THE DYNAMICS OF ADAPTIVE PROOFS A CASE FOR OPEN WORLDS

Patrick Allo patrick.allo@vub.ac.be http://homepages.vub.ac.be/~pallo/

Ninth International Tbilisi Symposium on Language, Logic and Computation

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

1. A formula-preferential semantics, and

2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- 1. Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- 1. Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- 1. Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

- 1. A formula-preferential semantics, and
- 2. a dynamic proof-theory (nonmonotonic inference procedure).

ADAPTIVE LOGIC AND MODAL LOGIC

- 1. Adaptive consequence relations can be reformulated in a Kripke-style semantics.
- 2. This type of reformulation does not properly account for the dynamics of the proof-theory of adaptive logic.

A QUESTION

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

- 1. Dilute the space of possibilities.
- 2. Add a syntactic *awareness* function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

1. Dilute the space of possibilities.

- 2. Add a syntactic *awareness* function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

- 1. Dilute the space of possibilities.
- 2. Add a syntactic *awareness* function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

- 1. Dilute the space of possibilities.
- 2. Add a syntactic *awareness* function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

- 1. Dilute the space of possibilities.
- 2. Add a syntactic awareness function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

GETTING RID OF LOGICAL AND DEDUCTIVE OMNISCIENCE

- 1. Dilute the space of possibilities.
- 2. Add a syntactic awareness function.
- 3. Use a model for *fragmented* beliefs.

A WIDELY SPREAD VIEW

What can be done with non-logical worlds can equally well be done with an awareness function (and fragmented beliefs).

CHALLENGING ORTHODOXY!

Models for "realistic" defeasible inference do require non-logical worlds because a *revision without new information / tentative application of a default rule* presupposes a notion of explicit belief that does not imply implicit belief.

$\phi := p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ○○

$$\phi := p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

・ロト・日本・日本・日本・日本

$$\phi \coloneqq p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

$$\phi \coloneqq p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic **CluNs**,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

$$\phi \coloneqq p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

$$\phi \coloneqq p \mid \sim \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$$

THE PARACONSISTENT LOGIC CLUNS

Full positive classical propositional logic, excluded middle, and all *De Morgan* equivalences.

THE ADAPTIVE LOGIC

- The logic CluNs,
- the set of abnormalities $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}$, and
- the permission to derive ϕ conditionally whenever $\phi \lor \psi$ can be derived unconditionally, and $\psi \in \Omega$ has not yet been derived (as a disjunct of a minimal disjunction of members of Ω).

(1)	$p \land q$	Prem.	Ø	
(2)	$\sim p \vee r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	q	Simpl. (1)	Ø	
(8)	r	(2),(6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \wedge \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC . (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	(2),(6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	~ p	MP (5), (7)	Ø	
(13)	$p \wedge \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	q	Simpl. (1)	Ø	
(8)	γ	(2),(6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	(2),(6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \wedge \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	q	Simpl. (1)	Ø	
(8)	$r \lor (p \land \sim p)$	PbC. (2), (6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	p	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	(3),(7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	~ p	MP (5), (7)	Ø	
(13)	$p \wedge \sim p$	Adj. (6), (12)	Ø	
(14)		$PhC_{(3)}(6)(7)$	α	

(1)	$p \land q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	
(9)	$p \rightarrow \sim q \lor (q \land \sim q)$	PbC. (3), (7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	~ p	MP (5), (7)	Ø	
(12)	10 1 10	Adi (6) (12)	α	
(13)	$p \land \sim p$	Auj. $(0), (12)$		

(1)	$p \land q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	p	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	DS (3), (7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)		Decome	α	
(1)	$p \wedge q$	Prem.	\oslash	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	
(9)	$p \rightarrow \sim q$	DS (3), (7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	$\sqrt{11}$
(9)	$p \rightarrow \sim q$	DS (3), (7)	$\{q\}$	$\sqrt{11}$
(10)	$\sim q$	MP (6), (9)	$\{q\}$	$\sqrt{11}$
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	9	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	$\sqrt{11}$
(9)	$p \rightarrow \sim q$	DS (3), (7)	$\{q\}$	$\sqrt{11}$
(10)	$\sim q$	MP (6), (9)	$\{q\}$	$\sqrt{11}$
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

