Algebra-Coalgebra Duality: applications in
automata theory

Alexandra Silva

Radboud Universiteit Nijmegen and CWI

TbiLLC 2013: Tenth International Thbilisi Symposium on
Language, Logic and Computation

1/51



The global message

» Two views on many problems: Algebra and coalgebra.
» The combination is essential!
» Coalgebra is semantics but also algorithms.

2/51



(Co)algebra

Specify and reason about Systems.

/51



(Co)algebra

Specify

and

reason

about

systems.

state-machines
e.g. DFA, LTS, PA
a

s E o,
b
7N
L! j:e
S

l.l .\ H
Wi Yy _‘/5 Hi
R T )

H
v
14

/51



(Co)algebra

Specify

Syntax
RE, CCS, ...

ta( b”ay

a.b.0+a.c.0

afl 000+

and

reason

about

systems.

state-machines
e.g. DFA, LTS, PA
a

»Q:/@&
b
7N
L! j:c
S

) Ly '
Wi N, sy i
R T S k4

/51



(Co)algebra

Specify and reason
Syntax Axiomatization
RE, CCS, ... KA,. ..
al¥ay 4 aatar
a.b.0+a.c.0 P+ 0= ?
afy 000+ pPopP=lpep?

about

systems.

state-machines
e.g. DFA, LTS, PA
a

»Q:/@&
b
7N
L! j:c
S

W, #S h
WX

H
& 14

/51



(Co)algebra

Specify and reason
Syntax Axiomatization
RE, CCS, ... KA,. ..
al¥ay 4 aatar
a.b.0+a.c.0 P+ 0= ?
afy 000+ pPopP=lpep?

about

systems.

state-machines
e.g. DFA, LTS, PA
a

< oo
7N\

Li j:'c
S

) O 1/, '
Wi N, sy i
R T S k4

Can we do all of this uniformly in a single framework?

/51



What do this things have in common?

-’@/\’©O~ (S,t:S = 2x 84

7N
LI le
S

‘/, '/, %,. '/; ;a

) fl/ \_/b :
AN
R’

1/3.'."'._.-1/3

SN b

4/51



What do this things have in common?

-’@/\’©O~ (S,t:S = 2x 84

/\ (S,t: S — PSH
LI le
./*l\

‘/, '/, %,. e ;a
.‘ . :
lhl/ \_/b
NP L
e

4/51



What do this things have in common?

-’@/\’©O~ (S,t:S = 2x 84

/\ (S,t: S — PSA)
LI le
i~ (8,t: S — PD,(S)A)

‘/, '/, %,. '/; ;a

) h/ \_/b :
AN
R’

R .

4/51



What do this things have in common?

e

7N
LI le
S

‘/, '/, %,. '/; ;a

) h/ \_/b :
AN
R’

1/3.'."'._.-1/3

SN b

(S.t:S—2x S84

(S,t:S— PSA)

(S,t: S — PD,(S)Y)

(S,t:S = D(S)+ (Ax S)+1)

4/51



What do this things have in common?

-’@/\’©O~ (S,t:S = 2x 84
/\ (S,t: S — PSA)

LI le
St D, (S)A
-»l\. (S.t: 8= PDu(S)")
‘/, '/, %,. '/; ;a
:"/\’:« (S,t:S—=Dy(S)+ (Ax S)+1)
"3/\:./5 Lo.
K
SN (S.t: S = P(D.(PS)H)
'/3_.-"'-1. hD) \ f

SN b

4/51



What do this things have in common?

-’@/\’©O~ (S,t:S = 2x 84
/\ (S,t: S — PSA)

LI le
St D, (S)A
-»l\. (S.t: 8= PDu(S)")
‘/, '/, %,. '/; ;a
:"/\’:« (S,t:S—=Dy(S)+ (Ax S)+1)
"3/\:./5 Lo.
K
SN (S.t: S = P(D.(PS)H)
'/3_.-"'-1. 2 \ f

WN ib (S,t:S—TS)

4/51



What do this things have in common?

