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1 Introduction

Propositional dynamic logic (PDL) is based on the idea of associating with each pro-
gram γ a modality [γ], [γ]ϕ being read “whenever γ terminates it must do so in a state
satisfying ϕ” [6]. Hence, PDL is a modal logic with an algebraic structure in the set of
modalities: composition (γ; δ), test ϕ?, union (γ∪δ) and iteration γ?. Additional topics
include results about axiomatization and decidability of PDL variants. An interesting
variant of PDL is PDL with loop [4]. Its chief feature is that loop of programs is not
modally definable in the ordinary language of PDL [9]. In this paper, we present the
deductive system of iteration-free PDL with loop.

2 Syntax and semantics

Syntax p ranging over a countable set of propositional variables and π ranging over a
countable set of program variables, the set FOR of all formulas (ϕ, ψ, etc) and the set
PRO of all programs (γ, δ, etc) are defined as follows

ϕ ::= p | ⊥ | [γ]ϕ | γ!,

γ ::= π | (γ; δ) | ϕ?.

The other constructs are defined as usual. In particular,

¬ϕ ::= [ϕ?]⊥,

(ϕ→ ψ) ::= [ϕ?]ψ,

〈γ〉ϕ ::= [[γ][ϕ?]⊥?]⊥.

We follow the standard rules for omission of the parentheses.

Semantics A model is a triple (W,R, V ) where W 6= ∅, R : PRO 7→ 2W×W and
V : W 7→ 2FOR are such that
(i) ⊥ 6∈ V (x),
(ii) [γ]ϕ ∈ V (x) iff for all y ∈W , if xR(γ)y then ϕ ∈ V (y),
(iii) γ! ∈ V (x) iff xR(γ)x,
(iv) xR(γ; δ)y iff there is z ∈W such that xR(γ)z and zR(δ)y,
(v) xR(ϕ?)y iff x = y and ϕ ∈ V (y).
We say ϕ is m-valid iff for all models (W,R, V ) and for all x ∈W , ϕ ∈ V (x).



3 Axiomatization

Let f : PRO 7→ PRO be defined by
(i) f(π) = π,
(ii) f(γ; δ) = f(γ); (>?; f(δ)),
(iii) f(ϕ?) = ϕ?.
Let dim : PRO 7→ N be defined by
(i) dim(π) = 1,
(ii) dim(γ; δ) = dim(γ) + dim(δ),
(iii) dim(ϕ?) = 0.
Let≡ be the least equivalence relation on PRO compatible with ; and such that γ; (δ;λ)
≡ (γ; δ);λ. Let � be the least reflexive transitive relation on PRO containing ≡, com-
patible with ; and such that
(i) if dim(γ) = 0 then γ; δ � δ,
(ii) if dim(δ) = 0 then γ; δ � γ,
(iii) γ � γ;>?,
(iv) δ � >?; δ,
(v) γ!? � γ,
(vi) if dim(γ) = 0 then γ � γ!?,
(vii) (ϕ ∧ ψ)? � ϕ?;ψ?.
Let PDLloop

0 be the least normal logic that contains the axioms
(A1) 〈γ; δ〉ϕ↔ 〈γ〉〈δ〉ϕ,
(A2) if γ ≡ δ then 〈γ〉ϕ↔ 〈δ〉ϕ,
(A3) if dim(γ) = 0 then 〈γ〉ϕ→ ϕ,
(A4) if γ � δ then 〈γ〉ϕ→ 〈δ〉ϕ,
(A5) 〈γ(ϕ?)〉χ→ 〈γ((ϕ ∧ ψ)?)〉χ ∨ 〈γ((ϕ ∧ ¬ψ)?)〉χ,
(A6) 〈γ((ϕ ∨ ψ)?)〉χ→ 〈γ(ϕ?)〉χ ∨ 〈γ(ψ?)〉χ,
(A7) ϕ→ ¬(γ;¬(δ;ϕ?; γ)!?; δ)!.
Obviously, every axiom is m-valid. Hence,

Proposition 1. Let ϕ ∈ FOR. If ϕ ∈ PDLloop
0 then ϕ is m-valid.