(1)	$o \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$l \rightarrow \sim p$	Prem.	Ø	
(6)	0	Simpl. (1)	Ø	
(7)	1	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	$\sqrt{11}$
(9)	$\mathcal{O} \rightarrow \sim q$	DS (3), (7)	$\{q\}$	
(10)	$\sim q$	MP (6), (9)	$\{q\}$	
(11)	$(p \wedge \sim p) \lor (q \wedge \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	~ <i>p</i>	MP (5), (7)	Ø	
(13)	$p \wedge \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	
(13) (14)	o∧ ~ p 1∧ ~ q	Adj. $(6), (12)$ PbC. $(3), (6), (7)$	\varnothing	

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

(1)	$p \wedge q$	Prem.	Ø	
(2)	$\sim p \lor r$	Prem.	Ø	
(3)	$\sim q \lor (p \rightarrow \sim q)$	Prem.	Ø	
(4)	$\sim p \lor \sim q$	Prem.	Ø	
(5)	$q \rightarrow \sim p$	Prem.	Ø	
(6)	р	Simpl. (1)	Ø	
(7)	q	Simpl. (1)	Ø	
(8)	r	DS (2), (6)	$\{p\}$	$\sqrt{11}$
(9)	$p \rightarrow \sim q$	DS (3), (7)	$\{q\}$	$\sqrt{14}$
(10)	$\sim q$	MP (6), (9)	$\{q\}$	$\sqrt{14}$
(11)	$(p \land \sim p) \lor (q \land \sim q)$	PbC. (4), (6), (7)	Ø	
(12)	$\sim p$	MP (5), (7)	Ø	
(13)	$p \land \sim p$	Adj. (6), (12)	Ø	
(14)	$q \wedge \sim q$	PbC. (3), (6), (7)	Ø	

PREFERENCE MODELS BASED ON CLUNS

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH

 (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{2\mathfrak{N}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{2\mathfrak{N}}$ a **CluNs**-valuation-function such that:

- 1. $Ab_{20}(s) = \{ \omega \in \Omega : s \in \|\omega\|_{20} \}$
- 2. $s \leq s' \Leftrightarrow Ab_{20}(s) \subseteq Ab_{20}(s')$
- 3. For every proposition $\|\Gamma\|_{2\mathfrak{V}} \subseteq S$ and every $s \in \|\Gamma\|_{2\mathfrak{V}}$, if for some $\Delta \subset Ab_{2\mathfrak{V}}(s)$, we have $\Gamma \cup \{\sim \phi : \phi \in \Omega \setminus \Delta\} \not\models_{\text{LLL}} \bot$, then there is an $s' \in \|\Gamma\|_{2\mathfrak{V}}$ such that $Ab_{2\mathfrak{V}}(s') = \Delta$.

$\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- v : (Prop \cup Prop $^{\sim}$) $\times S \mapsto \{0, 1\},$
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{\mathfrak{W}}(\phi_1 \wedge \phi_2, s) = 1$ iff $v_{\mathfrak{W}}(\phi_1, s) = 1$ and $v_{\mathfrak{W}}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi \mathbf{e}_1 s)$ 国社主体 主 のへで

PREFERENCE MODELS BASED ON CLUNS

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{20}, \|\cdot\|_{20})$ WITH

 (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{2\mathfrak{N}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{2\mathfrak{N}}$ a **CluNs**-valuation-function such that:

- 1. $Ab_{20}(s) = \{ \omega \in \Omega : s \in \|\omega\|_{20} \}$
- 2. $s \leq s' \Leftrightarrow Ab_{20}(s) \subseteq Ab_{20}(s')$
- 3. For every proposition $\|\Gamma\|_{20} \subseteq S$ and every $s \in \|\Gamma\|_{20}$, if for some $\Delta \subset Ab_{20}(s)$, we have $\Gamma \cup \{\sim \phi : \phi \in \Omega \setminus \Delta\} \not\models_{\text{LLL}} \bot$, then there is an $s' \in \|\Gamma\|_{20}$ such that $Ab_{20}(s') = \Delta$.

