be expressed as
f(Toucz)z(Sx) =0 = fu’(S2)x=0.
Now let pc, 9, for all ceg be defined by
o _o o)r ¢)T.0
P X =X, p(a)Tx( ) =pT(x( ) 0)
x° x° x° Axa x°
X =X Qg)e* = *q,.x .

Obviously

So 9, provides an embedding of the natural numbers in type o¢.

Now put

B(v(°)%,2) =, £(+(°)90)a(p v(°)71)) - o
and let

r, = w0 p(2_(+(°)%0)z) (o, (sp, (+{°71)))
then

B(T1v(°)°z,z) - B(v(°)°,5z) .
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Since obviously u°(¥n+10) = uas[o,w] s, We also have B(v(o)o,o) .

Therefore, by the induction lemms 1.7.10 B(v °)°,z) . Substitution of
o o . o

P u (qow) for v yields tu ({n+1

. . . w
Thus we obtain simultaneous recursion in qf~HA", and now we can

z) = Ws[z,¥].

extend the induction lemma for qf—gﬁw to an arbitrary sequence of

variables v. Cf also Luckhardk 73 pp 66-67
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1.8.1. Contents of the section. This section contains further miscella-

neous information of N - EA:” , which may be consulted by the reader when the
need arises.

First the extension of the type structure by Cartesian product formation,
together with the addition of pairing operators as primitives is discussed :
in 1.8,2 it is shown that this extension constitutes an expansion of any
theory in the language of g-g&“’ .

Subgsection 1.8.4 is devoted to the discussion of the A - operator as a
primitive.

Subsections 1.8.5 - 1.8.9 discuss reductions of the type structures.

1.8.2. Theorem (Cartesian product types and pairing operators).

Let the type structure g; be extended to g‘" by adding a clause

T 3) 0,7 € T =20XT ¢ T

p=y

and replacing in T 1, T2 T by I' (1.6.2).

Furthermore, we assume the existence of constants Dy , € (¢)(r)oxrT,
?

1 1 : .

Dc,-r € (oxt)o, Dc,-r € (oxT)r satisfying

D'(Dxy)=x, D'"(Dxy)=y, DOD'x)(D"x)=x.

Let g-H‘A“;) denote the extension of g\-H\Aw thus obtained. Then N - gég
is an expansion of N- %w, and qf-_lg-Hvég (defined analogously to

qf-y‘-g&w) is an expansion of H'H.,é::

Proof. To each type oc€T' we assign a sequence o of types in T, as

follows :
(i) o* = (0).
Let 0% = (0,5...,0), ™ = (Tyreeest )

(ii) (UXT)* £ (01,-~~,°m, T‘\"'"Tn) ’
(1i1) [(o)r)* = ((01)...(cm)f1,...,(01)...(cm)7n).

s = 1 m
We define a sequence Bo*,-r* = (nc*,'r*""’uo*,-r*) such that
Ea*,'r* =Mxhy.x .

Further we define a sequence I , - such that
= *

Lox g%, o* = Axyz.x2(yz).

For Rc* we take the sequence as defined in 1.7.5.
s, where % = (t1,...,tm), s =
1=S1 & eec e & tm= Sm.

w

Now we define a mapping [ on terms and formulae of ﬁ-%p , as follows.

t (81,...,Sm) s is interpreted as
t
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c 4
c . = 1 n
(i) To each X , ©€I' we assign a sequence X = (x1 ryeees X ), where

(G 49eees0. ) =0*. If x°, x'° are distinct variables, then Ix®
1 n

and I'x'9 have no element in common.

(11) My r = Do rx I‘i:tmr,'r = Eoxox,rrr TRy = How s
=0, I(s)=5.
(i1i) 1f r =x, TyT =y, we take for I‘DcT , ‘the concatenation of the
= 1]

1 "
sequences of operators Ea*,'r* and )‘f,Z'X’ and for mc,'r ’ TDO’T
we take

= L =
T2g,r = Dox qxs TP o = MN.¥.

(iv) Tty = (T)(Te') .
(v) T(t=s) = (Tt="Ts).
(vi) T opreserves propositional operators and A, i.e., T(A)
F(AoB) =T(A)oT(B) for o ==, V, &.
(vii) P(va"a) = VIx'(T(a)), T(&4) = x°(T(a)) .
First note that I is the identity on formulae of Ii-ly.;w (modulo re-

i
7

naming of variables). It remains to be shown, by induction on the length
of deductions that \lj‘-g\.ﬁ.‘; Fa = _I:{-vam FT(A) . This turns out to be com-
pletely trivial.

1.8.3. Remark. The theorem also extends to certain extensions of ‘Ij‘-sléw
obtained by adding definition schemata for functionals, if only the theory
without Cartesian product types contains a "simultaneous" variant of the
additional definition schemaia (examples Yc for X- ylgw, B . in § 1.9).

1.8.4. The A ~operator as a primitive notion.

p,o’ zp9°17 e

may consider an alternative version k&-%w, with lxc as primitive oper-

Instead of having a theory g-g};w with primitives I

ators, The description of Ag-g&w is similar to the description of
E-HA”, with the following differences:
(8) m, , = are omitted from the list of constants; the operators
C,T PyT T
Ax¥ are added.

(b) The term-definition (1.6.4) is extended with a clause:
o
T 3) If te Tm_r , them Ax .t ¢ Tm(o)'r .

(¢) The defining axioms for Il

A - conversion :

0,0? Ep,o,_r are replaced by the rule of

2-CON (. 4[x" )t = t[41] (t* free for x in t).

w

If we make changes (a), (b), (c) in E'H.,é:’ we obtain a theory AE-HA

(ef.2.4.18).

Now E' I;I’A;w and l@\- I‘-I,A;w are equivalent in the following sense: as
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has been shown in 1.6.8, we can define a A\ - operator in E- HVA_w such that
the rule of A - conversion holdsj; conversely, in A:E_-Hv{x’w we can define

operators Hp 0! Ep o.T satisfying the defining equations for the correspond-
? vy
ing primitives in ?-HAw s, by putting I )\xpyo.xp,
= e)T c
ED,O,T “def )‘x(p)( y ?) z° . xz(y2) .
Hence the union of g-géw and AE - %w is & definitional extension of

p,0 def

both; and similarly for the quantifier-free theories qf-WﬂEA- g&w and
Aqf - WE - HA” (the latter defined in the obvious way).

The description of & A-variant of (qf-) \I:{-Hvé.’w or (qf-)1I- %w is
not such a simple matter however, The problem is this: if we simply in-
clude the rule’ s=t = Ax.s=Ax.t in our system (say H), then equality

between closed terms of g_ cannot be recursively decidable. In fact, if
s = {j(rs?, ) | B s=4!
T = {3(7e", 7)) | B} s ¥t}
(s, t closed terms of H), then S, T are recursively inseparable.
For let A,B be & pair of recursively enumerable, recursively inseparable

sets (e.g. as in Rogers 1967, p. 94) such that
(M H{ANB=g.

Let €= {x|HEfxgal .

Then C is recursively enumerable, ANC = #, BcC (since xe€B = HfXeB

(by completeness of H for Z:-predicates) =HF x¢da (by (1))).

So A,C is a pair of recursively enumerable, recursively inseparable sets.
Now the statement x¢ A is equivalent to Vy P(x,y) for some primitive

recursive P. Let t ©be the closed term of H representing the character-

istic function of P. Then

xeh @ Fy-Pxy « Fy(H | tXy#0)
® gf—ti;{ky.O;
x€C ® H {+PXy=0 @ H} tX= I.0

(by the proposed rule s=1%1 = MX.s=Ax.t), and so the pair A,C is 1-1-
reducible to S,T respectively, via the mapping Mx.3j(Ftx", "Ay.0M).
(Rogers 1967, p. 80). Hence the pair S,T is alsorecursively inseparable.
The problem of the description of a A- variant of (qf-) a_%w or
(af =) ;-H\ﬁw has therefore to be solved in a different manner, namely by
distinguishing "ordinary" provable equality, and equality established by
restricted means, A discussion of this possibility is better postponed till
after the treatment of computability in Chapter II.
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1,8,9-1.8.8, Reduction to pure types.

1.8.5. Pure types. The pure types g are defined inductively by

T1) 0¢€ P,

T 4) ceéd (c)Oeg.

We introdu:e an abbreviation using natural numbers to indicate pure types:
(n)o =qef D+

We now wish to construct a mapping O of T onto P, such that (Qo-=0
for aeg, and such that to each ¢@¢ g th;re exist“mappings l"cE (e)o,
Tie(Mw)e, T, and I} definable in N-HA", such that in af -WE-HA"

!
I‘°I"°f = f.
This is done in a number of steps.

1.8,6, Injection in higher types.

VWe define mappings mpj ¢ With left-inverses pmj which map the objects
of type j into objects of type j+1, as follows:

)\xoyo.xo s PR = Xx1.x10 , and for j>O0
(1) mpy = niydxd(my a0y,
pu, = axdt 3" -xa+1(mpj_1(yj' )) .

8
o
m

One readily verifies that mp, € (3)3+1, Py € (j+1)3. By induction on J
we find that

pm, (mp, (x9)) = x? .
For we have pmo(mpoxo) = pmo()\yo.xo) = (,w5%.x2)0 = x°, and for 3j>o
pn, (0.9 (om,_, (v?)) -
J ; -1 .
o It (emy o (590) V(e 77T -

= )\yj'1.xj(pmj_1mpj_1(yj'1)) = )\Vj'1.xj(y3°1) = x'j .

pm, (mp (x?))

Now we construct type-increasing mappings mpx; € (j)m, with left-inverses
o} € ()3 (m2j) by
mpg = ij.xj , pmg = lx‘].xj ’

(2) mp?“ = ad, mpmmp';(xj) )
pml;+1 = um+1 . pm?(xmﬂ) .

1.8.7. Coding of n- tuples for all pure types.

Let j, 31, ;]2 denote the standard pairing function with inverses for
the natural numbers, We extend these to all pure types by putting

, ym+1zm)

. (xm+1 .

j m+1) = Azm. j(xm+1zm
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j1(xm+:) = az®. j1xm+:zm
n+ = .0 ., m+1l m
j2(x ) =z . 3, z
This may be extended to p- tuples, putting
2 _ . 2 _ = =
J = J y j1 = j.‘ s 32 = 32 ?
p+1 n = s( 8 P/ D n
(x1,...,xp+1) 3(119 J (12,"'91p+1))
+1.n_ . _.n +1 - . .n
,jl_‘J XTE X, j£+1 ji hPes for 1<k<p.
Now we are able to describe the coding of p- tuples of different pure types:
p, n(1) n(p) m _n(1) m _n(p)
j (x1 geseyX ) ( n 1)x1 ,...,mpn(p)xp ),

where m = maxfn(‘!),...,n(p)
As inverses we have
= P
Jkl(x) pm; 3p(x")
so that

paa(), .. 2(8)) L 200

,-o.,xp =ﬁ

jk n(k) J

1.8.8., Description of 1, I"a, 1";.

(1) If e=0, (© =g¢, r°f=f, I“éf:f.
(11) If o (01)...(op)0, o

g =0y for 1{ilp, we put

m = maxfn1,...,n } then (¢ = m+1, and

- . rl my Pt P, m ' p,m m
rax U x ( 31 ,n4 ¥y )( oo jz,nz ) ees (rOp 31,np Yy )
I _m+d °4 °p _m+1 .p
ax = Xy1 ...yp . X J (Tc1y1,--o, rcpyp)'

1.8.9. Reduction to numerical types in 4af - WE- H_Aw

Let us consider the following extension 20 of the type structure gz

T 1) 0O€?T
o =

T, = (c1x... xUn)T €T

and let T (the numerical types) be the substructure of T, obtained

=

restricting go 2) +to
Ogreeesdy €T = (a1x...xcn)0 el .

Note that in virtue of 1.8.2, qf-N-HA” when extended to T, and with

constants D , D! D; r added such that
b

- %
D'D(x,y) = x, D"D(x,y) =y, D(D'x,D"x) = x

o,t?

is an expansion of the original system qf-}j-géw; and similarly for the

case which especially interests us, qf-@-li&w
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The type structure g‘o may be reduced to T by mappings Fc, 1";, Q as

follows : "
() © =03 them N = 0o, T°x°=x°, T‘éxa=xc.
(b) e = (p1x... xpn)o; o = (Op1x ...xnpn)o.

I‘axa = )\[y1,...,yn]x°(l‘;)1y1,...,I‘Lnyn)

I';xm = ly.‘...yn.xnU(I‘p1y1,...,I'pnyn) .

(e) o= (p1x.... xpn)'r, or = (H1x ...xgm)o. Then
ne = (Qp,‘x...ﬂonx p1x...><p.m)0, and

4 (- r 4 Uy
rcx = A[y190--,yn’ 219000’zm](r7x (rp1y1!°"9 qnyn))(z1 !-"!zm )
(9.4 [} 1 m c
l"éx = Wyeee ¥y 1",r()\z‘1 cesZ o o X (T'p1y1,...,1"pnyn, z1,...,zm)) .

Here k[y1,...,yn] t[y1,...,yn] expresses simultaneous abstraction w.r.t.
Yqreees¥, 5 iees if t 4is of type T, y; €94 (1€ign), then
k[y1,...yn] t(y1,...,yn) € (a1x...xcn)'r; but Ay,...y .t abbreviates

Ay Ay, e \y,-¥, hence is of type (31)(02) ces (cn)'r . x(y_‘,...,yn) in-
dicates application to the arguments Fqseeesdy (simultaneously).

We leave it to the reader to verify thaet the following schemata for
defining functionals of gn imply the definition schemate of qf -VWE- %w
(via the mappings described above) and vice versa.

(i) 0 1is a constant of type O (with the usual axioms).

(ii) 5 1is a constant of type 1 (with the usual axioms for successor).

(i) If t[y1,...,yn] is a term of type 0, containing y,,...,y, free,
v, €0, (1£i<n), then k[y1,...,yn]t[y1,...,yn] is a term of type
(cr1x... xa;l)o, and for t €0, ,
(x[y1,...,yn]t[y1,...,yn])(t1,...,tn) = t[theeent .

(iv) There is a term ¢ € ((a1x cee x.op)o ® ((o,% ...x'cp)0x0xc1x...xcp)x

*0 % o,x ...x'vp)o , such that

C4 (-4
m(x,y,O,y1 9-0-9ypp) = X(y1,...,yp)

4 -4
o(x,¥,52,7, ,.--,ypp)= CAC R SYRURES ML CIF FLTP SYREETS SOFLTI STRTRYT A9

(This reduction may then afterwards be combined with the reduction to pure
types as described above.,) The proof of the equivalence of the closure
conditions first reduces (iv) to comparison with the recursion rule, which,
however, is equivalent to asserting the existence of constants Rc (see

107-5)‘
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§ 9. Extensions of arithmetic.

1.9.1. Introduction. The various types of extensions of arithmetic may be
divided, according tc their language, into three categories:

10) Extensions of arithmetic w,r.t. the same language or a language obtained
by adding to £(§§) one or more predicate constants. Examples: HA  with
additional reflection principles, or addition of transfinite induction for

a certain primitive recursive well-ordering, or HA with predicate constants
for species or relations introduced by (iterated) generalized inductive
definitions (g.i.d's). Such extensions are briefly described and discussed
in 1.9.2 below. With respect to the various methods for metamathematical
investigation, they behave in most respects like ﬁ& itself, i.e, as typical
first-order systems.

20) Extensions of arithmetic in a language with variables and quantifiers

for species of natural numbers added. In this context full impredicative com-
prehension can be studied, Pure realizability and pure functional inter-
pretations, as well as normalization theorems for natural deduction systems
can be adapted to such systems, but not ;p(gpch a straightforward way as for
the systems under 10). Variants such aswﬁiifrealizability do not readily
extend to these systems. For a more detaiied description, see 1.9.3- 1,9.9
below.

30) Extensions of arithmetic in a language obtained by addition of function
symbols and function quantifiers to #£(HA) . Such extensions may (apart from
"non-committal" very elementary ones, such as EL described in 1.9.10 below)
be grouped according to their intended interpretation into two classes:

(4) The function variables are thought of as ranging over "lawlike" sequences
(i.e. completely determined objects, given by a "law" or prescription). As
long as our concept of "lawlike" has not been analyzed to a degree which

. prevents identification with "recursive", we may expect systems to be in-
spired by the idea of lawlike sequences to be consistent with the assumption
that lawlike sequences are recursive (Church's thesis, see 1.11.7). To
obtain systems which are proof-theoretically stronger than arithmetic, one
has also to incorporate additiorns as under 10),

Systems for lawlike sequences behave still very much like HA with respect
to realizability and functional interpretations; with respect to Kripke
semamics and natural deduction they have not yet been investigated.

(B) The function variables are thought of as ranging over some kind of choice
sequences {i.e. sequences for which it is not assumed that they are a priori
completely determined by a law). For detailed discussions of this concept

see Troelstra 1968, 1969. Their essential feature is that they enforce
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certain continuity conditions on operators defined for all choice sequences.
I.e., if & is a type 2 operator, defined for all choice sequences of a

certain "universe'", & satisfies
Vo Bx VB(ax = Bx - %a= ¥B),

where ax=<a0yseeya(x=1)>.

Continuity conditions do not increase proof-theoretic strength; but it
is also possible to postulate the schema of bar induction for choice sequences
(which is simply false for the universe of recursive sequences) and which
does increase proof-theoretic strength.
Realizability and functional interpretations can be adapted to these systems
(replacing partial-recursive-function application {.1(.) by continuous-
function application).

For a description of the principal systems which fall under this heading,

24
see 1.9.1§Y5é10w.

1.9.2. Extensions of arithmetic expressed in #(HA) or i(ﬁé) extended

by relation constants.

The most obvious extension is obtained by addition of a local reflecticm
principle to HA:
RF(HA) Proofm(x,’A") - A (A closed)
or a uniform reflection principle

RFN(HA)  Proof "AY") = Ay ( VyAy closed).

HA(X’

For & general discussion of such principles, see Kreisel and Levy 1968.

Another method of extension is the addition of the schema of transfinite
induction for certain arithmetically definable (in fact, primitive recursive)
well-orderings of the natural numbers; i.e. if < is such an ordering,

assumed ko be ?rovnblg \inear in Lq_ﬁ_ yw e add
TI(<) vx[ (¥y <x)Ay=Ax] - VyAy.

A third, and very interesting possibility is the addition of constants for
species introduced by generalized inductive definitions (g.i.d.).

Assume PA to be a new (unary) predicate constant not ocecurring in the
language <. Let H be a system with #£(H) =%, and let A(P,x)e#F],

such that A is "monotone" :
B[ P,P'] | A(P,x) & Vx(Px—P'x) - A(P'x)
(where H[P,P'] is as H, but relative ZP,P']).
Then PA is said to be introduced by a g.i.d., if we add an axiom and a

schema :
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A
and for all Q in £(PA)

A(P,,x) = P,x

vx[A(Q,x)=Qx] ~ Vx[P,x—~Qx].
The best known example is 0, the set of recursive ordinals introduced by
Kleene (see Kleeme 1944, 1955, or Rogers 1967, § 11.7, § 11.8). (To bring
the definition in the form described above, we have to rewrite the definition).

A simplified version is obtained by taking e.g.

84(Q,x) = (x=1) V(Q(x)o&x=2(x)°) v [x=305 " & vy (1(x), Hy) &

&Q(1(x), HzINT.
Still simpler is
AP1(Q,X) = Q0 v W(Q[x](y)) ;s

here Axy.[x](y) is an enumerating function for all primitive recursive
functions, Ay[n](y) representing the nth primitive recursive function in
the enumeration.

We may then define, when P has been introduced, a new predicate P2,

1
permitting quantification over P1:

Ay, (Qx) = Pyx v Wy e 24(Q[x}(3))

etc. (cf. chapter VI). This procedure gives rise to generalized inductive

definitions of higher type.

1.9.3. Language of gé§o.
To the language of HA we add variables for n-ary relations (species)

(n>0), to be denoted by X%, ¥, 2% (when irrelevant to the discussion we
shall often omit the superscript), and second-order quantifiers VZ’ 32 (we
omit the subscript when the context makes it clear that second-order gquanti-
fiers are intended). The only second-order terms considered are species

variables.

1.9.4. Comprehension principles.

A comprehension principle is a schema of the form
n n
(1) "X Vk1...xn[A(x1,...,xn) — Xx...x ],

where A does not contain X" free.

We call the schema

(i) arithmetical comprehension, if A is a formula of HA (abbreviation:
ACh)

(ii) predicative comprehension, if A 1is a formula of §£§<>not containing

bound species variables (abbreviation: PCA)



69

(iii) (full, or impredicative) comprehension, if A 1is any formula of H,A__S_o,

not containing X° free (abbreviation: CA).

The system in the language of Hvé§0 based on the axioms, rules and axiom
schemata of HA (but with respect to the extended language), together with

guantifier rules and axioms for second-order quantifiers, is called Hvé§0 .

1.9.5. Extensjonality.

We denote by EXT +the axiom schema
EXT Vxy[Ax &x=y=Ay].

We define HAS as %So + CA + EXT .
Note that in HAS, EXT may be replaced by the single axiom

VX' Vxy [X'x & x=y—X'y] .

1.9.6. Theorem. If H 1is one of the systems H_A§O, HA§O+ACA ,I:I\A;S_o + PCA,
H}ﬁo+ CA, then H+EXT is conservative over H w.r.t., formulae of HA.
First proof. Let ¢ ©be a mapping of formulae of Hv:l}_so into formulae of
HAS , given by: o(A) 1is obtained from A by replacing each sub-formula of
A of the form Xt,...t by Ex1...xn(t1=x1&...&tn=xn&Xx1...xn) .

Then one readily verifies by induction on the length of deductions for the

systems H mentioned :
§+EXT }-A o Iil—cp(A) .

Second proof. Let ¥ be a mapping of formulae of H\AA,E‘O into formulae of
Hvé‘go , Which is defined as the relativization to extensional species, i.e.
PA] = VKR (Bxt(x™) ~ ¥[4])

y[EXPA] = TP (Ext(X7) & ¥[A])

and ¥[Ao3B] = y[A]Jo¥[B] for o ==, Vv, &,

[ (@x)A] = (x)¥[a] for Q =7V, & , and where Ext(X") is defined by

ny _ n B R
Ext(X") =ief Vx1...xny1...yn(x XqeooX &x, =y, & cuox =y =X y1...yn) .

Then also, if all free second-order variables of A are among X1,...,Xn s

one proves by induction on the length of deductions
H+EXT - A(X,l,...,Xn) e §+Ext(x1) e +Ext(xn)1— *[A(X1,...,Xn)] .

The verification is quite straightforward and left to the reader.

1.9.7. Lemma., If § is one of the systems Hﬁo+EXT, HVA._§O+EXT+ACA,
HA§O+EXT+PCA, H.“Q_'S‘O+EXT+ CA, and H' 1is the corresponding system obtain-
ed by restriction of the predicate variables to unary ones, then E. is con-

servative over H'.
-
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Proof. Let V., Vl:, w be the list of species variables (i.e. the

o1 e
actual variables in this case, not the syntactical (= metamathematical) vari-
ables for variables) with n arguments, for all n.

We define a mapping T as follows,

T(t=s) = t=s.

T(Tobyent ) = V;(n,i)(vnt1"°tn)' (v, was defined in 1.3.9 C.)
T(AoB) = (tA)o (7B) for o==, &, V.

r((@0)8) = (@)T(A) for Q= g, ¥,

r((QVp)a) = (@7, )T(A) for Q= T, ¥

2 2°
This mapping transforms each proof in H into a proof in H', with a con-
clusion which only differs in the naming of second-order variables.

If we wish, we might also have kept the variables for one-argument species
in the proof unchanged by the translation, by a slightly modified definition

of 1 (the modification depends on the proof under consideration).

Let m be the maximum index i such that V; occurs in the given proof.
1 = ] = 1
] = t =
We then put T'(V,t) =V t, T (v§t1...tn) Vm+j(k,n)(vnt1...tn) for n#1,

ri((QU)A) = (QV,)71(4) , and
TH((QVL)A) = (QV)

m+j(k,n))T'(A) for Q= ¥, &, nft.

The verification that the mapping has the property stated is quite straight-
forward ; we consider the only case which is not quite trivial, i.e. instances

of the comprehension schema for n-argument (n# 1) species:
n
U Vx1...xn[A(x1,...,xn) é—ﬁ'Vix1...xn].
This translates into (under 7))
1 1
Evj(n’k)Vx1...Xn[A(x1,...,xn) 4—9Vj(n,k)(vnx1...xn)].
This follows from
1 .n .n 1
j(n’k)VZ[A(J1Z,..o,JnZ) «— Vj(n,k)z]

together with EXT.

qv

1.9.8. Theorem. §é§o-+EXT-kACA is conservative over §§°

Proof. By the previous lemma, it suffices to prove H to be conservative
over @&? where H is the restriction of @éﬁo-yEXT-+ACA to unary species
variables.

We further remark that we may restrict attention to instances of ACA con-

taining (at most) one free numerical parameter, since e.g.
xy T'Vz[A(x,y,z) «=>X'z]

is a consequence of EXT and
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Y #X7* Vz[A(j1u, Jous z) <« X'z].

Let now any proof T in H of an arithmetical statement be given; we may

assume T to use finitely many instances of the comprehension schema, say
vy 71 Vz[Ai(y,z) —X'z2], 0£ik (Vyz Ai(y,z) closed).
We define a predicate C(x,y,z):
C(x,y,2) = (x:O&AO(y,z)) v (x=1 &A1(y,z)) Veeo Vaas V(x:k&Ak(y,z)) .

Let Vs V1, Vos eee be the numerical variables of H, and
let V., V,, V5y ... Dbe the (unary) species variables of H.
Let m be the maximum index i such that Vi occurs free or bound in 7.
Now we define a mapping ©:
o(t=s) = t=s, o(A) = A
o0(AoB) =o(h)oc(B) for o =v, &, =,
c((QVn)A) = (Qvn)c(A) for Q Vyo B
o(Vnt) = C(J’lvm+n+1’ J2Vmene1? t)
* U((szn)A)E (Q1V Je(A), vwhere Q

Note that © is the identity on arithmetical formulae; ¢ preserves logical

m+n+1 g ¥.

inferences, axioms for equality and successor and induction (at least as far
as they occur in T),.
Now consider an instance of ACA occurring in T3 it translates under o

into

Yy 3v Vz[Ai(y,z) — c(j

n+m+i 1V nsm+1? I2Vmens1? z)].
This is obviously derivable in HA, since Ai(y,z) <« Cc{(i,y,z) 3 also note
that o(EXT) is derivable in @&. So, after intercalation of some steps,

o transforms T into a proof in HA.

1.9.9. Formulation of HAS with A - terms.

Instead of formulating second-order logic with a comprehension schema, it
is sometimes more convenient to use a more general class of second-nrder
terms,

So CA 1is replaced by a rule of term formation: whenever A(x1,...,xn) is
a formula of §§§0, then Ax ...an(x1,...,xn) is a second-order term, with

1
the rule

{Ax1...xn.A(x1,...,xn) H(tgpeearty) < Atyyeeast,) .

PCA is represented by a similar rule of term formation where A 1is not per-

mitted to contain bound second-order quantifiers, etec.
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109410 - 1,9,11, Intuitionistic analysis with variables for sequences.

1.9.10. Description of E&-
The system E& to be described below is a slight variant of the system
EL as described in Kreisel - Troelstra 1970, § 2.5.

For sequence variables we use either x1, y1, z1, u1, v1, w1 (as in the
case of g-—@éw) or we use greek lower case letters o, B, v, ... . Z(EL)
is obtained from #£(HA) by the addition of sequence variables and quantifiers,
and an application operator "Ap", a recursor R, and abstraction operators
Ax , and extending the term definition of HA by
(i) function variables are functors (i.e. terms for functions) i
(ii) one-argument function constants are functors;

(iii) if ¢ is a functor, + a (numerical) term, then Ap ot (abbreviated
as @t ) is a term;

(iv) if ¢, t!' are terms, ¢ a functor, Rt ot' is a term;

(v) if t[x] 4is a term, Mx.t[x] is a functor.

QL is now formalized by adding quantifier rules and axioms for function

quantifiers, a rule of A-conversion A-CON (xx.t)t' = [x/t']t

and defining axioms for R

REC Rtge0 = ¢
{Rw(St')wj(Rtm',t')

and a gquantifier-free axiom of choice
QF -AC_ ¥x Ty A{x,y) = Ho Vx A(x, ox) (A quantifier-free).

EL is essentially a subsystem of H;-@&w, i.e. the primitives of EL are
definable in y-—g&w. (& only as a syntactical operator, but since EL
only deals with equality at lowest type, this makes no difference.)

QF-—ACOO requires, intuitively speaking, that the universe of functions
is closed under "recursive in"., EL is easily seen to be a conservative ex-
tension of §é s by interpreting all function variables as ranging over total
recursive functions.

Sometimes we can get by with a system of elementary analysis with a more

restricted language, such as @éo in Kreisel - Troelstra 1970 3 @é is a

definitional extension of such a system, In the sequel we shall denote all
such systems by EL.

The system H in Howard and Kreisel 1966 only requires the universe of

functions to be closed under "primitive recursive in". This is somewhat too

weak for the formalization of the elementary theory of recursive functionals,

which we need.
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1.9.11, Some notations snd conventions.

o0 =< >,

ox = <Dy aly seey Q'(X'1)>’
hence 1th(ax) = x.

a€n =, o W< 1th(n) (ox= (n)x) .

Furthermore we put

3101 Edef Ax . j1ax ’ 320’ Edef AX . jzaX s 3(asB) Edef Ax . j(ax, BxX) .

{If we have not included A as a primitive,, Jqo Jo0 j(ay B) can never-
theless be used in contexts like A(j1a), A(jga) etc., where A(j,‘a) etc.
is taken as an abbreviation for the formula A obtained by replacing in
A(B) every occurrence of Bt by j1(at) and repeating this process until

B has been eliminated.) (o), Zgor Weail(x,y) .

1.9.12 = 1.9.16. Formalization of elementary recursion theory in Q .

1.9.12, We have to rely heavily on the development in Kleene 1969. The
developments in Part I of Kleene 1969 can be carried out in EL (since
QF-ACOO includes all instances of Kleene's X2.‘!.' needed in Part I of
Kleene 1969, cf. footnote 7 in Kleene 1969), That we assume our coding of
sequences of natural numbers to be onto the natural numbers (contrary to

Kleene's definition) is inessential. We define o|B, a(8) by
(o B)(x) ™y =4, o(2%B min [a(2xBz)£0])=1 =¥
@(B) =y =5, oB min [a(Bz)#0])=1 =y.
Ve may use the partially defined expressions constructed from terms and the

partially defined application operations .|., .{.) as systematic abbre-

viations, similar to the use of p-terms (cf. 1.3.4Q ) constructed by
means of partial recursive function application., We shall speak of p-
terms in this case also. If they are of type 1 (i.e. when they represent a
partial function) we may distinguish them as p- functors. We denote 1p-
functors by ©, ®'y cee .

(«fB)(x) and ofB) are partial recursive functionals of @, B, x and
oy B respectively, hence we can find certain numerals ﬁo’ 1-11 such that
(1) {ﬁof(x,a,ﬁ) =y <> (a|B)(x) =y
1

{1-11 HayB) =y > a(B) >y .

By virtue of {1), every p- term of type O corresponds in a standard way
to a p-term in the sense of Kleene 1969, replacing o|o', o(¢') by
AX . {ﬁo}(x, ¥, ') and fﬁ1 Ho, o) respectively.

1.9.13, Coding of sequences and n - tuples.

We put vu(a,l,.-.,oru) = Ax. \Ju(a1x, cens aux)
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T4

.u u
jjo = bc.,jiax.
Furthermore we let k? (0£i<n) be functions satisfying
n n n .n
k;0 =0, ki(m*fc) =kymx {Jx>.
We abbreviate

<P|(<D1,---,<Pu) Edef CPqu(CP1,-o.,CDu)
P ((les""Cpu) Edef @(Vu(¢1,---,@u)) .

19.14. Theorem. (i) Let w[u1,...,an] be a p- functor; then there is a

(primitive) recursive f@ such that
fml(a1,...,an)°‘w[a1,..°,an].

(ii) Let w[a1,...,an] be a p-term of type C 3 then there is a (primi-

tive) recursive fé such that
fé(u1,..., An) o~ Plagse.e,a ]

Proof. We use lemma 41 and § 4 of Kleene 1969 to prove (i). By Kleene 1969,

p. 67, lemma 41 we can prove the existence of a numeral ﬁ@ such that
{ﬁwf(x,a1,...,an) =~ w[a1,...,an](x)-

By Kleene 1969, *34.1, *34.2 (page 69)
fﬁm}(x,a1,...,an) =7 minyT(ﬁw,x, 31y,...,ahy)

(T, U primitive recursive).

We put
f 0=0
@ . - n n
fcp(x*m) = U(1th(m) if T(ncp,x, k1m,...,knm)
. - n n
fw(ﬁ*m) = 0 1f—1T(nw, X, k,‘]m,...,knm) .

It is easily verified that fcp satisfies our requirements.

(ii) is proved similarly.

1.9.15. Theorem (s-m-n theorem analogue).
(i) There exists a primitive recursive function A~ of two arguments such
that (writing oA ¢ for An(cp,w) )

(ah B (BoreeesB) = af(ByseensB) .
(ii) similarly, there is a primitive recursive function Aé such that

(M B) (v, 4 (ByrevesB,)) = a(v (ByseresB))) .

Procf. (i) By Kleene 1969, lemma 41, *34.1 there is a numeral m such that
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(°’| (B/I’-t-’Bn))(x) = Uminy T(ﬁ7 Xy ‘&579E1y’--°9BnY) .
We put (using 1.9.714 (i) implicitly)

(eng,)(0) =0
(oA 31)(5{*11) = y+ 16 0(1th(u)=y A

AT(m, x, a(lthu), 51(1thu), kf‘lJu,...,k;l:::u) 3
(aA 51)(2*11) = 0 in all other cases,

(ii) Similarly.

1.9.16. Theorem (Recursion theorem analogue).
(i) For each ¢ there exists a B such that
a|(B,Y1,..,'yn) =~ Bl(v,.,...,yn) .
(ii) For each a there exists a £ such that
o (B,'Y1’~--"Yn) = B(Y1’---9Vn) .
Proof. (i) Consider a(56 A, 8y Y1,...,Yn) . There exists an € such that
51(6’Y19--',Yn) = Q"(a/\n 61Y11°-09Yn) .

Take B = eAn €. Then
(el\n e)l(‘Y17---a'Yn)kel(eyY»l,---"Yn);
=~ al(e/\n €’Y1""’Yn) "a](B,Y,l,...,yn) .
(ii) Similarly.
1,9.17. Definitions of A°x, A'x, ACa, Ale.
If t is a p-term of type O, which is provably defined for all values of

o =
x, we put Ax.t def x5,

If t is a p-term of type 0, we take APt to be any ©, Dprimitive

recursive in the parameters of t different from «&, such that

ola) = t.
If t+ is a p - functor, we take Mx.t to be any ©,primitive recursive

in the parameters of t different from X , such that
(pl Ayex ™t

Similarly Alg.t is to be a @ such that
?la>=t.

According to 1.9.14 and 1.9.15 we can always construct such o,
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1.9.18. Systems of intuitionistic analysis based on the concept of a

lawlike sequence EEE'

For a universe of lawlike sequences, various forms of axioms of choice
seem to be intuitively justified, notably ACoo’ but also AC°1, and even

the strongest principle

RDC, Vo[Ao= FB(B(e,B) & A(B))]
~ VolAa— By (v) =a& WB((Y), ., (V)g,)]1].

RDC
theorem 2.7.2.
It follows from the results of Goodman 1968, and E, that §£4-RDC1 is

1 implies ACo1’ hence ACOC; see Kreisel and Troelstra 1970,

in fact conservative over gé 3 the work of Goodman falls beyond the scope
of this bock ; the proofs are very long and the method cannot be readily
fitted into the framework of the rest of this book.

However, it is not hard to establish, by means of a realizability inter-
pretation, that E}-FRDC1 is consistent relative HA (ef. 3.6.16, and
Kreisel and Troelstra 1970, %3.7). The same interpretation also establishes

the consistency of Church's thesis (ef. § 3.2, 1.11.7). Church's thesis

acts as a reducibility axiom for systems with function variables; state-
ments involving functions are reduced to statements involving natural
numbers only.

To obtain a proof-theoretic strengthening, we have to add a constant for
a species introduced by a generalized inductive definitionj the prineipal
example here being the theories IDB and {2@1.
IDB is obtained by adding a comstant KX (for a unary predicate of

functions) to Q;, together with two axioms and a schema

An.Sx = Ka
0 & ¥ K(An.o(2*n)) = Ko

K1. o
K2. o0

]

Il

and if AK(Q,a) = ief Fy(o= Ax.Sy) V(a0=0& VxQ(An. (2 %xn))) we put
K3. Vo[ AL (Qy @) = Qa] = Vo[ Ko~ Qo)

for all Q in the language of IDB .

K1, K2 may be combined into
AK(K,a) - Ko

IDB may be defined as {QE-PACO

1 1°

(£9§1 in Kreisel and Troelstra 1970 is an expansion of 2221 as defined

here ; IDB corresponds to IDB of Kreisel - Troelstra 197C.)

The axioms K1-X3 are in fact equivalent to the following axiom and
schema (ef, Kreisel - Troelstra 1970, 3.2.1):
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(1) Ka = [ W(anf0—Qn) & ¥n(VyQ(n x )= Qn) - Q0]
for all Q of the language, and
(2) Ka & an# 0 = Vm(an=a(nxm)) .

(1) is called the principle of induction over unsecured sequences.

1.9.19. Systems of intuitionistic analysis based on a concept of

choice sequence.

As already remarked in the introduction toe;l(:ltléss_.soencai‘:ion, universes of
choice sequences are supposed to be such that anVoperator of type 2, defined
on the whole universe should be continuous, i.e. satisfy
Vo Bx VB (gx=F— 8a=38) .

Without introducing higher type objects in the language, the simplest way
of expressing this continuity property is by the schema (weak continuity

schema)
WC-XN Vo 3x Aa,x) = Vo Ox Ty VB e ax A{B,y) .

This principle may be conceived as being obtained by combination of the
above-mentioned continuity property for type-2 operators with the following
"selection principle" (axiom of choice) which is itself not expressible in
£(E&) :

Vo ¥x A @yx) = H% Vo A(a, B3a) .
A gtronger axiom of continuity C-~N is expressed as follows
C-X Vo Ix A a,x) = SB[KOB&%(Bn#O-’ Yoen Ao, Bn—1))
where
Ko(a) =i ef Tm(an £0 = on= a{nxm)) & VB Tx(a(Bx) £0) .

(C-N corresponds to the strong continuity of Howard and Kreisel 1966).

C-N expresses that there is a modulus-of-contmuity functional ; WC-XN

only expresses local continuity.

1¢9.20. Bar induction.

The schema of bar induction, discussed extensively in Howard and Kreisel

1966, appears in various forms. We list some formulae first:

(1) VoIxPw
(2) Vom(Pn = P(n*m))
(3) ¥n(Pnv —Pn)
(4) ¥n(Pn - Qn)
(5) "W(Wwnxg) = Q).
Then bar induction with the monotonicity condition, BIM s, can be expressed

as ¢
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BI, (1) & (2) & (4) & (5) = Q0

and bar induction with the decidability condition, BID as

BI, (1) & (3) & (4) & (5) » Q0.

The weakest version is

BIQF (1) & (4) & (5) » Q0 (with P quantifier-free).

It is shown, in Howard and Kreisel 1966 (Remark 4, page 337) that BI, can

be strengthened to
(1) & (2) & (4) & (5) = ¥nQn.

Similarly, if Q is supposed to be monotone (i.e. "nm(Qn - Q(nx*m)) ),

then BI or BI may also be strengthened :

D QF
(1) & (3) & (4) & (5) & Yam(Qn~Q(n¥m)) = ¥nQn
(1) & (4) & (5) & Vnm(Qn=Q(n*m)) = ¥n@n (for P quantifier

free).

It should be noted that (Howard and Kreisel 1966, theorem 8C)

EL + AC_, + WC-N + BI - C-X

1
and also (Howard and Kreisel 1966, theorem 8E)

EL + C-N | AC__ .

1.9.21. Extended bar induction.

The schemaof extended bar induction is described below., Let R be any

unary predicate of functions 3 then we put

R'B =, ¥(R(B).)
R°B =, . B ((B) =rz.y & Yu> y((B) =22.0) & u<y(R(B)g )
1th(B) = (5)003 ij(y,z) =f{x if y=0

0 if y>=x

B(i(y,2)) if 0<y<=x.

rY contains all codings of finite sequences of elements of R. Let us
s 4
denote the coding of a seguence Bo"‘°’Bx-1 by <BO,...,BX_1> s
1 - -
<B,se+0sB _4>' is a sequence of @ such that (m)o_.lz.x, (@)y+1-8y
for y<x, ((p)y:kz.o for y>x.

* denotes concatenation; we abbreviate <! as 3 .<>" is ax.0.

Now the schema of extended bar induction EBI is given by

D

EBI, (1) & (2) & (3) & (4) & (5) ~Q(<>")

where
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(1) dZaRe
(2) VBeRY (PBV —PB)
(3) VBeRY (PB - QB)
(4) vBeR™ Ex(PR))
(5) VvBeRY (Vme R Q(Bx%) - QB) .
1.9.22, Theorem.
EL® + DC, |- EBI,

where DC1 is the schema

ne, Vo 38 A(ayB) = Ey[(v) =e& ¥2A((Y)_, (V)g,)].

Proof. We first show that DC1 implies the following more general schema
(a form of RDC,‘)

() VoesTB e S A(a,B) = Vae S Ey[(y)o=a& szA((y)Z,(y)Sz) &(v)z €S }] .
To see this, assume
Vae S 3pe S A(ayB) .
Let
A¥(eyB) = [0€S & A(a,B) & BeS] VvV ags.
Then obviously (using classical logic!)
Yo BB A* (o, B) .

Let @eS 3 by DC,‘, there is a ¥ such that

[(v), = @& T28%((v)_, (V)] -
Then we prove by induction on =z
w2 (v) €S & A((YV)_,(V)g)] -

Thus (6) follows.
Now apply (6), with

S = R%a &1Qq, A(a,B) = IneR(B=ax 7).

Assume (1) - (5),"Q(< >1), ((1)-(5) as in 1.9.21).
Obviously, if RYe &—Qa, contraposition of (5) yields

- ¥neR Qlaxn) .

Hence by classical logic Ime R(—Q(ax 7)) and therefore also
A8 e R7(EINe R(B=ax %) &—QB).
Thus

VaeeS e S Ala,B) .
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By (6) there is a v such that

(V) = <>" & T2((v), €5 & T28((V),,(Vg,)) »

hence, by induction on 3z
(7) vz (R°(Y), & 1h(v) -2 & Ene R ((V)g, = (V) * M) &2a(v) ).
Now (7) implies

(8) (Mg, = (M, x<((Vg,)g,> & ((Vg,)g, € R-

We wish to construct & such that Ez = (v)z. This is achieved by taking
(8, = ((Ngy)sg» teee &= Ml(Vgy, )sixlix).

Now we see from (7) that Vz-ﬂQ(éz); but on the other hand, ((Y)SZ)SZE R
for all z (by (8)), therefore &c¢R*. This contradicts (4), since
Vz*ﬂQ(Bz) implies by (3) VzCﬂP(BZ)).

1.9.23. Remark. Attention has been drawn to the schema EBID by recent
work of Luckhardt (Luckhardt 1973, and Scarpellini 1972 A). They showed

how to construct models for the theory of bar recursion of higher type which
could be shown to be models in a theory corresponding to §£4-EBID. We
show how EBID can be applied to show that the so-called extensional con-
tinuous functionals are a model for the theory of bar-recursive functionals
(2.9.10). By the preceding theorem, this also gives a modelling of the
bar-recursive functionals which can be shown to be a model in Q;cq-Dq s

but this is already explicitly in the literature, e.g. Kreisel 1968, pp.146-147.

o

1¢9.24,. Fan theorem. The so-called "fan-theorem" in its simplest form may

be stated as follows :
FAN Vaoe B TxA(a,x) = 3z Vaec B Ty VBe B(az=Bz—A(B,y)) .

Here o€ B is an abbreviation for ¥x(ax< 1) ( ¢ B may be read as:
"o belongs to the binary spread").

Kleene's *27.7 in Kleene and Vesley 1965, page 75 is a generalization of
FAN3; it is shown there that

EL+WC-N+BI  [FFAN
by first showing that
EL + BI |-FAN!
where
FAN! Vn(Rn V-&n) & Vee BEx R(ax) — ¥z Voe B Ex<z R(wx)

( FAN' corresponds to Kleene's *26a).
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Here we have restricted our attentions to functions in the binary spread
(i.e. satisfying weB); but it is not hard to show that TFAN and FAN!
are equivalent to similar principles for arbitrary finitary spreads.

Let us denote by FAN® +the more general principle
FANX Voe S 3y Ala,y) = Hz YoeSIWB e S(B €&z— A(p,y))

where o€ S abbreviates: ¢ belongs to the fan S.
For every fan S, we can find a function o« such that BeS = Vx(Bx< ax) .
The species S = {B | vx(Bx < ox)] is itself a fan.

Furthermore, if S¢S' for two fans £, S' we can find a projection o
such that ¢[S']=5, oa=a for o€S. Therefore FAN* w,r.t. S
implies FAN w.r.t. S, as is seen by applying FAN* w.r.t. S' +to
Vae St By A(opa,y) »

The following mapping itransforms every function of natural numbers into
a sequence of O's and I's, i.e. an element of the binary spread:

141 2
o = 1901 o, 4ot qeet

where 1° stands for 1, 1, ..., 1 (x times).
It is easy to see this mapping is bi-unigque, and transforms a2 fan into a sub-

fan of the binary spread. Thus we may derive FAN®  from FAN .

1.9.25 - 1.9.27, Extensions of g-HAw.

-

1.9.25. Extensions to theories in all finite types with sets introduced

by generalized inductive definitions IDBw.

A first example is the theory _’.?‘2 with objects of finite type over three
basic types: the natural numbers, trees of the first class, and trees of
the second class (trees of trees of the first class). This theory is discuss-
ed at length in chapter VI. 32 contains as a sub-theory 31 s the theory
obtained from 32 by deleting all reference to trees of the second class.

Another example, equivalent to 21 as regards proof-theoretic strength,
is obtained by extending y\-@éw to a theory of finite types over two basic
types 0 and ¥ (the natural numbers and the Brouwer-operations) thereby
extending (a variant of) IDB in the same manner as N - %w extends HA.
A first example of such an extension appears in Howard 1963, a completely
reworked version in Howard 1972.

In Troelstra 1971h systems I - IDB”, E-IDBY, WE- IDB” are described.
We briefly outline these systems by first introducing g- %w similar to

I‘\’I\-H“éu; The type-structure is now extended to a structure zK:

0,K €T o,TeT. = (o)1, o XT €

]

K} K K*
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z R s before iri
o, 0,0,7) g a s Pairing constants

D;’T, and moreover constants &,, &, QB, Yo I(p,c,'reg

There are constants 0, S, I

]
Dc,'r’ Dc,'r’ K) *

Furthermore, there is equality = as a primitive constant for each type
’ c

- gK The axioms and rules contain the axioms and rules of y-}}éw,
I is an "injection" - functional from K into (0)0, so Ie (K)(0)O.

3, € (0)x, 3, € (K)(0)X3; the conmection between I, 8,, &, is given by:

Sx (x,y€0)
Ie(<x>%y) (x,y€0, ecX).

I(§1x)y
I(@Zex)y

(We use e, £, e!, e", eyr eees 1, £, oo for K - variables.)
§36 ((0)X)K is a "sup"-operator for sequences of elements of K and satis-

fies
I(§3y)0 = 0, I(@By)(z*n) = I(yz)n (ye (0)XK, z,neO0).

a
‘i’o is\/constant for definition by recursion over K, with axioms

Ie0 = Su = ‘i’oexy = XU,

IeO = 0 = Y exy = y(Av. ‘i’c(izev)xy)e

(e 0, xe (0)o, ye ((0)o)(K)e) .
Here Av. Ya(ﬁzev)xy is assumed to be syntactically defined in terms of
Mts and =ts (cf.1.6.8).
This completes the description of &- @“’. E- Iv]‘)’@w is then obtained by
requiring

<X yKG—) ¥2° (Ixz = Iyz)

and also hereditary extensionality, i.e.
x(a)T = y(c)'r > v2°%(xz = yz) .

In W‘E— IB’}}w extensionality is weakened to
If FP=t=s, then P - F[t]=Fs],

where P is a propositional equation between terms of type 0O, and
t,s€0,

(A
I- 10BY is obtained by adding to \1:[—9?/[3 a constant Ej for each type

o€ EK with axioms

Ecxy=o \Y; Ecxy= 1
x=y<—\E°xy=O,

thereby making equality decidable for all types.

There is still an intermediate type of theory possible, where equality
is neither extensional nor intensional (but alsoc not neutral). Let us in-
dicate these extensions of IE\-VHéw, N- ZL]?’}}‘D resp. by :gl;b-}}:&w, 35‘1’1:_0 -IVI‘)’@‘D.

We only add to N-mY
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x 2 y1 — Vz2°%(xz = yz) .

For a model of such a theory, see ICF in § 2.6.

1.9.26, Theories with bar recursion of higher type; ﬁf'gée{*BR'

Theories of bar recursion of higher type are extensions of E-ggg
based on (essentially) the same type structure, with a new schema for certain
constants Bc (the bar-recursion constant for type o ). Such a theory has
been first introduced in Spector 1962, (The most important further refer-
ences are Howard 1968, Kreisel 1968, Girard 1972. Furthermore Scarpellini
1972 A, Luckhardt 1973.)

For the most convenient formulation, assume that we wish to describe the
theory of bar recursion as an extension of E'-Eéi' We note that the addi-
tion of a type oY of finite segquences of objects of type © is an expansion,
since such sequences may be identified with special sequences of type (0)o,
e.g. as follows,

Let the natural numbers n be coded into higher types as n, as follows:

[+4

n, = n, n(c)T = Ax ., O Dnon_ .
Then <xz, eoey x;_,‘) may be coded as z(o)c with

z(°)°o = ug, z(o)o(i+1) = x; for i<u,

(o0)o, .

z i-= Oo‘ for id>u.

Now let ¢ Dbe a variable of itype ¢ , ranging over finite sequences of
objects of type ¢, and let us adopt the same notations as for sequences of
natural numbers, such as Cy* 02 , 4 for <w (ueo), 1lth(c).

Let [e¢] denote a sequence of type (0)o, where if ¢ = <uo, ooy ux_1> ,
[e](i) = u, for i<x, [e](i) = O for i>x.

The bar-recursion constant B° then satisfies

zZC

J ylel<1th(e) » Byzuc

BR
c

Ly[c]}_lth(c) = Boyzuc = u(Av., B yzu (cx®))ec.

To see, intuitively, that Bc defines a functional, we must think of y as
being continuous (i.e. yz,ze€ (0)o depending on a finite initial segment
of z).

If y[e]<1th(e), B,yzuc is determined ; the computation of B_yzue for
yle]}>1th(e) is reduced to the computation of chzu(c*v) for all veo,
If the set of ¢ such that y[c]>1th(c) is well-founded, (classically a
consequence of continuity), the computation will be eventually reduced to
cases with y[e] <1th(e).

BR 1is the set of axioms BR, for all o of our type structure.
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1¢9.27. Girard's theory of functionals.

This theory is introduced to be able to give a direct Dialectica inter-
pretation of the theory of species (i.e. not via a theory with variables for
functions, as in Spector 1962 (Girard 1971, Girard 1972).

The type structure g‘s is defined by

(1) 0¢€ Iq

(ii) o, 8, 'y, B'y ... Delong to g (ey By, o', B'y ... are called vari-
able types)

(iii) o,7 € T, = o X7, (o)1€T

S S
(iv) if ofle] € I, then Va.o[e], Za.ole] € To.
. s 1
The functional constants contain S, Hc,'r’ Zo,0,17 Ror Do,7? D5 v2 By rr Og
co s . X ' sl
for all(’,’rpegs , and two injection functionals IVac,'r and IHQO,T s satis

fying

Tyao(a],r © (Teolal)(e[7]),

I'Hoo[a],'r € (o[t])(Zaso[a]) .
Finally, there are two operators DT, ST (not functionals with a type, but
corresponding to schemata for introducing new functionals).
Let teo be a term, not containing free variables containing in their

type o free., Then DTot is a term of type Va,0 with axioms

ygo( ag, - 07T = 17

Let t ¢ (¢[{a])T, @ not occurring free in T, and not occurring in a type

of a variable free in t3; then
STat € (Zao[a])T,

with the axiom
ST o (1! 5"[ p]) - t(”[ﬂ])“’sc[ p] .

T [ @], p
Also

o
O(c)-r T =00, Dc,'r 0g0r = Og xr

IVOIO[ al,T OVOI.U[O{] =
ST'“t(Oga.a[a]) = t(Oo[a]) (te (elal)p) -

For this theory also intensional and axtensional versions are possible. For

example, we may add the equality functionals Ec as in ‘;-v}]éw.
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§ 10. Relations between classical and intuitionistic systems:

1.10.1. Contents of the section. For classical predicate logic and arith-

metic there exist a number of mappings into the "negative" fragment of the
corresponding intuitionistic systems in the literature; the definition of
these translations can be readily extended to higher order languages. A
survey is given in Luckhardt 1973, chapter III. References are Godel 1933,
Gentzen 1933, Kuroda 1951; cf. also Kleene 1952, § 81.

