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Abstract. This article provides a complete axiomatization for strong non-contingency
logic over Euclidean frames, whose completeness proof is nontrivial. Our result
answers an open question raised in [3].

1 Introduction

Past decades have witnessed a variety of research on logics with a sole primitive modal-
ity that is essentially a combination of another modality and boolean connectives. For
instance, in non-contingency logic [10,1,7,8,2,4,5], a formula is noncontingent iff it is
either necessarily true or necessarily false, whereas a formula is contingent iff it is pos-
sibly true and also possibly false, in symbol, ∆ϕ = 2ϕ ∨ 2¬ϕ, ∇ϕ = 3ϕ ∧ 3¬ϕ;
in the logic of essence and accident [9,11], a formula is essential iff once it is true, it is
necessarily true, while a formula is accident iff it is true but possibly false, in symbol,
◦ϕ = ϕ → 2ϕ, •ϕ = ϕ ∧ 3¬ϕ; in the logic for false belief [12], ϕ is a false belief
iff ϕ is false but believed, in symbol, Wϕ = ¬ϕ ∧ Bϕ. Despite being definable with
known modalities such as necessity/belief, these modalities have philosophical interests
in their own right, and deserve to be studied independently.
Recently, Fan [3] has introduced the notion of strong non-contingency by saying that a
formula is strongly non-contingent iff it is necessarily true when it is true and it is nec-
essarily false when it is false. This notion is related to Hintikka’s treatment of question
embedding verbs like ‘know’, ‘remember’ in [6]. According to his treatment, “Mary
knows (remembers) whether it is raining” is equivalent to “if it is raining, then Mary
knows (remembers) it is raining, and if it is not raining, then Mary knows (remembers)
it is not raining”. Just as necessity means (propositional) knowledge in the setting of
epistemic logic, strong non-contingency means knowledge whether in the sense of Hin-
tikka’s aforementioned treatment.
As shown in [3], the logic with strong non-contingency as a sole primitive modality, a
non-normal modal logic, is less expressive than standard modal logic on various classes
of models, and cannot define many usual frame properties including Euclideanity. This
may invite technical difficulties and novelties in completely axiomatizing this new logic
over various frames. [3] has completely axiomatized different modal logics of strong
non-contingency, and leave open the question of the complete axiomatization of the
modal logic of strong non-contingency determined by the class of all Euclidean frames.
In this note, we answer the open question.



2 Formal definitions

We adopt the notation from [3].

Syntax Let ATO be a countable set of atoms (p, q, etc). The set FOR of all formulas
(ϕ, ψ, etc) is inductively defined as follows:

– ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Nϕ.

The formula Hϕ is obtained as an abbreviation for Hϕ ::= ¬Nϕ. The formulas ϕ0, ϕ1

and ϕ2 are respectively obtained as abbreviations for Hϕ∧NNϕ, ϕ∧Nϕ and ¬ϕ∧Nϕ.

Semantics A frame is a structure of the form F = (W,R) where W is a nonempty
set of states (s, t, etc) and R is a binary relation on W . A model based on a frame
F = (W,R) is a structure of the form M = (W,R, V ) where V is a valuation on
W , i.e. a function associating to each atom p a set V (p) of states. Atoms and Boolean
connectives being classically interpreted, we inductively define the truth of ϕ ∈ FOR
in modelM = (W,R, V ) at state s ∈W (M, s |= ϕ) as follows:

– M, s |= Nϕ iff ifM, s |= ϕ thenM, t |= ϕ for all states t ∈W such that sRt and
ifM, s 6|= ϕ thenM, t 6|= ϕ for all states t ∈W such that sRt.

Let F = (W,R) be a frame. We shall say ϕ ∈ FOR is F-valid (F |= ϕ) iff for all
modelsM based on F and for all states s ∈W ,M, s |= ϕ. Let C be a class of frames.
We shall say ϕ ∈ FOR is C-valid (C |= ϕ) iff for all frames F in C, F |= ϕ. The logic
determined by a class C of frames (Log(C)) is the set of ϕ ∈ FOR such that C |= ϕ.

Generated subframes The subframe of a frameF = (W,R) generated by a state s ∈W
is the restriction of F to the states in R?(s) where R? is the reflexive transitive closure
of R; in other words, R? =

⋃
n∈NR

n. We shall say that a frame F = (W,R) is
generated iff there exists a state s ∈W such that R?(s) =W .

