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The Muddy Children Puzzle
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at least one of you is muddy ◦ • • •

who knows his state? N N N N
who knows his state now? N N N N
who knows his state now? N Y Y Y
who knows his state now? Y
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Laws of Conditional Probability
Let H be an event with positive probability. Let A be any event.
Then we define:

P(A|H) =
P(AH)

P(A)
.

From this:
P(AH) = P(A|H) · P(A).

Suppose H1, . . . ,Hn are mutually exclusive events, and their
union is the whole sample space Ω. That is, one of the Hi
necessary occurs. Then we have for any event A:

A = AH1 ∪ AH2 ∪ · · · ∪ AHn.

Since the AHi are mutually exclusive, their probabilities add:

P(A) =
n∑

j=1

P(A|Hj) · P(Hj).
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Bayes’ Law

For the special case of Hj we have:

P(Hj |A) =
P(AHj)

P(A)
.

Expanding P(AHj) and P(A), we get:

P(Hj |A) =
P(A|Hj) · P(Hj)∑n
i=1 P(A|Hi) · P(Hi)

.

This is called Bayes’ Law.
Bayes’ law can be viewed as a learning algorithm: how
probable is hypothesis Hj , given the data A that were observed
using Hj?
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Connection with Update Logic

• P(Hj) is what we know of Hj initially,
• P(A|Hj) is what we know of the update effect of A, given

our initial knowledge,
• P(Hj |A) is our new state of knowledge.
• Persistent question in Bayesian analysis: how to get a

reasonable prior P(Hj)?
• Persistent question in epistemic model checking: how to

get a reasonable initial epistemic model?
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Probabilistic DEL

• Based on Van Benthem, Gerbrandy, Kooi [2].
• Compare also: Kooi’s PhD Thesis [7], Baltag and Smets

[1], Gierasimszuk [4], Halpern [5], . . .
• For simplicity, take the single agent case.

• Probabilistic Epistemic Model M is pair (W ,P), where
• W is a (finite) set of worlds,
• P : W → [0,1] is a probability distribution.
• This means: P(w) ∈ {p | 0 ≤ p ≤ 1},

∑
w∈W P(w) = 1.
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A Puzzle of Lewis Carroll

An urn contains a single marble, either white or black. Mr A
puts another marble in the urn, a white one. The urn now
contains two marbles. Next, Mrs B draws one of the two
marbles from the urn. It turns out to be white. What is the
probability that the other marble is also white? (Gardner [3])
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Discussion: Representation of the Mrs B Update

• Call the first white marble w and the second one w ′. Mrs B
does not know whether she is drawing from b + w ′ or from
w + w ′.

• For the drawing event there are four cases that are all
equally likely:

1. b ∧ w ′: b is taken out,
2. b ∧ w ′: w ′ is taken out,
3. w ∧ w ′: w is taken out,
4. w ∧ w ′: w ′ is taken out.

• Revealing the colour boils down to the public observation
of ¬(b out).

• Lumping the two parts of the action together, and
normalizing gives:

• b ∧ w ′: w ′ is taken out, 1
3 ,

• w ∧ w ′: w is taken out, 1
3 ,

• w ∧ w ′: w ′ is taken out, 1
3 .
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Run of the Monty Hall Update Scenario

• Initial situation: suppose my choice = A.
• Suppose Monty Hall announces !¬B.
• Then the Monty Hall update boils down to:

• A ∧ choice = A: !¬B: 1
3

• B ∧ choice = A: !¬B: 0
• C ∧ choice = A: !¬B: 2

3

• Result of update with this:
A, choice = A, 1

3 , B, choice = A,0, C, choice = A, 2
3 .

• It is clear I should reconsider my choice.
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Semantic Concept Learning

• Learning events: presentation of a new object, use of a
new word.

• “This is a rose”
• “Dit is een roos”
• Do we learn the use of a word? Do we update our

knowledge about roses? Or both?
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Modelling Uncertainty About Basic Predications

• Let a propositional language over a set of basic
predications be given, as follows.

t ::= x | a1 | a2 | · · · | am

Q ::= Q1 | Q2 | · · · | Qn

φ ::= Qt | ¬φ | φ ∧ φ | φ ∨ φ.

• Here we assume a single variable x , a finite number of
proper names a1,a2, . . . ,am and a finite number of basic
unary predicates Q1,Q2, . . . ,Qn.

• Any φ that contains occurrences of x is called a
predication. Use φ(x) for predications, and φ(a/x) for the
result of replacing x by a everywhere in a predication.
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New Names, New Predicates

• Call this language Lm
n .

