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� Logis that may lak some of strutural rules

(exhange/weakening/ontration)

� Axiomati extensions of Full Lambek Calulus FL

(= nonommutative intuitionisti linear logi without !)

� Study of universe of logis

Why is the subjet interesting?

� Common basis for various nonlassial logis

linear, BI, relevant, fuzzy, superintuitionisti logis

� Common basis for various ordered algebras

lattie-ordered groups, relation algebras, ideal latties of

rings, MV algebras, Heyting algebras

� Abundane of weird logis/algebras

- allows us to speak of riteria for various properties
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� The base system for substrutural logis (Ono 90)

� Intuitionisti logi without strutural rules.

� Formulas:

'; ::= p j ' ^  j ' _  j ' �  j 'n j '= j 1 j 0

� 0 is used to de�ne negations:

�a = an0; � a = 0=a:

� Sequents: �) �

(�: sequene of formulas, �: at most one formula)
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� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '!  for 'n and  ='.

� A substrutural logi is an axiomati extension of FL.

Some axioms:

(e) ' �  !  � ' (exhange)

(w) '! 1; 0! ' (weakening)

() '! ' � ' (ontration)

(in) ::'! ' (involutivity)

(dist) ' ^ ( 

1

_  

2

)! (' ^  

1

) _ (' _  

2

) (distributivity)

(pl) ('!  ) _ ( ! ') (prelinearity)

(div) ' ^  ! ' � ('!  ) (divisibility)
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Residuated lattie: A = hA;^;_; �; n; =; 1i suh that

� hA;^;_i is a lattie;

� hA; �; 1i is a monoid;

� a � b �  , b � an , a � =b.

An FL algebra is a residuated lattie with onstant 0 2 A.

Some identities:

� a � (anb) � b

� (a _ b) �  = (a � ) _ (b � )

� a! (b ^ ) = (a! b) ^ (a! )

� (a _ b)!  = (a! ) ^ (b! )

� anb = b=a (with (e))

� a � b � a ^ b (with (w))

� a � b � a ^ b (with ())
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A lass V of algebras (of the same type) is a variety if

V = HSP (V):

� H: homomorphi images

� S: subalgebras

� P : diret produts

Birkho�'s Theorem

V is a variety i� V is equationally de�nable.

FL := the variety of FL algebras.

Algebraization Theorem

The substrutural logis are in 1-1 orrespondene with the sub-

varieties of FL. If L orresponds to V,

� `

L

 i� 1 � � j=

V

1 �  :
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Let L be a onsistent substrutural logi and onsider the

deision problem:

Given '; `

L

'?

Theorem (Horik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP-omplete.

3. If L enjoys the disjuntion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a neessary ondition.)

oNP and PSPACE seem a natural way to lassify logis into

\semantially easy" and \omputationally expressive" ones.

Dihotomy Problem

Is there a substrutural logi whih is neither oNP-omplete nor

PSPACE-hard?
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� Full of bureauray and ad ho studies,

� Few of appliations,

� Nevertheless there are some brilliant ideas.

Our aim: to salvage those brilliant ideas from the sea of

bureauray.
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� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor���k, Lutz Stra�burger, . . .

� Explore the onnetion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appliations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/reduibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fous on ut elimination � algebrai ompletion.
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Let A be an FL algebra.

A ompletion of A is a pair of a omplete FL algebra B and an

embedding e : A ,! B.

We may assume A � B.

We onsider 4 types of ompletion:

� MaNeille ompletions

(Dedekind, MaNeille, Shmidt, Banashewski . . . )

� Canonial extensions

(Tarski, J�onson, Gehrke, Harding . . . )

� Hyper-MaNeille ompletions

� Hyperanonial extensions
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Dedekind ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distintive feature of this ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a lattie. Its ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (Shmidt 56, Banashewski 56)

Every lattie A has a join-dense and meet-dense ompletion A,

unique up to isomorphism, alled the MaNeille ompletion.

It an be extended to FL algebras too.
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A preframe is W = (W;W

0

; N; Æ; "; �) suh that

� N �W �W

0

,

� (W; Æ; ") is a monoid, � 2W

0

.

A residuated frame is a preframe where for every x 2W; z 2W

0

there are elements xz and z�x 2W

0

suh that

x Æ y N z () x N z�y () y N xz:

Lemma

If W is a preframe, then

~

W := (W; W�W

0

�W;

~

N; Æ; "; ("; �; "))

x

~

N (u; z; v) () uÆxÆv N z

is a residuated frame.
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Residuated frames are e�etive tools to build omplete FL

algeblras.

