SEparating intermediate predicate logics of SOME LINEAR ORDERS

Norbert Preining
joint work with Arnold Beckmann

Japan Advanced Institute of Science and Technology
tbillc 2013 - Workshop on Algebraic Proof Theory
Gudauri, Georgia, September 2013

Question

Take standard first order language.
Question: What can we express over complete linear orders?

Question

Take standard first order language.
Question: What can we express over complete linear orders?
Same question with one (1) monadic predicate symbol?

The results

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $A_{\alpha, \beta} \in \mathrm{L}(\alpha)$, but $A_{\alpha, \beta} \notin \mathrm{L}(\beta)$.

The results

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $A_{\alpha, \beta} \in \mathrm{L}(\alpha)$, but $A_{\alpha, \beta} \notin \mathrm{L}(\beta)$.

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$, then $A_{\alpha}^{*} \in \mathrm{~L}\left(\alpha^{*}\right)$, but $\mathrm{A}_{\alpha}^{*} \notin \mathrm{~L}\left(\beta^{*}\right)$.

Preliminaries

- \mathcal{L} be a countable first-order language which includes the propositional constant \perp
- fix a universe of objects U
- Kripke frame (K, R) (usual conditions on domains and accessibility relation R), in addition assume R to be linear
- upward closed subsets of $\mathrm{K}: \operatorname{Up}(\mathrm{K})$, totally ordered by \subseteq
- smallest element $0_{\mathrm{K}}=\emptyset$, largest element $1_{\mathrm{K}}=\mathrm{K}$
- intervals $[a, b]$ for $a, b \in \operatorname{Up}(K)$
- LIN axiom: $(A \rightarrow B) \vee(B \rightarrow A)$
- CD axiom: $\forall x(A \vee B(x)) \rightarrow(A \vee \forall x B(x))$

Valuation

Let φ be a mapping from atomic formulas with constants for U into $\operatorname{Up}(\mathrm{K})$.
Extension of φ to all well-formed formulas is defined as follows

- $\varphi(A \wedge B)=\varphi(A) \cap \varphi(B)$
- $\varphi(A \vee B)=\varphi(A) \cup \varphi(B)$
- $\varphi(A \rightarrow B)= \begin{cases}K & \varphi(A) \subseteq \varphi(B) \\ \varphi(B) & \text { otherwise }\end{cases}$
- $\varphi(\forall \chi A)=\bigcap\{\varphi(A(u)): u \in U\}$
- $\varphi(\exists x A)=\bigcup\{\varphi(A(u)): u \in U\}$

Definition of the logic

Definition
The logic defined by a linear Kripke frame $K=(W, R)$, denoted by $L(K)$, is the set of all \mathcal{L}-formulas A such that for all Kripke models (K, U) and all valuations φ of $(\mathrm{K}, \mathrm{U}), \varphi\left(\mathrm{A}^{\prime}\right)=1_{\mathrm{K}}$, where A^{\prime} is a closure of A.

Definition of the logic

Definition
The logic defined by a linear Kripke frame $K=(W, R)$, denoted by $L(K)$, is the set of all \mathcal{L}-formulas A such that for all Kripke models (K, U) and all valuations φ of $(\mathrm{K}, \mathrm{U}), \varphi\left(\mathrm{A}^{\prime}\right)=1_{\mathrm{K}}$, where A^{\prime} is a closure of A.
But: reasoning in Kripke frames is difficult, as we actually reason in the (linear) order of the upsets of the frame.

Definition of the logic

Definition
The logic defined by a linear Kripke frame $K=(W, R)$, denoted by $L(K)$, is the set of all \mathcal{L}-formulas A such that for all Kripke models (K, U) and all valuations φ of $(\mathrm{K}, \mathrm{U}), \varphi\left(\mathrm{A}^{\prime}\right)=1_{\mathrm{K}}$, where A^{\prime} is a closure of A.
But: reasoning in Kripke frames is difficult, as we actually reason in the (linear) order of the upsets of the frame.

Fortunately in the linear case, we can switch sometimes to Gödel logics...