• If we extend Lm
n with one name am+1, the new language is

called Lm+1
n .

• If we extend Lm
n with one new predicate Qn+1, the new

language is called Lm
n+1
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Representing Partial Knowledge

• For convenience, we identify names and objects, so we
assume a domain Dm = {a1,a2, . . . ,am}.

• The type of a world w with respect to language Lm
n is given

by w : {Q1, . . . ,Qn} → P(Dm).
• w(Qi) is the interpretation of Qi in w , for Lm

n .
• A probabilistic model M is a tuple (D,W ,P) with D a

domain, W a set of worlds for that domain (predicate
interpretations in that domain), and P a probability function
over W , i.e., for all w ∈W , P(w) ∈ [0,1], and∑

w∈W P(w) = 1.
• The probabilities in a model M represent the priors of an

idealized semantic learner.
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Interpretation

• An interpretation of Lm
n in an Lm

n -model M = (D,W ,P) is
given in terms of the standard notion w |= φ, as follows:

[[φ]]M :=
∑
{P(w) | w ∈W ,w |= φ}

• It is straightforward to verify that this yields
[[¬φ]]M = 1− [[φ]]M .

• Also, if φ |= ¬ψ, i.e., if Wφ ∩Wψ = ∅, then
[[φ ∨ ψ]]M =

∑
w∈Wφ∨ψ

P(w) =∑
w∈Wφ

P(w) +
∑

w∈Wψ
P(w) = [[φ]]M + [[ψ]]M .

• Tautologies have probability 1, contradictions probability 0.
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w∈Wψ
P(w) = [[φ]]M + [[ψ]]M .

• Tautologies have probability 1, contradictions probability 0.
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Example 1

• Assume there are just two predicates Q1 and Q2, and two
objects a,b.

• Complete ignorance about how the predicates are applied
is represented by a model with 16 worlds, because for
each object x and each predicate Q there are two cases:
Q applies to x or not.

• If the probability of each of the cases is completely
unknown, each of these worlds has probability 1

16 .
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Example 2

• Suppose again there are two objects a,b and two
predicates Q1,Q2.

• Suppose it is known that a has Q1, and the probability that
b has Q1 is taken to be 2

3 .
• Suppose it is known that no object has Q2.
• Then W = {w1,w2} with w1(Q1) = {a,b}, w2(Q1) = {a},

w1(Q2) = ∅, w2(Q2) = ∅,
• P is given by P(w1) = 2

3 , P(w2) = 1
3 .

• In this example ¬Q1(b) is true in w2 and not in w1.
• Therefore [[¬Q1(b)]] = 1

3 .
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Learning Semantic Concepts: Dictionary Learning

• Learning a new semantic concept Qn+1 is learning how
(or: to what extent) predicate Qn+1 applies to the objects
one knows about.

• The simplest way to model such a learning event is as a
pair (Qn+1, φ(x)) where φ(x) is an Lm

n predication.
• The effect of the learning event could then be modelled in

a way that is very similar to the manner in which factual
change is modelled in epistemic update logic.

• The result of updating a model M = (D,W ,P) with concept
learning event (Qn+1, φ(x)) is the model that is like M
except for the fact that the interpretation in each world of
Qn+1 is given by

w(Qn+1) := {a | a ∈ Dm,w |= φ(a/x)}.

• Note that the probability function P of the model does not
change.
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Learning Example

• Let’s return to example 1.
• This is the model where there are two objects and two

predicates, and nothing is known about the properties of
the objects.

• Take the learning event (Q3,Q1x ∧ ¬Q2x).
• This defines Q3 as the difference of Q1 and Q2.
• The resulting model will again have 16 worlds, and in each

world wi , wi(Q3) is given by wi(Q1) ∩ (D − wi(Q2)).
• The probabilities of the worlds remain unchanged.
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Adjustment and Approximation (1)

• To allow adjustment of the meaning of a concept by means
of a learning event, we can use probabilistic updating.

• A concept learning event now is a tuple

(Q, φ, ψ(x),q)

where φ is a sentence, ψ(x) is a predication, and q is a
probability.

• φ expresses the observational circumstances of the
revision.

• q expresses the observational certainty of the new
information.
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Adjustment and Approximation (2)

• The result of updating M = (D,W ,P) with (Q, φ, ψ(x),q) is
a new model M = (D,W ′,P ′).

• W ′ is given by changing the interpretation of Q in members
w of Wφ to {a | w |= ψ(a/x)} while leaving the
interpretation of Q in members of W¬φ unchanged.

• P ′ is given by P ′(w) = P(w)×q
X for members of Wφ,

• and by P ′(w) = P(w)×(1−q)
X for members of W¬φ.

