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Minimal propositional calculus (MPC) is the system obtained from the positive fragment of
intuitionistic propositional calculus (equivalently, positive logic [12]) by adding a unary negation
operator satisfying the so-called principle of contradiction. This system was introduced by
Johansson in 1937 [10] (even before, by Kolmogorov [11]) by discarding ex falso quodlibet from
the standard axioms for intuitionistic logic.

The aim of this work is to focus on the bounded lattice of propositional logical systems
arising from the language of minimal logic and obtained by weakening the requirements for the
negation operator in a ‘maximal way’. More precisely, the bottom element of this lattice of logics
is a system where the unary operator ¬ has no properties at all, except the property of being
functional; the top element is minimal logic. We use the term N-logic to denote an arbitrary
logical system in this lattice. The setting is paraconsistent, in the sense that contradictory
theories do not necessarily contain all formulas.

Some of these subsystems of intuitionistic logic have been studied in [7], with focus on their
syntax as well as on the corresponding relational structures (e.g., their Kripke semantics). In
this abstract we take the first steps towards a uniform treatment of this family of logical systems
by developing their algebraic semantics. We also introduce descriptive frames for these systems
and prove that every logic in this lattice is complete with respect to these descriptive frames.
These results allow us to export the techniques of [8, 9, 3] to our setting and, in particular, to
prove the existence of continuum many N-logics.

Given the language of positive logic (equivalently, the language of intuitionistic logic with
neither negation nor ⊥) over countably many propositional variables, we consider the axioms
of positive logic and a unary operator ¬ satisfying the additional axiom (p↔ q)→ (¬p↔ ¬q).
We call the resulting system N. We keep a fixed positive logical fragment, and we strengthen
the negation operator up to reaching minimal propositional logic, which can be seen in this
language as the system obtained by adding the axiom (p → q) ∧ (p → ¬q) → ¬p to positive
logic [12]. Note that another axiomatization of minimal logic is obtained by extending N with
the axiom (p→ ¬p)→ ¬p [6, Proposition 1.2.5].

From an algebraic point of view, we deal with relatively pseudo-complemented lattices
(which algebraically characterize positive logic [12]) equipped with a unary operation ¬ sat-
isfying the equation (x ↔ y) → (¬x ↔ ¬y) ≈ 1. Observe that the latter can be equivalently
formulated as

x ∧ ¬y ≈ x ∧ ¬(x ∧ y).

We denote the variety of these algebras as NA and we call these structures N-algebras. Using
the standard argument we can show that every N-logic L is complete with respect to a variety
of N-algebras in which all the theorems of L are valid. The least variety among the ones we
are considering, corresponding to minimal logic, is the one of contrapositionally complemented
lattices [12].

Next we discuss a uniform frame-based completeness result for every N-logic. In order to do
this, we introduce the notion of top descriptive frame: a top descriptive frame is a quadruple



F = 〈W,R,P, N〉, where 〈W,R〉 is a partial order with a top node t, the set P is a family of
admissible upsets as in the intuitionistic case [5, 3] with the difference that the top element
t must be contained in every admissible upset, and N : P → P is a map satisfying, for all
U, V ∈ P,

U ∩N(V ) = U ∩N(U ∩ V ). (1)

Observe that the notion of admissible upset in this setting excludes the empty set. The positive
reducts of these frame structures are presented topologically in [2] as pointed Esakia spaces.

It can be proved [6] that for every N-algebra there is a corresponding dual top descriptive
frame, and vice versa. More precisely, given a top descriptive frame F, the structure

F∗ = 〈P,∩,∪,→,W,N〉,

where → is the Heyting implication, is the N-algebra dual to F. On the other hand, the set
of prime filters of any N-algebra A = 〈A,∧,∨,→, 1,¬〉 induces a dual top descriptive frame A∗

defining the map N as N(â) = (̂¬a) for every element a of A, where â is the upset of all prime
filters containing a. Observe that the notion of prime filter in this context does not require
the filter to be proper, i.e., the whole algebra A is always a prime filter, and this ensures the
corresponding frame structure to have a top element.

Every N-logic L is complete with respect to the corresponding class of N-algebras. Given the
afore-sketched duality between N-algebras and top descriptive frames, completeness of every
N-logic with respect to the corresponding class of top descriptive frames (i.e., the ones dual
to the corresponding class of N-algebras) follows easily. As in the case of Heyting algebras,
for N-algebras there exists a one-to-one correspondence between congruences and filters. We
can therefore characterize subdirectly irreducible N-algebras as those N-algebras containing a
second greatest element, thereby obtaining a completeness result of L with respect to the class
of finitely generated rooted top descriptive frames.