A special case of axiom (A4) is given by the formulas
(Ak

4) 〈ϕ1?; . . . ;ϕk?〉ψ → 〈(ϕ1?; . . . ;ϕk?)!?〉ψ
where k ≥ 1. For all n ∈ N, let PDLloop|n

0 be the least normal logic that contains all
axioms of PDLloop

0 but the formulas (Ak
4) where k > n. Obviously,

⋃
{PDLloop|n

0 :

n ∈ N} = PDLloop
0 . Moreover, for all n ∈ N, one can find a PDLloop|n

0 -model in
which PDLloop|n+1

0 does not hold. Hence,

Proposition 2. Axiom (A4) cannot be replaced by finitely many formulas.

4 Theories, large programs and large systems

Theories A theory is any set of formulas containing PDLloop
0 and closed under modus

ponens. We say a theory S is consistent iff ⊥ 6∈ S. We say a theory S is maximal iff for
all ϕ ∈ FOR, either ϕ ∈ S, or ¬ϕ ∈ S. Let MAX be the set of all maximal theories.



By Lindenbaum’s Lemma, for all ϕ ∈ FOR and for all theories S, if ϕ 6∈ S then there
is T ∈ MAX such that S ⊆ T and ϕ 6∈ T . If γ is a program and S is a theory then
let [γ]S = {ϕ: [γ]ϕ ∈ S}. The canonical model for PDLloop

0 possesses all properties
characterizing models but the third one, seeing that loop of programs is not modally
definable in the ordinary language of PDL [9]. Hence, following the line of reasoning
suggested in [1, 2], the concept of large programs will be used.

Large programs For all theories S, let S? be a new symbol. The set LAR of all large
programs (Γ , ∆, etc) is defined by

Γ ::= π | (Γ ;∆) | S?.

We say large program Γ (S1?, . . . , Sn?) is maximal iff S1, . . . , Sn ∈ MAX . Let ker :
LAR 7→ 2PRO be defined by
(i) ker(π) = {π},
(ii) ker(Γ ;∆) = {γ; δ: γ ∈ ker(Γ ) and δ ∈ ker(∆)},
(iii) ker(S?) = {ϕ?: ϕ ∈ S} ∪ {γ: γ! ∈ S}.
Let dim : LAR 7→ N be defined by
(i) dim(π) = 1,
(ii) dim(Γ ;∆) = dim(Γ ) + dim(∆),
(iii) dim(S?) = 0.
If Γ ∈ LAR and S is a theory then let [Γ ]S = {ϕ : γ ∈ ker(Γ ) and [γ]ϕ ∈ S}. Let ≡
be the binary relation on LAR such that Γ ≡ ∆ iff

– for all γ ∈ ker(Γ ), if dim(γ) = dim(Γ ) then there is δ ∈ ker(∆) such that
dim(δ) = dim(∆) and γ ≡ δ,

– for all δ ∈ ker(∆), if dim(δ) = dim(∆) then there is γ ∈ ker(Γ ) such that
dim(γ) = dim(Γ ) and γ ≡ δ.

Let � be the binary relation on LAR such that Γ � ∆ iff

– for all δ ∈ ker(∆), if dim(δ) = dim(∆) then there is γ ∈ ker(Γ ) such that
dim(γ) = dim(Γ ) and γ � δ.