Proposition 1 (Generated Subframe Lemma). Let F = (W,R) and F ′ = (W ′, R′)
be frames. If F ′ is a subframe of F generated by a state s ∈W then for all ϕ ∈ FOR,
if F |= ϕ then F ′ |= ϕ.

Bounded morphisms Let F = (W,R) and F ′ = (W ′, R′) be frames. A function µ
associating to each state s ∈ W a state µ(s) ∈ W ′ is said to be a bounded morphism
from F to F ′ iff the following conditions hold:

– If sRt and s 6= t then µ(s)R′µ(t).
– If µ(s)R′t′ and µ(s) 6= t′ then there exists a state t ∈ W such that sRt and
µ(t) = t′.

We shall say that F ′ is a bounded morphic image of F iff there exists a surjective
bounded morphism from from F to F ′.

Proposition 2 (Bounded Morphism Lemma). Let F = (W,R) and F ′ = (W ′, R′)
be frames. If F ′ is a bounded morphic image of F then for all ϕ ∈ FOR, if F |= ϕ
then F ′ |= ϕ.



Euclidean frames A frame F = (W,R) is said to be Euclidean iff for all states s, t, u ∈
W , if sRt and sRu then tRu and uRt. Let Ceuc be the class of all Euclidean frames.

Proposition 3. LetF = (W,R) be an Euclidean frame. For all states s ∈W ,R?(s) =
{s} ∪R(s) ∪R(R(s)).

Proof. By the definition of R?, we need only show

(∗) for all n ≥ 3, Rn(s) ⊆ R(R(s)).

We prove this by induction on n ≥ 3.

– n = 3. Suppose t ∈ R3(s), then there exist u1, u2 such that sRu1Ru2Rt. Since R
is Euclidean, u1Ru1, and then u2Ru1. From this and u2Rt, by using Euclideanity
of R, we obtain u1Rt, then t ∈ R(R(s)).

– Inductively hypothesize (IH) that (∗) holds for n = k, we show it also holds for
n = k+1. Assume t ∈ Rk+1(s), then there is a u such that sRkuRt. By u ∈ Rk(s)
and IH, we derive u ∈ R(R(s)), and thus t ∈ R3(s). By a similar argument as the
case n = 3, we conclude that t ∈ R(R(s)).

Let A, B and C be pairwise disjoint sets. Let FAB,C = (WA
B,C , R

A
B,C) be the frame

such that WA
B,C = A∪B ∪C and RAB,C = {(s, t): either s 6∈ A and t ∈ C, or t ∈ B}.

Proposition 4. Let A, B and C be pairwise disjoint sets. Then FAB,C is in Ceuc.

Proof. Suppose FAB,C is not in Ceuc. Let s, t, u ∈ WA
B,C be states such that sRAB,Ct,

sRAB,Cu and either not tRAB,Cu, or not uRAB,Ct. Without loss of generality, suppose not
tRAB,Cu. Since sRAB,Ct, therefore either s 6∈ A and t ∈ C, or t ∈ B. Hence, either
t ∈ C, or t ∈ B. Since sRAB,Cu, therefore either s 6∈ A and u ∈ C, or u ∈ B. Thus,
either u ∈ C, or u ∈ B. Since not tRAB,Cu, therefore either t ∈ A, or u 6∈ C. Moreover,
u 6∈ B. Since either t ∈ C, or t ∈ B, therefore u 6∈ C: a contradiction.

Proposition 5. Let F = (W,R) be a generated Euclidean frame. There exists pairwise
disjoint sets A, B and C such that F is a bounded morphic image of FAB,C .

Proof. Let s ∈ W be a state such that R?(s) = W . Since F is Euclidean, therefore
W = {s} ∪ R(s) ∪ R(R(s)). Let A, B and C be the pairwise disjoint sets defined as
follows:

– A = {(s, 0)}.
– B = {(t, 1) : t ∈ R(s)}.
– C = {(u, 2) : u ∈ R(R(s))}.

Let µ be the function associating to each state x ∈ WA
B,C a state µ(x) ∈ W defined as

follows:

– µ(s, 0) = s.
– For all t ∈ R(s), µ(t, 1) = t.
– For all u ∈ R(R(s)), µ(u, 2) = u.