First Order Gödel Logics

Fix a truth value set $\{0,1\} \subseteq \mathrm{V} \subseteq[0,1], \mathrm{V}$ closed Interpretation φ consists of

- a nonempty set U , the universe of φ
- for each k-ary predicate symbol P a function $\mathrm{P}^{\varphi}: \mathrm{U}^{k} \rightarrow \mathrm{~V}$
- for each variable x an object $\chi^{\varphi} \in \mathrm{U}$

Extend the valuation to all formulas

- $\varphi(A \wedge B)=\min \{\varphi(A), \varphi(B)\}$ and $\varphi(A \vee B)=\max \{\varphi(A), \varphi(B)\}$
- $\varphi(A \rightarrow B)= \begin{cases}\varphi(B) & \text { if } \varphi(A)>\varphi(B) \\ 1 & \text { if } \varphi(A) \leqslant \varphi(B)\end{cases}$
- $\varphi(\forall x \mathcal{A}(x))=\inf \{\varphi(A(u)): u \in U\}$
- $\varphi(\exists x \mathcal{A}(x))=\sup \{\varphi(\mathcal{A}(u)): u \in \mathbf{u}\}$

Mapping Kripke worlds into the reals

Embed $\mathrm{Up}(\mathrm{K})$ into the truth value set such that the order and existing infima and suprema are preserved.

Equivalence result with linear Kripke frames

Gödel logic to Kripke frame
For each Gödel logic there is a countable linear Kripke frame such that the respective logics coincide.

Kripke frames to Gödel logic
For each countable linear Kripke frame there is a Gödel truth value set such that the respective logics coincide.

History

Timeline

1933

finitely valued logics

History

Timeline

1933
1959

infinitely valued propositional Gödel logics

History

Timeline

linearly ordered Heyting algebras

History

Timeline

Gödel
Dummett Horn Takeuti-Titani
intuitionistic fuzzy logic

History

Timeline

hypersequent calculus

History

Timeline
1933 (1959 1969
t-norm based logics

History

Timeline

Related work

- P. Minari, M. Takano, H. Ono. Intermediate predicate logics determined by ordinals. In Journal of Symbolic Logic, 55:3, pages 1099-1124, 1990.
- M. Baaz. Infinite-valued Gödel logics with o-1-projections and relativizations. In Gödel 96. Kurt Gödel's Legacy, volume 6 of $L N L$, pages 23-33, 1996.
(Separation of logics with different number of accumulation points.)
- N.P. Gödel logics and Cantor-Bendixon Analysis. In Proceedings of LPAR'2002, LNAI 2514, pages 327-336, 2002. (Separation of logics with different CB rank at 0 - the simple case here)

Descriptive Set Theory

Cantor-Bendixon Derivatives and Ranks

Polish spaces, i.e. separable, completely metrizable topological spaces. \mathbb{R} is a Polish space: $X^{\prime}=\{x \in X: x$ is limit point of $X\}$

Theorem (Cantor-Bendixon)
Let X be a polish space. For some countable ordinal $\alpha_{0}, X^{\alpha}=X^{\alpha_{0}}$ for all $\alpha \geqslant \alpha_{0}$ ($X^{\alpha_{0}}$ is the perfect kernel).

CB Ranks for countable closed sets

- If X is countable, then $X^{\infty}=\emptyset$.
(every perfect set has at least cardinality of the continuum)
- rank of an element: $\mathrm{rk}_{\mathrm{CB}}(\mathrm{x})=\sup \left\{\alpha: x \in X^{\alpha}\right\}$
- rank of $X: \mathrm{rk}_{\mathrm{CB}}(X)=\sup \left\{\mathrm{rk}_{\mathrm{CB}}(x): x \in X\right\}$

Logics under discussion

Kripke frame

For any ordinal $\kappa<\omega^{\omega}$ define two linear Kripke frames over constant domain $K(\kappa)$ and $K\left(\kappa^{*}\right)$ as

$$
\begin{aligned}
K(\kappa) & =(\kappa, \subseteq) \\
K\left(\kappa^{*}\right) & =(\kappa, \supseteq) .
\end{aligned}
$$

We consider the logics $\mathrm{L}(\mathrm{\kappa})=\mathrm{L}(\mathrm{K}(\mathrm{k}))$ and $\mathrm{L}\left(\mathrm{K}^{*}\right)=\mathrm{L}\left(\mathrm{K}\left(\kappa^{*}\right)\right)$.

