An axiomatization of iteration-free PDL with loop

Philippe Balbiani¹ and Mikhail Rybakov²

¹Institut de recherche en informatique de Toulouse, CNRS — Toulouse University ²Department of Mathematics, Tver State University

1 Introduction

Propositional dynamic logic (PDL) is based on the idea of associating with each program γ a modality $[\gamma], [\gamma]\varphi$ being read "whenever γ terminates it must do so in a state satisfying φ " [6]. Hence, PDL is a modal logic with an algebraic structure in the set of modalities: composition $(\gamma; \delta)$, test φ ?, union $(\gamma \cup \delta)$ and iteration γ^* . Additional topics include results about axiomatization and decidability of PDL variants. An interesting variant of PDL is PDL with loop [4]. Its chief feature is that loop of programs is not modally definable in the ordinary language of PDL [9]. In this paper, we present the deductive system of iteration-free PDL with loop.

2 Syntax and semantics

Syntax p ranging over a countable set of propositional variables and π ranging over a countable set of program variables, the set FOR of all formulas (φ , ψ , etc) and the set PRO of all programs (γ , δ , etc) are defined as follows

$$\begin{split} \varphi &::= p \mid \perp \mid [\gamma] \varphi \mid \gamma!, \\ \gamma &::= \pi \mid (\gamma; \delta) \mid \varphi?. \end{split}$$

The other constructs are defined as usual. In particular,

$$\neg \varphi ::= [\varphi?] \bot,$$
$$(\varphi \to \psi) ::= [\varphi?] \psi,$$
$$\gamma \rangle \varphi ::= [[\gamma] [\varphi?] \bot?] \bot$$

We follow the standard rules for omission of the parentheses.

4

Semantics A model is a triple (W, R, V) where $W \neq \emptyset$, $R : PRO \mapsto 2^{W \times W}$ and $V : W \mapsto 2^{FOR}$ are such that (i) $\perp \notin V(x)$, (ii) $[\gamma]\varphi \in V(x)$ iff for all $y \in W$, if $xR(\gamma)y$ then $\varphi \in V(y)$, (iii) $\gamma! \in V(x)$ iff $xR(\gamma)x$, (iv) $xR(\gamma; \delta)y$ iff there is $z \in W$ such that $xR(\gamma)z$ and $zR(\delta)y$, (v) $xR(\varphi?)y$ iff x = y and $\varphi \in V(y)$. We say φ is m-valid iff for all models (W, R, V) and for all $x \in W, \varphi \in V(x)$.

3 Axiomatization

Let $f : PRO \mapsto PRO$ be defined by (i) $f(\pi) = \pi$, (ii) $f(\gamma; \delta) = f(\gamma); (\top?; f(\delta)),$ (iii) $f(\varphi?) = \varphi?$. Let dim : $PRO \mapsto \mathbb{N}$ be defined by (i) $\dim(\pi) = 1$, (ii) $\dim(\gamma; \delta) = \dim(\gamma) + \dim(\delta)$, (iii) $\dim(\varphi?) = 0.$ Let \equiv be the least equivalence relation on *PRO* compatible with ; and such that γ ; $(\delta; \lambda)$ $\equiv (\gamma; \delta); \lambda$. Let \leq be the least reflexive transitive relation on *PRO* containing \equiv , compatible with ; and such that (i) if dim(γ) = 0 then γ ; $\delta \leq \delta$, (ii) if dim(δ) = 0 then γ ; $\delta \preceq \gamma$, (iii) $\gamma \preceq \gamma; \top$?, (iv) $\delta \preceq \top ?; \delta$, (v) $\gamma !? \preceq \gamma$, (vi) if dim(γ) = 0 then $\gamma \preceq \gamma$!?, (vii) $(\varphi \land \psi)? \preceq \varphi?; \psi?.$ Let PDL_0^{loop} be the least normal logic that contains the axioms $(\mathbf{A_1}) \langle \gamma; \delta \rangle \varphi \leftrightarrow \langle \gamma \rangle \langle \delta \rangle \varphi,$ $(\mathbf{A_2}) \text{ if } \gamma \equiv \delta \text{ then } \langle \gamma \rangle \varphi \leftrightarrow \langle \delta \rangle \varphi,$ (**A**₃) if dim(γ) = 0 then $\langle \gamma \rangle \varphi \rightarrow \varphi$, (A₄) if $\gamma \preceq \delta$ then $\langle \gamma \rangle \varphi \rightarrow \langle \delta \rangle \varphi$, $(\mathbf{A_5}) \langle \gamma(\varphi?) \rangle \chi \to \langle \gamma((\varphi \land \psi)?) \rangle \chi \lor \langle \gamma((\varphi \land \neg \psi)?) \rangle \chi,$ $(\mathbf{A_6}) \langle \gamma((\varphi \lor \psi)?) \rangle \chi \to \langle \gamma(\varphi?) \rangle \chi \lor \langle \gamma(\psi?) \rangle \chi,$ $(\mathbf{A_7}) \varphi \to \neg(\gamma; \neg(\delta; \varphi?; \gamma)!?; \delta)!.$ Obviously, every axiom is m-valid. Hence,