Obviously, µ is a surjective bounded morphism from FAB,C to F .



3 Axiomatization

Let LN
euc be the least set of formulas closed under the inference rules of modus ponens

and uniform substitution, closed under the inference rule
ϕ→ ψ

ϕ ∧ Nϕ→ ψ ∧ Nψ
, contain-

ing all propositional tautologies and containing the following formulas:

(K1) N>,
(K2) N¬p↔ Np,
(K3) Np ∧ Nq → N(p ∧ q),
(A1) H(p ∧ q1) ∧ H(p ∧ ¬q1)→ p,
(A2) N(p ∧ q0) ∧ N(p ∧ q1) ∧ N(p ∧ q2)→ p ∨ Np.

The inference rule
ϕ→ ψ

ϕ ∧ Nϕ→ ψ ∧ Nψ
and the formulas (K1), (K2) and (K3) have

already been considered in [3].

Proposition 6 (Soundness). For all ϕ ∈ FOR, if ϕ ∈ LN
euc then ϕ ∈ Log(Ceuc).

Proof. Suppose (A1) is not in Log(Ceuc). Let F = (W,R) be an Euclidean frame,
M = (W,R, V ) be a model based on F and s ∈ W be a state such that M, s 6|=
H(p ∧ q1) ∧ H(p ∧ ¬q1) → p. Hence,M, s |= H(p ∧ q1),M, s |= H(p ∧ ¬q1) and
M, s 6|= p. Let t, u ∈ W be states such that sRt, sRu,M, t |= q1 andM, u 6|= q1.
Thus, M, t |= q, M, t |= Nq and either M, u 6|= q, or M, u 6|= Nq. Since F is
Euclidean, sRt and sRu, therefore tRu. Since M, t |= q and M, t |= Nq, therefore
M, u |= q. Since either M, u 6|= q, or M, u 6|= Nq, therefore M, u 6|= Nq. Since
M, u |= q, therefore let v ∈ W be a state such that uRv and M, v 6|= q. Since F
is Euclidean, sRt, sRu and uRv, therefore tRv. Since M, t |= q and M, t |= Nq,
thereforeM, v |= q: a contradiction.
Suppose (A2) is not in Log(Ceuc). Let F = (W,R) be an Euclidean frame, M =
(W,R, V ) be a model based on F and s ∈W be a state such thatM, s 6|= N(p∧ q0)∧
N(p ∧ q1) ∧ N(p ∧ q2) → p ∨ Np. Hence, M, s |= N(p ∧ q0), M, s |= N(p ∧ q1),
M, s |= N(p ∧ q2),M, s 6|= p andM, s 6|= Np. Let t ∈ W be a state such that sRt
and M, t |= p. Since M, s |= N(p ∧ q0), M, s |= N(p ∧ q1), M, s |= N(p ∧ q2)
andM, s 6|= p, thereforeM, t 6|= p ∧ q0,M, t 6|= p ∧ q1 andM, t 6|= p ∧ q2. Since
M, t |= p, thereforeM, t 6|= q0,M, t 6|= q1 andM, t 6|= q2. Thus,M, t 6|= Nq and
M, t 6|= NNq. Without loss of generality, supposeM, t |= q. Let u, v ∈ W be a state
such that tRu, tRv,M, u 6|= q andM, v |= Nq. Since F is Euclidean, sRt, tRu and
tRv, therefore vRt and vRu. SinceM, v |= Nq andM, t |= q, thereforeM, v |= q.
SinceM, v |= Nq,M, u 6|= q and vRu, thereforeM, v 6|= q: a contradiction.

We end this section by giving examples of derivable formulas. Let us consider the fol-
lowing formulas:

(A3) H(p ∧ q0) ∧ H(p ∧ ¬q0)→ p,
(A4) H(p ∧ q2) ∧ H(p ∧ ¬q2)→ p,
(B1) H(p ∧ ¬q0)→ p ∨ H(p ∧ q1) ∨ H(p ∧ q2),
(B2) H(p ∧ ¬q1)→ p ∨ H(p ∧ q0) ∨ H(p ∧ q2),



(B3) H(p ∧ ¬q2)→ p ∨ H(p ∧ q0) ∨ H(p ∧ q1),
(E) p→ N(p ∨ q0 ∨ q1 ∨ q2).

Proposition 7. (A3), (A4), (B1), (B2), (B3) and (E) are in LN
euc.

