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The global message

» Two views on many problems: Algebra and coalgebra.
» The combination is essential!
» Coalgebra is semantics but also algorithms.
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(Co)algebra

Specify and reason about Systems.
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Can we do all of this uniformly in a single framework?
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The power of T

(S,t:S— TS)
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The power of T

(S,t:S—TS)
The functor T determines:

1. notion of observational equivalence (coalg. bisimulation)
E.g. T =2 x (—)*: language equivalence

2. behaviour (final coalgebra)
E.g. T =2 x (—)*: languages over A— 24"

3. set of expressions describing finite systems

4. axioms to prove bisimulation equivalence of expressions

1 + 2 areclassic coalgebra; 3 + 4 are recent work.
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How about algorithms?

» Coalgebra has found its place in the semantic side of the
world: operational/denotational semantics, logics, . ..

» Are there also opportunities for contributions in algorithms?
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Brzozowski’s algorithm (co)algebraically
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Motivation

» duality between reachability and observability (Arbib and
Manes 1975): beautiful, not very well-known.

» combined use of algebra and coalgebra.

» our understanding of automata is still very limited;
cf. recent research: universal automata, atomata, weighted
automata (Sakarovitch, Brzozowski, . . . )
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Credits

Bonchi, Bonsangue, Rutten
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It all started with. ..

: Helle Hansen & Dexter Kozen
Prakash Panangaden
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Brzozowski algorithm (by example)

e initial state: x e final states: y and z
el(x) = {ab}*a
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Brzozowski algorithm (by example)

e initial state: x e final states: y and z
el(x) = {ab}*a
e X is reachable but not minimal: L(y) = ¢ + {a,b}*a = L(2)
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Reversing the automaton: rev(X)
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Reversing the automaton: rev(X)

rev(X) =

e transitions are reversed
e initial states <« final states

e rev(X) is non-deterministic
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Making it deterministic again: det(rev(X))
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Making it deterministic again: det(rev(X))

e new state space: 2X = {V | V C {x,y, 2} }
e initial state:{y,z} final states: all V with x € V

VANV W:{W|vi>w,veV}
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The automaton det(rev(X)) . . .

13/51



The automaton det(rev(X)) . . .

e . . . accepts the reverse of the language accepted by X:

L(det(rev(X))) = a{a,b}* = reverse(L(X))
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The automaton det(rev(X)) . . .

e . . . accepts the reverse of the language accepted by X:

L(det(rev(X))) = a{a,b}* = reverse(L(X))

e . .. and is observable!
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Today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
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Today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
then: det(rev(X)) is minimal and

L(det(rev(X))) = reverse( L(X))
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Taking the reachable part of det(rev(X))
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Taking the reachable part of det(rev(X))

e reach(det(rev(X)))
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Taking the reachable part of det(rev(X))

e reach(det(rev(X))) is reachable (by construction)
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Repeating everything, now for reach(det(rev(X)))

ab
(A
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Repeating everything, now for reach(det(rev(X)))

ab
(A

e . .. gives us reach(det(rev(reach(det(rev(X))))))
e which is (reachable and) minimal and accepts {a, b}* a.
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All in all: Brzozowski’s algorithm
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All in all: Brzozowski’s algorithm

e X is reachable and accepts {a, b}* a
e reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a

e . .. and is minimall!l
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Goal of the day

» Correctness of Brzozowski’s algorithm (co)algebraically
» Generalizations to other types of automata
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(Co)algebra
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algebras: fJ( coalgebras: f
X F(X)
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Examples of algebras
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Examples of coalgebras

tl x—8 Ly o (ay)etx)

P(A x X)
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Examples of coalgebras

{ x—8 Ly o (ay)etx)

P(A x X)

X
(Left, label, Right)l

XxAxX
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Examples of coalgebras
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Homomorphisms
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Initiality, finality

F(A)- =~ F(X) X——==- +Z
al lf f‘ 8
Al L X F(X)- - -+ F(2)
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Initiality, finality

F(A) - —~ 5 F(X)
I
A~ X

e initial algebras <« induction

X--="=- +Z
d .
F(X)f,_:(l;)» F(Z)
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Initiality, finality

F(A) RN F(X) x--3h .z
| ! \ .
A X F(X) “Ei? F(2)

e initial algebras <« induction

e final coalgebras <> coinduction
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Automata, (co)algebraically

» Automata are complicated structures:

part of them is algebra - part of them is coalgebra
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Automata, (co)algebraically

» Automata are complicated structures:
part of them is algebra - part of them is coalgebra

» (...intwo differentways. . .)
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A deterministic automaton
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A deterministic automaton

where

1={0} 2={0,1} XA={g|g:A— X}

CO—2Ay) & )@=y

i(0) € X is the initial state

is final (or accepting) <« f(x) =1
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Automata: algebra or coalgebra?

