Density Elimination and the Corresponding Algebraic Construction

Rostislav Horčík joint work with A. Ciabattoni, P. Baldi, N. Galatos and K. Terui

> Institute of Computer Science Academy of Sciences of the Czech Republic

Workshop on algebraic proof theory Tbilisi Symposium on Language, Logic and Computation September 23–27, 2013

Outline

Uninorm logic

Outline

- Uninorm logic
- 2 Density rule and its elimination

Outline

- Uninorm logic
- ② Density rule and its elimination
- Corresponding algebraic construction

Uninorm logic (UL)

• Proof-theoretically:

UL is the logic given by the hypersequent calculus for Full Lambek extended by exchange and Avron's communication rule.

Uninorm logic (UL)

• Proof-theoretically:

UL is the logic given by the hypersequent calculus for Full Lambek extended by exchange and Avron's communication rule.

• Algebraically:

UL is the logic of commutative totally ordered FL-algebras (FLe-chains).

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

such that

• $\langle A, \wedge, \vee \rangle$ is a lattice,

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle {\cal A}, \cdot, 1 \rangle$ is a commutative monoid,

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle {\cal A}, \cdot, 1 \rangle$ is a commutative monoid,
- $ab \leq c$ iff $b \leq a \rightarrow c$.

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

- $\langle A, \wedge, \vee
 angle$ is a lattice,
- $\langle {\cal A}, \cdot, 1 \rangle$ is a commutative monoid,
- $ab \leq c$ iff $b \leq a \rightarrow c$.
- A complete FL_e-algebra is an FL_e-algebra whose lattice reduct is complete.

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\langle {\cal A}, \cdot, 1
 angle$ is a commutative monoid,
- $ab \leq c$ iff $b \leq a \rightarrow c$.
- A complete FL_e-algebra is an FL_e-algebra whose lattice reduct is complete.
- A totally ordered FL_e -algebra is called FL_e -chain.

Definition

An FLe-algebra is a pointed commutative residuated lattice, i.e., an algebra

$$oldsymbol{A} = \langle A, \wedge, ee, \cdot,
ightarrow, 0, 1
angle$$

- $\langle A, \wedge, \vee
 angle$ is a lattice,
- $\langle {\cal A}, \cdot, 1
 angle$ is a commutative monoid,
- $ab \leq c$ iff $b \leq a \rightarrow c$.
- A complete FL_e-algebra is an FL_e-algebra whose lattice reduct is complete.
- A totally ordered FL_e -algebra is called FL_e -chain.
- An FL_e-chain **A** is dense if a < b implies a < c < b for some $c \in A$.

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008)

UL is strongly complete w.r.t. the class of densely ordered FL_e-chains.

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008)

UL is strongly complete w.r.t. the class of densely ordered FL_e-chains.

$$\frac{\begin{array}{c} \vdots d \\ \hline \mathcal{G} \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Pi \\ \hline \mathcal{G} \mid \Gamma, \Sigma \Rightarrow \Pi \end{array} \text{ Density, } p \text{ is fresh}$$

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008) **UL** *is strongly complete w.r.t. the class of densely ordered FL*_e-*chains.*

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Pi}{\mathcal{G} \mid \Gamma, \Sigma \Rightarrow \Pi} \text{ Density, } p \text{ is fresh}$$

• First replace sequents of the form $\Lambda, p \Rightarrow p$ in d by $\Lambda \Rightarrow 1$.

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008) **UL** *is strongly complete w.r.t. the class of densely ordered FL*_e-*chains.*

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Pi}{\mathcal{G} \mid \Gamma, \Sigma \Rightarrow \Pi} \text{ Density, } p \text{ is fresh}$$

- First replace sequents of the form $\Lambda, p \Rightarrow p$ in d by $\Lambda \Rightarrow 1$.
- The left occurrences of p in d are replaced by Γ .

Theorem (Metcalfe, Montagna 2007; Ciabattoni, Metcalfe 2008) **UL** *is strongly complete w.r.t. the class of densely ordered FL*_e-*chains.*

$$\frac{\begin{array}{c} \vdots d \\ \mathcal{G} \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Pi \\ \hline \mathcal{G} \mid \Gamma, \Sigma \Rightarrow \Pi \end{array} \text{ Density, } p \text{ is fresh}$$

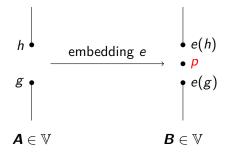
- First replace sequents of the form $\Lambda, p \Rightarrow p$ in d by $\Lambda \Rightarrow 1$.
- The left occurrences of p in d are replaced by Γ .
- The right occurrences of p in d are replaced as follows:

$$\Lambda \Rightarrow p \ \rightsquigarrow \ \Lambda, \Sigma \Rightarrow \Pi \,.$$

Densifiable varieties

Definition

A variety \mathbb{V} ordered algebras is said to be densifiable if every gap (g, h) of a chain in \mathbb{V} can be filled by another chain in \mathbb{V} .