LOGICS UNDER DISCUSSION

Kripke frame

For any ordinal $\kappa<\omega^{\omega}$ define two linear Kripke frames over constant domain $K(\kappa)$ and $K\left(\kappa^{*}\right)$ as

$$
\begin{aligned}
K(\kappa) & =(\kappa, \subseteq) \\
K\left(\kappa^{*}\right) & =(\kappa, \supseteq) .
\end{aligned}
$$

We consider the logics $\mathrm{L}(\kappa)=\mathrm{L}(\mathrm{K}(\mathrm{k}))$ and $\mathrm{L}\left(\kappa^{*}\right)=\mathrm{L}\left(\mathrm{K}\left(\kappa^{*}\right)\right)$.
Theorem
The logics $\mathrm{L}(\alpha), \mathrm{L}(\beta), \mathrm{L}\left(\alpha^{*}\right), \mathrm{L}\left(\beta^{*}\right)$ for $\omega \leqslant \alpha \neq \beta<\omega^{\omega}$ can already be separated within the fragment of one monadic predicate symbol. (Finite cases are trivial)

Kripke frames, upset order

$$
\begin{aligned}
& -\omega^{2} 2+\omega 3+1
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\omega^{2} 2+\omega 3+1
\end{aligned}
$$

Kripke frames, upset order

Expressing orders

Relativized CB rank
Let $\mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c})=\mathrm{rk}_{\mathrm{CB}}(\mathrm{c})$ in the closure of $\{\varphi(\mathrm{P}(\mathrm{u})): \mathbf{u} \in \mathrm{U}\}$

Expressing orders

Relativized CB rank
Let $\mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c})=\mathrm{rk}_{\mathrm{CB}}(\mathrm{c})$ in the closure of $\{\varphi(\mathrm{P}(\mathrm{u})): \mathbf{u} \in \mathrm{U}\}$
$A \prec B:=(B \rightarrow A) \rightarrow B$
Evaluation: $\varphi(A \prec B)= \begin{cases}1_{K} & \varphi(A)<\varphi(B) \\ \varphi(B) & \text { otherwise }\end{cases}$

Expressing orders

Relativized CB rank
Let $\mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c})=\mathrm{rk}_{\mathrm{CB}}(\mathrm{c})$ in the closure of $\{\varphi(\mathrm{P}(\mathrm{u})): \mathbf{u} \in \mathrm{U}\}$
$A \prec B:=(B \rightarrow A) \rightarrow B$
Evaluation: $\varphi(A \prec B)= \begin{cases}1_{K} & \varphi(A)<\varphi(B) \\ \varphi(B) & \text { otherwise }\end{cases}$
$\mathrm{Q}(\mathrm{c}):=\forall x((\mathrm{Pc} \prec \mathrm{Px}) \rightarrow \mathrm{Px})$
Lemma:
$\varphi(\mathrm{Q}(\mathrm{c}))= \begin{cases}\varphi(\mathrm{P}(\mathrm{c})) & \text { if } \varphi(\mathrm{P}(\mathrm{c}))=1_{\mathrm{K}} \text { or } \mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c}) \geqslant 1 \\ \operatorname{succ}(\varphi(\mathrm{P}(\mathrm{c})) & \text { otherwise }\end{cases}$

Expressing infima

Let

$$
\begin{aligned}
\operatorname{Inf}^{0}(\mathrm{x}) & =\perp \rightarrow \perp \\
\operatorname{Inf}^{\mathrm{n}+1}(\mathrm{x}) & =\forall \mathrm{y}\left((\mathrm{Px} \prec \mathrm{P} y) \rightarrow \exists z\left(\operatorname{Inf}^{\mathrm{n}}(z) \wedge \mathrm{Px} \prec \mathrm{Pz} \prec \mathrm{P} y\right)\right)
\end{aligned}
$$