-’@/\’©O~ (S,t:S—2x 8%
/\ (S.t: 5= PSA)

LI le
. A
s a~L (S.t: S — PD,(S)")
‘/, '/, h '/; H
N (S,t: 8= Dy(S)+ (Ax S) +1)
FAVERC
K
SN (S.t: S = P(D.(PS)H)
& 1‘7‘/3 \I

W N i" (S,t: S— TS) T-coalgebras

4/51



The power of T

(S,t:S— TS)

5/51



The power of T

(S,t:S—TS)
The functor T determines:

1. notion of observational equivalence (coalg. bisimulation)
E.g. T =2 x (—)*: language equivalence

5/51



The power of T

(S,t:S—=TS)
The functor T determines:

1. notion of observational equivalence (coalg. bisimulation)
E.g. T =2 x (—)*: language equivalence

2. behaviour (final coalgebra)
E.g. T =2 x (—)”: languages over A— 24"

5/51



The power of T

(S,t:S—TS)
The functor T determines:

1. notion of observational equivalence (coalg. bisimulation)
E.g. T =2 x (—)*: language equivalence

2. behaviour (final coalgebra)
E.g. T =2 x (—)*: languages over A— 24"

3. set of expressions describing finite systems

4. axioms to prove bisimulation equivalence of expressions

1 + 2 areclassic coalgebra; 3 + 4 are recent work.

5/51



How about algorithms?

» Coalgebra has found its place in the semantic side of the
world: operational/denotational semantics, logics, . ..

» Are there also opportunities for contributions in algorithms?

A/51



How about algorithms?

» Coalgebra has found its place in the semantic side of the
world: operational/denotational semantics, logics, . ..

» Are there also opportunities for contributions in algorithms?

A/51



Brzozowski’s algorithm (co)algebraically

7/51



Motivation

» duality between reachability and observability (Arbib and
Manes 1975): beautiful, not very well-known.

» combined use of algebra and coalgebra.

» our understanding of automata is still very limited;
cf. recent research: universal automata, atomata, weighted
automata (Sakarovitch, Brzozowski, . . . )

/51



Credits

Bonchi, Bonsangue, Rutten

9/51



Credits

Bonchi, Bonsangue, Rutten

It all started with. ..

Prakash Panangaden

9/51



Credits

Bonchi, Bonsangue, Rutten

It all started with. ..

Prakash Panangaden

9/51



Credits

Bonchi, Bonsangue, Rutten

It all started with. ..

: Helle Hansen & Dexter Kozen
Prakash Panangaden

9/51



Brzozowski algorithm (by example)

e initial state: x e final states: y and z
el(x) = {ab}*a

10/51



Brzozowski algorithm (by example)

e initial state: x e final states: y and z
el(x) = {ab}*a
e X is reachable but not minimal: L(y) = ¢ + {a,b}*a = L(2)

10/51



Reversing the automaton: rev(X)

11/51



Reversing the automaton: rev(X)

rev(X) =

11/51



Reversing the automaton: rev(X)

rev(X) =

e transitions are reversed

e initial states <« final states

11/51



Reversing the automaton: rev(X)

rev(X) =

e transitions are reversed
e initial states <« final states

e rev(X) is non-deterministic

11/51



Making it deterministic again: det(rev(X))

12/51



Making it deterministic again: det(rev(X))

12/51



Making it deterministic again: det(rev(X))

a

e new state space: 2X = {V | V C {x,y, 2} }

12/51



Making it deterministic again: det(rev(X))

e new state space: 2X = {V | V C {x,y, 2} }
e initial state:{y,z} final states: all V with x € V

VANV W:{W|vi>w,veV}

12/51



The automaton det(rev(X)) . . .

13/51



The automaton det(rev(X)) . . .

e . . . accepts the reverse of the language accepted by X:

L(det(rev(X))) = a{a,b}* = reverse(L(X))

13/51



The automaton det(rev(X)) . . .

e . . . accepts the reverse of the language accepted by X:

L(det(rev(X))) = a{a,b}* = reverse(L(X))

e . .. and is observable!

13/51



Today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)

14/51



Today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
then: det(rev(X)) is minimal and

L(det(rev(X))) = reverse( L(X))

14/51



Taking the reachable part of det(rev(X))

15/51



Taking the reachable part of det(rev(X))

e reach(det(rev(X)))

15/51



Taking the reachable part of det(rev(X))

e reach(det(rev(X))) is reachable (by construction)

15/51



Repeating everything, now for reach(det(rev(X)))

ab
(A

16/51



Repeating everything, now for reach(det(rev(X)))

ab
(A

16/51



Repeating everything, now for reach(det(rev(X)))

ab
(A

e . . . gives us reach(det(rev(reach(det(rev(X))))))

16/51



Repeating everything, now for reach(det(rev(X)))

ab
(A

e . .. gives us reach(det(rev(reach(det(rev(X))))))
e which is (reachable and) minimal and accepts {a, b}* a.