Given X �W and Z �W

0

,

X

B

:= fz 2W

0

: x N z for every x 2 Xg

Z

C

:= fx 2W : x N z for every z 2 Zg

(

B

;

C

) forms a Galois onnetion:

X � Z

C

() X

B

� Z

that indues a losure operator (X) := X

BC

on }(W ).
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Given W = (W;W

0

; N; Æ; "; �) and X;Y �W ,

G(W ) := the set of Galois-losed subsets of W

(X = (X) = X

BC

)

XnY := fy : x Æ y 2 Y for every x 2 Xg

Y=X := fy : y Æ x 2 Y for every x 2 Xg

X Æ



Y := (X Æ Y )

X [



Y := (X [ Y )

Lemma

W

+

:= (G(W );\;[



; Æ



; n; =; ("); �

C

)

is a omplete FL algebra, alled the omplex algebra of W.
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Fm := the set of formulas.

Fm

�

:= the set of formula sequenes.

� Let W

f

:= (Fm

�

; Fm [ f;g; N

f

; Æ; ;; ;) where

� N

f

� i� �) � is ut-free derivable.

Then W

+

f

is an FL algebra suh that

j=

W

+

f

1 � ' implies ) ' is ut-free derivable.

) Algebrai ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the MaNeille ompletion of A.
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) Algebrai ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the MaNeille ompletion of A.
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Let L be a SL (axiomati extension of FL). To obtain an analyti

alulus for L, axioms have to be transformed into strutural rules:
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�;�;�;�) �

�;�;�) �

�;�;�) � �;�;�) �
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Let V be a subvariety of FL. To show that V is losed under

ompletions, identities have to be transformed into quasi-identities:

x � xx xx � x x ^ :x � 0

xx � z

x � z

x � z y � z

xy � z

xx � 0

x � 0

Fundamental Question

Whih axioms/identities an be transformed into \good" strutural

rules/quasi-identities?
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Theorem (Ciabattoni-Galatos-T. 12)

1. Every N

2

axiom an be transformed into a

set of strutural rules in sequent alulus FL.

2. For every set E of N

2

axioms, the following

are equivalent.

� FL(E) admits a strongly analyti sequent

alulus (ut elimination for derivations with

assumptions + subformula property).

� FL(E) is losed under MaNeille omple-

tions.

� E is ayli (a syntati riterion).

3. The above three hold whenever (w) 2 E.
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Fat

Every strutural rule in sequent alulus is either derivable or on-

traditory in Int.

�) � �) �

�;�) �

�) �

) �

Theorem (G.Bezhanishvili-Harding 04)

There is no intermediate variety between HA and BA that is losed

under MaNeille ompletions.

Eg. prelinearity annot be dealt with by sequent

alulus/MaNeille ompletions.
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� Hypersequent alulus for FL onsists of

Rules of FL Ext-Weakening Ext-Contration
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Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of strutural

rules in hypersequent alulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to
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(Conradie-Palmigiano)

� Implemented by (Ciabattoni-Spendier)
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Let A be an FLew algebra. De�ne

W

h

A

:= (A�A;A�A;N; (�;_); (1; 0); (0; 0))

(a; h) N (b; k) () 1 = (a! b)_h _ k

Theorem

W

h+

A

is a ompletion of A, alled the hyper-MaNeill ompletion.

Theorem (CGT)

For every set E of P

3

axioms,

� FLew(E) admits a strongly analyti hypersequent alulus.

� FLew(E) is losed under hyper-MaNeille ompletions.
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axioms:

� ^ (� _ )! (� ^ �) _ (� ^ ) distributivity

(�! � � �)! � anellativity

� ^ � ! � � (�! �) divisibility

BL := FLew + (pl) + (div)

 L := BL+ (in)

Theorem (f. Kowalski-Litak 08)

The varieties BL, MV(= V( L)) are not losed under

any ompletions. Hene the logis BL and  L do not

admit any strongly analyti alulus.

Limitation of uniform proof theory!
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: sequent alulus

MaNeille ompletions

P

3

: hypersequent alulus

hyper-MaNeille ompletions

N

3

: limitation of uniform proof theory

� Axioms ) rules is important in both proof

theory and algebra.

� The hyper-onstrution (proof theory) is

useful for ompletions (algebra) too.

� Limitation of proof theory is imposed by al-

gebrai fats.
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Let L be a propositional substrutural logi.

QL := the prediate extension of L obtained by adding

8x:�(x)! �(t) �(t)! 9x:�(x)

� ! �(x)

� ! 8x:�(x)

�(x)! �

9x:�(x)! � (x not free in �)
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De�nition

L satis�es the Herbrand property if for every set 	 of universal

formulas and every quanti�er-free formula '(x),

	 `

QL

9x:'(x) () 	

Æ

`

L

'(t

1

) _ � � � _ '(t

n

)

for some t

1

; : : : ; t

n

;

where 	

Æ

:= f (t) : 8x: (x) 2 	g.