Expressing infima

Let

$$
\begin{aligned}
\operatorname{Inf}^{0}(\mathrm{x}) & =\perp \rightarrow \perp \\
\operatorname{Inf}^{\mathrm{n}+1}(\mathrm{x}) & =\forall \mathrm{y}\left((\mathrm{Px} \prec \mathrm{Py}) \rightarrow \exists z\left(\operatorname{Inf}^{\mathrm{n}}(z) \wedge \mathrm{Px} \prec \mathrm{Pz} \prec \mathrm{P} y\right)\right)
\end{aligned}
$$

Core lemma
For $n>0$ we have

$$
\varphi\left(\operatorname{Inf}^{\mathrm{n}}(\mathrm{c})\right)= \begin{cases}1_{\mathrm{K}} & \text { if } \varphi(\mathrm{P}(\mathrm{c}))=1_{\mathrm{K}} \text { or }_{\mathrm{K}} \mathrm{k}_{\varphi \mathrm{CB}}(\mathrm{c})=\mathrm{n} \\ \varphi(\mathrm{P}(\mathrm{c})) & 0<\mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c})<\mathrm{n} \\ \operatorname{succ}(\varphi(\mathrm{P}(\mathrm{c}))) & \mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c})=0\end{cases}
$$

SIMPLE CASE - SEPARATION FORMULA

In the following we consider only $\mathrm{k}=\omega^{\mathrm{n}}$.

SIMPLE CASE - SEPARATION FORMULA

In the following we consider only $\mathrm{k}=\omega^{\mathrm{n}}$.
Let

$$
A^{n}=\forall x \forall y\left(\operatorname{Inf}^{n}(x) \wedge \operatorname{Inf}^{n}(y) \wedge Q(x) \rightarrow Q(y)\right)
$$

SIMPLE CASE - SEPARATION FORMULA

In the following we consider only $\mathrm{k}=\omega^{\mathrm{n}}$.
Let

$$
A^{n}=\forall x \forall y\left(\operatorname{Inf}^{n}(x) \wedge \operatorname{Inf}^{n}(y) \wedge Q(x) \rightarrow Q(y)\right)
$$

Theorem
With the definitions from above, we have

$$
\begin{array}{ll}
A^{n} \notin L\left(K^{n}\right) & \left(=G\left(V^{n}\right)\right) \\
A^{n} \in L\left(K^{m}\right) \text { for } m<n & \left(=G\left(V^{m}\right)\right)
\end{array}
$$

$A^{n} \notin \mathrm{~L}\left(\mathrm{~K}^{\mathrm{n}}\right)$

We have to give a counterexample, i.e., an evaluation that sends A^{n} to a value less then 1_{k}.

$A^{n} \notin \mathrm{~L}\left(\mathrm{~K}^{n}\right)$

We have to give a counterexample, i.e., an evaluation that sends A^{n} to a value less then 1_{K}.
Let $\mathrm{U}=\mathrm{V}^{\mathrm{n}}$ and defined

$$
\varphi(\mathrm{P}(\mathrm{u}))=\mathfrak{u}
$$

Then it is easy to see that for $x=1$ and $y=0$ we have

$$
\begin{aligned}
& \varphi\left(\operatorname{Inf}^{n}\left(1_{K}\right)\right)=1_{K} \quad \text { because } 1 \text { is always infima of all degrees } \\
& \varphi\left(\operatorname{Inf}^{n}\left(0_{K}\right)\right)=1_{K} \quad \text { because } \operatorname{rk}_{\varphi \mathrm{CB}}\left(0_{K}\right)=n \\
& \varphi\left(Q\left(1_{K}\right)\right)=1_{K} \quad \text { see above } \\
& \varphi\left(Q\left(0_{K}\right)\right)=0_{K} \quad \text { because } 0_{K} \text { is not isolated }
\end{aligned}
$$

and thus, $\varphi\left(A^{n}\right)=0_{K}$.

