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Abstract  Dynamic update of information states is the dernier cri in logical semantics. And it is

old hat in Bayesian probabilistic reasoning. This note brings the two perspectives together, and

proposes a mechanism for updating probabilities while changing the informational state spaces.

1 Tree diagrams for probability

Many textbooks use a perspicuous tree format for simple probability spaces.

Branches are histories of successive events. Going down the tree, actions generate

new probability spaces, with the current space being more or less the current tree

level. Arrows downward from a node are labeled with probabilities, summing to 1.

By way of illustration, take the perennial Monty Hall puzzle. First, Nature puts a

car behind one of three doors (the quizmaster knows which, you do not), then you

choose a door, and finally, the quizmaster opens a door not chosen by you which

has no car behind it. This involves a tree-diagram like the following. Of course,

which actions you put in precisely is a matter of picking the right level of detail.

      Nature acts

         1/3           1/3                     1/3

car behind 1   car behind 2   car behind 3

      1       1       1

 I choose 1      I choose 1      I choose 1

1/2   1/2      1       1

   Q opens 2   Q opens 3    Q opens 3      Q opens 2

Let's say I chose door 1, Monty opened door 3. Should I switch or not? We must

find the right conditional probability for the car being behind door 1, given all that

has passed. If we conditionalize on 'the car is not behind 3', we find a probability

of 1/2. But, if we do the job well, we will pick up the more informative true

proposition A = 'Monty opened door 3' to compute P('car behind 1'|A) = 1/3 – and

conclude that we should switch. Is luck needed in picking the right A, or is there a

systematic principle at work? In this note we will analyze this process, which is

close to current dynamic update logics, with information flowing down the tree.
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2 Update logic in a nutshell

Update logics are about changing information states as propositions are announced,

or more general actions observed. In this note, information models for groups of

agents G are standard epistemic structures M with a universe of possible worlds

and equivalence relations ~i between these modeling the uncertainty of agent i � G.

Each model has an actual world s . These structures interpret the usual epistemic

language with operators K i for individual knowledge and CG of common

knowledge in the group. Formulas of this language describe the static properties of

worlds s in a given information model M  (Fagin, Halpern, Moses & Vardi 1995).

But epistemic actions change such models! E.g., truthful public announcement of a

proposition 
�
 removes all worlds from the current model where 

�
 does not hold:

from    s   
�

      ¬
�

to     s

This is the dynamic effect of an answer "Yes" to a question "
�
?". Successive state

elimination is the simplest update procedure, yielding the familiar picture of

shrinking sets representing ever stronger group knowledge about the actual world.

Despite this March of Progress, update steps may change the current truth value of

assertions. Before you answered my question, I did not know if 
�
. Now I do, and

so the ignorance statement has become false. The technical reason is that we have to

re-evaluate formulas with epistemic operators in the new smaller models, which

may affect their earlier truth values. The resulting pattern of changing truth and

falsity can make even public update sequences surprising, witness puzzles like

Muddy Children where repeated communication of ignorance leads to knowledge.

In a more elaborate dynamic-epistemic logic, one records this in mixed assertions

[A!]
�

saying that after public announcement of A, formula 
�

holds. This expresses things

like [A!]C GA: after public announcement of A, it has become common knowledge.
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More complex epistemic actions do not just eliminate states, they may transform the

worlds of the model. E.g., in the group of {you, I, she}, she and I do not know if
�
 is true, but you do. As a matter of fact, 

�
  is true. We can draw a model like this:

� ���
            I, she         ¬

�

Now I ask in public if 
�
, but you answer just to me: while she sees you answering.

There are two relevant actions: "you says YES", "you say NO". Each of these has a

public precondition, as it is common knowledge in our story that you speak truly.

The first action requires that you know that 
�
, the second that you know that ¬

�
.