For definiteness, let ;! denote intuitionistic (many-sorted) predicate
logic or HA, and let gc be obtained by addition of the excluded third.

All translations ¢ have the following properties:

(i) E°hF ot e 4 for all A€ Fm(H)

(1) BE°F A ® B} @, for all Ac Fm(H)

(iii) For a1l A€ Fm(H) there exists a B, constructed from doubly
negated prime formulse by meens of V, &, =, A st H oA < B.

As remarked in Luckhardt 1973, all these translations are equivalent, in the

sense that, for any two translations o, o' satisfying (i) - (iii)
Hi-oA ¢ o'A.

Below we primarily discuss the variant due to Gentzen.

1.10.2., Definition of the mapping'. Let £ be any many-sorted (first-or

higher-order) language, based on the logical primitives V, ¥ (for any sort
of variables), &, V, =, A ., Then we define the mapping ' (the "negative
translation") by induction on the formula complexity as follows:

(i) Pt === P for prime formulae P; A' = A,

(ii) (A&B)' = A1 & B!

(iii) (A=B)' = At~ B!

(iv) (¥xa)' = vxa', for variables x of all sorts
() (VD) = (nArEn D)

(vi) (¥xA)' = - ¥x - A', for variables x of all sorts.

1.10.3., Remarks.

(1) In a system H with a language £ where prime formulae are decidable
(e.g. HA, Hvéw, L-g&w) clause (i) may be simplified to P! = Pj; the
resulting translation is then obviously logically equivalent to the one
given by (i) - (vi). 1In systems with two types of prime formulae, such es
Hvévs\, we may use P' ® P for the prime formulae which are decidable (such
as t=s in HAS) and P' ® = P for the other prime formulae.

{(ii) If we use P' = P for prime formulae, we have A" = A'; and we always
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have A" «2?A' in intuitionistic predicate logic. We may also let the
treatment of prime formulae depend on the context: if they appear unnegated
in A we put a double negation in front, otherwise we do not change them;
then A is further defined by (ii) - (vi). Then also A" = A'.

1.10.4. Convention. We shall give our proofs below under the assumption
that ' is defined by 1.10.2, (i) - (vi).
Ve sometimes find it convenient, however, to assume P' = P for decidable

prime formulae P (ecf. our remark 1.10.3 (ii) above).

1.10.5. Definitions.
(a) We define the strictly positive parts (s.p.p.) of A, for A in a

given language, inductively as follows:
(i) A 1is & s.p.p. of A ;
(i1) If B&C or BVC are s.p.p, 0f A, then so are B, C ;
(1ii) If B=C 1is a s.p.p. of A, then so is C
(i¥) If V¥xBx, ExBx is a s.p.P. of A, then so i8 Bt for any term ¢.
(b) A Harrop formula is a formula which does not containa s.p.p, with V
or @ as a principal operator.
Alternatively, the class of Harrop formulae 4 can be defined inductive-
ly by the clauses (i) prime formulae belong to 4,
(ii) A,BeA=>A&B e &, (iii) A€ A = Vxhe s,
(iv) Be A =A=B e 4,

1.10.6. Definition. In any language # (as intended in 1.10.2), a formula
A is said to be negative, if it is constructed from negated prime formulse
by means of V, &, =, A . (In systems with decidable categories of prime
formulae we shall assume that a negative formula may also contain unnegated

prime formulae out of the decidable categories.)

1.10.7. Remark. In g& there are Harrop formulae which are not provably
equivalent to a negative formula. An example is = Vx[—= -3y T(x,x,y) =

- By T(x,x,y)] (see 3.8.2 ). But conversely, every negative formula is
a Harrop formula.

1.10.8, Lemma., Let H bea formal system based on many-sorted intuition-
istic predicate logic, and let A be a Harrop formula constructed from
decidable or doubly negated prime formulase. Then

g|—A<—>-.—|A.

Proof. By induction on the complexity of A.

(i) The assertion holds for double negations of prime formulae and
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decidable prime formulae. - " A > A .

(i1) If A<« n A, Bé&> B, then (A&B) ¢ (- A& - —B) < (A&B)
(1.1.8, V)

(iii) If Ax ¢ — -Ax, then
VxAx = - 0 VxAx = Vx = —Ax = Vx Ax.

(iv) If - B« B, then
< (A= B) € (A=— "B) ¢ (4=B) (1.1.8, IV).

1.10.9. Lemma. Let H be a formal system based on intuitionistic (many-
sorted) predicate logicj; let g' be obtained from E by edding the schema
DNS ¥x = Ax = - VxAx

(for all sorts of variables x). Then

(i) For A not containing V:
o4 Fo—mAeoar,
(ii) PFor all A
BH'pF-naenr,
(iii) If all subformulae of A are stable (B is called stable if
Bé=>—- = B) in H, then
g '— ST A A,

(Note: this lemma is used in 1.11.4.)
Proof. (i), (ii), (iii) can be proved simultaneously by induction on the

complexity of A . We consider itwo typical cases:
(a) Let m - Bxe> (Bx)'. (ZxBx)' ¢ - ¥x - (Bx)! ¢ ¥x 7 Bx - IxBx.

(b) (For (ii) or (iii) omly.) Let — — Bx ¢ (Bx)'.
= = ¥xBx ¢« Vx - -1 Bx ¢ VxB'x < (VxBx)'.

1.10.10. Lemma. Let E denote many-sorted intuitionistic predicate logic
for a first- or higher-order language, and let Ec be obtained by addition
of the principle of the excluded third. Then

(i) E°pa<oar
(11) BE°F A ® HpA'.
Proof. (i) is obvious. (ii) from left to right can be proved by induction
on the length of derivatioms in gc . (The implication from right to left
is trivial.) We take for example Godel's system as a basis for our veri-
fication,
(a) Basis: gc A, 4 is an axiom.

If A=BVB=B, then A' == (0 B'&— B') = B!
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which is equivalent in g to - — B! = B', This holds in _I}‘ because of
lemma 1.410.8 and remark 1.10.7.

If A=EB=BVC, then A' = B'=—(0B'&-C'); this is derivable in i
gince B! &-C'-~—B!', so by contraposition (1.1.8, I)
~ mB'=—(—B'&~C') etc.

If A = Bt=dxBx, A' = B't=-—Vx-B'x., Then as before, since
Vx—B'x==-B't, by contraposition =1 —Bt'=-V¥x—B'x etc.

If A= BV-B, A' = =(2B'&- —B'), which obviously holds in g
The other axiom schemata are even less difficult.
(b) Induction step. Assume that, for any formula A, if g‘c I'-A by a de-
duction of length <k, themn H }-A' . Now suppose gc '—A by a deduction of
1eng.th k+1. We have to distinguish various cases according to the final
rule applied in the derivation., The cases PL2, PL3, PL7, PL8, and Q1 are
completely trivial.

Assume the last rule to be applied is PL13, so A CVB, = CVB2 s, and

1
by induction hypothesis

H |Bj=B}.

AY = (—C! &-B%) - ﬂ(‘uC'&—lBé) . A' follows from

-C! &_'Bé - (! &ﬂB; by contraposition. Since -~C! &—rBé - -C',

~Ct & Bé - —:Bé and ‘wBé - ﬂB,‘ by contraposition from our induction
hypothesis, ~—C! &“'Bé = —B} hence - Q! &—tBé - (! &—|B; .

IxBx=C. By

Assume the last rule to be applied to be Q4, so A
induction hypothesis, g}— Bix=C!'. A' = 9Vx—Btx=C',.
By contraposition, Ii'— —Ct=-B'x, so with Q@1 H| —C'=Vx—~B'x,
By contraposition again, E |-’v'x = Btx=— —-C', By lemma 1,10.8 and remark
1.10.7 - =C'=C', so H} (ZxBx=C)'.

1.10,11, Theorem. Let H be one of the systems HA, N-VH\;“", H.Aw,

;‘-H‘Aw, E_&w’ HAS + PCA,HAS . Then, if g\c denotes the corresponding

classical system,

(1) E°pa e

(i1) B°F A = EFA'.
Proof. We have only to add to the proof of 1.10.70 a discussion of the
additional axioms and rules.
The equality axioms sre trivial to deal with, as are the defining axioms
for the constants.
Further we have to verify, for any instance A of the induction schema,
that H |- A'; this is obvious. an
In the case of Hﬁ+ PCR orHv.f.ﬁ finally, we have to check that foIWiJnstance
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A of WCA, resp. CA, HI A'.
N
Let e.g.

= n n
A= T VX,L.0x [B(x,‘...xn) X x1...xn] .
We have to show
n n
(1) Et—ﬂVX DVxyeeex [BN(xgee0x ) 20X xgeelx ]
We note thet in § for some ?

n
Vxyeoex [BY(x4e00x ) Y Xgeeex ]

Hence also

n
VXgeeeX T [B'(x1...xn) Y x1...xn] ,

and thus using - - (D,&D,) <> D, &~ D, and
- = (D1-D2) > (— DD, = ﬂD2) (1.1.8, Vv, IV),

n
Vx1...xn[—u 2B (x, .. In)H—l oYx, ... xn]
and with 1,10.8, 1.10.7

n
L IPPRE RS- LI C PPRE S0 K s dnind & PIPPPE 3 i

1.‘ 1 - e
Hence (1) follows, by &Y' D(Y)==-V¥"=D(Y).

1.10.12. Corollary. Let H be one of the systems indicated in 1.10.1%1.

c . .
Then H is conservative over g w.r.t. negative formulae.
wA

1.10.13. Some further information is given in Kreisel 1962C,where also
lemma 1.10.9 (ii) is stated (Theorem 1, Corollary). The concept of a Harrop
formula (i.e. a formula without strictly positive occurrences of v, 7)

appears first in Harrop 1960.
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§ 41. General discussion of various schemata and proof-theoretic

1.11.1. Introduction., Certain schemata and rules will appear frequently in
the statements of metamathematical results in the sequel. 1In this section
we briefly discuss the principal ones.

Let us define a rule as a set of (n+1) - tuples of formulae; an element of
this set is an instance of the rule. If <F1""’Fn’Fn+1> is an instance
of a rule, F1""’Fn are called the premisses, Fn+1 the conclusion.

A rule is said to be a derived rule for a system H, if for each instance

<F0,...,Fn> of the rule,
B+ T F ,e, B+ TFF , =H+TFF .

A rule is said to be an admissible rule for a system H (or: "derivable

from null assumptions") if for any instance <F0,...,Fn> of the rule

BFFseeey P 4, 2HEFF .

Admissible and derivable rules are instances of proof-theoretic closure con-

ditions of a rather crude kind : they only involve the set of provable

theorems, By a study of normalization for systems of mnatural deduction, one

can obtain more delicate proof-theoretic closure conditions involving the
deductions themselves.

For reference in the discussion below, we now briefly recapitulate the
intended interpretation of the intuitionistic logical constants.

10) A proof of A&B consists of a proof of A and a proof of B

20) A proof of A VB consists of a proof of A or a proof of B

50) A proof of VxA consists of a construction 1 which, applied to a
proof ¢ of the fact that d is in the domain of the variable x,
yields a proof Ilc of Ad, together with a proof It of this property
of 0.

40) A proof of HExA consists of a ¢ in the domain of x and a proof
of Ac, and a proof that ¢ belongs to the domain of x.

50) A proof of A-3B consists of a construction @I which transforms any
proof ¢ of A into a proof Ie of B (together with a proof It
that [ satisfies this conditiom).

Intuitively, the predicate EA(c) ("¢ proves A") is assumed to be de-

cidable,

For a more detailed discussion of this interpretation, see Kreisel 1965,

Troelstra 1969, §2.
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1e11.2. Disjunction and explicit definability property.

Nearly all intuitionistic formal systems discussed in this monograph

satisfy the so-called "explicit definability property" (ED)
ED b & Ax = En ({An) (ExAx closed)

(x 2 numerical variable)., In virtue of Ex((x=0=4)& (xf0=B))¢>4V3,

ED implies the disjunction property
P FFAVB = FA or B (AVB closed).

With respect to other sorts of variables, we often encounter a generalization
of ED of the form

ED! t Ex Ax = Ft({At) (Zx Ax closed)

where X 1is now any sort of variable, and t ranges over terms (definable
elements of the range of the variable =x) of the same sort as =x.

ED, ED!, DP have often been presented as criteria for the "constructivity"
(constructive character) of a2 formal system. Of course, if we comnsider e.g.
DP, there is a property of the class of informal proofs which parallels
DP; a proof of AVEB should contain either a proof of A or a proof of B
establishing DP means that the set of formal proofs of the system satis-
fies a similar closure condition. (Similar, but not the same condition:
as we stated DP, the formal proof of A or the formal proof of B whose
existence follows from the existence of a formal proof of A VB, need not
be contained as "sub-proof" in the proof of A VB, For a closure condition
on formal proofs which more closely resembles the condition on informal
proofs, we must establish more )

Also, ED, ED', DP are neither sufficient nor necessary for the '"con-
structive character" of the system studied, i.e. they do not enforce unique-
ly the intended interpretation, since there are divergent extensions HA',
HA" of HA (so HA'UHA" is inconsistent) which both possess ED, DP;
and on the other hand, there are systems g, HACH, which are obviously
intuitionistically acceptable, on the intended interpretation of the logical
constants, but which do not possess DP. As an example of the diverging
systems, one may take HA+M, HA+CT_+IP (efe 3.7.4 (1), 3.7.4 (ii),
3.2,27).

We present an example of an intuitionistically justified system which
does not satisfy ED (from Troelstra A ; the example is due to Kreisel).

Let Proof = Proof and

I_LA b

Ax Proof(x,"0=1") v ¥Vy—Proof(y, 0=1").

=def

Since HA is intuitionistically consistent (on the intended interpretation),

v
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Yy - Proof(y,'0 = ‘I_‘) is intuitionistically true, hence also ®ExAx, Further
note that because of Vy—Proof(y,"0=1"), we must have { = Proof(nm,"0=1")

for any numeral n. Therefore
FAR e Yy-Proof(y,"0=1")

for any numeral =n.
Also

- Bx Ax «= [ 3y Proof(y, 0=1") Vv ¥y 2 Proof(y, 0= 1)].

Now assume { ExAx - An, then it would follows that

{ [ &y Proof(y, 0=1") Vv ¥y 7Proof(y, 0=1")] = ¥y =Pro>f(y, 0=1"), hence

b 3y Proof(y, 0=1") ~ ¥y 2 Proof(y,"0=1"), and thus { Yy Proof(y, 0=1") ;
this contradicts Godel's second incompleteness theorem., Therefore HA + Ex Ax
does not satisfy ED, since HA+ 3xAx - HxAx, but not HA+ ExAx{-An.

1.11.,3. Schema D: Vx(AvBx) - (AvVxBx), x not free in 4.

This schema has attracted attention because intuitionistic predicate
logic with this schema added, is semantically characterized by Kripke -
models with constant domain (see e.g, Gornemann 1971).

In Gornemann 1971 it is also rnoted that intuitionistic predicate logic +
schema D possesses the disjunction property. However, this property is
lost as soon as we go to arithmetic.

Actually, HA+D = vH&c s as is easily seen 3 by induction on the logical
complexity of A one verifies the provability of Vx(Av —A). E.g. if
A = 3yBy, then (Vx—Bx VvV HyBy)<e Vx(—Bx v 8y By); and if =-Bx, then
—Bx V ZyBys; if Bx, then Hy By hence also =Bx Vv Iy By. By induction
hypothesis, BxV Bx, therefore —Bx Vv Hy By for all x, and thus
Vx—-Bx V 3yBy.

If A S VyBy, note that Yy(By v - By) = V¥y(By Vv - ¥x Bx) €«
> ¥WxBx V- VxBx.

Even closed instances ot D spoil the disjunction property. Let p°
indicate D restricted to closed instances.

Let for example VxCx be a rossersentence for H\A+Dc , and let
A =-VxCx, Bx ¥ Cx. Then Vx(AVBx) holds in HA; by n° ,
%+Dc FA v ¥xBx; hence, if vHé+Dc would satisfy DP,

HA+D°’—‘|VXCX or %+Dc |— Vx Cx

which is impossible, At the same time it follows that 2% is not derivable

in iﬁé\, not even the rule for sentences:
(1) b ¥x(A VvBx) = {AVVxBx.

This contrasts with the case for intuitionistic predicate logic, where cut
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elimination for a calculus of sequents or normalization for natural deduction
readily yields (1). (In a closed normal deduction, ¥x(A VBx) must be ob-
tained from V- introduction from A VBa, and this in turn from A or Ba
by V- introduction; hence A or VxBx can be derived.)

Since D is obviously invalid for our realizability interpretations, and
the rule is not admissible even for arithmetic, we shall not spend further

attention on it.

1,11.4. The schema V¥x -—A = —=—1VxA. (DNS = Double Negation Shift).

To this schema attaches considerable technical interest, since, as we
have seen in 1.10.9, in theories based on intuitionistic logic + DNS, the
negative translation satisfies —7A €2 A' for all A.

Also it permits us to derive, in intuitionistic analysis, (AC)' from AC:
Assume Vx—Vy—At(x,y), then Vx m—EyA'(x,y), so = ¥xEyA(x,y) by
DNS ; hence —— 3z VxA'(x,zx), i.e. T ¥z VxA'(x,2zx). In other words, the
' - translation interprets classical analysis, formulated with seguence
variables and the axiom of choice, in the corresponding intuitionistic

theory + DNS. This fact constitutes the starting point of Spectoxr 1962.

1.11.5. MNMarkov's schema and rule.

Markov!s schema in its most general form can be stated as
M Vx[A voA] & " Ex A = ExA .
4 simpler and weaker form is

L -~ HxA - A (A primitive recursive).

Let us use M;R for M‘PR restricted to closed instances. Intuitively,
for =x 7ranging over natural numbers, M expresses: 1if we have a property
A which can be tested for each x (i.e. Vx(A v—A)) and an indireet proof
of ®xA (i.e, ——H¥xA ) then this amounts to a direct proof of ExA. In
other words, Markov's principle enables us to assert, for a computer testing
A for all x, that ——IxA guarantees that the computer will find an x
such that A. This is obviously an enlargement of the concept of "con-
structive”.

1 is not derivable in HA (Kreisel 19588)., Consider e.g. the follow-

PR
ing instance

&) - ¥x—iBx -~ ¥ Bx

where Vx—1Bx is a rossersentence for HA.
[ ad

Making use of the closure of HA wunder

A= &B = &n(f "A-3n) (ef. e.ge 3.1.7)
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it would follow that if HA } (1),
f - V¥y-By = Bhn.

Bx is primitive recursive, hence {Bn or  —Bn.
In the first case }‘LA }-— = Vx—-1Bx, in the second case H.é }— - Vx—Bx, i.e.
%’L“A t—‘v'x —Bx . Both cases conflict with the assumption that Vx—Bx is a
rossersentence for HA.

HA, and many other intuitionistic formal systems, have been shown to be

closed under the rule
MR Fvx(Avoa), b om3xA 2 x4,
and a fortiori under

MRpp F o084 = FExA for A primitive recursive,

and its specizlization MR;R to closed formulae.

Using w- consistency and classical metamathematies freely, we can estab-
lish MR;R as follows, Assume 1"_*'1@.XAX, A primitive recursive, ExA
closed. For 21l n, |AZ or { —An . Suppose Yn(} —An); then,
assuming w- consistency of }}é s Wwe obtain a conflict with i— S VxAL.
Hence — Y¥n(| —An); arguing classically, En(f{-An); hence b ExAx .

For more details on MR, see § 3.8, § 5.4.

Technical interest of Markov'!s schema also derives from the fact that it is
validated by Godel's Dialectica interpretation, and that by a result of
Godel (Kreisel 1962, § 3) completeness w.r.t. intuitionistic validity (con-
ceived as the analogue of classical set-theoretic validity) implies the
validity of Markov'!s schema in intuitionistic arithmetiec.

In recursion theory, there is a rather special application of Markov's
schema in the proof of Post's theorem (a set XcN is recursive if X and
NN\X are both r.e.). The application involved corresponds to a schema of

predicate logic of the following form:

Vxy(A voA) & Yxy(B v-3B) & Vx IyIz(A(x,y) &B(x,z)) &
& Vx——(Zy Axy V 3y Bxy) = Vx(%y Axy v Iy Axy) .

Or with function variables:

-8y Fz(ay=1bz) & ¥x 7 (&y(ay=x) VE(by=x)) = ¥x(Fy(ay=x) VO 8y(ay=x)) .

In Luckhardt A it is shown that the principle is equivalent to M.

1,11.6., Independence-of-premiss schemata.

An "independence-of-premiss schema'" is a schema of the form (x not free
in A)
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(1) (A= 3xB) = Ix(L-B)

where A in general must satisfy additional restrictions &, either syn-
tactical or logical.
The principal instances of independence-of-premiss schemata which we shall

encounter are

Ip (C=®x B) = @Zx(—C-B)

(so A must be of the form —C here), and the weaker
IP, Vx(AVoA) & (FxA=dyB) = Zy(VxA=3B)

and the still weaker

IPpp (VxA=ZyB) = Ey(VxA=B) (A primitive recursive).

On the intended interpretation of the logical constants, if we assert
A-3xB, the "x for which B" may depend essentially on the proof of A
(and not only on A Ybeing true).

An independence-of-premiss schema (1) expresses, that for A satisfying the
restriction &, the x does not depend on the proof of A at all: we can
indicate a priori an x which should satisfy B if A holds. So independ-
ence-of -premiss schemata do affect the intended (constructive) interpretation
of the logical constants: they restrict the type of mappings from proofs to
proofs which can be used to establish implications of the form A-HEx3B.

The corresponding admissible rules of the form
(2) A~ #xB = |E(4A-B)

(A under an additional restriction) show more or less the same as the con-
sistency of the schema relative to the same system: that the system discuss-
ed permits the interpretation of intuitionistic implication enforced by the
independence-of-premiss schemata. .

A certain technical interest of IP is in the fact that it is validated
by modified realizability interpretations (see § 3.4). Not even IP;R (i.e.
Ip restricted to closed formulae) is derivable in intuitionistic arith-

PR
metic; see e.g. 3.1.711).

1.11.7. Church's thesis and rule.

In a formal system with function symbols, (the intuitionistic version of)

Church's thesis can be expressed as
CT Vo Bx Vy 3z [Txyz & ay=Tz].

Combined with a choice principle ACOO s We obtain a version which can be

expressed in the language of arithmetic :

CT, Vx 8y A(x,y) = 3z ¥x Bu(Tzxu & A(x,Tu)) .
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The conceptual interest of CT and CT0 is in their bearing on the question:
do the concepts of "humanly computable function" and "mechanically computable
function" ceoincide ? (here "humanly computable" should mean "computable by
an idealized mathematician in the intuitionistic sense': for a discussion

of these matters, see Kreisel 1970, and especially Kreisel 1972)}; and second-

ly in the fact that CT implies the incompleteness of intuitionistic predi-
cate logic (sketched in Kreisel 1970, Technical Note I: for a more detailed
exposition see van Dalen A).

Church's thesis turns out to be consistent with all intuitionistic formal
systems not involving the concept of choice sequence, and especially not
containing the fan theorem or bar induction (ef. § 3.2).

The underivability of CTo is obvious, since CT0 is false in g}:c .

"Church's rule" takes the forms:

b Saho = - Zae GRAY)
where a¢c GR abbreviates Ix ¥y Bu(Txyu & ay =Uu) and
CR, b ¥x By A(x,y) = {8z Vx Bu(T zxu & A(x,Uu)).
A weaker version of Church's rules takes the form

WCR If | ¥x3yAxy, then there is a recursive function f
such that ¥n |~ A(%, fn) .

WCR 1is closely connected with ED: for systems with a recursive axiomatiza-
tion, ED is equivalent to WCR (Kreisel 1972). This is seen as follows.
Obviously, WCR implies ED. Conversely, if ED holds, we may construct

f as
fn = min Proof(j1m,rA(ﬁ, ?2;)-‘)
which makes f Tecursive, in view of the recursiveness of '"Proof".
As remarked in Kreisel 1972, this result tells us where not to look for a

conflict with Church's thesis; all the usual systems satisfying ED cannot

be expected to yield a refutation.



Chapter II

MODELS AND COMPUTABILITY

§ 1. Definitions by induction over the type structure.

2.1.1. Definition over the type structure. In the sequel we shall meet

repeatedly with definitions over applicative type structures, i.e. type
structures, obtained from certain basic types by closure under the condition:
if o, T are types, then so is (o)T, our principsl example of such =
structure being g. In the discussion below, we restrict our attention to

g for simplicity.

An applicative set of terms M 1is a set of terms such that if +te€ (o)7,
tteo, t,t'eM then tt'eM. A basis for an applicative set M is a
subset M'cM such thet the closure of M' wunder application yields M
(i.e. M 1is the smallest applicative set containing M' ). Examples of
applicative seks :

(a) The set of closed terms CTM of g-g&m, with the constants of g-—gé?
as a basis,

(b) The applicative set generated by the basis consisting of the constants
and type O variables of N-HA" (cmv,) .

(¢) The applicative set generated by the basis consisting of the constants,
the type O variables and a single fixed type 1 ~variable (CTMO(I1L
if x is the type 1 variable).

Let us define the type level as follows: 1(0)=0, 1((e)r) = 1(e) +1(7) +1.

Further examples of applicative sets are now provided by restriction of the

types to types ¢ with 1(¢)<n in examples (a), (b), (c).

In its simplest form, a definition of an n-ary relation over the type
structure T for an applicative set M of terms takes the following form:
(1) Po(t1:...,tn) if $,5.00,t €0 and A(t,‘,...,tn) (A being any given

predicate); Pysecest €M,

(i1) P(O)T(t1,...,tn) i WtjeM ... Fbre M(Po(th, e, b)) = Pt 8 u, (X)),

A slight generalization (for an example see 2.2.5) takes the following form

(M an gpplicative set):

(i) Po(t) if teo0, Ao(t) and teM

(ii)'P(a)T(t) if A(O)T(t) and Y‘t'e.M(Pct'=°PTtt').

Such a definition may be viewed as a superposition of a sequence of definitions

over a type structure, where each type @ is not only viewed as obtained
applicatively from type O but also acts as a "ground type" (or "basic type")

for more complex types w.r.t. the property Ac'

97)
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A definition according to (i), (ii) or (i)', (ii)' is a definition over
the type structure of metamathematical properties of metamathematical objects
(i.c. terms). Of course, similar definitions are possible within the system

itself, i,e. we may define properties within the system according to a schema:

. [¢] 0 -~ [¢] [¢]
(1)" Po(x»]v---vxn) =def A(x1,...,xn)
‘s (o) (e)7y _ o g o c
® (11)" P(O)T(x‘\ 9"°9xn ) —def VY1--'Yn(Po(y11---’Yn) - P'r(x1y‘|""xnyn))'

and such a schema similarly permits generalizations and variants(cf.2.3.13

for an example).

2.1.2, Establishing properties for applicative sets of terms.

We consider three types of definitions of a property Q for the terms of

an applicative set M: .

(A) Q is defined as a unary predicate over the type structure, according to
clauses (i) and (ii) in 2.1.1.

(B) Qt =def P(tyeeeyt), where P is an n-ary predicate defined over the
type structure according to clauses (i), (ii) in 2.1.1, and A(t,...,t)
holds for +te M.

(C) Q@ is defined inductively over the type structure according to (i)' and
(i1)' in 2.1.1.

In each of these cases, establishing JYte M[Qt] may be reduced to establish-

ing VYte M'[Qt] for a basis M!' of M, because of the following lemma :

Lemma. If +t,,...,%t ~are terms such that Q(t;) for 1<idn, and Q is

defined by a definition of type (&), (B), (C), then for any + obtained by

repeated application from t1,...,tn, Qt holds.

Proof. Quite straightforward ; we have to show that if Q(t1), Q(tz) and

tye (e)r, t,€0, then Q(t1t2).

Similar lemmas reduce the establishment of properties Q defined via defini-

tions of type (i)", (ii)", or one of the many variants, to the establishment

of Q for a basgsis of the set of applicative terms considered.

2.1.3, Definability aspects.
Suppose Q to be an n - ary predicate defined by a definition of type

(A), (B), (C) in 2.1.2, 1If we wish to consider an arithmetical version QF

of @ (so Q% is a predicate of godelnumbers of terms, not of the terms
themselves) +then if there is no bound on the type level, we cannot in general
expect Q* +to be arithmetically definable, since Q* should satisfy e.g.

for a definition of type (4):

Q*(m) > % (type (m)="0"&Q}(n)),
@y (3) € T (@2n = @*(app(m,n)))

(where " o™ denotes the code number of type ¢, app(n,m) +the arithmetical
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representation of the application operation), therefore with increasing type
level the logical complexity of the arithmetical formula Q;(m) increases
indefinitely ; for an actual counterexample see 2.3.11.

So for an arithmetized version, the applicative set of terms considered
will have a bound on the type level.
As we shall see, in our applications,the definability of the arithmetized
predicates usually ensures formalizability of the proof of Q*n for all godel-

numbers n of terms in the applicative set of terms considered,

2.1.4. BSets of terms closed under A-abstraction.

If we consider sets of terms not only closed under application but also
under A - abstraction, the reduction effected by the lemma in 2.1.2 might not
be sufficient since the effect of closure under X\ - abstraction might force
us to consider a very "large" basis in the sense of 2.1.1.

Let us call a \-set of terms any set closed under application and i-
abstraction w.r.t. variables of the set, A X~ basis for M is a subset
which yields M by closure under application and ) - abstraction.

The appropriate trick for establishing a property @Q defined according to
(A), (B), (C) in 2.1.2 for a A-set is then to prove a stronger property Q*
("Q - under - substitution") :

Q*(t) holds if Qt, holds for any t,

(not necessarily all) occurrences of variables in t terms +t' for which Q

obtained by substituting for some

holds (and possibly renaming bound variables in t so as to avoid variables

free in t' becoming bound after substitution), (see e.g. 2.2.27 - 2.2.31).
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2.2.%. In gégg; 1958, the concept of a "berechenbare Funktion" (= computable
function) is regarded as a primitive concept, and it is considered evident
that each primitive recursive functional definable in Godel's theory (i.e. =a
functional represented by a term of E-ggw) is "computable".

In Tait 1965 this concept is made the subject of a formal analysis, and it
is shown that each constant term of type O '"reduces to" a numeral, which
implies that each term of type O can be formally proved (in a suitable
version of g-—g&w) to be equal to a certain numeral, As a by-product,
Tajt's analysis yields more: all terms can be brought into a standard form
("normal form").

This is exploited in Tait 1967, to show that the closed terms of g-g&w
yield a model for g-—g&w, if equality between terms is interpreted in the
model as: reducing to the same normal form. Tait 1967 also introduces the
inductively defined formal computability predicates ("Comp"), a device which
has been extensively used since.

In the present section we discuss computability predicates and use them to
prove normalization and strong normalization theorems for the terms of y-—gﬁw
and extensions.

The main novelty is the simplification of the treatment and strengthening
of the strong normalization theorem in 2.2.19.

We first discuss computability for the terms of gs-géw; then we deal
with classes of terms with A - operators instead of I, £ as primitives,

In 2.2,35, the various proofs of normalization and normal form theorems
occurring in the literature are discussed and compared.

Additional material on computability is given in the next section.

We feel the notions of computability and strong computability have a
certain intrinsic interest, because of their intuitive simplicity ; hence the
rather extensive discussion, with description of different approaches, below,
It should be noted, however, that for all applications of computability given
in the sequel of this chapter, in proofs of results which do not require the
notion of computability for their formulation, we may restrict our attention

to standard computability of terms of type O3 the remainder is a luxury.

2.2,2. Definition of reduction and standard reduction for terms of g-g&w.

We say that a term t contracts to a term t' (t contr, t', or ¢!

is a contraction of t), if one of the following clauses is satisfied:

(a) t = Ot,t,, t' = t,

(b) t = Et1t2t5 , t' = t1t3(t2t5)

(e) t = Rt,t,0, ' =t,

(d) t = Rt1t2(St3) s t' S tz(Rt1t2t3)t3.
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We adopt the terminology of Curry - Feys 195 & and call t in
the clauses (a) - (d) a redex (and similarly for other types of contraction
introduced in the sequel).

If t' is obtained from t contracting a single subterm (occurrence) of
t (i.e. & subterm of t is replaced by its contraction) then we write
t' <, t or t >, t'.

1 1

A sequence (finite or not) bty t with t <y % for all i

27 i+t 1
is said to be a reduction sequence of {(starting from to).

4 term which does not admit any contractions, is said to be in normal form.
A finite reduction seguence ending in a term in normal form is said to
terminate .

We say that t > t° (t reduces Yo t') if there is a reduction sequence
of t ending with %' (a reduction sequence from t %o t').

A reduction sequence is said to be strict, if the contractions (a) - (d)

are applied only in case t1,t2, t are normal, Attention to striect reduc-

3
tion sequences implies prescribing a certain (partial) order for the contrac-
tions., The order in which contractions have to be executed can be made

completely deterministic by introducing the concept of the leftmost minimsal

redex (lmr). The 1lmr of t is a subterm of t when t is not normal,
otherwise undefined.
We define the 1lmr by induction on the complexity of t (+t assumed to be
non-normal).
(i) 1If t = ®t,...t , ® a constant or variable, and
t1""’ti-1 are normal, ti not, then the 1mr of ¢+ 4is the 1lmr
of ti.
(ii) If t is a redex and (i) does not apply, then 1lmr(t) is t itself.

A standard reduction sequence to’t1’ t2,... is a reduction sequence
such that ti+1

We write t >' t' if there is a standard reduction sequence from t to t'.

is obtained from ti by contraction of the 1lmr of ti'

2.2.3. Comparison of standard and strict reduction.

Intuitively we feel that there is little essential difference between
standard and strict reduction: strict reduction corresponds to the natural
idea of contracting ("computing®) starting "from the inside" (i.e. starting
with redexes not containing other redexes) ; standard reductions mske in a
convenient but arbitrary way (since not directly related to the partial
ordering of the tree of subterms) the procedure completely deterministic.
We show
Proposition. If t strictly reduces to t', t' normal, then there is a

standard reduction sequence from t +to +t'.
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Proof. By induction on the length of strict reduction sequences.
Suppose (1) the assertion to hold if t strictly reduces to t' in less
than k steps; we now prove the assertion for strict reduction sequences
of length k by a sub-induction on the complexity of the first term of the
sequence, So assume {2) also the assertion to have been proved for all
strict reduction sequences of length k starting with & term of complexity
<1l.

Let t1,..., tk be & strict reduction sequence from ¢ to t

1 k'’

let the complexity of t1 be 1. Then either t2 is obteined by contract-

ing t1 , and then the assertion readily follows from induction hypothesis
(1. If t,
with an initial segment

(1) (1) 4s(2) (2) (n) (n)

t1 = os, cee By Ty 9S4 cee B Ty ceey 08y <o 8p

and

is not obtained from contracting t1, t1,..., tk starts

where ¢ 1is a constant or variable of J- HA and ssn),..., s;n) are

normal. Then the sequences s§1),...,s(n) (1$jn§m) become strict re-

duction sequences after omission of repetitions. Then either

(i) all sequences s§1), ceey s§n) have length <k =after omission of
repetitions. Then by induction hypothesis (1), there are standard
reduction sequences from s§1) to sgn) (1£i<m) and from

s(n)... s(n) = tn to tk 1which maylbe combined into & standard

reductlon sequence from t to or

(ii) there is a sequence ( ),..., s(n§ of length k, without repetitions
and s§1) (n) for 1<j<m, ;j/i, and wsg)...sgn)stk.

Then the assertlon follows by the sub-induction hypothesis (2).
(Cf. Tait 1967, II on page 203.)
Corollary. All terminating strict reduction sequences starting from a given
term terminate in the same term.

In the sequel we shall establish a much stronger result (see 2.2.23).

2.2.4. Alternstive definition of > .

> may also be defined as a relation between terms, inductively generated

by the following closure conditions:

t>t, tX2tr = Ht" > tret, txtr =2 "t >t"tr, t>4' and tr>i" =

= t>¢", Mt >t, ITtt't">tt"(s'¢"), Rtt'0>t, REt!(St")>tr(Rttre")t".
The equivalence of this definition with the one given in 2,2.2 is intuitive-
ly obvious, and in fact formally provable in HA, e.g. by an appeal to the
theory of § 1.4.

2.2.5. Definition of computabjlity, strict computability, standard comput-

ebility. We define a predicate Comp = U {Compal - - 3}, defining Comp°
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by induction over the type structure:

(i) Compo(t) =4er '€0 and t reduces to normal form;

(ii) Comp(a)T(t) Sdef Yj'(Compc(t') = CompT(tt')) and t reduces to
normal form.

Similarly we define Comp!, Compé and Comp", Compg, replacing "reduces

to" in the definition of Compc by "strictly reduces to" and "reduces to

eee by a standard reduction sequence" respectively.

2.2.6. Theorem. All terms t of E-—g&w satisfy Comp"(t), and hence

have a terminating standard reduction sequence.

Proof. We note that if Comp"(t1),..., Comp”(tn), then Comp"(t) for any

term t constructed by repeated application from t1,..., tn. (Cf. the

lemma in 2.%1.2.) This is an immediate consequence of the definition.

Hence it is sufficient to prove Comp"(9) for o a constant or variable

of our theory.

(i) Comp"(0) 4is immediate.

(i1) Comp"(t°) = Comp"(st®) is also immediate, hence Comp"(S) .

(1ii) Comp"(x°) 1is immediate.

(iv) Let o = (01) (cm)o. If Comp<"'1(t1), caey Comp;m(tm) , there are
terminating standard reduction sequences for t1,..., tm, which are
readily combined into a terminating standard reduction sequence for
x°t1...tm. Hence Comp"(x°) .

(v) 1f Comp;(tB), then t3
in a term in normal form t%. There is a uniquely determined k
such that ¢! = Sktg b3 #St for any t.

We put v(t3§==k. We now establish Comp"(R;) by proving

has a standard reduction sequence terminating

(1) vt Vi, zpB (Comp"(t1) and Comp"(tz) and Comp"(ts) and
_ "
“(t3)"‘k = Comp (Rct1t2t3))
by induction w.r.t. k. Let o = (01)... (Um)O.
There are standard reduction sequences from ti to t{, t{ normal,
1{im+s3. If t% = 0, there is a standard reduction sequence from
Rtitit!...t!

Rbgeeoty s 0 REl.otl o RPN

according to our hypotheses and the remark at the beginning of the proof,

[ KA ] i
t1t4...tm+3, and since,

Comp"(t%tit%...té+3), also Comp“(Rt1...tm+3).

1 114t 1 i
1 44 # st for any t, then Rtjtitf...t] ; is already in normal form.

(b) Induction step. Assume (1) to be established for n<k.

If Comp"(ti) y 1£i<m+3, v(tB) =k, there are standard reduction sequences
from t, to t!, +t! normal (1<i<m+3), t! =SKt" for a suitable v,
i i i = = 5 3 3
to

Then there is a standard reduction sequence from Rt1...tm

+3
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. L3 1 ' > 1 141 k=Ten k-1n t J .
Rtj...t2 53 also Rt1t1(S t3)t4...tm+5 >, t3(RE1tA(sS tB))(S ts)t4...tm5,
and this term has a terminating standard reduction sequence by our hypotheses
and the remark at the beginning of the proof.

Cases (vi) and (vii), where it is to be shown that Comp"(N) and

Comp"(z), are left to the reader.

2.2.7. Remarks.

(1) Comp'(t) and Comp(t) for all terms t of y-g&w follow directly
from 2,2,6. However, Comp'(t) and Comp(t) can also be proved directly
along the same lines as in 2.2,6.

(ii) In the definition of Comp', Comp" we might actually have left out
the condition "and t reduces to normal form" in clause (ii).

To see this, note that one easily proves by induction that o° (defined by
0°=0, O(‘,)‘r =1, TOQ) is normal and satisfies Compy (with the weskened
definition of Com;"). Now if Compg(t) , @ = (01)... (cm)o, then
Compa(tO°1...O°m). Hence there is a terminating standard reduction se-
quence of tOu1...O°m, from which a terminating standard reduction sequence
of t can be extracted., Similarly for Comp'.

(iii) If we are interested in the computability of closed terms only, =a
slight simplification might have been achieved by omitting clauses (iii)

and (iv) in the proof of 2.2.6.

2.2.8. Lemma., If t€0, t a closed term of y;-gé? in normal form,
then t 1is a2 numeral.
Proof. We proceed by induction on the complexity of +t. Suppose t is

closed and normal., Then t has (possibly) one of the forms

0, S, Sty, R, Rt b,...t, 0, Ot,, I, It,, It,t,
(with L PP PR normal). But the only forms of this list which could

have type O, are

0, Sty Rt t,.eet  (n23).

If t+=0, we are done. If tESt1 s then (since is closed, normal,

1

of type O) by induction hypothesis t1 is a numeral, therefore so is t.

Finally, if t = Rt1t2t3...tn, then by induction hypothesis t3 is a

numeral, so t cannot be in normal form.

2.2,9. Theorem. (On assumption of consistency of E:_Eéw.) Each closed
term of type 0 reduces to a uniquely determined numeral.

Proof. Theorem 2.2.6 and lemma 2.2.8 imply that each closed term of type
zero reduces to a numeral. The uniqueness of the numeral follows from the
consistency of N - le’A;w, since if t>n, t>m, nfm, it would follow that
N-HA" R fi=%.
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2.2.10. Theorem. g;-@éw is conservative w.r.,t. closed prime formulae of

type O over H,Hobtained by omitting induction from Q-géw

Proof. By refinement of the argument in 2.2.9, noting that t12;t2 implies
&°

)i o ty= t2. For let NX- HA F t°-5°. Then we can find n, m such that
tozﬁ, s _>_m, hence H}-t =n, Hf-s s°-@. By consistency of \I}\-g&w
- = o
n=m, hence g]—t =

2.2.11. Remark., In 2.5.6 it will be shown how to prove unigueness of
normal form for all types (i.e. every terminating reduction sequence of t

terminates in the same term) by means of a model for &-g&w

2.2,12 - 2.2.19,. Strong computability.

2.2.12. We shall now refine the preceding discussion, by proving a stronger
theorem : each reduction sequence starting from a term +t terminates. We
shall call such a theorem s strong normalization theorem, A term t is
said to be strongly normalizable, if all reduction sequences starting from

t do terminate. In order to prove this theorem, we have to modify our

definition of computability to & definition of strong computability.

2.2,13, Definition. Sitrong computability for terms of type ¢, denoted by

SCO, is defined for all o€ g as follows :

(i) SCo(t) iff t€0 and every reduction sequence starting from t
terminates.

(i1) sc(‘,)T iff Kt'(SCa(t') = SCT(tt')).

We put SC = o U ’S%!"EEJ-

2.2.14. Lemma. Let x € (31)...(cn)0, end let t €0, , 1<idn be
terms such that ti is strongly normalizable § then SCo(xt1...tn).

Proof. Obvious.

2.2.15, Lemma. If SC(tc), then t° is strongly normalizable ; also
sc(x’) .

Proof. We establish the assertion of the lemma by induction over the type
structure.

Assume for al subtypes p of (9)T the assertion of the lemma to hold.
ret sc(t{®7). then sc(+{®)"%). et ¢, (", +® ... ve any reduc-
tion sequence starting from t. We now define a reduction sequence starting
from t(o)Txa, (1), t(z) (k) E t(k) as long

as t( ) is defined; if t, t(1), t(z) «es breaks off at t(p) we take
t(p+1), t(p+2)

say tx, t «se 88 follows:

for «ee a standard reduction sequence starting from t(p)x
By 1nduction hypothes1s and SC(%x), tx, t(1) t(z), .«. terminates, and

o
so has an imtiel segment of the form +tx, t 1)x, ceey t(k)x such that
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b, 10, (@) (x)

Now assume 1T = (°1)'°'(°m)0’ and let SCci(ti), 1<ilm, SCa(t).

9y esey b is a terminating reduction sequence for +.
Then t, t are strongly normalizable § hence by lemma 2.2.14,

SCo(x(O)Ttt1...tm) , and thus sc(a)T(x(c)r) ‘

2.2.16, Remark. Instead of using SCp(xp), we might also have established
c
inductively scp(o") (where 0° = 0, 0o°)7 = n, L0°, asin 2.2.7) to-
1]
gether with the induction hypothesis.

2.2.17. Definition. A reduction tree of a term t consists of a pair

<T,o>, where T is a non-empty set of natural numbers representing finite

gsequences such that n*2eT ® neT, and ¢ 2 function which assigns terms

to the elements of T, such that

(2) o>=¢t.

(b) If neT, en=t%t', and t!5...,t! is a complete list of terms (without
repetitions) which are obtained by a single contraction from t!', then
n*<i> € T for 1{ifn, and cp(n*<i>)=t:{.

To make the description definite, we may assume that in a uniform way an

ordering is prescribed among the possible contractions for all terms. The

length of a reduction tree <T,p> is the number of elements in T.

2.2.18. Definition (to be used in the proof of 2.2.19). Let SCO(t); then
by 2.2.13 and the fan theorem (or classically, Konig's lemma) the reduction
tree of t is finite, hence there are only finitely many terms in normal
form, t;,...,t , such that t>t, for 1<iln. Let ti=sp(i)ti 8
not of the form St* for any t*¥. Then wv(t) = max {p(i) | 1<i<n}.
Remark. In giving this definition, we have made an appeal (on the meta-
level) to the fan theorem, by assuming that a finitely branching tree with
all its branches finite is itself finite. The implicit appeal to the fan
theorem in the proof of 2.2,19 (via this definition of v) can be avoided
in two different ways:

(i) by giving a proof of the uniqueness of normal form which does not depend
on the strong normalization theorem itself (2.2.23), and which enables us to
define v(t) as the p such that +¢'= SPt", t" not of the form St™,

t' normal, t>t'; or

(ii) by strengthening SCo(t) to: the reduction tree of + is finite.

This requires in the proof of 2.2,19 manipulation and recombination of

reduction trees, which is notationally awkward.

2.2.19. Theorem. For all terms t of N-HA”, SC(t), end hence t is

strongly normalizable,
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Proof. We first note that

(1) 1f SC(ti), 1<i<n, then for each t formed by repeated application
from ty,..00t s5C(t) .

(1) 1f sc(t), t>t', then SC(t'), as readily follows from the defini-
tion of SC.

(I11) If teo = (01) ces (°n)°’ then SC(t) o (Y, sco1) ces (!yne scon)
( tt, ...t is strongly normalizable).

By (I), it now suffices to prove SC(9) for o® a constant or variable of

our theory (cf. lemma in 2.1.2).

(i) sC(0) 4is immediste.

(i1) 1f Sco(t) , then SCO(St), since any reduction sequence starting
from 8t must necessarily be of the form St, St1, Stz, eee 9 Where
%, t,, t,, ... is a reduction sequence. Hence SC1(S).

(111) sc(na,T) holds. For let +t,, ..., t be terms such that
nc,rt1"'tn € 0, and suppose SC(ti) (1£i<n). ©Now consider an
arbitrary reduction sequence starting from nc,7t1"' tn.

This will be of the form

M, byeent, N Tt§1)... t£1), ees I Ttgk)... tik),
tgk)tgk)... tik), vees tgk+1)t§k+1)... tik+1), cee

(Such a k must occur, otherwise one of the sequences
ti, t§1), tiz), «es would, after omission of repetitions, become an
infinjite reduction sequence, contradicting SC(ti) and 2.2,15.)

Now t1t3..ugrztgk)tgk)...tﬁk), and by (I) SC(t4t5...t,), hence by
(11) SC(tgk)tgk)...tik)). Now tgk)tgk),_ 4 (8) tSkﬂ)tgkﬂ) )

t(ln{+1)

. 9

s e 1is a reduction sequence starting from tgk)tgk)...tik),

and therefore terminates.
(iv) SC(Zp o ;) 1is proved similarly.
”vse

(v) For sc(x®), see 2.2,15.

(vi) Now we have to show that R° is strongly computable, Now if
R, € (01)... (°n)°’ we have to show that SCO(Rt1...tn) for
Ty ...,tn such that SCO‘(ti), 1{if{n. Ve apply a sub-induction
w.r.t. v(t3). 1

(vi)®. 1f v(t3)= 0, a reduction sequence o starting from Rt,... t, has

0rTqrfgs et

one of the following forms ( <fi>i indicating the sequence f
(1) (1) : (o) (o) =
(1) <Rt1 e tn (>i, 'lth t1 LK tn - t,‘ see tn'
1) (1) (2) (2) (p-1) (p-1)
(2) Rt, ... tn, Rty /... tn ’ Rt1 cee tn s evey Rt1 cos tn ’

ONONNONINORNORORINORNCRNCI
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In case (1) a obviously terminates, in the second case o termi-
nates since by (I), (II) SC(tgp)tép) ces t1(1p)) , and
RONOJENORNCINCDS

is a reduction sequence starting from tgp)tgp) eee tr(lp) .

(vi)b. Assume SC(Rt1‘l:21:3 ces tn) to have been proved for all tyrtosecesrt
such that SC(ti) s 1iln, and v(ts)_<_k . Now consider
Rt1t2t3 eee t  With sc(ti) y 1ifn, v(t3) =k+1. Let « be any
reduction segquence starting from Rt1t2t3 ves tn . o« has one of the

following forms s

(1) <Rt.(‘i) t!(li)>i where Rt, ...t = Rt§°) tx(1°) )

(Actually, as follows from 2.2.23, this case cannot occur.)

(2) R, .oo t Rtgﬂ tx(11)’ ceey Rtgp'” tr(lp'1),
Rtgp)tgp)o t‘(1I>) tr(lp), tgp)tép) tx(lp), g(P+2) o (p3)

This case may be dealt with as under (vi)®. (Actually, this
case is also excluded, by 2.2.23.)

(3) Bt een b, medD Lt {0, L, Re(pmD) L glee)
R:SP);&P)EstO;tip) tr(lp), tép)(Rtgp)tép)to)totip) tx(xp)’
% p+2 , p+3 ,

In case (1), it is obvious that o must terminate; (2) is referred
to (vi)®*; in case (3) we use (I), (II), and our induction hypo-
thesis (since v(to) L{k).
Our next task will be to prove uniqueness of normal form. We first show
how to do this by a method due to J.B. Rosser (Rosser 1935).

2.2.20. Definition (for use in 2.2.21). We define inductively a notion of
"bounded" reducibility (>*) by
(a) >F £ and t, X% t3 = 4t >* 40,
(b) {Htt' > %, Ietrer >* tgv(Ere"), Rtt'O >* ¢,
REE1(St") >* s (Retr")e", ¢ >* ¢,
In other words, if ¢t h* t', there is a derivation sequence of assertions
* -
t, >* tly 6,27 th, t,2% %L, ..., 8 2* %! Where t =t, t!=t', such that
each ti:* t) either holds by (b), or is obtained from tj:* t3 y b 2%

k
(Jsk < 1) by rule (a).
2.2,21, Lemma, If t>* ', t>*t", then there is a t" such that
$1 >* e , " >% gm
Proof. Let t>*t', t>*t"; we may assume +t' F t". Let t>*tr,

t>* " be established by derivation sequences of length n, m respectively;
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we apply induction w.r.t. n+m.

(i) +>*t' holds since t'®t. Then take t"™ =t",

(i1) t=Tt,%,, t'=t,. Then ¢"=0tit}, t13* 11, tzz* 5.
Take +™M St

1
'
(iii) TETt,t t3, t'5t1t3(t2t3). Then tu!zt%tété, 1y 2% )
for i =1,2,3., Take t"= t,"t%(tét%) .
(iv) $SRt,4,0, t'=t,; then +t"E=Rtjt)0. Take t™=t).

Similarly, if tERt1t2(St3) , 1! Etz(Rt,‘t
(v) Let t=14,t,,

derivation sequence hold by application of (a) in 2.2,20 to t.‘:* 2

>* ¢

t, X% 48

If t>*t" holds by (b), we may deal with this case as under (i),

(i1), (iii), (iv).

Hence assume t" ®1t4t), and the derivation sequence of t>*t" ends

t.)t, .
2 3) 3
t'Et4t), and let the final assertion t2>*t' in the

with an application of rule (a) im 2.2.20, so t,>* Y, t,

Then, by induction hypothesis there are t'1", tg' such that
>¥ L IS Yl % g "% L *

t]‘_ t1 ’ t1_ 'l:1 , té_ t2 s t2_ t4h'y hence t,'lté_: t"{'t'z",

2
"4t >* m ¥
ey > gy

> "

2.2.,22, Lemma. If t>t', t>t", there is a +" such that +t'>1t",

t" >- t"l .

Proof. > is the transitive closure of >*, i,e, if t>t!', then there

i = | LN} >¥*

is a sequence to,..., tn such that to t, tn £, ti_ ti+1 for

0£iln. Let us write t:; t' if there is such a sequence consisting of

n+1 terms. So tX*t'e=t2Tt'. Also 2t e In(t 27 t) .

Now we show: If ¢ >* ¢1, £ >* "  there is a t" such that +t' >*¥ t"
- - -m

t" _>; ., Proof by induction on n+m. Assume the assertion to hold for

nsm< ks let now t:;t', t_>_;t", n+b=k; let e.g. n>1,

We can find t_ = such that ¢ :;_1 o ¥, z‘: t'. Construct (fig. 1)
(induction hypothesis) PR LR PR 3_';_1 t,s and t, such that
LN AP P S P

Then ' >! t,, t" >* t,. /t

2.2,23, Theorem. The normal form g " n-t big1
of terms of E_g&m is uniquely determined.