» initial state: algebraic — final states: coalgebraic

1\)(/2
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Automata: algebra or coalgebra?

» initial state: algebraic — final states: coalgebraic
1 2
X

» transition function: both algebraic and coalgebraic

X1 xA
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Automata: algebra and coalgebra!

1 2
€ \ / €?
* A*
A* — e X - o -2
o lt I3

(A*)AirjqﬁxAioiA%(zA*)A
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Automata: algebra and coalgebra!
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A* — e X - o -2
o Jt 153

(A*)Air;\%XAioiA%(zA*)A

To take home: this picturel!! . . .
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Automata: algebra and coalgebra!

1 2
€ \ / €?
* A*
A* — e X - o -2
o Jt 153

1A A A\A
(A%) frfA»X fOfA%(Z )

To take home: this picture!! . . . which we’ll explain next . . .
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The “automaton” of languages

AL)=1oeel

A 24 = {g|g: A » 2} = {L|LC A}

B(l)(a)=La={we A" |a-wel}
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The “automaton” of languages

AL)=1oeel

rial 24 = {g|g: A » 2} = {L|LC A}

B(l)(a)=La={we A" |a-wel}

o We say “automaton”: it does not have an initial state.
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The automaton of languages

o transitions: L—2- Ly where Ly={wecA"|a-wel}

e for instance:
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ab

e note: every state L accepts
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The automaton of languages is . . . final

o(x) = {weA |f(xw)=1}

the language accepted by x
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The automaton of languages is . . . final

o(x) = {weA |f(xw)=1}

the language accepted by x

<;
~
'—';'
o
@
I

where: x,, is the state reached after inputting the word w,

and: 0%(g) = 0og, all g € XA.
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Back to today’s picture
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Back to today’s picture
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On the right: final coalgebra
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Back to today’s picture

1 2
6 \4 / !
* - A*
A ; =X o -2
« Jt B

(A*)Aiqu%XAioiA%(zA*)A

On the right: final coalgebra

On the left: initial algebra . . .
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The “automaton” of words

1
. € is initial state
A* a(w)(a)=w-a
@ . . a
that is, transitions: w——w-a
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The automaton of words is . . .

D

A — - -3 X
dlr

o Jt

(A*)Af — 5 XA
A

e Proof: easy exercise.

initial

initial state
(to be precise: i(0))

Iw
the state reached from i
after inputting w

e Proof: formally, because A* is an initial 1 + A x (—)-algebra!
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Duality

» Reachability and observability are dual:
Arbib and Manes, 1975.

» (here observable = minimal)
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Reachability and observability

6 \« / !
A - — - S XD — — oA
r (0]

a J{t B

(A*)A— 7A$XA7 7A%(2A*)A

r

o
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Reachability and observability

(A*)A— 7\%XA7 7A%(2A*)A

r

o

6 \« / !
A - — - S XD — — oA
r (0]

a J{t B

state reached
on input w

language
accepted by x
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Reachability and observability

€ \ / €? r(w) = state reached
. on input
A — — — X = — — 524 nputw
r 0
a Jt 3 o(x) = language
accepted by x

A A A\A
(A*) f,;\»X 707\»(2 )

e We call X reachable if r is surjective.
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Reachability and observability

AV — S XA— — 5 (2A)A
A A

r

e We call X reachable if r is surjective.

o

6 \« / !
* - A*

A ; X o 2

a J{t B

state reached
on input w

language
accepted by x

e We call X observable (= minimal) if o is injective.
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Reversing the automaton

» Reachability <+ observability
» Being precise about homomorphisms is crucial.

» Forms the basis for proof Brzozowski’s algorithm.
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Powerset construction
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Powerset construction

4 2V
2(=) . Ql — ng
w ow

where 2¥ = {S| SC V} and, forall SC W,

29(8)= g '(S) (= {veV]g(v)es})

e This construction is contravariant !!

e Note: if g is surjective, then 29 is injective.