Proposition 1. Let $\varphi \in FOR$. If $\varphi \in PDL_0^{loop}$ then φ is m-valid.

A special case of axiom (\mathbf{A}_4) is given by the formulas $(\mathbf{A}_4^k) \langle \varphi_1?; \ldots; \varphi_k? \rangle \psi \rightarrow \langle (\varphi_1?; \ldots; \varphi_k?)!? \rangle \psi$ where $k \geq 1$. For all $n \in \mathbb{N}$, let $PDL_0^{loop|n}$ be the least normal logic that contains all axioms of PDL_0^{loop} but the formulas (\mathbf{A}_4^k) where k > n. Obviously, $\bigcup \{PDL_0^{loop|n} : n \in \mathbb{N}\} = PDL_0^{loop}$. Moreover, for all $n \in \mathbb{N}$, one can find a $PDL_0^{loop|n}$ -model in which $PDL_0^{loop|n+1}$ does not hold. Hence,

Proposition 2. Axiom (A_4) cannot be replaced by finitely many formulas.

4 Theories, large programs and large systems

Theories A theory is any set of formulas containing PDL_0^{loop} and closed under modus ponens. We say a theory S is consistent iff $\perp \notin S$. We say a theory S is maximal iff for all $\varphi \in FOR$, either $\varphi \in S$, or $\neg \varphi \in S$. Let MAX be the set of all maximal theories.

By Lindenbaum's Lemma, for all $\varphi \in FOR$ and for all theories S, if $\varphi \notin S$ then there is $T \in MAX$ such that $S \subseteq T$ and $\varphi \notin T$. If γ is a program and S is a theory then let $[\gamma]S = \{\varphi: [\gamma]\varphi \in S\}$. The canonical model for PDL_0^{loop} possesses all properties characterizing models but the third one, seeing that loop of programs is not modally definable in the ordinary language of PDL [9]. Hence, following the line of reasoning suggested in [1, 2], the concept of large programs will be used.

Large programs For all theories S, let S? be a new symbol. The set LAR of all large programs (Γ , Δ , etc) is defined by

$$\Gamma ::= \pi \mid (\Gamma; \Delta) \mid S?.$$

We say large program $\Gamma(S_1?, \ldots, S_n?)$ is maximal iff $S_1, \ldots, S_n \in MAX$. Let ker : $LAR \mapsto 2^{PRO}$ be defined by (i) ker $(\pi) = \{\pi\}$, (ii) ker $(\Gamma; \Delta) = \{\gamma; \delta: \gamma \in \text{ker}(\Gamma) \text{ and } \delta \in \text{ker}(\Delta)\}$, (iii) ker $(S?) = \{\varphi?: \varphi \in S\} \cup \{\gamma: \gamma! \in S\}$. Let dim : $LAR \mapsto \mathbb{N}$ be defined by (i) dim $(\pi) = 1$, (ii) dim $(\Gamma; \Delta) = \text{dim}(\Gamma) + \text{dim}(\Delta)$, (iii) dim(S?) = 0. If $\Gamma \in LAR$ and S is a theory then let $[\Gamma]S = \{\varphi: \gamma \in \text{ker}(\Gamma) \text{ and } [\gamma]\varphi \in S\}$. Let \equiv