Proof. Let t > %', t>t", t' and t"

normal ;3 then by 2.2.22, there is a t™ "ot t
such that ¢! > t™, t" > t™_, Then t™ ™ \
is normal, and t' = t™ = ", %
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2.2,24, Remarks. The essential idea of the preceding method is a clever
method of "counting" contractions: simultaneous contractions of disjoint
subterm occurrences count for & "single" step (expressed by >¥) whereas

>1 refers to a single contraction under all circumstances. It is also worth
noting that the method described is very "elementary" ; the methods used

are "quantifier-free", and explicit definitions of :f, > are Z: in
character.

Below we describe an alternative method (2.2.25-26), which is logically
less elementary, but mathematically slightly simpler. On the other hand,
the preceding method does not require a strong normalization theorem to be
proved first, and also applies to the type-~free systems of combinatory logic
and the A-calculus. In the case of the theories based on the A - operator
as a primitive, the second method is even simpler (less cases to check)
whereas the first method becomes somewhat more complicated to apply.

A third method to obtain uniqueness of normal form is via the embedding
in a model (HRO); see 2.5.5 - 2.5.6 . This method is only easily

applicable to the combinatorial version of g-—g&w.

2.2.25, Lemma. If ¢ 2>, %', %2, %", then there is a t* such that

B> t%, g > t¥,

Proof. For the proof we must distinguish two cases.

(a) The redexes t,» t, im t which are contracted in reducing t to t!,
t" respectively, are disjoint. Then obviously t*¥ is obtained by contract-
ing both t and t

1 2
executed is irrelevant.

in t3 the order in which the contractions are

(b) Let again 2 t2 be the redexes in t which are contracted to obtain
t', t" respectively, and assume now t2 to be a subterm of t1 (the case
where t1 is a subterm of t2 is obviously completely similar),

Now we have to distinguish various cases according to the form of t1.
For example, let t, be a redex of the form Rt.t (Sts), and let t,

1 3°4
occur as a subterm of t. (so that we may write tg as t6[t2], where

5

t6[x] contains only & single occurrence of x).

Now let %' be obtained by contracting t, to t4(Rt3t4t5)t5 , which is

identical with t4(Rt3t4t6[t2])t6[t2], If we then apply two contractions to
. .

t!', replacing t4(Rt3t4t6[t2])t6[t2] by t4(Rt3t4t6[té])t6[t2], and then

by t4(Rt3t4t6[té])t6[té], where %) is the contraction of t,, we have

obtained t*,

t*¥ is also obtained by first replacing t2 by té in t", so that

t, = Rt5t4(st6[t2]) is replaced by Rt5t4(5t6[té]), and then contracting

this redex,

The other subcases are very similar.



2.2.26. Second proof of 2,2,23, Let t be any term; by 2.2.19 SC(t).

Hence the reduction tree of % is finite (intuitive appeal to the fan

theorem, or Konig's lemma). Let (t) denote the number of nodes in the
reduction tree of t. We prove by induction on (%) that the normal form
of t is uniquely determined.

The assertion is obvious for ult)= 1. Assume the assertion to hold for
all t!' with H(t')<k, and let u(t)=k. Let t, tyy tys eeey b and
t, t}l, té, ceey tx;x be two reduction sequences starting from t, and ending
in normal form. If 1:151:1' s then tlgtx;l by induction hypothesis,
If t,7t}, we can find & t* so that t, > t*, t}>t* (by 2.2.25);
let t* reduce to a normal term t**. Then, since u(ty) <k, wa(ty) <k,
t**Etl , t**®gly hence t =g!.

2.2,27-2,2.34. Computability for theories based on A - conversion.

Instead of dealing with the terms of ‘I:‘I-;Héw, we define a set of terms

with ) -abstraction as a primitive.

2.2.27. Definition of Tm', Tm' = U mec; |eeT], where the Tm! are
defined by

. 1 3 -
Tm' (i). O €™m!, S e Tm{o)o, R, € Tm! with T - (e)((s)(0)e)(0)e,
cel.
Tm' (ii). If x° is s varisble of type o, then x° ¢ T} .
c
Tm' (iii). If + € Tm!, then Xx .t € Tm{c) .

r
Tm' (iv). If ¢t € Tmz t' € Tm!, then tt' € Tm!.

o)t

2.2.28, Contractions. "contr" is in general a relation between terms.
"[x°]" in the notation "g[x°]" refers only to the occurrences of x

free in t, The contraction relation is given by

(e) Rts0O contr. t;

(d) R+4s (St') contr. s(Rtst')t!;

(h) (x".4[x°])t' contr t[t'] if no variable free in +' becomes

bound in t[t'];

(3) X°.tx° contr. t for t not containing x free ;

(x) a%.4[x°] ecomtr. N.t[3°].

2.2.29. Reductions >, >,.
We define (strict, standard) reductions similar to before. We say that

t' is obtained from t by an o- reduction (resp. B-, m-reduction) if

t' 1is obtained from t by replacing a redex in t by its contractum

according to contraction rule (k) (resp. (h), (3)).

We write t>1 t' if t' is obtained from t by some «o-~ reduction
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followed by a contraction according to (h}, (j), (c), or (d). We write
t > tt if there is a sequence t1,..., tn such that tE't1, tnE‘t',
t., >, t, for 1<ifn.
i 1 "i41 - -
A term t is normal if + > %' implies that t' is obtained from t by

o - reductions.

2.2.30, Computability and strong computability for A - based theories.
Predicates "Comp" and "SC" may be defined as before (2.2.5, 2.2.13).

In order to prove SC(t) for each t, we in fact have to use induction
over a stronger property, to be called strong computability under substitu-
tion (SC*), which is defined as follows:

Definition. t 1is ssid to be strongly computable under substitution

(notation SC*(t)) if for each substitution of strongly computable terms
of appropriate types (renaming bound variables if necessary to avoid clashes
of variables) for some occurrences of variables free in t, the resulting

term is strongly computable (ef. 2.1.4).

2.2.31. Theorem. SC*(t) for each t € Tm'.

Proof. The proof is very similar to the argument in 2.2,.19.
(i) sC*(0) is immediate.

(ii) sc*(s) is proved as in 2.2.19, (ii).

(iii) Let o = (01)... (cn)O. Then SC*(x°) means :

(a) for 2l1 biseaast o t €0, t €8C (1£ign),
SC(x°t1... t ), and

(b) for all tatyseee,t o t €0, , t €SC (1£ign),
teo, tesC, SC(tt1...tn).

(b) is obvious; (a) is proved as in 2.2.19 (v).

(iv) sC*(R,): compare 2.2.19, (vi)®, (vi)®.

(v) Let SC*(¥[x°]), E[x ] € (14) eee (1)0, and let x°.4[x°] be
obtained from Ax° f[x ] by substitution of strongly computable terms
for some occurrences of free variables, and possibly some renaming of
bound variables.

We wish to show that for arbitrary t €C, tiE'ri , tie SC for
0<i<n, sc((x’.t[x° Dtgtyeeat).

A reduction sequence startlng from (Ax". tgx Dt tyeee t, is either
of the form: (xx" t[x° 1)t ... (.1 (1 ])t(1) ?1)
e, (;\Xa.t( [x ])t(k) 4 ¢ (t*(k)[t(k)])t(k) . (k) ‘(k+2) ,3(k+3)

x (k) (k)[

where + xc] is obtained from %

] by some «- reductions,

and where
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(t*(k)[t(k>])tgk)--- t(k) = {(k+1), 5(k+2), £(k+5), ves is a reduction
) n
sequence starting from (t*(k)[tgk)])tgk)... tﬁk); or the reduction se-

quence is of the following form:
(o t[x7 1)t een by aees (xx°.t(k)[xﬁ)t§k)... tﬁk), (s)tgk)... t£k>,
£(k+2), £(k+3)’

where t(k)Exo] is of the form sxc, s not containing x° free, and
where (s)tok)... ték), ¥(k+2), E(k+3), «es 1is a reduction sequence starting
from stgk)... ték). The second form of reduction sequence is in fact a
special case of the first form, so that we may further restrict our attention
to the first form.

We see that the reduction sequence terminates, since SC*[i[xc]) implies
sc*(+*(¥)[x71), hence also SC(t*(k)[tgk)]) since SC(t ) implies
SC(tok ) .

2.2,%32, Lemma., If t >1 t', t >1 t", then there is & t¥ such that
tr > g%, v > ¥,

Proof. Similar to 2.2.25.

2,2.3%, Theorem. Each reduction sequence starting from te€ Tm' terminates
in a term in normal form, which is uniquely determined wup to renaming bound
variables.

Proof. Immediate by combining theorem 2.2.31 with the previous lemma.

2.2.34. Remark. An alternative method for proving 2.2.32 is obtained by

adaptation of Rosser's method (cf. 2.2.20-2,2.23) to the X\-calculus (as
in Martin-Lof 1971 C, Barendregt 19713 Hindley, Lercher and Seldin 1972 ;

the adaptation is due to W.W. Tait and P. Martin-Lof).

2.2.35. Discussion and comparison of proofs of computability for terms of

HAY in the literature.

e

Tait 1965 proves normalization by means of quantifier-free €& induction,
for a system of infinite terms, into which the A- terms (as in 2.2.27) can
be embedded. This procedure is very similar to the consistency proof for
géc obtained by embedding g&c into classical arithmetic with the - rule.

Hanatani 1966 shows by cut - elimination for sequent calculi that to
each closed term t of type O we can find a numeral n such that in the
system H obtained by omission of induction from E._%&w, B t=n. (His
set of primitives is that of Spector 1962).

Tait 1967 introduces the computability predicate "Comp", but restricts

attention to "strict reductions" (2.2.2). By means of the computability



114

predicate Tait gives a proof of normalization for closed terms of g-g&w
(the proof applies to open terms as well, as we have seen). By restricting
his attention to strict reductions, it is easy to show the uniqueness of the
resulting normal form. (Tait 1967 is an elaboration of Tait 1963.)

The papers Sanchis 1967, Diller 1968, Dragalin 1968 apply bar - induction
arguments to suitably defined partial orderings.

Diller 1968 shows computability for closed terms of type 0O, relative to a
specified order of computation, by means of bar induction; it is shown that
the argument may be replaced by a transfinite induction up till the first
w - critical number, assigning ordinals to terms.

Sanchis 1967 uses an argument very similar to Diller's bar induction, to
obtain a strong normalization theorem for the terms of g;-g&w, but relative
to a weaker set of contraction rules; instead of (d) in 2.2.2 he only
permits

(ar) Rt1t2(;:T) contr. t,(Rt, t,0)7

(disregarding the fact that his R, is in fact our kxyz.ch(kvu.yuv)z).
It is not obvious how to generalize his notion of successor of a term so as
to be applicable to our stronger reductions.

The proof of Stenlund 1971 is based on Sanchis' proof, but Stenlund
restricts his attention to reduction sequences where a definite order is
prescribed. For yet another presentation, see Hindley, lLercher and Seldin
1972,

Hinata 1967 discusses the A - version of ﬂ-géw, and assigns to each

term a tree, expressing the construction of the term from simpler terms.

Let us call such trees construction trees. The construction tree of a term
t (which is not uniquely determined) has a term associated with each node;
t is associated to the end node. Hinata then describes an ordipal assign-

ment (of ordinals < eo) to construction trees, and a process for trans-

forming trees into other trees such that the term associated to the end node
of the transformed tree is a rgduction of the term associated to the end
node of the original tree. vagree Tt 4is obteined from T by this trans-
formation process, then T' may be assigned an ordinal which is lower
than the ordinal assigned to T. The proof can be given in quantifier-free
arithmetic extended with €, - induction.

Hinata's contractions are almost the same as those described in 2.2.28.
There are two differences: he does not introduce the recursor as a constant,
but instead uses pt1t2t3 for m(t1), if @ has been defined primitive

recursively by

o(0)
o(Sz) = tB(mz)z.

t2,
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Then (Mx.t[x])(%+') 1is contracted to t[t'], pt1t2(snt3) contracts to
LPREE (tz(t2(pt1t2t5)t3)(st3))(szt3) (sntB) if n>o0, t3 not of the
form St'.

Obviously, Hinata's result implies a corresponding result for the com-
binatorial version. His rule of definition by recursion permits the
definition of the recursor Ra’ as we have seen in 1.7.5.

Howard 1970 proves & normalization theorem for a A - version of E-—g&?
by means of assignment of ordinals less than L to terms,

Howard's version of H-—g&w contains as primitive constants all numerals,
the abstraction operator A with contraction (1), successor S with
Sn  contr. m+1, recursor R, and constants BT for each n>0 with con-
tractions Rcﬁ contr, Rﬁ, Rgts contr. s, Rg+1ts contr. ta(R"ts).

Howard first considers "restricted reductions", where only contractions
of closed subterms are permitted (i.e. contractions from the "outside", as
opposed to strict reductions, which involve contractions from the "inside").
If t > t' by a restricted reduction, and @, B are ordinals assigned to
t, t' respectively, then g a.

Next, to allow the consideration of arbitrary reductions, Howard describes
a non-unique assignment of ordinals to terms, such that if ¢ 21 t' is an
arbitrary reduction, and o 1is any ordinal assigned to t, then there is
some ordinal B assigned to +t' such that B< w.

This method yields a direct proof of a strong normalization theorem by
means of primitive recursive arithmetic extended by guantifier-free induction
up to € (for any primitive recursive well-ordering of order type %

satisfying certain adequacy conditions).
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§ 3., More about computability.

2.5.1. Computability in I-HA“+IE_.
Let us add to I-HAY the following set of axioms

IE0 {Ets =1 if +%,s are closed terms in normal form
and t#s.

Now we extend the notions of comtraction and (strict-, standard-)reduction
from g-—g&? to ;-—§§w4-IEO, by adding to the contraction rules
(e) Ett contr. 0,

(f) Ets centr. 1 if +t,s are distinct closed terms in normal form.

243.2, Theorem. All terms of ;-—g&w4-IEo are standard computadble, hence
reduce to a term in normal form by a standard reduction.

Procf. We only have to add to the proof in 2.2.6 an argument showing Ec
to be standard computable,

(viid) Assume t,t' +to be terms reducing to normal forms +t,,t! respective-

’
ly by a standard reduction. v

Ett?! reduces by a standard reduction to Et1t%.

If t1 or t% is not closed, t1f't%, Et1t% is normal, If t15't%,
Et1t% standard reduces to 03 and if t1t% are closed, t1f‘t1, Et, %)

standard reduces to 1.

2.3.3., Corollary. In g-—§§w4-IEo every closed term of type O <reduces

to a numeral.

2.3.4. Remarks. (i) The consistency of I:-géwa-IEo requires that the
normal form is uniquely determined, i.e. ;:7§éw4-IEo|—t =t ,

;-—@éukrlEo kﬂt:t" s ty ', t" closed, t',t" in normal form must imply
t'=4" ., The uniqueness of normal form is also insured by the model (HRO -
version) described in 2.5.5.

(ii) The proofs of the strong normalization theorem (2.2.19) and the proof
in 2.2.23 may be extended also to I;-géw+-IEo.

As a corollary to remark (i) and 2.3.2 we have

w
2.3.5. Corollary. In E:-Eé +-IE0, for closed terms +t,s
Ft=s or Ftés.

2.3.6, The equality axioms IE

1°
The axioms IEO are implied by the following stronger set of axioms IE1:
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Let t1,t2 be two distinct terms with the same type taken from

IE,(a) the set of terms consisting of 1[I y I sy Sy R_, E_,
1 9,59, 0599,5%5 og’ o,
I X,y L X,y R, x,, E_ x,, & X X,
Tgr% 17 Tq01%qq1T42 27 T3 3T 1Oy AT TO5,0445,0497576
R for all Tys sees Tyg € T. Then t1% t, is an axiom,

X X,

“qg T8

IE1(b) x£x' Vy#y' = Bxy £ Rx'y!
XEX?Y Vy£y! = Ixy£2x'y .

tot s .
IE1(c) If ofo', then Zp,c’Txy# Zp,o',TX y' is an axiom,
It follows from results in 2.5.9 and 2.5.10 that

E\‘Hxéw‘;—‘ I-EA"+ IE_ g I-3A"+ 1B, .
The HRO « version described in 2.5.5 is also & model for ;-§§9-+1E1.

The proof of computability in g-—géw4-IE1 is also easily given, extending
the contractions in the obvious way.

It has sometimes been argued that the rule IEo is "unnatural"”, since it
seems to point to a confusion between "use" and "mention". This impression
is mistaken, and probably due to too much exclusive contemplation of the
term model.

A glance at the HRO - version given in 2.5.5 may do something to dispel
the doubts, since there not every object is denoted by a term; on the other
hand, the even stronger set IE1 shows that IEO is the consequence of
axioms who do not at all have the loock of a syntactic criterion smuggled into

the semantics.

2.3.7. Standard computability of terms in languages with cartesian product
type.
Let us consider <§-§ég, the conservative extension of g-g&w defined
in 1.8.2.

We add to our contractions
(&) D' (Dtt') contr. t, D"(Dtt') contr. t', D(D't)(D"t) contr. t

and our concept of standard reducibility is correspondingly enlarged.

Ve extend the notion of standard computability by a clause

iii Comp" _ (%) iff Comp"(D't) and Comp”(D"t), and t is
CXT -4 T

normalizable by a standard reduction.

Note that the existence of a terminating standard reduction sedquence for a
term implies the existence of a terminating standard reduction sequence for
all its subterms. Hence we may drop the condition "%t is normalizable by a

standard reduction” in clauses (ii), (iii). (This is seen by establishing
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simultaneously by induction w.r.t. © that (a) 0 e Comp: and
(v) Comp:(t) =t has a terminating standard reduction; here 0°=0,
o)r c oxr _

c
0 =n, .0, 0 =0 0", =2nd Comp* indicates the weakened form of
9

Comp" with "t is normalizable by a standard reduction'" dropped. Cf.

2.2.7 (ii).)

Further we note that the following lemma holds for standard reducibility

)

Lemma, t>'¢t' = (Comp" (%) ® Comp"(t')) .

The proof is entirely straightforward, by induction on the type of t,%!,
using t>'t! o D'$>!' DY « D"E XD, and TXTH' = (tt">r b)), if
t" has a terminating standard reduction sequence.

We extend the proof that every term of g-—@éw is standard computable to
the terms of Eﬁ'@ég; this requires consideration of some additional cases
in the proof of 2.2.6.

Case (ix) (extension of case (ii)).
Let A be the following inductively defined class :
(1) comp"(t,), 1<ilm =x°t1...tn€ by x%¢

(2) % ¢, Comp"(t,), 1<ign = (D't),...t € 4,

(D"t)t1...tne 4, Di'%t, Dte b,

Let Ao denote the subset of & containing terms of type 0 only. We
readily see that Aog;Comp" = Comp”(xc). By induction over 4 we prove that
if ted, then t has a terminating standard reduction sequence not con-
taining a term of the form Dt't". For xc this is obviously true.

Suppose the assertion to have been established for t¢ 4, then it is obvious-
ly also true for D't or D"t. If it holds for t, D't or D"te &, then
also for +t%,...t ~or (D't)t1...tn, or (D"t)t

tn s t ...tnE Comp" .
Therefore 4 ¢ Comp", so Comp"(xc) .

Qe 1

Case (x ). Let s,te Comp". Then sX>'s', $>'1t', st,tte Comp”, s',t!
normal (lemma), Now Comp"(Dst) ©(Comp"(D'(Dst)) and Comp"(D"(Dst)))e
Comp" (D' (Ds't')) and Comp"(D"(Ds't')))«(Comp"(s') and Comp"(t')),
using D'(Dst)>'s?', D"(Dst)>'t', and the lemma.

Case (xi). Comp"(D') is established as follows., Let Comp"(t), then we
have to show Comp"(D't), t>'t', Comp"(t'), t' normal. Since +t!
must have a cartesian product as type, Comp"(t') ¢ Comp"(D't) and
Comp"(D"4) .

Comp"(D") is established similarly.

2.3.8., Computability relative assignment of functions.

The concept is taken from Tait 1967. In the remainder of this section,

we restrict our attention to standard reduction sequences. For simpliecity,
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we restrict attention to computability relative an assignment of a function
to a single, fixed type 1 variable, say x1 . If a is the function

assigned %o x1 , we add to our contractions:

2 ‘% contr. @ (i.e. the numeral representing om).

2:3¢9, Theorem. All terms of y-l\]’_&w possess a standard reduction se-
quence relative ¢« to a term in «a-normal form.

Proof. As compared to ordinary standard reductions, there is only a single
additional case to consider: xJl must be discussed separately and distin-
guished from other type 1 variables. We have to show that x1to possesses
a standard reduction relative ¢ for any to possessing a standard reduc-
tion relative «. Let to’ t1, ceey ‘bn be a standard ::"eduction I1~e1ative o,
tn in o-normal form., If tn is not a numeral, X to’ cevs X tn is a

standard reduction sequence for x1‘b0; if tn is a numeral, say m, then
1 1=

x to, ceny x1tn=x m on is a standard reduction sequence relative o.
2.3.10. Remark (i). The result of the reduction obviously depends on the
extension of & only, i.e. if Vx{ex=PBx), the &- and B-normal forms
of all terms will be equal. However, we can say more, For if t is a term

1 as a free variable, ix'.t represents a type

of type 0, containing x
2 functional in g—@w. Now the type 2 functionals definable in this
manner in lj‘-EvL“Aw are obviously continuousj; for if we reduce t to oa-
normal form, there is a finite reduction sequence where we used finitely

many instances of
x1ﬁ. contr. am. , 1<{i<k.
i i -T=
Let n = maxfni | 1<i<k}+1. Then obviously

an=Pn = the o- and B -normal forms of % aredual,
which implies:

v-mY x5 -7

“ %3 I-l:ﬁ—) t[x1]=t[y"]‘

(ii). The preceding discussion may be readily extended to the assignment of
functions to a finite set or to all type 1 variables s our restriction to
a single type 1 variable was motivated by considerations of notational

simplicity only, since all our applications concern this special case.

2.3.11-2,3.13, Arithmetization of computability.

2.3.11, If we arithmetize by the device of godelnumbering the concepts of
standard reduction etc., we are led to consider the question of how much of
our results on computability can be formalized in VH& or 1_\TA-}vIéw.

Let "SRED" denote, as before, an arithmetical Z?l-predicate, such that
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SRED(t7, fs?) intuitively expresses: "there is a standard reduction se-
quence from t %o s" (so "SRED" has the character of a restricted
provability predicate for a fragment of ﬁ-—g&w; "SRED" 1is a restricted
provability predicate in the sense that it concerns proofs in a certain
standard form only : a reduction sequence t1,t2,...,tn representing a

n-1" 'n
Now inspection of the proof of 2,2.6 shows that if an arithmetical pred-

proof of t,=t,, t2=t5, eeey t_ ,=t_ successively).

icate "Comp" " were definable such that (the arithmetized version of)
clauses (i) and (ii) (ef. 2.2.5) would be provable in y-—géw, then, since
the proof of ¥t Comp"(t) wuses essentially only arithmetical principles,

the arithmetized version of Wn(Term(n)= Comp"(n)) (where Term(n) is the
primitive recursive predicate expressing that n is the godelnumber of a
term) would be provable in HA . Now let to,t1,t2,t5,t4,... be a primitive
recursive enumeration of closed terms of type 13 1let f(x,y) be the primi-
tive recursive function such that f£(x,y) = rs(txi)ﬂ.

It would follow from the assumption that Comp" was arithmetically definable
that

i— Vxy dlz SRED(f(x,Y) ’ra'\)
hence especially
- vx @tz SRED(f(x,x),"2") .

Therefore we can find a provably total recursive function ¢, represented
by a closed term t of type 1 (cf. 3.4.29)

b~ vx SRED(f(x), " tx ") .
Since on the other hand it will follow from 2.3.13 below that
- sRED( £(x), "tx') > t X+1 = X

we obtain a contradiction (take % =1, ).

Hence our assumption that Comp" was arithmetically definable must be
false, The intuitive reason for this is rather clear: if we arithmetize
Comp; for © of increasing level, the logical complexity of the formulae
of HA representing Comp; increases indefinitely.

At the same time it is clear that if we restrict ourselves to the applica-
tive set of all terms constructed from constants and variables of type level
<{n, this restricted predicate Compn is arithmetically definable.
iAs a consequence, for each given closed term t its computability is prova-
ble in arithmetic, or even more generally, if t contains X1,...,Xn6 0
free, and does not contain other free variables, then
)NTFY) .

o= -
HA F Vx,'...anySRED( t(x,‘,...,xn
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Still more generally, if we arithmetize computability with bounded type

level for - reductions (w.r.t. a fixed type 1 variable x1) we obtain
g-gé“’k-&ysRED(a, rt(x1, §1,...,§n)1,’ )

where SRED(o, n, m) expresses in g-—@éw arithmetically standard reducibil-

ity relative to0 a.

2.3,12. Standard godelnumbering. We find it convenient to make some assump-

tions about the (standard) godelnumbering to be used for terms of g-@éw
and certain extensions. Let a code number ¢ be assigned to each constant
(and variable) c¢. Then the code number of the terms is defined inductive-
ly as follows:

(i) If t 4is a variable or constant, then Ft™ = <£>.

i § = Fgd_rg N re
(ii) 1t +t = t,t,, then 't =7t x <Tt,'>

2.3¢13. Theorem. Let t be any term of E-—Eéw constructed from constants,
type O variables and (possibly) the type 1 variable x1 s let x1,...,xn
be a list containing all the type O variables occurring free in +t. Let

@ be another type 1 variable of g-—gﬁw. Then
w T 1 = - -
(1) N-m" | t(oyxy,eee,x ) =y < SRED(a, t(x ,X,0.0,% )7, 7577 .
Proof (W.A. Howard *).
We define for each type o¢T, a binary relation VALc(xo,yc) express-
ing : the term with godelnumber =x has the functional y° as value. If

X is not the godelnumber of a closed term of type o, VALc(xo,yc) is

false. The definition is as follows,

(i) VAL (x°,5°) =, . SKED(@, %, "F")

(ii) VAL(U)T(Xo,y(c)T) =ior Vzouc(VALc(z,u) = VAL (x % <z>, yu)) .
Note that

(2) VAL(G)T(x,y)(&VALc(xi,y') - VALT(X*-<X'>, yy') .

We also need

- ——

(v) var_(o"7, o")

which is readily established simultaneously, by induction on T, ("Normal"
is the arithmetization of "... is in normal form™)

We now establish VAL(KE >, ¢) for constants ¢, VAL("X7, x) for numerical
variables x, and VAL('X1“, o) if x' is the fixed type 1 variable to

which the function & is assigned.

*) In a letter dated May 18, 1972.
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(a) N- g&w}— Vk(VALo(rij,x)) is immediate. 1
(b) Assume VAL (y,z), i.e. SRED(e,y,"Z7). Then SRED(&,"x x<y>, oz ),

i.e. VALO(’x1“*-<y>, oz) 4 SO VAL1(rx1“,a).
(e) VALO(X1,y1) - VALO(rS 7*<x1>, Sy1) is obvious by the properties of

SRED , hence VAL1(rS’,S).
(d) Let o = (01)... (cm)o, VALG(X1,y1), VALT(xz,yZ), VALOi(xi+2,yi+2)
for 1<{ilm.

; (
Then by our assumptions VALO\X1 *<X3’°"’Xm+2>’ y1y3...ym+2), hence
since SRED(Q,X1*-<x3,x4,,..,xm+2>, y1y3y4...ym+2), also
Fg O

SRED( o, HO’T *-<x1,x2,...,xm+2
used that VALT(xz,yZ) implies Ex(SRED(«,X,,x)& Normal (X)), by the

>, Hc’Ty1y2y3...ym+2). Here we have also

lemma.
(e) VAL(er o.r . ;) 1is proved similarly.
v b A ]
(£) VAL(VR&‘, R,) . For notational simplicity, let ¢ = (1)0; we first

establish, by induction on y

(3) {VXOYOX1Y1(VALG(XO,VO)‘&VAL(G)(O)U(X1ay1) -
-_— r | ron
VALG( R *-<xo,x1, ¥, Ryoy1y))
Basis., Let VALc(xo,yo), VAL(U)(O)G(X1’Y1)' We wish to show
such that VALT(XB,yB).

VALo(rRﬂ*-<xo,x1,r01,x5>, Ryoy1()y5) for all x
By our hypothesis, VALO(XO*-<XB>, yoyB)°

3773
By the properties of SRED,

SRED(a,er*-<xo,x1,rO“, x3>, yoya)
i.e. SRED(d,rRﬂ*-<XO,X1,rOﬂ, x5>, Ryoy1()y3).
Induction step. Assume (3); we wish to establish (3) with Sy instead of
¥« With the induction hypothesis, the argument is as straightforward as
before.

Now we are ready to show
(4) {VALc(xo’yo) & VAL(G)(O)Q(X19Y1) & VALO(XZ’YZ) & VALT(XBQY3) -
e
- VALO( R -*<xo,x1,x2,x3>, Ryoy1y2y5).
Note that VALO(xZ,y2) implies SRED(a, x2,’§é‘).
Also, by (3) applied to y, for y
e Fzs 0
SRED(G, R *<X01X19 y2 ? X3>, R.VOY1Y2y3)
and therefore by the properties of SRED
rp
SRED(w&,' R *»<xo,x1,x2,x3>, Ryoy1y2y3).
This establishes {4), and hence VAL(rR;’,RG).
By (2) and (a) - (f), it is obvious that (1) holds.

Remark, Since standard reduction sequences correspond to a (very restricted)

class of proofs, (1) may be viewed as a (weak) uniform reflection principle.
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§ 4. Models based on partial recursive function application: HRO, HEO.

2e4e1-2.4.5. General remarks on models of y-Hvéw.

2.4.1. Models: normal, extensional models.

A model for Q-%w is given by specifying domains for the range of the
variables, and interpreting the constants, including equality. Hence our
models are models w,r,t. many-sorted predicate logic, not always w,r.t. pred-
icate logic with equality. This is only natural, since the interpretation of
equality varies in the different systems studied.

If the equality relation of ‘T_Q*H.Aw is interpreted by the identity in the
domains of the model, the model may be called normal. The model is called
extensional, if equality is interpreted in the model as the (definable) ex-
tensional equality between the elements of the model {(ef. 1.6.12),

All models of g-vHéw studied in this chapter are w-models, i.e. the

natural numbers (objects of type O ) receive their standard interpretation.

2.4.2, Notation. If N is any model of y_-@w, let then Nc denote the

s T

objects of type ¢ in the model, and let Apl"':T denote a binary operation

(of type (N(o TXNG)NT) representing application (of type (o)t +to type o)

in ¥. (So ap(x!@7, y°) interprets X(O)Tye.) If ¢ 1is a constant of
E-Hv&w, let ¢y be its interpretation in N. We abbreviate Ap(x,y) also

as Xxy.

2.4.3, Submodel, homomorphism, embedding.

Let N, M %be models of g-g.éw.

¢ 1is a homomorphism from N into M, if ¢ maps Nc into Mc for all

eecT, and cp(ApN(x,y)) = ApM(@c,cpy) y cp(CN) =Cy for all constants ¢ of
W
N-HA", ’

[

9 1is an embedding if ¢ is a bi-unique homomorphism.
o
N is a submodel of M, if NycM_, for all oeT, and ApN’T is the re-

striction of AP;I’T to N XNy, for all o,m¢T, and G =G, for all
constants ¢ of g-HAw.

e

o)t

2.4,4. Definition (of the extensional equivalence relation ~).

For any model N of g-géw s we define by induction over the type structure:
(i) For X,yENO: : XA~y Edefx=y

(ii) TFor =x,yc¢€ N(c)-r 2 xRNy Sy 0 Yz Nc(xz ~yz) .

If = is interpreted by = in the model, N is extensional, and is then a
model of E-%w.
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2.4.5, Theorem (Zucker 1971, § 8). If M is a model of K-@éw, then

there is a standard procedure for constructing an extensional model ME of

E-@éw which is almost a submodel of M, i.e. ME satisfies

~

Ap;éT = Apﬂ’T|(M%c)T X Mf) (| expressing restriction) and ME cu,,

CME = CM for all constants ¢, except equality, whereas for eguality

X=My =X=ng-

Proof. We define binary relations Ié on Mc s by induction on ¢, as follows:

T1(6y) Sy x=¥
Iic)T(x,y) = f xeM(o)T & ye M(U)T & Vuv(Ié(u,v) - I;(xu,yv)).

If we put Mg(x) =it Ié(x,x), and we define application for EE as the
restriction of application in M, and interpret constants in N as in M,
then ME becomes a submodel of M.

When restricted to ME, I&G)T coincides with =~ for I° , by a straight-
forward induction on the type structure. We also have to verify that for

constants c¢° of y-—géw, ca belongs to Mi s Which is straightforward,

M

For example, comsider (R )M (abbreviated as R!) . We have to show that
B, oyl netE, 1 2t Ryys et -

for x¢ g1 Y€ e)(0)e? Z € 0 it follows that chyze 5 We prove this

by induction on =z.

2.4.6. The classical set-theoretical model of @;—@é&.

For completeness sake, we mention here the most obvious classical model of
g-g&w (for which we have no interesting applications), the full set-theo-
retical model S.

If we consider say ZF - set theory, and identify the natural numbers with
a standard set, say the ordinal w, we may define the set-theoretical model
S of @;-g&w in ZF in an obvious way ; objects of type (o)t are then
all set-theoretical mappings from the set of objects of type @ into a set

of objects of type T ; the objects of type 0O are the elements of w.

2.4.7. Models based on partial recursive function application.

The models for g-géw described in the remainder of this section are
based on partial recursive function application between natural numbers
(denoted by Kleene - brackets : {.}0. Our basic models are HRO, HEO, the
Hereditarily Recursive Operations and the Hereditarily Effective Operationms.

Later on, in section 6 we shall describe analogous models based on con-
tinuous function application (written as {a}[B] in Kleene and Vesley 1965,
. instead of {.}[.]).

and Kleene 1969 ; we use .,

2.4.8. Description of HRO.

We first define, for each o¢ T, a set of natural numbers Vo s as follows,
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Vo(x) =jer 0=0

V(U)T(X

n

def W€V Tz € VT({X}(y)zz) , or equivalently
vy € Vg Tu(T(x,y,u) &VT(Uu)) .

Now the hereditarily recursive operations of type ¢ consist of all pairs
(x,0) with =xe¢ Vg Since we may assume O to be represented by a natural
number hereditarily recursive operations may be supposed to be represented
by natural numbers,

Application is partial recursive function application:
(x, (@)1)(y,9) = ({X}(}’)a T) .
HRO becomes a model of E:-géw, if we can find numbers [H], [Z], [R],

[5], [E] such that, if we abbreviate ... {{{t [(t)}(t,) . }(s) vy
o H(tqyeeesty)

f]d(x,y) ~ =
{[21Hx,y,2) = Hxl(2) iy 1(2))
{[s]1}(x) = sx

{{[R]}(Xﬂ)’,o) =x
{[R]}(X’}WSZ) = {y]({[R]}(x,y,z), Z)
{[E]1}(x,y) = sg|x-y] .

Such numbers are constructed as follows.

We put
[0} = Mxfy . x
(2] = rxayhz . Hx(z) Fy I(2))
[8] = &, 8x

(E]

To construct a number [R], we may either use the faet that in Kleene's

Ity . sg(|x-y]) .

formalization of recursion theory (Kleene 1969, § 1.1) definition by primi-
tive recursion is included, and combine this with the fact that the rule of
definition by recursion permits us to construct a2 uniform recursor (cf.
1.7.5)y or, if we do not wish to use this fact, we may appeal to the recur-
sion theorem, noting that there exists a partial recursive function

¥(u,x,y,2z) such that
¥(u,x,y, 0) ~x
¥(u,x,y,52) = {Y}(lu}(X,Y,Z), z)
hence by the recursion theorem we find a number [R] such that
‘k([R]ﬂ{’y’Z) = {[R]}(x,y,z) o
Then 1_ , =
c

s T Py,

([1], (e)(r) @)

r Sy Ec’ Ra are represented by
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([z]s (o) (o)) ((p)o)(p)T)
([s], (0)o)

([E], (s)(o)0)

([rR], (o) ((a)(0)e)(0)o ).

Thus HRO is a model of Ig—}l@_w, if we interprete application, I, &, S,

E_, R, as indicated above, 0 by (0,0), and = by identity.

g’ "o
To each closed term +° of ;—T:"’T_Aw we can thus find a number [%] such

that ([t],0) represents t in HRO, and
B b v ([4]) .

*» 2.4.9. Remark on terminology. HRO Dbecomes a model of I- @w only by

specifying [I], [Z], [S], [R], [E]. |However, to avoid ponderous circum-
locutions, or the introduction of special designations for the variants, we
shall talk somewhat loosely about HRO as '"a model for L-vaw " and if we
wish to refer to a specific choice of [0}, [Z], [S], [E], [R], we shall

speak of a "version of HRO".

2.4,10. The formal theories HRO, HRQ™ .

HRO 1is an extension of ;-géw in which it is asserted that the objects

of type o© coincide with the hereditarily recursive opsrations of type o.
The language of HRQ is obtained by adding constants @ ¢ (e)o,

Qc;,q- € ((e)t)(o)C for all ©,T€l to the language of I- I:I,A;w. HRO is

axiomatized by addition of the following axioms to I-HA :

G1. 8 x° = x°
o

G2. @cxo = écyc - x°-5°

(o) o (e)r. e
G3. T(Q(o)_’_x v B3 Qé,'r}C y)
4. @Tx(°)7y° = u(e] Tx(")Ty") (P, U as in 1.3.9 A)

?

G5. ¥xe Vg Hyc(écy=x).

G1 -4 express that all objects of finite type are hereditarily recursive
operations 3 G5 expresses that every hereditarily recursive operation is an
object of finite type. Ij__RQ' is obtained by deleting G5 from HRO .

HRO is a model for HRQ. To see this, we only have to interpret ¢

by (Mx.x, (9)0) and & . by (AxAy.min, T(x,y,2), ((9)7)(e)0).

(<4

2.4.11. Description of HEO.

We define, for each ©¢ T, a set of natural numbers Wc’ and an equi-

valence relation Ic as follows:

M%) Sgee x=% , Io(x,5) Zgep (i-7) -
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W(o)'r(x) =ier WEW, '.E{u(T(x,y,u)&WT(Uu) &
& Vye W, Vy'eW, Vuu'(I,(y,y") & T(x,y,u)&
& T(x,y',u')-’IT(Uu,Uu')) .

I(C)T(x,y) 2 ief W(G)T(X) &W(G)T(y) & Vz € Wy Vuu' (T(x,z,u) &
& T(y,z,u‘)—'IT(Uu,Uu')) .

Now the hereditarily effective operations (HEO) of type ¢ consist of all
pairs (x,0) with xeW_.

If we interpret application, =., 0, S, 0, £, R as in the case of HRO,

9
we have obtained a model for @\—%w. I, corresponds to extensional equal-
ity between objects of type o.

Remark (i). An extension HEQ or HEQ™ , analogous to HRO or HRQ™ does
not exist., With HEO as a model, @1 should then assign a godelnumber to
each object of type 1, such that

W'y [ V2 (xz - y2) - 8,x=28,y]

and this would make equality between objects of type 1 recursively decidable,
which is well kmown to be false.

(ii). For each closed term te¢ o, as in the case of HRO

BA B W, ([5]) .

Note that the [t] assigned for HRO, HEO are the same.

2.4.12, Theorem. HROE and HEO are distinet. 1In fact, if we write Wc':
for HROE, we have

= 1 _ = 1 1
W, =W, W, =W, W,-W, w3 :)w5, v, gw;l,
1
Wn ¢_Wn for n>3,
Proof. Wé = 'WO, W% = W,| is obvious.

121)0(}(’3’) Sier ¥E€ V4 &yeV, & Vuv(I%(u,v)—' {x}(u) ={yl(v)) which is equi-

valent to xeW) & ye Wy & Vuv(I,(u,v)— {x}(w)={yl(v)), which is in turn

I<1>O(x,y) .

Hence, since x¢€ Wé — Ié(x,x) (—>I2(x,x) 4——)XGW2 y it follows that W2=W
Let zeW!, then by definition

1 s
2

zeV3 & Vuv(Iz(u,v)—' fzl(w) ={z}(+)) .

Since W,cV,, it follows that {z}(w) is defined for all weW

X hence
z € W3 .
We note that Ax.xe V2 -W2 .

Now we construct xo such that

{xof(x) =0 for x# Az.z,

{xof(x) undefined for x= Az.z.
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Then X, € W5 , but XO¢W% » since this would imply =x,€V whereas

5 ?
{xo}(/\z.z) is undefined. W

This construction may be generalized; 1let Uy Uy be two numbeMch that
uo#u1 s {uo H(x) = {u1 }(x)=0 for all x, then, since In(uo,u,‘) for all
n>1 , Ax.x;(Wn+1 for n>1, since {Ax.x}(uo) # {Ax.x}(u1). Therefore,
n+2 —WI:H-Z r *p £ Vneo *
Now we construct X4 such that

{x } x) =0 for =x#£%x%
1 0

fx,‘ }(xo) undefined,

as before, xOGW

Then obviously Xy € Wl"l--Wn for n>3, since X4 is defined on Vn 10
but not on W R
n-1

Open problem. Are there mathematically interesting functionals which occur

in HROE , but not in HEO, or in HEO, but not in HROE?

(for terms t of N-m").

s

2.4.13, Definition of [t]HRO’ [t}HEO

For applications in the future, it is simplest if we restrict attention to

terms containing type O wvariables from a fixed recursive infinite set V
with infinite complement. ILet I denote some 1- 1 mapping of higher type
variables onto the type O <variables not in V. We then define

[t]HRO (= [t]HEO) by induction on the complexity of t, as follows:

[0)gro = Os [x°)gro = %5 [¥ lggy = Ix° (0 £0)

(81gpo = [8)s  [Rglggpe = [RI [(Mgpo = [11s [Z)gpe = [21,

(where [sS], [R], [O], (2], [E] are chosen as in 2,4.8) and

(¢4 Jgpo = 1tlpo b Jypy s umless t=5;

l:St']HRO

s{t']HRO .

2.4.%4. Theorem (Provable faithfulness of HRO, wuniformly in type O

variables). Let t be any type O term containing only type O variables

free. Then

N-BAYF (tlggy = [tgp = ¢
Proof. For closed t, [t]gn, 1is represented by a pseudo-term constructed
from 0, S, and {. o .
Let us assume a godelnumbering for such pseudo-terms to be given, e.g. as
follows :

0" = j(0,0)

"st” = 3(1,7t7)

Tl = a2, 378, TE)) .
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gnpt(x) is the primitive recursive predicate which holds iff x 1is the
godelnumber of a pseudo-term of the described kind.

A binary predicate A(x,y) can be explicitly defined (Ch. I, § 4) such that

A(x,y) o [x=3(0,0) & y=01 v

Y% [j1x=1 & Sz(A(jzx,z) & y=5z)] v

% [j1x= 2 & Euvw(A(,j,ljzx,u) &A(jzjzx,v) & Tuvw & Tw=y) ] .
Obviously A(x,y) — gnpt(x) .
Compl(x) is the primitive recursive function such that if gnpt(x), then
Compl(x) is the complexity of the term represented by x.

One readily proves by induction on Compl(x)
Vyy ' [A(x,y) & A(x,y') = y=y'].

Let t be a pseudo-term constructed from 0, S, type O wvariables XgseessX
and {.}. Let us write I for t(i,l,...,n-cn) .

Then

(1) B F Wy (t>y 2407 ,y)) .

Proof by induction on the complexity of +%.

¥y(0 =y «> A(j(0,0),y)) 1is obvious.

Vy(xiay — A(rii“',y)) is readily proved by induction on x, .
Let t=5t!', and assume Vy(t'=y > A("T'",y)).

A(TsEr,sy) e A("%17,y), hence Vy(St'=y <3 A('sTt",y)).
Finally, let t = {tt](t").

Assume W(t'=y «A("T17,y)), Wt">y <« A(Tt"",y)) .

Now

ACCIE HEY,y) © Buvw[ACTT " ,0) & AT, v) & Tuvw & Uw- y] e
BU.VW['E' =u & t"=v & Tuvw & UW=y] ) {tl }(t") -y,

Thus (1) is proved.

Now we define by induction on the type structure Inta(xo,yc) ("the
pseudo-term with godelnumber =x is the HEO - interpretation of the functional
Cn
y )

(1) Int_(x°,5°) = A(x,y)
(ii) Int(c)T(x’Y) = VX'Y'[Intc(X'9Y') - IntT(j(z’j<Xax'))9Y3")] .
Now we prove, entirely parallel to 2,3.13, that for terms t(x1,...,xn) con-

structed by application from constants and type O variable KyreeesX that
w [ od ]
(2) }i-l\{;& |— Int( [{]HEO’t)

where T is an abbreviation for t(X.,.eesX ).
1 n w

-y

Combining (1) and (2), we find for type O terms t(x,l,...,xn) of N-HA
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H"Eéwf— A(F[E]Hgo!t)
I&' g:‘iw i— A(r[f:‘HEa’t) - [t]HEO =1,

which together yield the assertion of the theorem.

2.4,15, Corollary. All closed type 1 terms of N-%uJ represent provably
recursive functions of Hv_.f: .
Proof. Let t be a closed type 1 term; then there is a numeral [’c] such

that HA |- [t]ev,‘ (cf. end of 2.4.8). Also ﬁ"%w‘" [tx]
[tx] = 10411()

HRO tx , where

2.4.16. Generslization. In %c we can easily define a version of HRO

based on A - partial recursive functions instead of recursive functions,
with {X}A(y) taking the place of {X}(y) .

2.4.17. Historical note. HEO, for pure types, is described in Kreisel

19599 Pe 117.
A (form of) HRO first appears in Kreisel 1958 B, lecture 60. A variant

formulated in the theory of combinators is briefly indicated in Tait 1968,
p. 191, lines -10 to -2. Troelstra rediscovered HRO and made extensive

use of it in Troelstra 1971.

2.4.18. Sketch of a variant of HRO satisfying Bm- conversion.

An intensional variant of g-@w with the A - operator as a primitive,
is most easily formulated by introducing intensional equality as follows:
we require reflexivity, symmetry, transitivity and monotonicity. Reduction
is defined syntactically: t>t, t2> t'dndt'zt" =t>4", tZ2%' =t > E0E",
t>E0 =t >, &t > Ay[x/y]t  (y not free in t), (Ax.t)t'>[x/t']lt,
t>t' = &x.t> Ax.t', Rtt'0>1%, REt1(St") > t'(Rttt")t", E ttr >0 if ¢,
are distinct closed terms in normal form, Eotti‘l if t 1is closed, normal.
Finally we add a schema +t=1%' if t <zreduces to t'. Otherwise A:L_g.g“’
is similar to ;[‘-VHA(D.
A model for AI- HAw ’

- ——

We consider the MK- Bn calculus, with an additional constant E, and

similar to HRO can be obtained as follows.

introduce Bmd -~ conversion as BN- conversion and in addition a rule of 6~

conversion :

Ett! coenv [I,K] if +t,t' are distinct closed terms in normal form

Ett conv I if +t is closed, normal,

where I xo.x, T = AT X, [t,',tz] Edef Az.zt 1t

Tdef def 1%2 "
For such a system the Church - Rosser theorem of unigueness of normal form is

provable (cf. Curry - Feys 1958, § 3D.6, chapter 4).
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We put

1]

0=1I, n+1=[nK], 8= &x[x,K].

Obviously, Sn >n+1. H.P. Barendregt has shown (Barendregt C) that we

can find a term R such that

Bxy0 = x
Rxy(8z) = y(Rxyz)z
R is in normal form, and when t1,t2 are in normal form, then

3’01, Bt1t2 have a normal form.

We now define our HRO - analogue A-HROQ as follows.

)\E
0 def

‘o) = A
te V(U)T =def t normal, closed, Vi'e ‘V’c Tt e V

teV I(t=n)

A
r

(ttr=1")

The objects of type © are now pairs (x,0), x a (godelnumber of a) term
of V;‘. Obviously, ("I7,0) is going to represent O, (S7,1) represents
successor, ("E7,(¢)(0)0) represents Eg ("R, (e)((2)(0)o)(0)o) represents
Ro .

Another possibility for constructing a HRO - analogue is the following :
add to the language of the A-calculus four additional constants 0,S,E,R,
satisiying the reduction rules Bttt conv 0 if t is closed, normal, and
Ett' conv 80 if +,t' are distinet, closed terms in formal form,

Rtt'0 conv t, Rtt'(8t") conv t'(Rtt't")t". Abbreviate SO as 1, Sn as
n+l.
Extend now the Church - Rosser theorem to this extenied A - calculus, and then

proceed as before.

2.4.19. Pairing in HRO, HEO.
It ic easy to extend ERO, HEO to models for I- &A;’, E-g.g‘; by adding

-

to the definition
vc XT(X) Ede:f‘ Vc(j1x) & V'r('jZX)
and similarly
wc XT(X) Edef Wo('j1x) & WT(jZX)
and
Io XT(X’y) Edef IU(J-‘X’JIIY) & IT(32X9jzy) ?

and representing D, D', D" by (Axy. j(x,¥),(e)(7)oxt), (Ax.j,x, (0 XT)e),
(AX-J'QX’ (6 XT)T) respectively.
The models so extended we shall usually also denote by HRO, HEO.
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§ 5. Term models of g-@w.

oDels Definitions. Let CTMG be the set of closed terms of type © in
w

w

2
N-HA, and CTNF, the set of closed terms of type ¢ in normal form in
y-8". We put CTM = UfomM |eeTl, cINF - U {cTnF, |oe ).

c
CTM Ybecomes a model of N-HA, if we let the variables x range over
CTM

o ?
equality =g @S equality of normal form, and 0, S, I, £, R as themselves,

we interpret application of t 4o s as juxtaposition s,

Let us denote, for simplicity, this model also by CTM.

CTNF becomes a model of y\-I:’LVA._w, if we let the variables xc range
over C'I‘I\TFc s application Ap assigns to t, s the term +' in normal
form such that +ts>t1, =5 1is interpreted as proper equality (equality in
CTNF ) , and the constants 0, S, I, £, R are interpreted by themselves.,
;Again we denote this model by " CTNF ",

Note that for the proof that CTM, CTNF are models of g__’Héw, we have
to make use of the fact that every term of y-HAw possesses a unique normal

form.

2.5.2. Definitions. Let CTM!, CTNF! be the closed terms of type ¢ of
w\+1€e o o w + [Ep

I-HA \(and the normal closed terms of type © of I-HA /Tespectively.

ctMt = U fCTMé | o€ ‘2}, CTNF! = U {CTNF(" | g€ g‘} . CTM!', CTNF! can be made

into models of J -%lso denoted by CTM!, CTNF', similar to the

models CTM, CTNF. /+IE,

2.5.3, BSome properties of CTM, CTM', CTNF, CTNF! .

(i) In CTM\an‘gagxo';mitive recursive, =g is recursive, but not provably
recursive in Hvé (for standard godelnumberings). The second assertion is
established by a well-known type of diagonal argument: 1let hX denote the
Xth closed type 1 term; the enumeration may be supposed to be primitive
recursive in x. The (godelnumber of) hii is again a primitive recursive
function of x. Suppose f(x,y) is a provably recursive function such
that f(x,y)=0 if =x,y are godelnumbers of closed terms with the same
normal form, 1 elsewhere.

Then 1 = f(rh}—c}_c", f07) is a provably recursive function of =x, denoted
by a term t (cf. 3.4.29); say tEh‘_)-ro. Now h§o§o=0‘_’
1= f('hio(io)-‘,ro-‘) = 1 (—bhiofro;éo s contradiction. Similarly for CTM!.
(ii) In CTNF, =g is primitive recursive, application is recursive, but not
provably recursive (for the standard godelnumberings) in HA . Similarly
for CTNF?,

In this case the non-provable recursiveness is established in an even
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more straightforward way, utilizing the diagonal function hxx+ 1.

(iii) The domains of the variables in CTM, CTNF, CTM!, CTNF! are recursive
(in contrast to HRO! ).

(iv) QF - AC__ does not hold in CT¥, CINF.

Proof. Let n be the godelnumber of a recursive funetion which is not
provably recursive in HA. Hence Vx 3y T(u, x,y) holds, and minyT(i,x,y)
is a recursive function of x, but not provably recursive in HA .

QF--ACOo for CTM would require the existence of a t!' € CTM  such that

vx T(n, x, t'x) ;§ but since all t*'e¢ CTM are interpreted by provably recursive
functions in HRO, it follows that —iVXT(ﬁ.,X,t1X), Similarly for CTNF .

2.5.4, Lemma. For standard gdodelnumberings of partial recursive functions
there exists a two-place primitive recursive function ¢ such that (cf.

Rogers 1967, § 7.2, in proof of theorem IV).

Veyz ({x}(z) "'{QO(X,Y) i(z))
Vxxtyy' (x £ x' Vy £ 3" €2 o(x,y) £ o(xt,y')) .

2.5.5. Theorem. There exists a version of the model HRO, such that the
model CTNF! can be embedded in HRO (is isomorphic to a submodel of HRO).
Proof. Let <x,y,z> = VB(x,y,z) (1.3.9 (C)). We define the required
version of HRO by re-defining the numbers [c] representing the constants
¢ (ef. 2.4.8) as follows.