For all n ≥ 0 and for all α : i ∈ {1, . . . , n} 7→ α(i) ∈ {0, 1, 2}, let us consider the
following formula:

(Cαn )
∧
{pi ∧ H(¬pi ∧ ¬qα(i)i ) : 1 ≤ i ≤ n} →

∧
{H(¬pi ∧

∧
{¬qα(j)j : 1 ≤ j ≤

n}) : 1 ≤ i ≤ n}.

Proposition 8. For all n ≥ 0 and for all α : i ∈ {1, . . . , n} 7→ α(i) ∈ {0, 1, 2}, (Cαn )
is in LN

euc.

4 Completeness

Our proof of the completeness of LN
euc is based on maximal consistent sets of formulas

where “consistency” means “LN
euc-consistency”. If Γ is a set of formulas then let 2Γ =

{ϕ : ϕ ∧ Nϕ ∈ Γ}. Let Γ0 be a maximal consistent set of formulas. We consider the
following two cases: (i) for all ϕ ∈ FOR, Nϕ ∈ Γ0, (ii) there exists ϕ ∈ FOR
such that Hϕ ∈ Γ0. In the former case, let A = {(Γ0, 0)}, B = ∅ and C = ∅. Let
M = (WA

B,C , R
A
B,C , V ) be the model based on FAB,C where V is the valuation on

WA
B,C such that for all atoms p, (Γ0, 0) ∈ V (p) iff p ∈ Γ0.

Proposition 9 (Former case: Truth Lemma). For all ϕ ∈ FOR,M, (Γ0, 0) |= ϕ iff
ϕ ∈ Γ0.

Proof. By induction on ϕ ∈ FOR. We only treat the case Nϕ. As mentioned, in this
case Nϕ ∈ Γ0. Moreover, it is easy to show that RAB,C = ∅, from which and the
semantics of N, it follows immediately thatM, (Γ0, 0) � Nϕ.

In the latter case, let (ϕ1, ϕ2, . . .) be an enumeration, possibly with repetitions, of the
set of all ϕ ∈ FOR such that ϕ ∧ Hϕ ∈ Γ0. For all i ≥ 1, let ∆i = 2Γ0 ∪ {¬ϕi}. Let
(ψ1, ψ2, . . .) be an enumeration, possibly with repetitions, of FOR. Let (a1, a2, . . .) ∈
{0, 1, 2}ω be such that for all n ≥ 0 and for all i ≥ 1, ∆i ∪ {ψa11 ∧ · · · ∧ ψann } is
consistent. For all i ≥ 1, let ∆′

i be a maximal consistent set of formulas such that for
all n ≥ 0, ∆i ∪ {ψa11 ∧ . . . ∧ ψann } ⊆ ∆′

i. Let ∆′ = ∆′
1 ∪∆′

2 ∪ . . .. Let (χ1, χ2, . . .)
be an enumeration, possibly with repetitions, of the set of all χ ∈ FOR such that
χ ∧ Hχ ∈ ∆′. For all i ≥ 1, let Λ′

i be a maximal consistent set of formulas such that
2∆′ ∪ {¬χi} ⊆ Λ′

i. Let A = {(Γ0, 0)}, B = {(∆′
i, 1) : i ≥ 1} and C = {(Λ′

i, 2) :
i ≥ 1}. Let M = (WA

B,C , R
A
B,C , V ) be the model based on FAB,C where V is the

valuation on WA
B,C such that for all atoms p, (Γ0, 0) ∈ V (p) iff p ∈ Γ0 and for all

i ≥ 1, (∆′
i, 1) ∈ V (p) iff p ∈ ∆′

i and (Λ′
i, 2) ∈ V (p) iff p ∈ Λ′

i.

Proposition 10 (Latter case: Truth Lemma). For all ϕ ∈ FOR,M, (Γ0, 0) |= ϕ iff
ϕ ∈ Γ0 and for all i ≥ 1,M, (∆′

i, 1) |= ϕ iff ϕ ∈ ∆′
i andM, (Λ′

i, 2) |= ϕ iff ϕ ∈ Λ′
i.

Propositions 9 and 10 immediately yield the following result:

Proposition 11 (Completeness). For all ϕ ∈ FOR, if ϕ ∈ Log(Ceuc) then ϕ ∈ LN
euc.
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