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Adaptive Logic: Some Background
Adaptive logics are logics for defeasible
inference that are based on

1. A formula-preferential semantics, and

2. a dynamic proof-theory (nonmonotonic inference
procedure).

Adaptive logic and modal logic

1. Adaptive consequence relations can be reformulated in a
Kripke-style semantics.

2. This type of reformulation does not properly account for
the dynamics of the proof-theory of adaptive logic.

A Question
Is the dynamics of the dynamic proof-theory something new,
or is it a standard type of inferential dynamics?
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The Argument in Brief

Getting Rid of Logical and Deductive Omniscience

1. Dilute the space of possibilities.

2. Add a syntactic awareness function.

3. Use a model for fragmented beliefs.

A Widely Spread View
What can be done with non-logical worlds can equally well be
done with an awareness function (and fragmented beliefs).

Challenging Orthodoxy!
Models for “realistic” defeasible inference do require
non-logical worlds because a revision without new
information / tentative application of a default rule
presupposes a notion of explicit belief that does not imply
implicit belief.
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An Inconsistency Adaptive Logic

Language LP

φ := p |∼ φ | φ1 ∨φ2 | φ1 ∧φ2 | φ1 → φ2

The Paraconsistent Logic CluNs
Full positive classical propositional logic, excluded middle,
and all De Morgan equivalences.

The Adaptive Logic

- The logic CluNs,

- the set of abnormalities Ω = {φ∧ ∼ φ | φ ∈ Prop}, and

- the permission to derive φ conditionally whenever
φ∨ψ can be derived unconditionally, and ψ ∈ Ω has
not yet been derived (as a disjunct of a minimal
disjunction of members of Ω).
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A Dynamic Proof

(1) p ∧ q Prem. ∅
(2) ∼p ∨ r Prem. ∅
(3) ∼q ∨ (p →∼q) Prem. ∅
(4) ∼p∨ ∼q Prem. ∅
(5) q →∼p Prem. ∅
(6) p Simpl. (1) ∅
(7) q Simpl. (1) ∅
(8) r (2), (6) {p} √11

(9) p →∼q (3), (7) {q} √11

(10) ∼q MP (6), (9) {q} √11

(11) (p∧ ∼p)∨ (q∧ ∼q) PbC. (4), (6), (7) ∅
(12) ∼p MP (5), (7) ∅
(13) p∧ ∼p Adj. (6), (12) ∅
(14) q∧ ∼q PbC. (3), (6), (7) ∅
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Preference Models based on CluNs

M = (S,�,Ω, AbM,‖·‖M) with
(S,�) is a preference frame, Ω = {φ∧ ∼ φ | φ ∈ Prop}, AbM
a map: S , P(Ω), and ‖·‖M a CluNs-valuation-function such
that:

1. AbM(s) = {ω ∈ Ω : s ∈ ‖ω‖M}
2. s � s′a AbM(s) ⊆ AbM(s′)
3. For every proposition ‖Γ‖M ⊆ S and every s ∈ ‖Γ‖M, if for

some ∆ ⊂ AbM(s), we have Γ ∪ {∼φ : φ ∈ Ω \∆} 6îLLL⊥, then
there is an s′ ∈ ‖Γ‖M such that AbM(s′) = ∆.

‖φ‖M = {s ∈ S : vM(φ, s) = 1}

- v : (Prop∪ Prop∼)× S , {0,1},
- vM(φ, s) = 1 iff v(φ, s) = 1, for φ ∈ Prop,
- vM(∼φ, s) = 1 iff vM(φ, s) = 0 or v(∼φ, s) = 1,
- vM(φ1 ∨φ2, s) = 1 iff vM(φ1, s) = 1 or vM(φ2, s) = 1,
- vM(φ1 ∧φ2, s) = 1 iff vM(φ1, s) = 1 and vM(φ2, s) = 1,
- vM(φ1 → φ2, s) = 1 iff vM(φ1, s) = 0 or vM(φ2, s) = 1.
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Adaptive Consequence

φ is an ma-consequence of Γ in M iff
‖Γ‖mM ⊆ ‖φ‖M, with:

1. ‖Γ‖mM = {s ∈ ‖Γ‖M : (s′ ∈ ‖Γ‖M & s ∼ s′) =⇒ s � s′)}, and

2. ∼=� ∪ �.

