Two Neighborhood Semantics for Subintuitionistic Logics

Dick de Jongh¹ and Fatemeh Shirmohammadzadeh Maleki²

¹ Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands D.H.J.deJongh@uva.nl

² School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran fat.sh.maleki@ut.ac.ir

In [7] we defined two neighborhood semantics for subintuitionistic logics. NB-semantics, our main semantics, is for most purposes best suitable to study the basic logic and its extensions. The N-semantics is closer to the usual neighborhood semantics for modal logics, and is thereby more suitable to study Gödel-type translations into modal logics. The relationship between the two semantics remained unclear. Our basic logic WF is sound and complete for NB-semantics and sound for N-semantics but completeness remained an open issue. Here we clear up their relationship. We introduce a new rule N, which added to WF gives a system WF_N complete for N-semantics. Two new axioms, falsifiable in NB-semantics, can be derived from it. Gödel-type translations into modal logic can now be realized properly.

Definition 1. $\mathfrak{F} = \langle W, g, NB, \mathcal{X} \rangle$ is called an **NB-Neighborhood Frame** of subintuitionistic logic if $W \neq \emptyset$ and \mathcal{X} is a non-empty collection of subsets of W such that \emptyset and W belong to \mathcal{X} , and \mathcal{X} is closed under \cup , \cap and \rightarrow defined by

$$U \to V := \{ w \in W \mid (U, V) \in NB(w) \},\$$

where NB is a function from W into $\mathcal{P}(\mathcal{X}^2)$ such that:

1.
$$\forall w \in W, \ \forall X, Y \in \mathcal{X}, \ (X \subseteq Y \Rightarrow (X, Y) \in NB(w)),$$

2. $NB(g) = \{(X, Y) \in \mathcal{X}^2 \mid X \subseteq Y\} (g \text{ is called omniscient}).$

In an **NB-Neighborhood Model** $\mathfrak{M} = \langle W, g, NB, \mathcal{X}, V \rangle$, $V : At \to \mathcal{X}$ is a valuation function on the set of propositional variables At.

Truth of A in $w, w \Vdash A$ is defined as usual except for: $\mathfrak{M}, w \Vdash A \to B \Leftrightarrow (A^{\mathfrak{M}}, B^{\mathfrak{M}}) \in NB(w)$, where $A^{\mathfrak{M}} := \{w \in W \mid \mathfrak{M}, w \Vdash A\}$.

Definition 2. $\mathfrak{F} = \langle W, g, N, \mathcal{X} \rangle$ is an *N*-Neighborhood Frame if *W* is a non-empty set and \mathcal{X} is a non-empty collection of subsets of *W* such that \emptyset and *W* belong to \mathcal{X} and \mathcal{X} is closed under \cup , \cap and \rightarrow defined by

$$U \to V := \left\{ w \in W \mid \overline{U} \cup V \in N(w) \right\},\$$

where N is a function from W into $\mathcal{P}(\mathcal{X})$, $g \in W$, for each $w \in W$, $W \in N(w)$, $N(g) = \{W\}$ (g is called **omniscient**). Valuation V : At $\rightarrow \mathcal{X}$ makes $\mathfrak{M} = \langle W, g, N, \mathcal{X}, V \rangle$ an **N-Neighborhood Model** with the clause:

$$\mathfrak{M}, w \Vdash A \to B \Leftrightarrow \{ v \mid v \Vdash A \Rightarrow v \Vdash B \} = \overline{A^{\mathfrak{M}}} \cup B^{\mathfrak{M}} \in N(w)$$