Let [0]=0, and let T be any numeral such that

1T {(x,5,0) =>=x
if'}(}hy’SZ) = iy}(ii}(}c’y’Z)9z)

where {t}(t_ ,...,t ) is an abbreviation f{... fl{t}(s )}I(t,)} IR ICRE
We put

[s] o(Ax.x+1, <0,0,00),
[H] QO(AX.CD(/\Y.X, <x,%42>), <1,1,1>),
[2,,0,7) = e(rxeo(ny.o(rz.o({xl(2) iy [(2)),"0™), <x,3,5%), <x,x,49),
<3,3,3>) ,
{R] Q(AX-CP(/\Y-CP(AZ- {f‘}(x,y,z), <x,y,8>), <x,x,7>), <6a696>) .
[E] o(Ax.o(Ay. Sng'YI), <x,%,10>), <9,9,9>) .
If to,t1 € C'I‘NF/, then each has one of the forms of the following list
(syt€ CTNF) :
n, s, =, £s, £st, R, Rs, Rst, S, Ss, O, E, Es.

a) If B b
e.g. 1if

correspond to different forms in the list, then [to] £ [t1] 3

Zp,G,TSt’t = Rs't', then

i —

1
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[+.] = o(az.o(H{[s]1}=) H(1[+]1(2)),T0),<[s],[$],5>)
(4,1 = o(hz. {FH([s1],[51],2), <[s'],['],8>) .
Now [to]% [t1], since o(x, <y,z,5>) # olx', <y',z!,8>) for all
XV, y'y 2V, X, ¥y 2 &
b) If t Ft, and t ,t,
also [to]%[t1], or type (to)¥type (t1). The proof now proceeds by

correspond to the same form on the list, then

induction on the sum of the complexities of to and t1. For example,
let t = Zp,c’Tst, by = Iy g1, gis't'y then [t,] is as under (a),
ey] = otz ol s o) TR N)) o r), <Ce]y a0, 50 B) = 4]
would imply [s] = [s'], [t] = [$'] so then either type (s) # type (s'),
cr type (t) £ type (#'), by (a) and induction hypothesis.

If type (s) # type (s'), it follows that p#£ p' or © # 0! or T 4 11,
If type (%) # type ('), it follows that p # p' or o £ ot,

If ¢ # o', then obviously [to] # [t1]. If p# p' or T4 T', then

type (t)) # type (%), since type (t ) = (p)T, type (ty) = (p')7'.

AlEernative proof. In the preceding proof, we have kept the ascignment as
uniform in the types as possible; if we use a slightly different definition
of [no,'r]’ [Zp,o,'r]’ [Ryls [E,]s we need less verification (case (b) in
the preceding proof is simpler), but the uniformity in the types is gome.

The new definitions are:

[HO,T] = ¢(Ax'¢(Ay&gKX9 j(r°11r71))9 <X,X,2>), <1,1,1>)
[Z40,.) = e(hx.o( 3l x}(2) Hly b(z)), <707, 707, 7175), <x,3,5),

<X9X’4>), <393,3>)
¢(Ax-¢(AY-¢(AZ-¢({i}(xiyyz)1r°1)9 <x,y,8>), <x,x,7>), <6,6,6>)
@(Ax°¢(Ay'w(s€|x"ylyrcﬂ)’ <x,%x,10>), <9,9,9>) .

— e
]

2.5.6. Alternative proof of the unigueness of nornal form.
Since for +t,t!' € CTNF', ¢ > t!' implies [t] = [t'], it follows from
2.3%3.2 and 2.5.5 that each closed term of E-Hvéw + IEO (and hence each

closed term of g-VH&w) possesses a unique normal form.

2.5.7. Corollary to 2.5.5, 2.5.6. If t,t' are closed terms of N-HA",

then Ij‘-%wf- t=t' iff +¢,t' reduce to the same normal formj; hence, if
1'\1-1_{’.&‘” }— t=t%t' then +t=1t' can be proved in qf-g-Hvéw without the use

of induction.

This may be rephrased as a conservative extension result: y-Hvéw is
conservative over qf -I_}[-Ij_Aw without induction, for closed prime formulae.
Similarly for I-HA"+ IE_ .



135

2.5.8., Theorem. For suitable versions of HRO (i.e. the ones defined in
2.5.5), HRO 1is a model for I-—g§w4-IE1; hence, as a corollary of 2.5.5,
CINF' is 2lso a model of I-HA"+IE,.
Proof. Similar to the argument in 2.5.5, we can show that IE1 is satis-
fied,
Remark., CTNF'!' 4is a minimal model of g..géw w.T.t. equality, i.e. two
closed terms +t,t' have the same interpretation in the model iff they re-
duce to the same normal form,i.e, if g-géw Ft=t'.

Each model of y.-géu{+IEo must be minimal w,r.t. equality between

closed terms, as will be obvious.

2.5.9. Examples of versions of HRO where distinct normal terms are rep-

resented by the same element in the version of HRO.

(i) The first example is suggested by the necessity of referring to o in
the definition of [zp,c’T]
closed terms t¢€ (p)(o)r, t'e (p){(a')r, se(p)o, ste(p)o' such that
ofor, [t]=[t'], [s]=[s'] (under the assignment described in 2.4.8),
then [Zp,o,Tts] = [Zp’c,’Tt's'], type (Zp,a,Tts) = type (Zp’c,,Tt's') =
= (p)1, Ep,a,"l’ts # Zp,c,’Tt's‘ .

Take p=0,, T =0, 0= (02)01, o' = (55)01, o, # 955 t = H01,a,

1 = nc1,c'; s = Hc1,02’ s' = no1,o 3 then all our requirements are met.
(ii) =®(so)(z(mmr)s) (where 0, N' denote no’T, nm,T,

g, T,o', 7" ) 1is extensionally equal to the successor function S.

in the proof of 2.2.5. If we can find normal

for appropriate

Now we modify our description of [R] in 2.5.5 as follows, Let T as

before denote a numeral, satisfying
{f‘}(x,y,O) = x, {I‘}(X,BHSZ) = iy}({i}(x’bﬁz)yz) .
Az. {F(x,y,2) 3 V¥ is primitive recursive. We put

c¥(x,y) + (= (y-nl+ [1-x])) . [8],

Then 1let ¥(x,¥y)

¥'(x,y) = sg|1-x|.[y-n

where 10 = [z(lNl')s].
Now we put [R] = AxAy. ¥'(x,y) . It is then obvious that
{[R] }(}:,y,O) =x

{[R] }(X,y,SZ) = iy}({[R] }(X9Y9Z)9Z)

(this is proved by distinguishing cases: y=n & x=1, or x£1 Vy#n).
Also

{[r]}(0,8) = [s].

From the preceding examples it is obvious that we cannot assert

;-ggw]— t#1t' whenever t,t!' are closed terms with different normal forms.
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Remark. The second example is based on another idea than the one used in
the first example. The first example is based on the "type-ambiguity" :
zp,a,Ttt' and Zp’o,’Tt't" are of the same type for o #£o!',

The second example picks more or less arbitrarily two closed terms of
type 1, with different normal forms, but representing extensionally equal
functions, snd identifies them in the model.

2.5.10. IEO is weaker than IE1.

We wish to show that the axiom schema Ects =1 if +t,s are distinect

closed terms in normal form, Eott =0 (i.e. the schema IEO) does not

imply 1IE for example, it does not follcw that

19
(1) Y#y = Rxy#Rxy'.
More precisely, we can find versions of HRO for which IEo is obviously
valid, but for which (1) fails.

To see this, we argue as follows., Take any closed term of N-HAY of

- .

type (0)(0)C not containing R , say e.g. nO 0@ and let n  be any
9

numeral such
Halx) Iy) =~ x.

The function ¢ of lemms 2.5.4 may be chosen such that 7 iz not in the
range of @.
Now we define our version of HRO as in the first proof of 2.5.5, but with

one exception: we define [Ro] as
o Ax. o(fy. w(AZ~ {;}(X9Y9Z))<X9y,8>)’ <xy%,7>), <6,6,6>),

where ¥ is given by

1

(2a) V(u, <x,7,8>) = o(u, <x,y,8>) if y#n

(Zb) W(u, <X9ﬁ’8>) = w(u’ <X,[HO 0]98>)-

We note that # is also outside the range of V.

Let us indicate the number assigned to a closed term + by the original
assignment as [t]', and by the new one as [t]; themn [t] = [t]', as we
can show by an induction on the complexity of +t. Focr a c¢losed tern to

in normal form, which is not a numeral, is of one of the forms
n, nt, z, zt, £ts, R, Rt, Rts, S, E, Et

where t, s themselves are in normal form. So the corresponding numbers
[tO], [to]' are in the range of ¢, ¥3; since n was chosen outside that
range, an easy induction on the complexity of to yields that in evaluat-
ing [to] we never have to use clause (2b), hence [to] = [tO]'.

Therefore IEO holds. But, obviously, (1) is false:
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{[r 1}(x,8) = [ T}, (0, 1)

whereas 1 # [HO,O]°

2.5.11, Remark. Presupposing the theory of combinators, Tait's version
(Pait 1968, p. 191, lines =10 to -2) of HRO 1is a slightly more direct way
of achieving the result of 2.5.5. However, for our purposes the present
definition of HRO is more flexible. Similarly, the HRO - variant satis-
fying 8m6 - cenversion, described in 2.4.18, contains a A - term model

isomorphically embedded.

2.5.12. Remark on the properties of godelnumberines used.

The construction in 2.5.5 made essential use of the lemma 2.5.4 on
standard gddelnumberings. One might wonder to what extent the results
depend on the godelnumbering chosen. An answer is provided by Rogers 1958.
The "fully effective" numberings there are precisely the numberings which
can be brought into recursive one-to-one correspondence with a standard
godelnumbering. Therefore any fully effective numbering satisfies 2.5.4

and yields the result in 2.5.5.

2,5.13, Historical note.

Term models for g-géw first appeared in Tait 1963%, Appendix B, which
is a preliminary draft of Tait 1967.

A detailed comparison between term models and HRO is made in Kreisel
1971, Appendix I.
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§ 6. Models based on continuous function application: ICF, ECF.

2.6.17. Contents of the section.

In the present section, we study models of ﬁ-géw similar to HRO, HEO,
but based on continuous function application instead. The hereditarily con-
tinuous functionals (ECF) make their appearance in Kreisel 1959 and Kleene
19594(as countable functionals) ; the intensional ccntinuous functionals
ICF are introduced in Kreisel 1962 (page 154).

2,6,2-2,6.,10 describe ECF, ICF and discuss the existence of moduli of
continuity and uniform continuity in these models.

2,6.11, 2,6,12 extend the faithfulness theorem from HEQO to ECF;
2,6.1%3 ~2.6.21 are devoted to the recursive density theorem for ECF and
the equivalence between ECF(R) (= ECF relativized to recursive functions)
and HEQ.

2.6.22 discusses the models ECF', ICF' , obtained by taking the recursive
elements of ECF, ICF relative to a universe of functions satisfying bar-
induction.

2.6.,23 describes variants ECF*, ICF* of ECF, ICF respectively, where
application is defined in a more uniform way than for ECF, ICF.

2.6.25 describes the interpretation of pairing operators in ECF, ICF,
ECF*, ICF*.

2.6.26 describes the analogues ICF, ICF~ to HRQ, HRO™ imtroduced in
2,4.10.

Directions for use. For most applications in connection with modified

realizability and the Dialectica interpretation (§ 3.4, § 3.5), it suffices
to study 2.6.2-2,6.103 a few results in § 3.5 (obtained with the help of
the Dialectica interpretation) require 2.6.20. 2.6.,11-2,6.12 are used in

§ 7, in studying derivable instances of the rule of extensionality.

2.6.2. Below we shall assume { to be a universe of functions of type 1,
closed under "recursive in", (in short, U is a model of EL). o, B, ¥

are variables ranging over {{ . We introduce V; for each o¢ g, analogous
to V for HRO, as follows:

[«
€ V1 Ex=x
X 0 X =
1 -
aeVo)o o=«
- 1
a ¢ va)O =V e V, Zx(a(B) ~x), for e £0
1

- 1
= VB ¢ Ve By € VT(Q‘B='y) , for o,740

R
m
-

= ¥x 3y € V:(d,)\y.x’“'y) R for T £0 .



The objects of type ©
functionals relative to

1
peirs (x,0), x € Yo

Equality is defined as
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of the model ICF({/) (the intensional continuous

the universe 1L , in short: ICF) consist of the

if =0, and of (a,0) with o« € V; if o40.

(x,0) = (y,0) Edef x=y, (a0) = (8,09) Edef

VX(OIX= Bi'sa\r}:;;;‘) 074 O . The interpretation of application depends on the
type. We put:

(a,1)(x,0) = (ax,0)

(e, (0)9)(x,0) = (e|W.x,0) for o©#0

(2,(2)0)(B,0) = (a(B), O) for o#£0

(a,(e)T)(B,y0) = (QIB sy T) for o,T£0 .

Further we have to show how the constants may be interpreted.

Let us write [c]1 (in

short: [e¢]) for the function or number such that
([e]yo) represents the constant ce ¢ in our model.
(a) [0] =0
(1) [S] = Ma.sx
(c) 1= A" n. 1= AxA°
c [ 0,00 xNy.x, [ 0,0 A qex,
T | - 1 1
(05,0 = Aahyee, [0, ] = AehB.e for o,mfo0.
— A1t 1,0
(d) [29,5,0] = Aah A z(a| \x.z) (Bz),
ot
[20,0,7] = Aap BA z(o| Mx.2) | (Bl x.2) (o,740),
= 1.1
[2,,0,0) = Aah Br%v(alv)(p]Y) (of0)
= »1..1
[z 1= aah BAY(a|y)(Ay.B(Y)) (p,740),
PsQy T
= 1 1.1
(250,01 = & ar BaY(aly)|(B]Y) (pyo,7#£0),
= 1.1
(2 0.7) = A ar BA z(e| x.2) | Ay, Bz (r£0).
Ve
(e) Construction of [R ]. Subcase ©=0.
e(6, oy, By Y) = a0 if yo0-0,
B(& (a, B, Az(v0=1)), Az.y0=1)
if v¥0 > 0.
Then, by the recursion theorem analogue t1.9.16 , we find 60 such that
50(0, B, Y) = {&O if YO:O
B(8 (e, B, Az(y0=1)), Az.v0=1)) 1if v0f£0,

and therefore we may take
= 1.1
[Ro] = A'xA'BA%y. 50( Az.x, B, Az.y) .
c£0.

€|(6, o, B’ y)= {a, if YO:O
Bl (&](a, B, Az.yO=1), Az.y0=1)

Subcase Ye can find an e

such that

if y0 > 0,
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and then by 1.9.16 a 61 such that

61| (ar By v) s if y0-=0,
e|(51](a,a, M. y0=1), Az.y0=1) if ¥Y0£o0,

and then we may take

= 1 1
[R°] = A Q’A1BA Ve 51‘(0, B, Az.y) .

Note further that ICF is actually a model of Int-HA (i.e. the
theory obtained by adding to y- g.éw: x1 = y1 > Vz(x1z = y1z ).

2.6.3. Theorem. A model ICF possesses a modulus~of-continuity functional,

i.e. in the model there is an object o ¢ (2)(1)0 such that
MC i(wmcxy) = E(cpmcxy) - Xy =XZ.

This is provable in EL.
Proof. Let aevg;
0 if Vm<n (em=0)

1th(m) +1 if m<n, om£0, Va'<m (om' =0).

we define ¢{a] such that

ol o]n
o[ a]n

A1a. ola].

Then put [qomC]
We have to show

(1) B(e[e](B)) = ¥(e[a](B)) ~ a(B) ~aly) .

If o[a](B) = x, o(Bx) # 0, a(By) =0 for y < xj; hence (1) is immediate.

2.6.4. Theorem, If !/ satisfies EL+FAN, then we have in ICF(ll) an
object o € (2)0 ("ue " for uniform continuity)such that

NUC vl vt e Byl e B(%(0,,

z) = (9 ,2) = zx=12y) ,
where, as before, x1e B abbreviates \fuo(xu_g 1) .

Proof. Let ac¢ V; s then VBIx (a(Px)#£0), hence by TFAN
3z V8 ¢ B & < z(a(PFx) £0) .
We define

cpuc(a) = min_ VBeB Ex < z(a(Bx) £0) .

It remains to be shown that @  is represented by ([cpuc],(z)o) in ICF,
for suitable [cpuc] s as follows
Let B = {n | 1th(n) =z & ¥i< z((n)i_<_ N1, and put
[(puc](m) = minz[zilth(m) & WeB, En'jn((m)n”éo)] + 1
if there is such a =z,

0] otherwise,

[cpuc] is obviously recursive.
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2.6.5. The extensional model ECF of the hereditarily continuous functionals.

Now we describe, relative to a universe of functions {( satisfying EL,
the model ECF(U) (in short: ECF) which is similar to HEO, but based on

continuous function application. We introduce simultaneously domains W1

=2
and equivalence relations I; for all cel, as follows.
1 -
xeW, =x=x, Ig(x,y) = (x=7)
1 - 1 -
o€ W(O)O= a=a, I,(aB) = (a=8)
o€ WEG)OE VBEW;1Ex(a(B)°‘x) &
Ty (I (v, Y1) = a(y) = oy')) o£0
1 1 1 4
= VyeWw o~
Igo)o(“’” ve cch(v) B(Y)) & Wigygele w<o>o(s) , 940
o € W(U)TE VBEW; EYEWT(aIS“Y) &
VBB'BG'(I;(E,B') &@|B>=6& a|B! =81 - 11(6,6'))
- 1 1
IZO)T(Q,B) = Vye Wa(alva'B\Y) & ch),r(q)& W(C)T(B) (e,7£0)

o€ WEO)TE Vx Zye W,:(al?\y.x“'y)
IEO)T(B,Y) = W (B|Ay.x = ¥| Ay.x) &Wzo)-r(f’) & Wiy, (V) (140).
The objects of type ¢ of the model ECF(U) (the extensional continuous
functionals relative to the universe [l ) are the pairs (x,0), xe€ WS if
=0, and (a,0) , aew; if ©40. ;
Equality at type © 1is interpreted as Ic; application and the other

constants are interpreted as in ICF(U) .
ECF is (provably in EL) a model for E-HA".
2.6.6, Theorem. (Kreisel 1962, lemma 7) If Ll satisfies EL+FAN, then

there is a "fan-functional" ¢ € (2)0 in ECF (provably in EL) such
that

2 1 1 - -
V2" ¥x e BYy e B(X(o,.2) =F(9,,2) = zx=2y)
where, as before X ¢B abbreviates Vuo(xu_<_1) .
Proof. In the proof of 2.6.4 we must replace [cpuc] by [cpuc]' defined
by ( B, as in 2.6.4)
[(puc]'(m) = miny[yﬁz & e B, ¥n' € B, Vm!'(m' <n &
&m'<n' & 1th(n') =y = (m)[n]=(m)[n*]£0)] + 1,
where z = [¢ J(m)*1, if [qauc](m);éo
0 otherwise

and where

(x) = | (), 3£y = min[x<n & () 0]
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1 -
Obviously, if a € W,, Hx([cpuc]'(dx),l-o) .
Also [o ]'m < (o p]m. 1 )
We have to1show (o, 0" € W, d.e. Iz(a,a') - [cpuc]'(a) = {cpuc]'(oz') .
Suppose Iz(a,a') , and let oem, a'cm' such that [cpuc]'m =x,+1,
[cpuc]'m' = X, + 1.
By the definition of [  ]', also [cpuc]m,éo, [o, Jm'#0. Tow it is
readily seen that [cpuc]((m) is not changed if we replace in the definition
of [cpuc]‘(m) z by max([cpuc](m)-'—‘l, [cpuc](m')é‘l), and similarly for

] - | 1

(o, ]/ (m0) . Thus (o )'(n) = [9,,)"(a").

2.6.7. Theorem. ECF does not contain a modulus-of-continuity functional
@ (Kreisel 1962, after remark 10).
Proof. We shall show, more particularly, that in the model there is no ¢

such that
2 2 2
V< qx " (By=0) = x"B=x"(Az.0) .

In order to show this, we consider functionals ¢o, ¢m 1 of type 2 such
b4
that

Aw.O
11 if Vy_(_mo(ory=0) & a(mo+1) >m

!#oa: 0 in all other cases

o

¢O
v

m, 1

where mo=¢pw0 for given o.

Now we choose representatives o , « of ¥ ’ ¥ as follows.
o 1 o} m,

(1) an=1 if n

it

(A.0)z » <Su> xn' for suitable z<{m_, u, n'

(Ay.O)(mo+1) xnt' for suitable n!'

]

i

or n

aon = 0 1in all other cases

1

(ii) amn = 2 if (Ky.O)(mo+1)*<Sm+y>*n' for suitable ¥y, n!

amn = 1 if (ky.O)(m0+1) * <{u> » n! for some u<m, and
suitable n!

on = aon in all other cases.

Note that o« (B) is defined for all B, and in fact equal to 0

~ 0
aoB(mo+1) 1 for all B.

01(5) is always determined from E(mo+2) .

Now assume ¢ to be represented by vyj; then we can find a2 v, @ €V
such that W;éO; if we choose v sufficiently large, aon=1 for some
n < l1thv, 1thn > mo+1 .

Ve put

m = max{(n)ma_’_1 | n<1th(v) & 1thn> mo+1} .

It follows that aq€vV for this choice of m.
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For let n < lthv. If 1th(n) < m+l, amn=amnj; if 1th(n) > m +1,
ayn = 2 is excluded, since then (n)m0+1 would be less than m, contradict-
ing our choice of m. Hence either on = on, OT We are in the case where
n = ()\—y.—d)(mo+1)*<u>*n' y ulm. But in this case aon = ayn = 1.

Thus we have
Y(ao) = v(a1) = m +1.
On the other hand, for
8 = h.@w1ﬂ1*|x-SmJ)

it follows that a1(kx.o) = 0, aq(ﬁ) = 1, whereas Vy< Y(q1)(By==O) -
- a1(8)= a1()x.0) becomes false, since (by v(a1)==mo+1) ¥y < y(aq)(By==O)
holds.

2.6.8. We shall now pay some special attention to ICF(R) and ECF(R),
where R is the universe of (total) recursive functions., The fact that &
is closed under "recursive in" can now be established in HA, and the meta-

mathematics below can be established in HA.

2.6.9., Theorem (Kleene & Vesley 1965, lemma 9.8 in § 9.3).

Let us use B for: @ is recursive and V¥x(aex<1). Then we can find a

primitive recursive predicate Rx such that

@)) Vo€ REx R(ax)
(2) Vz Bo€ B Vx<{z -R(ax)

and therefore
(3) 23z Voe BB x<zR(ox) .
Proof. Briefly, we define R so that the tree of unsecured sequences w,r.t.
R has infinite branches, but no infinite recursive branches. We put
WO(X,y) = T(jzxv X, y) & Vzly _'T(j1xv X, 2)
'1(X’y)

i3}

T(j,lx, x,y) & 2Ly “WT(jzx, Xy, 2) .
Note that
By Wo(x,5) = %W, (x,5), ZyW,(x,5) = &V (x,5) .
Ve put
W(ix,y) =W (xy)
and define
Rx = #Tu< 1th(x) By <1th(x)=u W((x)u, Uy ¥) o

Then for any o with Vx(ex< 1)
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(4) Rax = BudxTy<x=u W (u,y) «

sg(au)
Now let &€ R. Then there are n, n, n,, n-= j(no,n1) such that

(5) {c'ualo — FyT(n_,u,y) <> FyT(j,n,u,7)
au=0 > EyT(n1,u9Y) « gyT(jznau9Y)-

Case 1. Let an#0. Then HyT(j,m,n,y) & "ET(J,n, n,y), hence

i;&;(n9Y)’ B Eywsg(dn)(n’y)'

Cese 2. Let on=03; then similarly Eywsg(an)(n,y) .

We now take n for u, n+y+1 for x in (1), where W

)(n9y>-

sg(am

% We see that Rax holdss +thus we have established (4).

Now take any 2z and define

1 if u<cz & Ty<z=u WO(H,Y)

(pll =
0 otherwise.

Then o€ Br o Let x<{z, assume R¢x . Then there should be u,y such that

u<x<{z, y<x=>u < z=u such that Ww(u,y) . This leads to a contradiction:

Case (a). @u=13 then ‘W,‘(u,y) s SO ﬂEyWO(u,y) , conflicting with the
definition of ¢

Case (b)e ®u=03; similarly.

This establishes (2).
2.6.10, Corollary. ECF(K) and ICF(R) contain a type 2 object ¢ which
is continuous, but not uniformly continuous on ]3r s i.e.
Vo 8 x VB(ox = Bx — oo= oB)
but
— 8 Vae B, VBe Br(az =Bz = o= 9B).

Proof, We take for o:

pe=n = Rn & Wm(m<n - —Bm) & acn.

The representation is by ¥ such that ym=n+1 if Bn & Vm(m<n = —Rm)

& n<m, ym=0 in all other cases.

206,11, Definition of [t];ops [tlgep- We define pseudo-terms (t110p
(= [t]ECF) , for terms teN-HAY, built from constants of NA-}\I};Q),
variables of type O and variables of type 1. Let vz, vc,‘), v;, «se Dbe
the type O variables, and let v;, v;‘, v;, ees be the type 1 variables
of our theory,

For any constant ¢ of g-@é_w, we put [c]ICF = [{c], where [c] is as
defined in 2.6.2,

Furthermore we put
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n

V. oo

[¢]
[vilop

(0]
i
1 1
[viliep = Vi

and inductively

(et op = [tlrep | [t ]1gp s if t, tt' are both types #0;
[t4')10p = [E)pep ([8'110p) » if t' is of type #0, ttieO;
(48" )rop = [trepltt)iop o if te1, treo.

2,6.12, Theorem. Let t be a term of type O, counstructed from type O

and type 1 variables (say XyreeesX s O',I,...,cvm) and constants, Then
w . =1 3 3
N-HA"+AC |ty > [t] g [t)gop =V -
Proof. The proof is very similar to the proof of theorem 2.4.14,

We construct 2 code number "t~ for pseudo-terms t, containing at most

Uqseees free, as follows

ol ot = (1, 3(Te7, T0r))

To(er) " = §(2, 3(Te7 o))

“ot T = 3(3, (e tT))

r[c]ICF1 = j(o, ¢€) where ¢ is some code number for
the constant

rdi-‘ = j(4+1i, 0).

As a result, ' [t]IC—‘rl" can be computed effectively.
We now construct a predicate A(x, B, °’1""’°’m) such that, for te¢0,

w E~ 3
(12) N - HA +ACOO[— A(FEY, 8, a1,...,am) <—)t(x1,...,xn,a1,...,am) B8O
and for t¢O0

)
(1p) N - HA +ACOO|— A", 8, 01,...,am) Ht(x,],...,xn,a,‘,...,afm) =B.

Here I abbreviates t(i1,...,in,a1,...,am). For convenience we abbreviate
t(X1,...,Xn,0’1,...,am), A(X, B, 0'1,...,Olm) by t(x1,-.¢,xn), A(X,a)
respectively.

A(x,B) is defined such that

A(x,B) «>[x=3(0,0) & BO=0] v B(x,8) v
VIax= 18Ty, v [A(543,%sv,) &A(5,3,%sv,) &B =Y, |v,]]1 v
\ [j1X= 2&3Y1Y2[A(j1j23{,¥1) &A(jzjzx’ 'Y2) &BO&'Y:‘('YQ)]] v
VI34x=3&qy,v,[A(5,3,%,v,) &A( §,3,%5,Y,) &8O~ v, (v,0)]] v
v Bifx=j(4+1,0) & B= @],
where B(x,B) is a disjunction of all clauses of the form
X = j(O,E) & B: [C]

for ¢ a constant of N-HAY, c#0.
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(1) is now proved by induction on the complexity of +t.

The remainder of the proof is entirely parallel to the proof of 2.4.14.
The addition of ACOO to g-—@éw was to insure EL to be available, so
that we could rely on Kleene's formalization of recursive functionals

(Kleene 1969). 1In fact, QF-ACOOf7£(§&) would have been enough.

2.6.43. The equivalence between ECF(R) and HEO.

For Kreisel's concept of hereditarily continuous functional (let us say

ECFK) , relativized to recursive neighbourhood functions (i.e. ECFK(Eﬁ)
one can show classically that ECFK(&ﬁ and HEO represent the same class
of functionals. (Full details are not in the published literature; publish-

ed is only Kreisel 1959, Kreisel - Lacombe - Shoenfield 1959 ; more details,

and jmprovements, are in the privately circulated Stanford report (2212
1963, Harrison 1963) and the unpublished course notes Kreisel 1958 B.)

Via the equivalence between Kreisel's notion of hereditarily continuous
functional, and Kleene's notion of countable functional (Xleene 1959A3 see
Hinata and Tugué 1969) the result then also holds for Kleene's notion. In

fact, it is technically even simpler to formalize the result directly for
Kleene's countable functionals (hereditarily restricted to functionals with
recursive associates), or for our model ECF(R).

In subsections 14 - 19, 21 below the materials needed for the equivalence

IR * We

have refrained from paraphrasing Kleene's proof of the recursive density

proof are given; the proof can actually be carried out in HA +M

theorem for the countable functionals, for our model ECF(R); the proof,
as it stands, is unperspicuous j it is to be hoped that adapting the more
informative and perspicuous arguments of Tait 1963, Kreisel 1958 B to
ECF(R) , and extending the discussion to impure types also, will yield a
more satisfactory exposition in the future.

Because of the coding, for extensional functionals, of objects of arbi-
trary types of our type structure by objects of pure type (1.8.5- 1.8.8)
we may restrict our proof of equivalence to the pure types.

Kleene's treatment of the countable functionals has, when compared with
our introduction of ECF(U), a different conceptual background: Kleene
has really a classical hierarchy of functionals in mind, coded by "associates"
{"neighbourhood functions" in Kreisel's terminology) ; ECF(U{) is introduced
by talking exclusively about associates or neighbourhood functions, not aboat
the functionals themselves. A somewhat artificial aspect of Kleene'!s and
our notion, as compared to Kreisel's, is the fixed ordering of neighbour-
hoods of higher type, as a consequence of the fact that only initial segments

of the neighbourhood functions (which correspond to Kreisel's neighbourhoods)
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play a r8le., From a topological point of view, this is indeed arbitrary.
However, there are definite technical and heuristic advantages in using
ECF instead of Kreisel's hereditarily continuous functionals j 10) the
similarities and differences between ECF and ICF are readily described
(and the topological point of view, which is natural for ECF, is much less
relevant for ICF) ; 20) formglizing is simpler for ECF, we can use the
available apparatus of Kleene 1969 ; 30) there is a heuristically useful
analogy between HRO, HEO on the one hand, and ICF, ECF on the other hand.

2.6.14. Definition. Let V Ybe a set of total recursive functions. We put

v* = ef ix] fxlev} .

E(V) 1is to be the set of (godelnumbers of) effective operations defined on

vV, i.e.
ze B(V) 55 . Ve V¥ we v (Ixl={y} = {z}(x) = {21(y)) .

V is said to have a recursively dense basis, enumerated by @&, if @ is

recursive and Vn(@ne V*¥) and

Voe VY x In({en}(x) = ax) .

2,6.15, Theorem (Kreisel - Lacombe - Shoenfield 1959). 1In HA + Mo, if ¥

has a recursively dense basis enumerated by ©®, then there is a partial

recursive modulus of continuity for E(V), i.e.

{Hm vz e E(V) Wye Vi (inl(z,y) & Yue V(lul(lnl(z,y)) =
- Iy tal(z,y) = 1zl) = {z)F) .

Proof. We define a partial recursive function {(P(k,y,z) } , ® a primitive

KLS

recursive function of %k, y,z as follows:
{y}(x) if (m<x)=(Tkkn&Un=0) ;
{em}(x) otherwise, where

icp(k, vy 2) 1) = Lm"minn[ fen}e E’—}(u) & iz Hen) # {z f(y)]
where w = min [Tkkv & Uv=0] .

We abbreviate o(k,y,z) as p,» and define ¥W(y,z), ¢ primitive recursive
by
o it tzl(p,) & {zl(p,) = {z}(y)

ly(r,2) M) = 110 zley) & lzl(p) # 21()
undefined if —! {zf(pk) .

We abbreviate ¥(y,z) as gq.
Assume yeV*, zeE(V). We first establish, using Mo that faq }(q) =0.
% Suppose —iql(q) =0, then Vn—(Tqqn&Un=0), hence {pq} ={y}; but then



?

148

K {25 = L23ly) (sinca 2 € E(v),ye V),

% .'§z§(p;ﬂ7 hence - 1{q}(q) =0 therefore (M_PR) fa}(a)=0 .

Therefore the partial recursive function with index

n = Azy . min T(¥(y,2),¥(y,2),v)
is defined for 2ll =ze E(V), ye V¥, Put Mzy = {m}(z,y). Note that

zeE(V) & ye V¥ = U(Mzy) = {al(a) =0.

Now suppose ze E(V), y,ueV¥, {u}(MZY) = iy}(sz) .
We will show

(1) {z}(u) = {z}(r) .

Since © enumerates a recursively dense basisfor V, we can find a least

n such that

Tenf(uzy) = [ul(vzy) = fyh(uzy) .
First we show that
(2) {zl(em) = {z}(y) .
Suppose —(2). Then since

n = minm(i®m} € iy}(sz) & iZ}(@ﬂ)iéiZ}(Y)) y

we have by the definition of o fp b= {(H)n} , and hence

fzl(p ) = {z}(en) £ {z}(y). But {al(a) =0, so by the definition of ¥,
Hzf(pq) & fzf(pq) = {zl(y) . This contradiets —(2), so ==(2), hence
(2) holds. Similarly

(3) {z}(em) = {zl(u).

Thus we obtain (1) from (2), (3).

2.6.16. Remark. The proof as presented here is close to the proof in the
original paper and in Rogers 1967 (pp. 362 - 364) 3 the modification is from
Beeson 1972. Another proof is in Gandy 1962, which we find less intuitive

however,

2,6.17. Theorem (Refinement of KLS; Kreisel, Lacombe, Shoenfield 1959).

Let us say that f 1is a normal associate for =ze¢E(V) if f is total,
% ey Yomifn£0 — Hnxm)= Fn).
Ve v an(£(iy l(n)) = izl y)+1) JY Then we may strengthen the preceding

theorem as follows: for each ze¢E(V), V a set of total recursive functions
with a recursively dense base, there exists a recursive associate for =

(provable in HA + M ).
Proof. We define a recursive h such that (m as in 2.6.15) :
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1+ {zl(y) if y<1th(t)=n, Zudln Tzyu,
Fut <n(T({m}(z), v, u') & Uu'<n),
ht = v < {ml(z,y) < n[Tyik & Uk = (t).],
It <n[ ¥ < {ml(z,y) (ent 1(35) = {3 1(3)) 7 s
¢ otherwise.

Obviously ht#0 - ht=h(txn).
Let {y}eV*. Then, for suitable u,u',kj,n

(1) Tzyu

(2) ({ni(z), vy, u')

(3) ﬁm}(zﬁ’) = Tyjk;

(4) fent(inl(z,5)) = {yl({nl(z,y)) .

Now we can always find a %, {y } €t such that
1th t > max(u, u', Uu', kj for all j < imi(z,y), n); then U'kj= (t)j .

For this t, ht#£0j; moreover, from the definition we see ht = 1+ fz}(y) .

2.6.18. Corollary. If V is a set of total recursive functions with a
recursively dense basis, then to any {zf,ze E(V) +there is a partial recur-

sive functional coinciding with {z} on V.

2.6.19. Theorem (Existence of a recursively dense basis for ECF, provably
in  EL.) For each j2> 1 +there are a primitive recursive predicate
Cons,(x,y) and a primitive recursive function Xx.extj(x,y,z) such that

(provably in HA)

(i) Consj(x,y) - )\z.extj(z,x,y) € W; & kz.extj(z,y,x) € ‘W;.

(ii) Consj(x,y) - (Az.extj(z,x,y))lth(x) =x & (kz.extj(z,y,x))lth(y)=y .

Corollary. If we put Consj(x) = ief Consj(x,x) , and

ex‘bj(y,x) = ef extj(y,x,x) then
Consj(x) - )\y.extj(y,x) € W; & )\y.extj(y,x) €x.

Intuitively, Consj(x,y) may be read as: X,y represent neighbourhoods
with a non-empty intersection )\z.extj (x,y) and 7\z.ex‘t;'j (yo,x) are elements
belonging to this intersection.

Proof. The proof is given in detail in Kleene 1959A,pp. 86 - 893 for
Kreisel's related (and in fact equivalent) notion, the proof is in KXreisel
1959, Since the proof is not very informative and rather long, we shall
omit it and refer to Kleene 1959A.

Kleene'!s set of associates of type J correspond to our W; , but does

not coincide with itj let us call it V-V; for the time being. The principal
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distinction between ﬁ; and W; is that the elements of W; must satisfy

the additional condition

;_,‘ & a(Bx) £0 = a(B(x+y)) = a(Bx) .

1
If we wish to use Wj instead, we have to make the appropriate changes in

ae‘ﬁ; & BeW

Kleene's proof.

2.,6.20, Theorem. QF - AC, (relative to the language of g-g“’) holds
for ECF (provably in EL).
Proof. We have to make use in an essential way of the recursive density

theorem., Suppose
c
(1N Ve Ey' A(x,y) ,

A quantifier-free., Let I, T', 0 be the mappings effecting the reduction
to pure types, described in 1.8.5 - &,
We can find a functional @y such that

Q
(2) o Xy =0 > A(Mx™, Ty,
cpA a term of E—Ej&w.
1

By the recursive density theorem there exists an element ye‘W(o)nT enumer-
ating a recursively dense base for the objects of type O in ECF. Let
o€ wgﬂo)(QT)O represent ?A'

Let us define

¥(8) = jmin [ (QTE)((VTz.3,m)3,m) = 17.
Note that for B¢ WAO, it follows that there exists a GE'WAT such that
(a]B)(8) =0 (by (1), (2)). DNow this implies (e&|B)3z=1 for suitable =z.
Hence there is a u such that y|Aw.u € 8z ; and therefore ¢(B) is
defined.
If we put

A8y | Az, ¥(8),

€
then readily
1

VB e Woo(a[B)(e(B)) = 0O
and therefore also in ECF

EZ(C)TVXUA(X,ZX).
2.6.,21. Theorem. HEO and ECF(R) are isomorphic w.r.t. extensional egual-
ity 3 i.e. we can find, for the pure types, n>1, partial recursive

. . * 1

functions g, hn such that (if Wn\_def {x| ix}e‘wm} , and [x](y) denotes

application according to ECF(K), i.e. [x](y) =ief {x1(iy}) ), then for

¥ .
X ox) €W o, x4 €W 4y ¥¥)ieW, yn_1€W*_1 :
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gn(xn) € W;, hn(yn) € Wn’ and
(1), e (x)1(e,_4(x, 1)
(1), o ) ) = [7,1(7,_q)

(iii)n In(hngn(xn

{Xn}(xn-1)

) Xn)

(iv)_ Ié({gnhnyn}, fynl)

(v), T (x,x}) = Iﬁ(ignxn}, {gnxﬁl)

(vi), 1ty b by D) = 1 (ny, Byt .
Proof. By induction on n. For n=1 immediate.
Assume g, h, to have been defined for 1<{k<n, and (i)k-(vi)k to have
been proved for k<mn.

Let h %be the godelnumber of a partial recursive function such that
{nl(x,y) = [x](gn(y)) . By the s-m-n-theorem there is a primitive rec.
@ such that {hl(x,y) = {o(h,x) (y); take hn+1(x) = p(h,x) . It follows

that {hn+1(y }(Xn) = [Yn+1](gn(xn)) , hence for vy ew*

n+1) n+1 n+1?

hn+‘l(yn+‘()E LA 1
Now let F ©Dbe the operation on elements of Wn defined by

F({yn}) = {xn+1

f(hn(yn)). By (vi)n, F is really an operation on W;,
not just on W; . As we have proved, W; possesses a recursively dense
basis, hence by theorem 2,6.18 we can extend F 1o 2 partial recursive

functional F' such that
w@)*um%wwwh)
(Kleene 1969, *34.1 on page 69). Now define

m = Um+t if T(zo,m) & m<n for some m

0 otherwise.

Then F1'(a) =x ¢ By (o(ay) =x+1) .

¢ is uniformly recursive in x so ¢ is a function with godelnumber

n+1?
this is the required g 9

)1(v,) = Py, b = x4 1 () -
(vi)

gn+1(xn+1);
Then [gn+1(xn+1
Now the verification of (i)
(v)n+1, (vi)n+1 follow from (v)n, (vi)n 3 (i)n+1 by (iii)n, (v)n;

(ii)n+1 by (v)n’ (ﬁi)nﬂ= {hn+1gn+1(xn+1)}(xn) = ihn+1gn+1(xn+1)!(hngnxn)
(by (111),) = [eg,q(rg, ) () oy (13))) = Iy dGx) oy (1)) s

S0 In(hn+1gn+1(xn+1)’ Xn+1)' (iv)n+1 similarly.

ned " neq 1S completely routine :

n+1

Remark. For Kreisel's definition of ECF(K) +the proof was given in detail

in Harrison 1963 ; here the situation is even simpler.
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2.6.22. The models ECF (1), ICF ().

Let !l be a universe of functions which is a model for EL. A kind of
hybrid between ICF(R) and ICF(U), =and similarly between ECF(K) and
ECF(1ll) is obtained by defining the set of objects of type © as the recur-
sive elements of the set of objects of type © in ICF(U), ECF(U) respec-
tively. Let us call the resulting models ICF' (U), ECF (L) respectively.
More formally :

(a). we=vlnR w=w ngR, I, 1is the restriction of

I; to W X W..

(b). The objects of type ¢ in ICF (U), ECF (U) are now the pairs (a,0),
o € V: , and (@), ac¢ W; respectively (@ to be replaced by a number
for ©=0 ).

It is easy to see that ICF (U), ECF (U) are again models of E-HAw

I
E-g&w respectively. Especially interesting is the case where W is a
universe satisfying bar induction ;j hybrid models for such universes we
shall often simply denote by ICF , ECF' .

The G - realizability of Moschovakis 1971 may be viewed as "abstract"
modified realizability relative to ICF® (ef, 3.4.2 ) by interpreting the

objects of finite type as elements of ICFT (cf. 3 4.15).

2.6.23, A variant of ICF and ECF.

Sometimes it is a disadvantage that the definition of the application
operation is not uniform in all types for ICF, ECF, This disadvantage can
be removed by considering the following variants ICF*, ECF*¥ of ICF, ECF.
We redefine the species V; by

ae ¥ (o= Ax.a0)

ae V

A 3O s

#8(a=8p) , where & is defined as follows:
(88)0 = 0, (88)(2) = O
(#9) (%9 xn) = {87 11 TPnind 7Y

Note that (8B) | Az.x = Az.Bx.
o€ VEG)TE VBEV;EYE Vi(alB’v) s for ©4£0 or T#0.

Application is now always interpreted as .

The interpretation of the constants is then adapted as follows:

(a) [0]
() [s]

(In general, a function P 1is Tepresented by &B8.)

1]

Ax.0

§5, so that the numeral n is represented by Ax.m.
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() [Ty )= A1a4\15:la
(d) [zp,c’T] = Ao EA1v.(u|Y)I(B|Y)
(e) [R,] as for the subcase o#£0 1in 2.6.2 (but now for all o).

Equality between terms of type © is interpreted as
(e,0) = (B,0) > Vx(ox = Bx) .

As a pleasant corollary we have:
(ay1) = (2B,1) = Vx{ox=Bx) .

2.6.24, Remark. The latter pleasant property would not hold, if we would
have bluntly defined V1 by

1 1 1 o
aeV, =5 VBeV, Eye VO(aIB Y)
since then each function may be represented by many different elements of
1
V1.

The redefined model, ICF*, is not isomorphic to ICF, for types more
complex than 0, 1; i.,e. to a single element of V; in ECF there usually
corresponds an infinity of elements of V; in ECF* s since the predicate
a]B" Y, for given B, Y does not determine ¢ uniquely.

ECF* is the analogous variant of ECF, with the obvious definitions,

2.6.25, Pairing operators in ICF, ECF, ICF*, ECF*,

In case we wish to extend our type structure with cartesian products the

obvious interpretation of the pairing operators would be given by :

[DO,O} =y i(x,y), [Dé’o] = j1, [Ds,o] = j2

[DO,1] = AOX.A1a(Kz.j(x,az)), [D6’1] = Aoa.j1ao,
[D8’1] = A1a.kz.jzaz.

[D,,0] = MNan'x(z.5(ez,x)) 5 (3,01 = A1a.lz.j1dz,
(25 01 = alag,e0.

[, ) = Alah"B. 0z (az,82), [Dg ] = Alauhe.som,

[D;,T] = A1a.lz.jzaz, for o, £ 0.

For ICF*, ECF* we define [DO’T], [Dé’T], [Dg,T] as for ICF, ECF in the

case ©,T#0, but now for all o, 7.

2,6,26. The systems ICF , ICF.
Similar to HRO™, HRQ we can describe two extensions of H-@éw which
express that the objects of finite type are intensional continuous function-

als, or precisely the intensional continuous functions respectively, by

adding constants ¢* ¢ (o)1, for o ¢T, Qg:T € ((8)1)(e)1 for all o,7¢ T
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and axioms

1
g*1 Qg 0 = Xy.xo, é?x1 = &x (% as in 2.6,23)
G*2 8] x° = §:y° — °-5°

* % (e)7 * O ax (o)r o
%3 @c),rx |§oy_§Tx y

* * CHLIC
G*4 QG:Ty z =

)x_(minu[Q?G)Ty(ﬂ)T(i*.(§:Z°)u) £01)
¢*5  Vaev) &°(23y° - a)
where V; is defined in 2.6.23, TUsing the original definition of V;,
the definition becomes slightly more complicated, because we have to distin-
guish more cases for the axioms.
N-a"+6*1-6% is ICF, N-HA'+G¥1-G*5 is ICF.
It is also possible to define systems @EF-, @EE s, but they are without

practical interest.
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§ 7. Extensionality and continuity in y\-@w.

2¢7e1¢ In this section we bring together some results on continuity and
extensionality rules and axioms in g-vﬁéw, as applications of our results

on computability and the models of g-%w.

2.7.2. Extensionality and hereditary extensionality.

Extensional equality =_ for type o = (0’1) (Gn)O is simply defined

by

= XO _ yO

Edef Vz°1 on
def %4 *** %y

O 4°
_ey
°- y° (xz 72 = yz z )
= ooy = YZqeaeZ ) .

Hereditary extensional equality ® is defined over the type structure by

XON o = o] (o]
I “der J
o)T o)r _ o.c
£ (77 ay(7) Taer TEq¥q (xqmy, - XXy AYY,) .
Note that
X°~y°<—>x°=ey —rx%-y°
and
11 1
x ~y &= ¥ u% (2% =u® - x zo=y‘luo)
- Vzo(x1z°= y1z°)
11

X =
eY

c_
(and similarly x =~y ¢>x° =77 if @ =(0)(0) ... (0)0 ).
The axiom of extensionality states

EXT % - yc - Z(O)Tx°= z(o)Tyo .

o,T e €
The corresponding axiom of hereditary extensionality

(1) 2L~y - Z(O)TXO wz(o)'rya

for all o, T 1is equivalent to EXTO T for all o, T.
’

Assume EXTU,T ofor ;Lll c;'r ,c then we prove by induction over the type
structure that x =¥ ) x =y
Let x° - ey, X7 = v e x ey,
Then
Z(c)’r = u(c)T > ¥ (zx = ux) <> ¥x° (zx ~ux) .

NOLE IO

[« C (2 =4
Also, x ~y e>x =7 o

= ux Rsuy B
hence z(c)T e u(‘j)'r - Ty (xmy = zxeuy) €>z~u

and since x=_x, so x%~x, z~u implies Vx(zx:eux).
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Therefore (1) is implied by EXT, .
’ -4
Conversely, assume (1) for all o,T. We note that x° ~x° for all o3

for it holds for o =0, and if o = (7)p, then

X(T) p QX(T) P em Vsz:(Z ~a, - x(T)pz F~‘vx(.r)pz1) 3 and the right hand side
of this equivalence holds because of (1).

o
Now assume x° Nycr —x° =¥ x NyT — x = yT .

e
Then
x(c)T =ey(°)T - 2% (xz =eyz) - 2% (xz ~yz) .

o
Also, if z®~u, then yz~yu (since y=~y)}; therefore Vz uc(z A= XzAYu),
which is equivalent to =x=~y.
o)T o)r
Conversely, x( ) Ny( ) — 'v'z122(z1“~’z2 - xz1~yz2)
- Vz1(xz1~yz1) - Vz1(xz1=e yz1)
S0 X(G)T=e Y(G)T.

Therefore also (1) implies EXT, .

?

2.7.3. Theorem, In E-;Hé_w, for any term t+ ©built from constants, type 1
and type O variables, E-vHéwf— t~t,

Proof. (W.A. Howard)

We note that if ti ‘*‘—t{ (1$i$n) , and t is constructed by application
from t‘l"'"tn’ and t' 1is constructed as 1, but everywhere with ti
instead of ti s then tr1t!',

One readily verifies, with the help of this remark, that 0 =0, x° h”—xo,

x1 ~X1, S~5, I~I, 2~3, R~R is established proving by induction on

0 ) o o 0 o
z° 2 Vxx1yy1z1(x~x1 & y=~y, & z =z, = Rxyz NRx,ly,‘z,.) .

2.7.4. Corollary.
(1) E-ﬁéwi‘xc RWc:_) t(c)T[xg]Nt(c)T[yo]
where t[zc] is any term constructed from type 0O variables, type 1
variables, z.c, and constants.
(11) H-BA" | Vx(ax=Bx) ~ t[p] ~t[8]
and hence in particular, if t is of type O or 1:
v-BYF Wx(ex=8x) - tlal=, t[8].

Proof. (i) is immediate; (ii) follows by our remark that o= Béra~p.

2.7.5. Theorem. We have the following derived rules of extensionality

w w
N-BA" P t=_s = N-BA" | F[t] =_ F[s]

where t, s, F[t], F[s] are terms built from constants and variables of

types O and 1, and where F[t], F[s] are of type 0, 1 or 2.
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First proof. Note that the case where F[t] is of type O includes the
other cases; for if F[t] is of type 2, then F[t] =, F[s] is equivalent
to F[t]e = F[s]e, where o is a new type 1 variable not occurring free
in F[t], F[s]. Similarly if F[t] 4is of type 1. So we may restrict our
attention to the case where F[t]eO. Now we use theorem 2.6.12 on ECF,
and a conservative extension result to be proved in 3.6.6 (i), implying AC to
be conservative over y-ggw for universally quantified equations between
terms of type O.

If f—t = s, then 1t,s are represented in ECF by extensionally equal

e
functionals 3 and since ECF is extensional, it follows that

@ D
E-H\A‘é I'_ [F[t]]ECF [F[SMECF'
Combining this with (2.6.12)

F-B" b [Pt]]5,p = F(t]

I_\F\'%w t- [F[S]]ECF = F[S]
we obtain

y-m“F Flt] = F[s].

Remark. For the case where F[t] is of type 0 or 1, and t,s, F[t] do
not contain variables of type 1 » TWe may also use theorem 2.4.14, using
HEO instead of ECF 3 we do not need the conservative extension result of
3.6.6(1i) in this case.

Kreisel's notes (Kreisel 19714) contain a sketch for another proof, not
appealing to the uniform faithfulness (2.4.%4 or 2.6.12) but only to faith-
fulness of HEO w.r.t. numerals and using partial reflection principles
instead. We failed to find a satisfactory reconstruction of this proof.
Second proof. (For reducing the case where F is of type 2 +to the ease
where F is of type 1.) This argument may be combined with one of the
other arguments for the case where F is of type 1.

Let us, for simplicity, once again restrict our attention to the case
ty,s, F[t], F[s] closed, F[t] of type 2. F[t], F[s] represent constant
functionals of type 2, which have a provable modulus of continuity
by 2.78.

Hence there are terms t s of type 2 such that

17 71
N-H" | &(t,0) = B(t,a) = F[t]a=F[t]p
1 4

O ey a0 = Bage) = Bl (e,

Now let t2 be a term of type (0)1, such that tzn is defined by

i tonx = (n)X for x<{1lth(n)
tznx =0 elsewhere.
Then obviously, by (1)
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N-BA" | Ve(P{t]e = Flsla) &> W(F[t]{tx) = Fs])(t,x)),
hence N-EA"| F[t]a = F[s]a follows from
lj-}wif&,wl— Frit]x = F'{s]x

where F'[z] = Ax.Flz](t,x).

2,7.6. Counterexample (H.P. Barendregt). If in 2.7.5 we remove the restric-

tion that F[t], F[s] contain variables of type O or 1 only, we can give

a counterexample to

N-EAYF t- s =N-E"} F[t]=_F[s)

P

with F[t]e O, t,s closed.

t = .0, s = M.x>x (where x=x may be supposed to be
defined as Rx(Mv.prd(u))x = Bx(Auv.(RO(Au'v'.v')u))x), and let F = )\3r1.}c‘2y1 .
Then Ft:xzt, Fs=x2s.
y-%w F t=s obviously holds; but }’\I\-’I:I‘A:__w HFt=Fs, for then x2t=x2s

would have to hold in all versions of HRO, i.e. if e take (Ax.x,2) for
HRO

Take e.g.

x2 » then [t]ppix = [s]HRO* in the HRO - versionYinto which the term model
CTNF  can be embedded (2.5.5). Since t, s have different normal forms,

this is obviously false.

2.7.7. Counterexample (R. Statman). We can find a closed F of type 3,
such that

N-HAwH‘x2=ey2—° Fx2=Fy2.

