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Abstract

This talk gives a representation of frames in category theory. All of the con-
stituents of a frame — from the underlying universe of objects with thei attributes
to the frame itself including constraints on its values — can be expressed in cate-
gories. Categories are employed in mathematics to regard structures from a very
abstract point of view (MacLaine, 1998). Thus, they can be used to examine
the structural properties of frames. In short, categories are given by a class of
objects and by the morphisms between all pairs of objects. If a morphism does
not uniquely determine its pair of objects we speak of a pre-category.

To represent frames in category theory we employ several interdependent kinds
of categories. As a basis, the underlying universe can be described in a pre-
category U , with the objects of the universe the objects of the category and the
attributes, connecting objects and their values (which, in turn, are objects of
the universe), its morphisms. Types can be regarded as a subclass of attributes,
relating objects to themselves.

A formal frame, as defined in (Petersen, 2007), is a generalization of a feature
structure. It can be represented by a category G for its frame structure (that is
a category of a graph). Here, the nodes are the objects of the category and the
paths are the morphisms. On the other hand, the content of a frame is represented
by a pre-category, F . Here, objects are sets of things (that is, sets of the objects
in U). As in U , morphisms are given by attributes and types, where types denote
the identity morphisms. As the same attribute and the same type can occur in a
frame more than once, F is just a pre-category, as the uniqueness requirement for
morphisms fails. This makes it straightforward to define a functor from U to F
that respects attributes and types and thus gives a well-formedness constraint for
frame categories. On the other hand, F is closely connected to G, as types can
be interpreted as labels for paths of length zero, again, being just special cases of
attributes. Thus for each frame we have a functor connecting its frame category
to its graph category to express adequacy constraints. This functor allows to
transfer other constraints, as a weak form of uniqueness constraint that is defined
on F : Attributes are functional, so if a morphism goes from A to B and from A
to B′, we can conclude that B = B′. This constraint cannot be defined directly
on the category of the graph; it is a proper category and thus its morphisms are
uniquely assigned.

As in the examples already given, functors prove a useful tool to define con-
straints on frames. Apart from well-formedness-constraints, there are constraints
on values of frames, as Barsalou (1992) proposes them, e.g. monotonicity con-
straints. We will discuss how to define such constraints in terms of categories.
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Functors between categories for different frames can model relations between
and operations on frames. For example, we will discuss how frame-subsumption
or composition can be defined via functors. As a next step, we regard the cate-
gory S of the space of frames. Here, the objects are the frame categories and the
morphisms are the functors between them. Some types of frames, like frames for
lexicalized concepts or frames for relational concepts, can be captured as subcat-
egories of the space of frames.
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