You and I can distinguish the two, but she cannot. The result is a new epistemic

model whose worlds are old worlds with an action attached whose precondition is

satisfied – with the new uncertainties computed by the following rule of

Product Update     Let s, t be worlds in the current model, and a, b actions 

at s, t, resp., whose preconditions are satisfied there. Ordered pairs (s, a)

encode the result of performing action a in state s. Uncertainty among new 

states can only come from existing uncertainty via indistinguishable actions: 

(s, a)  ~i (t, b)      iff    both  s ~i  t   and  a ~i b

In our example, this gives a new model where you and I know, while she does not,

though she knows that we know (that we know is even common knowledge):

(
� ���

, say YES)          she (¬
�
, say NO)

Product update can also blow up the size of an epistemic model. This would

happen, e.g., when she is not sure whether you answered my question or not.

The general update process has two drivers: (a) an epistemic information model of

all relevant possible worlds with agents' uncertainty relations, and (b) an action

model of all relevant actions, again with agents' uncertainty relations between them.

Product update takes successive products of these two models. Again, truth values

of propositions can change drastically in such transformations. Dynamic-epistemic

logics record this explicitly. In a more refined version of the model, one might even

impose global constraints on the possible runs of the update process, which record

higher information like "sooner or later, she will tell me all she knows".
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3 Stage setting: epistemic action update in Monty Hall

There is pure epistemics in setting the stage for the quiz puzzle. We start with this,

adding probabilities only later. Let's compute the uncertainties of agents as we go:

      Nature acts

                                  

car behind 1      I   car behind 2      I   car behind 3

Nature has three actions, indistinguishable for me (I), but not for the quizmaster Q.

The result is the three-world epistemic model at the second tree level. Now I choose

a door. This is a public transparent action, but it would be tedious to represent all

options. Let's just say that I publicly chose door 1. The product update rule yields

      Nature acts

        

car behind 1      I   car behind 2      I   car behind 3

                 

 I choose 1   I    I choose 1         I      I choose 1

Next, we have three possible actions of Q's publicly opening some door, with

preconditions (a) I did not choose that door, and (b) Q knows that the car is not

behind it. Product update takes only those pairs (s, a) where s satisfied the relevant

precondition PREa, and computes uncertainties. The result is the usual Monty tree:

      Nature acts

        

car behind 1      I   car behind 2      I   car behind 3

                 

 I choose 1   I    I choose 1         I      I choose 1

      

Q opens 2   Q opens 3      Q opens 3        Q opens 2

x        y          z          u

          I
        I

Let the car be behind door 1, while Q opened door 3: The actual world is y, reached

via the bold-face branch. In the epistemic model at the bottom level, I know the

world is either y or z. Through the tree, Quizmaster always knows exactly where he

is. In other scenarios, both agents might have genuine uncertainties, resulting in a

much more complex pattern of linked equivalence relations. So much for logic!
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4 Conditional probability and update

Now for a quick review of Bayesian update. An agent's probability model is a set

of worlds with a probability measure P on events, defined by propositionsthat can

be true or false at worlds. And conditional probabilities P( �  |A) give the probability

for � given that A is the case, using P  rescaled to the set of worlds satisfying A:

P( �  |A)  =  P(� � � ) / P(A)

Bayes' Rule then helps compute such probabilities in forms like

P (�  |A)   =  P (A | � ) x P(A)  / P(� )

and more elaborate versions of the same inversion idea.

Conditional probability looks like eliminative update. It zooms in on those worlds

where the new information A holds, and then recomputes probabilities. This is like

eliminating all ¬A-worlds, and re-evaluating epistemic formulas. And the binary

format P(� |A) storing all possible updates is like the above dynamic notation [A!] � .

But the epistemic perspective has two further features. First, it considers many

agents together, with their mutual information. This would be like having my

probability about your probabilities, etc. But even more importantly, product update

does not just select subzones of the current information space, but it transforms the

latter much more drastically as required by relevant information-carrying actions.

Probabilistic theory speaks about events A on which we conditionalize, which

seems a similar ambition. One wants to combine conditional probability with an

account of how actions change the current probability model. Let's see how this

works out by continuing with the earlier example of probability tree diagrams.