- ——

Take F to be )\XQ.X2[)\ZO.(X2(>\WC.Z°))] y, and choose two =lements xi:(ﬁ, 2),
xg = (m, 2) of the version of HRO described in 2.5.5, such that n,m are
distinct indices of the same 1-1 total, recursive function. F is repre-

sented by (P, 3) for suitable p. Since Fx° is in full
x°[ 2 ()T Y

it is obvious that since the version of HRO considered satisfies the

equality axioms IE,, that Z(Hxi) T and
Z(ng)ﬂ' in the model are different, hence also Fxﬁ # Fxg in
the model.

A similar counterexample has been given by H.P. Barendregt.
2.7.8., Theorem. Every closed term te 2 of li-él_éw possesses a provable
modulus of continuity in IE‘-VI{&w, i.e, a closed term +t'€ 2 such that
¥-3a" | a(t'a) = B(t'a) = to=tB

( @y B variables of type 1).
Proof. From 2.3.13 we know that
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(1) N-HA® | te=y > SRED(e, "tx V7§

where x1 is the type 1 variable to which ¢ is assigned in the reduction
process (cf. 2.3.8).

Also, because of the derivability of computability for terms of bounded type
level (ef. 2.3.1%)

(2) N-BA" b Vo 8ty SRED(a, "bx 1,7 F)

Now SRED(ay X, y) may be written as 9z SR(e, X, y, 2), where SR(a@,x,y,32)
expresses: z is the (number of a) standard reduction sequence relative to
a of x to y.

Note that f 4 defined by

fn:max{ni|1$i$k}+1

where Nasessyny is a 1list of all numbers for which )@ﬁi contr on, has
been used in the reduction sequence n, may be taken to be a primitive
recursive function of n.

Also

(3) N-BA” | &(fn) - B(fn) = (SR(a,"t7,"s™,n) < SR(B,"t7," 8" ,n)) .
Combining (1), (2), (3):

w -
N-HA" |- Vad3z ¥B(az = Bz ~ to=1B).

Now, using a result from the next chapter (closure under a rule of choice,
see 3.7.4(Gi) we find that there must be a $'€2, t!' a closed term of
g-—ﬁéw, such that

N-HA" | v8(a(t'a) = B(t'a) ~ ta=tB) .

2.7.9. Product topology.

Already at type 3, the functionals represented by closed terms of
N - @&w are not necessarily continuous w.r.t. the product topology.

-

Take for example
F = XZZ,ZZ[KXO.ZZ(H xo)].
0,0
F 1is discontinuous w,r.t. the product topology at Aa.0, since given

¥y9eeey® We cCan find a constant t2 such that

2

t 0 (1_<_i$k),Ft2¢o,

i

0. t2 is defined as follows:

while F(Aa.0)

% (=0 if E (14igk & afr 1) = X(bet)

= m+1 otherwise, where m = max{ai(y)|1_<_i$k, 0<y<klt.
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+# above, By the induction hypothesis, [z/t]Fk_1 =F _
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2 — - s s
Now Ft #£03; for, (HO,OO)(kH),...,(Ho,ok)éc-d) are all d1st1i1ct, hence one of
them, say (1'1O oko)(k-u) (0L k < k) is distinet from all a1&c+1),...,akuc+«) and
’ —_—
therefore +t (HO Oko) = m+1; but then (A"t (HO Ox))&»ﬂdiffers from all of
1 s
aficrt) ey & fert) and thus Ft° takes the value m+d .

2.7.10. "Floating product topology". In Kreisel 19714, Kreisel ncted the

following ccntinuity preperty for functionals of E-—g&m, at arguments
definable in N-HA”, for types ((¢)0)0. Let Fe ((0)0)0, te (0)0 be
closed terms of y-ﬁéw, then we can find a finite number of terms
t1[z(°)°],...,tn[z(°)°] of type © such that

v2()O( N (4t,[4]=2[t,2] = Ft=TFz).

2000y (B8] = 2l 6y2] = o= F2)

The proof is an elaboration of Kreisel's sketch.

Proof. Let us call a term not containing t as a subterm +t - iree. Let

c)o] be a t-free

te (6)0 be a closed term in normal form,and let F[z(
term of type 0, and let F[t] be closed.

By the results on computability, F[t] reduces to a numeral, say x,
by a standard reduction sequemce [z/t]F , ..., [z/t]F, = X, where
Fm,...,Fo are t -~ free,
Let t%,...,tﬁ be the set of all terms of type © occurring in this re-
duction sequence, and let t1[z],..., tn[z] be +t-free terms such that
ti[t] =t!, 1{iln. Given F[z] and t, tyseesst  ~are uniquely de-
termined.
Now we shall prove, for fixed %, by induction on the length of the standard
reduction sequence of F[t], for all t-free F[z] such that F[t] is
closed, that
(1) ve(®)° (A (4t.[t]=2%.[2]) = F[+]=F[z]) .

1<in 1 1

Basis. If the reduction sequence for F[t] has length 1, F[t] is a
numeral and we are done.
Induction step. Assume (1) to have been proved for all t-free F[z]e 0
with F[t] closed, and standard reduction sequence of F[t] of length (k.
Now assume F[z] to be a t-free term of type O with F[t] closed, with

a reduction sequence

(2) [z/t]Fk, (2/8]F 49 ooes [2/8]F =%
and let
(3)h FONGAMERALY)

forYterms ti obtained from this reduction seguence in the manner described

’ ((3) implies the
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hypothesis with respect to F, 1).
[z/t]F,_4 is obtained from (z/t]F, by application of a contraction to a

Rs,s.s or Is,s We have to dis-

subterm of one of the forms Zs1s255, 15753 155 ¢

tinguish two cases.
(a) The leftmost occurrence of 3, I, R in the subterm contracted is not
part of a subterm of the form +.

For example, let Is,s.s, be contracted into s1s3(52s5), and let

17273
s; = [z/t]s{, s{ t-free. Then F__, is obtained from F_ by contracting
a corresponding occurrence of Zs%sésé into s%s%(sés%). Now obviously
Fo=F 4> [z/t]Fk = [z/t]Fk_1, and since by induction hypothesis

(2/¢]F, _4 = F,_q» it follows that F, = [z/t]F .

(b) The principal occurrence of I, [, R in the subterm contracted does
belong to %, so [z/t]F,__, is obtained from [z/t]F, by contraction of a
subterm of the form ts, s of type ¢3; so s must be of the form ti[t],
and ti[z] is +t-free. Let the result of the contraction be of the form
s,[t], s4[z] TDeing t-free.

The reduction sequence for [z/t]Fk_1 implicitly contains a reduction se-
quence of length <k for s,[t], hence the hypothesis (3) for s,[t] 1is
contained in the hypothesis (2) for F[t]; therefore, by our induction hypo-

thesis, s,[t] = s,[z]. Also tt,[t] = zt,{z], hence under our assumptions

s,[z] = s,[t] = tti[t] =zt [z].
Now F,_, = [z/t]Fk_1; since s1[z] € 0, replacing the relevant occurrence
s1[z] in Fk_1 by zti[z] yielding F

Flq = T3

k? does not change the value, so

since also [z/t]Fk = [z/t]Fk_1 , we have [z/t]F, = F, .
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§ 8. Other models of N’-géw.

2.8.17. Contents. In this section we rather briefly comment on some other
models of y-—@éw occurring in the literature. The first of these models is
given by a concept of importance in its own right: Kleene's notion of recur-
give functional of higher type, as described by his schemata §51-9 (see
Kleene 1959, 19634). Unfortunately, this concept has up till now only been
investigated from a classical point of view, e.g. Kleene assumes his funection-
als of type (0)0 to be defined on all classical functionals of type ©
("classical"” in the sense of "existing in say the intended model of ZF - set
theory"), It would be interesting to know which class of functionals is
singled out from a given constructively meaningful model for the theory of
finite types by S51-9. Because of this lacuna in the literature, we shall
be rather brief and restrict ourselves to some remarks on the recursive
functions of finite type.

Two other models for the theory of finite types were introduced in
Scarpellini 1971A. They were introduced because they provided models for the
theory of bar-recursive functionals (ef. 1.9.26). See below, in 2.8.5 and
2:9.9-2.9.12,

Two models introduced by Howard are briefly discussed in 2.8.6.

2.8.2, The schemata S1-9,
Kleene uses in his description (Xleene 1959) only variables of pure types
let z, z'y .o be used for sequences of variables of pure types. The first

S1~858 schemata are as follows.

S1) m(xo,g) = 5x°
52) o(z) = 1

S3) w(xo,g) = x°
s4) o(z) = ¥(x(z),z)

S5) { ®(0,2) = ¥(z)
o(5x°,2) = x(x°,0(x%,2),2)
S6) o(z) = ¢(E1) ( z not empty, consisting of k+1 variables and

z, obtained by shifting the k+‘lSt variable in 2

=1
to the front)

37) Q’(y 9x
SS) ( k+2

1

1) = ¥X
) k+2

k42
= (. Xy

e llN

k
su !Z)
Permuting the order of variables of different type is regarded as immeterial,

provided only the order of variables of the same type is retained.

51 - 58 characterize Kleene's primitive recursive functionals of finite type.
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In the schemata ¢ 1is always the functional to be defined, ¢, X are
supposed to have been defined before; all functionals considered are assumed
to be numerical valued. (The functionals are considered throughout from the
extensional point of view.)

To each functional we can assign an index; the index for 51, S2, S3, S7
uniquely determines the intended functional, the index for a functional
introduced by S4 -S6, S8 can be computed primitive recursively from indices
Xs V.

The primitive recursive functionals are generalized to partial recursive

® intuitively means

functionals, by reading = for = in S1-8 (where
the same as in elementary recursion theory) and adding a schema which

permits "self-reference" by introducing the index as an argument:
59) o(x,z,3") = {x°)(z) .

0f course, ® in S9 itself also obtains an index, primitive recursive in
the numbers of arguments of each type in 2z and 2z'.

S1- 59 may be viewed as constituting a ge;eralizea inductive definition of
the relation ixol(g) e

Kleene shows that tge class of functionals determined by S1-9 1is closed
under the minimum operator, and definition by cases (Kleene 1959, XVI, XVIII);
but closure under the minimum operator cannot replace S9 (in contrast to

the theory of recursive functions).

2.8.3., Recursive functionals as a model for E;-HAw.

v

From inspection of S1-89 it will be clear that the only fact which needs
to be verified and which is not immediate from the definitions, is closure
under definition by recursion as given for numerical types 1.8.9 (iv). Via
the methods of coding finite sequences of pure types into pure types, as in

1.8.7, this is equivalent to showing closure under the schema

[}

q’(ij E)

CP(Oy yJ’ E)
o =
X(X N

w(SXO’yJ,Z) J

. 0 i
)\yJ-CP(X ’YJ7£)9 E) .

( ® +the functional to be defined, ¥, ¥ given functioms.)

But this is precisely Kleene's XXIV (section 4.5 in Kleene 1959).

2.8.4. Remark. That the functionals generated by S1-S9 do not contain a
function representing a modulus of uniform continuity has been proved by
R.0. Gandy (unpublished).

2.8.5. Scarpellini's models. (Scarpellini 1971A 1972 4)

The starting point for the definition of these models is based on the

following axiomatic characterization of convergence of sequences :
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Let X be a set on which a relation = of convergence between elements of
(0)X and X 1is given (we write <p,>, = P or for short P, = Pi (0)x 1is
the class of infinite segquences of elements of X ) such that

1) If <pn>n'~ P, and k1< k2< «e. then <Pki>i - D,

2) If p, = p for almost all =n, then <p>, " P>

3) If not <p,>, = P, then there is a sequence k,<k,< kB"'

such that no sub-sequence of <pk_> converges to p,

i
i
4) If <p,>, = P» <p >, —a, then 'p=gq.

Then (X, =) is called an L - space.

Let (Xi’ ﬂi) y i =1,000ys and (Y, =) be L-spaces. A mapping f
from (Xﬁ Xeos XXS) to Y is said to be continuous, if
f(x1’n,...,xs,n) - f(x1,...,xs) whenever <xi’n>n = X3, for 1<ils,

Let us denote the species of continuous mappings from X, X... XX to Y by

1
C(X1...,XS,Y). C(X1,...,XS,Y) is made into an L - space again by defining
<fn>n -1 =, V<x1,n>n... V<Xs,n>n Vk1...xS«KX1’n>n ~x, &,

))) .

4 (called S in Scarpellini 1971) is de-
scribed as follows, for the type structure T, (ef. 1.8.9).
SO==N are the objects of type 0O, with the following notion of convergence :

x> =->x = Hka(Xk+m==x).

ces &<Xs,n>n = x )= (<fn(x1’n,...,x > - f(X1,...,x

s,n’’n s

Now Scarpellinits first model N

n'n “def
501><...>cp = s°1x... xscp, s(%x’“wp)T = el c(sc1, cees scp, 5. ) with
the notion of convergence obtained from the notions in ch,..., So , ST as
P

described above.
M1 can be shown to be a model for the bar-recursive functionals.
The description of the second model (called K 1in Scarpellini 1971A)is

o0 long to be reproduced here, but may be viewed as a refinement of the

first model. J.M.€E. Hylund showed in his thes:iys bthav SCc\v?e\\m;'g model (oincides
with the model ECF.

2,8.6, Compact and hereditarily majorizable functionals.

Y.A. Howard has described two other models for H-—g&w. The first concept,
that of the compact functionals over the type structure g, is defined as
follows : B
(i) A species of natural numbers is compact iff it is finite.

(ii) A species X of functionals of type (g)T is compact iff, for each
compact species Y of functionals of type e,
{X(G)Tycl xeX &yeY}! is compact.
(iii) A single functiomal t° is compact iff {t°} is compact.
It can then be shown that the functionals of ﬁ-%éw are compact (in fact,
even the functionals of the theory obtained by adding bar recursion of type O
(BR,) are compact).
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The second concept, that of hereditarily majorizable functionals is intro-

duced as follows.

We introduce a concept Maj(x1,x2) ( x, "majorizes" x, ) by definition
over the type structure g as follows:

(1) Majo(x,‘,xz) Edef x1.>.xg

(31) Maj oy, (xps%,) = Wiy3(Majy (34s7,) = Maj (x4745%,5)) -

Maj = LJ{Majcl o¢ g}.

We now define: a class X of functionals is hereditarily majorized by a

class Y of functionals of ¥xeX FyeY Maj(y,x). It is not hard to show

that the class of functionals of g-—g&w is hereditarily majorized by itself.
Howard B makes the following application of this concept: the Dialectica

translation (§ 3.5) of the simplest non-trivial case of the extensionality

axiom
Wy Vo[ ¥x(ox = Bx) = yoo= yzﬁ]
is of the form
(1) T Vy° Vob[a(Xy oB) = B(Xy oB) = v a=y ] ;

and it can be shown that X satisfying (1) cannot be hereditarily majorizable
by a functional from g-—g&w, and therefore the simplest non-trivial instance
of the extensionality axiom has no Dialectica interpretation by a functional

from g-—géw. For more information, see Howard B (Appendix of this volume).
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§ 9. Computability and models for extensions of N-HA .

2.9.1. Contents of the section. In 2.9.2-2.9.4, 2.9.6 we describe exten-

sions of computability arguments; in 2,9.5, 2.9.7-2.9.11 various extensions
of our models for g-—géw are described ; see especially 2.9.9, for a simple

model for bar recursion of higher type.

2.9.2, Extension of computability to (the functionals of) g-%ggw and

related theories.

For the theories of first-and second-order trees, computability is dis-
cussed in chapter VI.

In Howard 1972, a first-order theory U 1is considered, obtained by ex-
tending HA with a species of "abstract constructive ordinals", introduced
by a g.i.d. . U is embedded in a theory ¥V analogous to qf-—ﬂ@-—g&?, for
objects of finite type over natural numbers and ordinals. Howard shows
computability of terms in V by means of an ordinal assignment, thereby
determining the "proof-theoretic ordinal" of U as Bachmann's (Bachmann

1950) men 1(’I). U is proof-theoretically equivalent to IDB.
+

In Troelstra 19714, there is a proof of computability for the closed
terms of y-—{g@w which differs from the method used in chapter VI .
Although the method in chapter VI is more elegant, we thought it not without
interest to demonstrate the other method also, for the case of g-—ggﬁw
(efe 2.9.6).

The contraction rules are as for g-g&w with product types and pairing,

and in addition

I(§1t)s contr St

I(@Zts)tc contr It(<s>*—to)

I(§3t)0 contr O, I(@St)(St') contr I(t(C1t'))(02t'));
( C,s C, are constants of g-géw such that <C1>*~(02t) = 5t for =all
t€0 ), and furthermore

If It0 Z' Ss, then Y tt't" contr t's

If It0 2' O , them Y tt't" contr t"(k*v.YO(QZtv)t't")t

where >' means standard reduction, defined in terms of "contr" as in 2.2.2

and A*v indicates the combinatorially defined A - operator.

2.9.3. Computability for bar-recursive functionals (§3-§é94-BR).

Proof of computability for bar-recursive functionals are t- be found in
Tait 1971, Luckhardt 1970, 1973 and Scarpellini 1974A; another exposition
is in Girard 1972 (following Tait's proof).
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The methods of Tait 1971 and Luckhardt 1973 are essentially the same.
A straightforward extension of the computability proof as given for
y-%éw does not work, because the induction hypothesis is too weak.
Specifically, suppose we wish to show Bc to be computable ; then we have
to show that for computable +, t', t" Bott't" is computable. But if we
would have defined the computability predicate w.r.t. closed terms only,
the assumption that t, t', t" are computable is weaker (at least prima
facie) than the assumption that they are computable w.r.t. larger classes
of terms; e.g. a functional of type 2 which is computable for recursive
arguments need not be computable for arbitrary arguments, but it is
functionals of the latter kind we are intuitively thinking of.

Tait's solution is to throw in additional terms according to the clause:

If o 1is a function from natural numbers to natural numbers,

then the pair (7,e) is a term of type (O)r.

Luckhardtt!s formulation (Luckhardt 1973) is similar.

The intended interpretation of these additional terms is as follows:
We assume all terms to be coded by numerical functions such that it is
decidable whether a function codes a term of a given type or not. Then,
if o is a numerical function, and a = Mm.aj(m,n), (T,a) is inter-
preted as follows: if a codes a term of type T, then (t1ya0)(m) =

N

is the term coded by o 3 if o does not code a term of type T,
then (7,a)(m) = qéT) is a fixed constant of type T, say O .

For the new terms we add contraction rules (¢,o)n contr agc).
Scarpellini's method is slightly different., Whereas the original com-
putability argument, at least for closed terms, only referred, so to speak,

to the model of the closed terms themselves, Tait's and Luckhardt'!s method
for g-%&wa-BR uses an embedding of the closed terms in a "generalized
term model", A difference is, that Tait uses (informally) DC, and classic-
al logic 3 Luckhardt formalizes his treatment in a system with intuitionist-
ic logic + EBID. Scarpellini on the other hand uses instead of this
generalized term model his model M1 (ef. 2.8.5) 3 at a certain stage in
the proof, the computability of the bar-recursive constants is reduced to
establishing,by means of bar induction, truth of certain assertions in the
model M1 (Scarpellini 1971A,page 135) ; the method is thereby closer in
spirit to the idea used in Troelstra 19714, § 4 for the computability of

N - 1p8”.

2.9.4. Computability for Girard's system of functionals.

A first proof is in Girard 19713 a more detailed exposition is to be

found in Girard 1972. The contractions are as suggested by the equations
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in 1,9.27:

UX&) contr 0°, D"(Oc>w) contr 0,

Eac[a])

0(O)Ty contr o", Dt(0

VQO[a]tT

contr 0°L7),  stat(o contr (07L9)y,

IVCK’[Q/],TO
Rtt'0 contr t, Rtt' n+1 contr t!'(Rtt'n)h, (Xx.t)t' contr [x/t']%,
D'(Dt1t2) contr t,, D"(Dt1t2) contr t,,

C|la ol T
Iygo[ o], DTat [ ]) contr 1 [ ],
stat(Olel) (1 t:[T]) contr t(°[T])°t1 .

Bao[a],T

2.9.5., Extensions of HRO, HEO to models for other systems.
Let us first consider HRO, HRO is easily extended to a model K- HRO
for I-1DBY, by addition of
=T AR

V= {x| {xlek}
and representing I by

(nxox, (K)(0)O),
2,, &, by

(Axhy.Sx, (0)K), (AxAyfn.x(7«n), (K)(0)K)
and &, by

3
(et (V=) Hx ) M), (()K)K)

The representation of Yc is constructed by means of the recursion theorem.

Let V4 be the godelnumber cf a partial recursive function such that
twi(o) 40 = {7, 1(v_swyx,5) = {xl(lwi(0) = 1)
{W}(O) =0~ {‘.71 }(Voﬂ“’aX,y) = Hy}(?(vo’wyx,:)r)) }(W)

where

¥Y(v,W,x,y) > Au.{iiV}({[Qz]}(W)}(u)}(x)}(Y),

and Au is to be chosen so as to correspond to the syntactically defined
A - operator in the axioms for YU.. Now by the recursion theorem, there is

a v such that

fwl(o) 0= {{is
fwl(o)=0 = {{{7

) Hx) H) = {xi(dwl(0)+=1),
Fw) H=) Hy) =~ iy (e F,w,x,5) H(w) .
By induction over K w,r.t. e, it can be shown that for all e, we VK’
*€T(0)er VEN(o)e) (K)o r T PAE
e = {wl= 1 {{{FI ) 1) .

For if lwlek, {w}(O)# 0, then obviously !{{{T}(w)l(x)}(y). Ascume
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fwl(0) =Cc, and suppose {{{¥}(z)}(x)}(y) to be defined for all =z such
that {z}=An.{w}(Xxn) for some x. Then Au.Y(v1,w,x,y)e V(o)o’ and
so HIHFI® Hx)Hy). Hence we may take [Yc] = V.
Egﬁw- We may represent

we define W I as

K-HEQ 1is defined similarly as a model for E-
E ¢’ o

the constants by the same numerals as in K- HRO
for HEOQ, extending the definitions by
WK “def VK’
IK(x,y) S ief I(C)O(x,y) &xeV & yeT,.
The other developments in § 2.4, § 2.5 also carry over without essential

change,

2.9.6. Application of ¥ -HRO: Computability of the closed terms of y-—{g@w.

The contraction rules have already been listed in 2.9.2.
We def;ne a closed term 1o be in normal form if no contractions are possible
and it¥not of the form Y ttrt", or I tt! (t, t'y, t" in normal form).
We then define "Comp" exactly as in 2.2.5, 2.3.7 (standard computability)

with a clause added :

(iv) Comp%(t) = def Vt'(Compg(t') - Compg(Itt')).

Now, from the fact that K-HRCO is a model for g-—IDBw, we can find, for

each closed term t¢ K 2 number nce VK such that if Comp&(t), then

Itm >' @' ¢ {nl(m) = m'.

For in K-HRO, natural numbers are interpreted by themselves,
If [t]=n, i.e. (n, K) represents t in K-HRO, then obviously
Itm >' m' implies Itm=m', hence in the model, {n}(m)=m', and similarly
in the other direction.
Now, if we wish to show that every closed term is standard computable, it
is sufficient, as in 2.2.6, to verify that all constants are computable.
We first note that a computable closed term of type O reduces to a numeral.
(i) The constants of y-géw, D, D', D" have been treated before.
I is trivially computable.
(ii) ¢5 is computable 3 for assume CompEO)K(t), Compg(s). Then
s2'0 or s2X>'Sn, and t>'t, for some normal t,.

1
In the first case, I(@Bt)s >t I(§3t1)0 contr. 03 in the second case
I(@Bt)s >t I(§3t1)(Sﬁ) contr.I(t1(C1ﬁ))(02ﬁ). C4s C, are closed terms of

g;-@&?, hence have already been shown to be computable, i.e. Cqﬁ bl ﬁq,

Czﬁ Z' B,, so I(§3t1)(sﬁ) > I(t1ﬁ1)52, which is computable by our assump-

$ is left to the

tions, The verification of the computability of §1, -

reader,
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=]

(iii) Y. is computable. Assume Comp&(t), Compzo)c(t'), Compz(o)o)(K)c(t”)-
We now define an orerator anje (X)X for each finite sequence of natural

numbers n, as follows:

[O] =

8t Fger b -
[nx<x>], = sl%)iyx
25 t S ¥, (3 )E
B2 8L, £ 208 (b, b

Now let t >' t t) normal), We prove

Jl’ 1,
that tht't" is computable., This is proved, for fixed t', t", by in-
duction over the unsecured sequences of {[t]} (i.e. by induction over
In | {[t]n) =0} ). (1.9.18, (1), i.e. we show that
(1 {[+]}(m) 40 = Comp" (¥ (L% st14m)) .
(2) ¥x Comp”(‘ifc(égm*<x>]tt't")) = Comp"(‘i’c(égm]tt't")) .

We note that
(3) frelme11(x) = 1(e]H(E <)
Further we note that by a straightforward induction on 1th(m)
(4) ¥ (Compy (2571))
Assume now {Et]}(ﬁ) = Si, then by (3) {[@Em]t]}(0)= Su, and therefore
by 2.9.2 wc(égm t)tret >t t}lﬁ, which is computable by hypothesis.

Assume {[t]}(ﬁ)::O, i.e. f[igm]t]§(0)==0 , and suppose

¥x Comp(Yc(sz*<X> t))+'t" 3 since I(Qzm t)C >' 0 by our assumption,

wc(égm]t)tvt" >1 t',:()\*x.Yc(iz((égm]t,?x)t,lt',;)t% , which is computable by our
assumptions.
With an application of 1.9.18, (1), we conclude that Y(ngjt)t't", i.e

Yott't” is computable, hence Y& is computable.

2.9.7. Extension of HRO, HEO to Girard's system of functionals.

This extension of HRO appears first in Troelstra A, and is extended in
Girard 1972 to the intuitionistic theory of types; there also the correspond-
ing extension of HEQO is described.

In describing the analogue of HRO for Girard'!s theory of functionals
(1et us denote this analogue by HROE), the problem is how to interpret the
objects of variable type. Noting that each type © 1is supposed to contain
a constant Oc (= Oo) it is reasonable to interpret each variable type as
a species of godelnumbers of partial recursive functions, containing at
least one element. It is quite convenient if we could achieve this element
to be always O.

In order to do this, we note that for our standard pairing j3(0,0)=0,

and we select a special godelnumbering for the partial recursive functions
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such that
() {ol(x) >0 for all =x.

Such a godelnumbering may be constructed as follows. In a given standard
godelnumbering, let X be a godelnumber of the function Ax.0, and let T
be the T - predicate corresponding to this godelnumbering, and let ¢ be
defined by

x if x=0
p(x) =< 0 if X=X
x otherwise.

Ve obtain a new godelnumbering by interchanging 0 and X, and its T~

predicate T' is defined by
T'(Xd’,Z) Edef T(Px,¥,2) .
For the new godelnumbering we easily obtain, as before, the s-m-n - theorem
and the recursion theoren,
Let us now introduce special variables for species of one argument,
containing 03 we suppose to each type variable & such a new species

variable Va 1o be assigned.

We put further

X € V(G)T Edef Yy e vc iz € v,r( {x}('y}hz) s

X € chr =ief JqxeV, & Jpoxe v,

x € VV«o[a] “ger Wolxe vc[a])
X € Véaa[a] = tef Evd(xe Va[a])'
Since O¢€ Va by definition, we readily prove that O¢€ VT for all 7T¢€¢T.
" 3
S, Hc,T’ Zp,c,T’ Ro’ Dc,T’ Dé’T, DC,T and Ec are interpreted as before,
0, is interpreted as (0 ,0) for all e,

Tyee o], is interpreted as (Ax.x, (Va.o[a])(e[7])),
%AX-X; (e[7]) (Fao[a])).

¢
If t[x11,...]€ e[e] is a term, not containing free variables which

I
Hm[a],‘r
as

contain o free in their type, then + 1is represented by a p- term
t'[x,,.s] such that

x1eVa1 & oo = 1t'[x 5,001 & t'[x1,...]evo{a] .

Then also since Vc1’ V., 5 eee 40 mnot depend on Va,

o2
X1Ev°,1 & ceo = !tl[x1"..} & t![x1,...]EVV°a[a] .

S0 t' is seen to represent DTeot.
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c
It t[x11,...] € (o[a])T, @ mnot occurring free in T, and not occurring
in a type of a variable free in t, then there is a p - term t'[x1,...]

such that

X1€V° &o-."’."t'[X,],--o]&t'[x,[,---]EV(c[a])T,
o

which represents t[x11,...] in HROZ.

It follows that

V€ Tg[q) &€ Vg, &ure e[z, M) e e[z, T e v

Then also, since V°1, Vc2""’ VT do not depend on Va,

W7 € Vo o) &gV Sem Ho[xpe e T & {0 e ) €,
So

x1€V°1&... - 1t'[x1,...]&t'[x1,...]GV(

Faoa])7”’
whence t'[x1,...] is seen to ;epresent STat .

The corresponding model HEO is constructed by taking for IQ, the
equivalence relation on Wa representing extensional equality between
objects of type «, an arbitrary equivalence relation on W . Note that
in the definition of HEO2, the field of Ia is exactly WZ. Therefore
we only need to consider variables Ia for equivalence relations with O
in their field Wa is then automatically defined as Wa(x) = def Ia(x,x).
I(C)T’ Iaxn are defined in terms of Ic’ I,r as before in the case of HEO.
(%,¥) Edef VIQ(IO[G](X9Y)), IHQ.G[a#xy)iklea(lﬂ[a](X’Y))'
especially can be useful in connection with an extension of modified

Mool ]

HRO
realizability to HAS (cf. 3.4.17)

2.%.8., In a very similar way it is possible to construct models ICFZ(U),
ECFZ(Zj), which may be conceived as extensions of the models ICF(L(),
ECF(Z/) . For the sake of "homogeneity" the second definition in 2.6.23 of
the V; is to be pr:ferred for our analogy. More preciseﬁy, it is
inconvenient that VO consists of natural numbers, and V

1

if we wish to permit substitution of Vg as well as V: for V;. Hence

we select for our definition of the analogues ICF2(1[), ECFZ(ZL) the second

of sequences,

definition. The definition is in fact completely routine, once we have re-

defined | as an operation || such that
(1) .0 ] @ = Ax.0

(similar to the replacement of 1{x}(y) by Ixl'(y) =ief {wx}(y) in 2.9.7).
B=v,

An operation || satisfying (1) can be defined by o|| B> v =, . Te

where I is given by
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(Ta)x =41 if =0
0 if ox=1

ox otherwise.

2.9.9. Models for g—}iA;w+BR.

The simplest model is presumably ICF(U), if U is any class of
functions satisfying EBID (ef. 1.9.24). For example, we may take 2{ to be
the classical universe of functions. The proof is given in the system
EJ;+EBID, in 2.9.10.

Other models are the term models of Luckhardt 1970, 1973 and Tait 1971,
and the models of Searpellini 1971A,1972A (ef. 2.9.3).

Similarly, BECF(U) is an extensional model for bar recursion. The proof
for this is also given in §}+EBID (2.9.10). The corresponding result for
the term model of Luckhardt 1970 is proved in Luckhardt 1972 (1973).

Scarpellini established the corresponding result for his second model (cf.

Scarpellini 1971A)in Scarpellini 1972A.

2.9. 10 . Theorem. If Ul satisfies EL+EBI;, then ICF(U) can be shown to

be a model for N-HA“+BR, ECP(U) for E-HA“+BR, in EL+EBI.
-1

Proof. Let o € V((o)c)o’ v € (Vo)V = V;V ( % denoting the type of

. 1 1

£ini

inite sequences of elements of type ¢ ), B ¢ V(cr")—r’ 6 € V((c)'r)(c")-r .

We define ¥ by

{(Q)x = (y)SX for x < 1lth(y)
(Q)Sx-q-u: ®, if © represents o° in V;.

Then we can find an € such that

V) < 1thy = ¢| (& o, By 6, v) =B | ¥
o(¥) 2 1thy - el (Bs a5 By 6, v) =6| (An.§| (ory By 6, Y2 M), ) &

By the recursion theorem analogue (1.9.16) we can find e, such that

o(¥) < 1thy = e |(o, B, 6, v) = B| v
o(¥) > 1thy = eo](a, B, 5, v) = o] (A1.n.e0|(a, B, & vxm), v) .

1

One then proves, by an application of EBI taking for R: Vc , for Qvy:

D 9

l(eol (ay By 6, ¥)), and for Py: o(¥) < lthvy, that eol (ay By 6, ¥) is

always defined if o, B, 8, ¥ satisfy the conditions listed in the beginning.
For the case of ECF(U), we must also show extensionality conditions

to be satisfied, but this can be proved in the same manner by an application

of EBID .

2.9.11. Corollary to the proof. ICF(l/), ECF(lL{) can be shown to be models
for g-}&w-# BR_, resp. E- Ii.éw-f- BR  if L{ satisTies EL + BI

D
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2.9.12. Remark. Kleene's recursive functionals, defined by the schemata
S1-89, yield a model of ECF(IL) if UL is supposed to satisfy EL + BIy ;
by 2 recursion theorem analogue (cf. 2.9.16) we can show the existence of a
partial recursive functional satisfying the equations for BRO (with =
instead of = ), and using BID we can prove the functional to be total, as
before. The form of the recursion theorem to be applied in this case is

found in Xleene 1959, XIV in subsection 3.12.



Chapter IIT

REALIZABILITY AND FUNCTIONAL INTERPRETATIONS

§ 1. A theme with variations: Kleene's T|C.

3.1.1, Introductory remarks. In Kleene 1952 (§ 82), S.C. Kleene introduced

the notion of T k-—realizability to obtain certain proof-theoretic results

for intuitionistic arithmetic, such as the well-~known disjunction property
FAVB =4 or B (AVB closed). I'}-realizability was based on the
idea of combining certain deducibility properties with realizability (real-
izability is discussed in extenso in the next section).
In Kleene 1962 and 1963, Kleene simplified his proof of the disjunction and
existential definability property by introducing the T|C-—re1ation, obtain-
ed by "omitting the realizability from Tf--realizability". Expressed other-
wise, T k-—realizability ray be viewed as the hybrid between realizability
proper (in the sense of Kleene 1952, § 82) and the T|C- relation.

As an introduction to the various variants of realizability, we shall in
this section study the T|C- relation, its variants and generalizations.
For its model-theoretic equivalent, see chapter V.,

Contents of the section. In subsections 1 - 10 the notion TIC is defined,

the soundness theorem proved, and some properties of F!C and corollaries of
the soundness theorem are given, In subsection 11 it is shown as an applica-
tion that FA |#IPC. Subsection 12 discusses @|C for HA+M, (f empty
set). ’

In subsections 13 - 15 a variant of flC is discussed which yields a very
simple proof of the rule IPR (with parameters).

In subsections 16 - 18 Kreisel's method for dealing with derived rules with
parameters, using partial reflection principles, is described and applied to
obtain closure under Church's rule.

Subsections 19 - 24 are devoted to the use of (variants of) T|C for ex-

tensions of arithmetic.

3.1.2, Definition. We define T|C, for T a set of closed formulas, C

a closed formula, by induction on the logical complexity of C, as follows.
("T| A" abbreviates "F|A and T |A", "T'FA" abbreviates "HA+ T |A").
(i) FT|P=TF P for prime P

(i) T]A&B =T|A and T|B

(iii) T|AVvB =T|FA or T|-B

(75)
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(iv) T|A=B =T|-A =T|B
(v) I'| vxAx
(vi) T Exax

T‘ An for all numerals n
n

F|fﬂﬁ for some numeral

If A(x1,..°,xn) is a formula containing at most XgpeoesX free, then we

write T|A(xg,eee,x ) Iff T ¥rg.oex A(x ye00,x ).

%.1.3. Lemma. Let A(x1,...,xn) contain at most x,,...,x ~ free; let
t1""’tn be a set of closed terms, Ei the numeral corresponding to ti
under the standard interpretation. Then

(1) F|—A(t1,...,tn) iff T}—A(T;,‘,...,%n)
(ii) r| A(t,l,...,tn) iff T A(f1,...,5n).

Proof. (i) Straightforward, by induction on the logical complexity of A,
For the basis we use the fact that all true closed prime formmlae (hence in
particular i, = %i’ fi= ti) are derivable in HA.

(ii) is proved similarly. As an example of the induction step, let A=B-C,

and assume

I"|B(t1,...,tn) iff 1“|B(’61,...,%n), TlC(t1,...,tn) iff I‘|c(£1,...,£

)

Let T]B(t1,...,tn) = C(t,,eee,t ), and let F|{—B(%1,...,¥n) . Then by in-
duction hypothesis and (i), TJF B(t1,...,tn), hence r|C(t1,...,tn); by
the induction hypothesis, T‘C(E1,...,En). Thus rlB(§1,...,¥n) -

- C(f1,...,fn); r|B(%1,...) - C(f1,...) = FIB(t1,...) - C(t1,...) is shown

similarly.

n

3.1.4. Theorem (Soundness theorem). We show that, if T|C for each Ce T
(all elements of I closed)

rA = T|a.
Proof., By induction on the length of a deduction of A from T in HaA.
We select again Godel's formalization (1.1.4) as the basis for our verifica-

tion.
Let T|4A, AeTl, then T|C by the hypothesis of the theorem.

PL2). Let T'lAx, ThFAx-Bx, T|Ax, T]Ax - Bx.

Hence, for all n, T|-An, therefore ¥n(T| Bn); therefore T|Bx.

For simplicity, we omit parameters in most other cases.
PL3). Let ThA-B, T'FB=¢C, T|A=3B, T|B=C.
Assume T[[FA. Then T |-B, hence T|Cj; so T|kA=cC.
PLT). Let T|FA&B—C, and assume T |FA, T|B.

It follows that T |A&B, hence TI|C; so T|a=(3-C).
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PL8). Similarly, in the other direction.

PL9). Assume T |1=0; then T is inconsistent, hence T|P for 2all
closed prime formulae P, Then one readily proves by induction on the logic-
al complexity of A, that T|A for all A, hence I | 1=0=4.

PL10), 11), 12). Immediate.
PL13). Assume T |}A-3B, and let T|FCvVA.

Then T|C or T|FA; hence by our first assumption, [ |C or rit+3B.
So T'|CVB under the assumption T|FCVA, i.e. T|[CVA = CVB,

Q1). Assume T |FC—Ax, so for all n, [|An, i.e. T| ¥xAx. So
I'| C- ¥xAx .
Q2). Let T |bVxA(x,y), then T |fA(Z,m) for all numerals n,m;

hence if t(y) is a term containing only y free, t(m) is closed, and
if ¥(m) is the corresponding numeral under the standard interpretation,
I'|A(%(E), T) , and with lemma 3.1.3, [|A(t(&E),Z) . Thus |

I f vxa(x,y) »A(t(y), ) -

Q3). Let T|A(t(y),y), then T|fA(t(n),n) for all numerals =
(t containing at most y free). Then also by lemma 3.1.3, T |FA(3(n),n),
hence TI'| &xA(x,n). This holds for all n, so I |A(t(y),y) = ExA(x,y) .

Q4). Assume T |}Ax->C, i.e. T|FAn—=C for all n
(x being the only variable free in Ax~=C).
Let now T |}~ZxAx; then T |f-An for some n, hence by our assumption
rjc. so T| &xAx-cC.

The verification of the non-logical axioms is mostly trivial 3§ consider
e.g. Sx#0, d.e, Sx=0=-1=0. If T{+sn=0, T 4is inconsistent, hence
also T} 1-0 which implies [ [1=0, so T | sx=0=1-0.

The only non-trivial case which remains is the induction axiom. Assume
I|f-a0& Vy(Ay—~A(Sy)). Then T|FA0, T|An—A(Sn) for all nj; by in-
b VxAx, so T |A0& Vy(Ay—A(Sy))- VxAx.

duction one proves T

3.1.5. Corollaries, Assume B, C, D, IxAx +to be closed. If C | C, then in
HA :

(1) f-C = ExAx iff {C - An for some numeral n

(i1) fFC=-BVD iff FC=>B or C=1D

(1ii) fC = ExAx = | E=x(C-Ax).

Proof. (i) Assume C|C, {C = ZxAx. Then C | 3xAx, so C| ExAx, i.e.
C |F-Afi for some numeral mnj hence {C - An.

(ii) can be proved in the same way, but can also be obtained as an immediate

consequence of (i) and | BvVD ¢ [ (x=0~B) & (x0~D)].
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(iii) is an immediate consegquence of (i).

3.1.6. Lemma., =—C|—C for closed C.
Proof. Assume —C|{{-C. Since —C{C implies —C {1=0, we have
=C| 1=0 . Therefore =C|=C.

3.1.7. Corollary. In HA, for closed C, ExA
IPR® F(0C0-3x4) = fax(nC=4).

Proof. 3.1.5 (i), 3.1.6.

3.1.8. Theorem., Let C ©be closed. If for all closed &xAx
HA C-8xAx = HA | C—An for some 1,

then for all closed D such that C|D, also C|D.

Proof. By induction on the logical complexity of D.

(i) For prime formulae D the assertion is obvious.

(ii) ¥ D =D,&D,, then C|-D implies C[D,, CD,, hence

C|D, &C|D,, so C|D.

(ii1) If D =D, vD,, then C D implies by hypothesis C |-D, or C|D,,
hence C H_D1 or C H—D2 y so C| D,VD,.

(We use here the fact that the assumption of the theorem also implies

HA |C=C, VvC, = HA -C=C, or HA|} C-~C, for closed C,VC
C,ve, < EX[(X:O—'C,‘) & (x,éo~02)] .) ete. etc.

Remark. This theorem shows that C | C is a necessary and sufficient con-

dition for 3.1.5 (i).

5 again by

3.1.9. Corollaries.

(1) If C|C and C€>C', them C!'|C'.

(11) If C is a Harrop formula, then C|C.

Proof. (i) By 3.1.5 and 3.1.8, taking C itself for D.

(ii) Harrop formulas satisfy - Ce=>C (1.70.8 ); then use (i) and 3,1.6.
Remark. We do not know of a simpler and more straightforward way to obtain

invariance of C | C under equivalence.

3.1.10, Example. We wish to show by an example that the class of formulae
equivalent to a Harrop formula is properly included in the cla:ss of formulae
C such that C|C. The example is taken from T.T. Robinson 1965.

By the Rosser version of Godel's first incompleteness theorem, we can
construct for any system F containing a sufficient amount of arithmetic,
a I%- sentence G such that H |7‘G, 24 h‘ =G on assumption of the con-

1
sistency of H.
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Let G, be a rosser sentence of }LAC » then HA+ ™G, is consistent;

1
let G2 be the rosser sentence of HA+ ‘WG,( .
Let AE‘IG,‘-*G2V‘1G2.

Then HA |4, HA [ 7A. For assume HA | 2G,—G, Vv G
6, |26, it would follow that HA |- "G, =G

5 then by
, or HA H G, = 16
HA + e, {-—Gz or EA+ TG, - 76, , contrary to our assumptionms.
¢ . e
Assume HA |- (76,6, V 'WGZ) s then HA™ A, i.e. HA™F -G, , contrary

to our assumptions.

,r i.e.

2

Now assume HA |~ A<>B, B a Harrop formula; then —7A<€>4A, hence
(‘IG1-'G2V-IG2)@(—lG,]—""ﬁ(GZVﬁGZ)). But then }&@‘-—ﬁG1-’G \AaTe!

contrary to what we just proved.

2 2°

Finally, we wish to show A |A. Assume HA+A |- TG, then also
ngC+A ]— ‘1(}1 s 1l.e,. @c }— ‘IG,I s Wwhich is impossible., Therefore the im-
plication A |-G, and HA+A| 1G, ®=A}G, VG, is vacuously true.

3.1.11, Theovem. (Application of T |C). HA HIPE ) (ng : closed IP_.)
P_roof. Let G,‘ be a rosser sentence for Hwé.vc N G2 a rosser sentence for
HA+ G, . Then

e

(1) HA |G, = G,V TG, HA"FG, =G, VG, .
For assume HA [~G, = G, VG, . Then, since G, | G, (G1 being negative)
BA[ G, =G, or HAF G,=76,, i.e. HA+G, }G, or HA+G, | —G,,
which has been excluded by our assumptions.

Let B = G1~ GZV—!GZ. Also

(2) B|B.

For B|G, and HA+Bf G, =(B|G, and HA+B |- G,) or

(B|—1G2 and gA;+B = ﬂe2)
is true because the premiss is vacuous: assume @é+G1 - (G2 V‘IG2) }—G1 ’
then @c {—G,l which contradicts our assumptions.

Now consider the following consequence of IP;R (= 1P restricted to

PR
closed formulae) :

(3) B= [(6,=6,) V(6= G,)].
Assume HA |~ (3). Then, since B|3B
HA+B | G,=G, or HA+B| G, =6

2 2

c c
HA }-—G1~G2 or HA t—G,]-»‘ﬁGZ
which implies

¢ c
HA +G1}--G2 or HA +G1}——1G2
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which is false by assumption. Therefore HA [ (3).

3.1,12. Addition of MPR"
We can extend the soundness theorem for lA from HA  to H_A+MPR,

assuming W~ consistenecy of am;_+MPR , and using M on the meta-level.

PR
For this extension we have to cshow that for any instance F of M‘PR ’

|¥ holds. Let F be

A Vx "A(x,y) = ExA(X,¥) .

| F is equivalent to: for each numeral mn,
| 7 ¥x—A(x,n) ~ BxA(x,n)

which in turn is
| b~ ¥x—A(x,n) = En(|f4(m,0)) .

Now assume f- 7 ¥x—A(x,n), then not for all m, { —A(m,n) (because of
the w- consistency of EA?-"'N%R) hence, using MPR metamathematically,
f-A(@,7) for some numeral @, hence also | A(E,n) (assuming A to be
prime).

Thus we may establish DP, ED for gAQ“LMPR .

3.1.13, Definition (of a variant of T | C).

This variant was introduced in de Jongh B , and enables us to obtain
some results also for open formulas., Below, E is a single formula, not
necessarily closed. The definition of E l A is by induction on the complex-
ity of 4. -

(i) E|P = E-P for P prime

(i1) EJA&B=E|A&E|B

(iii) E|AvB =[E|A & (E~A)] V[(E|B)&(E-B)]

(iv) EJA-B = (EJA)&(E-A) - E|B

(v) E | VxAx

¥x(E | Ax)
(vi) E| ZxAx = &((E] Ax) & (E~Ax)) .

"

m

m

i}

1]

Note that ELA is represented by a formula of HA, in contrast to E |4,

which is a metamathematical property of E,A.

3.1.14. Theorem. HA| E~A *HAPE|E~E|A.

Proof. By induction on the length of derivations, one shows

BA+EfA =HA+E|EFEJA.

The details are very similar to those in 3.1.4, and are therefore omitted ;

or the reader may consult de Jongh B
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3.1.15, Corollaries. In g&:
(1) A - ZxBx = AJ A} Ex(A-Bx)
A= BVC = AlA (A=B) v (A=0)
(ii) $ DA-ExBx = { (-4~ 3Bx) (IPR)
FoA=-BVC = F(DA=-B) V(DA=C) .
Proof. (i) Assume |A-3xBx, then t+ AJA - A) %xBx, hence
FAlA - Zx((A]lBx)&(A=Bx)), so  AJA| 8x(A-Bx); the second assertion
is a direct consequence of the first one.
(ii). Note that f —A ] A, since DA A & DA—-A implies =—A = 1-0;
apply (i).

3.1.16 = 3.1.18, A method of dealing with variables using partial reflection
principles.

3.1.16. We shall describe a simple instance of a method, first used by
Kreisel in Kreisel 1959A, to obtain proof-theoretic closure conditions for
instances where parameters are present, by means of partial reflection prin-
ciples.

Let Prn(y) = ief axProofn(x,y) » Where Proof is defined as in 1.5.1.
If A(x1,...,xn) is a formula, "A(}'c,l,...,in)" may be conceived as a
function of Eyseees¥y (a suggestive notation is "A"(x,‘,...,xn) s but then
it should be tacitly understood that only closed formulae have a godelnumber,
formulae with free variables have a function assigned to them). We define
in HA +the formalized 1"| C -relation, for empty [, restricted to com-
plexity <n (notation In) as follows ( Xysee0y%, containing all the

variables free in P, A, B):

(i)

P(xq5000yx ) = P (TRB(Xyp000,% )7)

|
(11) |, (a&B) = (|, 8)&(],3)
(iii) |n (AVB) = ([nA &Prn(fA(i1,...,in)‘)) V(|nB& Prn(rB(i1,...,§n)‘))
(iv) |n (A=B) = (|nA)& Prn(rA(i,‘,...,in)’) - |nB
(v) In VxAx = Vx(lnAx)
(vi) |n ExAx = Ex(| Ax& Prn(rA(i,i1,...,§cn)") .

Then we prove

3.1.17. Theorem, If 1; denotes provability in HA, restricted to formumlae
of logical complexity <n, then

Proof. Completely parallel to the proof of 3.1.4; we have to use repeated-
1y the fact that whenever {—n- A(x,5..4) , we can also show {—Prn( rA(}'a*l,l,...)1).
More details in de Jongh B
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3.1.18. Closure under Church's rule CR.

Now we are able to make applications., For example, assume
HA FVYadyhx,y) . Then also h;EyA(x,y) for suitable nj hence
]-(|nHyA(x,y)) , i.e. 1—Ey(|nA(x,y) &Prn(rA(i,fr)")) . Hence we find
- Vx Ty Ez Proofn(z,rA(i,ﬁ)W), which implies, since Proof — is a recursive

predicate, that for some numeral n

bvx Ey[T(n,x,y) & Prn(rA(i, ).
By the partial reflection principle,

1—;'\7}{ Fy[T(n,x,y) & A(x,Uy)].

Thus we have shown closure under Church's rule (CR).
For further applications of partial reflection principles of the same

kind, see chapter IV, § 4.

3.1.19. Extension and generalization of T |C to higher-order systems.

In Moschovakis 1967, F| C has been extended to certain systems of in-
tuitionistic analysis containing function variables., In order to prove =z
soundness theorem, one usually has to extend the systems considered with
uncountably many additional function symbols (since in the usual systems
constructed from a denumerable set of symbols, not every function has a name
in the system).

Friedman A considers a generalization of I | C applicable to various
higher-order systems with species variables, such as the theory of finite
types with impredicative comprehension. Here also one has to consider
certain definitional extensions of the systems one is interested in, to
provide enough "names" of objects for establishing a soundness theorem.

In 3.1.21 - 3.1.23 we have described Friedman's method for the simplest in-
teresting case: HAS.

T‘ C in its original form, without complicated tricks, quite easily

extends to §g§o+-PGA. To see this, we add species constants C 4 a

A ?
formula of HA, with axioms

Ch(r gy yiy) (Kpee o) € Axpenty)

to gg§o4-PCA; the resulting system K is obviously a definitional extension
of HAS +PCA. We then add to the clauses for rjc in 3.1.2 (| referr-

ing now to H):

(vii) T ¥xa(X)
(viii) T| TXA(X)

r| A(CB) for 211 Cg (with the right number of arguments)
r A(CB) and H |- A(CB) for some C

]

B
Clause (i) is extended by T | CB(§1,.°.,EH) =T B(§1,...,in).
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If A<X1,...Xn, X1""’Xm) is a formule of H containing at most
XyreeesX s Xyseee,X  free, then r| A(x1,...,xn, X1,...,Xm) is defined as

I A(i1,...,in, C c for all numerals i1,...,in, and all constants

5y 0p )
CB1”'°’C with the appropriate number of arguments.

The idea of this extension is simply this: in order to prove a soundness
theorem, we need at least a name for each definable species, Since the
family of all arithmetical species is a model for §é§o-+PCA, it is obvious
that the arithwetical species are exactly the definable ones; hence we add
constants for each arithmetical species. For an application of this exten-
sion, see 3.1.20.

Extremely similar is an extension to y-—g&w, I-HAS, @c-gé?, where we
put

I woax® iff T | At°  for all closed t°
I TxAx°  iff Tlf—Atc for some closed t° .

This yields DP, ED' for N-HA" etc.
The methods of Moschovakis 1967 can also be readily extended to the
systems IDB  and IDB, (1.9.18). The proof is for the greater part

routine, see our remarks in 3.1.24.

3.1.20. Theorem. (i). The soundness theorem for ['|C extends to H as
defined in 3.71.19 (under the assumption that T |E for EeT).
(ii). For HAS + PCA (-A, ¥xBx, CvD, TE(X) closed):

oA~ @xBx = | 1A - Bn for some T.
F-A->cCcvD = F(0aA=>¢C) or F(DA-D)
b= oA~ WE(X) = -1A~E>{(Vx1...xn(F(x1...xn) — XX1...Xn) &E(X)),

Ltor some T¥.
Proof. (i) We have to verify the gquantifier rules and axioms and the

comprehension schema.
Q1). Assume TI'pC—A(X), T]C=-A(X). Let T|+C, then T|A(C

for all Cgy, so T} vxa(x).
Hence T[C = WA(X).

B)

Q2). T'| ¥XA(X) — A(T), where T is a species variable or constant, is
verified as follows: let T | VXA(X), then T'|A(Y) and T| A(CB) by

definition.
Q3). T|A(T) » ZTXA(X), T = species vaTiable or constant, is also immediate.