Theorem

Let \mathbb{V} be a densifiable variety. Then every (nontrivial) finite or countable chain in \mathbb{V} is embeddable into a countable dense chain in \mathbb{V} .

Rostislav Horčík (ICS)

Density elimination

Corresponding residuated frame

Let $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ be an FL_e-chain having a gap (g, h).

Corresponding residuated frame

Let $\mathbf{A} = \langle A, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ be an FL_e-chain having a gap (g, h).

Define $\boldsymbol{W} = \langle Ap^*, A \cup \{p\}, N \rangle$ by

ap ⁿ N b	iff	$\mathit{ah}^n \leq \mathit{b}$
a N p	iff	$a \leq g$
ap ^m N p	iff	$ah^{m-1} \leq 1$

where $a, b \in A$, $n \ge 0$ and $m \ge 1$.

Corresponding residuated frame

Let $\mathbf{A} = \langle A, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ be an FL_e-chain having a gap (g, h).

Define $\boldsymbol{W} = \langle Ap^*, A \cup \{p\}, N \rangle$ by

ap ⁿ N b	iff	$\mathit{ah}^n \leq \mathit{b}$
a N p	iff	$a \leq g$
ap ^m N p	iff	$ah^{m-1} \leq 1$

where $a, b \in A$, $n \ge 0$ and $m \ge 1$.

Lemma

- W can be extended so that it is residuated.
- **W**⁺ forms an FL_e-chain.
- **A** embeds into \mathbf{W}^+ via $x \mapsto \{x\}^{\triangleright \lhd}$.
- $\{g\}^{\rhd \lhd} \subsetneq \{p\}^{\rhd \lhd} \subsetneq \{h\}^{\rhd \lhd}$.

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

$$\mathbf{A} = \langle A, \lor, \cdot, 1, \bot \rangle$$

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

$$\boldsymbol{A} = \langle A, \lor, \cdot, 1, \bot \rangle$$

such that

• $\langle A, \lor, \bot \rangle$ is semilattice with a bottom element,

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

$$\boldsymbol{A} = \langle A, \lor, \cdot, 1, \bot \rangle$$

- $\langle A, \lor, \bot \rangle$ is semilattice with a bottom element,
- $\langle A, \cdot, 1 \rangle$ is a commutative monoid,

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

$$\boldsymbol{A} = \langle A, \lor, \cdot, 1, \bot \rangle$$

- $\langle A, \lor, \bot \rangle$ is semilattice with a bottom element,
- $\langle A, \cdot, 1
 angle$ is a commutative monoid,
- $a(b \lor c) = ab \lor ac$.

Definition

An idempotent commutative semiring (ic-semiring) is an algebra

$$\boldsymbol{A} = \langle A, \lor, \cdot, 1, \bot \rangle$$

such that

- $\langle A, \lor, \bot
 angle$ is semilattice with a bottom element,
- $\langle A, \cdot, 1
 angle$ is a commutative monoid,

•
$$a(b \lor c) = ab \lor ac$$
.

Fact

Every complete FL_e-algebra forms an ic-semiring.

Let $\mathbf{A} = \langle A, \lor, \cdot, 1, \bot \rangle$ be an ic-semiring. Then the ic-semiring of formal power series $\mathbf{A}[\![X]\!]$ consists of:

$$t = \bigvee_{n \in \mathbb{N}} t_n X^n$$
, $t_n \in A$. (terms $\perp X^n$ are omitted)

Let $\mathbf{A} = \langle A, \lor, \cdot, 1, \bot \rangle$ be an ic-semiring. Then the ic-semiring of formal power series $\mathbf{A}[\![X]\!]$ consists of:

$$t = \bigvee_{n \in \mathbb{N}} t_n X^n$$
, $t_n \in A$. (terms $\perp X^n$ are omitted)

The operations are defined

$$t \vee s = \bigvee_{n \in \mathbb{N}} (t_n \vee s_n) X^n$$

Let $\mathbf{A} = \langle A, \lor, \cdot, 1, \bot \rangle$ be an ic-semiring. Then the ic-semiring of formal power series $\mathbf{A}[\![X]\!]$ consists of:

$$t = \bigvee_{n \in \mathbb{N}} t_n X^n$$
, $t_n \in A$. (terms $\perp X^n$ are omitted)

The operations are defined

$$t \vee s = \bigvee_{n \in \mathbb{N}} (t_n \vee s_n) X^n$$

$$t \cdot s = \bigvee_{n \in \mathbb{N}} \left(\bigvee_{i+j=n} t_i s_j \right) X^n$$