$\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- v : (Prop \cup Prop $^{\sim}$) $\times S \mapsto \{0, 1\},$
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \text{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{\mathfrak{W}}(\phi_1 \wedge \phi_2, s) = 1$ iff $v_{\mathfrak{W}}(\phi_1, s) = 1$ and $v_{\mathfrak{W}}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi \mathbf{e}_1 s)$ 国社主体 主 のへで

PREFERENCE MODELS BASED ON CLUNS

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH

 (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{2\mathfrak{N}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{2\mathfrak{N}}$ a **CluNs**-valuation-function such that:

- 1. $Ab_{20}(s) = \{ \omega \in \Omega : s \in ||\omega||_{20} \}$ 2. $s \leq s' \Leftrightarrow Ab_{20}(s) \subseteq Ab_{20}(s')$
- For every proposition ||Γ||₂₀ ⊆ *S* and every *s* ∈ ||Γ||₂₀, if for some Δ ⊂ *Ab*₂₀(*s*), we have Γ ∪ {~ φ : φ ∈ Ω \ Δ} ∉_{LLL}⊥, then there is an *s*' ∈ ||Γ||₂₀ such that *Ab*₂₀(*s*') = Δ.

$\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- v : (Prop \cup Prop $^{\sim}$) $\times S \mapsto \{0, 1\},$
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{\mathfrak{W}}(\phi_1 \wedge \phi_2, s) = 1$ iff $v_{\mathfrak{W}}(\phi_1, s) = 1$ and $v_{\mathfrak{W}}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi \mathbf{e}_1 s)$ 国社主体 主 のへで
$\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ with

 (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{2\mathfrak{N}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{2\mathfrak{N}}$ a **CluNs**-valuation-function such that:

- 1. $Ab_{20}(s) = \{ \omega \in \Omega : s \in ||\omega||_{20} \}$
- 2. $s \leq s' \Leftrightarrow Ab_{20}(s) \subseteq Ab_{20}(s')$
- 3. For every proposition $\|\Gamma\|_{\mathfrak{M}} \subseteq S$ and every $s \in \|\Gamma\|_{\mathfrak{M}}$, if for some $\Delta \subset Ab_{\mathfrak{M}}(s)$, we have $\Gamma \cup \{\sim \phi : \phi \in \Omega \setminus \Delta\} \notin_{LLL} \bot$, then there is an $s' \in \|\Gamma\|_{\mathfrak{M}}$ such that $Ab_{\mathfrak{M}}(s') = \Delta$.

$\|\phi\|_{2\mathfrak{D}} = \{s \in S : v_{2\mathfrak{D}}(\phi, s) = 1\}$

- v : (Prop \cup Prop $^{\sim}$) $\times S \mapsto \{0, 1\},$
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \text{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{\mathfrak{W}}(\phi_1 \land \phi_2, s) = 1$ iff $v_{\mathfrak{W}}(\phi_1, s) = 1$ and $v_{\mathfrak{W}}(\phi_2, s) = 1$.
- $v_{\mathrm{m}}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{\mathrm{m}}(\phi_1, s) = 0$ or $v_{\mathrm{m}}(\phi_1, s) = 1$ 로 오직 \mathfrak{S}

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{20}(s) = \{ \omega \in \Omega : s \in ||\omega||_{20} \}$$

2. $s \leq s' \Leftrightarrow Ab_{20}(s) \subseteq Ab_{20}(s')$

$\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- v : (Prop \cup Prop $^{\sim}$) \times $S \mapsto \{0, 1\}$,
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \text{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- $v : (\operatorname{Prop} \cup \operatorname{Prop}^{\sim}) \times S \mapsto \{0, 1\},\$

- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- v : (Prop \cup Prop \sim) $\times S \mapsto \{0, 1\}$,
- $v_{2\mathfrak{V}}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

<□> <0<>

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- $v : (\operatorname{Prop} \cup \operatorname{Prop}^{\sim}) \times S \mapsto \{0, 1\},\$
- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,

- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,

- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

- $v : (\operatorname{Prop} \cup \operatorname{Prop}^{\sim}) \times S \mapsto \{0, 1\},\$
- $v_{\mathfrak{M}}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \to \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

<□> <0<>

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{2\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