Q4). Let TI|FA(X) - ¢, assume T |-3XA(X). Then T]f-A(CB) for a
suitable constant Cp, and since also r]f—A(CB) -c, I'|c.
PCA). We restrict ocurselves to the case where A contains a single (unary)

species variable X free, and a single numerical variable x. Consider the
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instance

VX 3y x[A(X,x) = Yx].
We have to show

¥oq ¥y, (T | Aa(Cy,X) o T f-Ch %) .
This is simple : replace in A(X,x) every occurrence of Xt by Bt. The
result is a formula B'x.
Now let Tlf—A(CB,i); since A(CB,E) «> B'X is provable, we obtain
T'lf+B'%, hence T|f CB,J'E .
Conversely, if r]k—CB‘i, then T |FB'X ete.
(ii) The first two assertions are proved in the same manner as before,
The third assertion is established as follows:
Let | —A - ZE(X), then also H| —A = XXE(X), hence H+ TA | ZE(X)
(using that —A |—A); therefore H+ T4 H-E(CB) , hence HF —A- E(CB) .

3.7.21-3,1.23, Treatment of §é§o

3.1.21, Definition. We define a conservative extension H of HAS by

adding constants CB v for every formula B of " not containing species
b

variables free, and for all sets V of n- tuples of closed terms, if B

contains n numerical variables free, and adding axioms Sakisfying (kcv
and E'zb=3 t’e V)

Cp y(Kqseeer®y) €2 Blxqpennyx,) -
I is obviously a definitional extension. Now we define R(A) by induction

on the complexity of A, as follows ( - referring to deducibility in H) :

(i) R(t=s) = Ft=-5s
R(CB’v(t,l,..,tn)) = (t1,...,tn)EV

(ii) =R(A&B) = R(A) and R(B)

(ii1) R(AVB) = (R(A) and A) or (R(B) and  B)

(iv) R(A=-B) R(4) and +A = R(B)

(v) R(VxAx) = For all X, R(AX)

(vi) R(3xAx) = For some X, R(AX) and FA(X)

(vii) R(VXA(X) = For all ¢ R(A(C

B,V’ B,V))
(viii) R(EXA(X) = For some C R(A(CB’V)) and f—A(cB’v) .

B,V?
We shall put R(A(x1,..o,xn, X1,...,Xm)) (x1,...,xn, Xys+0.,X, containing
all the variables free in A) if R(A(X s...sX

1]

n’ CB1,V1"--) for all numer-

als XyseeasX all constants CB1,V1""’CBm,Vm

3.1,22, Theorem (Soundness theorem; adapted from Friedman A).
Let HAS t+A, then R(4).
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Proof. The verification for the axioms and rules of arithmetic and predicate
logic is completely similar to the proof of 3.1.4, with [ empty. It
remains to verify the comprehension schema,

For simplicity, consider the instance
VY X Vx[A(Y,x) < Xx],

A not containing species variables free besides Y.

We have to show for all €
B,V

R{ZX Vx[A(cB v,x) > xxl).

Now take any ¢C and let B'x = A(C_ .,x)3; we wish to show
B,V B,V

R(We[A(Cg ¢x) € Cgy g x]) & FWx[A(Cp %) © Cgy g %]

where
¥ = {t] R(A(CB,V,’G), t closed} .

Hence, since f-Vk[A(CB,V,x)é—é CB',W x] is obvious, it remains to be shown
that

R(A(CB,V,}'{)) & f—A(CB,V,}?) & R(cB,,W X) & }—CB,’W .
First, assume f—A(CB’V,E), R(A(CB’V,E)).

Then also f-CB‘ ¥ X3 and since R(C
9

X) ®XeW = R(A(CB’V,Q)) )
R(C

B1,W
BY,W X) too.

Conversely, assume R(CB',W X) & f-CB',W X ; then obviously XeW, hence
R(A(CB,V,}?)); also kA(cB,V,i).

Remark on the proof. The method of defining R may be motivated as follows.

If we attempt to extend the original definition of A to the second-order
case, we encounter the following problem, The natural formulation for
| ¥XA(X) would be: | VXA(X) iff for each substitution of a predicate B
for X, |A(B). But since the logical complexity of B can be arbitrarily
large, the definition \ is not well founded, i.e. \A is not defined in
terms of | B for formulae B with complexity less than A.

For this reason, the constants C are introduced ;3 they are treated

B,V
as having logical complexity O . Instead of asking

R(Cp y(bqsenest))) 1£2 R(B(ty5..0,t))),

which would be expected in view of the axioms for CB v but which would
?
make the definition of R not well founded, we use the (arbitrary) set V
to determine R(CB,V(t1"'°’tn))'
Using the freedom made possible by the set V, we defined a V by ref-

erence to the notion R itself (an example of an impredicative procedure),
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in order to establish R(F) for instances F of the comprehension schema.
We cannot establish the soundness theorem in the form: Hf|A =R(4),
since then we would be regquired to show R(CB,V(i1,...,in) > B(£1,...,in))

for arbitrary numerals i1""in’ leading back to the problems we so care-

fully tried to avoid.

3.1.23. Corollary. In HAS (ExAx, BVC, EXD(X) closed)

(1) }-ZxAx = {-An  for a numeral 1

(11) $BVC =3B or {C ,

(iii) F=D(X) = 1—EX[VX,I...Xn[Xx,l...Xn=A(x1,...,Xn)] &D(X)] , for some R.
Proof. Completely similar o the first-order case for (i), (ii).

In (iii), we first obtain H |} D(T) for a closed species term T; then the

assertion of (iii) readily follows.

3.1.,24. Extension of Moschovakis 1967 to ins , £Q§1.

The idea of Moschovakis 1967 is to construct suitably conservative ex-
tensions of the theories considered by addition of new (possibly uncountably
many) function symbols so as to have "names" for all functions which can be

shown to exist in the system., The clauses for T'A are extended with :

I'| YAe if T | Ao for each closed functor o
I'| 8o if T|Agp for some closed functor o.

In the case of IDB , DB, we have to add to the work done in Moschovakis
1967 a verification of ] C for instances C of K1, K2, K3, to obtain

HpbA = |A for H =IDB, IDB K1, K2 do not cause us trouble. The

1°
instances of K3 may be verified with the help of the lemma (for a proof
see Kreisel and Troelstira 1970, 3.2.1):

Ka & Vn(anf0=Pn) & Wm(¥x(P(nx X)=Pn) = PO

(induction over unsecured sequences). We use this lemma on the meta-level.
For simplicity, let us assume Q +to be a formula with a single free variable

a; let Py9Py9e00 TANgE OVET closed functors. Assume

(1) I Yo(a,(Q,0) = Qa)
(2) | G

So

(3) Yo, |F4,(Q,0,) = Qo, .

Let us put o, = km.w1(ﬁaem).
?

(a) If m1ﬁ £ 0, say m1ﬁ = Sp, then f‘m1’ﬁ(x) = Sp, so Vi(]w1’ﬁi==si),



187

icee | Vx(cp,l,r-lx:Sfa) . Hence also |+ Ey'v'x(cp1’ﬁx=8y) , i.e.

Ik AK(Q’Q1,E)’ hence by (3) |Q(¢1’ﬁ)-

(b) Assume Yy | Q(w1,ﬁ*_<§>).

If cp1’r-lo?éo, then | Q(cp,l,r—l) by (a). Let ® 50=0. By (1) and (2)
%—VyK¢1,ﬁ*_<y>, f—va(w1’ﬁae<y>), and since also by hypothesis

¥y | Q(w1’— <§>), it follows that | VyQ(m1,ﬁ*.<y>), hence also

nx
|~ ) 70=0 & Wa(oy = ¢yy) +  Now apply (3) and we find | ICHFID

Therefore
.YY(l Q(‘p»]’ﬁ* <5,>)) =2 I Q(cle’ﬁ) -

Apply now our lemma on the meta level, and we find | Q(w,) . Therefore
] Va(AK(Q,a)-*Qa) - Vo(Ka—Qu) .

Q. e. d.

Remark. TI(<) can be dealt with in a very similar way.

3.1.25, Concluding remarks.

T[ C and its variants demonstrate wvarious devices and phenomena in a
simple context which one meets also in realizability notions and normalization
theorems for natural deduction systems.

For example, the original non-formalized version of Kleene's T k—realiz-
ability was similar to F| C, and could not deal directly with derived or
admissible rules involving parameters. However, while the formalized variant
E] C yields certain results with parameters, the existential instantiation
rule does not generalize thus; but in the case of its analogue g-—realiz-
ability, discussed in the next section, we obtain such a generslization:
Church's rule, In this section, we used a formalization plus partial re-
flection principles to obtain this.

The introduction of constants CA,V s in Friedman's treatment of §é§ by
means of a concept generalized from [ |C, is very similar to the use of
Girard's '"candidats de réductibilité"” in Girard 1971, Prawitz's assignments
N in Appendix B of Prawitz 1971, and the use of computability predicates
in Martin-Lof 1971A.
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§ 2. Realizability notions based on partial recursive function application.

%3.2.1., Introduction. Realizability (by numbers) was first introduced by
S.C. Kleene in Kleene 1945, and was intended as a kind of reinterpretation

of intuitionistic arithmetic, so as to bring out more explicitly the intended
constructive interpretation of the logical cperators. As such, it may be
viewed as a variant of the abstract interpretation schema first introduced

by Heyting (see Heyting 1934,41956 A),elaborated and made more precise in
Kreisel 1962D, Kreisel 1965, 2.3 ( for an informal description, see e.g.
Troelstra 1969, §2 ). As we shall see from the definition and results in
the sequel, Kleene's notion is not just a variant of, but essentially differs
from the interpretation intended by Heyting. Hence, it cannot be said to
make the intended meaning of the logical operators more precise. As a
"philosophical reduction" of the interpretation of the logical operators it
is also cnly moderately successful ; e.g. negative formulae are essentially
interpreted by themselves.

On the other hand, realizability possesses some nice formal properties,
which provide it with some mathenatical interest of its own ;3 but more im-
portant, realizability and the many variants deriving from it turn out to be
very convenient tools in the development of intuitionistic proof theory.

In this section, we restrict attention to realizability and variants based

on partial recursive function application; in the next section we turn to
realizability notions based on continuous function application., Many details
might have been developed simultaneously for those two concepts of applica-
tion, but, as long as an elegant axiomatic theory for partially defined
application is lacking, only at the cost of considerable notational complex-
ity, thereby obscuring the simplicity of the underlying ideas.

Contents of the section. Subsections 2 -8 are devoted to the definition of

realizability, the soundness theorem, and some direct conseguences of these.
In subsections 9 - 19 g-—realizability is characterized, and ECTO intro-
duced.
Subsections 21-22 extend this to HA+ M, subsections 23 -24 to
HA +TI(<), and HA+ M+ TI(<). Subsections 25- 26 describe realizability
provable in gﬁc, with an application. The non-realizability of IP is
discussed in 27 - 28. Subsections 29 - 31 are devoted to extensions of the
results to some other systems such as EQE, §£§. the result
Subsection 32 describes possible generalizations, with as an application
that géc is not finitely axiomatizable over HA.

Subsection 33 compares q- and - realizability.
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3.2.2, Definition. For each formula A(x1,...,xn) of HA containing at
most XyseeosX free, we shall construct another formula of HA, denoted

by ngA(x1,...,xn) containing (at most) XyXq9ee0s%, free, x¢ Lx1,...,xn};
x;gPA(x,l,...,xn) is to be called the (P-)realizability predicate of A .

Here P(4) is assumed to be a property of A expressible by a formula of
HA, containing at most KysesesX free, The definition is by induction on

the logical complexity of A.

gP(i) xpQ F3.p @ for Q prime

rp(ii)  xz (A&B) =ief (3 erA) & (jzerB)

rp(iii) =xx (A V3B) Ed f[(g x=0-(j ,xr )&P(A))& (34%£0-(3 erB)&P(B))]
gP(iv) Xz (A—' ) = Yu(ur A)&P - Zv(T(x,u,v) &UngB))

zp(v) er(EyBy) =e f(a xxPB(J1 ))& P(B(34x))

rP(vi) xz (VyBy) s W Ez(T(x,y,z)<&UngBy).

3.2.3. Examples.
A)., P(A) is universal, e.g. P(&) = (0=0). 1In this case, P may be

omitted (modulo logical equivalence) in the definition of = The result

is a formalized version of Kleene's original realizability Zi formalized
version was first developed in Nelson 1947). In this case we write ng

for ngA , and we speak about "£-realizability" instead of P -realizabil-~
ity.

B). P(a)
ng for ngA.

C). P(A(xq,...,xn)) Prov(rA(§1,...,§n)1).

D). Let us call the realizability notion to be introduced in this example

i}

A. We call the resulting notion g-—realizability, and we write

1]

p - realizability, and let us write XEA for XEPA. Then we define

P(A(x1,...,xn)) = Prov(rﬁx(ng(§1,...,in))w).

In other words, P(A) and xpA have to be introduced simultaneously. This
notion was introduced in Bees;n 1972 3 for an application of a slightly
modified notion see § 9 in this chapter.

E). Generalization of (B): P(A) = C—A, C fixed, closed, etc. etc,

3,2,4, Theorem (Soundness).

(i). Let P Dbe any property defined relative to every formula A of Ha,
and expressed by a formula P(A) of HA, such that
(4) EAF4 =B}
() TFpr), THP4-B) =Tk P8,
or equivalently Fr(a)&P(A-3B) = P(B).
Then, for closed A:

(1) BARA = (8 | Bzph) -
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In fact, the numeral n in (1) does not depend on P,
(ii). Let H = HA+T De obtained by adding a set of closed axioms r
to HA, and suppose (A), (B) to be fulfilled w.r.t. H instead of

HA . Assume moreover

(C) Ael =1} S.X(ngA) .
Then, for closed A
(2) B2 =2} Ex(ngA).
(iii). Let H be as in (ii), and assume instead of (C) :
(') AeT = In(F |~ nxpA)
(D) H 1is conservative over HA w.r.t. closed Z?- formulae.

Then, for closed A

() Eb A =S} fzh)

(n in fact not depending on P).
Proof. (i). By induction on the length of deductions. We select the system
described in 1.1.4 for our verifications, The induction step (automatically
also including the basis step in this case) splits into a number of cases
corresponding to the axiom schema or rule applied to oBtain the end formula
of the deductions., PFor each instance F of an axiom schema, we establish
In(mA F iﬁpF*) (where F* denotes the universal closure of F), and for
any application of a rule: F1""’Fn =TI we show that assuming

> F':, ooy FZ, ﬁ,‘gPF:, cees r-lk:EPF; (for some ﬁ,‘,...,ﬁk)
all to hold, we can establish in HA ﬁgPF* for some n.

PL2). Assume VxAx, Vx(Ax—3Bx), ﬁgPVkAx, ﬁgPVk(Ax-*BX), VxP(Ax),
Vx(P(Ax—3Bx)) . Then iﬁ}(x)gPAx, {ﬁ}(x)gP(Ax—va) , SO
{ﬁ}(x)gPAx & P(Ax), therefore {{ﬁ}(x)}({ﬁ}(x))gPBx.

s% Thus Ax.i{ﬁ}(X)}({ﬁ}(x)gP TxBx
Below we shall usually consider the cases without additional free parameters,
for simplicity.

PL3). Assume A-3B, B-C, ﬁ:gPA-'B, ﬁngac, P(A-B), P(B-C). Then,
if we assume (xg A)& P(A), it follows that P(B), (and hence P(C)); also
EHx)zps, BIURH))Ze, so M d@l({R)(x))za-cC.
PL7). Assume A&B—C, nr,A&B=-C, P(A&B-C).
Assume xr A, P(4a), YLpBs P(B) .

x ' Then j(x,y
P(A- (B-A&B)), P(a), P(B) we have P(A&B), hence |
Thus  Axhy. 8}(3(x,7))zph = (B=0) .

PL8). Assume A-(B-C), nrA-(B—C), P(A&B-C).

);PA&B s also by
ﬂ}(j(x,y))gPC .




191

Let xr A&B, P(A&3B). Since P(A&B—-A), P(A&B-B), it follows that
P(A), P(B) 3 thus Hﬁ}(j1x}(52x)§Pc. Therefore Ax.{{7}(3,%) }(5,%)z 08B C.
PL9). OgP)\-'A, and e.g. AX.O£PVX<A-’AX).
PL10). fx.j, XxT,AVA—4Aj Ax.j(x,x):I:'PA—*A&A.
PL11). Ax.j(o,x)_gPA—vAVB, Ax.j1X£PA&B~A.
PLA2). mc.j(14;j1x,32x)§PAVB-»BvA,
Ax.j(jgx,j,lx)gPA&B—’B&A.
PL13). Assume A-3B, P(A-B), 5£PA—»B.
Let xr,CVA. Then j,x= O&(jzngC)&P(C), or j,‘x,éo&(jzngA)& P(A)} .
5 CVB; if 3,x40, {ﬁf(jzx)gPB and P(B),
hence j(j1x,iﬁ}(jzx))§PCVB.
Thus

If j,lx.—_ 0, xzx

Ax.[(1éj1x)x + sgj1x.j(j1x, iﬁf(jzx))]:‘r‘PCVB.

Q1). Assume VyV¥x(Cy-—-A(x,y)), VxP(Cy—A(x,y)), ﬁ-,Ia:P Wx(Cy-A(x,y)) .
Let zr,Cy, P(Cy) .
Then {ﬁ}(y,x,z)gPA(x,y) , so Mx.i3l(y,x,z) Ip ¥xA(x,y) , hence
Ay AzAx. {ﬁ}(y,x,z)gP Yy (Cy— ¥xA(x,y)) .
Q2). Ny.lyl(t) zp ax—at .
Q3). Ay.ji(%,¥) Io At BxAx.
Q4). Assume Vx(Ax=-C), ﬁgPVx(Ax—‘C) , ¥Wx(P(Ax-10C)).
Then, if ug, ExAx, P(®xAx) , it follows that j2u£PA(j1u), P(A(j1u)) ;
hence {ﬁ}(j,‘u,jzu) TpCs s0 Au.iﬁ}(j,'u,jzu)gP(Mx—» c).
The equality axioms are realized as follows :
fx.0r, Vx(x=x) , MxAyAzAu.0 T, Yxyz(x=y & z=y = x=y) ,
AXgeoe b M0 T, Vx1...xn(xi=xi-*qo(...,xi,...) = cp(...,x{,...));
Mx .0 Tp Vx (Sx£0) , MxfyAz.0 T, Vxy (Sx=Sy = x=y) .
All defining axioms for primitive recursive functions are realized by O,
hence their universal closure by AX1AX2... . 0.
Assume urpAO& Vx(Ax—A(Sx)), P(AO& Vx(Ax—A(Sx))). We can find a

partial recursive function ¢ such that (recursion theorem)
cp(u, O) = 311‘1 ?
o(u,8x) = {jzui(x9@<u,x)) .

By induction we show ¢(u,x) to be defined for all x, hence
Mhx. o(u,x) Ip [AO& Vx(Ax=—A(Sx)) - ¥xAx] .

(ii). Assume HA+T|A, A closed; then HA|F-A, F a conjunction of
formulae from TI'. Hence by (C): H} '.Hx(ngA) , using P(F) (obtained
from (A} and (B)).

(iii). Similarly, if HA+T|A, we find HAFF—A, F a conjunction of
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formulae from T, hence H|-! {al(7) & fﬁ}(fﬁ)gPA.

Now! {n}(B) in E, hence by (D) HA}! {al(@), and thereforee sintc%‘ in
or suitable m, |

HA all provable closed Ei - formulae are true, HA !"Elo ={al@% so

gi_iogPA

Remarks. (A). Under (ii), (iii) it is sufficient to assume (&), (B) for HA

and to add, besides (C), resp. (C'), (D),
Ael = glPr).

For assume §+I'1 Fr(4), §+1‘1 - P(A-B) (1“1 finite) ; then
HA+T +T, |FP(a), HA+T +T, b p(a-3B) (I gT, I, finite).
Then HA + FO+F1 FP(B) . This establishes (B) for H.
Now let HfA; then HA |- (F1—*(F2—*... (Fn-*A) .ee) , Where
FryeeasF € I'. Hence with (&), (B) for HA HA+P(F1) T +P(Fn) FP(a),
hence H|-P(A). This establishes (4) for H. '
(B). The following variant of (iii) in the theorem also holds, as will be
clear from the proof:

(iii)' Let H be as in (ii), and assume instead of (C)
] T
(c"). Ael = E(F | trpA)
where t 1is supposed to range over p- terms. Then for closed formulae A:

BFA = 3 b ) -

3.2.6, Remark. The proof of the soundness theorem by induction on the

length of deductions, gives a quite elementary (primitive recursive) method
for constructing, for each deduction of a closed formula A in HA, a p-
term t such that Fvlé }—(tgPA)&.'t . Formalizing we find primitive recursive

cp1,cp2 such that

|2 r hl
HA |- ProofHA(x, A7) = ProofHA((p,Ix, thgPA )

for closed A, where 1 < denotes the p-term with number DX .

]

On the other hand, we do not have provably recursive functions ‘1’1, 5

such that

(1) HA ProofHA(x,rA Y - ProofHA(‘ll,‘x,' [ AT .

The argument given in the first edition is not correct. The result is a consequence of the
unprovability in HA of the DP, which has been proved by J. Myhill (A note on indicator
functions, Proc. Amer. math. Soc. 29 (1973), 181-183) and by Friedman in a stronger
form (On the derivability of instantiation properties, J.S.L. 42 (1977), 506-514).
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3.2.T7e Verification of the conditions of the soundness theorem for our

examples.
For examples (A), (B), (E) the verification of the conditions is immediate.

For example (C) we use the well-known properties of the canonical proof
predicates for HA.

In the case of example (D), the conditions for the soundness thecrem have to
be verified simultaneously with the inductive proof of the soundness theorem
itself. See § 3.9,

3.2.8. Lemma.

(1)  Vu(ug—a) € ¥w(ovphd) < Zu(ur—4),
so ur 7A€ W(ovrAa).

(ii) ur—"A <> = 8w(wri).

Proof, Straightforward by application of the definition of r-realizability.

3.2,9-3.2.19, Analysis of r-realizability.

3.2.9, Definition. A formula is said to be almost negative if it does not

contain v, and ¥ only in front of an equation between terms (i.e. Hx(t=s)
for H“.é ).
Note that, modulo logical equivalence, for HA +the almost negative formulae

are the formulae constructed from Z:—formulae by means of Y, &, =.

5.2.10. Lemma. For all formulae A in the language of HA, ng is logical-
ly equivalent to an almost negative formula.

Proof. By induction on the complexity of A.

For example, assume the lemma to be proved for A, Bj; then using

}%‘(A"‘B) > Vu(ugA—’Ev Txuv & Vw( Txuw— UwgB) we can rewrite xTA=3 as an

almost negative formula.

3.2,11. Lemma, Let A(a) be an almost negative formula of arithmetic, and
let a %be a string of ;mmber variables, containing all the variables free in
A, T;Len there is a partial recursive function wA (expressed as a p- term
of HA) such that

(i) HA |- Zu(uga) — A

(11)  HA | A(s) = 1y, (2) & ¥, (2) rA(a)

(1i1) EHA | ughA €>ugh.

Note that (i) and (ii) together imply HA F Zu(urA) €A for almost negative
A -

Proof. (i), (ii), (iii) are proved simultaneously by induction on the logic-
al complexity of A wA is defined by induction on the logical complexity
of A, as follows:
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(2) ¥,_ (a) ~o0.

(b) If A = Fy(t=s), take "’A(E) = j(min_[t=s], 0).
(¢) If A =3B&C, take ¥,(2) = j(¥g(a),v.(2)).

() If A = VxBx, take wA(g) = Ax.wB(X)(E,x) .

(e) If A =B-C, take ¥,(s) ¥ hu. ¥.(2) .

Now we turn to the procf of (i), (ii), (iii).

For prime formulae, (i), (ii), (iii) are obvious.

(A). Let A = Ex(tlx)=s(x)). E{u(ug Fx(t(x)=s(x))) dimplies

Eu(jzug (t(j,‘u) = s(j,lu))) which is equivalent to &v(t(v)=s(v)).

This establishes (i).

Now assume Hu(t{u)=s(u)). Then minz[t(z)=s(z)] is defined, call it u';
then t(u')=s(ut), and j(u',0) = wEu(t:s)(i') realizes A(a). This
proves (ii).

(iii) is obdvious.

(B). Let A =B-C, and assume (i), (ii), (iii) for B, C.

If ugB~C, and B, then !ﬂJB(g), ”’B(i)gB’ so I{u}(‘UB(E)),

{u }(WB (a)) 5 C. Therefore C holds, and thus Zu(ug(B=C)) = (B=2¢C) ;
this establishes (i).

Conversely, assume B=C, and let ur3B. Then 3B holds, hence C holds,
and thus H:C(g), ﬂxc(g) rC. Therefore WB_)C(
Finally, ug(B-C) < Vx(xgB=1i{ul(x)& {ul(x)gc) <

~— Vx((x%B)&B - tul(x) & ful(x) %‘C) —ug (B=C).

(Induction hypothesis is used thrice in the second equivalence: XEBngB,
{u}(x)gC%){u}(x)gC, and ng(—%(x;B}&B.) B )
(¢). 'Fhe other cases: A = B&C, & = VxB are left to the reader.

a) rB-C. This proves (ii).

3.2.12, Lemma. If A 1is an arithmetical formula, then A is provably
equivalent (in ‘}LA) to an almost negative formula, iff we can find a partial

recursive ¢ for which (i) and (ii) of the previous lemma are provable, i.e.
(i) HA b 3x(xzhA) ~ 4, (ii)HA FAa -~ l¥a & YazA.
Proof.Forthe "only if'" part see @rrata ak the end.
Now assume (i), (ii) to hold for A. ¢a may be supposed to be represented
by a p-term. If 2z does not occur in a, Az.Va can be given as a primi-
tive recursive function ¢a.
Now by (i), (ii)

Aa <> lja & ¢§.£A§.
hence

Aa > [FuT (e, 0, u) & W(T(¥a, 0, v) ~lUlvraa)];

the right hand side of this expression is obviously almost negative.
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3.2.13. Remark. Note that HA |- A «> Zx(xrA) for a formula A iff A is
provably equivalent to an almost negative formula or an existentiaelly quanti-

fied almost negative formula.

342,14, Definition. Let ECTo denote the following schema, for A almost
negative :

ECT_ Vx[A~ ZyBy] = Fu¥x[A- Zv(Tuxv & B(Uv)) ]

(y not occurring free in 4).

Note that for A = 0=0, we obtain C’I’0 (Church's thesis)
(T, Vx 3y By = Tu Vx(8v Tuxv & B(UV)) .
ECT0 stands for "extended Church's thesis".
5.2.15. Lemma, For any universal closure A of an instance of EC'].’O there
is a numeral n such that
HA-nrh, HA+ECT | ngh.
Proof. Consider an instance of ECT
(1) ¥x[A= FyBy] = FuVx[A - Zv(Tuxv &B(Uv))].
For simplicity, we assume that there are no additional free variables in A4,
B besides x,y. Assume
ur Vx[A - ByBy]
and abbreviate t = fuf(x,wA); then
Vx[A = 1t & tg'&'yBy]
or equivalently
Vx[A = !t & jlth(j1t)] .

Put D4 = A}C.j,"t, q:‘2 “minuT(cp1,x,u), cP(u) = j((p1,AXAW.j(CPZ,j(O,j2t))) .
Then

(p(u)é' Tz Vx[A = Bv(T(z,x,v) &B(Uv))].

Hence Au.o(u) I (1.

Similarly in the presence of additional variables, or for g - realizability.

=

2.2,16. Theorem (Idempotency of realizability ; Nelson 1947).
Ex(xx By (yzh)) « Iy (yza) .

Proof. By lemma 3.2,.710 and remark 3.2.13.



196

3.2.17. Notation. Let us abbreviate "r - realizability which is provable in
the formal system H" as " H-r-realizability". Similarly, we use the ex-

pression "_Ii—g'-realizable”. Similar definitions with q instead of .

=
=

3,2.18., Theorem (Characterization of &A-g-realizabilit‘z).
(i) IiA;+ECTO|-—A<—->Ex(x§A)
(i1) HA+ECT_ |- A = HA | Fx(xrp4).

Proof. (i) is shown by induction on the complexity of A, Consider e.g.
the case A = B-Cj; (B~C) ¢« (8x(xgB) - &y(ygz0)) HVX(XEB—*Hy(ng)) «—
> TzV¥x(xg B~ Ev(Tzxv & UvzC)) < 8x(zx B—C) . The third equivalence
required an appeal to ECT0 and lemma 3%,2.710.

(ii). The implication from right to left follows from (i) ; the implication
from left to right is verified thus: let HA+ECT_f- A, then HA |- F—4,
F a conjunction of universal closures of instances of ECTO , hence

HA - Ix(xrF); also HA |- Zy(ygF—4) (by the soundness theorem), so

HA b 3z(zgA).

3.2.19. Corollary to the proof of 3.2.18. (Characterization of H-rx-

realizability for certain extensions H of HA).

Let B =H+T, I' a set of (closed) additional axioms, such that

(1) A 1"=°§‘l-3x(ng).

Then

(i) §+ECT01—A<—73X(ng)

(ii) H+ECT A = HI- 3x(xz4).

Proof. (i) follows immediately from 3.2.18 (i).

One direction of (ii) follows from (i).

For the implication from left to right, note that by assumption (1), and the
soundness theorem for HA: H| B = H [ Ex(xg B) (using once again the de-

duction theorem for HA ). Then argue as for 3.2.18 (ii).

3.,2.20. Theorem.
(i) HA +ECT~ is consistent relative to HA

(ii) HA+ECT° is w-consistent on assumption of the truth of HA.

Proof. (i) is an immediate corollary of 3,2.18 (ii) or 3.2,15.

(ii). Assume HA +ECT - An  for each numeral 1n, and also

BA+ECT_ |- - VxAx . Then HA|-@m rAn, for each numeral 1 and for suitable
'ﬁn depending on nj; also HA | Vu‘ﬁ(ug ¥xAx) . Hence Vu(-lu:_;VxAX) is true,

by our assumptions, Now let
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o s s R =3\
o(y) = jmin [Proof, (j,z, J4zZ4(F)7)].

Then /Ny.®(y)r YyAy (since the truth of HA implies the truth of a umiform

reflection principle) contradicting Vu(—ur ¥xAx); therefore

HA + ECT_ |+ — ¥xAx .

Remark. ECTO cannot be generalized to arbitrary formvlas A, =2s is illus-

trated by the following counterexample. Obviously,

(1) {VX[(EyTxxy V 2 8y Txxy) -
- F2((z>0 & T(x,x,2=1)) Vv (2=0 & %yTxxy))] .

ECT0 generalized to arbitrary A would yield, when applied to (1), the

existence of a partial recursive function with godelnumber u, such that

(2)

{VX{ (TyTxxy v — 8y Txxy) -*Sw(Tquw &

& {(uw>0 = P(x,x,Tw=1)) & (Uw=0- - FyTxxy) ).
On the other hand, Vx - (3yTxxy v -8y Txxy), therefore with (2)
¥x - HW(TuOXW & {(Uw>0&T(x,x,Uw=1)) v (Uw=0 & 8yTxxy)}) .

Now let v be such that HwTv xw tu H(x) =03 then
EwTvovow > {uo }(vo) =0¢> 8y Tv v y, which is contradictory; hence (2)
is false.

In fact, this counterexample even refutes a schema
Vx[A~ E1yBy] = Tu¥x[A = Hul(x) &B({ul(x))].
Later, we shall prove that HA+ CT_[AECT = (3.4.14).
5.2.21, Lemma, Let F be the universal closure of an instance of Markov's
schema
M Vx(AV —A) & o ExA - ExA .
Then there exists a numeral 10 such that
HA+MfpnzF, HA+MpngF.
Proof. Let an instance F of M
Vx(Ax V TAx) & D 3xAx — ExAx

be given, and assume for simplicity that A does not contain variables free
besides x.

Assume
ur ¥x(Ax vV DAx) & 0 ExAx.

Then
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w1y ulx) & ((3,(f5ul(x)) =0 & 3,({3,;ulCagax] v
v i, Uagul)) Ao & 3,015 mlx)g —ax])) & jug ~0 Exax.

Let olu) = minx[j,'( {j1u}(x)) =07]. Vx(j1{j1u}(x) #£0) would imply

VxE{w(wg —Ax) , equivalent to VxWu(ugdx), i.e. Vx-Hu(ughx).

On the other hand, Jjyur 7 ExAx € - BxEw(wr Ax) <> 7 ¥x — Ew(w g Ax)
(3.2. 8 (ii)); hence contradiction.
Thus

ﬁVX(j,'{j,'u}(X);éo) ’

=7 8x8v(T(j1u,x,v) & j,Uv= 0)

hence with M, 3x[j1ij1u}(x)=0]-
Thus !o(u), and

3(0(w)3,(13 u b (w(2))))z Exax

and so  fu.3(o(u), i, ({5 ul(e@))) ¥,
Similarly for q- realizability.

Remarks. (i). As we shall see later, not all instances of M are HA~r-

=2

realizable.

(ii). In the presence of CTo s M 1is equivalent to the weaker schema
MPR = ExAx - HxAx

for A primitive recursive. For let Vx(Bx v-Bx). By Church's thesis,

there is a wu such that Vx8y[Tuxy& (Uy=0-3Bx) & (Uy£0- —Bx)]. Hence
- 8xBx — HxBx

is equivalent to
- Ex8y[ Tuxy & Uy=0] = ExTy[ Tuxy & Uy=0]

which can be obtained as an instance of MPR .

Note that in the presence of MPR s every almost negative formula is equi-

valent to a negative formula, by ®ExA &€ —Vx—A.,

3.2.22, Corollaries.

(1) BA+ECT +M| A © HA+MN|- Ex(xzA)

(i1) HA+ECT_+M is consistent relative to HA.

Proof. (i) is immediate from 3.2.18 (ii) and 3.2.21.

(ii). (i) implies that HA +ECT_+M is consistent relative to HA+NM (a
proof of 1=0 in QA;+ECTO+M gives rise to a proof of 1=0 in E.A;_«r M
and HA+M is consistent relative to HA since ELVA;C is consistent relative

to HA (§ 1.10).

o<




199

3.2.23, Lemma. For each closure F of an instance of TI(<), we have
En(HA + TI(<) |- igF &ﬁgF).

Proof. For simplicity we restrict attention to a closed instance
Vu( (VW <u)Av=4Au) = Vubu

of TI(<), and prove the lemma for T - realizability.

=

Assume

wr Vu{ (Vv <u)Av - Au) ,
S0

Vu({wl(a) z ((VWw<u)Av = au))
i.e.

Yuw! (w' z (Vv <u)Av = {w}(u,w!) g Au) .

wiy (Ww<u)Av implies VWw<u({w'}(v,0)zAv), since Vv<uAv abbreviates

Vw(v<u—Av) with v<u quantifier-free. Now if we put

cpc(x,u,v) = .0 if u>vw

x if u<v
we can easily find a partial recursive ¢ such that
o(z,w,u) = {w}(u,AvAx.qoc({z}(W,v),v,u)) .
By the recursion theorem, there is an n such that
{7l(w,u) = {W}(u,AvAx.CPc(fﬁ}(w,v),v,u)) .

We now easily prove Vu(!{ﬁf(w,u)) , and {1l(w,u) TAu, by TI(<) w.r.t.

u. E.g. for the latter assertion it suffices to show
Ya( v <u({7}(w,v) rAv) - {5 Hw, ) T Au)

which is completely straightforward ; etc. ete.

3.2.24. Theorem. Let H be HA+TI(<) or HA+M+TI(<).

(1) For A closed, H+ECT |- & = E(Ef-nrA and §+ECTOkﬁgA)
(1) HE+ECT |4 = Hf &x(xza).

Proof. (i). Immediate from 3.2.15, 3.2,21, 3,2,23,
(ii). Immediate from 3.2.19 (ii).

%3,2.25, Theorem (Characterization of H__.g_c -r-realizability).
B Tx(xz4) @ HA+ M+ ECT_ |- 4.

Proof. Assume @cf—ﬂx(x‘g}&). Also LLA;+M}—X£'A €« Bx, where B is the

negative formula obtained from XxrA by replacing every subformula of the
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form Hy(t=s) by ~Vy—=(t=s). Then E-‘LAAC F = ¥x-Bx, and since }'LWAC is
is conservative over HA w.,r.t. negative formulae (§ 1.10), HA F v -Bx.
Hence HA+Mp —™8x(xrA). Since HA + ECT F A< x(xrA) (3.2.18 (1)),
we find HA+ECT_+ M| —mA.

Conversely, if HA + ECT_+ M f—mA, then I‘;A_;C F Zx(xz—>4a), so
HA® b ——Ex(xzA) (3.2.8 (i1)), hence HA® | Fx(xzA).

As an application of this characterization we prove
3.2.26, Theorem. Every universal closure of an instance of
IP_ Vx[AV DA] & [VxA— ByB] ~ Hy[ VxA - B]
is HAc-g-realizable.

=N

This claim has not been established: it is not known whether the schema
1Py Vz[AV -A)&[VzA — 3yB] — y[VzA — B]
is HAS -r-realizable.
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Remark. It can be shown that IPO is not in general HA - - realizable.

Namely, by a version of de Jongh's theorem (5.6.16), we can find Z:—
formulae 4, B, C such that

HA M (ma=(BvC)) = ((mA=B) v(mA=C)) .

This formula is logically equivalent to a formula of the class TO (see
3.6.3 ) for which ILA+ECTO is conservative over HA, hence the formula is

provable in HA + ECT (i.e. HA-realizable) iff it is provable in HA.

342427+ Theorem.
(i) HA+ Mpp+CT_+IP is inconsistent.

(ii) Not all(closures of ) instances of
IP (mA - 3yB) = Fy(nA—-B)

are realizable (and certainly not I}_Ac -r - realizable).

Proof. (i). By Vo

(1) Vx[~- ByTxxy = FyTxxy] ,
hence with IP
(2) VxZy [ ByTxxy = Txxy] ,
and by CT_
Fu¥x] ! {ul(x) & (=~ TyTxxy = T(x,x, {ul(x))].

This implies that HyTxxy is recursive in x, which is contradictory.

(ii). Consider
(3) ¥x | (== ByTxxy = ZyTxxy) = Tz (= By Txxy = Txxz) | .
This is (1) = (2) . Now we know that
HA+M+CT_+ (1)=(2) bA,
hence also

HA + M+ ECT_ F-(3).
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Hence }VI:A;C F Ex(xtxﬁ' = (3)), so EA;C = —lﬂx(xg (3)), by 3.2.8 (i).

3.2.28. Remark. Kleene proves a slightly stronger theorem (Kleene t965A) :

he shows that the universal closure of
&) (HA-=BvC) » (mA=B) v(0B=C)
is for certain A, B, C is not realizable. We can also obtain this result

by slightly refining the argument in 3.2.27, sub (ii).

As our instance of (1) we take for -—1A-(BvC)
= EyTxxy =~ T(x,x,0) v (¥ > 0)Txxy

which again follows from MPR'
Note that our disproof of realizability is classical (at least it uses M)
but the disproof of provable realizability is intuitionistic (it uses: 5&0

is consistent).

3.2.29, Extensions to other systems.

An extension of realizability to the language of EL with function
variables is obtained by interpreting the function variables as ranging over

recursive functions, so we put:

r(vii) xpVaa =Vyev,(1xl(y) & {xly) zally D)
r(viii) xg Bela = jzng({j1X}) & Jgxev, .
Here A(lt}) 1is shorthand for a formula A*(t), obtained by systematically

eliminating each occurrence of a in A(e@) by application of
tat"] = t"ed Tufot"=u & t'[ul=t"]

and replacing at"=u (t' not containing «) by Iv(T(%,t",v)&Uv=u).
In short, if we replace in Aa a« by {t}, = by =, then A({t])
contains p - terms, and the "prime formulae" of the form t+=t!' must be
interpreted as abbreviations as in Kleeme 1969 (cf. 1.3.10).

If we wish to extend this further to IDB, we must put (ef. Kreisel -
Troelstra 1970, 3.7.1)

Eﬁj' X£K¢ Kw&m:{x},

where o = ix} =def Yy (8zTxyz & Vx(Txyu= Uu=qy)) .

For higher types we may extend realizability similarly, interpreting the
higher-order quantifiers as ranging over the Va of HRO or the W& of
HEO .

Realizability can be extended to the language of §§§ as follows, We
associate with each variable V? of §&§ a variable V?+1; below we shall
write X* for VIT| if X = VA,
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g(i)" XEX(t19-'-,tn) = X*(X’t/p---’tn)

r(ix) xr WXA(X) = X (xrA(X))

z(x)  xgpEA(X) = X (xga(X)).

For an application of this extension see 3.2,.31.

3.2.30. Realizability for IDB. The treatment is very similar to the

treatment for HA, hence we give a sketch (following Troelstra 1971A,§ 5).
For any formula A of JIDB, let AT denote the formula obtained by re-~
lativizing function quantifiers to recursive functions, and let us define
almost negative formulae as before (3.2.9). Note that if A is almost

negative, then also AT is (equivalent to) an almost negative formula, since
(Voha)™ <« Va¥x(a= {x}-27a)

where, as before
o = {x} =iof Yy (EzTxyz & YVu(Txyu- Uu=ay)) ,

and
(Za(t[a] = s[a]))" <> Gwe v, (t[a] = s[a]) « En(t[£_]=s[£ ])

where f = M:.(n)x (1.3.9 C). (As a lemma we have to show for any term
t[e] in IDB that it depends continuously on e« (provably in IDB).)
One then proves that for almost negative A(:é,g) (x a sequence of
numerical wvariables, o = Yysecera 2 sequence of func—tion variables) the
existence of a partial recursive ¢A(J=c,3=r) (ZE Yqree+s¥, & sequence of

numerical variables, xNy = ¢ ) such that

B

Fu(urh) — A
Ar(x“a)&a=§y}& & o =1y } =
== 1 1 *er n n
=1y (x,y) & ¥, (x,7) zA(x,0) .
AN=TS ANYE/ 2T V2= of

(A direct corollary, by the preceding remark, of the analoguesVB.Z.‘l'l.)
Using this, we find also for each universal closure F of ECT_  in £(IDB) ,
IDB }— nrF, in view of which we then obtain, after extending the soundness

theorem for Q}} as in Kreisel - Troelstra 1970, 3.7.2

IDB + ECT A Ex(xzh)
IDB+ECT | A = IDB| Ex(xzh).

We might also have considered g -realizability, and treated it similarly.
For an extremely detailed treatment, see Cellucci 1971.

3.2.%31. Theorem. HAS+ (T +TUP 1is consistent relative to HAS, where
UP (the uniform principle) can be stated as

Up VX Bx A(X,x) = Bx WX A(X,x) .
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Proof. Straightforward, by extending the soundness theorem for HA + CTO
to HAS + T, +UPs cf. e.g. Kreisel - Troelstra 1970, 3.7 , and
Troelstra A, §3.

342432, Some generalizations.

A generalization inspired by Lauchli 1970 (there in the context of a
notion closer to modified realizability) consists in the introduction of a
family of realizabilities, as follows. Let {Ui | ie I}, (I an index set)

be a collection of species of natural numbers such that
Nio, |ie1l=4g.

We now define g(l) realizability by the clauses

£(i)'" xg(i)A = A= xe Ty

. (1)

ability with respect to the family {Ui lie1} by

and g(ii) -z(vi) (g everywhere replacing r ), and then define realiz-

I, - . (1)
xTTA S5 V:LGI(x:_x: 8).

Technically, this concept is not so easy to characterize as ordinary -
realizability. We may expect, in view of the result of Lauchli 1970, ;ome-
thing like (an approximation to) completeness with respect to the schemata
of intuitionistic predicate logic (if the concept is treated classically).
But CTO anyway remains valid, Yet it seems to me such a completeness
result is of doubtful interest.

Another, rather obvious, possibility of generalization is of greater
practical interest : the use of A - recursive functions {t }A everywhere
replactng {t} in the definition of xr B, for an arbitrary arithmetical
unary predicate Ax. The r8le of HA :':s then taken over by
HA + Vx(Ax vV DAx) 3 the soundness theorem becomes provable for this system.
This idea has been used in Smorymski B to show that g._'}c is essential-
1y unbounded over HA.

Sketch of the proof : Define Zr(i+1 - realizability as realizability by
functions {x}A , A acomplete 1'1;)1- set. Then establish a soundness theorem
for HA, and show that for any A with alternating-quantifier complexity
< n, there is a primitive recursive Py such that Ii.l.;c }— A(x,',...,xn) A 4
H(OA(X‘I"“’xn) gA(x,',...,xn) . Finally, note that for a predicate
Ax € Z:1+1— A§+‘I , I.{’A;C/F- Ey[yg - Vx(Ax v 7Ax)]. Then it readily follows that
for each set of axioms & of bounded altermating-quantifier complexity,
m®+0 4 HA+ 6, so HAC

For similar uses of A -recursive functions in the context of modified

is an essentially unbounded extension of HA.

realizability, see 3.4.31.
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342433, Comparison of g-realizability with - realizability.

q - realizability doeg not admit a simple ch;racterization such as given
in 5.2.18 for ;-—realizability. It is not even closed under deduction,
for the g-realizability of AVA implies that A is true, and formally
HA b Hx(ng VA) ® HA b A, Hence, if A is HA - g - realizable, but not
provable (e.g. a suitable instance of CTO), then HA |- EX(X;%A),

HA b 3x(xgh-—(AVA)), but not HAF Ex(xgla va).
q - reai&zability may be viewed as a ”hygkid” of the " T| C" relation in

§ 3.1 and realizability.
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§ 3. Realizability notions based on continuous function application.

3.%.1. Introduction. Realizability by functions (in the present sense) is

first introduced in Kleene & Vesley 1965, not formalized. Formalized versions

are discussed in Kleene 1965 , Kleene 1968, Kleene 1969, Part II. For many
details we shall rely on these publications, especially Kleene 1969,

The general development is similar to that of the preceding section.

3.3.2., Definition. We define the P - 1realizability predicates (;g;—
realizability) for formulae in the language of EL. P(4) 1is again a formula
of EL, with its set of free variables contained among the free variables of
A, The realizability predicate ax='11A contains, besides variables free in
A, the new function variable o¢. As before, the definition is by induetion

on the logical complexity of A,

;;(i) @or + = A for A oprime,
1,.. \ = - 1 . 1
é‘P(ll) oz A&B) = 31a£PA & 32a£PB y
1/ ... - = (s . 1
gP(lll) ag, A VB) = (31o(O=O = J,arp b & P(4))

&

(340040 = j,er B & P(B)) ,

N
-
!
td
p—
n

1. 4 | ]
é‘P(IV) ar VB(BgPA & Pu) = talp & a|B£P B) ,

Vx(la|Ay.x & o )\y.xg;A(x)) ,

;;(v) or, VxAx

:

1 1,0 :

= j2
VB(La|B & a|Bz A(B))

Jpezp A3y & P(A(3,0)) -

1, ..
rp(vii) oy, VRAP

gg(viii) ag; FPAB
Note that this is Kleene's notion of ¢t - realizability and g -realizability
in Kleene 1969, Part II, if we take P(A)= 0=0, and P(A) =4 respectively,
disregarding a difference in the choice of pairing functions and codings of
sequences of natural numbers., Let us indicate 5;-rea1izability for P(A) =
= 0=0 (so that we may omit P(A) altogether) as 31 - realizability, and
gg—realizability for P(A) = A as 21 -realizabilzty. Only these tw1o
notions have practical interest for us., We write correspondingly oz A,

1
vq A .

%.3.3, Theorem (Soundness).

(i) Let EL be the system as described in 1.9.10. Then, for any A such
that EL '— A, there is a p-functor ¢ containing free only variables free
in A such that

)
EL|- 90 & (oz A), g;t—ch&(cpng).
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(ii) Assume Ayreeesh  to be closed, and suppese in EL A, ... A Fa.
Then there is a p~functor v, containing free only variables free in A

or variables Agreee s such that in EL

1 1
A lo& (or A)

1
oz A1, ceey asg
o, 9 A @ q A i—'co&(cpq“&)
1:: 1, v S w S ¢ = )
Corollaries.

(iii) Let H = EL+T, T a set of closed additiomal axioms. If there are

(closed) p- functors o such that
Fel =H| lo & (ngm
then
B = Ef v e (v 4)
for some p-functor V¢ containing free only variables free in A, and
similarly with g1 instead of 31.

(iv) Let H =gEL+ T, H' =EL+T', T, Tt sets of closed axicms. Then, if

HcH', and

AeTr = Bo(B} lo & (oz' 4))
it follows that for H!'
H' A = Go(H | lo & of 4).

Procf. (i), (ii) : See Kleene 1969, Theorem 50 A, B (page 80).

In comparing the formulations it should be remembered that in contrast to
Kleene's usage, A1,...,AS k A was interpreted as: A is deduced from
assumptions A1,...,AS with the variables occurring free in A1,...,AS held
constant (in Kleene's terminology), i.e. the variables free in Agrecesh Qo
not act as proper parameters of the rules @Q1, Q4 {or VI, I in natural

deduction systems ).

3.344. Theorem (Special instances of soundness).

Let EL+ (ay B, ¥) be extensions of EL according to the following code :

o =0,1,2,3 corresponds to the addition of nothing, ACOO}, ACOO’ A001
respectively ;
B =0,1,2 corresponds to the addition of nothing, FAN!, BI! respectively,

where FAN! is
FAN! Vo T1x A(e,x) = 3z Vo Ty VB (az=Pz - A(B,y))

and BI! is obtained by replacing Volx in BID by Vellx.
Yy =0,12,3 corresponds to the addition of nothing, C-¥!, C-N, C-C respec-
tively ( C-N! is as C-N but with Vedlx replacing Volix, C-C can be
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formulated as Vo &8 (@,B) = EvVo(lv|e & A(a, v]a)) ).

Then, if ¥ = EL + (1, 8,0), H' =EL + (&, B, ¥) (a>0) it follows that
B RA=TEF les op 4)
[ ' . 1
B A =Zo(If to& og 4).

Proof. Kleene 1969, 5.10 (page 103 - 104).

Remark., Actually, a detailed inspection of the argument shows that
H=EL + (1", B,0), vwhere 1' stands for QF-AC,, (1.9.10), would suffice.

3.3.,5, Definition. We extend the definition of cp£1A and cpg1A to the

language of &Bo by insertion of clauses:

(1) oz KB = KB
1. 1 -
q (i) og KP = KB.
1. 1,. 1 _ 1 -
So r (i), q (i) may be stated, as before as ar A =4, og A = A for

A prime.

3.3.6, Theorem (Soundness for IDB ).
IDB |4 =3(IDB  to& (ox'4))
E b4 =G [ ok (03'4))

Proof. By 3.3.3 (iii) and 3.3.4 it is sufficient to establish the _1:1 -hc\g‘-
realizability for K1, K2 and each instance of X3 (cf. 1.9.18). Ve give
the verification for 31 - realizability 3§ the argument for %1 - realizability

is obtained by slight ;dditions.

(i) AaAB.(Xx.O)é1 Vo[ ¥x(ox = Sy) - Ke] .

(i1) Assume BT [00-0 & VxK(Mn.a(%%1n))]. Then

o0=0 & Vx(!(jzﬁ) [Ay.x & (jZB) | ky.xg1 K(m.a(Xxn)) .

Hence a0=0 & "xK(M.a(Xxxn), hence Ka, and therefore
AaAB. Ax.C g1 Yo aC=0 & VxK(An.a(X *n)) = Ko .

(iii) Assume

(1) Br [Wa()x.5y) & Va(a0=0& ¥xQ(An.a(% xn)) = Qa)]

(2) 'yé‘ Ka (i.e. Ko holds).

Then

(3) VY(1(51B)|)\Z.Y& (j1B)|>\z.y£1 Q{Az.Sy))

(4) Va(!(3,8) o & 3,8]ez (00-0 & TQ(M.a(Rxn)) = Qa)) .

(4) is equivalent to
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(5) Va(1(3,8) | & [Vy(i,vz' 7d(kan.a(% x 1)) & a0=0) =
= 1((3,8) @) | ¥ & ((5.8)|e) | vz Qa]).
There exists a functor ¢ such that
O£ 0= of(e,B,v) = j4B| hz.(a0=1)
@0 =0 = o] (a,B,v) >~ ((§,8)|e) | 3(hx.1,08.%](£] (s 6)))
where f|(a&,8) = An.og(<80>xn).
Using the recursion theorem analogue 1.9.16, we find a ¥ such that
2040 = ¥|(2,8) = 3,8|Az. (a0 1)
00 =0 = ¥|(ayB) = (3,B8|e) | 3(hx. 1,08, 4](£](as8))) -

Then one proves by induction over X 9§5r't. a: Ka— t¥|(e,8) &
1
¢|(a,ﬁ)gﬂ Qe (cf. Kreisel - Troelstra ¥ 3.7.2).

303.7-3¢3.13. Characterization of 31-realizability.

3¢3.7. Almost negative formulae are defined as in 3.2.9., Similar to 3.2.10

we have

Lemma. For all formulae A in the language of EL, 1{£1A is logically

equivalent to an almost negative formula.

3.3.8. Lemma, Let A(a) be an almost negative formula of EL, and let =

be a string of number- and function variables, containing all the variables
free in A . Then there is a p - functor ¢A s, such that

(i) EL |- Zo(az's) — 4

(i1)  EBL| A(2) = t¥,(a) & ¥,(a) 2 A(2)

(ii1) EL | ap A< ag A.