Let $\mathbf{A} = \langle \mathbf{A}, \lor, \cdot, \mathbf{1}, \bot \rangle$ be an ic-semiring. Then the ic-semiring of formal power series $\mathbf{A}[\![X]\!]$ consists of:

$$t = \bigvee_{n \in \mathbb{N}} t_n X^n$$
, $t_n \in A$. (terms $\perp X^n$ are omitted)

The operations are defined

$$t \vee s = \bigvee_{n \in \mathbb{N}} (t_n \vee s_n) X^n$$

$$t \cdot s = \bigvee_{n \in \mathbb{N}} \left(\bigvee_{i+j=n} t_i s_j \right) X^n$$

A embeds into $\mathbf{A}[\![X]\!]$ via $a \mapsto a \lor \bigvee_{n \ge 1} \bot X^n$.

$$t\wedge s=\bigvee_{n\in\mathbb{N}}(t_n\wedge s_n)X^n\,,$$

$$t\wedge s=\bigvee_{n\in\mathbb{N}}(t_n\wedge s_n)X^n\,,$$

$$X^k o s = \bigvee_{n \in \mathbb{N}} s_{k+n} X^n$$
, (discard the first k el.)

$$t\wedge s=\bigvee_{n\in\mathbb{N}}(t_n\wedge s_n)X^n\,,$$

$$X^k o s = igvee_{n \in \mathbb{N}} s_{k+n} X^n$$
, (discard the first k el.)

$$a \to s = \bigvee_{n \in \mathbb{N}} (a \to s_n) X^n$$
,

$$t\wedge s=\bigvee_{n\in\mathbb{N}}(t_n\wedge s_n)X^n\,,$$

$$X^k o s = \bigvee_{n \in \mathbb{N}} s_{k+n} X^n$$
, (discard the first k el.)

$$a \to s = \bigvee_{n \in \mathbb{N}} (a \to s_n) X^n$$
,

$$t o s = \left(igvee_{k \in \mathbb{N}} t_k X^k
ight) o s = igwee_{k \in \mathbb{N}} (t_k o (X^k o s)) \,.$$

Nuclei

Let \boldsymbol{A} be an $\mathsf{FL}_{\mathsf{e}}\text{-}\mathsf{algebra}.$ Then the following concepts are equivalent:

() A semiring congruence $\theta \in A \times A$ such that

 $\max a/\theta$ exists for all $a \in A$.

Nuclei

Let \boldsymbol{A} be an FL_e-algebra. Then the following concepts are equivalent:

() A semiring congruence $\theta \in A \times A$ such that

 $\max a/\theta$ exists for all $a \in A$.

2 A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

 $\gamma(a)\gamma(b) \leq \gamma(ab)$.

Nuclei

Let \boldsymbol{A} be an $\mathsf{FL}_{e}\text{-}\mathsf{algebra}.$ Then the following concepts are equivalent:

() A semiring congruence $\theta \in A \times A$ such that

 $\max a/\theta$ exists for all $a \in A$.

2 A nucleus on **A** is a closure operator $\gamma: A \to A$ such that

 $\gamma(a)\gamma(b) \leq \gamma(ab)$.

③ A nuclear retraction is a subset C ⊆ A closed under arbitrary meets such that

$$a \in A ext{ and } c \in C \implies a o c \in C$$
 .

Nuclei

Let \boldsymbol{A} be an $\mathsf{FL}_{\mathsf{e}}\text{-}\mathsf{algebra}.$ Then the following concepts are equivalent:

() A semiring congruence $\theta \in A \times A$ such that

 $\max a/\theta$ exists for all $a \in A$.

2 A nucleus on **A** is a closure operator $\gamma: A \rightarrow A$ such that

 $\gamma(a)\gamma(b)\leq\gamma(ab)$.

③ A nuclear retraction is a subset C ⊆ A closed under arbitrary meets such that

$$a \in A \text{ and } c \in C \implies a \rightarrow c \in C$$
.

Fact

Then \mathbf{A}/θ is (not only an ic-semiring but also) an FL_e-algebra.

Rostislav Horčík (ICS)

Density elimination

Start with the given FL_e -chain **A** with a gap (g, h). If it is not complete then take its DM-completion.

Start with the given FL_e -chain **A** with a gap (g, h). If it is not complete then take its DM-completion.

Consider the subset $C \subseteq \mathbf{A}[X]$ consisting of the following formal series for all $a \in A$:

$$\hat{a} = \bigvee_{n \in \mathbb{N}} (h^n \to a) X^n ,$$

$$\tilde{a} = (a
ightarrow g) \lor \bigvee_{n \ge 1} (ah^{n-1}
ightarrow 1) X^n \, .$$

Start with the given FL_e -chain **A** with a gap (g, h). If it is not complete then take its DM-completion.

