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ADAPTIVE LOGIC AND MODAL LOGIC
1. Adaptive consequence relations can be reformulated in a
Kripke-style semantics.

2. This type of reformulation does not properly account for
the dynamics of the proof-theory of adaptive logic.

A QUESTION

Is the dynamics of the dynamic proof-theory something new,
or is it a standard type of inferential dynamics?
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1. Dilute the space of possibilities.
2. Add a syntactic awareness function.
3. Use a model for fragmented beliefs.

A WIDELY SPREAD VIEW
What can be done with non-logical worlds can equally well be
done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for “realistic” defeasible inference do require
non-logical worlds because a revision without new
information / tentative application of a default rule
presupposes a notion of explicit belief that does not imply
implicit belief.
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AN INCONSISTENCY ADAPTIVE LOGIC

LANGUAGE Lp
bi=pl~dpld1Vvd2r|PrAd2| P — P

THE PARACONSISTENT LOGIC CLUNS
Full positive classical propositional logic, excluded middle,
and all De Morgan equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities Q = {¢pA ~ ¢ | ¢ € Prop}, and

- the permission to derive ¢ conditionally whenever
¢ v @ can be derived unconditionally, and ¢ € Q has
not yet been derived (as a disjunct of a minimal
disjunction of members of Q).
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EXTENDED ADAPTIVE PREFERENCE MODEL

m=(0,S,X,Q,Aby, |- llw, A, R, R) WITH

(OUS,X,Q,Abw, ||I-llw) an adaptive preference model such
that:

1. The restriction of ||- |l to S is a CluNs-valuation, and
2. the restriction of ||-|lw to O is arbitrary;

and with A: S — P(LY,s) the access-set function,
R:S — P(R) the rule-set function,and R S x (O U S) a
binary relation such that:

3. Ais a constant function,

4. Ris a constant function that assigns all CluNs-valid rules
toeachs €S,

5. SRt iff W, t + ¢ for all ¢p € A(s). (note: ¢ is a block-formula)
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BELIEF

MAIN NOTIONS OF BELIEF

- ¢ is implicitly believed iff it is true in all states in
R([s] = {t € S:Rst}.

- ¢ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ¢ is an explicitly derived indefeasible belief iff ¢p € A.

- ¢ is an explicitly derived defeasible belief iff ¢ is
explicitly believed, and ¢ v \/ A € A (with A € Q).
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CONCLUDING REMARKS

SUMMARY

- Tentative applications of rules require explicit beliefs
that can be contradicted by one’s implicit beliefs.

- Open worlds that do not contradict what has
unconditionally been derived can be considered less
abnormal than some closed worlds.

DISTINCTIVE FEATURES

- A model with explicit rules for unconditional rules, but
without explicit rules for conditional/defeasible rules.

- The justifications ¢; for a defeasible rule do not need to
be implicitly believed to apply the rule. It is sufficient if
the negation of ¢; isn’t explicitly believed.



