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� Logi
s that may la
k some of stru
tural rules

(ex
hange/weakening/
ontra
tion)

� Axiomati
 extensions of Full Lambek Cal
ulus FL

(= non
ommutative intuitionisti
 linear logi
 without !)

� Study of universe of logi
s

Why is the subje
t interesting?

� Common basis for various non
lassi
al logi
s

linear, BI, relevant, fuzzy, superintuitionisti
 logi
s

� Common basis for various ordered algebras

latti
e-ordered groups, relation algebras, ideal latti
es of

rings, MV algebras, Heyting algebras

� Abundan
e of weird logi
s/algebras

- allows us to speak of 
riteria for various properties
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� The base system for substru
tural logi
s (Ono 90)

� Intuitionisti
 logi
 without stru
tural rules.

� Formulas:

'; ::= p j ' ^  j ' _  j ' �  j 'n j '= j 1 j 0

� 0 is used to de�ne negations:

�a = an0; � a = 0=a:

� Sequents: �) �

(�: sequen
e of formulas, �: at most one formula)
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� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '!  for 'n and  ='.

� A substru
tural logi
 is an axiomati
 extension of FL.

Some axioms:

(e) ' �  !  � ' (ex
hange)

(w) '! 1; 0! ' (weakening)

(
) '! ' � ' (
ontra
tion)

(in) ::'! ' (involutivity)

(dist) ' ^ ( 

1

_  

2

)! (' ^  

1

) _ (' _  

2

) (distributivity)

(pl) ('!  ) _ ( ! ') (prelinearity)

(div) ' ^  ! ' � ('!  ) (divisibility)
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Residuated latti
e: A = hA;^;_; �; n; =; 1i su
h that

� hA;^;_i is a latti
e;

� hA; �; 1i is a monoid;

� a � b � 
 , b � an
 , a � 
=b.

An FL algebra is a residuated latti
e with 
onstant 0 2 A.

Some identities:

� a � (anb) � b

� (a _ b) � 
 = (a � 
) _ (b � 
)

� a! (b ^ 
) = (a! b) ^ (a! 
)

� (a _ b)! 
 = (a! 
) ^ (b! 
)

� anb = b=a (with (e))

� a � b � a ^ b (with (w))

� a � b � a ^ b (with (
))
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A 
lass V of algebras (of the same type) is a variety if

V = HSP (V):

� H: homomorphi
 images

� S: subalgebras

� P : dire
t produ
ts

Birkho�'s Theorem

V is a variety i� V is equationally de�nable.

FL := the variety of FL algebras.

Algebraization Theorem

The substru
tural logi
s are in 1-1 
orresponden
e with the sub-

varieties of FL. If L 
orresponds to V,

� `

L

 i� 1 � � j=

V

1 �  :
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Let L be a 
onsistent substru
tural logi
 and 
onsider the

de
ision problem:

Given '; `

L

'?

Theorem (Hor
ik-T. 11)

1. Any L is 
oNP-hard.

2. If L is �nite-valued, then L is 
oNP-
omplete.

3. If L enjoys the disjun
tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne
essary 
ondition.)


oNP and PSPACE seem a natural way to 
lassify logi
s into

\semanti
ally easy" and \
omputationally expressive" ones.

Di
hotomy Problem

Is there a substru
tural logi
 whi
h is neither 
oNP-
omplete nor

PSPACE-hard?
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Dedekind 
ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distin
tive feature of this 
ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a latti
e. Its 
ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (S
hmidt 56, Banas
hewski 56)

Every latti
e A has a join-dense and meet-dense 
ompletion A,

unique up to isomorphism, 
alled the Ma
Neille 
ompletion.

It 
an be extended to FL algebras too.
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A preframe is W = (W;W

0

; N; Æ; "; �) su
h that

� N �W �W

0

,

� (W; Æ; ") is a monoid, � 2W

0

.

