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1 Introduction

Propositional dynamic logic (PDL) is based on the idea of associating with each pro-
gram ~ a modality [v], [y]e being read “whenever -y terminates it must do so in a state
satisfying ¢” [6]. Hence, PD L is a modal logic with an algebraic structure in the set of
modalities: composition (v; §), test o7, union (yUJ) and iteration v*. Additional topics
include results about axiomatization and decidability of PDL variants. An interesting
variant of PDL is PDL with loop [4]. Its chief feature is that loop of programs is not
modally definable in the ordinary language of PDL [9]. In this paper, we present the
deductive system of iteration-free P D L with loop.

2 Syntax and semantics

Syntax p ranging over a countable set of propositional variables and 7 ranging over a
countable set of program variables, the set F'OR of all formulas (¢, 9, etc) and the set
PRO of all programs (v, 9, etc) are defined as follows

pu=p| L]l

vu=7| (v:0) | @7

The other constructs are defined as usual. In particular,
—p = [p?] L,
(o = ) == [p?]Y,

(M == [[e?] L7 L.

We follow the standard rules for omission of the parentheses.

Semantics A model is a triple (W, R, V) where W # (), R : PRO + 2">*W and
V@ W s 2FOF are such that

@ L ¢ V()

(ii) [y]e € V(z) iff forally € W, if zR(7y)y then ¢ € V(y),

(iii) 1! € V() iff 2R (7).

(iv) zR(7; 0)y iff there is z € W such that R(y)z and zR(d)y,

) 2R(p?)y iffx = yand p € V(y).

We say ¢ is m-valid iff for all models (W, R, V') and forall z € W, p € V().



3 Axiomatization

Let f : PRO — PRO be defined by

@ f(m) =,

(i) f(v;0) = f(7); (T7 f(5)),

(i) f(?) = ¢?

Letdim : PRO — N be defined by

(i) dim(7) =1,

(ii) dim(~y; ) = dim(v) + dim(9),

(iii) dim(p?) = 0.

Let = be the least equivalence relation on P RO compatible with ; and such that ; (5; \)
= (7;0); A\. Let < be the least reflexive transitive relation on PRO containing =, com-
patible with ; and such that

(i) if dim(vy) = O then ;6 < 4,

(i) if dim(8) = 0 then ;6 < 7,

(iii) v = v; T7,

(iv) 6 < T7;9,

W) A7 =,

(vi) if dim(+y) = 0 then v < 417,

(viD) (p A )7 < 7547,

Let PDLY? be the least normal logic that contains the axioms
(A1) (1;8)p < (M) (0)e,

(A )lfv = 4 then ()¢ < (d)¢,

(Ag) if dim(y) = 0 then (7)p — ¢,

(Ay) if v < § then (y)p — (),

(As) (V&)X = (1 A DDV ({0 A=) xs

(Ae) (1(e V)X = (1 V (1),

(A7) @ = (73 =(d; 0737175 5)L.

Obviously, every axiom is m-valid. Hence,

Proposition 1. Let o € FOR. If o € PDLYP then ¢ is m-valid.

A special case of axiom (Ay4) is given by the formulas

(AS) (217500 = (1% R

where kK > 1. Foralln € N, let PDLéOOp ™ be the least normal logic that contains all
axioms of PDLY°? but the formulas (A%) where k > n. Obviously, | J{PDL*” In
n € N} = PDLf)OOp. Moreover, for all n € N, one can find a PDLéOOp‘n—model in
which PDLf)O °PI"1 does not hold. Hence,

Proposition 2. Axiom (A4) cannot be replaced by finitely many formulas.

4 Theories, large programs and large systems

Theories A theory is any set of formulas containing PDL*°” and closed under modus
ponens. We say a theory .S is consistent iff | ¢ S. We say a theory S is maximal iff for
all p € FOR, either ¢ € S, or ~p € S. Let M AX be the set of all maximal theories.



By Lindenbaum’s Lemma, for all ¢ € FFOR and for all theories S, if ¢ ¢ S then there
isT € MAX suchthat S C T and ¢ ¢ T'. If v is a program and S is a theory then
let [1]S = {¢: [7]¢ € S}. The canonical model for PD LY possesses all properties
characterizing models but the third one, seeing that loop of programs is not modally
definable in the ordinary language of PDL [9]. Hence, following the line of reasoning
suggested in [1, 2], the concept of large programs will be used.

Large programs For all theories S, let S7 be a new symbol. The set LAR of all large
programs (I", A, etc) is defined by

I'o=mx|([;4)]87.

