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0, = ploeAY eV |le-Y |\ ]|/ |1]0

0 is used to define negations:

—a = a\0, ~a=0/a.

Sequents: I' = II
(I': sequence of formulas, II: at most one formula)
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O A substructural logic is an axiomatic extension of FL.
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3. If L enjoys the disjunction property, then L is PSPACE-hard.

(Neither 2. nor 3. is a necessary condition.)

coNP and PSPACE seem a natural way to classify logics into
“semantically easy” and “computationally expressive” ones.

Dichotomy Problem

Is there a substructural logic which is neither coNP-complete nor
PSPACE-hard?
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O Few of applications,
0 Nevertheless there are some brilliant i1deas.
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Let A be an FL algebra.

A completion of A is a pair of a complete FL algebra B and an
embedding e : A — B.

We may assume A C B.

We consider 4 types of completion:

[

L1 O

MacNeille completions

(Dedekind, MacNeille, Schmidt, Banaschewski . ..

Canonical extensions

(Tarski, Jonson, Gehrke, Harding .. .)
Hyper-MacNeille completions
Hypercanonical extensions
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What is the distinctive feature of this completion?
For every x € [0, 1]g,

z =sup{a € [0,1]g:a <z} =inf{a € [0,1]g:a > z}.

Let A be a lattice. Its completion B is

0 join-dense if for every x € B, z = \/{a € A:a < z}.
O meet-dense if forevery z € B, x = N\{a € A:a > x}.

Theorem (Schmidt 56, Banaschewski 56)

Every lattice A has a join-dense and meet-dense completion A,
unique up to isomorphism, called the MacNeille completion.
It can be extended to FL algebras too.
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A residuated frame is a preframe where for every z € W,z €¢ W’
there are elements z\\z and z//x € W' such that

roy N z < x N zJly < y N z\=z.

Lemma

If W is a preframe, then

~

W = (W, WxW'xW, N,o,¢,(e,¢¢))
r N (u,z,v) <= wuoxov N z

Is a residuated frame.
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algeblras.

Given X CW and Z C W/,

XP = {zeW':xz N zforevery z € X}
Z9 = {xeW:x N zforevery z € Z}

(*, <) forms a Galois connection:
XC7Z¥ «— XPDZ

that induces a closure operator v(X) := X®< on p(W).
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Lemma

W= (G(W)7m7U’770’Y7\7/7’7(5)7€<)

is a complete FL algebra, called the complex algebra of W.
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Fm™ := the set of formula sequences.

[l

Let Wi := (Fm*, Fm U {0}, N.¢,0,0,0) where
I' N.s 11 iff I' = II is cut-free derivable.
Then ij Is an FL algebra such that

Fw+ 1 <o implies = o is cut-free derivable.
cf

= Algebraic cut elimination.
Given an FL algebra A, let W4 := (A4, 4,<a,-,1,0).

Then WX is the MacNeille completion of A.
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Let L be a SL (axiomatic extension of FL). To obtain an analytic
calculus for L, axioms have to be transformed into structural rules:

= Q- P = (e A —gp)
YN AT IS A= TLAA=II TI.T=
VY, A=11I VYA A =11 I'=

Let V be a subvariety of FL. To show that V is closed under
completions, identities have to be transformed into quasi-identities:

r < xx xr < x xN\—-x <0
rr < 2 r<z y<z zr <0
r <z xy < 2 x <0

Fundamental Question

Which axioms/identities can be transformed into “good” structural
rules/quasi-identities?
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Hyper-MacNeille .. . . . .
Class A3 calculus (cut elimination for derivations with
Summary assumptions + subformula property).

e el 0 FL(E) is closed under MacNeille comple-
extensions 731 N‘l tl ons

Further topics

0 FE is acyclic (a syntactic criterion).

P, N, 3 The above three hold whenever (w) € E.
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(@ = B)V (6 —a)

oV o
—lav—l—la

~la-B)ViaAf—a-f)
\/2 O(Oé’t — \/];éz Cl{])

Vi_o(ao A

A Qi1 = ;)

prelinearity

excluded middle
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bounded width < &
bounded size < k
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Fact

Every structural rule in sequent calculus is either derivable or con-
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=11 A=1I I' =11
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Theorem (G.Bezhanishvili-Harding 04)
There is no intermediate variety between HA and BA that is closed
under MacNeille completions.