-
$$v$$
 : (Prop \cup Prop \sim) \times $S \mapsto \{0, 1\}$,

- $v_{20}(\phi, s) = 1$ iff $v(\phi, s) = 1$, for $\phi \in \mathsf{Prop}$,
- $v_{20}(\sim \phi, s) = 1$ iff $v_{20}(\phi, s) = 0$ or $v(\sim \phi, s) = 1$,
- $v_{20}(\phi_1 \lor \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ or $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \land \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 1$ and $v_{20}(\phi_2, s) = 1$,
- $v_{20}(\phi_1 \rightarrow \phi_2, s) = 1$ iff $v_{20}(\phi_1, s) = 0$ or $v_{20}(\phi_2, s) = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\mathfrak{M} = (S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}})$ WITH (S, \leq) is a preference frame, $\Omega = \{\phi \land \sim \phi \mid \phi \in \mathsf{Prop}\}, Ab_{\mathfrak{M}}$ a map: $S \mapsto \mathcal{P}(\Omega)$, and $\|\cdot\|_{\mathfrak{M}}$ a **CluNs**-valuation-function such that:

1.
$$Ab_{2\mathfrak{M}}(s) = \{ \omega \in \Omega : s \in ||\omega||_{\mathfrak{M}} \}$$

2. $s \leq s' \Leftrightarrow Ab_{\mathfrak{M}}(s) \subseteq Ab_{\mathfrak{M}}(s')$

 $\|\phi\|_{20} = \{s \in S : v_{20}(\phi, s) = 1\}$

-
$$v : (\operatorname{Prop} \cup \operatorname{Prop}^{\sim}) \times S \mapsto \{0, 1\},$$

- $v_{20}(\phi, s) = 1 \text{ iff } v(\phi, s) = 1, \text{ for } \phi \in \operatorname{Prop},$
- $v_{20}(\sim \phi, s) = 1 \text{ iff } v_{20}(\phi, s) = 0 \text{ or } v(\sim \phi, s) = 1,$
- $v_{20}(\phi_1 \lor \phi_2, s) = 1 \text{ iff } v_{20}(\phi_1, s) = 1 \text{ or } v_{20}(\phi_2, s) = 1,$
- $v_{20}(\phi_1 \land \phi_2, s) = 1 \text{ iff } v_{20}(\phi_1, s) = 1 \text{ and } v_{20}(\phi_2, s) = 1,$
- $v_{20}(\phi_1 \to \phi_2, s) = 1 \text{ iff } v_{20}(\phi_1, s) = 0 \text{ or } v_{20}(\phi_2, s) = 1.$

φ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^m ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{20}^m = \{s \in \|\Gamma\|_{20} : (s' \in \|\Gamma\|_{20} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{20}^r = \{s \in \|\Gamma\|_{20} : \forall \omega \in \Omega \ (s \in \|\omega\|_{20} \Rightarrow \exists s' \in \|\Gamma\|_{20}^m \& s' \in \|\omega\|_{20})\}$

ϕ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $\|\Gamma\|_{20}^m \subseteq \|\phi\|_{20}$, with: 1. $\|\Gamma\|_{20}^m = \{s \in \|\Gamma\|_{20} : (s' \in \|\Gamma\|_{20} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{20}^r = \{s \in \|\Gamma\|_{20} : \forall \omega \in \Omega \ (s \in \|\omega\|_{20} \Longrightarrow \exists s' \in \|\Gamma\|_{20}^m \& s' \in \|\omega\|_{20})\}$

 ϕ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $\|\Gamma\|_{\mathfrak{W}}^m \subseteq \|\phi\|_{\mathfrak{W}}$, with: 1. $\|\Gamma\|_{\mathfrak{W}}^m = \{s \in \|\Gamma\|_{\mathfrak{W}} : (s' \in \|\Gamma\|_{\mathfrak{W}} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

ション ふゆ アメリア オリア しょうめん

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{20}^r = \{s \in \|\Gamma\|_{20} : \forall \omega \in \Omega \ (s \in \|\omega\|_{20} \Rightarrow \exists s' \in \|\Gamma\|_{20}^m \& s' \in \|\omega\|_{20})\}$

 ϕ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $\|\Gamma\|_{\mathfrak{W}}^m \subseteq \|\phi\|_{\mathfrak{W}}$, with: 1. $\|\Gamma\|_{\mathfrak{W}}^m = \{s \in \|\Gamma\|_{\mathfrak{W}} : (s' \in \|\Gamma\|_{\mathfrak{W}} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