Herbrand property is related to ompatness phenomena

(previous talk).

What is the algebrai form of ompatness?
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Let C be a Boolean algebra and X

C

be its Stone spae. Then

C

�

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive lattie and Y

D

be its Priestly

spae. Then

D

�

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Reall that

MaNeille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstrat haraterization for C

�

;D

�

?



Canonial extensions

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Prediate SL

Herbrand property

.

Canonial

extensions

HP ompat ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topis

36 / 55

Let C be a Boolean algebra and X

C

be its Stone spae. Then

C

�

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive lattie and Y

D

be its Priestly

spae. Then

D

�

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Reall that

MaNeille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstrat haraterization for C

�

;D

�

?



Canonial extensions

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Prediate SL

Herbrand property

.

Canonial

extensions

HP ompat ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topis

36 / 55

Let C be a Boolean algebra and X

C

be its Stone spae. Then

C

�

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive lattie and Y

D

be its Priestly

spae. Then

D

�

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Reall that

MaNeille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstrat haraterization for C

�

;D

�

?



Canonial extensions

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Prediate SL

Herbrand property

.

Canonial

extensions

HP ompat ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topis

37 / 55

Let A be a lattie. Its ompletion B is

� dense if for every x 2 B, there exist C

i

;D

j

� A

(i 2 I; j 2 J) suh that

x =

_

i2I

^

C

i

=

^

j2J

_

D

j

:

� ompat if for every C;D � A,

^

C �

_

D =)

^

C

0

�

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem (Gehrke-Harding 01)

Every lattie A has a dense and ompat ompletion A

�

, unique

up to isomorphism, alled the anonial extension.
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A ompletion of A is ompat if for every C;D � A,

^

C �

_

D =)

^

C

0

�

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem

If V(L) is losed under ompat ompletions, then L satis�es the

Herbrand property.
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Theorem (Gehrke-Harding 01)

Let V be a variety of monotone lattie expansions.

If V is generated by a �nite algebra, then V is losed under anon-

ial extensions.

Corollary

Every �nite-valued substrutural logi satis�es the Herbrand prop-

erty.

It atually applies to a muh wider range of �nite-valued logis.

The GH theorem is an algebrai ounterpart of the uniform

midsequent theorem for �nite-valued logis

(Baaz-Ferm�uller-Zah 94).
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Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone lattie expansions. If

V is losed under MaNeille ompletions, it is also losed under

anonial extensions.

MaNeille ompletions preserve (in) ::�! �.

Canonial extensions preserve (dist)

(� _ �) ^  $ (� ^ ) _ (� ^ ).

Corollary

Every substrutural logi axiomatized by

� ayli N

2

axioms

� and/or (in), (dist)

satis�es the Herbrand property.
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The GHV theorem states:

MaNeille ompletions =) Canonial extensions:

It onforms to the proof theoreti intuition:

Cut elimination =) Herbrand's theorem:
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P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

p
p

p
p

p
p

p
p

p
6

p
p

p
p

p
p

p
p

p
6

6

�

�

�

�� 6

�

�

�

�I

6

�

�

�

�� 6

�

�

�

�I

6

�

�

�

�� 6

�

�

�

�I

Some P

3

axioms:

(�! �) _ (� ! �) prelinearity

� _ :� exluded middle

:� _ ::� weak exluded middle

:(� � �) _ (� ^ � ! � � �) weak nilpotent minimum

W

k
i=0

(�

i

!

W

j 6=i

�

j

) bounded width � k

W

k
i=0

(�

0

^ � � � ^ �

i�1

! �

i

) bounded size � k

We want ompat ompletions that preserve P

3

axioms.

) Hyperanonial extensions.
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Let A be an FL algebra.

MaNeille ompletion of A is W

+

A

where

W

A

:= (A;A;�; �; 1; 0):

Assuming A is FLew, hyper-MaNeille ompletion is W

h+

A

where

W

h

A

:= (A�A;A�A;N; � � � )

(a; h) N (b; k) () 1 = (a! b)_h _ k:
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Canonial extension of A is W

�+

A

where

W

�

A

:= (F

A

; I

A

; N; Æ; "1; #0);

F

A

:= the �lters of A

I

A

:= the ideals of A

f N i () f \ i 6= ;

Assuming A is FLew, hyperanonial extension of A is W

H+

A

where

W

H

A

:= (F

A

�I

A

; I

A

�I

A

; N; � � � )

(f; j) N (i; k) () 1 2 (f ! i)_j _ k
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Theorem

Hyperanonial extensions are ompat ompletions. They pre-

serve all P

3

identities.