We conclude by proving the existence of continuum many N-logics in the interval [N,MPC].
We consider a countable family of formulas without negation that can be used to define inde-
pendent systems enhancing the basic logic N, and we adapt them to ensure the logics we obtain
to be subsystems of minimal propositional logic. Given a top descriptive frame and a persistent
valuation map on admissible upsets, truth of a formula ¬ϕ at a node w is equivalent to w being
an element of the upset N(V (ϕ)). In what follows, we call a top frame a partial order with
a top node; following [4], we call top model an intuitionistic Kripke model whose underlying
frame is a top frame and such that every propositional variable is true at the top node.

Let ∆ = {Fn : n ∈ ω} be an infinite set of finite rooted top frames (see Figure 1), which
forms an antichain with respect to the frame order [3] ≤ defined by: F ≤ G if and only if
F is an order-preserving image of a generated subframe of G ([1, Lemma 6.12]; in fact, the
antichain of [1] does not contain top frames, but it is easy to see that adding the top nodes still
makes the sequence ∆ a ≤-antichain). Recall (e.g., [5, 4]) that a positive morphism is a partial
p-morphism f such that dom(f) is a downset, and consider the relation � defined by: F � G if
and only if F is an image, via a positive morphism, of a generated subframe of G. Now observe
that, if F � G and F is a top frame, then F ≤ G. Indeed, assume F � G and let f be a partial
p-morphism from a generated subframe G′ of G onto F. Extending f by mapping all the points
of G′ \ dom(f) to the top node of F, we obtain a total order-preserving map, yielding F ≤ G.
Thus, every ≤-antichain is a �-antichain, and so ∆ is a �-antichain.

Having constructed the desired �-antichain, we will now proceed by adjusting the technique
of Jankov-de Jongh formulas to obtain a continuum of logics in between N and MPC. Every finite
rooted top frame Fn equipped with an appropriate valuation Vn can be mapped as a top model
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Figure 1: The antichain ∆

onto a generated submodel of (U?(2))+ via a p-morphism [4]. Consider the world wn ∈ (U?(2))+

in the positive universal model corresponding to the root of Fn in the sense described above.
We can assume without losing generality the positive Jankov-de Jongh formula of Fn to be
defined as follows [4]:

χ?(Fn) = ψ?
wn

:= ϕ?
wn
→

r∨
i=1

ϕ?
wni

,

where ϕ?
wn
, ϕ?

wni
are defined as in [4] and wn ≺ {wn1 , . . . , wnr}. So, a descriptive frame G

refutes χ?(Fn) if and only if Fn � G. As ∆ is a �-antichain, this means that, for every
n,m ∈ ω, the formula χ?(Fm) is valid on the frame Fn if and only if n 6= m. In fact, it is easy
to see that ϕ?

wn
is satisfied at the root wn in (U?(2))+, while none of the formulas ϕ?

wni
are.

Now, we equip each frame Fn with an appropriate function Nn to make it a top descriptive
frame such that Nn({t}) = {t}, where t is the top node of Fn. We denote the new family of
top descriptive frames 〈Fn, Nn〉 by ∆N . We consider a new propositional variable p and let

θ(Fn) = (p→ ¬p) ∧ ϕ?
wn
→ ¬p ∨

r∨
i=1

ϕ?
wni

.

It is easy to see that, if n 6= m, the formula θ(Fn) is valid on the frame 〈Fm, Nm〉. On the other
hand, for checking that 〈Fn, Nn〉 6� θ(Fn) it is enough to consider a valuation Ṽn enhancing Vn
in such a way that Ṽn(p) = {t}. In this way, the root of Fn under the considered valuation
makes the whole antecedent of θ(Fn) true, while the consequent is not true at wn. We note
that the formulas θ(Fn) are not the Jankov-de Jongh formulas for the considered signature;
in fact, θ(Fn) has the defining property of the Jankov-de Jongh formulas for the signature of
positive logic with an extra addition that θ(Fn) is a theorem of MPC. The latter ensures that
for each subset Γ ⊆ ∆N , the logic L(Γ) = N + {θ(F) : F ∈ Γ} belongs to the interval [N,MPC]
i.e., N ⊆ L(Γ) ⊆ MPC. In particular, the logics L(Γ) share the same positive fragment.

Finally, observe that for each pair of different subsets Γ1 6= Γ2 of ∆N , we have L(Γ1) 6=
L(Γ2). Indeed, without loss of generality we may assume that there is F ∈ Γ1 such that F /∈ Γ2.
Moreover, we have F 6� θ(F) and F � θ(G), for each G in Γ2. Therefore, there is a top descriptive
frame F which is an L(Γ2)-frame and not an L(Γ1)-frame. Since every N-logic is complete with
respect to top descriptive frames, the latter entails that L(Γ1) 6= L(Γ2). As a consequence, we
obtain uncountably many distinct N-logics.

Theorem 1. There are continuum many logics in the interval [N,MPC].
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