• 1
X (the normalization factor) is given by

X =
∑

w∈Wφ

P(w)× q +
∑

w∈W¬φ

P(w)× (1− q).
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Back to an Example

• Consider again the example with the two objects and the
two properties, where nothing is known. A learning event
for this could be:

(Q2,¬Q1b,Q1x ∨Q2x ,
2
3

).

• Then the resulting model has again 2 worlds, but now the
probability of w2 has gone up from 1

3 to

2
3 ×

1
3

1
3 ×

2
3 + 2

3 ×
1
3

=
1
2

• The probability of w1 has gone down from 2
3 to

1
3 ×

2
3

4
9

=
1
2
.
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Learning Concepts by Example (1)

• You are given something of which you are told that it is
called a “rose”, and you observe that it is thorny, red and a
flower.

• A learning example is an encounter with a new object
am+1.

• Suppose you learn that predicate Q applies to am+1.
• The properties you observe of am+1 are given by θ(am+1),

where θ(am+1) is a conjunction of ±Qi(am+1) for all known
predicates.

• Update event: (am+1,Q, θ(am+1)).
• You learn that am+1 is called a Q, and you observe that

am+1 satisfies the properties θ(am+1).
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Learning Concepts by Example (2)

• Updating a model M = (D,W ,P) for Lm
n with this will create

a new model M ′ = (D ∪ {am+1},W ′,P) for Lm+1
n .

• New model has domain {a1, . . . ,am+1}.
• W ′ is given by assigning, in each w , to am+1 the properties

specified by θ(am+1).
• Interpretation of Q is given by setting

w(Q) = {a | w |= θ(a/am+1)}.

• This resets the interpretation Q on the basis of the new
observation.

• Probability distribution remains unchanged.
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Learning Concepts by Example (3)

• Account can be refined for cases where the observation is
less precise.

• Learning event:

(am+1,Q, {(θ1(am+1),q1), . . . , (θk (am+1),qk )})

• Here qi gives the observational probability that the new
object satisfies θi .

• The probabilities should observe
∑k

i=1 qi = 1.
• The update can be defined in such way that the probability

of the new predicate applying to the old objects will get
recomputed.
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A Toy Fragment (1)

• Basic types are e (entities), s (worlds), t (truth values), d
(domain size & predicate number restriction) and [0,1] (the
space of probabilities).

• Abbreviate d → s → t as i (intensions).
• Types for S, N, VP, NP, DET get lifted to the level of

intensions, by substituting i for t in all types.
• This gives, e.g., τ(DET) = (e→ i)→ (e→ i)→ i .
• The lifting rules for the interpretation functions are

completely straightforward.
• I(Some) = λpλqλdλw .some(λx .p x d w)(λy .q y d w).
• Here some is the familiar constant function for existential

quantification, of type (e→ t)→ (e→ t)→ t .
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A Toy Fragment (2)

• Sentences get interpretations of type i , i.e., d → s → t .
• Intensions are mapped to probabilities by means of a

function prob of type i → m→ [0.1], where m is the type of
models with their domains.

• The function prob is given by:

prob f (D,W ,P) =
∑
{P(w) | w ∈W , f D w}.

• This assigns to every sentence of the fragment a
probability, on the basis of the prior probabilities encoded
by (D,W ,P).

• Predicates have type e→ i , predicate interpretation
functions type String→ e→ i .

• Concept definitions have type
(String→ e→ i)→ String→ e→ i .

• Learning events have type m→ m.
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Experiments with Semantic Concept Learning
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Refinement: Hierarchical Concept Learning

• We encounter a member of a new tribe.
• He looks like this:

• Do we conclude that members of the tribe are dark-haired?
Yes.

• Do we conclude that members of the tribe are obese?
Most learners do not: Kemp, Perfors and Tenenbaum 2007
[6].

• Program: Hierarchical version of concept learning, using
hierarchical Bayesian models; see Kemp, Perfors and
Tenenbaum [6].
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Conclusions

• It is difficult to make a distinction between learning
semantic concepts and learning facts about the world.

• Try to explain in DEL: Difference between factual change
and change in the interpretation of the language.

• Solution: Fregean senses? Distinction between (fixed)
language of thought and (flexible) concept language?

• To explain: How does semantic concept learning get off
the ground? What is the language in which the learner
makes her first distinctions?

• To do: Use this model as basis for semantic learning
experiments. Cf Alexandru’s talk this Friday.

• To do: Close the gap between the computational
semantics tradition based on type theory, logic, and
Montague grammar, and the statistical tradition in natural
language processing.
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