$A^{n} \in L\left(K^{m}\right)$

We have to show that for all possible valuations of x and y the inner formula is evaluated to 1_{K}.

$A^{n} \in \mathrm{~L}\left(\mathrm{~K}^{\mathrm{m}}\right)$

We have to show that for all possible valuations of x and y the inner formula is evaluated to 1_{K}.

x	y	$\|x\|_{\varphi C B}$	$\|\mathrm{y}\|_{\varphi C B}$	$\operatorname{Inf}^{\mathrm{n}}(\mathrm{x})$	$\operatorname{Inf}^{n}(\mathrm{y})$	Q (x)	$Q(y)$	A^{n}
1	1	/	/	1	1	1	1	1
<1	1	$0<{ }_{0}<\mathrm{n}$	/	$\begin{gathered} x \\ \operatorname{succ}(x) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} x \\ \operatorname{succ}(x) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
1	<1	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	$0<\underset{0}{0}<\mathrm{n}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} y \\ \operatorname{succ}(y) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} y \\ \operatorname{succ}(y) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
< 1	<1	$\begin{gathered} 0<.<\mathrm{n} \\ 0<.<n \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0<0_{0}<\mathrm{n} \\ 0<\mathrm{o}_{0}<\mathrm{n} \end{gathered}$	$\begin{gathered} x \\ x \\ \operatorname{succ}(x) \\ \operatorname{succ}(x) \\ \hline \end{gathered}$	$\begin{gathered} y \\ \operatorname{succ}(y) \\ y \\ \operatorname{succ}(y) \end{gathered}$	$\begin{gathered} x \\ x \\ \operatorname{succ}(x) \\ \operatorname{succ}(x) \\ \hline \end{gathered}$	$\begin{gathered} y \\ \operatorname{succ}(y) \\ y \\ \operatorname{succ}(y) \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

$A^{n} \in \mathrm{~L}\left(\mathrm{~K}^{\mathrm{m}}\right)$

We have to show that for all possible valuations of x and y the inner formula is evaluated to 1_{K}.

x	y	$\|x\|_{\varphi C B}$	$\|\mathrm{y}\|_{\varphi C B}$	$\operatorname{Inf}^{n}(x)$	$\operatorname{Inf}^{\text {n }}(\mathrm{y})$	$Q(x)$	Q (y)	A^{n}
1	1	/	/	1	1	1	1	1
< 1	1	$0<\underset{0}{0}<\mathrm{n}$	/	$\begin{gathered} x \\ \operatorname{succ}(x) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} x \\ \operatorname{succ}(x) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
1	<1	/	$0<\underset{0}{0}<\mathrm{n}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{y} \\ \operatorname{succ}(\mathrm{y}) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} y \\ \operatorname{succ}(y) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
< 1	<1	$\begin{gathered} 0<.<\mathrm{n} \\ 0<.<\mathrm{n} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0<0_{0}<\mathrm{n} \\ 0<\mathrm{o}_{0}<\mathrm{n} \end{gathered}$	$\begin{gathered} x \\ x \\ \operatorname{succ}(x) \\ \operatorname{succ}(x) \end{gathered}$	$\begin{gathered} y \\ \operatorname{succ}(y) \\ y \\ \operatorname{succ}(y) \end{gathered}$	$\begin{gathered} x \\ x \\ \operatorname{succ}(x) \\ \operatorname{succ}(x) \\ \hline \end{gathered}$	$\begin{gathered} y \\ \operatorname{succ}(y) \\ y \\ \operatorname{succ}(y) \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

This completes the proof for the simple case.

General case

Now assume we have to ordinals $\omega \preceq \alpha \prec \beta$

$$
\begin{aligned}
& \alpha=\omega^{n} k_{n}+\cdots+\omega^{0} k_{0} \\
& \beta=\omega^{n} l_{n}+\cdots+\omega^{0} l_{0}
\end{aligned}
$$

for some finite $n, l_{0}, \ldots, l_{n}, k_{0}, \ldots, k_{n}$ with $n>0$, with $n>0$, $l_{n}>0$, and since $\alpha<\beta$ there is maximal $d \leqslant n$ such that $k_{d}<l_{d}$. Let

$$
\vec{x}=\left(x_{1}^{n+1}, x_{1}^{n}, \ldots, x_{l_{n}}^{n}, \ldots, x_{1}^{\mathrm{d}}, \ldots, x_{l_{d}}^{\mathrm{d}}\right),
$$

General case cont.