If $T \in LAR$ and S is a theory then let $[T]S = \{\varphi : \gamma \in \ker(T) \text{ and } [\gamma]\varphi \in S\}$. Let = be the binary relation on LAR such that $\Gamma \equiv \Delta$ iff

- for all $\gamma \in \ker(\Gamma)$, if $\dim(\gamma) = \dim(\Gamma)$ then there is $\delta \in \ker(\Delta)$ such that $\dim(\delta) = \dim(\Delta)$ and $\gamma \equiv \delta$,
- for all $\delta \in \ker(\Delta)$, if $\dim(\delta) = \dim(\Delta)$ then there is $\gamma \in \ker(\Gamma)$ such that $\dim(\gamma) = \dim(\Gamma)$ and $\gamma \equiv \delta$.

Let \leq be the binary relation on *LAR* such that $\Gamma \leq \Delta$ iff

- for all $\delta \in \ker(\Delta)$, if $\dim(\delta) = \dim(\Delta)$ then there is $\gamma \in \ker(\Gamma)$ such that $\dim(\gamma) = \dim(\Gamma)$ and $\gamma \preceq \delta$.

Large systems A large system is a triple (W, R, V) where $W \neq \emptyset$ and $R : LAR \mapsto 2^{W \times W}$ and $V : W \mapsto MAX$ are such that

(i)
$$\perp \notin V(x)$$
,

(ii) $[\gamma]\varphi \in V(x)$ iff for all $y \in W$, if there is a maximal $\Gamma \in LAR$ such that $f(\gamma) \in \ker(\Gamma)$ and $xR(\Gamma)y$ then $\varphi \in V(y)$,

(iii) $\gamma! \in V(x)$ iff there is a maximal $\Gamma \in LAR$ such that $f(\gamma) \in \ker(\Gamma)$ and $xR(\Gamma)x$, (iv) $R(\Gamma; S?; \Delta) = \{(x, y): \text{ there is } z \in W \text{ such that } xR(\Gamma)z, S \subseteq V(z) \text{ and } zR(\Delta)y\},$

(v) $R(\Gamma; S?) = \{(x, y): xR(\Gamma)y \text{ and } S \subseteq V(y)\},\$

(vi) $R(S?; \Delta) = \{(x, y): S \subseteq V(x) \text{ and } xR(\Delta)y\},\$

(vii) $R(S?) = \{(x, y) : x = y \text{ and } S \subseteq V(y)\},\$

(viii) if
$$\Gamma \preceq \Delta$$
 then $R(\Gamma) \subseteq R(\Delta)$.

We say φ is ls-valid iff for all large systems (W, R, V) and for all $x \in W$, $\varphi \in V(x)$. Obviously, every large system corresponds to a model. Hence,

Proposition 3. Let $\varphi \in FOR$. If φ is m-valid then φ is ls-valid.

5 Subordination models

A subordination model is a triple (W, R, V) where $W \neq \emptyset$ and $R : LAR \mapsto 2^{W \times W}$ and $V : W \mapsto MAX$ are such that (i) $\perp \notin V(x)$,

(ii) if $[\gamma]\varphi \in V(x)$ then for all $y \in W$, if there is a maximal $\Gamma \in LAR$ such that $f(\gamma) \in \ker(\Gamma)$ and $xR(\Gamma)y$ then $\varphi \in V(y)$,

(iii) $\gamma! \in V(x)$ iff there is a maximal $\Gamma \in LAR$ such that $f(\gamma) \in \ker(\Gamma)$ and $xR(\Gamma)x$, (iv) $R(\Gamma; S?; \Delta) \supseteq \{(x, y): \text{ there is a } z \in W \text{ such that } xR(\Gamma)z, S \subseteq V(z) \text{ and } zR(\Delta)y\},$

 $(\mathbf{v}) \ R(\varGamma;S?) = \{(x,y) \colon x R(\varGamma) y \text{ and } S \subseteq V(y)\},$

(vi) $R(S?; \Delta) = \{(x, y): S \subseteq V(x) \text{ and } xR(\Delta)y\},\$

(vii) $R(S?) = \{(x, y): x = y \text{ and } S \subseteq V(y)\},\$

(viii) if $\Gamma \preceq \Delta$ then $R(\Gamma) \subseteq R(\Delta)$.