ション ふゆ アメリア オリア しょうめん

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{2\mathfrak{D}}^r = \{ s \in \|\Gamma\|_{2\mathfrak{D}} : \forall \omega \in \Omega \ (s \in \|\omega\|_{2\mathfrak{D}} \Longrightarrow \exists s' \in \|\Gamma\|_{2\mathfrak{D}}^m \& s' \in \|\omega\|_{2\mathfrak{D}}) \}$

 ϕ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $\|\Gamma\|_{\mathfrak{W}}^m \subseteq \|\phi\|_{\mathfrak{W}}$, with: 1. $\|\Gamma\|_{\mathfrak{W}}^m = \{s \in \|\Gamma\|_{\mathfrak{W}} : (s' \in \|\Gamma\|_{\mathfrak{W}} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

ション ふゆ アメリア オリア しょうめん

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{\mathfrak{M}}^{r} = \{ s \in \|\Gamma\|_{\mathfrak{M}} : \forall \omega \in \Omega \ (s \in \|\omega\|_{\mathfrak{M}} \Longrightarrow \exists s' \in \|\Gamma\|_{\mathfrak{M}}^{m} \& s' \in \|\omega\|_{\mathfrak{M}}) \}$

 ϕ IS AN MA-CONSEQUENCE OF Γ IN 20 IFF $\|\Gamma\|_{\mathfrak{W}}^m \subseteq \|\phi\|_{\mathfrak{W}}$, with: 1. $\|\Gamma\|_{\mathfrak{W}}^m = \{s \in \|\Gamma\|_{\mathfrak{W}} : (s' \in \|\Gamma\|_{\mathfrak{W}} \& s \sim s') \Longrightarrow s \leq s')\}$, and 2. $\sim = \leq \cup \geq$.

ション ふゆ アメリア オリア しょうめん

φ IS AN R-CONSEQUENCE OF Γ IN 20 IFF $||Γ||_{20}^r ⊆ ||φ||_{20}$, with:

1. $\|\Gamma\|_{\mathfrak{W}}^{r} = \{ s \in \|\Gamma\|_{\mathfrak{W}} : \forall \omega \in \Omega \ (s \in \|\omega\|_{\mathfrak{W}} \Longrightarrow \exists s' \in \|\Gamma\|_{\mathfrak{W}}^{m} \& s' \in \|\omega\|_{\mathfrak{W}}) \}$

NO TRACE OF THE DYNAMICS!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing r from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション (中) (日) (日) (日) (日) (日)

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket \text{ iff } s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff $s \Vdash \llbracket \phi_1 \rrbracket$ or $s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション (中) (日) (日) (日) (日) (日)

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket$ iff $s \Vdash \phi$
- *s* \Vdash $\llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff *s* \Vdash $\llbracket \phi_1 \rrbracket$ or *s* \Vdash $\llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション (中) (日) (日) (日) (日) (日)

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket$ iff $s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff $s \Vdash \llbracket \phi_1 \rrbracket$ or $s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション ふゆ アメリア オリア しょうめん

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket \text{ iff } s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff $s \Vdash \llbracket \phi_1 \rrbracket$ or $s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション ふゆ アメリア オリア しょうめん

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket \text{ iff } s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket \text{ iff } s \Vdash \llbracket \phi_1 \rrbracket \text{ or } s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション ふゆ アメリア オリア しょうめん

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket$ iff $s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket \text{ iff } s \Vdash \llbracket \phi_1 \rrbracket \text{ or } s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

ション ふゆ アメリア オリア しょうめん

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket$ iff $s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff $s \Vdash \llbracket \phi_1 \rrbracket$ or $s \Vdash \llbracket \phi_2 \rrbracket$

DEDUCTIVE INFERENCES YIELD INSIGHT IN PREMISES

- Deducing *r* from $p \land q$ and $(p \land q) \rightarrow r$ requires one to recognise the immediate sub-formulae of $(p \land q) \rightarrow r$, but not the sub-formulae of $p \land q$.
- We use a dedicated block-language $\mathcal{L}_{\text{CLuNs}}^{\text{bl}}$ to reflect this; e.g. $\llbracket (p \land q) \rightarrow r \rrbracket$ versus $\llbracket (p \land q) \rrbracket \rightarrow \llbracket r \rrbracket$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Arbitrary worlds where there need not be a logical connection between arbitrary ϕ and ψ .
- $s \Vdash \llbracket \phi \rrbracket$ iff $s \Vdash \phi$
- $s \Vdash \llbracket \phi_1 \rrbracket \lor \llbracket \phi_2 \rrbracket$ iff $s \Vdash \llbracket \phi_1 \rrbracket$ or $s \Vdash \llbracket \phi_2 \rrbracket$
- ...

