Relative Strength of Strategy Elimination Procedures

Krzysztof R. Apt

CWI and University of Amsterdam

Executive Summary

We compare the relative strength of 4 procedures on finite strategic games:

iterated elimination of strategies that are

weakly/strictly

dominated by a

pure/mixed strategy.

Dominance by a Pure Strategy

- A strictly dominates B.
- \blacksquare A weakly dominates C.

Dominance by a Mixed Strategy

- 1/2A + 1/2B strictly dominates *C*.
- 1/2A + 1/2B weakly dominates *D*.

Iterated Elimination: Example

Consider

Which strategies are strictly dominated?

Iterated Elimination: Example, ctd

By eliminating *B* and *R* we get:

	L	M
T	3,2	2, 1
C	2,1	1, 1

Now C is strictly dominated by T, so we get:

$$\begin{array}{c|c} L & M \\ \hline T & 3,2 & 2,1 \end{array}$$

Now M is strictly dominated by L, so we get:

$$\begin{array}{c} L \\ T \quad \boxed{3,2} \end{array}$$

4 Operators

Given: initial finite strategic game H. G: a restriction of H ($G_i \subseteq H_i$).

- LS(G): outcome of eliminating from G all strategies strictly dominated by a pure strategy,
- LW(G): ... weakly dominated by a pure strategy,
- MLS(G): ... strictly dominated by a mixed strategy,
- MLW(G): ... weakly dominated by a mixed strategy.
- Note For all G
 - $MLW(G) \subseteq LW(G) \subseteq LS(G)$,
 - $MLW(G) \subseteq MLS(G) \subseteq LS(G)$.

Iterated Elimination

- Do these inclusions extend to the outcomes of iterated elimination?
- None of these operators is monotonic.

Example

Then

- $LS(H) = (\{A\}, \{X\}),$
- So $(\{B\}, \{X\}) \subseteq H$, but not $LS(\{B\}, \{X\}) \subseteq LS(H)$.

Operators

T: operator on a finite lattice (D, \subseteq) .

• •
$$T^0 = D$$
,

- T^k : k-fold iteration of T,
- $T^{\omega} := \cap_{k \ge 0} T^k$.
- T is monotonic if

$$G \subseteq G'$$
 implies $T(G) \subseteq T(G')$.

Lemma T and U operators on a finite lattice (D, \subseteq) .

- For all G, $T(G) \subseteq U(G)$,
- at least one of T and U is monotonic.

Then $T^{\omega} \subseteq U^{\omega}$.

Approach

Given two strategy elimination operators Φ_l and Ψ_l such that for G

 $\Phi_l(G) \subseteq \Psi_l(G).$

To prove

$$\Phi_l^{\omega} \subseteq \Psi_l^{\omega}$$

• we define their 'global' versions Φ_g and Ψ_g ,

$${\scriptstyle
ho}$$
 prove $\Phi_g^\omega = \Phi_l^\omega$ and $\Psi_g^\omega = \Psi_l^\omega$,

• show that for all G

$$\Phi_g(G) \subseteq \Psi_g(G),$$

 \checkmark show that at least one of Φ_g and Ψ_g is monotonic.

Global Operators

G: a restriction of *H*. $s_i, s'_i \in \underline{H_i}$.

- $s'_i \succ_G s_i$: $\forall s_{-i} \in S_{-i} p_i(s'_i, s_{-i}) > p_i(s_i, s_{-i})$ • $s'_i \succ^w_G s_i$:
 - $\forall s_{-i} \in S_{-i} \ p_i(s'_i, s_{-i}) \ge p_i(s_i, s_{-i}), \\ \exists s_{-i} \in S_{-i} \ p_i(s'_i, s_{-i}) > p_i(s_i, s_{-i}).$

GS(G) := G', where

$$G'_i := \{ s_i \in G_i \mid \neg \exists s'_i \in \underline{H_i} \; s'_i \succ_G s_i \}.$$

● Similar definitions for *GW*, *MGS*, *MGW*.

Strict Dominance

Lemma

• For all G

 $MLS(G) \subseteq LS(G).$

- $GS^{\omega} = LS^{\omega}$.
- $MGS^{\omega} = MLS^{\omega}$. (Brandenburger, Friedenberg and Keisler '06)
- For all G

 $MGS(G) \subseteq GS(G).$

GS and MGS are monotonic.

Conclusion: $MLS^{\omega} \subseteq LS^{\omega}$.

Weak Dominance

Lemma

• For all G

 $MLW(G) \subseteq LW(G).$

- $GW^{\omega} = LW^{\omega}$.
- $MGW^{\omega} = MLW^{\omega}$. (Brandenburger, Friedenberg and Keisler '06)
- **•** For all G

 $MGW(G) \subseteq GW(G).$

GS and MGS are monotonic.

Conclusions: $LW^{\omega} \subseteq LS^{\omega}$ and $MLW^{\omega} \subseteq MLS^{\omega}$.

Weak Dominance, ctd

What about $MLW^{\omega} \subseteq LW^{\omega}$?

Consider

	X	Y	Z
A	2,1	0,1	1,0
В	0,1	2,1	1,0
C	1, 1	1, 0	0,0
D	1, 0	0, 1	0, 0

Applying to MLW we get

Another application of MLW yields no change.

Weak Dominance, ctd

Applying *LW* we first get

	X	Y
A	2,1	0,1
В	0,1	2,1
C	1, 1	1, 0

Weak Dominance, ctd

Applying *LW* again we get

$$\begin{array}{c|c} X \\ A & 2,1 \\ B & 0,1 \\ C & 1,1 \end{array}$$

and then

$$\begin{array}{c} X\\ A \quad \boxed{2,1} \end{array}$$

Rationalizability

- Rationalizability is defined as iterated elimination of globally never best responses to beliefs.
- Possible beliefs: pure strategies, uncorrelated mixed strategies or correlated mixed strategies.

•
$$GR(G) := G'$$
, where

 $G'_i := \{ s_i \in G_i \mid \exists \mu_i \in G(\mathcal{B}_i) \forall s'_i \in H_i p_i(s_i, \mu_i) \ge p_i(s'_i, \mu_i) \}.$

- This yields a monotonic operator.
- Consequently $GP^{\omega} \subseteq GU^{\omega} \subseteq GC^{\omega}$.
- Also $GC^{\omega} = MLS^{\omega}$.
 (Pearce '84)
- In particular $GP^{\omega} \subseteq LS^{\omega}$.

Epistemic Analysis

Theorem Take an arbitrary strategic game. **RAT**($\overline{\phi}$): each player *i* uses property ϕ_i to select his strategy ('each player *i* is ϕ_i -rational'). Suppose each ϕ_i is monotonic. Then the following sets of strategy profiles coincide:

- those that the players choose in the states in which $RAT(\overline{\phi})$ is common knowledge,
- those that the players choose in the states in which $RAT(\overline{\phi})$ is true and is common belief,
- those that remain after the iterated elimination of the strategies that are not ϕ_i -optimal.

The latter requires transfinite iterations.