φ is an r-consequence of Γ in M iff
‖Γ‖rM ⊆ ‖φ‖M, with:

1. ‖Γ‖rM = {s ∈ ‖Γ‖M : ∀ω ∈ Ω (s ∈ ‖ω‖M =⇒
∃s′ ∈ ‖Γ‖mM & s′ ∈ ‖ω‖M)}
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No trace of the dynamics!



How to account for proof-dynamics?

Deductive inferences yield insight in premises

- Deducing r from p ∧ q and (p ∧ q)→ r requires one to
recognise the immediate sub-formulae of (p ∧ q)→ r ,
but not the sub-formulae of p ∧ q.

- We use a dedicated block-language Lbl
CLuNs to reflect this;

e.g. [[(p ∧ q)→ r]] versus [[(p ∧ q)]]→ [[r]].

(Open) Worlds and Block-Formulae

- Arbitrary worlds where there need not be a logical
connection between arbitrary φ and ψ.

- s ð [[φ]] iff s ð φ
- s ð [[φ1]]∨ [[φ2]] iff s ð [[φ1]] or s ð [[φ2]]
- . . .
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Extended Adaptive Preference Model

M = (O, S,�,Ω, AbM,‖·‖M,A,R, R) with
(O ∪ S,�,Ω, AbM,‖·‖M) an adaptive preference model such
that:

1. The restriction of ‖·‖M to S is a CluNs-valuation, and

2. the restriction of ‖·‖M to O is arbitrary;

and with A : S , P(Lbl
CLuNs) the access-set function,

R : S , P(R) the rule-set function, and R ⊆ S × (O ∪ S) a
binary relation such that:

3. A is a constant function,

4. R is a constant function that assigns all CluNs-valid rules
to each s ∈ S,

5. sRt iff M, t ð φ for all φ ∈ A(s).
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binary relation such that:

3. A is a constant function,

4. R is a constant function that assigns all CluNs-valid rules
to each s ∈ S,

5. sRt iff M, t ð φ for all φ ∈ A(s). (note: φ is a block-formula)



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



Belief

Main notions of belief

- φ is implicitly believed iff it is true in all states in
R[s] = {t ∈ S : Rst}.

- φ is explicitly believed iff it is true in all
minimal/reliable states in R[s].

Further refinements

- φ is an explicitly derived indefeasible belief iff φ ∈ A.

- φ is an explicitly derived defeasible belief iff φ is
explicitly believed, and φ∨

∨∆ ∈ A (with ∆ ⊆ Ω).



From Proofs to Updates

(1) p Prem. [[p]]
(2) p →∼p Prem. [[p →∼p]]
(3) ∼p ∨ q Prem. [[∼p ∨ q]]
(4) q ∨ (p∧ ∼p) PbC. ,1,3 [[[[q]]∨ [[([[p]]∧ [[∼p]])]]]]
(5) ∼p MP 1,2 [[∼p]]
(6) p∧ ∼p Adj. 1,5 [[[[p]]∧ [[∼p]]]]
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Concluding Remarks

Summary

- Tentative applications of rules require explicit beliefs
that can be contradicted by one’s implicit beliefs.

- Open worlds that do not contradict what has
unconditionally been derived can be considered less
abnormal than some closed worlds.

Distinctive Features

- A model with explicit rules for unconditional rules, but
without explicit rules for conditional/defeasible rules.

- The justifications φi for a defeasible rule do not need to
be implicitly believed to apply the rule. It is sufficient if
the negation of φi isn’t explicitly believed.
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