A residuated frame is a preframe where for every x 2W; z 2W

0

there are elements x
z and z�x 2W

0

su
h that

x Æ y N z () x N z�y () y N x
z:

Lemma

If W is a preframe, then

~

W := (W; W�W

0

�W;

~

N; Æ; "; ("; �; "))

x

~

N (u; z; v) () uÆxÆv N z

is a residuated frame.
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Residuated frames are e�e
tive tools to build 
omplete FL

algeblras.

Given X �W and Z �W

0

,

X

B

:= fz 2W

0

: x N z for every x 2 Xg

Z

C

:= fx 2W : x N z for every z 2 Zg

(

B

;

C

) forms a Galois 
onne
tion:

X � Z

C

() X

B

� Z

that indu
es a 
losure operator 
(X) := X

BC

on }(W ).
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Given W = (W;W

0

; N; Æ; "; �) and X;Y �W ,

G(W ) := the set of Galois-
losed subsets of W

(X = 
(X) = X

BC

)

XnY := fy : x Æ y 2 Y for every x 2 Xg

Y=X := fy : y Æ x 2 Y for every x 2 Xg

X Æ




Y := 
(X Æ Y )

X [




Y := 
(X [ Y )

Lemma

W

+

:= (G(W );\;[




; Æ




; n; =; 
("); �

C

)

is a 
omplete FL algebra, 
alled the 
omplex algebra of W.
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Fm := the set of formulas.

Fm

�

:= the set of formula sequen
es.

� Let W


f

:= (Fm

�

; Fm [ f;g; N


f

; Æ; ;; ;) where

� N


f

� i� �) � is 
ut-free derivable.

Then W

+


f

is an FL algebra su
h that

j=

W

+


f

1 � ' implies ) ' is 
ut-free derivable.

) Algebrai
 
ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the Ma
Neille 
ompletion of A.
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Let L be a SL (axiomati
 extension of FL). To obtain an analyti



al
ulus for L, axioms have to be transformed into stru
tural rules:

'! ' � ' ' � '! ' :(' ^ :')

�;�;�;�) �

�;�;�) �

�;�;�) � �;�;�) �

�;�;�;�) �

�;�)

�)

Let V be a subvariety of FL. To show that V is 
losed under


ompletions, identities have to be transformed into quasi-identities:

x � xx xx � x x ^ :x � 0

xx � z

x � z

x � z y � z

xy � z

xx � 0

x � 0

Fundamental Question

Whi
h axioms/identities 
an be transformed into \good" stru
tural

rules/quasi-identities?
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Classi�
ation of axioms

P

0

;N

0

::= the set of variables

P

n

::= N

n�1

j 1 j P

n

_ P

n

j P

n

� P

n

N

n

::= P

n�1

j 0 j N

n

^N

n

j P

n

! N

n

Some N

2

axioms:

�! 1, 0! � weakening

�! � � � 
ontra
tion

� � �! � expansion

�

n

! �

m

knotted axioms (n;m � 0)

:(� ^ :�) no-
ontradi
tion
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Theorem (Ciabattoni-Galatos-T. 12)

1. Every N

2

axiom 
an be transformed into a

set of stru
tural rules in sequent 
al
ulus FL.

2. For every set E of N

2

axioms, the following

are equivalent.

� FL(E) admits a strongly analyti
 sequent


al
ulus (
ut elimination for derivations with

assumptions + subformula property).

� FL(E) is 
losed under Ma
Neille 
omple-

tions.

� E is a
y
li
 (a synta
ti
 
riterion).

3. The above three hold whenever (w) 2 E.
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Some P
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axioms:

(�! �) _ (� ! �) prelinearity

� _ :� ex
luded middle

:� _ ::� weak ex
luded middle

:(� � �) _ (� ^ � ! � � �) weak nilpotent minimum

W

k
i=0

(�

i

!

W

j 6=i

�

j

) bounded width � k
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) bounded size � k



Limitation of sequent 
al
ulus/Ma
Neille 
ompletions

Introdu
tion to

Substru
tural Logi
s

Algebrai
 Proof

Theory for

Substru
tural Logi
s

APT for SL

Completions

Ma
Neille 
omp.