Eg. prelinearity cannot be dealt with by sequent
calculus/MacNeille completions.
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O Cf. Ackermann Lemma-based Algorithm
(Conradie-Palmigiano)
0 Implemented by (Ciabattoni-Spendier)
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Let A be an FLew algebra. Define

Wh = (AxA,AxA,N,(-,V),(1,0),(0,0))
1

(a,h) N (b,k) < (@ — b)VAV K

Theorem

W_,h;r is a completion of A, called the hyper-MacNeill completion.

Theorem (CGT)

For every set E of P3 axioms,

0 FLew(FE) admits a strongly analytic hypersequent calculus.

0 FLew(FE) is closed under hyper-MacNeille completions.
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Some N3 axioms:

alAN(BVy) = (aAB)V (aAvy) distributivity

(o > a-p)—p5 cancellativity
alp—a-(a—p) divisibility
BL := FLew + (pl) + (div)
£ := BL+ (in)

Theorem (cf. Kowalski-Litak 08)

The varieties BL, MV (= V(L)) are not closed under
any completions. Hence the logics BL and t do not
admit any strongly analytic calculus.

o
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(o > a-p)—p5 cancellativity
alp—a-(a—p) divisibility
BL := FLew + (pl) + (div)
£ := BL+ (in)

Theorem (cf. Kowalski-Litak 08)

The varieties BL, MV (= V(L)) are not closed under
any completions. Hence the logics BL and t do not
admit any strongly analytic calculus.

v

Limitation of uniform proof theory!
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Residuated frames
From axioms to rules
Subst. hierarchy
Limitation
Hypersequent calc.
Hyper-MacNeille
Class N3

> Summary

Herbrand’s theorem
via hypercanonical
extensions

Further topics

Ns3:  sequent calculus

MacNeille completions

hypersequent calculus
hyper-MacNeille completions

N3:  limitation of uniform proof theory

Axioms = rules is important in both proof
theory and algebra.

The hyper-construction (proof theory) is
useful for completions (algebra) too.
Limitation of proof theory is imposed by al-
gebraic facts.
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Herbrand’s theorem via hypercanonical
extensions
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HP for finite
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Class N3
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for AV

Further topics

Let L be a propositional substructural logic.

QL := the predicate extension of L obtained by adding

Vr.a(x) — aft)

B — a(z)

B — Vr.a(z)

a(t) — Jdz.a(x)

a(r) = f
dz.a(x) — B

(z not free in 3)
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Definition
L satisfies the Herbrand property if for every set W of universal
formulas and every quantifier-free formula ¢(x),

v l_QL Elx.cp(a;') <— U° |y, go(tl) VeV (p(tn)
for some t1,...,t,,

where Ue = {¢(t) : Vz.9o(T) € V}.
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Class N3
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for AV

Further topics

Definition
L satisfies the Herbrand property if for every set W of universal
formulas and every quantifier-free formula ¢(x),

v l_QL Elx.cp(a;') <— U° |y, gp(tl) VeV (p(tn)
for some t1,...,t,,

where Ue = {¢(t) : Vz.9o(T) € V}.

Herbrand property is related to compactness phenomena
(previous talk).
What is the algebraic form of compactness?
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Let C be a Boolean algebra and X be its Stone space. Then

CO'

Is a completion of C.