Corollary

Every substrutural logi over FLew axiomatized by P

3

axioms

satis�es the Herbrand property.

It applies to MTL, G, LQ and many more uniformly.
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Reall that MV(= V( L)) is not losed under any

ompletions.

Theorem (Baaz-Metalfe 08)

 L does not satisfy the Herbrand property, al-

though it does satisfy an \approximate" Her-

brand theorem.



Herbrand's theorem for 98-formulas

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Prediate SL

Herbrand property

Canonial extensions

HP ompat ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

.

Herbrand's

theorem for 98

Further topis

47 / 55

Herbrand's theorem for 98-formulas:

� ` 9x8y:'(x; y) () � ` '(t

1

; y

1

) _ � � � _ '(t

n

; y

n

)

where t

i

does not ontain y

i

; : : : ; y

n

.

The general form requires the onstant domain axiom (d):

8x:(�(x) _ �)$ (8x:�(x)) _ �:

Its algebrai ounterpart is meet in�nite distributivity:

(mid)

^

i2I

(x

i

_ y) = (

^

i2I

x

i

) _ y:
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Lemma

Let A be an FL algebra.

� If A is distributive, then A

�

satis�es (mid).

� If A is an MTL algebra, then A

h

satis�es (mid).

Theorem

Let L be a substrutural logi. Herbrand's theorem for 98-

formulas holds for QL(d) if

� either L is axiomatized by distributivity and some N

2

axioms,

� or L is axiomatized by (e), (w), (pl) and and some P

3

axioms.
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� If A is an MTL algebra, then A

h

satis�es (mid).

Theorem

Let L be a substrutural logi. Herbrand's theorem for 98-

formulas holds for QL(d) if

� either L is axiomatized by distributivity and some N

2

axioms,

� or L is axiomatized by (e), (w), (pl) and and some P

3

axioms.
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� Apparently there is no nie duality between FL algebras and

residuated frames.

� Residuated frames are lose to syntax so that one an

enode syntati information into frames.

� By enoding proof theoreti arguments into frames and

taking the omplex algebra, one an obtain an algebrai

onstrution.
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Let X;Y be sets of propositional variables.

Maehara's lemma

If `

FLe

�;�) � with � � Fm(X) and �;� � Fm(Y ),

there is � 2 Fm(X \ Y ) suh that

`

FLe

�)� and `

FLe

�;�) �:
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Let A;B;C be FLe algebras.

Suppose that A is a subalgebra of both B and C.

B

A

C

�

��

inj

�

�R

inj

De�ne

W

I

:= (B � C;B [ C;N; � � � )

(b; ) N 

0

() 9i 2 A: b �

B

i and i �

C



0

(b; ) N b

0

() 9i 2 A:  �

C

i and ib �

B

b

0

:



Case study: Interpolation ) Amalgamation

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Further topis

Extrating info

. Interpolation

Density rule elim.

Conlusion

53 / 55

Then the omplex algebra gives rise to an amalgam.

B

A

W

+

I

C

p

p

p

p

p

R

inj

�

�

��

inj

�

�

�R

inj

p

p

p

p

p

�

inj

(interpolation)

+

= amalgamation



Case study: Interpolation ) Amalgamation

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Further topis

Extrating info

. Interpolation

Density rule elim.

Conlusion

53 / 55

Then the omplex algebra gives rise to an amalgam.

B

A

W

+

I

C

p

p

p

p

p

R

inj

�

�

��

inj

�

�

�R

inj

p

p

p

p

p

�

inj

(interpolation)

+

= amalgamation



Another suess: density rule elimination ) densi�ation

Introdution to

Substrutural Logis

Algebrai Proof

Theory for

Substrutural Logis

Herbrand's theorem

via hyperanonial

extensions

Further topis

Extrating info

Interpolation

. Density rule elim.

Conlusion

54 / 55

Likewise, the next talk by Hor���k is an outome of:

(density rule elimination)

+

= densi�ation

The slogan is:

(proof theoreti argument)

+

= algebrai onstrution

This way we an salvage nie proof theoreti ideas and bring

them to ordered algebras.
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We have explored the onnetion between proof theoreti

arugments and algebrai ompletions based on the substrutural

hierarhy:

sequent al. (N

2

) hypersequent al. (P

3

)

ut elimination MaNeille ompl. hyper-MaNeille ompl.

Herbran's theorem anonial ext. hyperanonial ext.

It is residuated frames that onnet the two:

(proof theoreti argument)

+

= algebrai onstrution.

Substrutural proof theory is full of burearay, but hopefully

there are still something good to be salvaged.
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