28/51



Reversing transitions
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Reversing transitions

X | XxA DX xA
tJ l o(-) T

[ —
XA X oX

29/51



Reversing transitions

X | XxxA oXxA || (2%)A

o T
e

XA X oX oX
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Reversing transitions

X || xxA oXxA | (2X)A || 2X
tl l () T T JQt
XA X 2X 2X || (@)
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Initial < final
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Reversing the entire automaton

1\)(/2
|t

XA
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Reversing the entire automaton

1 2 1 o2
_ X
X 2(-) 2
XA (2X)A

e Initial and final are exchanged . . .
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1 2 1 o2
_ X
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e Initial and final are exchanged . . .

e transitions are reversed . . .
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Reversing the entire automaton

1 2 1 -2
N N
- X
X 2(-) 2
Jt lzf
XA (2X)A

e Initial and final are exchanged . . .
e transitions are reversed . . .

e and the result is again deterministic!
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Our previous example
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Our previous example

e Note that X has been reversed and determinized:

2X — det(rev(X))
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Proving today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
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Proving today’s Theorem

If: a deterministic automaton X is reachable and accepts L(X)
then: 2X (= det(rev(X))) is minimal/observable and

L(2X) = reverse(L(X))
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Proof: by reversing A*—— X
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Proof: by reversing A*—— X

(A*)A XA

e X becomes 2%
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e X becomes 2%
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Proof: by reversing A*—— X

1 _ 2
el ! % TZE
A* s X 2(-) PR — T

[ or
|l I
(A*)A . XA (2X)A . (2A* )A

e X becomes 2%
e initial automaton A* becomes (almost) final automaton 24

e ris surjective = 2'is injective
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Reachable becomes observable
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Reachable becomes observable
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Reachable becomes observable

1 ' 2

* — X A* A*
A —— X 20 2 Tm ~ ey 2
I T
(A*)A*))(A (2X)A4>(2A*)A7 _ $(2A*)A

e If ris surjective then (2" and hence) rev o 2" is injective.
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Reachable becomes observable

1 , 2
A 5 X 2(=) X oA _ A
r P or rev
| Tl o T
(A*)A SN XA (2X)A SN (2A* )A s (2A* )A

e If ris surjective then (2" and hence) rev o 2" is injective.

e That is, 2X is observable (= minimal).
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Summarizing

N

A - - 3X

|

(A)A - - 5 XA
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Summarizing

N N e

A - - 3X X7 oA

e il

(A*)Af _ %XA (2X)A7 _ $(2A*)A
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Summarizing

N7 N 2T

01*1)[ ZTJ ;e;JZr J(B
(A)A— — 5 XA (2X)A— 5 (24)A

e If: X isreachable, i.e., r is surjective
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Summarizing

N7 N 2T

/1*$T JI’GVOZr J
o t t I5}
(A= XA (22X)A @)

e If: X isreachable, i.e., r is surjective

then: rev o 2" is injective, i.e., 2X is observable = minimal.
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Summarizing

N7 N 2T

T$T JI’GVOZr J
« t t I5}
(A~ XA (22X)A @)

e If: X isreachable, i.e., r is surjective
then: rev o 2 is injective, i.e., 2X is observable = minimal.
e And: rev(2'(f)) = rev(o(i)), i.e., L(2X) = reverse( L(X))
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Corollary: Brzozowski’s algorithm

» X becomes 2%, accepting reverse(L(X))
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Corollary: Brzozowski’s algorithm

» X becomes 2%, accepting reverse(L(X))
» take reachable part: Y = reachable(2X)

» Y becomes 2", which is minimal and accepts

reverse(reverse(L(X))) = L(X)

47/51



Generalizations

N T N

A m - XD 2X A — -3 X -5 BX
| ol ke
(A*)Af;qéxA 707A$ (2A*)A (A*)Af,:q%XA 7(;,4% (BA*)A

e A Brzozowski minimization algorithm for Moore automata.

={ple: X—>B} Bl(p)=¢pof
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Further generalizations

» Moore automata generalization: uniform algorithm for
decorated traces and must testing (joint work with Bonchi,
Caltais and Pous);

» Further generalizations to non-deterministic and weighted
automata.
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A uniform picture based on duality

Autr

— %
Coalg(F) L
_

— 3
L Aut(G)

o

Alg(G)
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Conclusions

» Combination algebra-coalgebra is fruitful.
» Abstract analysis can bring new perspectives/results.
» (Co)algebra is not only semantics but also algorithms!
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» Combination algebra-coalgebra is fruitful.
» Abstract analysis can bring new perspectives/results.
» (Co)algebra is not only semantics but also algorithms!
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