We say φ is sm-valid iff for all subordination models (W, R, V) and for all $x \in W, \varphi \in V(x)$. Obviously, for all consistent $S \in MAX$, the triple (W, R, V) where $W = \{S\}$, $SR(\Gamma)S$ iff $S? \leq \Gamma$ and V(S) = S is a subordination model. Hence,

Proposition 4. Let $\varphi \in FOR$. If φ is sm-valid then $\vdash_{PDL_{\alpha}^{loop}} \varphi$.

Given a subordination model (W, R, V), it may contain imperfections:

(i) triples (γ, φ, x) where $\gamma \in PRO$, $\varphi \in FOR$ and $x \in W$ are such that $[\gamma]\varphi \notin V(x)$ and for all $y \in W$, if there is a maximal $\Gamma \in LAR$ such that $f(\gamma) \in \ker(\Gamma)$ and $xR(\Gamma)y$ then $\varphi \in V(y)$,

(ii) 5-tuples $(\Gamma, S, \Delta, x, y)$ where $\Gamma, \Delta \in LAR$ are maximal, $S \in MAX$ and $x, y \in W$ are such that $xR(\Gamma; S?; \Delta)y$ and for all $z \in W$, either $x\overline{R(\Gamma)}z$, or $S \not\subseteq V(z)$, or $z\overline{R(\Delta)}y$.

An imperfection (γ, φ, x) can be repaired by adding a new element y to W and by extending the functions R and V in such a way that y will be γ -reachable from x and y will not satisfy φ whereas an imperfection $(\Gamma, S, \Delta, x, y)$ can be repaired by adding a new element z to W and by extending the functions R and V in such a way that z will be Γ -reachable from x, y will be Δ -reachable from z and z will satisfy S. The heart of our method consists in step-by-step repairing all these imperfections, therefore transforming every subordination model into an equivalent large system. Hence,

Proposition 5. Let $\varphi \in FOR$. If φ is ls-valid then φ is sm-valid.

From Proposition 1 and Propositions 3–5, we obtain the following

Theorem 1. Let $\varphi \in FOR$. The following conditions are equivalent:

(i) ⊢_{PDL00}^{loop} φ,
(ii) φ is m-valid,
(iii) φ is ls-valid,
(iv) φ is sm-valid.

References

1. Balbiani, P.: *Eliminating unorthodox derivation rules in an axiom system for iteration-free PDL with intersection.* Fundamenta Informaticæ**56** (2003) 211–242.

- 2. Balbiani, P., Vakarelov, D.: *Iteration-free PDL with intersection: a complete axiomatization*. Fundamenta Informaticæ**45** (2001) 173–194.
- 3. Balbiani, P., Vakarelov, D.: *PDL with intersection of programs: a complete axiomatization.* Journal of Applied Non-Classical Logics **13** (2003) 231–276.
- 4. Danecki, R.: *Propositional Dynamic Logic with strong loop predicate.* In Chytil, M., Koubek, V. (editors): *Mathematical Foundations of Computer Science 1984.* Springer (1984) 573–581.
- Danecki, R.: Non-deterministic propositional dynamic logic is decidable. In Skowron, A. (editor): Computation Theory. Springer (1985) 34–53.
- Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18 (1979) 194–211.
- 7. Harel, D.: *Recurring dominoes: making the highly undecidable highly understandable.* In Karpinski, M. (editor): *Foundations of Computation Theory.* Springer (1983) 177–194.
- Lange, M., Lutz, C.: 2-EXPTIME lower bounds for propositional dynamic logics with intersection. The Journal of Symbolic Logic 70 (2005) 1072–1086.
- 9. Passy, S., Tinchev, T.: *An essay in combinatory dynamic logic*. Information and Computation **93** (1991) 263–332.