5 Computing updates on probabilities with public actions

The Monty Hall example is about public action, where we update probabilities in a

transparent setting. The earlier epistemic update created information models at each

tree level, and we expect that probabilities for an agent will give weights to her

indistinguishable worlds in such models, giving fine-structure to her information.

But, there is also a second sense of probability involved, working in the other

driver of the story. Action diagrams may have indistinguishabilities between

actions, and agents might also fine-structure their action alternatives numerically.
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The latter, too, happens in textbook tree representations, which assign probability

values to moves from tree nodes to their daughters. In the simplest case of public

action, these move probabilities are the same from the viewpoint of every agent.

Digression: a subtlety of interpretation  Action probabilities so far do not record

uncertainties about what action has taken place once we observe that something has

happened. They provide estimates for the likelihood that an action will be taken at

the appropriate stage. But the two aspects can interfere in update, witness:

           1/2   a          b  1/2           1/2   a            b  1/2

   I

Suppose action a was in fact taken. If a, b are distinguishable for me, in the black

dot on the left-hand side, I know exactly where I am through observation – though

there is some 'ancient history' that with probability 1/2, b might have been taken.

But if a, b are indistinguishable for me, on the right, I do not know what happened,

and the earlier probability induces a live option that I am in the white world below.

Here is another point which we can see in the Monty tree. First, one action type can

have different probabilities at different nodes of the current tree level. E.g.,

'opening door 2' has probability 1/2 when the car is behind door 1, but probability

1 with the car behind door 3. Of course, by making descriptions of action tokens

disjoint, we can make probabilities unique – but this seems less natural in practice.

Now for the product update rule along a branch. The usual textbook explanation

makes probability of a branch a product of the probabilities of its actions.

Recursively, this amounts to repeating the following step:

Look at the current probabilities, and compute those for the next

state by taking a suitable product with weighted available actions.

But the epistemic context matters. Probabilities need not sum to 1 at single nodes,

or a whole horizontal tree level, but only on one 'information set': a maximal

component of the uncertainty relation. Such components are the natural probability

spaces from a given node at the current stage of the overall process. And in

epistemic models, such components may be different for different agents. So we

need probability functions relative to agents i and nodes s:

P i, s defined on the probability space D i, s ={ t | t  ~i s}
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Then, the preceding considerations lead to the following update principle:

Product Rule For public actions a, and public local probabilities P i, s:

(1)       Pi, s (t) x Pt (a)

Pi,  (s, a) ( (t, a) ) = –––––––––––––––––––––––––––––�
 Pi, s (u) x Pu (a)

  (u, a) �  D i, (s, a)

To keep complex notations in line, we will also write the denominator as follows:

�
 {Pi, s (u) x Pu (a) | (u, a) �  D i, (s, a)}

where {}  refers to a multiset counting occurrences of numbers.

A word of explanation may help. The rule computes probabilities per world. Its

notation (t, a) presupposes that t satisfies the precondition for executing action a.

Thus, the probability space from (s, a)'s perspective may have shrunk from the

previous level s. The numerator is the obvious total product. The denominator

renormalizes values to sum to 1 in the relevant space.

Finally, here is the general product rule for an arbitrary formula 	 :

(2) Pi,  (s, a) ( 	  ) = 
  { Pi, s (u) x Pu (a) |  (u, a) �  D i, (s, a) & (u, a) |= 	  }
––––––––––––––––––––––––––––––––––––––––

  { Pi, s (u) x Pu (a) |  (u, a) �  D i, (s, a)}

This rule computes new probabilities after the action has taken place. But we can

also describe it in terms of the old situation before the update! The index in the

numerator ranges over all tuples (u, a) in Di, (s, a). But this amounts to looking at all u

in D i, s satisfying the action precondition PREa. Thus, formula (2) is equivalent to

(3)  
  { Pi, s (u) x Pu (a) |  u �  D i, s & u |= PREa & u |= [a] 	  }
–––––––––––––––––––––––––––––––----––––––––––

  { Pi, s (u) x Pu (a) |  u �  D i, s & u |= PREa}

This format may be viewed as a sort of generalized conditional probability

Pi
a  ( [a] 	   | PREa )

Essentially, we compute a standard conditional probability, but over a new space

whose worlds are pairs (u, a) of old worlds and executable instances of the action

a. This is precisely the combination of two mechanisms that we wanted.
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6 A check on two examples

Monty Hall revisited     Consider the earlier tree, now with probabilities indicated.

