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Question

Take standard first order language.

Question: What can we express over complete linear orders?

Same question with one (1) monadic predicate symbol?
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The results

Theorem
If 0 ≺ α ≺ β ≺ ωω with β � ω, then Aα,β ∈ L(α), but
Aα,β 6∈ L(β).
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If 0 ≺ α ≺ β ≺ ωω, then A∗α ∈ L(α∗), but A∗α /∈ L(β∗).
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Preliminaries

I L be a countable first-order language which includes the
propositional constant ⊥

I fix a universe of objects U
I Kripke frame (K, R) (usual conditions on domains and

accessibility relation R), in addition assume R to be linear
I upward closed subsets of K: Up(K), totally ordered by ⊆
I smallest element 0K = ∅, largest element 1K = K

I intervals [a, b] for a, b ∈ Up(K)
I LIN axiom: (A→ B)∨ (B→ A)

I CD axiom: ∀x(A∨ B(x))→ (A∨ ∀xB(x))



Valuation

Let ϕ be a mapping from atomic formulas with constants for U
into Up(K).
Extension of ϕ to all well-formed formulas is defined as follows

I ϕ(A∧ B) = ϕ(A) ∩ϕ(B)
I ϕ(A∨ B) = ϕ(A) ∪ϕ(B)

I ϕ(A→ B) =

{
K ϕ(A) ⊆ ϕ(B)
ϕ(B) otherwise

I ϕ(∀xA) =
⋂
{ϕ(A(u)) : u ∈ U}

I ϕ(∃xA) =
⋃
{ϕ(A(u)) : u ∈ U}



Definition of the logic

Definition
The logic defined by a linear Kripke frame K = (W,R), denoted
by L(K), is the set of all L-formulas A such that for all Kripke
models (K,U) and all valuations ϕ of (K,U), ϕ(A ′) = 1K, where
A ′ is a closure of A.

But: reasoning in Kripke frames is difficult, as we actually reason
in the (linear) order of the upsets of the frame.

Fortunately in the linear case, we can switch sometimes to Gödel
logics. . .
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First Order Gödel Logics

Fix a truth value set {0, 1} ⊆ V ⊆ [0, 1], V closed
Interpretation ϕ consists of

I a nonempty set U, the universe of ϕ
I for each k-ary predicate symbol P a function Pϕ : Uk → V

I for each variable x an object xϕ ∈ U
Extend the valuation to all formulas

I ϕ(A∧ B) = min{ϕ(A), ϕ(B)} and
ϕ(A∨ B) = max{ϕ(A), ϕ(B)}

I ϕ(A→ B) =

{
ϕ(B) if ϕ(A) > ϕ(B)

1 if ϕ(A) 6 ϕ(B)

I ϕ(∀xA(x)) = inf{ϕ(A(u)) : u ∈ U}
I ϕ(∃xA(x)) = sup{ϕ(A(u)) : u ∈ U}



Mapping Kripke worlds into the reals
Embed Up(K) into the truth value set such that the order and
existing infima and suprema are preserved.

VK

Up(K)
K

w↑w
↑
3w

∗↑
3w

↑
3

w3

w1



Equivalence result with linear Kripke frames

Gödel logic to Kripke frame
For each Gödel logic there is a countable linear Kripke frame such
that the respective logics coincide.

Kripke frames to Gödel logic
For each countable linear Kripke frame there is a Gödel truth
value set such that the respective logics coincide.
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Descriptive Set Theory

Cantor-Bendixon Derivatives and Ranks
Polish spaces, i.e. separable, completely metrizable topological
spaces. R is a Polish space: X ′ = {x ∈ X : x is limit point of X}

Theorem (Cantor-Bendixon)
Let X be a polish space. For some countable ordinal α0, Xα = Xα0

for all α > α0 (Xα0 is the perfect kernel).

CB Ranks for countable closed sets

I If X is countable, then X∞ = ∅.
(every perfect set has at least cardinality of the continuum)

I rank of an element: rkCB(x) = sup{α : x ∈ Xα}
I rank of X: rkCB(X) = sup{rkCB(x) : x ∈ X}



Logics under discussion

Kripke frame
For any ordinal κ < ωω define two linear Kripke frames over
constant domain K(κ) and K(κ∗) as

K(κ) = (κ,⊆)
K(κ∗) = (κ,⊇).

We consider the logics L(κ) = L(K(κ)) and L(κ∗) = L(K(κ∗)).