We say large program I'(S17,...,5,?) is maximal iff Sq,...,S5, € MAX. Let ker :
LAR + 2PRO be defined by

@) ker(w) = {n},

(ii) ker(I'; A) = {~;6: v € ker(I") and 6 € ker(A)},

(iii) ker(S?) = {p?: p € S} U {y: ! € S}.

Letdim : LAR — N be defined by

(i) dim(w) =1,

(ii) dim(I"; A) = dim(I") + dim(A),

(i) dim(S?) = 0.

If I € LAR and S is a theory then let [I')S = {¢ : v € ker(I") and [y]p € S}. Let =
be the binary relation on LAR such that ' = A iff

— for all v € ker(I"), if dim(y) = dim(I") then there is § € ker(A) such that
dim(§) = dim(A) and v = 4,

— for all § € ker(A), if dim(§) = dim(A) then there is v € ker(I") such that
dim(vy) = dim(I") and v = 9.

Let < be the binary relation on LAR such that I' < A iff

— for all § € ker(A), if dim(§) = dim(A) then there is v € ker(I") such that
dim(y) = dim(I") and v < 4.

Large systems A large system is a triple (W, R, V) where W # (Jand R : LAR
2WXWoand V : W +— M AX are such that

@ L &V(x),

(i) [v]e € V(z) iff for all y € W, if there is a maximal I' € LAR such that
f(v) € ker(I") and zR(I")y then ¢ € V (y),

(iii) 4! € V(=) iff there is a maximal I" € LAR such that f(y) € ker(I") and zR(I")z,
(iv) R(I';S7;4) = {(z,y): there is z € W such that zR(I")z, S C V(z) and
zR(A)y},

W) R(I'387) = {(z,y): 2R(T)y and S C V(y)},

i) R(S?; A) = {(z,y): S C V(x) and zR(A)y},

(vii) R(S?) = {(z,y):z =yand S C V(y)},

(viii) if I' < A then R(I') C R(A).

We say ¢ is Is-valid iff for all large systems (W, R, V) and for all z € W, ¢ € V(x).
Obviously, every large system corresponds to a model. Hence,

Proposition 3. Let o € FOR. If v is m-valid then o is Is-valid.



5 Subordination models

A subordination model is a triple (W, R, V) where W # () and R : LAR ~— 2W>*W
and V : W — MAX are such that

L &V(x),

(ii) if [y]e € V(x) then for all y € W, if there is a maximal I" € LAR such that
f(v) € ker(I') and 2 R(I")y then ¢ € V(y),

(iii) 7! € V(=) iff there is a maximal I" € LAR such that f(v) € ker(I") and zR(I")x,
(iv) R(I';87;A) D {(z,y): there is a z € W such that zR([")z, S C V(z) and
zR(A)y},

W) R(I;87) ={(z,y): zR(INyand S C V(y)},

i) R(S7; A) = {(2,9): S C V() and 2R(A)y},

(vii) R(S?) = {(z,y):z =yand S C V(y)},

(viii) if I" < A then R(I") C R(A).

We say ¢ is sm-valid iff for all subordination models (W, R, V') and forallz € W, ¢ €
V' (z). Obviously, for all consistent S € M AX, the triple (W, R, V') where W = {S},
SR(I')Siff S? < I'and V(.S) = S is a subordination model. Hence,

Proposition 4. Let o € FOR. If  is sm-valid then \=p, 1 1000 .
0

Given a subordination model (W, R, V'), it may contain imperfections:

(i) triples (v, ¢, ) where v € PRO, ¢ € FOR and x € W are such that [y]p & V()
and for all y € W, if there is a maximal I € LAR such that f(y) € ker(I") and
xR(I)y then p € V(y),

(i) 5-tuples (I, S, A, z,y) where I, A € LAR are maximal, S € MAX andz,y € W
are such that R(I"; S7; A)y and for all z € W, either zR(I")z, or S € V(z), or
2R(A)y.

An imperfection (v, ¢, ) can be repaired by adding a new element y to W and by
extending the functions R and V' in such a way that y will be y-reachable from = and
y will not satisfy ¢ whereas an imperfection (I, S, A, x, y) can be repaired by adding
a new element z to W and by extending the functions R and V in such a way that z
will be ['-reachable from z, y will be A-reachable from z and z will satisfy S. The
heart of our method consists in step-by-step repairing all these imperfections, therefore
transforming every subordination model into an equivalent large system. Hence,

Proposition 5. Let ¢ € FOR. If @ is Is-valid then ¢ is sm-valid.
From Proposition 1 and Propositions 3-5, we obtain the following
Theorem 1. Let ¢ € FOR. The following conditions are equivalent:
i) FPDLéoop o,

(ii) o is m-valid,

(iii) ¢ is Is-valid,

(iv) ¢ is sm-valid.
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