Large systems A large system is a triple (W,R, V ) where W 6= ∅ and R : LAR 7→
2W×W and V : W 7→MAX are such that
(i) ⊥ 6∈ V (x),
(ii) [γ]ϕ ∈ V (x) iff for all y ∈ W , if there is a maximal Γ ∈ LAR such that
f(γ) ∈ ker(Γ ) and xR(Γ )y then ϕ ∈ V (y),
(iii) γ! ∈ V (x) iff there is a maximal Γ ∈ LAR such that f(γ) ∈ ker(Γ ) and xR(Γ )x,
(iv) R(Γ ;S?;∆) = {(x, y): there is z ∈ W such that xR(Γ )z, S ⊆ V (z) and
zR(∆)y},
(v) R(Γ ;S?) = {(x, y): xR(Γ )y and S ⊆ V (y)},
(vi) R(S?;∆) = {(x, y): S ⊆ V (x) and xR(∆)y},
(vii) R(S?) = {(x, y): x = y and S ⊆ V (y)},
(viii) if Γ � ∆ then R(Γ ) ⊆ R(∆).
We say ϕ is ls-valid iff for all large systems (W,R, V ) and for all x ∈ W , ϕ ∈ V (x).
Obviously, every large system corresponds to a model. Hence,

Proposition 3. Let ϕ ∈ FOR. If ϕ is m-valid then ϕ is ls-valid.



5 Subordination models

A subordination model is a triple (W,R, V ) where W 6= ∅ and R : LAR 7→ 2W×W

and V : W 7→MAX are such that
(i) ⊥ 6∈ V (x),
(ii) if [γ]ϕ ∈ V (x) then for all y ∈ W , if there is a maximal Γ ∈ LAR such that
f(γ) ∈ ker(Γ ) and xR(Γ )y then ϕ ∈ V (y),
(iii) γ! ∈ V (x) iff there is a maximal Γ ∈ LAR such that f(γ) ∈ ker(Γ ) and xR(Γ )x,
(iv) R(Γ ;S?;∆) ⊇ {(x, y): there is a z ∈ W such that xR(Γ )z, S ⊆ V (z) and
zR(∆)y},
(v) R(Γ ;S?) = {(x, y): xR(Γ )y and S ⊆ V (y)},
(vi) R(S?;∆) = {(x, y): S ⊆ V (x) and xR(∆)y},
(vii) R(S?) = {(x, y): x = y and S ⊆ V (y)},
(viii) if Γ � ∆ then R(Γ ) ⊆ R(∆).
We say ϕ is sm-valid iff for all subordination models (W,R, V ) and for all x ∈W , ϕ ∈
V (x). Obviously, for all consistent S ∈ MAX , the triple (W,R, V ) where W = {S},
SR(Γ )S iff S? � Γ and V (S) = S is a subordination model. Hence,

Proposition 4. Let ϕ ∈ FOR. If ϕ is sm-valid then `PDLloop
0

ϕ.

Given a subordination model (W,R, V ), it may contain imperfections:
(i) triples (γ, ϕ, x) where γ ∈ PRO, ϕ ∈ FOR and x ∈W are such that [γ]ϕ 6∈ V (x)
and for all y ∈ W , if there is a maximal Γ ∈ LAR such that f(γ) ∈ ker(Γ ) and
xR(Γ )y then ϕ ∈ V (y),
(ii) 5-tuples (Γ, S,∆, x, y) where Γ,∆ ∈ LAR are maximal, S ∈MAX and x, y ∈W
are such that xR(Γ ;S?;∆)y and for all z ∈ W , either xR(Γ )z, or S 6⊆ V (z), or
zR(∆)y.
An imperfection (γ, ϕ, x) can be repaired by adding a new element y to W and by
extending the functions R and V in such a way that y will be γ-reachable from x and
y will not satisfy ϕ whereas an imperfection (Γ, S,∆, x, y) can be repaired by adding
a new element z to W and by extending the functions R and V in such a way that z
will be Γ -reachable from x, y will be ∆-reachable from z and z will satisfy S. The
heart of our method consists in step-by-step repairing all these imperfections, therefore
transforming every subordination model into an equivalent large system. Hence,

Proposition 5. Let ϕ ∈ FOR. If ϕ is ls-valid then ϕ is sm-valid.

From Proposition 1 and Propositions 3–5, we obtain the following

Theorem 1. Let ϕ ∈ FOR. The following conditions are equivalent:
(i) `PDLloop

0
ϕ,

(ii) ϕ is m-valid,
(iii) ϕ is ls-valid,
(iv) ϕ is sm-valid.
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