(P(XC)a n,u, C)
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extensions
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Herbrand property
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> extensions

HP compact compl.
HP for finite
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Class N3

Herbrand’s theorem
for AV

Further topics

Let C be a Boolean algebra and X be its Stone space. Then
C° = (P(Xc),NUu,%)
Is a completion of C.

Let D be a bounded distributive lattice and Yp be its Priestly
space. Then

D? = (P (Yp),N,U)
is a completion of D.
Recall that
MacNeille completions = join-dense, meet-dense completions

Do we have a similar abstract characterization for C?, D7
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O dense if for every z € B, there exist C;,D; C A

(i € I,7 € J) such that

=V A=AV
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jedJ
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Canonical extensions
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Theory for )
Substructural Logics (7/ e I ] e J) SUCh that
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for some finite Cy C C' and Dy C D.
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> extensions
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HP for finite
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Class N3

Herbrand’s theorem
for AV

Further topics

Let A be a lattice. Its completion B is

O dense if for every z € B, there exist C;,D; C A
(i € I,7 € J) such that

=VAG= AV

il jeJ
O compact if for every C, D C A,

AC<\/D= \Co<\/ D

for some finite Cy C C' and Dy C D.
Theorem (Gehrke-Harding 01)

Every lattice A has a dense and compact completion A?, unique
up to isomorphism, called the canonical extension.

v
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Herbrand property via compact completions
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Further topics

A completion of A is compact if for every C, D C A,

AC<\/D= A\Co<\/ Dy

for some finite Cy C C' and Dy C D.

Theorem

If V(L) is closed under compact completions, then L satisfies the
Herbrand property.
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Further topics

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone lattice expansions.

If V is generated by a finite algebra, then V is closed under canon-

Ical extensions.

v
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Further topics

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone lattice expansions.

If V is generated by a finite algebra, then V is closed under canon-

Ical extensions.

Corollary

Every finite-valued substructural logic satisfies the Herbrand prop-

erty.

v

It actually applies to a much wider range of finite-valued logics.
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Further topics

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone lattice expansions.

If V is generated by a finite algebra, then V is closed under canon-

Ical extensions.

Corollary

Every finite-valued substructural logic satisfies the Herbrand prop-

erty.

v

It actually applies to a much wider range of finite-valued logics.

The GH theorem is an algebraic counterpart of the uniform
midsequent theorem for finite-valued logics
(Baaz-Fermuller-Zach 94).
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Further topics

Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone lattice expansions. [f
V is closed under MacNeille completions, it is also closed under

canonical extensions.
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Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone lattice expansions. [f
V is closed under MacNeille completions, it is also closed under

canonical extensions.

MacNeille completions preserve (in) =—a — «.

Canonical extensions preserve (dist)
(aVB) Ay e (ahy)V(BAY).
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Further topics

Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone lattice expansions. [f
V is closed under MacNeille completions, it is also closed under

canonical extensions.

MacNeille completions preserve (in) =—a — «.

Canonical extensions preserve (dist)
(aVB) Ay e (ahy)V(BAY).

Corollary

Every substructural logic axiomatized by

0 acyclic Ny axioms
0 and/or (in), (dist)

satisfies the Herbrand property.
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Further topics

The GHV theorem states:

MacNeille completions

—  (Canonical extensions.

It conforms to the proof theoretic intuition:

Cut elimination

—  Herbrand’s theorem.
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What about P; logics?

Introduction to
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Algebraic Proof
Theory for . .
Substructural Logics : : Some ’])3 axioms:
Herbrand’s theorem . .
via hypercanonical . .
extensions P3 N3 (Oé — B) \/ (5 — Oé) prellnearlty
Predicate SL aV o excluded middle
Hlerbrand property —a V o weak excluded middle
Canonical extensions ] o
HP compact compl. —(a-B)V(aAB— a-fB) weak nilpotent minimun
HP for finite k -
> Ho for 1 Pa N \/2:0(@2- = Vi ) bounded width < k
P fOS\;’3 Violao A+ ANaj—1 = o) bounded size < k

ass N3
Herbrand’s theorem
for 3 .
or 3V We want compact completions that preserve Ps
Further topics 7)1 Nl axioms.
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What about P; logics?