16/51



All in all: Brzozowski’s algorithm

17/51



All in all: Brzozowski’s algorithm

17/51



All in all: Brzozowski’s algorithm

e X is reachable and accepts {a, b}* a

17/51



All in all: Brzozowski’s algorithm

e X is reachable and accepts {a, b}* a

e reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a

17/51



All in all: Brzozowski’s algorithm

e X is reachable and accepts {a, b}* a
e reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a

e . .. and is minimall!l

17/51



Goal of the day

» Correctness of Brzozowski’s algorithm (co)algebraically
» Generalizations to other types of automata

18/51



(Co)algebra

F(X) X
algebras: fJ( coalgebras: f
X F(X)

19/51



Examples of algebras

20/51



Examples of algebras

+ =z
— X
Z,
=)
Ic_n. —
( +
2
[
=
NG
zZ
1
=

20/51



Examples of coalgebras

tl x—8 Ly o (ay)etx)

P(A x X)

21/51



Examples of coalgebras

{ x—8 Ly o (ay)etx)

P(A x X)

X
(Left, label, Right)l

XxAxX

21/51



Examples of coalgebras

2w
<head,taiI>J _ hee/ \an
2 x2¥

head((bo, b1, b2, ...)) = bo

ta”((b07 b1 ) b27 . )) = (b1 ) b27 b3 .

2

o
|

2LU

)

29/54



Homomorphisms

29/54



Homomorphisms

29/54



Initiality, finality

F(A)- =~ F(X) X——==- +Z
al lf f‘ 8
Al L X F(X)- - -+ F(2)

24/51



Initiality, finality

F(A) - —~ 5 F(X)
I
A~ X

e initial algebras <« induction

X--="=- +Z
d .
F(X)f,_:(l;)» F(Z)

24/51



Initiality, finality

F(A) RN F(X) x--3h .z
| ! \ .
A X F(X) “Ei? F(2)

e initial algebras <« induction

e final coalgebras <> coinduction

24/51



Automata, (co)algebraically

» Automata are complicated structures:

part of them is algebra - part of them is coalgebra

25/51



Automata, (co)algebraically

» Automata are complicated structures:
part of them is algebra - part of them is coalgebra

» (...intwo differentways. . .)

25/51



A deterministic automaton

26/51



A deterministic automaton

where

1={0} 2={0,1} XA={g|g:A— X}

CO—2Ay) & )@=y

i(0) € X is the initial state

is final (or accepting) <« f(x) =1

26/51



Automata: algebra or coalgebra?

» initial state: algebraic — final states: coalgebraic

1\)(/2

27/51



Automata: algebra or coalgebra?

» initial state: algebraic — final states: coalgebraic
1 2
X

» transition function: both algebraic and coalgebraic

X1 xA

27/51



Automata: algebra and coalgebra!

1 2
€ \ / €?
* A*
A* — e X - o -2
o lt I3

(A*)AirjqﬁxAioiA%(zA*)A

28/51



Automata: algebra and coalgebra!

1 2
€ \ / €?
* A*
A* — e X - o -2
o Jt 153

(A*)Air;\%XAioiA%(zA*)A

To take home: this picturel!! . . .

28/51



Automata: algebra and coalgebra!

1 2
€ \ / €?
* A*
A* — e X - o -2
o Jt 153

1A A A\A
(A%) frfA»X fOfA%(Z )

To take home: this picture!! . . . which we’ll explain next . . .

28/51



The “automaton” of languages

AL)=1oeel

A 24 = {g|g: A » 2} = {L|LC A}

B(l)(a)=La={we A" |a-wel}

29/51



The “automaton” of languages

AL)=1oeel

rial 24 = {g|g: A » 2} = {L|LC A}

B(l)(a)=La={we A" |a-wel}

o We say “automaton”: it does not have an initial state.

29/51



The automaton of languages

o transitions: L—2- Ly where Ly={wecA"|a-wel}

e for instance:

20/51



The automaton of languages

o transitions: L—2- Ly where Ly={wecA"|a-wel}

e for instance:

20/51



The automaton of languages

o transitions: L—2- Ly where Ly={wecA"|a-wel}

e for instance:

ab

e note: every state L accepts . . .