$\mathfrak{M} = (O, S, \leq, \Omega, Ab_{20}, \|\cdot\|_{20}, \mathsf{A}, \mathsf{R}, R)$ WITH $(O \cup S, \leq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

1. The restriction of $\|\cdot\|_{20}$ to *S* is a **CluNs**-valuation, and

2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,

ション ふゆ アメリア オリア しょうめん

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{20}, \|\cdot\|_{20}, \mathsf{A}, \mathsf{R}, R)$ WITH $(O \cup S, \leq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

1. The restriction of $\|\cdot\|_{\mathfrak{M}}$ to *S* is a **CluNs**-valuation, and

2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,
- 5. *sRt* iff 20, $t \Vdash \phi$ for all $\phi \in A(s)$.

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}}, \mathsf{A}, \mathsf{R}, R)$ with

 $(O \cup S, \preceq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

- 1. The restriction of $\|\cdot\|_{\mathfrak{M}}$ to *S* is a **CluNs**-valuation, and
- 2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,
- 5. *sRt* iff $\mathfrak{M}, t \Vdash \phi$ for all $\phi \in A(s)$.

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}}, \mathsf{A}, \mathsf{R}, R)$ with

 $(O \cup S, \preceq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

- 1. The restriction of $\|\cdot\|_{\mathcal{W}}$ to *S* is a **CluNs**-valuation, and
- 2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,

ション ふゆ アメリア オリア しょうめん

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}}, \mathsf{A}, \mathsf{R}, R)$ with

 $(O \cup S, \preceq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

- 1. The restriction of $\|\cdot\|_{\mathcal{W}}$ to *S* is a **CluNs**-valuation, and
- 2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}}, \mathsf{A}, \mathsf{R}, R)$ with

 $(O \cup S, \preceq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

- 1. The restriction of $\|\cdot\|_{\mathcal{W}}$ to *S* is a **CluNs**-valuation, and
- 2. the restriction of $\|\cdot\|_{20}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathfrak{M} = (O, S, \leq, \Omega, Ab_{\mathfrak{M}}, \|\cdot\|_{\mathfrak{M}}, \mathsf{A}, \mathsf{R}, R)$ with

 $(O \cup S, \preceq, \Omega, Ab_{20}, \|\cdot\|_{20})$ an adaptive preference model such that:

- 1. The restriction of $\|\cdot\|_{\mathfrak{M}}$ to *S* is a **CluNs**-valuation, and
- 2. the restriction of $\|\cdot\|_{\mathfrak{M}}$ to *O* is arbitrary;

and with $A : S \mapsto \mathcal{P}(\mathcal{L}_{CLuNs}^{bl})$ the *access-set* function, $R : S \mapsto \mathcal{P}(\mathcal{R})$ the *rule-set* function, and $R \subseteq S \times (O \cup S)$ a binary relation such that:

- 3. A is a constant function,
- 4. R is a constant function that assigns all **CluNs**-valid rules to each $s \in S$,
- 5. *sRt* iff $\mathfrak{M}, t \Vdash \phi$ for all $\phi \in A(s)$. (note: ϕ is a block-formula)

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi \in A$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ○ ○

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi \in A$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi\in$ A.

ション ふゆ アメリア オリア しょうめん

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi \in A$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi \in A$.

ション ふゆ アメリア オリア しょうめん

MAIN NOTIONS OF BELIEF

- ϕ is implicitly believed iff it is true in all states in $R[s] = \{t \in S : Rst\}.$
- ϕ is explicitly believed iff it is true in all minimal/reliable states in R[s].

FURTHER REFINEMENTS

- ϕ is an explicitly derived indefeasible belief iff $\phi \in A$.