Residuated frames

From axioms to rules

Subst. hierar
hy

. Limitation

Hypersequent 
al
.

Hyper-Ma
Neille

Class N

3

Summary

Herbrand's theorem

via hyper
anoni
al

extensions

Further topi
s

26 / 55

Fa
t

Every stru
tural rule in sequent 
al
ulus is either derivable or 
on-

tradi
tory in Int.

�) � �) �

�;�) �

�) �

) �

Theorem (G.Bezhanishvili-Harding 04)

There is no intermediate variety between HA and BA that is 
losed

under Ma
Neille 
ompletions.

Eg. prelinearity 
annot be dealt with by sequent


al
ulus/Ma
Neille 
ompletions.
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) �
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j � � � j �

m

) �

m

(meaning (�

1

! �

1

) _ � � � _ (�

m

! �

m

))

� Hypersequent 
al
ulus for FL 
onsists of

Rules of FL Ext-Weakening Ext-Contra
tion
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� j �) �! �
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) � j �

1

;�

2

) �

(
om)

�) � � ) �

�) � j � ) �

(
om)
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� Limitation of proof theory is imposed by al-

gebrai
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Let L be a propositional substru
tural logi
.

QL := the predi
ate extension of L obtained by adding

8x:�(x)! �(t) �(t)! 9x:�(x)

� ! �(x)

� ! 8x:�(x)

�(x)! �

9x:�(x)! � (x not free in �)
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De�nition

L satis�es the Herbrand property if for every set 	 of universal

formulas and every quanti�er-free formula '(x),

	 `

QL

9x:'(x) () 	

Æ

`

L

'(t

1

) _ � � � _ '(t

n

)

for some t

1

; : : : ; t

n

;

where 	

Æ

:= f (t) : 8x: (x) 2 	g.

Herbrand property is related to 
ompa
tness phenomena

(previous talk).

What is the algebrai
 form of 
ompa
tness?
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Let C be a Boolean algebra and X

C

be its Stone spa
e. Then

C

�

:= (P(X

C

);\;[;

C

)

is a 
ompletion of C.

Let D be a bounded distributive latti
e and Y

D

be its Priestly

spa
e. Then

D

�

:= (P

#

(Y

D

);\;[)

is a 
ompletion of D.

Re
all that

Ma
Neille 
ompletions = join-dense, meet-dense 
ompletions

Do we have a similar abstra
t 
hara
terization for C

�

;D

�

?
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Let A be a latti
e. Its 
ompletion B is

� dense if for every x 2 B, there exist C

i

;D

j

� A

(i 2 I; j 2 J) su
h that

x =

_

i2I

^

C

i

=

^

j2J

_

D

j

:

� 
ompa
t if for every C;D � A,

^

C �

_

D =)

^

C

0

�

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem (Gehrke-Harding 01)

Every latti
e A has a dense and 
ompa
t 
ompletion A

�

, unique

up to isomorphism, 
alled the 
anoni
al extension.
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A 
ompletion of A is 
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t if for every C;D � A,
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Theorem

If V(L) is 
losed under 
ompa
t 
ompletions, then L satis�es the

Herbrand property.
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Theorem (Gehrke-Harding 01)

Let V be a variety of monotone latti
e expansions.

If V is generated by a �nite algebra, then V is 
losed under 
anon-

i
al extensions.

Corollary

Every �nite-valued substru
tural logi
 satis�es the Herbrand prop-

erty.

It a
tually applies to a mu
h wider range of �nite-valued logi
s.

The GH theorem is an algebrai
 
ounterpart of the uniform

midsequent theorem for �nite-valued logi
s

(Baaz-Ferm�uller-Za
h 94).
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Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone latti
e expansions. If

V is 
losed under Ma
Neille 
ompletions, it is also 
losed under


anoni
al extensions.

Ma
Neille 
ompletions preserve (in) ::�! �.

Canoni
al extensions preserve (dist)

(� _ �) ^ 
 $ (� ^ 
) _ (� ^ 
).