20/51



The automaton of languages

o transitions: L—2- Ly where Ly={wecA"|a-wel}

e for instance:

ab

e note: every state L accepts

20/51



The automaton of languages is . . . final

o(x) = {weA |f(xw)=1}

the language accepted by x

<;
~
'—';'
o
@
I

21/51



The automaton of languages is . . . final

o(x) = {weA |f(xw)=1}

the language accepted by x

<;
~
'—';'
o
@
I

where: x,, is the state reached after inputting the word w,

and: 0%(g) = 0og, all g € XA.

21/51



Back to today’s picture

29/54



Back to today’s picture

1 2
6 \4 / !
* - A*
A ; =X o -2
o Jt B

(A*)Aiqu%XAioiA%(zA*)A

On the right: final coalgebra

29/54



Back to today’s picture

1 2
6 \4 / !
* - A*
A ; =X o -2
« Jt B

(A*)Aiqu%XAioiA%(zA*)A

On the right: final coalgebra

On the left: initial algebra . . .

29/54



The “automaton” of words

1
. € is initial state
A* a(w)(a)=w-a
@ . . a
that is, transitions: w——w-a

23/51



The automaton of words is . . .

D

A — - -3 X
dlr

o Jt

(A*)Af — 5 XA
A

e Proof: easy exercise.

initial

initial state
(to be precise: i(0))

Iw
the state reached from i
after inputting w

e Proof: formally, because A* is an initial 1 + A x (—)-algebra!

24/51



Duality

» Reachability and observability are dual:
Arbib and Manes, 1975.

» (here observable = minimal)

25/51



Reachability and observability

6 \« / !
A - — - S XD — — oA
r (0]

a J{t B

(A*)A— 7A$XA7 7A%(2A*)A

r

o

26/51



Reachability and observability

(A*)A— 7\%XA7 7A%(2A*)A

r

o

6 \« / !
A - — - S XD — — oA
r (0]

a J{t B

state reached
on input w

language
accepted by x

26/51



Reachability and observability

€ \ / €? r(w) = state reached
. on input
A — — — X = — — 524 nputw
r 0
a Jt 3 o(x) = language
accepted by x

A A A\A
(A*) f,;\»X 707\»(2 )

e We call X reachable if r is surjective.

26/51



Reachability and observability

AV — S XA— — 5 (2A)A
A A

r

e We call X reachable if r is surjective.

o

6 \« / !
* - A*

A ; X o 2

a J{t B

state reached
on input w

language
accepted by x

e We call X observable (= minimal) if o is injective.

26/51



Reversing the automaton

» Reachability <+ observability
» Being precise about homomorphisms is crucial.

» Forms the basis for proof Brzozowski’s algorithm.

27/51



Powerset construction
v oV

2(=) . gl — ng

w ow

28/51



Powerset construction

4 2V
2(=) . Ql — ng
w ow

where 2¥ = {S| SC V} and, forall SC W,

29(8)= g '(S) (= {veV]g(v)es})

28/51



Powerset construction

4 2V
2(=) . Ql — ng
w ow

where 2¥ = {S| SC V} and, forall SC W,

29(8)= g '(S) (= {veV]g(v)es})

e This construction is contravariant !!

28/51



Powerset construction

4 2V
2(=) . Ql — ng
w ow

where 2¥ = {S| SC V} and, forall SC W,

29(8)= g '(S) (= {veV]g(v)es})

e This construction is contravariant !!

e Note: if g is surjective, then 29 is injective.

28/51



Reversing transitions

29/51



Reversing transitions

29/51



Reversing transitions

X | XxA DX xA
tJ l o(-) T

[ —
XA X oX

29/51



Reversing transitions

X | XxxA oXxA || (2%)A

o T
e

XA X oX oX

29/51



Reversing transitions

X || xxA oXxA | (2X)A || 2X
tl l () T T JQt
XA X 2X 2X || (@)

29/51



Initial < final

40/51



Initial < final

40/51



Initial < final

40/51



Initial < final

40/51



Reversing the entire automaton

1\)(/2
|t

XA

41/51



Reversing the entire automaton

41/51



Reversing the entire automaton

1 2 1 o2
_ X
X 2(-) 2
XA (2X)A

e Initial and final are exchanged . . .

41/51



Reversing the entire automaton

1 2 1 o2
_ X
X 2(-) 2
XA (2X)A

e Initial and final are exchanged . . .

e transitions are reversed . . .

41/51



Reversing the entire automaton

1 2 1 -2
N N
- X
X 2(-) 2
Jt lzf
XA (2X)A

e Initial and final are exchanged . . .
e transitions are reversed . . .

e and the result is again deterministic!