Theorem
The logics L(α), L(β), L(α∗), L(β∗) for ω 6 α 6= β < ωω can
already be separated within the fragment of one monadic
predicate symbol. (Finite cases are trivial)
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Kripke frames, upset order
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Expressing orders

Relativized CB rank
Let rkϕCB(c) = rkCB(c) in the closure of {ϕ(P(u)) : u ∈ U}

A ≺ B := (B→ A)→ B

Evaluation: ϕ(A ≺ B) =

{
1K ϕ(A) < ϕ(B)

ϕ(B) otherwise

Q(c) := ∀x((Pc ≺ Px)→ Px)

Lemma:

ϕ(Q(c)) =

{
ϕ(P(c)) if ϕ(P(c)) = 1K or rkϕCB(c) > 1

succ(ϕ(P(c)) otherwise
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Expressing infima

Let

Inf0(x) = ⊥ → ⊥

Infn+1(x) = ∀y((Px ≺ Py)→ ∃z(Infn(z)∧ Px ≺ Pz ≺ Py))

Core lemma
For n > 0 we have

ϕ(Infn(c)) =


1K if ϕ(P(c)) = 1K or rkϕCB(c) = n

ϕ(P(c)) 0 < rkϕCB(c) < n

succ(ϕ(P(c))) rkϕCB(c) = 0
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Simple case – separation formula

In the following we consider only κ = ωn.

Let
An = ∀x∀y(Infn(x)∧ Infn(y)∧Q(x)→ Q(y))

Theorem
With the definitions from above, we have

An 6∈ L(Kn) (= G(Vn))

An ∈ L(Km) for m < n (= G(Vm))
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An 6∈ L(Kn)

We have to give a counterexample, i.e., an evaluation that sends
An to a value less then 1K.

Let U = Vn and defined

ϕ(P(u)) = u

Then it is easy to see that for x = 1 and y = 0 we have

ϕ(Infn(1K)) = 1K because 1 is always infima of all degrees

ϕ(Infn(0K)) = 1K because rkϕCB(0K) = n

ϕ(Q(1K)) = 1K see above

ϕ(Q(0K)) = 0K because 0K is not isolated

and thus, ϕ(An) = 0K.
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An ∈ L(Km)

We have to show that for all possible valuations of x and y the
inner formula is evaluated to 1K.

x y |x|ϕCB |y|ϕCB Infn(x) Infn(y) Q(x) Q(y) An

1 1 / / 1 1 1 1 1

< 1 1 0 < . < n / x 1 x 1 1

0 / succ(x) 1 succ(x) 1 1

1 < 1 / 0 < . < n 1 y 1 y 1

/ 0 1 succ(y) 1 succ(y) 1

< 1 < 1 0 < . < n 0 < . < n x y x y 1

0 < . < n 0 x succ(y) x succ(y) 1

0 0 < . < n succ(x) y succ(x) y 1

0 0 succ(x) succ(y) succ(x) succ(y) 1

This completes the proof for the simple case.
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General case

Now assume we have to ordinals ω � α ≺ β

α = ωnkn + · · ·+ω0k0
β = ωnln + · · ·+ω0l0

for some finite n, l0, . . . , ln, k0, . . . , kn with n > 0, with n > 0,
ln > 0, and since α < β there is maximal d 6 n such that
kd < ld. Let

~x = (xn+11 , xn1 , . . . , x
n
ln
, . . . , xd1 , . . . , x

d
ld
),



General case cont.

For arbitrary variables, let

chain(x1, . . . , xn) = (P(x1)→ Q(x2))∨

n−1∨
i=2

(P(xi)→ P(xi+1)) .
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For arbitrary variables, let

chain(x1, . . . , xn) = (P(x1)→ Q(x2))∨

n−1∨
i=2

(P(xi)→ P(xi+1)) .

Reminder:

ϕ(Q(c)) =

{
ϕ(P(c)) if ϕ(P(c)) = 1K or rkϕCB(c) > 1

succ(ϕ(P(c)) otherwise



General case cont.

For arbitrary variables, let

chain(x1, . . . , xn) = (P(x1)→ Q(x2))∨

n−1∨
i=2

(P(xi)→ P(xi+1)) .

and define Aα,β(~x) and Aα,β as follows:

Aα,β(~x) =
( n∧
u=d

lu∧
i=1

Infu(xui )
)
→ chain(~x)

and

Aα,β = ∀~xAα,β(~x).
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Separating the general case

Theorem
If 0 ≺ α ≺ β ≺ ωω with β � ω, then Aα,β ∈ L(α), but
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Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.

uniformly CB-structured
At any CB derivation step, the set of isolated (i.e., to be dropped)
points between any two remaining points (i.e., accumulation
points at that level), is either an inf-set, a sup-set, or an
inf-sup-set.

An infinite subset of isolated points of a linear order is an inf-set
(sup-set; inf-sup-set) if it has a supremum (infimum; neither
supremum nor infimum).



Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.

uniformly CB-structured
At any CB derivation step, the set of isolated (i.e., to be dropped)
points between any two remaining points (i.e., accumulation
points at that level), is either an inf-set, a sup-set, or an
inf-sup-set.

An infinite subset of isolated points of a linear order is an inf-set
(sup-set; inf-sup-set) if it has a supremum (infimum; neither
supremum nor infimum).



Future work - generalized CB-analysis

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.

uniformly CB-structured
At any CB derivation step, the set of isolated (i.e., to be dropped)
points between any two remaining points (i.e., accumulation
points at that level), is either an inf-set, a sup-set, or an
inf-sup-set.

An infinite subset of isolated points of a linear order is an inf-set
(sup-set; inf-sup-set) if it has a supremum (infimum; neither
supremum nor infimum).


	Introduction