Corollary

Every substru
tural logi
 axiomatized by

� a
y
li
 N

2

axioms

� and/or (in), (dist)

satis�es the Herbrand property.
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satis�es the Herbrand property.
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3

axioms.
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anoni
al extensions.
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Let A be an FL algebra.

Ma
Neille 
ompletion of A is W

+

A

where

W

A

:= (A;A;�; �; 1; 0):

Assuming A is FLew, hyper-Ma
Neille 
ompletion is W

h+

A

where

W

h

A

:= (A�A;A�A;N; � � � )

(a; h) N (b; k) () 1 = (a! b)_h _ k:
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Canoni
al extension of A is W

�+

A

where
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A
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A
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:= the ideals of A

f N i () f \ i 6= ;
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Theorem

Hyper
anoni
al extensions are 
ompa
t 
ompletions. They pre-

serve all P

3

identities.

Corollary

Every substru
tural logi
 over FLew axiomatized by P

3

axioms

satis�es the Herbrand property.

It applies to MTL, G, LQ and many more uniformly.
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Re
all that MV(= V( L)) is not 
losed under any


ompletions.

Theorem (Baaz-Met
alfe 08)

 L does not satisfy the Herbrand property, al-

though it does satisfy an \approximate" Her-

brand theorem.
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Herbrand's theorem for 98-formulas:

� ` 9x8y:'(x; y) () � ` '(t

1

; y

1

) _ � � � _ '(t

n

; y

n

)

where t

i

does not 
ontain y

i

; : : : ; y

n

.

The general form requires the 
onstant domain axiom (
d):

8x:(�(x) _ �)$ (8x:�(x)) _ �:

Its algebrai
 
ounterpart is meet in�nite distributivity:

(mid)

^

i2I

(x

i

_ y) = (

^

i2I

x

i

) _ y:
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Lemma

Let A be an FL algebra.

� If A is distributive, then A

�

satis�es (mid).

� If A is an MTL algebra, then A

h

satis�es (mid).

Theorem

Let L be a substru
tural logi
. Herbrand's theorem for 98-

formulas holds for QL(
d) if

� either L is axiomatized by distributivity and some N

2

axioms,

� or L is axiomatized by (e), (w), (pl) and and some P

3

axioms.
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� Apparently there is no ni
e duality between FL algebras and

residuated frames.

� Residuated frames are 
lose to syntax so that one 
an

en
ode synta
ti
 information into frames.

� By en
oding proof theoreti
 arguments into frames and

taking the 
omplex algebra, one 
an obtain an algebrai



onstru
tion.
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Let X;Y be sets of propositional variables.

Maehara's lemma

If `

FLe

�;�) � with � � Fm(X) and �;� � Fm(Y ),

there is � 2 Fm(X \ Y ) su
h that

`

FLe

�)� and `

FLe

�;�) �:
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Let A;B;C be FLe algebras.

Suppose that A is a subalgebra of both B and C.
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I
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(b; 
) N 
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() 9i 2 A: b �
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) N b
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() 9i 2 A: 
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b
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Then the 
omplex algebra gives rise to an amalgam.
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(interpolation)

+

= amalgamation
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Likewise, the next talk by Hor�
��k is an out
ome of:

(density rule elimination)

+

= densi�
ation

The slogan is:

(proof theoreti
 argument)

+

= algebrai
 
onstru
tion

This way we 
an salvage ni
e proof theoreti
 ideas and bring

them to ordered algebras.
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We have explored the 
onne
tion between proof theoreti


arugments and algebrai
 
ompletions based on the substru
tural

hierar
hy:

sequent 
al
. (N

2

) hypersequent 
al
. (P

3

)


ut elimination Ma
Neille 
ompl. hyper-Ma
Neille 
ompl.

Herbran's theorem 
anoni
al ext. hyper
anoni
al ext.

It is residuated frames that 
onne
t the two:

(proof theoreti
 argument)

+

= algebrai
 
onstru
tion.

Substru
tural proof theory is full of burea
ra
y, but hopefully

there are still something good to be salvaged.
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