      Nature acts

   1/3     1/3   1/3      

car behind 1      I   car behind 2      I   car behind 3

                 

 I choose 1   I    I choose 1         I      I choose 1

     1/2     1/2 1   1   

Q opens 2   Q opens 3      Q opens 3        Q opens 2

x        y          z          u
          I

        I

It is easy to check that the probabilities in my final set {x, y} work out to

for y: (1/3 • 1/2) /  (1/3 • 1/2 + 1/3 • 1) = 1/3

for z: (1/3 • 1)  /  (1/3 • 1/2 + 1/3 • 1) = 2/3

In this picture, we see our product rule at work, including its non-trivial features.

E.g., we are now in world y, where we know Q has opened door 3. Nevertheless,

in computing the probability for being in y rather than z, we take the old probability

1/2 into account for opening door 2 in the state preceding y. Why: now that we

know this action was not taken?  My intuitive response would be as follows:

"Counterfactual chances are still relevant. We observe an opening of door 3. What is the chance it

lies on the left-hand branch, and not the middle one? Well, on the left-hand branch, there was a

chance of 1/2 that the other door was opened, while on the middle branch, it was the only option.

So, seeing door 3 opened provides more evidence for our being on the middle branch."

But to critics of the received view on Monty Hall, this line may sound circular...

Thus, an update rule is not a neutral mathematical fact justifying dynamic-epistemic-

probabilistic laws. It builds in such laws, as also shows in the axioms of Section 8.

Public announcement    Product rules (1), (2) also specialize to the stipulation for

public announcement A! of an assertion A in Kooij 2001. His setting is simpler

than the Monty Hall tree, as the action probabilities for truly asserting propositions

cannot vary per location: they either equal 1 or the action cannot be performed at all.

Here is the stipulation, slightly adapted to our setting:
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(4) Pi,  s, A! ( �  ) = �  { Pi, s (u) |  u   D i, s & u |= A & [A!] �  }
–––––––––––––––––––––––––––––––––
�  { Pi, s (u) |  u   D i, s & u |= A}

This is a special case of the general product rule (2). This shows also in that this

rule for public announcement really computes a standard conditional probability 

P old i, s ([A!] �   | A)

Kooij 2001 formulates the values in the update rule by referring to the 'old'

situation straightaway – but (4) is more in the spirit of general epistemic updates.

7 General probabilistic product update

The product rule so far builds in special epistemic features. E.g., probabilities for

worlds have uniform values across a whole information set, as seen from every

vantage point. In terms of epistemic logic, this means the following:

If agents know their probabilities of all propositions at some stage,

product update will always lead to new probabilities which they know.

In the Monty Hall tree, probabilities are even common knowledge among I and Q.

One might prove a characterization of product update via nice epistemic properties,

on the lines of that given for the pure epistemic version in van Benthem 2001.

Here are some richer options, more in the spirit of the recent update literature

(Baltag-Moss-Solecki 1999, van Ditmarsch 2001). Some require just hanging some

subscripts in the above product rule at the right places, others involve new ideas.

First, action probabilities can be agent-dependent. To allow this, just replace terms

Pu(a) in formulas (1), (2) by Pi, u(a). We might also let agents' probability functions

vary within their uncertainty sets. Both might happen in Monty Hall: 'Q does not

know where the car is', 'I think that Q prefers opening doors with lower numbers',

etc. So, let's probabilize epistemic product update with general action diagrams A.