Introduction to

Substructural Logics A A

Algebraic Proof

Theory for . .

Substructural Logics : : Some ’])3 axioms:

Herbrand’s theorem . .

via hypercanonical . .

extensions P3 N3 (Oé — B) \% (5 — Oé) prellnearlty

Predicate SL aV -« excluded middle

p I [ -V ——a weak excluded middle
Canonical extensions ] o
HP compact compl. —(a-B)V(aAB— a-fB) weak nilpotent minimun
HP for finite k -

> Ho for 1 Pa N \/2:0(@2 = Vi ) bounded width < k
HPfo;\/Ii’3 Violao A+ ANaj—1 = o) bounded size < k

Class N3

Herbrand’s theorem

for 3V We want compact completions that preserve Ps
Further topics 7)1 Nl axioms.

= Hypercanonical extensions.
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Reminder

: MacNeille and hyper-MacNeille completions
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Herbrand’s theorem
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extensions

Predicate SL
Herbrand property
Canonical extensions
HP compact compl.
HP for finite

> HP for N2

HP for P3

Class N3

Herbrand’s theorem
for AV

Further topics

Let A be an FL algebra.
MacNeille completion of A is WX where

Wap =(A4,A,<,-,1,0).
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MacNeille completion of A is WX where

Wp = (4,A

Wi
(a,h) N (b, k)

<

(
1

<

AxA, AxA,N,---)

) 9 7y 170)

(a = b)Vh V k.

Assuming A is FLew, hyper-MacNeille completion is WZJF where
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Canonical and hypercanonical extensions
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Canonical extension of A is Wf,f where
WZ — (FAazAaNaoaTla\LO)a
FaA = the filters of A
Ian = theideals of A
fNi < fni#0

Assuming A is FLew, hypercanonical extension of A is WK“L
where

H ._
Wi =
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Theorem

Hypercanonical extensions are compact completions. They pre-

serve all P3 identities.
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Herbrand property for P; logics
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Algebraic Proof
Theory for
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Herbrand’s theorem
via hypercanonical
extensions

Predicate SL
Herbrand property
Canonical extensions
HP compact compl.
HP for finite

HP for N2

> HP for P3

Class N3

Herbrand’s theorem
for AV

Further topics

Theorem

Hypercanonical extensions are compact completions. They pre-

serve all P3 identities.

Corollary

Every substructural logic over FLew axiomatized by P3 axioms

satisfies the Herbrand property.

It applies to MTL, G, LQ and many more uniformly.
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Class N3

Introduction to

Substructural Logics A A

Algebraic Proof
Theory for
Substructural Logics

Herbrand’s theorem

via hypercanonical 7)3 N3

extensions

- Recall that MV (= V(L)) is not closed under any
Predicate SL .
Herbrand property Comp|et|0ns.

Canonical extensions

HP compact compl.

HP for finite

HP for N2 P N Theorem (Baaz-Metcalfe 08)

HP for P3

EilasstSh L does not satisfy the Herbrand property, al-
erbrand’s theorem . . " . o

for 3V though it does satisfy an “approximate” Her-
Further topics 2 N7 brand theorem.
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Herbrand’s theorem for dV-formulas
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HP compact compl.
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Class N3

Herbrand’s
> theorem for IV

Further topics

Herbrand's theorem for dV-formulas:

¢ - daVy.p(z,y) <= PF o(t,y1) V-V olty,yn)
where t; does not contain v;, ..., Y,.

The general form requires the constant domain axiom (cd):
Ve (a(x)V B) < (Vr.a(x)) V B.