Proof. Quite similar to the proof of 3.2.11. We indicate the definitions
of WA :

() ¥y _ (2) Sgep 2.0

() q,3‘3’[17(61')=S(or)](i}) Zier J(fys Az2.0),
where f = Ax.(n)_ and vhere t = min [4(f )= 5(2,)]

(@) 4y gpla) = 5(4(2), vy(a)
(&) Wypan(a) = A'x. ¥y (2%)
() Wygpq(2) = e ¥y (2,0)
() ¥y_g(a) = 2la uy(2)

(ef. Kleene & Vesley 1965, Kleene 1965 ).
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3349, Definition. Let GC denote the following schema, with A

negative, B not occurring free in o
GC  Vo[A — EBBB] = EyVo[A - !v|a & B(v|a)].

3.3.10. Lemma. For any universal closure A of an instance of GC

exists a closed p-functor ¢ such that
BLF 10& o3 A, BLE 10& 0g A,

Proof, The proof is very similar to the proof of 3.2.15.

Consider an instance of GC not containing parameters, and assume

531 Vo[ A — 3BBB].

Then

Vo[ 16]a & Ve(ex & = 1(6|a)|c& (s]a)] ez’ EBBR)].
By 3.3.7-8

'¢1 | a&(\l,'1 l ar1A)<-—7A

* A A & ‘
Now put

= (6]a)| (¥, ]a), then
Vo[A ~ lo & ;jchg1 B j,‘cp] .

We must construct a p-functor x (= ¥ 6]) such that
x£1 EvVa[A = !¥|a & Ve(y|a™e = Be)].

Then ¥ must satisfy

Aot = (3,05 X [e' ]y G %)

where C(&,,v,a) 6, hiy|a.

def
Aot & D(e', 3% @ ¢) = ((3,(3x )] e) | e ' pe,
where D(e', v, @, €) Sder €'I Be.

almost

there

Note that !v|e and vy|e™e are almost negative., Hence (lemma 3.3%.8)

there is a function ¢'Yla

!Y|a(y’a) & w."Y|cr

Y|a™e> Ee'(e'gﬁ (v|a=¢)) .

1
yla 1Y (v,e)z (1v]e)
Now take x such that
Jax = lojue
JqlGox|e)fe] = iy)a

(Gl Gox]ed[ar]) | e = 5 9.

(:L,X,or) =¥ (M. j @)

ty|e
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Hence we must take for x:
1
Yo

Then AS.x ;1 - realizes our instance of GC.

_ . . . . 2
x = 3l Aae 3,9, haha' . 1Y (Ao 3, @,0); Aehe' 5 0}].

Similarly for T realizability.

g
3.3.11, Theorem (Characterization of 5‘1—realizability).
(1) EL+GCF A <> Fa(az 4).

(ii) Let H be any extension of EL for which the soundness theorem (for

=

31 - realizability) has been established, then

HF Ha(a§1A) ® H+GCFA.

Proof. (i) is shown by induction on the complexity of A, completely
similar to the argument in 3.2.18, sub (i).

(ii) The implication from left to right follows from (i). Now assume

H+GC |— A. Then H k— F—=A, F a conjunction of universally closed instances
of GC, so Hf Faler F). Also H| EB(B§1 F—A) by the soundness theorem,
therefore H |- Ea(a;; ). )

3.3.12, Corollary. H+GC is consistent relative to H for H = EL,
EL + BI!

3.3.13. Remarks. (A). Under the assumption of CT, GC implies ECTO .

To see this, we note that if
(1) Vx[Ax = JyBxy]
where A is almost negative, then also
(2) Vo[A(e0) ~ EBB(00,B0)]
and with GC
By Vo[A(e0) = !v|a & B(a0, (y|e@)0)],
therefore, by CT there is a =zc¢ V.1 such that
ve[A(x) = Hzl|aw.x & B(x, ({z}|nw,x)0)].
Now we can find a u such that
u = mx ({210 * Oyox) (min [ 12 }0 (77 x)w) £0])= 1]
and hence
Tu ¥x[Ax = !Hul(x) & B(x, {ul(x))].

It is open whether EC’I‘O and CT imply GC.
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be
(B)s Just as for ECT , GC cannotYgeneralized so as to omit the restriction

of the formula A Dbeing almost negative.
A counterexample may be constructed in a similar way as for ECT (3.2.20).
Take for A(e): Ex(ax#0) VvV " Ex(ax£0), and for
B(e,y) = (y=0 &7 8x(axf0)) W(y#0 & a(y=1) #0) . Then
Va[Ao = FyB(a,y)] = By Va[hao = !v(e)&B(a,v(a))]

is a consequence of the generalized GC, However, the premiss is valid, but

the conclusion would imply the existence of a ¥ such that
Vo[Aa =!¥(a) & B(a,¥(a)].
Since —-Aa, also (using - VeA = Ve——A, - (P=Q) = (=—P--7Q))

Yo — zz{(y('a'z),éo) & Vy<z(Y(ay)=0) & ((v(az)=1=0 & —~@x(ax£0))V
v (v(az) =140 & o(v(az)=2) £0))}.

Now let 6 be such that :8(a) > y(a) =0, and !86(a) = 8(a) > 0.

Such a & is easily defined: we put

bn=0 &> Yn=0
bn=2 if Im<n(vm=1 & Vm! <m(ym!' =0))
fn=0 if Em<n(ym>1 & ¥m'<m(vm'=0)).

It follows that
16(8) & 8(6) >0 > y(6) =0 €= " Ix(bx £ 0) > —118(86)

and since $68(8) = 8(8) > 0, we have a contradiction.
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§ 4, Modified realizability.

3.4.7. Introduction. Modified realizability was first introduced and used

in Kreisel 1959, 3.52, and later in Kreisel 1962 under the misleading name of
generalized realizability (see section 10 of Kreisel 1962). Modified reazl-
izability in its abstract form provides interpretations of the various §§w-
versions into themselves; the interpretation may be specialized (%0 an inter-
pretation in (a subsystem of) a version of g&w or into another system) by
specifying 2 model for the objects of finite type; thus Kleene's "special
realizability" (XKleene & Vesley 1965, § 10) may be viewed as (a variant of)

a specialization of modified realizability to ICF, the intensional con-
tinuous functions (ef. 2.6.2).

One of its most distinetive properties is that MPR is not validated by
modified realizability ; this was already noted and used by Kreisel (Kreisel
1959, 3.52, Kreisel 1962, Thm €) to show underivability of M, in systems
of intuitionistic analysis. Kleene used his "special realizability" to the

same purpose (Kleene & Vesley 1965, § 10), See btelow in 3.4.9.

On the other hand, modified realizability validates
IP (mA > &yB) - Ey(—A~B)

(y not free in A ) (This fact is connected with its invalidating Mop s
cf. 3.4.12 (i), 3.2.27 (i)).

This property was used (although not yet in full generality) in Kreisel
1959 B, D for proof-theoretic applications ("derived rules").

Vesley 1970 also depends on a weakened version of this property.

Below we shall describe modified realizability ( or - realizability) and
a variant ( Qg-realizability) which bears the same relationship to mr-
realizability as %-—realizability does to g-—realizability. -

Contents of the section. Subsections 2 -6 are devnted to the definition of

nr - and mg - realizability and to the soundness theorem.

In subs;;tions T, 8 gg-—realizability has been axiomatized, Subsection
9 deals with variant formulationsj; subsection 11 compares g-realizability
and gg-realizability where the objects of finite types are interpreted by
HRO .

Subsections 12 - 25 discuss the realizability and non-realizability of
various schemata such as M?R’ CT, cr,, FAN, BI, TI{<), and contain a
proof that §é+-CT0 h%ECTO. Subsections 27 - 28 are devoted to modified
realizability for HAS (relative to HRO ).

Subsection 29 applies modified realizability to obtain a characterization

of the provably recursive functions of HA: they are exactly the recursive

functions represented by closed terms of g;-géw.
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3,4,2., Definition. Let A be a formuls in a language < obtained by ex-
tending the language of }}I\-H_ﬁéw by some (possibly none) constants for
objects of finite type. Let P(A) be a property, definable in £, such
that the free variables of P(A) are contained among the free variables of
A,

We define a predicate }éﬂ_gPA ( X P-modified realizes A ), its free
variables contained among the variables free in A, and variables of the
string x (the variables of x mnot occurring free in A ) ; the types of
the vari;,bles in x and the I;ngth of x are determined by the logical
constrnction of A only.

The definition of }_cx_ggPA is by induction on the logical complexity of A.

gP(i) }_c_n_g'PA S As x is the empty sequence, if A is prime.

In the other clauses, assume xumr_ A4, Q_rtgwrPB to be well-formed (i.e. the

=P

types in x, y are correct)

mro(ii) x,ymrp (A&3B) = xor
gP(iii) Z,X,y IT'p (A VB)
wro(iv) yuor, (A~3B) = ¥x({xmr

wo(v)  xmr (Wa°) = %' (x° wr, A7)

. o o o
mro(vi) =z ,xmrp (Zy Ay xmr,Az" & P(Az ).

5.4.3. Examples. Actually, there are only two examples which are of prac-
tical interest to us.

(A)e P(A) =0=0. In this case we may omit P(A) altogether (modulo logiecal
equivalence) ; we call the resulting notion Exvar-realizability, and write
chgA for §1§§'pA in this case.

(B). P(A) =A. We call the resulting notion mg - realizability, and we

write xmghA for xmr,A in this case.

Notational convention: It is sometimes more convenient to write
o 1
AT, AO}:C, A, A‘l 2%
It is helpful to think of A as the "modified realizability interpretation"

x for x(xmrd), xmriA, 3x(xmgA), xmghA respectively.

or "mr - translation" of A, and of A1 as the "mg - translation" of A.

3.4.4., Remarks. (i-e. nol containing 3,v)
(i).  Note that the modified-realizability predicate xmri for 3I-free A
is identical with A (not only logically equivalent),

i.e. X is the empty sequence; and A& xmyA.
This remark corresponds to 3%.2.3 for g-realizability. -

(ii). xmr A<« ¥y(—ymraA), and x is again the empty sequence!
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x (iii), For all A, xmrA is a formula in the “-free fragment. This is

seen by induction on the logical complexity of 4.

2.4.5, Theorem (Soundness theorem).

(i) Let ©P(4) be = property as intended in the definition of mr, - real-

izability, satisfying

() HF A =HF P(A)
(B) E+TH P(A~B) & P(A) =H+T | P(B), or equivalently
Hi P(A) & P(A=3B) = P(B),
N-HA¥

x where H = dHéw,‘if’i-I}“Aw, Q-I}“Aw, }}_139’, W“E-‘&A;w. Then, for any closed A

Eba =3 torph
# for a suitable seqguence % of closed terms of H.
(ii) Let E' bve H+T, H
such that for H' (4), (B) and

one of the systems in (i), I a set of sentences,

(¢) Ael":gr}—l;ugpa &P (4)

for suitable sequences 2 of closed terms of H'§; then the assertion of (1)
also holds for H'.

Corollary: In particular,

(iii) The assertion of (i) also holds for H, and for H' as in (ii), with
respect to either g-realizability or gg-realizability, if we replace (C)

by
(cv) Ael =H{ tmcA (resp. HF tmgd).

Remark, In (ii), for mr-, mg-realizability, (C) is automatically satisfied

x for T consisting of Q_Fre:’formulae (by 3.4.4 (1)).
Proof. Note that the assertion of the soundness theorems for y-yw is
equivalent to the following assertion: if A(X) is of a formula of }I-@w
containing x free, then .N,_—,Héwl—A(g) ﬂy-}j.g‘”}— EEEPA(E) where T 1is
a sequence of constant terms of ﬁ-%wo Now it is sufficient to prove this
assertion by induction on the length of derivations, i.e. we show that the
assertion holds for axioms, and secondly, if F’I""’Fn = T dis an instance
of a rule, and the assertion holds for F,,...,F , and P(F1),...,P(Fn) ,
then the assertion holds for F (Again, we use Godel's system (1.1.4) for
our verification).
PL 2). Assume IxmrpAx, I'xgr, (Ax—>2x), P(Ax)y then I'x(Ix)mr, Px;
so with I" = M.I'x(Ix), I"xmrpBx.
For simplicity in notation, we omit parameters in further cases,

>B=C, P(A-B), P(B=C).

If )égPA&P(A) , then Txumr,3B & P(B) , hence T'(Tx) mr, C. Thus if

PL 3). Assume EIEPA"B9 T'or
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" = A&x.T'(Tx) , then I"mr,(4-C).
PL 7). Assume Tmr,A&B-C, P(A&B=-C). Suppose (gngPA)&P(A) .

(y wrp B% P(B), then ic,gggp&&B and P(A&3B) (since P(A- (B- (A&B)),
p(4), P(B) ). Therefore Txy mr, C, hence zuvgvA-»(B—»c) .

PL 8). Similarly.

PL 9). The empty sequence realizes A—=A: <> mrp A W

PL10). If (z°,X,purp(A VA& P(AVA), then T must be defined by cases

@zo}_cg ={x if z°=0
y if z°4o0

rPA VA—A .

=]

(one may take T kzgz.gg()\gvo.z)z), then T
et BEplA = A &),

PL11). Let ;zcxg_,:rPA&P(A) , then (0,
x.[0,x,0]mr, A =~ AVE. (Here 0
ate types.)

Let (X,ymTp (4&B))& P(A) 3 then xmrpA, hence Axy.xmr, (A&B=4A) .
PL12). xz°3__r:=c.[(14z°),;=c,3=r] mr A VB ~ BVA),

kz)é.[z,}:r] mr (A &B — B&A).

PL13). Let Zgl__rP(A-'B), P(A—B).

Assume zo,}_c,z mr,Cva, P(CVA). Then either z°=0, x myr

¥

)_(,Q)@PA VB, hence
= =7 1
is a sequence of 0" s of the appropri-

or zo#o, ngrPA and P(A). In the second case, also P(B), and
Tyoprp,B. Hence, take T' = Azogz.[zo,g,(zz)] .

Q 1). Let Fiymr,C-4y", FP(C-Ay).

z2ur, C P(C) . Then ¢t P(Ay), hence |-P(VyAy).

Then 1 yc Z orp Aya s S0 Ay.t ya z ury VycAya y and Azy.tyz or, C=s VyoAyc .
Q 2). Let xmr, vy hy , P(VycAy) s then Etog At , SO

)G_c.}_ctc mry VycAy—'Ato .

Q 3). M.[t,x]mr, (At 4y).

Q 4). Let ty mrp (Ayc-»C) s P(Ayc—»c) and assume y,X BT, HyAyc s P(EyAyc) .
Then xmrAy & P(Ay), and also $yxmrC. Hence for, EyAyc-' c.

Assume

P

Ijon:lggigal axioms.
Equality axioms and defining axioms for the constants are trivial (because
purely negative).

It remains to verify the induction schema.

Let
xmr, A0, yaur, Vzo[Az—'A(SZ)] ’
P(A0 & Vz°[Az—A(Sz)]).
We put
T = dayz.Bx(uv’.yve)z
where u, x are of the same type. Then TxyO=x, Txy(Sz)=yz(Txyz).
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By induction on 2z, we see that Txyz ggPAz s, hence
pA0 & V2°[Az~A(s2)] = V2'hz .

The preceding verification ¢f (i) holds alike for all systems JH. (ii)

Tor

is an almost immediate corollary, in view of the deduction theorem; and
(1ii) is immediate.
3.,4.,6. Remark. If we are satisfied with the weaker statement in the sound-
ness theorem

EURA S b EBx(xma)
we may replace in (iii) of 3.4.5 (C!') by

(e")  aeT =gf Gx(zugs)

3.4.7-3.4.8., Axiomatization of mr - realizability.

3.4.7. Lemma. (i) For instances Fx (containing at most x free) of

1P (A= 3y°B) - Eyc( A-B) (yc not free in A A J-free, ie.
not COI\\:A'mil\j v, 3)
or
T
AC, . %78y Alx,y) - EZ(G)TVXG A(x,zx)
s

we can find sequences of closed terms T such that

Bt TxgpPx, TxmgFx,

where ¥ - ma“, I-m", HRo

-

|

Proof. Trivial and straightforward.

(Use the notation Eg_cAo(}_g) for the modified realizability inter-

pretation here.)

3.4.8. Theorem (Characterization theorem for mr - realizability).
Let H be ‘},I‘_Aw, N-ma", 1-m% HROT or ‘E_-E__Aw or an extension in the

same language for which the soundness theorem can be established.

(i). H+IP + ACH A< Ex(xmr4)
(ii). H+ IPT+ACHA & EI- Ex(xurd).
Here AC = AC . For Hz HA® LI-HAY, Ht\o—'@_-ﬁb“’, TP may be replaced

o,Tel C,T Loy LP
Proof. (i). By induction on the complexity of Aj; consider e.g. A = B=(;
by the induction hypothesis, (B—C) ¢ (Ex(xmrB)- Fy(ymrC)) <>
V‘E(E%TB"’EX(Z@}C)) , and since xurB is ;nwthe 3‘-‘F—r:e fragment,
Eé’—BHﬁ;}ééB , hence by IP—,— AC:Vx(xmrB- Hz(zgg; C))

< G-y o) < Hixw o 0) < H(Yu (50) .

(ii). The implication <« fglio;vs by (is. Assume now H+ IP +ACH A, then

\}'I‘[— F=A for F a conjunction of closures of instances of IP7, AC; so
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Hf torF, \I’It—z'%F—'A, hence H |- t'tmrA.

3.4.9. Inessential (but convenient) variants of Dr - realizability.

FPirst we note that we have rather arbitrarily fixed, in the definition of
or - realizability (3.4.2) that the empty sequence (with the "empty" segquence
of types) should modified-realize true prime formulae.

Instead, we might have stipulated: }zcmxrA =A for A prime, where x
is a string of variables with an arbitrarily fixed sequence of types (bu; the
same sequence of types for all prime formulae) ; this would not have made
any difference in the proof of the soundness theorem and other results about
modified realizability.

Secondly, if we had based ourselves on a theory with pairing operators
and products of types, we might have redefined anl‘ir_"ﬁ as follows:

Variant I.

(1) xcx__lgA = A if A is prime (o some fixed but otherwise arbitrary type).
9129, 74%% 717
(1) x mrA&B = D'x orA & D'"x mr B.
== =~
ax(cn.xaz)
(1i1) =x mrA VB = ((D'x)0=0 - D'(D"x) mrA) & s .
= - 1
&((D'x)040~D"(D"x) mr B) , where O is a sequence O ', ..., 0
= . = =

a
such that 1%0 ' ...0 %€ 0, (o fixed, as in (i)).

(1iv) =T pr (a=3)

(v) Padal nr ﬁy':’Ayo = (D"x) mr A(D'x) .

(e)

vy (y mr A~ xy mr B) .

(vi) =T o %Ay’ B (aymr 4y7) .

Kleene's '"special realizability" is based on yet another schema. He only
needs types 13* generated by :

(i) 1 is a type 3

(ii) if o is a type, then ()0 (written as o+1) is a type,

(iii) 4if o, T are types, then so is © X7 (written by Kleene as (o,1

N

).
We then define, for all types o, T of =T2*, oxT (representing (o)1) as
follows :

(a) ox1 = (gx1)0

(p) ex(1)0 = (o XT1)0

(e) ox(r,x7,) = (exr,)x(ox1).

It is obvious that we can construct functionals ¢ s §"’ . such that

C,T 14
(QG’TXG*T):YGET’ @é,Tx(G)Tea*T, QO‘,T and %,r are inverses, and
% 1xa*1 - lyuhzo.x°*1(Dyczo)
’
o)1 C Xo o)1
g =% w0 O (o) 0y
% XU’*(T)O )\yczT.X(Dyz)



219

0, (ot = T x(0ry), ()
’ Xc:"‘(’1’1><'r2)
Q,(T1XF2)

£ T%72) _ 5(a%p1 (x5)) (g% (7))

(D"x)y")

[~4 =]
Ay .D(QG’T1(D‘x)y )(@c,T2
Ql
U,(T1XT2)
Now we may construct
Varient IT.
(i) x1g£'A = A (if A 1is prime) ;
(ii), (iii) (with e =1), (v) as in variant I;
(iv) " mr(a-B) = W (ymzA = (8, X)ymre);
Z= o = , ==

vy (3,  x)ymray) .

n

(vi) = *Tmr vyTay®

Kleene's "special realizability" may now be seen as based on variant II, with
the ICF as model for the objects of finite type (modulo inessential coding
differences).

The G - realizability of Moschovakis 1971 may be viewed as based on a
slight modification of variant I (with o©=1 in clauses (i), (iii)), with
ICF" as the model for the objects of finite type.

It is usually convenient to use variant I, when we wish to interpret the
objects of finite type in the study of modified realizability. So, if we
wish to interpret N_—ILA:) by HRO or HE0O, we take ©=0 in clauses (i),
(iii) of variant I; if we wish to use ECF, ICF or ICF , we use = 1

in clauses (i), (iii).

3.4.10. Notational convention. If &x(xmrA) has been proved in H, we

shall say that A is H-mr-realizables; and similarly for H - mg - real-

==

izable.

If Sx(xmrA) holds if we interpret the objects of finite type by a

==

model M, we can say that A is M- mr - realizable; and if this fact can
be established in a theory H', we sh;II say that A 1is E',M-gg_--real-
izable, Similarly with mq replacing mr, -
Remark. The set of M-mwrh- reglizable, E' - mr - realizable formulae is
closed under deduction (p~rovided H' satisfies some obvious requirements,

which are fulfilled in all relevant examples of H' ).

3.4.11, Comparison of HRO -

-realizability and r - realizability.

mr
Let usV¥variant I of 3.4.97with 0=0 in clause; (1), (iii)) for mr -
realizability, and HRO as a model of E-I}A;;. Thus we obtain an inter-
pretation of EA in HA; let us dencte this interpretation zlso by xmra.
This can also be defined directly, as follows. We first associate wi‘;h

each formula A a domain of definition DA s a unary predicate, by induction
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on the logical complexity of A. DA depends exclusively on the logical

structure of A.

(i) D,x = [x=x] if A is prime (x not free in A).
(i1)  Dyq(x) =D,(5,x) & Dy(5 %)

(111) Dy p(x) = (§,x=0=D,(J,%)) & (J4x£0~Dy(3,x)) .
(iv) D, 2(x) = w(D,(y)~txl(y) & py(Ix}(y)) .

(v) Dy, (¥)=D, (3,¥).

(vi) DVxAx(y)E vx(!yl(x) & DAX({y}(X))) .

(A literal use of variant I would have required

sy = .. ..

(11i') Dy \p(x) = D, (343,%) & Dp(3,3,%)

but our deviation is inessential, and gives a slight technical simplifica-

tion.)

Now we define xmrA by

mr (i) xmrA = A for A prime (x not free in A ).
;é(ii) xn;;;A&BE (j1ng&j2x¥B).

mr(iii) xorA Vs = (j,]x:O—‘,jzxx:lgA) & (j1X¥O—-j2xmé£B) .
mr(iv) xorA-B = DA—*B(X) & Vy(ygA-‘l{X}(Y)& ixi(Y)gB) .
nr(v) xor ByAy = jzng(j1x) .

mr(vi)  xmr WAy = W(ixl(y) & ix}(y) nray) .

with a similar change in mr(iii),
Note : If (iii) had been replaced by (iii'),Ywe would have obtained exactly

HRO-mx:_r_'-realizability (say xme! A). We leave it to the reader to verify
by a routine argument that HA = Ex(xmz_z.ﬂ.) <> Fy(y g' A), by induction on
the logical complexity of A.

As induction hypothesis one should use a slightly stronger assertion, namely

the existence of numerals n,, ElA such that

{»—ng -*:{ﬁA}(X) & {ﬁA}(X)g'A

{—xr&g‘A—'!{xﬁA}(x) & {aAf(x)g A
and - DA(x)-z{ﬁA}(x) ,

F o)~ s, J(x)

{here D] 1is the predicate obtained by using clause (iii)" instead of (iii)).
It should also be noted that xg;;A automatically implies DA(x) by
our definitions.
It is now obvious that the essential difference between HRO - mr - real-
izability and z- realizability consists in the additional requir;;;ent in
the case of implication: DA__)B(X) s so that {X} is not only a partial

recursive function defined for each y such that ymrA, but defined for
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all y such that DA(y) . So the effect of using types in the definition of
modified realizability is, when interpreted in this model, that a minimum
domain of definition is prescribed for the realizing operations which depends

only on the logical structure of the formula to be realized, not on its truth.

3,4.12 - 3,4.25, Realizability and non-realizability of various schemata.

3.4,12. Theorem.
(1) Mo, is not HRO - mr - realizable, nor EL, ICF-mr-realizable;
(ii) ¢CT is HRO™- mr - realizable, but not  HEO - mr - realizadle.
cr, (w.r.t. vag—T is HRO™ - gr - realizable, hence also HRO-pr-
realizable.
Proof. (i) Either direct: if F = Vx[- 8y Txxy = 8 Txxy] then the umr-
translation F° 1is logically equivalent to Ez1Vx°[—| Yy " Txxy = T(x,%x,2x)] .
HRO-g-realizability would imply the existence of a recursive =z such that
on[—! Vy 7 Txxy = T(x,x,2x), which would imply the recursive decidability of
By Txxy . Or indirect: IP and CTo are HRO-g-realizable (3.4.7 and (ii)
below), hence by 3.2.27 (i), M, cannot be HRO - mr - realizable.

Similarly, we cannot prove in EL that Zo x[- ¥y Txxy = T(x,x,m)],
since this would imply a proof of the existence of a non-recursive function
in EL (contradicting e.g. 3.2.30).

(ii) The I—_'I‘ljl(_)-rg:r-realizability of CT is immediate from the axioms for
HRO™ (2.4.10). Then obviously CT 4is also HA, HRO - realizable.

Since AC is }&Q'-g—realizable, cT  is g&q’-g-realizable and HA,
HRO - mr - realizable.

CTmis not HEO -mr - realizable, since this would require
[CT]O = szu(1)(o)° \.7;1 50 (T(zx,y,uxy) & xy=U(uxy)) to hold in HEOj; i.e.
we would require an effective operation which would assign a godelnumber to
each recursive function, depending on the extension of the function only,
which is obviously false (e.g. by the well-known example with fnx=o if
—1Tnnx, fnx= 1 if Tnnx s recursive decidability in n of i‘n= Ax.0 would
make &y Tnny recursive. Another argument appeals to the Kreisel - Lacombe -
Shoenfield theorem (2.6.15)).

3.4.13. Corollary.

(i) My, is underivable in HA;
(i1) HA+IP+ CT ~ is consistent relative to HA;
(i1i) HE+IP“+AC+CT, for H = EAY, N-EA", I-HA®, HRO™ is consistent

relative to H.
Proof. Immediate by 3.4.12 and 3.4.8 (ii). For more refined consequences of
3.4.12, see § 3.6, An application of (ii), due to Beeson, is given in 3.4.14

below, settling the relationship between ECT, and CT, s ECT, is not deriv-
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——~

able from CTo in HA.

5.4.14. Theorem (Beeson 1972). HA+CT_|AECT ; in fact, HA+ECT +IFP
is inconsistent.

Proof, Put

Az = =V¥n = T(z,z,n) = EnT(z,2,n) ,

B(z,u) = 7¥n = 7T(z,2z,n) = T(z,2,u) .

A is almost negative. We shall derive a contradiction in %+ECTO+IP;
the first assertion of the theorem then follows from 3.4.13 (ii). 1In
HA + ECT

——~ o

(1) Yz[Az = TuB(z,y)] = Zv Vz[Az- Iw(Tvzw& B(z,Uw))].
With IP Az < FuB(z,u), hence by (1) there is a2 v such that
(2) Vz[Az - Zw(Tvzw & B(z,Uw))] .

Since Vz DAz, also

(3) Vz —— 3w Tvzw
and also
(4) Yz Vw(Tvzw = (% Tzzu Vv Ju Tzzu)) .

(To see this, note that HuTzzu implies Az, hence B(z,Uw); and since

Hu Tzzu = D Vu—1Tzzu, it follows when combined with B(z,Uw) that T(z,z,Uw).
Hence JuTzzu <« T(z,z,Uw).

Now apply ECTO to a rewriting of (4) :

Vz[ Bw Tvzw = (- & Tzzu vV 3u Tzzu) ]

and we see that we may assume for some v,

(5) Vz[ 8w Tvzw = Ew [Tv zw & (Uw =0 = —%u Tzzu) & (Uw_ > O = ZuTzzu)].
We define v, = Az.minW(Tvozw&UW=O) . Then
IwTvv,w = Aw_ Tv v,w_3
1 o o 1o
let Tv vyw ; if Uw =0, then HJuTv,v,u, but also by (5)
Uw =0~ "8ulv,vyu; if UW0¥O s then " FuTv,v,u, but by (5) Hu TV, V4 .
Hence —& Tvv,w; but this contradicts (3).

3.4.15. Theorem. CT is not ICFr—gl;-realizable, but WCT:
wCT Vo =1 Ex Vy qz[Txyz & ox = Uz)

is EL, ICF -mr-realizable, and BL, ICF -mg- realizable.
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resulks conkainad in,
« Hemark. This result is very similar to, and was suggested by, Noschovakis
1971.
Proof. ICFr-g-realizability of CT 1is refuted utilizing the fact that
all objects ofv:c-ype 2 are continuous in ICFT. For, ICFr-ng'-realizabili—

ty of CT would require the existence of X2 s 2(1)(0)0 such that
2
Va¥y[T(x a,y,2a0y) & ox=TU(zay)],

. . 2 . . . .
which of course would imply x & to be a continuous in «, which is obviously
false,

On the other hand, wer®  is

(1) Vx1ﬂVy°Vv1‘le°[T(y,z,vz) & U(vz) =xz] .
We also have, in 1CcFT

Vx| S_yoﬁv1 v2°[T(y,z,vz) & U(vz) =xz],
which may be weakened to

x| % - EV1VZO[T(y,Z,VZ) & U(vz) =xz],

Vx| &’yc'ﬂ"fv‘1 - vz°[ T(y,z,vz) & U(vz) =xz] ,

which in turn implies (1).

1

The ICFr-gg-realizability follows by observing that in EL WCT «> Wl

3.4.16. Theorem. FAN is (EL+ FAN), ECF - nr - realizable. (Kreisel 1962)
Proof. FAN may be stated as follows: (% = Aa.x.sglox))

Vo Tx A(3a,x) = Bz Va Ty VB((ZTa)z = (3B)z - A(8B,y)) .
We carry out a derivation in §-&w+IPw+AC+MUC (2.6.4).
Assume Vo ¥x A(%a,x). By AC, Az° VaA(@a,zza) . Hence by the axiom MUC:
— 2 — 2 2 2
7a¥8((F2) (v, ,2%) = () (5, 2°) ~ 2° (%) = 22(28))

and therefore %z Yo 3y VB ((Za)z = (¥8)z — A(8B,y)) .

3¢4.17. Theorem,

(i) WC-N is not ECF(U ) -mr-realizable, for any universe ¢ satis-
fying EL.

(ii) WC-N is EL, ICF - mr - realizable.

(iii) WC-X 4is IDB, ICFTTEE - realizable.

Proof. (i) This can be show;lwby paraphrasing Kreisel's counterexample in

2.6.5. If we define

Mayx) = o 2 <3, (2t 1) (am=0) & a(d,(x=1) +1) > 3,(x1)
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B(X,a,y) Edef [(X:O“y:O) & (X#O"{(A(Q,X)"’}r:'l) &
& (ﬂA(QUX) ~y=0) I)] .

Yhen obviously
EL |- Vx Vo 3!y B(x,a,y) .
For x=0, B(0,w,y) intuitively represents the ¥, of 2,6.7 1i.e.

Yip(xz1),1 OF 2.6.7,
with m = j1(x—'-1) , so if x = j(mo,m)+1, then B(x,a,q)m 1a) for all «o.
b

VQB(O,a,cpoa); for x£0, B(x,a,y) represents the

Application of WC-N would yield

¥x Vo Bz 31y VB(az=Pz — B(x,B,y)) .

(o) (Mo,

If WC-N were ECF-mr-realizable, we would have to find 2
Y(O)“)c> such that

a(2xe) = B(Zxa) - B(x,B8,Yxe) .

Now YO must be equal %o \Po . Y(j(mo,m) +1) to qam’1 (as is seen by
taking «=8B). Then, by copying the remainder of the argument in 2.6.7, it
follows that we cannot find a solution for 2.

(ii) We can show WC-N to be mr - realizable in }:T\—ELA;“H MC  (2.6.3),

since

=]

T Vo 8x° A (o,x)

X

i

means
Xour EXOA(a,x)

so xa can be written as (zza,;;:m) , and
ZangA(a,zza) .

On the other hand, mr-realizability of
Vo &x Fy VB(ex=Bx - A(B,¥))

is equivalent to

@) ™YY Vo ¥B(a(Xa) = B(Xa) = UaB gA(B,Yor)) .

If we take for X mmczz , for Y 22 s and for U yB, then (1) i; satis-
fied, The construction of the desired X,Y,TU being uniform in 2z ,y ,
WC-XN is g-realizable. Since ICF can be shown to be a model for—
y-&w+MC in EL, the assertion of the theorem follows.

(iii) Similarly, using IDB instead of EL.

3.4.18. Theorem.
(i) g}vl_l+WC-N+IP1+WCT is consistent relative to IDB;
(i1) g-%‘“+wc_N+IP‘+ AC+WCT is consistent relative to IDB;
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(1ii) N-HA"+WC-N + IPT+AC+WCT HOT.
17,
Here IP is

1P’ (WA~ ZaB) = Jo(-A-B) (@ not free in 4),.

Proof. (i), {(ii) are immediate by 3.4.17 (iii), 3.4.715, 3.4.7 35 (iii) by
(ii) and 3.4.75.

3.,4.19, Theorem. FAN is not ECF(R) - mr - realizable.
Proof. We proceed similarly to the proof of 3.4.17. Now we use 2.6.10 and
represent the o defined there by

Ala,n) ERn & Ym{m<n »—Rm & aen.

Obviously, if o ranges over K, VaEinA(a,n); application of FAN then
yields a statement which is false in ECF(K) by 2.6.10, hence certainly
not ECF(K) - nr - realizable (if we keep in mind that Ao(a,n) <> A(a,n) ).

3.4,20, Lemma. BIM is provably mr - realizable in a theory
v-HAY + BR_+ BI
Sl o o D

1 - -
(M 22 x 2y © Ty | (x(y) =uly) = zx=2u) .

+ continuity axiomy; the continuity axiom is formulated as:

Proof. The modified realizability interpretation of the four premisses of
BI takes the form

M
(1) 22X Vo P_(&(Xa),Z0)
(2) v Vnoz(Po(n,z)-‘Qo(n,Zonz))
(3) %, n°n°z (Po(n,z) & m>n - Po(m,Z1nmz)
(4) 322 Vur( Vy Qo(n*j\’,uy) - Qo(n922un)

where P°(n) = 3z Po(n,z) , Q%n) = 3 Qo(n,u) (for simplicity in notation
taking single variables 2z, u instead of 3z, u ), and where we have modified
the third hypothesis in BIM to Vnm(Pn & ;13-n—>Pm) .
Let fn denote the seguence bc(n)x.

The modified realizability interpretation of BIM now requires that

given X,2,2Z ,2,,2, asin (1) -(4), we can construct a U, uniformly in

2
Xy2, 2,245 %, such that

Qo(n,Un) .

Such a U 4is constructed by taking
X(fn) <1lth{(n) = Un = Zon(Z,l(fn(an))n(an)) ,
X(fn) >1th(n) = Un = Z2(?\y.U(n*§))n .

By BRO we can find a U' such that U‘XZZOZ,'Z2 =U. Tn see that U

satisfies our requirements, we note that, if we take for
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1]

Pn
Qn

X(fn) < 1th(n)
Qo(n,Un)

1]

then we find, since X is continuous: Vg Ex(X(faX) < x). Also, Pn
implies X(fn) <1th(n), hence Tn(X(fn)) <nj also Po(fn(x(fn)),an),
hence Po(fn(an), Z1(fn(an))n(an)), and therefore
Qo(n,zon(z1(fn(an))n(an))), i.e. Qo(n,Un), 50

Pn - Qn.
Also
Pn v Pn

and finally, if VyQ(nxy), then this implies, assuming X(fn) >1lthn ,
that VyQo(n*-§, U(nxy)), therefore by (4) Qo(n,Zz(Ay.U(n*-ﬁ))n), i.e.

Qo(n,Un); hence also
VyQ(nxy) = Qn.

Applying BID yields VnQn, which we had to show.

Remark. For the Dialectica interpretation, Howard (in Howard 1968) manages
to interpret BIM by BRO, without the additional help of BIM itself,
The treatment does not carry over automatically to modified realizability,
however 3 presumably the lemma can be improved, and also extended to bar
induction of higher types (under suitable additional assumptions). Tor lack
of interesting applications,at present, we have refrained from carrying this

out.

3+.4421, Corollaries. In @}4-BID it can be shown that in ICF and ICFr

BI, is mr-realizable (cf. Kleene & Vesley 1965, 411 , Moschovakis 1971).

Proof. Combine 3.4.20 with 2.9.12(which also applies to ICFT).

3.4.22, Modified realizability for HA+TI(<).

Let x ©be a sequence of length n, with types Tqreeesd - Tor any

given primitive recursive well-ordering < of the natural numbers, we can

define in y-—g&w a sequence of constants C such that (L provably linear
* * mHA )
u>v = Cxuv = 0°"  (where 0° = o%1,...,0%)

u<v = Cxuv = x.

Let us consider N-§§w+-T<4-TI(<), where T_ denotes a defining axiom for

§

A

a new sequence 5 such that:
T §<§u = §u(kv.g(g<§v)vu) {(u,v € 0)

( Av the defined \-operator). Then we have
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3.,4.23, Lemma. TI(<) is E—%w+T<+TI(<)-gvx_‘-realizable.

Proof., Assume

wor Yu( (Vv <u)Av = Au),

—
==

Vu(vzvug (Vv <u)Av = Au),
hence
Vulv'(lv' mr (Vv <u)Av - wuw! IgAu) ,
which is the same as
(1 Yuw!' ((¥v < u)(vzv'vrgéAv) -ﬂy__vuwv__‘r'lfé‘.&u).
We wish to show
1;{< ¥ or VyAy .
By TI(<), it is sufficient to show
Vu(’v’v<u(¥__i<v:vvz_l£Av) - li<v=vumeru) .

If (Vv<u)Ij<v_vvg_£Av, then also Vv<u C(E“wv)vumrAv, since

v<u - Q(I_{<v_\_rv) = 13<\_1_vv . Therefore, by (1)

wu( . C(R wv)vu) mr Au ,

<
so R nr Au .

-
= ==

3.4.24. Lemma. In HA+TI(<) HRO, HEO can be shown to be models for

Ii—@éw+ T<+ TI(<) . (< proVably Linear in \1&)

Similarly for ICF, ECF in EL+ TI(<).

Proof. We give the proof for HRO. HEO only requires an additional ex-

tensionality verification; for ICF, ECF the proofs are very similar,
Because of the presence of pairing in HRO we restrict our attention to

the case where x = x (a single variable), I_i< = R<, hence also C = C,

Let [C] be the numeral such that ([cl,e) for suitable © represents C

in HRO. Then

w>v = {[c]}(x,n,v) = [0°"]
u<v = {[c]H(x,u,v) ~x.
We wish to construect n such that
{ﬁ}(x,u) =~ {x}(u, Av.{[C]}(fﬁ}(x,v),v,u)

S if xeV_, RS e (r)(0)rr.

We easily find an m such that

and mne V(T)(o)

@1 (n,x,u) = {xb(u, av. {{c]HUnl(x,v),v,u) 3
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the recursion theorem yields n as required. Then by an application of

TI(<) one establishes ne V(T)(o)‘T' .

3.4.25. Corollary. (i) TI(<) is HA+ TI(<) ,HRO -mr - realizable.

(11) Vpp 1is not derivable in HA + TI(<) + IP,
etc. etc.

Proof. Immediate, by 3.4.23, 3.4.24, 3.4.12 (i).

3,4.26, For modified realizability in a context of theories with generalized

inductive definitions iterated once or twice, see § 6.7, § 6.8.

3.4.27. Modified realizability for HAS.

It is possible to extend the "abstract" (i.e. not relativized to a model)

modified realizability to HAS Dby using Girard'!s system of functionals
described in 1.9.27 3 cf. the analogous extension of the Dialectica inter-
pretation in the next section (3.5.21), which is even more complicated.

It is simpler, and yields a more direct application, to describe HROZ-
mr - realizability for HAS , as an extension of the definition in 3.4.11
;’;ove° We use HRO2 as described in 2.9.7, with the godelnumbering satis-
fying {0}(x) =0 for all x.
Then HRO -gg-—realizability is obtained by extending the clauses Eg(i)-

(vi) in 3.4.11 by adding to the clauses (i) - (vi) for D,

AN = 17! x 1 1 1 : 5
(i) Dvpx Uj(n,i)’ where U!, Ui, U5, ... 1s a sequence of variables for
i
unary species containing O (the addition of such variables is obvious-
ly a conservative extension of §é§). We shall write D n for
Uy LA
j(n,i)
(viii) DEXA(X)(X) = SDX(DA(X)(X))

and adding to the clauses gg(i) - {(vi):

. n = +1
gg(l)' nglvi(t1’°'°’tn) = V? (X9t1,---9tn) & D n(x)'

vy

We shall write X* for the V§+1 corresponding to V? =X,
or(vii) xmr YXKA(X)= W'D, (x mr A(X))
or(viii) xnr A(X)= B‘X'DK(XEA(X)) .

Similarly we may define ICFZ-g;-realizability (ef. 2.9.7).

o

HROZ-g;- realizability as defined here is introduced in Troelstra A and 19 T1A.

3.4.28. Corollaries.
(1) HAS+ 1P +0T_ is consistent relative to FAS

HAS + ip +CT, 1is conservative over HAS w.r.t. negative first-
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order formulae.
(i1) Mpp 1is not derivable in HAS+ (T, +IP.
Proof. (i) The consistency follows by establishing the soundness theorem
for }_{.VA§+ 1P + C’I‘0 , and HRO -gg-realizability; the conservative ex-

tension result follows by proving

Og;A «> A

for all negative formulae of Z(HA) (by induction on the logical complexity
of A).

(ii) M, is refutable in HA+CT_ +IP, and HAS+IP+CT  is consistent
relative to HAS (ef. Troelstra A , § 4).

3.4.29. Theorem (Characterization of provably recursive functions).

Each provably recursive function of HA 1is represented by a closed term of
type 1 in lj-HAw, and conversely. I.e.

HA - Vx @y Tnxy = §s1(l_§{- g_l.;_w F Vxy(Toxy- s1x=Uy)) and conversely

1 -
¥s v@n(lj-v@w[—\fx Ty (Tnxy & s1x=Uy)) ,

where 51 ranges over closed terms of type 1 of y-vHAw.
Proof. 1In one direction, we use modified realizability : if HA |—VX Ty Tnxy ,

then by the soundness theorem for mr - realizability, for suitable t1

y-m" b 7(F,x,t )

So we may take s = )\x.U(t1x) .

Conversely, we may for example appeal to 2.4.14 and find that
1
g[—_HvA_wi- {[s']}(x) = s'x,

1
where ([51],1) is the standard representation of s in HRO.

3.4.30. The theorem automatically extends to other theories such as HA + TI(<) ;
the provably recursive functions correspond exactly to the closed terms of
type 1 of N-HA"+TI(<) +T_, in view of 3.4.23, 3.4.24.

Quite similar results may be extracted from the Dialectica interpretation,

discussed in the next section.

3.4.31, The concept of HRO - pmr - realizability, as described in 3,4.71, can
also be generalized to HROA -E'_r-realizability. Here HROA is defined as
HRO , but relative to A-partzg.l recursive functions., Combining this with
the ideas of 3,2.32 on A - realizability, and the argument in 3.4.12 (i), we

can show that I;I.A;+M is not finitely axiomatizable over HA .



230

§ 5. The Dialectica interpretation and translation.

3,5.1. Introduction. The Dialectica interpretation and translation were
first introduced in Godel 1958, for intuitionistic arithmetic. The purpose
was to provide a consistency proof for intuitionistic arithmetic (and hence
for classical arithmetic) by eliminating "logic" (i.e. quantifiers especially)
by an interpretation of an arithmetical statement by a quantifier-free
formula in a theory of objects of finite type, where the concept of a con-
structive (computable, in Godel's terminology: "berechembare") object of
finite type was to be regarded as primitive and intuitively evident.

Hence logic was to be eliminated in favour of a suitable basic concept of
object of finite type. From footnote 3 in Qéigl 1958, and in view of 3.5.6
below, it seems that a concept with decidable equality at all types as a
primitive was intended *.

In Xreisel 1959, and in Spector 1962, which apply the interpretation to
intuitionistic analysis, only equality between objects of type 0 is taken
as a primitive ; equality between higher type objects is interpreted as ex-
tensional equality. Howard 1968 cortains simplifications and refinements of
Spector's work. (For a discussion of the r6le of extensionality, see 3.5.12 -
3.5.15 below.)

A characterization of Diaslectica interpretable formulae of ﬂgs-géw was
first given explicitly in Yasugi 1963, after Kreisel already noted that
(weakenings of) AC, TP , M implied the equivalence of a formula with its
interpretation (c¢f. Kreisel 1959, 2.11, 3.5.1) and showed the interpretabili-
ty of M (Kreisel 1959, footnote 1 on page 113). For a correction to
Yasugi 1963, see the review Troelstra 1972,

Contents of the section. 3.5.2-3.5.3 are devoted to the definition of and

the motivation behind the Dialectica interpretation.

In 3,5.4 the soundness theorem is proved, 3.5.6 gives a counterexample due
to W.A. Howard showing the decidability of prime formulae to be essential
for the Dialectica interpretation.

3¢5¢7 = 3.5.11 are devoted to the axiomatization of the class of Dialectica-
interpretable formulae, 3.5.12 - 3.5.15 to the interpretability and non -
interpretability of the extensionality axiom, with an application.

3.5.16 lists some miscellaneous properties regarding the Dialectica inter-

* This, however, conflicts with the suggestion in the last line of Godel 1958,
since 3-—§§w requires for its Dialectica interpretation non-extensional
functionals (e.g. to interpret Ea } yi2lding functionals disccntinuous on

the binary tree, thus not satisfying the far. theorem (e¢f. 3.5.6 below).
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pretability of CT, CTO, C-N, FAN, IP relative to various models of y—v@w.
3.5.17 describes the Diller - Nahm variant of the Dialectica interpretation,
which yields an interpretation of y-%w in an "almost quantifier-free"
fragment of E-%w, and which does not require in the proof of the sound-
ness theorem decidability of prime formulae.
3.5.18 describes the extension of the Dialectica interpretation to stronger
systems, Since these extensions have already been discussed in some detail
in published literature, we have restricted ourselves to a brief indication
of the principles of the extensions, and a fairly detailed heuristic account
of the motivation behind Girard's extension to theories with species variables.
We have not discussed Parsons 1970, 1972, since they deal exclusively with
%c and subsystems of VH‘,}“C (tut based on classical logic).
3.5.2. Definition. To each formula of i{ljéfb] or i[a-@éw] or #[HRO Jwe
assign a translation AD = 83=< V3=rAD(}=c,3=r) in the same language. The types of
X, ¥y depend on the logical struciture of A only; the free variables of
1—\. _are contained among the free variables of 4, AD is quantifier-free.
The definition is by inductior on the logical complexity of A.
a(i) If A is prime, then AP Ay = A
D

1]

For the other clauses, let A

m
1%
el
.
]
P
"
e
td
I
g
g
td
[e)
(f<
<

a(i1) (4&B)" = Zxu Vyy[A&B]y = Exu YyylA (x,y) &3, (u,)],

a(11i) (A vB)® = 5% vyy[A vB), =

32%xu Vyy[ (z=0~ A, (%)) & (240~B (n,7))].

a(iv) (8zaz)®
D

dzx Vy(HzAz). = Hzx Yy A (x,¥,2) .
9 D T Apl\ied

a(v) (VzAz B Vzy(VzAz)p = X Vzy A (Xz,y,z) .

d{vi) TFor the sake of clarity, we describe the construction of (A-»B)D

in a number of steps:

(A—'B)D = (Z Vy A= Fu Vv BD)D = (a)
= [Vx(vyA ~Zu ¥ )I" = (b)
= [Veau(iya = ¥wB)) = (¢)
= [V fv(Vy Ay —B)]0 = (d)
= [ve s wag(ay=5y)] = (e)
= [30Y Vxy (A (x,Yxv) = By (Ux,v)) ] (£)
(a=3B)p = Ay (x,Yxy) = By(Ux,v) .
Note that with classical logic and AC, AD = A for all A. In fact, for
prime 4, AD = A, and for conjunctions, disjunctions, extensional guanti-
fications (A&B)D — AD&BD, (A VB)D — 4 VBD, (EzA)D > mza° , even
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intuitionistically ; (VzA)D —> vzaY with AC , and (A- B)D “ (AD—»BD) by
AC and classical logic as an inspection of (a) - (f) shows. For a more
refined result see lemma 3.9,7 below.

Note also that (i) for formulae A = Zx ¥y B, B gquantifier-free, AP = A,
and (ii) for B quantifier-free, (ﬁ‘ﬂS§§)B_E Cﬂvz'ﬂB)D = Gx 3B {(which is

equivalent to ¥xB if prime formulae are stable, as in the above thecries).

3.5.3., Motivation. The motivation for the particular choice of interpreta-
tion is twofold. If we first consider A = A= 1=0, as a simplified in-
stance of an implication, we find

D
)

(—A

A Vx— A (x,Yx)
) = = D ===
(m—4)

VY- DA (XY, Y(KD)) -

This should be compared with the so-called no-counterexample interpretation
(Kreisel 1951) of a statement of arithmetic 4.
Assume —A to be brought, first into prenex normal form, then into IV~ form

by means of Skolem functions :

ciglt PO - % SRET B(x1,f1(x), xz,fz(x1,xz),...)

= A  then becomes (classically)
VEE, eee Bx X, .0 "IB(X1,f1(X1), X9 ceo) .

So the impossibility of a counterexample (i.e. —A ) is demonstrated by

functionals F1, F2, «es such that
——]‘B(F1(f1’f2"")9 f1(F1(f1’f29'°'))’ Fz(f19f2"°')9 "')9

which corresponds to the Dialectica interpretation of ——A4 (ef. also
Godel's explanation in géggl 1958, end of page 285 and top of page 286).
Secondly, the purpose of the Dialectica translation is, to transform an
arbitrary formula of géw or y-g&w into dV- form, One may ask why the
particular order of shifting guantifiers to the front in the case of implica-
tion (lines (a) - (e) in 3.5.2) has been chosen: any other order of shifting

to the front, using the classical laws

(1) (¥xA—B) ¢ Fx(A-B), (A-ExA) <> Ix(A-E)

and the intuitionistic laws

(2) (ZxA=B) e Wx(A=B), (A= ¥xB) ¢ ¥x(A—-B)

combined with AC would also have resulted in an dV- form, But the partic-
ular transformation chosen in the Dialectica translation is such that the
applications of (1) needed are as weak as possible (i.e., A of minimal

logical complexity) so that the transformation may be expected to remain as

close as possible to the intended constructive interpretation.
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This impression is confirmed by the fact that even A—4 for suitabdble
asks for non-recursive realizations for its ¥V- transform in all cases
except the Dialectica HV - transform,

The other possibilities of shifting quantifiers to the front are

(2 ¥y A — Hu Vv B) v Vx Juy ¥y[A—3B] (4)
+ Hu Vxv Gy[A - B] (B)
+ Fu Vx3y Vy[A-B] ()

(A) yields with AC
(3) ay Vxv[A(x,Yx) ~ B(Tx,¥)].

For A =B =—Tzxy, a recursive realization of (3) asks for Uz’ YZ re-

cursive in =z and other arguments such that
va(fT(z,x,sz) ﬂﬁT(z,sz,v)) .
This yields
—lT(z,x,sz) - Vv 2 T(z,u,v)

and this would make Eu Vv —Tzuv recursively decidable, hence a contra-
diction follows.
(B) yields with AC

(4) BuY Vxv[A(x,Y¥xy) = B(uw,y)].

Ve apply again to A = B =-1Tzxy; for a recursive realization we are re-

quested to find YZ, UZ recursive in their arguments and =z, such that

Vxv( ‘vT(z,x,szv) -~ T(z,uz,v)) .

Hence

va(T(z,uZ,v) - T(z,x,Yva)) s
i.e.

Vv(T(z,uz,v) - T T(z,x,szv))
= v T(z,u_,v) = Vx 3w T(z,x,w)
= (HvT(z,uZ,v) © Vx 3w T(z,%,w)) .

This would make a complete 1'12 ~ predicate equivalent to a 2(1) - predicate,
which is impossible.
(C) yields with AC

BuY Vxv[A(x,Yx) = B(u,v)]

which is a special case of (4).
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2.5.4 Theorem (Soundness). Let H = g&w, I-HA, VWE-HAT, g&g-.

Then, for A(z) containing at most z free

1 A(z) =of -H A, (tz3,2)
for a suitable sequence % of closed terms of K.
Proof. We apply inductiog on the length of deductions in H; as our logical
basis we take Godel's system. For definiteness, we shall suppose the veri-
fication to be given first for H = %:-géw; afterwards we comment on the
minor changes needed for the other systems considered.

Logical axioms and rules.

(1) AD(Z’IE’ X’ Z)

(2) hp(x, Dozxv, z) = B(T52%, ¥,

e
~
.

We have to construct Th such that

Bp(Ly2s ¥ 2) -
Apply (1) to g = T,zxy, then Ap(T,z, T,2xv, z).
Take x = @15, then

4p(T4zs T,2(T42)7, 2)

Ap(Z42s D227, 2) = By(T152(242), ¥, 2)
and by PL 2

Bp(232(242)s ¥» 2) .
Take now for Tﬁ: 15.235(215).