Here is a matching generalization  (for further options, cf. van Benthem 2002):

(5) Pi,  (s, a) ( � ) =

�  {Pi, s (u) x Pi, u (b) |  u~is & b~ia in A & u |= PREb & (u, b)|= � }
––––––––––––––––––––––––––––––––––––––––––––––––––––
�  {Pi, s (u) x Pi, u (b) |  (u, b)   D i, (s, a) & b~ia in A}



10

8 Probabilistic epistemic update logic

Update rules validate a logic for reasoning with knowledge and probability. This

will be a combined language with modal operators of various sorts. With pure

epistemic update, key axioms interchange update actions and our knowledge:

[A!] K i ���     (A �  Ki ( A �   [A!] � ))

With general action diagrams A and product update, we get

[a] K i ���     PREa �  & {K i (PREb �   [b] � ))  | b ~ia in A}

This time, we get similar valid principles for public announcement with probability:

[A!] P i ( � ) = k     �   Pi ( [A!] �  | A ) = k

General public actions a as in Section 5 validate a similar principle, but with a

superscript a referring to the product conditional probability introduced there:

[a] P i ( � ) = k    � Pi 
a ( [a] �  | PREa ) = k

With general epistemic action diagrams A, we need a generalization to a suitable

version of conditional probability involving the whole diagram, in the format:

[a] P i ( � ) = k     � Pi 
A( � ��� b [b] �   | � ���  b PREb} = k

   with index  b  ranging over { b~ia in A }

Slightly neater formulations arise when we add notation to standard dynamic logic,

such as explicit world-dependent function symbols P i, s, [a] for probabilities.

Given these observations, it becomes a routine exercise to generalize the complete

axiom system for probabilistic public update in Kooij 2001 to the general setting of

epistemic actions with product update of Baltag, Moss & Solecki 1999.

9 Comparison with Bayesian update

What becomes of the usual Bayesian calculus in this setting? The probabilistic

notation Pi ( �  | A) looks updatish as it is, and an update logic is nothing but a more

systematic calculus for making this dynamics more explicit. Of course, there are

also some differences. For a start, take the syntax. For us, � was a static
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proposition, while A was more properly viewed as a dynamic action "A". But that

is just the point  of a  dynamic language, which handles diverse expressions like:

Pi ( � ) = k ,  Pi ( ["A"] � ) = k ,  ["A"] P i ( � ) = k

Our system relates these, by stating how to compute posterior probabilities in terms

of prior probabilities before the action took place, using rules like

[a] P i ( � ) = k    � Pi 
a ( [a] �  | PREa ) = k

Next, let us look at the way conditional probability works in practice. As an

illustration, take again Monty Hall. Here is what most people would consider the

canonical solution, by a simple appeal to the standard Bayes Rule:

P (B |A) = P (A |B) • P(A)  / P(B)

Set  A = "The car is behind door 1",  B = "The quizmaster opened door 3".

Then  P(A) = 1/3 , P (A |B) = 1/2 , P(B) = 1/2:

et voilá: P (B |A) = 1/3 !

But to analyze what these lines mean, one needs to specify the probability space,

and justify the postulated P-values. Two of these are simple: P(A) is a given prior

probability, and P(B) refers to the given probabilities of all possible actions. But

what justifies the stated value 1/2 for P(A|B) ? The relevant probability space 

which most  people seem to have in mind here (as in the earlier tree) is not a simple

subspace of the initial one with car states. Its worlds are rather ordered pairs of

<car state; action taken>

But if so, our product update model is close to practice, since that is what it says!

More generally, the Product Rule of Section 5 is like computing a probabilistic

update using a prior and a likelihood function  over possible events (cf. Good

1965, Hirshleifer & Riley 1992). Thus, it converges with a powerful theoretical

paradigm in probability theory. Against this background, the above analysis then

adds a systematic view of dynamic-epistemic model transformations on probability

spaces, with a well-understood logical mechanism for reasoning about it.