Consider the subset $C \subseteq \mathbf{A}[X]$ consisting of the following formal series for all $a \in A$:

$$\hat{a} = \bigvee_{n \in \mathbb{N}} (h^n \to a) X^n \,,$$

$$\tilde{a} = (a \to g) \lor \bigvee_{n \ge 1} (ah^{n-1} \to 1)X^n$$
.

Theorem

 C is a nuclear retraction corresponding to a semiring congruence θ. Thus A[[X]]/θ is an FL_e-chain isomorphic to W⁺.

Start with the given FL_e -chain **A** with a gap (g, h). If it is not complete then take its DM-completion.

Consider the subset $C \subseteq \mathbf{A}[X]$ consisting of the following formal series for all $a \in A$:

$$\hat{a} = \bigvee_{n \in \mathbb{N}} (h^n \to a) X^n \,,$$

$$\tilde{a} = (a \to g) \lor \bigvee_{n \ge 1} (ah^{n-1} \to 1)X^n$$
.

Theorem

- C is a nuclear retraction corresponding to a semiring congruence θ. Thus A[[X]]/θ is an FL_e-chain isomorphic to W⁺.
- **A** embeds into $\mathbf{A}[\![X]\!]/\theta$ via $a \mapsto \hat{a}$.

Start with the given FL_e -chain **A** with a gap (g, h). If it is not complete then take its DM-completion.

Consider the subset $C \subseteq \mathbf{A}[X]$ consisting of the following formal series for all $a \in A$:

$$\hat{a} = \bigvee_{n \in \mathbb{N}} (h^n \to a) X^n \,,$$

$$\widetilde{a} = (a o g) \lor \bigvee_{n \ge 1} (ah^{n-1} \to 1)X^n$$
.

Theorem

- C is a nuclear retraction corresponding to a semiring congruence θ. Thus A[[X]]/θ is an FL_e-chain isomorphic to W⁺.
- **A** embeds into $\mathbf{A}[\![X]\!]/\theta$ via $a \mapsto \hat{a}$.
- $\hat{g} < \tilde{1} < \hat{h}$.

Recall $X \in \mathbf{A}[X]$ plays the role of the new element filling the gap (g, h).

Recall $X \in \mathbf{A}[\![X]\!]$ plays the role of the new element filling the gap (g, h).

Original elements \hat{a} :

Most of the time we pretend X to be h. Consider the semiring congruence η on $\mathbf{A}[X]$ generated by X = h. Then

 $\hat{a} = \max a/\eta$.

Recall $X \in \mathbf{A}[\![X]\!]$ plays the role of the new element filling the gap (g, h).

Original elements \hat{a} :

Most of the time we pretend X to be h. Consider the semiring congruence η on $\mathbf{A}[X]$ generated by X = h. Then

 $\hat{a} = \max a/\eta$.

2 New elements ã:

We are looking for a finer congruence θ . What max X/θ could be?

Recall $X \in \mathbf{A}[\![X]\!]$ plays the role of the new element filling the gap (g, h).

Original elements \hat{a} :

Most of the time we pretend X to be h. Consider the semiring congruence η on $\mathbf{A}[X]$ generated by X = h. Then

 $\hat{a} = \max a/\eta$.

2 New elements ã:

We are looking for a finer congruence θ . What max X/θ could be?

$$X \quad \theta \quad X \cdot \hat{1}$$

Recall $X \in \mathbf{A}[\![X]\!]$ plays the role of the new element filling the gap (g, h).

Original elements \hat{a} :

Most of the time we pretend X to be h. Consider the semiring congruence η on $\mathbf{A}[X]$ generated by X = h. Then

 $\hat{a} = \max a/\eta$.

2 New elements ã:

We are looking for a finer congruence θ . What max X/θ could be?

$$X \quad \theta \quad X \cdot \hat{1} \quad \theta \quad g \lor X \cdot \hat{1} = \tilde{1}.$$

Recall $X \in \mathbf{A}[\![X]\!]$ plays the role of the new element filling the gap (g, h).

Original elements \hat{a} :

Most of the time we pretend X to be h. Consider the semiring congruence η on $\mathbf{A}[X]$ generated by X = h. Then

 $\hat{a} = \max a/\eta$.

Output Series New elements ã:

We are looking for a finer congruence θ . What max X/θ could be?

$$X \quad \theta \quad X \cdot \hat{1} \quad \theta \quad g \lor X \cdot \hat{1} = \tilde{1}.$$

Generate the nuclear retraction by $\{\hat{a} \mid a \in A\} \cup \{\tilde{1}\}$. Thus we introduce elements $\tilde{a} = a \rightarrow \tilde{1}$.

Rostislav Horčík (ICS)

Thank you!