Definition 3. WF is the logic given by the following axioms and rules,

1.	$A \to A \vee B$	2. $B \to A \lor B$	3. $A \to A$
4.	$A \wedge B \to A$	5. $A \land B \to B$	$6. \ \frac{A A \to B}{B}$
7.	$\frac{A {\rightarrow} B A {\rightarrow} C}{A {\rightarrow} B {\wedge} C}$	$8. \ \frac{A \to C}{A \lor B \to C}$	9. $\frac{A \rightarrow B B \rightarrow C}{A \rightarrow C}$
10.	$\frac{A}{B \to A}$	11. $\frac{A \leftrightarrow B C \leftrightarrow D}{(A \to C) \leftrightarrow (B \to D)}$	12. $\frac{A \ B}{A \wedge B}$
19	$A \wedge (B \setminus C) \rightarrow ($	$(A \land B) \lor (A \land C)$	$1/$ \wedge Λ

13.
$$A \land (B \lor C) \to (A \land B) \lor (A \land C)$$
 14. $\bot \to A$

To the system WF we add the rule N to obtain the logic WF_N:

$$\frac{C \to A \lor D \qquad A \land C \land B \to D}{(A \to B) \to (C \to D)} \qquad (\mathsf{N})$$

A rule like N is considered to be valid on a frame \mathfrak{F} if, on each \mathfrak{M} on which the premises of the rule are valid, the conclusion is valid as well.

Lemma 1. (Soundness of WF_N) N is valid on N-neighborhood frames.

Proof. Recall that, by Theorem 2.13(1) of [7], for all $E, F, \mathfrak{M} \Vdash E \to F$ iff $E^{\mathfrak{M}} \subseteq F^{\mathfrak{M}}$.

Assume, (1) $\mathfrak{M} \Vdash C \to A \lor D$, i.e. $C^{\mathfrak{M}} \subseteq A^{\mathfrak{M}} \cup D^{\mathfrak{M}}$, and (2) $\mathfrak{M} \Vdash A \land C \land B \to D$, i.e. $A^{\mathfrak{M}} \cap C^{\mathfrak{M}} \cap B^{\mathfrak{M}} \subseteq D^{\mathfrak{M}}$. It will suffice to prove that $\overline{A^{\mathfrak{M}}} \cup B^{\mathfrak{M}} \subseteq \overline{C^{\mathfrak{M}}} \cup D^{\mathfrak{M}}$.

Let $w \in \overline{A^{\mathfrak{M}}} \cup B^{\mathfrak{M}}$. Then $w \in \overline{A^{\mathfrak{M}}}$ or $(w \in A^{\mathfrak{M}} \text{ and } w \in B^{\mathfrak{M}})$. If $w \in \overline{A^{\mathfrak{M}}}$, we distinguish the cases $w \in D^{\mathfrak{M}}$ and $w \in \overline{D^{\mathfrak{M}}}$. In the first case we are done directly. In the second case, we can conclude from (1) that $w \in \overline{C^{\mathfrak{M}}}$ and we are done as well. If $w \in A^{\mathfrak{M}}$ and $w \in B^{\mathfrak{M}}$, we distinguish the cases $w \in \overline{C^{\mathfrak{M}}}$ and $w \in C^{\mathfrak{M}}$. In the first case we are done directly. In the second case, we can conclude from $w \in C^{\mathfrak{M}}$. In the first case we are done directly. In the second case, we can conclude from (2) that $w \in D^{\mathfrak{M}}$ and we are done as well.

Definition 4. A set of sentences Δ is a **prime theory** if and only if

- $A, B \in \Delta \implies A \land B \in \Delta$,
- $\vdash A \rightarrow B$ and $A \in \Delta \Rightarrow B \in \Delta$,
- $\vdash A \Rightarrow A \in \Delta$,
- $A \lor B \in \Delta \Rightarrow A \in \Delta \text{ or } B \in \Delta.$

Lemma 2. WF_N is a prime theory (has the disjunction property).

Proof. Using Kleene's |([6])| as in [7], Theorem 2.12.