But what about Bayes' Law? Let us analyze some working principles of conditional

probability in our update logic. First, here is the basic definition:

P( �  | A) • P(A)     = P ( � & A)
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This has the following counterpart in dynamic-probabilistic logic – assuming for

simplicity that the proposition A is a precondition for action "A":

["A"] P i ( � ) = k  &  Pi (A) = l    � Pi ( ["A"] �  & A) = k • l

But Bayes' Rule itself, the main engine of probabilistic update, is more problematic,

as it inverts the order of action:

Pi ( �  | A)   = Pi (A |� ) • Pi ( � )  /  Pi (A)

In a dynamic setting like update logic, public announcements of even pure epistemic

statements can have different effects when they are made in different orders. Thus,

order inversions stating when the announcement A is true after announcing its effect

�  violate the spirit of updating! In fact, for general epistemic assertions, Bayes'

Law fails. Here is an illustration, with a familiar formula from the literature:

Example Epistemic failure of Bayes' Law

Consider the following epistemic model with two agents:

p, q          ¬p, ¬q
     you

       me

¬p, q

The actual world has p, q both true. Now consider the assertions

A 'you do not know if p is the case',

which is true in the two uppermost worlds, but not at the bottom. Next, take

� 'I know if p is the case'

which is only true in the world to the right. Thus, in this model P(A) = 2/3, while

P( � ) = 1/3. A public update with the assertion A takes this model to the new

p, q          ¬p, ¬q
     you

where � holds everywhere:

P( � |A) = 1
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An update with �  takes the initial model to the one-world model

¬p, ¬q

where A is false everywhere:

P(A| � ) = 0

Substituting, we see that Bayes' Law fails:

P( � |A)  =1 �  (0 • 1/3) / 2/3          �

The update-logical status of Bayes' Rule seems to be this. Order inversions are

invalid in general, but they are admissible when the relevant assertions are simple

enough – like non-epistemic announcements of atomic facts. Despite this slight

snub, the Rule is widely useful, and it has lived happily for centuries without

logical underpinning. Our analysis has put it in perspective, not called into doubt.

1 0 Conclusion: reasoning with  probability

This note is about a dynamic take on probabilistic reasoning, going one step further

in an existing line of research. What it proposes in a nutshell is that marrying

epistemic product update with probabilistic conditionalization produces a more

principled joint account of both model change and probability adjustment.

More generally, this analysis touches on two problems people have in probabilistic

reasoning. The first has often been observed. Usually, people do not miscalculate,

but they misidentify the relevant model. E.g., in Monty Hall, many people compute

the conditional probability with respect to the fact that the car is not behind door 3,

which yields probability 1/2 for its being behind door 1, and switching is useless.

There is nothing wrong with this reasoning per se, as it is indeed the correct update

for a public announcement or observation that the car is not behind door 3. The

problem is rather the choice of the model. Keeping track of the right ambient

models is made easier by update mechanisms. But there is always a non-automatic

feature. This now becomes finding the relevant actions with their preconditions and

probabilities. Some training with the pet examples of update logic might help here.

But good frameworks should not just moralize: they should also predict and explain

reasoning failures. Here is an illustration, which also suggests a separation of

concerns. If probabilistic update involves epistemic dynamics, one would expect

that people's problems with it are a mixture of known purely dynamic difficulties

and genuine probabilistic ones. Again in Monty Hall, intuitively, we tend to look at

postconditions of observed actions: what holds once they have been performed.
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Opening door 3 certainly reveals the car's not being there. But our update analysis

(1), (2), (4) says it is rather the preconditions of the relevant actions which count:

what has to hold beforehand for them to be executable at all. This may be a hard

distinction for human agents. Difficulties in probabilistic reasoning might depend

on our faint grasp of 'timing' and dynamics, rather than of probability per se.

Finally, a sweeping statement behind our proposal at a conceptual level. Events are

a key term in probability theory, but their static modeling as sets of outcomes is

wrong. They should be taken seriously as dynamic actions that change states!
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