41/51



Our previous example

42/51



Our previous example

42/51



Our previous example

e Note that X has been reversed and determinized:

2X — det(rev(X))

42/51



Proving today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)

43/51



Proving today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
then: 2X (= det(rev(X))) is minimal/observable and

L(2X) = reverse(L(X))

43/51



Proof: by reversing A*—— X

44/51



Proof: by reversing A*—— X

44/51



Proof: by reversing A*—— X

(A*)A XA

e X becomes 2%

44/51



Proof: by reversing A*—— X

1 _ 2
eJ{ ! % TZE
A* s X 2(-) PR — T

[ or
|l I
(A*)A . XA (2X)A . (2A* )A

e X becomes 2%

e initial automaton A* becomes (almost) final automaton 24

44/51



Proof: by reversing A*—— X

1 _ 2
el ! % TZE
A* s X 2(-) PR — T

[ or
|l I
(A*)A . XA (2X)A . (2A* )A

e X becomes 2%
e initial automaton A* becomes (almost) final automaton 24

e ris surjective = 2'is injective

44/51



Reachable becomes observable

45/51



Reachable becomes observable

1 , 2
A 5 X 2(=) X oA _ A

SR

(A*)A XA (2X)A SN (2A* )A s (2A* )A

45/51



Reachable becomes observable

1 ' 2

* — X A* A*
A —— X 20 2 Tm ~ ey 2
I T
(A*)A*))(A (2X)A4>(2A*)A7 _ $(2A*)A

e If ris surjective then (2" and hence) rev o 2" is injective.

45/51



Reachable becomes observable

1 , 2
A 5 X 2(=) X oA _ A
r P or rev
| Tl o T
(A*)A SN XA (2X)A SN (2A* )A s (2A* )A

e If ris surjective then (2" and hence) rev o 2" is injective.

e That is, 2X is observable (= minimal).

45/51



Summarizing

N

A - - 3X

|

(A)A - - 5 XA

46/51



Summarizing

N N e

A - - 3X X7 oA

e il

(A*)Af _ %XA (2X)A7 _ $(2A*)A

46/51



Summarizing

N7 N 2T

01*1)[ ZTJ ;e;JZr J(B
(A)A— — 5 XA (2X)A— 5 (24)A

e If: X isreachable, i.e., r is surjective

46/51



Summarizing

N7 N 2T

/1*$T JI’GVOZr J
o t t I5}
(A= XA (22X)A @)

e If: X isreachable, i.e., r is surjective

then: rev o 2" is injective, i.e., 2X is observable = minimal.

46/51



Summarizing

N7 N 2T

T$T JI’GVOZr J
« t t I5}
(A~ XA (22X)A @)

e If: X isreachable, i.e., r is surjective
then: rev o 2 is injective, i.e., 2X is observable = minimal.
e And: rev(2'(f)) = rev(o(i)), i.e., L(2X) = reverse( L(X))

46/51



Corollary: Brzozowski’s algorithm

» X becomes 2%, accepting reverse(L(X))

47/51



Corollary: Brzozowski’s algorithm

» X becomes 2%, accepting reverse(L(X))

» take reachable part: Y = reachable(2X)

47/51



Corollary: Brzozowski’s algorithm

» X becomes 2%, accepting reverse(L(X))
» take reachable part: Y = reachable(2X)

» Y becomes 2", which is minimal and accepts

reverse(reverse(L(X))) = L(X)

47/51



Generalizations

N T N

A m - XD 2X A — -3 X -5 BX
| ol ke
(A*)Af;qéxA 707A$ (2A*)A (A*)Af,:q%XA 7(;,4% (BA*)A

e A Brzozowski minimization algorithm for Moore automata.

={ple: X—>B} Bl(p)=¢pof

48/51



Further generalizations

» Moore automata generalization: uniform algorithm for
decorated traces and must testing (joint work with Bonchi,
Caltais and Pous);

» Further generalizations to non-deterministic and weighted
automata.

49/51



A uniform picture based on duality

Autr

— %
Coalg(F) L
_

— 3
L Aut(G)

o

Alg(G)

50/51



Conclusions

» Combination algebra-coalgebra is fruitful.
» Abstract analysis can bring new perspectives/results.
» (Co)algebra is not only semantics but also algorithms!

51/51



Conclusions

» Combination algebra-coalgebra is fruitful.
» Abstract analysis can bring new perspectives/results.
» (Co)algebra is not only semantics but also algorithms!

Thanks!

51/51