Its algebraic counterpart is meet infinite distributivity:

(mid)  N(zivy)=(/\z)Vy.

el el
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Further topics

Lemma
Let A be an FL algebra.

[l
[l

If A is distributive, then A satisfies (mid).
If A is an MTL algebra, then A" satisfies (mid).
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Predicate SL
Herbrand property
Canonical extensions
HP compact compl.
HP for finite

HP for N2

HP for P3

Class N3

Herbrand’s
> theorem for IV

Further topics

Lemma
Let A be an FL algebra.

O If A is distributive, then A? satisfies (mid).
O If Ais an MTL algebra, then A" satisfies (mid).

Theorem

Let L be a substructural logic. Herbrand's theorem for 3V-
formulas holds for QL(cd) if

O either L is axiomatized by distributivity and some N5 axioms,

0 or L is axiomatized by (e), (w), (pl) and and some P3 axioms.
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Extracting algebraic information from proof theory
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Further topics

> Extracting info
Interpolation
Density rule elim.
Conclusion

[

[

[

Apparently there is no nice duality between FL algebras and
residuated frames.

Residuated frames are close to syntax so that one can
encode syntactic information into frames.

By encoding proof theoretic arguments into frames and
taking the complex algebra, one can obtain an algebraic
construction.
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Case study: Interpolation = Amalgamation
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Further topics

Extracting info
D> Interpolation
Density rule elim.
Conclusion

Let X,Y be sets of propositional variables.

Maehara's lemma

If Frre I, A = [T with I' € Fm(X) and A, IT C Fm(Y),
there is © € Fm(X NY') such that

l_FLe I'=¢ and l_FLe L, A = 1II.
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Further topics

Extracting info
D> Interpolation
Density rule elim.
Conclusion

Let A, B, C be FLe algebras.
Suppose that A is a subalgebra of both B and C.

Define

Wi
(b,c) N
(b,c) NV

B

A

C

— (BxC,BUC,N,---)

— i € A.
— i € A.

b <pt
c <ot

and
and

ic<cc

ib <g b.
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Introduction to Then the complex algebra gives rise to an amalgam.

Substructural Logics

Algebraic Proof

Theory for B
Substructural Logics

A

Further topics

Extracting info
D> Interpolation .. .
Density rule elim. mnj Loty
Conclusion C

Herbrand’s theorem J . J
via hypercanonical N
extensions
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Extracting info
D> Interpolation
Density rule elim.
Conclusion

Then the complex algebra gives rise to an amalgam.

A

e
N

mnyg

(interpolation)™

B

o :

amalgamation
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Another success: density rule elimination = densification

Inidlicilien o Likewise, the next talk by Horcik is an outcome of:

Substructural Logics

Algebraic Proof
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Herbrand’s theorem
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extensions

Further topics

Extracting info
Interpolation

D> Density rule elim.
Conclusion
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Another success: density rule elimination = densification

Inidlicilien o Likewise, the next talk by Horcik is an outcome of:

Substructural Logics

Algebraic Proof
Theory for

Substructural Logics (denS|ty rU|e ellmlnathn)+ — denSIflcathn

Herbrand’s theorem
via hypercanonical

. The slogan is:

Further topics

Extracting info (proof theoretic argument)jL = algebraic construction

Interpolation
D> Density rule elim.

Conclusion This way we can salvage nice proof theoretic ideas and bring
them to ordered algebras.
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We have explored the connection between proof theoretic
arugments and algebraic completions based on the substructural

hierarchy:

Further topics

Extracting info
Interpolation
Density rule elim.
> Conclusion

sequent calc. (AN3)

hypersequent calc. (P3)

cut elimination

MacNeille compl.

hyper-MacNeille compl.

Herbran's theorem

canonical ext.

hypercanonical ext.

It is residuated frames that connect the two:

(proof theoretic argument

)+

algebraic construction.

Substructural proof theory is full of bureacracy, but hopefully
there are still something good to be salvaged.
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