In the remaining cases we shall not consider additional free parameters.
PL 3). Assume
(3) Ap(x, T,xv) = Bp(2,%, ¥)

We wish to find TS’ T6 such that

Ap(%s Zgxw) = Op(Zex, ¥) -

Take for u in (4) T,x, and take for ¥y in (3) £3=z; then
Ap(xs 24x(25(I2)W)) = Bp(Tpx, 25(T0)W)
Bp(Zpx, T3(T,x)W) = Cp(T,(T,%), W) .

Then

Ap(z, T4x(23(Ix)w)) = Cp(T,(Tox), W) .
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So we may take T5 = klcg.(gﬁ(g}(gz;:c)z), T, = )o=c.T4(T2}=c) .

PL 7), PL 8). Let P = 8p Yq cD(g,g) .

D
Then (4&3-0)" = (Sxu Vyy(a &By) ~ & ¥ C

o)
a) & By(u, ¥xug) = Cp(Pxu, ),

EPYV v%EE(AD(§’ Y

and

D
(4 = (3-0))” = (& Vy Ay ~ PV Yua (Bp(u, Yua) = Cp(Ru, 9))) =

TEY Veua(Ap(x, Yxug) =(Bp(u, Txua) = Cp(Pxu, o))
which is equivalent to (AJ&B'*C)D. Hence the two induction steps are obvious.
PL 9). (1=0 = A)D = (1=0 = vy AD(;{Z))DE BxVy(1=0 - AD(;:c,,Z)) can be trivial-
ly satisfied, by any E of suitable type.

PL10). (A vA —2) = (B2%xxt gy [ (2°=0 ~ A (x,y)) & (%0 ~ A(xthy))] =

D
- ED_C:" Vzu AD(}éll’zH)> = m|):(1| Vzoié:»zc‘z"{[(zc’:() - AD(}=[9 EZOXX'Z”>) &

& (2°40 = ay(xts 127my"))] = Ap(xna’xxt, g™

Take for Y, Y' term sequences T, T' such that T = 7' = Azxx'y".y", and
take for X" a T" such that
z0%%xt = (X if z%=0
x' if z #£0.

D== o Pt [] Yart " 1] D:

[~ A&A) = [Ex Wy Ay~ Bxrx" Vy'y"(Ap(x'g') &ap(x"3"))] =
= EE eyt Tyt < AR5 yt) & AT

Now let TA be as in 1.6.14, and take for g', g", z term sequences

D
7', T", T such that

14

'oif Ty ox 140

"4 [
if TADEZ =0,

I~

m

1"

'Z -

n

=3

Mz, IS AL,

=3
<

X

<

It is in the ve;ification of this axiom schema only, that the decidability
of prime formulae plays an essential rbdle.
PL11). [A =4 VB]D =[x Vy Ay = Ezog'gvy'y((z=0 - AD(§"Z')) &

& (240 = BD(g,g))]Df TZX'T Vry'v[Ag(x, Txy'v) = {(2x=0 = A (X'x, ') &
& (2x£0 ~ By(Ux, ¥)) 1] .

Take for Y, 2, X', U: Ax

<

'voy's Xx.0, MAx.x, M.x respectively (U is in
fact arbitrary).

Similarly for the other half of P11).

P12) is also routine.

P13)., Assume

Ap(x, Txy) = By(T

’Y)

]
<
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[cva~ cve]’ = [E0px Yay [(2,-0 = C) & (z,£0~4))] =

~ St Tgry [ (3,20 0p(2'3")) & (3,02 (w,))]] =

pxa'v {[(24=0= 0} (p,8z,pxa'7)) & (z,f0=Ap(x, Yz px3'y))] =

= [(2,24px=0 = C(B'2,px,3")) & (zp2,px# 0 = Bp(Uz,px,v)) ]}

Now take for Q, ¥, Z,, P', U: Az,pxa'v.a', Azupxa'v.Txv, Az,pX.z,,

A2 4PE.Ps AZqP

-

I'x .

Q 1). Let
Bp(w,T2ug) = Ap(I'2w, 3, 2) -

To interpret B — VzAz we have to find g", E"' such that
Bp(u,T"uyz) = Ap(I"uz, g, 2)

Take T" = Auyz.Tzyu, T™ = luz.T'zu.

Q2). (Vaaz-at)’ = (& Voy Ay(Xa,y,2) = Ex' ¥y AD(E',Z',t))D =

iy (b (K2R ), T ZHy) = (K15, 300 )

Take for 2, Y, X': Xy'.t, My'.y', M.Xt.

Similarly for Q3, Q4.

ggg:lggiggl_gfigg§. The "defining axioms" for the various functional constants
are quantifier-free, and therefore unproblematic., The equality axioms are

also gquantifier-free (or purely universal, if one considers their universal
closure) 3 so we only have to verify the induction axiom, or equivalently,

the rule B0, Vy(By=3B(Sy)) = WxBx.

Let (By)D E EEVZBD(E,Z,y,g) and suppose :

{BD(SOM’ 0, z)

By (u, T,yzuy’, y,z) = By(T,yzu, v', Sy, 2) .

(5)

Now we define by recursion % such that

10 =T 3
= Qo=
£(8y) = T yz(ty) .
Then
BD(£O9 Vs 0, Z)
BD<2y’ 213’2(23’)‘:"9 ¥ E) - BD(E(S.V)7 2'9 Sy, E_) .
1.7.10
Now apply the induction lemma¥with Q(y,v) =ief B(ty, v, ¥,2), and with
T =op WY.Tyz(ty)y. Then B, (ty,v,y,2) follows, and with T' = lz.%,

B, (T'zy, ¥, ¥» 2) -
The preceding verification of the soundness theorem is directly applicable
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to z..géw. For gﬁw, we must note that the verifications only require that
(A.t[xt" =t[t'] for certain terms t,t', where = is interpreted in the
metamathematical sense indicated in 1.6.15; remark (ii).

A fortiori, the verification is valid for gg,-@gw, noting that premiss
and conclusion in an application of the extensionality rule are both purely
universal.

For gﬁQ- , the soundness theorem is also immediate.

3,5.5. Remarks. (i). Similarly, for the slightly strengthened version of
the extensionality rule EXT-R'!' in 1.6.12, the soundness theorem applies.
(ii). If the deduction theorem holds for the system considered, the soundness

theorem also extends to deductions under hypothesis: if
Ayy eees A B,
then
A (FqpZqZqe By Do woes A (o Txyeee 1) | Bp(0xqe e x07)

for some term sequence T.

(iii). If we would have been satisfied with the weaker soundness theorem
i a(z) =B ay(t2, 3, 2)
we could simplify the treatment of the induction schema, inasmuch we do not

need the induction lemma and its tedious proof, since instead of using the

induction lemma at the final step of the verification, we note that

VZ BD(

Yy (V7 Bp(ty, ¥, v, 2) = Vv B (8(S¥), ¥, Sy, 2)) ,

EO’ v, O, E)

and therefore, applying the induction schema
¥y ¥ B (ty, ¥y ¥, 2)

(iv). 1If AY holds for a certain model M of ggw, we may call A M-

Dialectica interpretable, and if this can be proved in a formal theory H,

H-M-Dialectica interpretable. The M- Dialectica interpretable and H-M-

Dialectica interpretable formulae are closed under deduction (provided 58

is), by a reasoning similar to that needed for (ii) above.

3.5.6. Remark. ﬁ-—gém does not have a Dialectica interpretation into
itself, as is shown by the following counterexample, due to W.A. Howard (in
correspondence). We can derive by predicate logic (and the decidability of
type O equality) in N-HA"

1

Vy1—|Vuo—1(u=O<—-¢y =z1) .
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If we treat y1= z‘I as a prime formula, the Dialectica translation becomes

(by note (ii) in 3.5.2)

[Vy1—|Vuo‘ﬁ(u=O<-—>y=z)]D
['v’yJI T° = (u=0 &> y = z)]D
302 Vy1 - (Uy=0 &= y=32) .

1]
1]

x =
. 2
On the other hand, for no continuous T
® ¥ (Uy=063y=2)" ;
% one easily shows Hy1—\ (Ty=0¢y= xx°.0) for any given continuous 02 .

Since all the closed type 2 terms of }){-I;\IﬁAw represent continuous functionals
(2.3.10(i)), it follows that y:-@w does not permit a Dialectica interpretation
into itself,

We also see from this counterexample that whe assumption that the Dia-
lectica translation of any formula of some extension of &-ng.w should be
provable in the same theory implies that equality between higher types is

decidable in a weak sense, for it follows that
Ty =2 V Yy =2.

We do not know whether the assumption about the Dialectica interpretability
perhaps even implies decidability of highsr type equality (but conjecture
that the assumption is logically weaker).

In Luckhardt 1973, page 55, the example of ——(FxAx v " 3xAx) (Ax
guantifier-free) is used to illustrate the need for decidability for prime

formulae.

3.5.7 -3.5.11, Axiomatization of Dialectica interpretability.

3.5.7. Lemma., Let IPé, M' dencte the schemata

P! (VxAx— EyBy) - Hy(¥xAx— By)

for A quantifier-free, x,y with arbitrary types,
M == Exhx — Exhx

for A quantifier-free, x with arbitrary types.

Then for H = VHVAw, E—@w, HRO™

i

+

IP! + MY + AC A 2P,
o

Proof. We establish the lemma by induction on the logical complexity of A.
Assuming H' A e 4P , H'|B «— 38’ for H' = H + IP! + M' + AC, We
readily see that in J', (A&B)Di—?A&B, (A VB)Di——>AvB,

(VXGA)D = VXUA, (HXGA)D = ®x°A; so it remains to consider implication.
Using the notation in 3.5.2 we see that the transition from (A-‘B)D to (a)
is justified by the inductiorn hypothesis, the transition to (b) by intuition-

istic lcgic, the transition to (e¢) by IF) s the transition to (&) again by
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intuitionistic logic, and the transition from (d) to (e) by M', since
Yy Ap— 3By is equivalent to By V (—\BD&-IVZAD) » i.e. By v (_(BD&_’_‘EZ—IAD),
and thus by M' By Vv (ﬁBD&(E}:fﬁAD) s hence Ez[BDV(ﬁBD&ﬁAD)] , and

hence 'Z{;;__r(AD-VBD) .

The transition from (e) to (f) is justified by AC.

5.5.8. Lemma. The axiom of choice AC relative to #£H], for H=HA ,
I-w" EROT,

AC v Ty Alx,y) = Ez(c)T x’ A(x, zx)

is Dialectica interpretable in af -H.

o T D (e ¥..° D . .
Proof. [¥x &3y A(x,y)]  and [3z x A(x, zx)]° are identical (modulo
renaming bound variables), hence interpreting an instance of AC reduces to

interpreting an instance B-~B of PL1.

5.5.9. Lemma. Each instance of the schemata M' and IP! in #[H] (for
E=I1-m" }}éw, HR0™ ) is Dialectica interpretable in qf -H.

Proof. (i). (-~ E}_(A}_{)D = #xAx (by note (ii) in 3.5.2); so the interpreta-
tion of an instance_og‘ MY ;eauces to interpreting an instance C-=C of
PL1,

(ii). Similarly for IP! .

3¢5.10. Theorem. TFor H = HAw, I- @w, I;I&Q-, VEE“-HAUJ.

N A

+ 1® 4 TPY 4 AC faer AP
(o]

(i). H
. w W
(ii). % + M w+ IP + AC faz=af -H | AD(EEZ’ y) -
Here M7, IPO are the schemata M, IPo extended to all finite types:
u’ Vx(A Vv DA) & " ExA — ExA
154 Vx(s Vv —A) & (VxA= FyB) — Gy(¥xA—3B) .

Proof. (i) and (ii) hold for M'!' and IP! in place of u®, IP: resp., by
3.5.7 - 3.5.9 and 3.5.5 (ii). To establish the theorem, it is therefore
sufficient to show X' and IP’ to be derivable in H+M'+TP! + AC.

Consider any instance of MY
Vx(AV DA) & 0 ExA ~ HxA.

By lemma 3.5.7, Vx(AV 7A) 1is equivalent in F+M! +IP! +AC to its owmn
Dialectica interpretation, i.e. to [Vx(AvV —iA)]D . Let FyVz AD(z_c,g, g) =47 ,

then  [¥x(Av )17 = (e[ V2 Ap(x,y,2) v BW oA (xv,m])] =

= FUYZ Vxzy ([Ux=0—4,(x,¥x,2)] & [Uxf0— ~A (x,¥2xv)]) .

From this we derive the existence of a U such that Ux=0 <—>A>_c R

For let U, Y, Z satisfy (V:é(AVﬁA))D, i.e.
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(1) Ux =0 = Ap(x, ¥x, z)
(2) Ux#0 =74

If Ux=0, then EXVEAD(J_C, y,z), i.e. Ax.
Conversely, if Ux#0, then VgAD(}_c, Y»2) would imply AD(:_c, ¥, 2Xy)

which contradicts (2). Hence —Ey VzAp(x,¥x,z) , so -4.
Now relative to H+ Mt +IPC')+AC the instance of m® becomes equivalent to

- Bx(Ux = 0) = Tx(Ux =0)

which is an instance of M!, and therefore derivable.

Similarly for IP(u: .

3.5.11, Corollary. If §+T is an extension of it by a set of axioms T
in £H] (E= ;-%w, HRO™, Ij.éw, WE-I}‘A;_Q)) so that the soundness theorem
for H+T holds in the form

H+THA = §‘+T{—AD

then

H+ T+ M" 4+ IPg +AC FaA s

g+1‘+M“’+IPg’+Ac FA e E+F!—-AD.
Remark. In systems H extending VI-L};_w (HRO™, I- @w) but with the same
language, each assertion of H can be brought into a normal form
Ex Vy AD()=c,3=r) » Ap aquantifier-free. If the theorems of H can be shown to
be H',M-Dialectica interpretable, H'cCH, the result is a kind of normal
form for assertions of H', obtained by interpreting the quantifiers in
2Y for AeZ[H'] in M. Taking M=ICF, H'=EL, Iislj_v_Aw this yields
(practically) the result of Vesley 1972.

3¢5.12 = 3.,5.15. The interpretability of the extensionality axiom.

3.5.12., Theorem. In ECF(U), for any universe U satisfying EL, the
extensionality axiom (2.7.2 ) is Dialectica interpretable.

Proof., We ! ve to show that
) (%) (x oy = zx = 2y) P

is valid in ECF.
Let u, v be sequences of variables such that xu, zv become terms of type

C. Then (1) can be stated as

[szy(szl(x1=1=yg) - Vv(zxy = zy\:r)]D =
(2) = U Vzxyv(x(Uzxyv) = y(Uzxyy) = zxv=zyv) .
Since we are working in a model with extensionality, we may make use of the

reductions of the type structure (1.8.5- 1.8.8) to reduce (2) to
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(3) B0 Yzxyv(x(Uzxyv) = y(Uzxyv) — zxv = zyv)

where z € (j+1)(9)j, x,y € j+1, veo, Ue ((j+1)(e)0)(3+1)(5+1)(e) .

We construc’c the desired U in our model as follows.

Let yew<3+1)(°)o a,Be‘W Lp S €T, and let eEW1O . be an
enumeratlng function of the recur31ve1y dense basis for ‘\W'J {ef. 2.6.49).
Let £ ¢ Wc represent Oc say. Now we construct a ¢ (given by some
p-functor), depending continuously on o, B, v, &, as follows:

1) If (v|e)(8) = (V]| B)(8), we put o=E;

2%) 1If (v] a)(8) # (v]|B)(6), there are initial segments ¥x, ox, Bx, ¥
such that (v|e)(8), (v|B)(8) can be computed from them; so ax, PBx
must represent initial segments of different functionals, hence there are

1
elements of the recursively dense basis of Wj to which a, B assign

min,[a((€),)#B(

tensional in &,B,%v,6, so A'WA'aA'BA° 6.p gives us the required 7U.

different values. Let ¢ be (e¢) ()] ¢ is obviously ex-
Z

3¢5.13, Lemma., Let F be any formula in the negative fragment of iIHAw].
Then

(BA®)® + QF - AC |- F <> 7P

where QF-AC 1is

QF - AC Vx By A(x,y) = ¥z ¥x A(x,zx) (4 quantifier-free).
Proof., We show by induction on the complexity of ¥, +that FD takes the
form:

B F (g, y), g p) = Rplx ),

and simultaneously that
(EAY)° + QF-ACF F e T,
The assertions are both obvious for F prime. Assume the assertions to

have been established for F,G. Then

(a) (VzF)D = BX Vzy F*(Xzy,z,y) < szEEF*(}é,z,Z) —

> Yz T Vy T*(Xy,z,y) > V2 F> > W F

(repeated use of QF-AC, induction hypothesis).
Let F° = & ¥y F*(xy,y) , G = % ¥y 6*(uv,v) .

() (P&0)” = ey V(P (xy, p) & C*(um,¥)) < B Yy P (xy,y) & Bu Vo 6¥(uy,v)
~ rac’

(e) (F=¢ ) = EYU xv[F (x(Yxv), Yxv) = € (va v)] &
= ey Epul P (e g) = 6M(wp)] (by QP -AC)

> Vxv[ Vy F*(}zc;:r,};) = B6*(u,v)] (classical logic) «>
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— [E:=c vy F*(zz,z) = Vv Bu G*(E’Z)] (classical logic) <

> [ Bx ¥y F*(xy,y) ~ %u ¥v 6*(uy,v)] (QF - AC) >

<->(FD~GD) — (F=20).

3.5.14., Corollary. E-—géw + uY IP? + AC 1is conservative over HA w.r.t.
negative formulae. (Kreisel.)

Procf, Assume
E-ma” + u° + 1PY 4 aC t+-F,
- - o
F a negative arithmetical formula. Then there are finitely many instances

of the extensionality axiom, say F1,..., Fn such that

w w w
HA® + M+ IP_ + AC |—F1—»(F2-»...(Fn—~F)...)

-

and therefore

Y 4 Fg + eee + FD + FD.
~ n
Note also
()¢ + aF-ac F F e 70
hence

(14%)° + QF - AC + P}

If we now interpret Eéw by ECF(R), then by 3.5.12, 2.6.20 and 1.10.1%2
it follows that géf—F.

D
+ eee + F k F.

3,.5.15, The non-interpretability of the extensionality axiom.

By means of the model of the hereditarily majorizable functionals (2.8.6)
it is shown in Howard B that the extensionality axiom is not Dialectica
interpretable by a functional of E-—g&w. As a consequence, for the variant

of @g-géw where the rule of extensionality is formulated as:
(1) By qeeey, = SYqeee¥, = F(t] = F[s]

( F[t] of type O, ty1...yn, SY qe eV, of type O, Yqs++es¥, @ sequence
of variables not occurring free in any assumption on which the deduction of
ty1...yn = 8Yqeee¥, depends), the deduction theorem does not hold. For then
(1) would imply

Vy1...yn(ty1...yn==sy1...yn) = Flt]=F[s]

and by the deduction theorem, taking x, y for t, s, and zx for ¥F[x],
it follows that

x._:ey - Zﬁ:zy,

which is the extensionality axiom.
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3.5.16., Theorem

(). cr, CT_~ are HRO™ - Dialectica interpretable, hence also HRO -
Dialectica interpretable.

(ii). C-N-continuity is EL - ICF-Dialectica interpretable (w.r.t.
4%‘”] ). FAN is EL - ICF - and EL-ECF-Dialectica interpretable
(wer.t. a’L[H_Aéw] ) .

(iii). The negation of an instance of IP is HRO - Dialectica interpret-
able, so IP is not ;-@w—Dialectica interpretable.

Proof. (i). [CT]D is obviously HRO™ - Dialectica interpretable, and AC

is Dialectica interpretable, hence also CTO .

(ii). The axiom MC for the modulus-of-continuity functional (2.6.3)

is quantifier-free:

(1) y(op.xy) = 2(oy xy) = xy=xz (y,ze1, xe2).
Therefore (1) is identical with its own Dialectica translation. Since the
existence of @~ in ICF (2.6.3) can be established in EL, it is EL,
ICF - Dialectica interpretable. Since AC+ (1) implies C-N, C-N is
E}L' ICF - Dialectica interpretable,

The existence of the fan-functional MUC (2.6.4) can also be expressed

in a quantifier-free form

(@) (v,.2) = (37)(0,.2) = 2(6x) = z(ty)

where & = )\x1)\z.sg(x1z) . Then the EL, ICF- and EL, ECF- Dialectica
interpretability of FAN is obtained similarly.
(iii). M+ IP+ CT  is inconsistent (3.2.27) 3 this directly yields the

desired conclusion, in combination with (i).

3,5.17. The Diller - Nahm variant of the Dialectica interpretation.

In Diller - Nahm A, a variant of the Dialectica translation is described
which interprets g_%w into 1}1-%“’, as follows. To each formula A of
ﬁ-@w an interpretation A~ of the form Ex ¥y A.(%,y) 1is assigned, where
A, may contain bounded universal guantifiers, but no unbounded gquantifiers or3i.
In the definition of the translation by induction on the logical complexity,
bounded unmiversal quantification ¥%°<t 1is counted as a separate logical
operator.

The inductive clauses for prime formulae, &, VvV, ¥, & are as for the

Dialectica translation. Let B" = Bv ¥wB.(v,w), C" = 8y ¥z C.(y,z) . Then

(B=C)" = EXWY Vvz ((Vx <Xvz) B.(v,Wxvz) - C“(ZX’E)) .

For w empty it follows that

(3~C) © T Vvz[B.(v) = C.(¥v, 2)].

Further we put
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((Be<t)0)s = ay ¥

IIN

(V2 <t) Ca(Yx, 2) .
One easily verifies
((<t)C) e (Fx(x<t = C))".
Note that if we require Xvz = 1, the resulting translation is equivalent
to the Dialectica interpretation.
The clause for implication may be conceived as being obtained by replacing
in
v Vw B.(y,¥) = Fy ¥z C.(y,z2)

YwB.(v,%w) by the equivalent assertion

YW VZ V2< 2 B,.(Z,V:Vz)

and then use the same transformations as for the implication in the case of
the Dialectica translation (3.5.2).
Extending af -} - vHéw by the addition of bounded universal quantification

as a new "propositional" operator, with axioms

(¥x<0)A

(Vx < St)A = (V< 1)A

(Vx<St)A - [x/t]A j t free for x
(Vx<t)A & [x/t]a = (Vx<St)A in &,

(let us denote this system for the time being as E) Diller and Nahm obtain
v-mY L = HRAL(5x)

for a suitable sequence of terms 1 of K-I:,Iéw
The crucial point in the proof is to show how to interpret A = A&A.
8x ¥y A.(x,y) . Then

n

Let us suppose A"

(8 = a&n)" = [Bxy Wy Au(rpory) = BE YA (2p08,) &4 (x501,))]
= m1X2X5VX1y2y3[(VX<XX1y2y A (X1’Y XX1Y23’3)
= A2 py,) B4 (K5 0y) ] -
Now take X = }‘}:‘1‘22‘23.2, }=(2 = }z% = bf1ox s and by cases 210212223 - L2
Y (5z)x1y2y5 I3 -

If we take everywhere X to be identically 1, we obtain the Dialectica interpretation.

It is also easy to verify that for theories H with decidable prime
formulae, gl—AD @ A",

An advantage of the‘present variant is, that in the construction of the
interpretations for the provable formulae, the prime formulae do not play a

special r6le. In principle, any set of formulae closed under propositional
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operations and bounded universal quantification, and containing the prime
formulae, can replace the prime formulae in the definition of the translation,

and the soundness theorem might be established in the same manner.

neqakive
3.5.18. Shoenfield's variant. By combining the translation ' into the\

fragment (§ 1.10) with the Dialectica interpretation (or: equivalently,

restricting one's attention to the negative fragment) one obtains a Dialec-

tica interpretation for classical arithmetic and systems (@&w)c ete.
Shoenfield described a variant, assigning to any formula A in the

-, Vv, ¥ fragment a formula AS = VZ &ZAS(i,Z) , AS quantifier free, as

follows (Shoenfield 1967, § 8.3

Let 4% = v gy A (x,5) B> = ¥

m o

B

).

e’ ~

U,

<

s

W

(i) a8 =4 = A for A guantifier free
(11)  (=B)° = W & -3¢(x,Yx)

(1i1) (avB)S= ¥em Byy(ag v B)

(iv) (VwB)S = ngﬂzBS(w,x,X).

As compared to the translation D , for a formula in the fragment considered,
AS > A requires, besides intuitionistic logic, only QF - AC together with
M* (M' as defined in 3.5.7), namely in case (ii). (Cf. lemma 3.5.13, and

theorem 3.5.10(1).)

3,5.19 - 3,5.21. Extending the Dialectica interpretation to stronger systems.

3.5.19. For the system BEL, with the schema DNS
DNS ¥° —mA - oo VA

added, which is equivalent to full classical analysis (cf. 1.10.9) a Dia-
lectica interpretation by means of bar-recursive functionals (closed under
the defining schemata of g-—g&w and BR° for all o) was first given in
Spector 1962. Spector gave the interpretation in an extensional gquantifier-
free system of bar-recursive functionals, containing the rule EXT-R!
(1.6.12).

A more elegant presentation is given in Howard 1968, also for a system
with a strong rule of extensionality (contrary to what is said there, the
treatment given there does not automatically apply to an intensional version).

Howard obtains other results besides: The general schema of bar induction
[Vx(o)c Iy P(Xy) &

51 VEN(PE ~ P(§x ) &

VE(PE - QE) &

VE(Vy Q(Ex <y°>) = QE)] = Q<>
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(€& m variables for finite sequences of objects of type ¢, x denoting
concatenation, =~ course-of-values etc.), is interpreted in
EBG (= @@-—g&w + BRG) then it is established that the ' - translation

{(translation into the negative fragment, 1.10.2) of
¥n Vy© 2z° A(n,y,z) - Eu(o)c ¥ A{n, un, u(Sn))

can be derived in WE-HA" + BI, + EXT-R' for suitable ¢ (FE-m” also
with types for finite sequences).

Let Rule-BIv be the rule corresponding to BIv’ and Rule-BRv the
rule corresponding to definition by bar recursion:
Let T, € ((0)e)o, Toy Ty be given closed terms, let x be a variable for
sequences of type ©, u a variable of type ¢ . Then there is a constant

+t such that

Rule - BR, x} < 1th(x) = tx = T,x

Tl 1
T1[x] > 1th(x) = tx = Tz(ku.t(x*-<u>))x.

Howard shows

. . . _m e _ Rt
a) BI, is derivable in WE-HA + Rule BI((o)o)c + AC + EXT-R';
b) BR, is derived from Rule-BR  for suitable v;
¢) A direct functional interpretation of systems with Rule-BIa in

quantifier-free systems with Rule--BRc is given.

Detailed expositions are als» given in Girard 1972 and Luckhardt 1970, 1971,
1973. Luckhardt pursues in detail the approach of Spector 1962. His prin-
cipal aim is to give a consistency proof ; in this context, he handles the
axiom of extensionality by a process of relativization to extensional
functionals (similar to the interpretation of HAS in HAS withouk €47, cf, 1.9.6).
It is also possible to give a Dialectica interpretation for systems H,
in qf-H, where H is a theory similar to %g@w, i.e. a theory based on
arithmetic together with a generalized inductive definition (classically :
a definition of a complete H%- set) extended to all finite types, and
af -H a corresponding quantifier-free fragment.
In Howard 1972 the Dialectica interpretation for a theory v of this

type is given in detail. See also Zucker's discussion in § 6.8.

3.5.20. Church'!s thesis and bar recursion.

In Kreisel 1971 (pp. 126 - 127) a proof of Godel is cited showing that
the bar-recursive functionals satisfy the Dialectica interpretation of the
negation of Church's thesis., (A more roundabout proof is already implicit
in Spector 1962 ; see also Kreisel 1971, page 126). TyYVz[Txxyv - Txxz ]
holds in ‘Ii}.;\c, hence by § 1.10, in HA
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a1 Ty Vz[Txxy V = Txxz)

is provable, since T 1is decidable. But then, applying ¥ —=—A - 1 ¥xA
(i.e. DNS) with A = Hy Vz[Txxy Vv " Txxz] we find

= Vx By Vz[Txxy v 2 Txxz],

but this contradicts the non-recursiveness of UJy Txxy . Since, by Spector
1962, DNS 4is Dialectica interpretable by bar-recursive functionals, it
following that the interpretation of the negation of Church's thesis is
satisfied by the bar-recursive functionals.,

A proof is also found in Luckhardt 197C, 1973 (chapter IX).

34521, In Girard 1971, an extension of the Dialectica interpretation is
described for HAS, using Girard's system of functionals described in 1,9.27.
In Girard 1972, this definition is still further extended to cover the
theory of finite types (of species).

For technical details we refer the reader to Girard's papers: here we
restrict ourselves %o a heuristic motivation for the extension of the Dia-
lectica interpretation. In Girard!s presentation no sequences of adjacent
like quantifiers are used ; adjacent quantifiers are automatically contract-
ed., Also for egquations between terms :

(b= 50" 2gpp =Wt = 4,],
X,y not occurring free in t1,t2 . Therefore, for any formula A of
HAS ’ AD is of the form EcTyAD, AD quantifier free.

As regards species variables, let us for simplicity restrict attention to
unary species variables. To each species variable Z we suppose to be
assigned in a one-to-one manner two variables a B (a,p for short) and

Z
a variable x, of type (¢)(B)(0)0. Then

04D _
[2u”] = def Sxavyﬁ(xzxyuo==o).

The interpretation for conjunctions, disjunctions and implications is adapted
in an obvious way {contracting adjacent like guantifiers), e.g. if
AD = Ex VyAD, BD = BuWE,’ then

D
[A&B]D 'Ex'Vy'[AD(D'X',D'y') &B.D(D"x',D"yv)] ,

n

etec., etec.
Now we shall discuss the choice of definition for [EZA(Z)]D and
[VZA(Z)]D . Let

D _ c T
[A(Z)] = E‘X Vy AD(X9 y, Xz’ E) .

The types o, T will in general contain o, Bj X, € (a)(B)(0)0.
Intuitively, [EZA(Z)]D corresponds to
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B 3B Ex, Ex Ty AD(X, Ys Xgs u) .
(This is of course not a formula of our language, since we did not have
guantifications over types.) Equivalently, for a variable
xt ¢ ox(a)(B)(0)0 = pla,B]
Jo IR Fx' Vy AD(D'X',y, D"x',1=1)
which is replaced by
(1) Jo 8 dx! WAD(D'X', EXT(EXT Ya)B)x', D"x', u)
with Y € Vo VB ((p[e,B])7); EXT(EXTYe)B8) if of type (p[a,B])T. Now to

give o, B, x' € pla,B] amoumts to specification of an X' ¢ Zoa 3B p|a,B].
Using the rules for Girard's constants, we see that
2 I I ') € do¥ ’
(2) Za80 o, 8],0 T8 o[ 0, 8], 8% ) € T 7P planP]
and
ST «(ST Bv) € (ZaEB plo,B])0 for v e (playB])0
and
T e{ST Axttlix? I ¢ ! = | x'].
ST (8T8 Axtx']) (Tgamp ol a, 87,0 Tep ol oy 81,67 ")) = PLF']
If we use Aw.A, as an abbreviation for (the characteristic function of)

Ay as function of w, we find that (1) implies
(3) qX VY {STQ(STB(AW.AD(D-W, EXT(EXT Y&)B)w, D"w, u))(X) = 0}.

(To see that (1) implies (3), substitute the left hand side of (2) for X
in (3).) We take (3) as [EZA(Z)]D .
Similarly, [VZA(Z)]D corresponds heuristically to

VYo VB Vx, x Vy AD(X, Ty Xps u)
or equivalently
Vo VB X Vy! AD(X(D'y‘), D'y, D'y, E)

where Xy € (a)(B)(0)0, ' € (a@)(B)(O)oxT, X € ((o)(B)(0)0)o = pleyB] .
If we wish to give an X, uniformly in &, B we can do so by finding an
X' € VoVB pla,B] . Then

EXT o(EXT Bx') € playB],
and therefore we can put
(4) X Vo VB Yy AD(EXT o(EXT Bx) (D'y'), D"y!, Dty!, u)
which in turn may be replaced by the stronger

(5) X v{ST o(ST B(Aw, A (EXTo(EXTRX)(D'w), D"w', Dtw, u))(¥) = of.
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(To see that (5) implies (4), substitute I&Eﬁp[a’sja(lzsp[a’sj,Byv) for

Y in (5).) We take (5) as our definition of [VZA(Z)]D
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§ 6. Applications: consistency and conservative extension results.

3,6.1. Contents of the section.

The present section utilizes L-» gg-—realizability and the Dialectica
interpretation to obtain conservative extension results. For the case of
arithmetic, the results are given in extenso; for analysis, only some of
the more typical ones have been 1lifted out, since the treatment is very
similar to the case for arithmetic, so it may be left to the reader to
formulate further applications when he needs them. As one of the more inter-
esting applications we point to the consistency of AC for HRO, and of
AC! for HEO.

3.6.2., Theorem (summary). ;-—géw + CT, @-Eéw + CT, HRO are conservative

extensions of HA.
Proof. Immediate, by the fact that HRO can be shown (in HA) +to be a
model for I - géw, HRO, and HEO for @;—E&w.

%.6.3. Definition. FO(T1,T2) is the class of formulae (in the language
of I- géw or g-géw or g&) such that in all their subformulae of the
form A-B A is an almost negative formula (negative formula, purely
universal formula) preceded by existential quantifiers,

Let Tn, ran’ rpr stand for the classes of negative, almost negative and
prenex formulae respectively.
Remarks. (i). T,cT,c r .
(ii). Since intuitionistically (Ex1...an-*B) +—>Vk1...xn(A-*B), we might
have omitted (modulo logical equivalence) "preceded by existential quanti-
fiers" in the definition of TO, T1, FZ.

iii). Alternatively, we might have defined TO,I“, I, inductively :

17 72
) Prime formulae are in TS (T1,T2)

A,Be 1'0 =2A&B, AVB, ¥xA, TxAc 1"0 (1‘1, 1‘2)

If A4 is almost negative (negative, purely universal),

— r
Bel (T, T,) then ®x,...xA=Be T (T,T,).

(
(a
(v
(

[¢]

R

1

3.6.4., Convention. We use the expression "H is conservative over H'NTI",
where [ is a class of formulae, as an abbreviation for: "H is an exten-

sion of H' which is conservative w.r.t. formulae of T".

3.6.5. Lemma.

(1) Ael =HAR Ex(xgh) - A
(11) ael, =§-BA“} Sx(xura) 4
(iii) Ae T, = H | T Yy Ap(x,y) — A
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where =", N-ma“, 1-mA", HRO™.

Proof. (i). We use the inductive definition of r, (3.6.3%, Remark (iii))
and establish (i) by induction over the definition of I‘o .

(a) For prime formulae (i) is immediate.

(b) Assume (induction hypothesis) HA F3x(xgAy) — Ay . Let Ex(xr VyAy),
then ExVy(!fx}(y) & {xl(y) zAy), hence VyEx(xgAy), therefore Vyhy,
by our induction hypothesis., Similarly for A&B.

Utilizing the same induction hypothesis, and assuming Ex(xg FyAy) , we
have Ex(jzng(j,‘x)) , SO0 Exﬁy(x_gAy) , and thus by the induction hypo-
thesis HyAy. Similarly for A VB.

(¢) Assume A +to be almost negative ; then BX geaoX A Ey(yg Ex1...an) ,
since for almost negative B (by 3.2.11) &xBx « ExFy(ygBx) «—

«— Bz(jzng(j1z)) — Ey(yg IxBx) . Therefore, if Ey(y‘rx_: (IxA—B)), it
follows that &xA - Zz(zrB). Using HA |-8z(z £B) = B as our induction
hypothesis, we find FExA-3B,.

(ii). The proof runs parallel to the proof of (i), now using xmrA = A
for A negative (3.4.4 (i)).

(iii). The proof is again more or less similar to the proof of (i), (ii):
(a) For prime formulae (iii) is obvious.

(v) Assume ExVy AD(}:C,=y, z) = Az (induction hypothesis). Suppose (VzAz)D
be given, i.e. X VZZADQ(Z’X’ z) 3 then Vz I Wy AD(}zc, ¥ z) hence VzAz,
etc. etc,

(c) Assume 3xVy BD(>={,5:1) - B (induction hypothesis).

Note that (EgAg)D = HzAz for purely universal A (3.5.2). VNow let
(GIgAg-*B)D , where AE—E_Vy__vC(g,lv) . Then XV ¥yz(C(z, Wyz) ~ BD()zig, y)) -
Assume also Az, i.e. VLVC(E:Z) ; then VyC(z,Wyz), hence V}erD(}__(E, ¥) s
i.e. HJ__{VzBD(}:C,):f) and therefore by the induction hypothesis B3 hence,
eliminating our third hypothesis, 3zAz—-B, and eliminating our second
hypothesis, (iii) follows for G&zAz - B as A.

Remark. By the proof (ii) and (iii—) now hold for l-@w, @-—}"L_e:w, HRO™,
YE-EAY, N-EAD eto.

3.6.6. Theorem (Conservative extensions). AC is as in 3.5.8.
(i) (BA+ECT ) NT = HA n r,
(;Hé+M+ECTO) ﬂl"o = (HA + M) ﬂl"o

(i) (@+IP®+AC) NT, = ENT,, for H= HAY

=
1-m% E-H", HROT ; (N-HA“ Ip )T, = N-HA™ A T, .

W w (CF.tbrr.\oyaqe 27)
(iii) I-HA +IP +AC+CT is conservative over EANT,

(iv) q+ IP:+ Ac+n” is conservative over E N 1"2 s

for H = ;-V}Léw, WWE_-_}}’A;w, HRO™, %w) hence conservative over %ﬂrg .
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(v) _I'_@w+ IP:+AC+MU)+ CT is conservative over HANT,.

Proof. (i). By the characterization theorem for realizability (3.2.18),
HA + ECT_ Fa =ma Fax(xzh).
By lemma 3.6.5 (i)
- r .
HA | Ex(xgh) — A for AeT

Therefore (@+ECTO) n TO = EANT .

The second assertion is proved in the same manner (using 3.2.22 (i)).

(i1). Similarly, using the characterization theorem for modified realizabil-
ity (3.4.8), and lemma 3.6.5 (ii).

(iii). Combine the characterization theorem for modified realizability with
the fact that CT is HRO - mr - realizable in HA (3.4.12 (ii)), and that
HRO is a model for ;—%w ,~and use lemma 3.6.5 (ii).

(iv). sSimilar to (i), (ii) and (iii), using the characterization theorem
for the Dialectica interpretation (3.5.10) and lemma 3.6.5 (iii).

(v). Using the reasoning of (iv) together with the fact that CT is HRO -
Dialectica interpretable in HA .

Remark. The statements of the theorem in an obvious manner extend to ex-
tensions of the systems mentioned ( HA, HA+M in (i), H in (ii),
I-B"+12%+AC+CT in (1), E in (iv), I-ma"+ IP:+AC+Mw+ e in ()
for which the appropriate soundness theorem is provable (3,2,19, 3.4.8,

3.5.11).

3.6.7. Corollaries (for HA).
(i) HA+ ECT , HA + IP+ CT_~ are conservative over WA N Tn .
(ii) HA+ ECT , BA+IP+CT , HA+IP +M+CT  are conservative
over HANT _ .
(iii) HA + ECT +M is conservative over (Ha + M) N ran’ (Ha+ M) N rpr .

3.6.8. Corollary of 3.6.5 (i) or 3.6.6 (i). If XLS, (= KIS relative to
V = set of all total recursive functions, see 2.6.15) is not derivable in
HA, then KLS,I is also not derivable in H_A.+ECTO .

Proof. KLS1 is expressible as a formula of 1"O .

3.6.9. Theorem (repeated from 3,5.14). §-Hv§w+ Mﬁ IP$+AC is conservative

over HANT .,
“~ n

3.,6.10 - 3.6.16, Axioms of choice for HRO, HEO.

3.6,10. Axioms of choice. For definiteness, we list the principal forms

which concern us here:

20, o VB AGy) = 87T A G,
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AC ! is similar to AC but with E.'yT instead of EyT.
o,T o,T

ac = U fac_ _|o,meTl;s similarly Ac!.
a,T =

o T4 U
QF"ACG VX By, eee By CA(X3¥aseeesy ) =
13T49e009Tm 1 il m
IO I L )
Z 4 ees 82 pid X3Z4%y eeey zmx

(A quantifier free).

QF-ac = U {QF-ACU,T1’...,Tm|c,'r,l,...,'rmeg, m arbitrary} .

3,6.11, Lemma, XE€ Vo xeW,, Ic(x,y) (defined in 2.4.8, 2.4.11) are
equivalent to almost negative formulae.

Proof. By induction over the type structure. For =0 the truth of the
assertion is immediate, Assume the lemma to hold for ¢, T.

Then XEV(O)T, XEW(C’)T’ I(c)'r(X’Y) may be re-written as

Yy € Vc[EuTxyu & VW(Txyv - Uve VT)] ,
Vy € WU[HuTxyu & V(Txyv = Uve WT)] &
& Vyzuw[Ic(y,z) & Txyv & Txzw — IT(UV,UW)] .
X€ W(c)'r & ye w(c)'r & Vz ¢ W_Vuw[Txzv & Tyzw - IT(UV,UW)] ,
respectively, With the induction hypothesis for o, 7 the lemma for (o)r

follows.

3.6.12, Theorem, QF-ACU o for formulae of ;-@w holds for HRO (prov-
b
ably in HA ).

Procf. For simplicity we restrict ourselves to an instance of QF-ACG o
b4

without parameters. Assume [an HyoA(x,y)]HRo s A a quantifier-free
formula of ;-@w. ( [B]HRO is the interpretation of B in HRO, defin-
ed in the obvious way.) Let A*(u,v) = [A(x,y)]HRO , Wwhere wu, v are the

variables corresponding to x,y under the interpretation, then
Yue V_ 3v A* (u,v) (vy our hypothesis)

and
HA Fue v, - A*(u,v) vaa*(u,v)

or equivalently
HA | Wuv(ue Vo = Fz[(2=0 = A¥(u,v)) & (z#0- =A% (u,v))]) .

Now apply the preceding lemma, and the closure of HA  under ECRo (to be

proved in 3.7.2 (i)), then for a certain numeral n
HA I— u€ Vc = ®w(T(8,j(u,v),w) & (Iw=0 A*(u,v)),
therefore

HA | Vue V, @vw(T(n,j(u,v),w) & Uw=0).
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Let =z = Au.j,\minW[T(ﬁ,j(u,j,lw),sz) & U(j2w) =0]. Then
Vae v (tz}(u) & A%(u, {z}(u))).

So zeV(c)o, and thus BZEV<°)O Vue Vo A% (u, tz}(u)) .

Remark. It is open whether QF - AC holds generally for HRO. By the
results 2.6.20, 2.6.,21, QF-AC holds (classically) for HEQ.

3.6.13. Theorem.
(1)

l-gvAw+ECTO+AC s, and L-@A;w+AC+CT are conservative over HA ﬂI‘O

{ ECT~ w.r.t. the language of HA only).

(i1) [ACly, (i.e. the class of [Alyp,, A € #(L- HA") ) is derivable
in HA+ECT_ ; so it is consistent (relative to HA) to assume AC
for HRO.

Procf. The first assertion is a consequence of the second statement ; for

interpreting Z_[‘-VHAW in HRO 1in VH_\A;_+ECT0 gives, because [AC]HRO is

provable in EI;_A+ECTO by assertion (ii), that }_-vH_é_w+ECTO+AC is con-
servative over HA+ECT , hence over &ﬂro (3.6.6 (i)). (similarly
for I-HA"+AC+CT, since CT holds in HRO.)

So it remains to prove (ii). We shall derive [AC].. . in HA+ECT .

Assume
VxeV, ByeV_ A(x,y) .
X € Vc is equivalent to an almost negative formula by 3.6.11, therefore
with ECT
0
Tu ¥xeV Bv[Tuxv & A(x,Uv) & Uve VT],
hence

Aue V(o)w Vxe V, Ev(Tuxv & A(x,Uv)) .

3.6.14. Theoren.

(i) [AC.‘]HEO (the set of interpretations in HEC of instances of AC!
in the language of Q-}‘I'A;w) is derivable in HA+ECT , so it is
consistent (relative to HA) to assume AC! for HEO.

(ii) E- }_'LA;_w+AC.' +ECT , and E- @w+AC£ +CT are conservative over
HA ﬂl'o (ECTO with respect to the language of HA only).

Proof. (ii) is obtained from (i) in the same manner as in 3.6.43.

So it remains to prove (i). Assume
(1) Ve W EyeW'T Alx,y)
(2) IU(X,X') & A(x,y) & A(X"Y') - IT(.V9y') .

XEWU is equivalent to an almost negative formula (3.6.711), so by ECTO
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there is 2 u such that

Vx € W Iv{Tuxv & A(x,Uv) &Uve WT) .
Assume Ic(x,x') , then there are v, v' such that

Tuxv, Tux'v', A(x,Uv), A(x',Uv'), Uve W, UvteW .
By (2) I,(Uv,Uv'). Therefore uce W(G)T, and thus

EueW(w)_r Vxe W &v(Tuxv&A(x,0v)) .

3.6.15. Remarks.

(1) AC, . is false for HEO; for consider
’

| 3y° v2° 2v°(Tyzv & Uv = xz)

which holds for HEO ; AC,‘,O would imply Tar® V120 ° (T(wx,z,v) & Uv=xz),
which obviously does not hold for HEO (ef. remark (i) under 2.4.11).

(ii) By the characterization theorem for modified realizability, for the
system gﬂg” (3.4.8), it is consistent relative to HA to assume that all
objects of finite type are hereditarily recursive operations and satisfy
AC, 1p? (in the language of I- E&P)- Note that this does not imply the
consistency of AC for HRO, only the consistency of AC for some sub-
model of HRO.

(iii) It is open whether [AC]HRO implies ECT_ ; it is obvious that it
implies CTO. CT does not imply ACO’O: CTM satisfies CT, but not
AC (2.5.3 (iv)).

0,0

3.6.16. Theorem. The following schema

RDC, on[Ax - Eyc(B(x,y)&Ayp)] - VXG[AXG“SZ<O)°(ZO=XG&
& Vy° B(zy, z(y+1)))]

can also be shown to be consistent for HRO relative to HA.
Proof. The argument is more complicated than for AC. TFor simplicity we

consider an instance of RDCc with parameters. Assume

(1) [ [x = & Bxy}]gg »
(2) Vxe VO[A*x = By e V° (B%(x,y) &4%y)]

where A*x, B*(x,y) are obtained by interpreting A, B in HRO. 1In
HA + ECT_, A*x dis equivalent to HzA'(x,z), A' almost negative (3.2,18

(1)), hence (2) is equivalent to
Wz (xe V&4 (x,3) = Tyz' (ye V° & B¥(x,5) & &' (y,2')) .

By ECT,
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BuvVxz[x € v, & Ar(x,2) = tHul(x,2) & tivli(x,2) &
& (lul(x,z) ¢ 7° & B¥(x, {ul(x,2)) & A'({ul(x,2), {v}(x,z)))] .

Now define o(x,z,y), ®'(x,z,y) by simultaneous recursion on y as

follows (recursion theorem) :

o(x,2,0) =x, @'(x,z,0) >z
o(x,z,5y) = {U}(‘P(X9Z’}’)’ o' (%,2,7))
o' (x,2,57)™= {V}((p(x9zyy)9 @' (xy2,5)) -

By induction over y one then proves o(x,z,¥), ©'{xX,2,y) 1%o be defined

for all y whenever x¢ Vc & A'(x,z), and moreover
VxVz[x € v, & Ar(x,3) = Vy(o(x,z,y) € v, & B(®(x,2,¥), @o(xyz,5y+1))]
which implies
Vx[A*x = Fz e v(o)c[izi(o) -x & WB*(lz}(y), lzlzy+1))17.
Q. e. d.

3.6,17 - 3.6.20. Extensions to analysis.

3.6.17. Exploiting the analogy. We ghall not attempt to give an exhaustive

list of results for analysis which can be obtained analogously to the
results in 3.6.2 - 3,6,16 for arithmetic, but restrict ourselves to some of
the more interesting and striking applications., Once the analogy is clear,
and the proof ideas of the preceding subsections are understood, the reader
will have no difficulty in formulating and proving other applications to
analysis for himself.

Roughly, among the formal systems EL takes the place of HA 1in the
analogy 3 Q-—g&w remains the same ;3 there is no direct analogue to ;-—g&w
we usually have to be satisfied in proving results for g-géw instead.

As regards the models, ECF, ICF corresﬁond to HEO, HRO respectively.
The analogues of ECTO, CTo’ CT are respectively GC (the "generalized
continuity" in 3.3.9), C-X (1.9.19) and the assertion that type-two
objects are continuous :

22 Vx| gy ° Vu1(3-c1y° = 1—11yo—* 2% - z2u1) .

3.6.18., Theorem (Examples).
(i)

(BL+GC) NT =EL N T
(BL+GC+M')NT_ = (BL+M')NT . Here ' is
1

M Vo[A Vv D A] & " Hah ~ HoA .
(ii) §+IP1+ACO , 1is conservative over HAT,, for
,
i =EL, EL+FAN, EL+WC-N, where
1P’ (A - FaB) » Fe(—A-B) .
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‘s 1
(iii) EL+IPO+ACO’1
IP; Vo[AV —4] & [ Voh — EBB] ~ EB[ Var—B].

+M 1is conservative over QL(WTZ where

Proof. (i). Completely similar to 3.6.6 (i), using ;1-rea1izability.
(ii). First note that @éw is conservative over EL (by use of the model
ECF or ICF in EL). Now let Fe r,n Z(EL) . Then

BL + IP + 4C 4 F F =mY + P+ AC b F
= A" + F (by 3.6.6 (ii))
-z bE.
Similarly for EL+FAN, using 3.4.76 and taking E-HA" + FAN + MUC in
the previous argument, instead of g&w.
For EL + WC-XN we must use 3.4.17 (ii).
(iii). Let Fe I,. Then (3.6.6 (iv))

1 1
EL+ TP +AC , +M FF =m"+ 1% 4+ ac + ¥° |F
haadd o] o] hae [¢]

’1 W
-m® b F
~EL b7,

etc. etc.

3.6.19. Theorem.

(i) QF-—ACU’O holds for ICF (provable in EL).

(i1) [AC]ICF (AC w.r.t. i(l_\]-}}éw)) is derivable in EL+GC.

(1ii) [ACl)gep (AC! w.r.t. £(N-HA") ) is derivable in EL+GC.

Proof, Entirely similar to the proof of 3.6.12, 3.6.13 (ii), 3.6.14 (i).

%3.6.20. Remarks.

(i). A consistency proof for [AC]ICF is also contained in Vesley 1972
{(implicitly).

(ii). The results of Kleene 1965 are special cases of results of the type
of 3.6.,18 (i).
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§ 7. Applications : proof-theoretic closure properties.

3«7.1. Contents of the section.

This section is devoted to establishing proof-~-theoretic closure properties
by means of functional and realizability interpretations. We briefly discuss

the principal closure properties considered. The first is
ED! b 3xAx = Zt(fAt) (ZxAx closed).

If x 4is a numerical variable, and the system is complete w.r.t. closed
equations between terms of type 0O (which implies that each closed term of

type O can be shown to be equal +to a numeral), then ED' implies ED:
ED b &°ax = @n(}-An) (Ah  eclosed).

If the system comnsidered contains enough arithmetic to prove
Bx((x=0=A) & (x£0~-B)) > AVB, ED in turn implies DP:

DP FAVB =4 or FB (AVB closed).

Among the rules corresponding to the schema IP we consider

IPR! Fa- Tx Bx = t+ Ix°(A=Bx) (x not free in A, A negative)
and
1PR'Y FA- 2x°Bx = }"‘EXU(A—‘BX) (xo not free in A, A negative).

Earlier, in § 3.1, we showed how to establish for certain systems the

stronger rules:

IPR oA~ %x°Bx = t—ﬂxo(ﬂA—'Bx) (x not free in A4)
and
1PR" Fa- xBx = kixa(ﬁA—»Bx) (x not free in A4 ).

For IPR, see also 4.2.13, 4.4.4.

Corresponding to AC we consider the rule
ACR b gy’ Alx,y) = 320907 % a(x,zx) .

0f course it is possible to formulate other rules corresponding to DC and
RDC .

Corresponding to CT, CTO, ECTO we consider the rules:
1 -
CR B @b w(lal) ~ t'y)
CR, t vx By A(x,y) = 8z Vx Bv(Tzxv & A(x,Uv))

and
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ECR_ b ¥x(Ax = ZyBxy) = { FuVx(Ax = Fv(Tuxv & B(x,Uv)))

(A almost negative).

In the case of applications to analysis, CRO, ECRO are replaced by certain
continuity rules; see 3.7.9.

Subsections 2 -8 are devoted to applications to arithmetic and related
systems, In 3.7.9 we discuss, briefly, analogous applications to systems

stronger than arithmetic.

5.7.2. Theorem.
(

i) Assume HA+T +to be conservative over HA with respect io closed

~—

Zfl)-formulae, and let I be a set of closed formulae such that
(1) Fel = E(ga+T FigF) .
Then HA+T satisfies ED, DP, CRo’ ECRO.

(i) Let H ve HAY, v-m® 1-m® wE-m“, E-HA" or HROT, and let

e
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