For arbitrary variables, let

$$
\operatorname{chain}\left(x_{1}, \ldots, x_{n}\right)=\left(P\left(x_{1}\right) \rightarrow Q\left(x_{2}\right)\right) \vee \bigvee_{i=2}^{n-1}\left(P\left(x_{i}\right) \rightarrow P\left(x_{i+1}\right)\right)
$$

General case cont.

For arbitrary variables, let

$$
\operatorname{chain}\left(x_{1}, \ldots, x_{n}\right)=\left(P\left(x_{1}\right) \rightarrow Q\left(x_{2}\right)\right) \vee \bigvee_{i=2}^{n-1}\left(P\left(x_{i}\right) \rightarrow P\left(x_{i+1}\right)\right)
$$

Reminder:

$$
\varphi(\mathrm{Q}(\mathrm{c}))= \begin{cases}\varphi(\mathrm{P}(\mathrm{c})) & \text { if } \varphi(\mathrm{P}(\mathrm{c}))=1_{\mathrm{K}} \text { or } \mathrm{rk}_{\varphi \mathrm{CB}}(\mathrm{c}) \geqslant 1 \\ \operatorname{succ}(\varphi(\mathrm{P}(\mathrm{c})) & \text { otherwise }\end{cases}
$$

General case cont.

For arbitrary variables, let
$\operatorname{chain}\left(x_{1}, \ldots, x_{n}\right)=\left(P\left(x_{1}\right) \rightarrow Q\left(x_{2}\right)\right) \vee \bigvee_{i=2}^{n-1}\left(P\left(x_{i}\right) \rightarrow P\left(x_{i+1}\right)\right)$.
and define $A_{\alpha, \beta}(\vec{x})$ and $A_{\alpha, \beta}$ as follows:

$$
A_{\alpha, \beta}(\vec{x})=\left(\bigwedge_{u=d}^{n} \bigwedge_{i=1}^{l_{u}} \operatorname{Inf}^{u}\left(x_{i}^{u}\right)\right) \rightarrow \operatorname{chain}(\vec{x})
$$

and

$$
A_{\alpha, \beta}=\forall \vec{x} A_{\alpha, \beta}(\vec{x})
$$

Example

$$
\alpha=\omega^{2} 2+\omega 3+1 \quad \beta=\omega^{2} 2+\omega 4 \quad l_{d}=1
$$

Example

Separating the general case

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $A_{\alpha, \beta} \in \mathrm{L}(\alpha)$, but $A_{\alpha, \beta} \notin \mathrm{L}(\beta)$.

Separating the general case

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $\mathrm{A}_{\alpha, \beta} \in \mathrm{L}(\alpha)$, but $A_{\alpha, \beta} \notin \mathrm{L}(\beta)$.

Theorem
If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$, then $A_{\alpha}^{*} \in L\left(\alpha^{*}\right)$, but $A_{\alpha}^{*} \notin L\left(\beta^{*}\right)$.

Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all logics in the class of uniformly CB-structured Kripke frames.

Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all logics in the class of uniformly CB-structured Kripke frames. uniformly CB-structured
At any CB derivation step, the set of isolated (i.e., to be dropped) points between any two remaining points (i.e., accumulation points at that level), is either an inf-set, a sup-set, or an inf-sup-set.

Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all logics in the class of uniformly CB-structured Kripke frames.
uniformly CB-structured
At any CB derivation step, the set of isolated (i.e., to be dropped) points between any two remaining points (i.e., accumulation points at that level), is either an inf-set, a sup-set, or an inf-sup-set.

An infinite subset of isolated points of a linear order is an inf-set (sup-set; inf-sup-set) if it has a supremum (infimum; neither supremum nor infimum).