ション ふゆ アメリア オリア しょうめん
(1) p Prem. [p](2) $p \rightarrow \sim p$ Prem. $[p \rightarrow \sim p]$ (3) $\sim p \lor q$ Prem. $[\neg p \lor q]$ (4) $q \lor (p \land \sim p)$ PbC., 1, 3 $[[q] \lor [([p] \land [\sim p])]]$ (5) $\sim p$ MP 1, 2 $[\neg p]$ (6) $p \land \sim p$ Adj. 1, 5 $[[p] \land [\neg p]]$


```
\begin{bmatrix} p \\ [p \rightarrow \sim p] \\ [\sim p \lor q] \\ [[q] \lor [([p] \land [\sim p])]] \\ [\sim p] \\ [[p] \land [\sim p]] \end{bmatrix}
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ○○

(1) p Prem. [p](2) $p \rightarrow \sim p$ Prem. $[p \rightarrow \sim p]$ (3) $\sim p \lor q$ Prem. $[\sim p \lor q]$ (4) $q \lor (p \land \sim p)$ PbC.,1,3 $[[q] \lor [([p] \land [\sim p])]]$ (5) $\sim p$ MP 1,2 $[\sim p]$ (6) $p \land \sim p$ Adj. 1,5 $[[p] \land [\sim p]]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1)	р	Prem.	[[<i>p</i>]]
(2)	$p \rightarrow \sim p$	Prem.	$\llbracket p \rightarrow \sim p \rrbracket$
(3)	$\sim p \lor q$	Prem.	$\llbracket \sim p \lor q brace$
(4)	$q \lor (p \land \sim p)$	PbC.,1,3	$\llbracket \llbracket q \rrbracket \lor \llbracket (\llbracket p \rrbracket \land \llbracket \sim p \rrbracket) \rrbracket \rrbracket$
(5)	$\sim p$	MP 1,2	$\llbracket \sim p \rrbracket$
(6)	$p \land \sim p$	Adj. 1, 5	$\llbracket\llbracket p \rrbracket \land \llbracket \sim p \rrbracket \rrbracket$

▲日▶▲□▶▲□▶▲□▶ □ のQ@

(1)
$$p$$
 Prem. $\llbracket p \rrbracket$
(2) $p \rightarrow \sim p$ Prem. $\llbracket p \rightarrow \sim p \rrbracket$
(3) $\sim p \lor q$ Prem. $\llbracket p \lor \sim q \rrbracket$
(4) $q \lor (p \land \sim p)$ PbC. 1, 3 $\llbracket \llbracket q \rrbracket \lor \llbracket (\llbracket p \rrbracket \land \llbracket \sim p \rrbracket) \rrbracket \rrbracket$
(5) $\sim p$ MP 1, 2 $\llbracket \sim p \rrbracket$
(6) $p \land \sim p$ Adj. 1, 5 $\llbracket \llbracket p \rrbracket \land \llbracket \sim p \rrbracket \rrbracket$

<□> <0</p>
<□> <0</p>
<0</p>
<0</p>
<0</p>

(1)
$$p$$
 Prem. $\llbracket p \rrbracket$
(2) $p \rightarrow \sim p$ Prem. $\llbracket p \rightarrow \sim p \rrbracket$
(3) $\sim p \lor q$ Prem. $\llbracket \sim p \lor q \rrbracket$
(4) $q \lor (p \land \sim p)$ PbC. , 1, 3 $\llbracket \llbracket q \rrbracket \lor \llbracket (\llbracket p \rrbracket \land \llbracket \sim p \rrbracket) \rrbracket \rrbracket$
(5) $\sim p$ MP 1, 2 $\llbracket \sim p \rrbracket$
(6) $p \land \sim p$ Adj. 1, 5 $\llbracket \llbracket p \rrbracket \land \llbracket \sim p \rrbracket \rrbracket$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

・ロト・西ト・モート 中 のくの

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三三 のへの

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.

SUMMARY

- Tentative applications of rules require explicit beliefs that can be contradicted by one's implicit beliefs.
- Open worlds that do not contradict what has unconditionally been derived can be considered less abnormal than some closed worlds.

- A model with explicit rules for unconditional rules, but without explicit rules for conditional/defeasible rules.
- The justifications ϕ_i for a defeasible rule do not need to be implicitly believed to apply the rule. It is sufficient if the negation of ϕ_i isn't explicitly believed.