Definition 5. Let $W_{\mathsf{WF}_{\mathsf{N}}}$ be the set of all consistent prime theories of WF_{N} . Given a formula A, we define $\llbracket A \rrbracket = \{ \Delta \mid \Delta \in W_{\mathsf{WF}_{\mathsf{N}}}, A \in \Delta \}$. The **N-Canonical model** $\mathfrak{M}_{\mathsf{WF}_{\mathsf{N}}} = \langle W, g, N, \mathcal{X}, V \rangle$ is defined by:

- $W = W_{WF_N}$,
- $g = WF_N$,
- For each $\Gamma \in W$, $N(\Gamma) = \{\overline{\llbracket A \rrbracket} \cup \llbracket B \rrbracket | A \to B \in \Gamma\}$,
- \mathcal{X} is the set of all $[\![A]\!]$,
- If $p \in At$, then $V(p) = \llbracket p \rrbracket = \{ \Gamma \mid \Gamma \in W \text{ and } p \in \Gamma \}$.

Lemma 3. (Truth Lemma) In the N-canonical Model $\mathfrak{M}_{\mathsf{WF}_N}$, $A \in \Gamma$ iff $\Gamma \Vdash A$.

Proof. The crucial part of the proof is showing that, if $\overline{\llbracket A \rrbracket} \cup \llbracket B \rrbracket = \overline{\llbracket C \rrbracket} \cup \llbracket D \rrbracket$, then $\mathsf{WF}_{\mathsf{N}} \vdash (A \to B) \leftrightarrow (C \to D)$. So, assume $\overline{\llbracket A \rrbracket} \cup \llbracket B \rrbracket = \overline{\llbracket C \rrbracket} \cup \llbracket D \rrbracket$. It suffices to show (1) $\mathsf{WF}_{\mathsf{N}} \vdash A \to B \lor C$, $\mathsf{WF}_{\mathsf{N}} \vdash A \land C \land D \to B$ and (2) $\mathsf{WF}_{\mathsf{N}} \vdash C \to A \lor D$, $\mathsf{WF}_{\mathsf{N}} \vdash A \land C \land B \to D$. We will show (1); (2) is analogous.

From $\overline{[A]} \cup [B]] = \overline{[C]]} \cup [D]$ we get $[A] \cap \overline{[B]]} = [C] \cap \overline{[D]]}$. We have $[A]] \subseteq [B]] \cup [A]$, so also, $[A]] \subseteq [B]] \cup ([A]] \cap \overline{[B]]}$), This means that $[A]] \subseteq [B]] \cup ([C]] \cap \overline{[D]})$, so $[A]] \subseteq [B]] \cup [C]$. Therefore, $A \to B \lor C \in g$, so $\mathsf{WF}_{\mathsf{N}} \vdash A \to B \lor C$.

Again using $\llbracket A \rrbracket \cap \overline{\llbracket B \rrbracket} = \llbracket C \rrbracket \cap \overline{\llbracket D \rrbracket}$, we get $\llbracket A \rrbracket \cap \llbracket C \rrbracket \cap \llbracket D \rrbracket \cap \overline{\llbracket B \rrbracket} = \llbracket A \rrbracket \cap \overline{\llbracket B \rrbracket} \cap \llbracket C \rrbracket \cap \llbracket D \rrbracket = \llbracket C \rrbracket \cap \overline{\llbracket D \rrbracket} \cap \overline{\llbracket D \rrbracket} \cap \llbracket C \rrbracket \cap \llbracket D \rrbracket = \llbracket C \rrbracket \cap \overline{\llbracket D \rrbracket} \cap \overline{\llbracket D \rrbracket} \cap \llbracket C \rrbracket \cap \llbracket D \rrbracket = \emptyset$. So, $\llbracket A \rrbracket \cap \llbracket C \rrbracket \cap \llbracket D \rrbracket \subseteq \llbracket B \rrbracket$, and, reasoning as above, $\mathsf{WF}_{\mathsf{N}} \vdash A \land C \land D \to B$.

Theorem 1. (Completeness of WF_N) $\Sigma \vdash_{WF_N} A$ iff for all $w \in \mathfrak{M}_{WF_N}$, if $w \Vdash \Sigma$, then $w \Vdash A$.

The exact relationship between the axioms of Lemma 4 and rule N is unclear. We can derive the axioms of Lemma 4 from WF+N, but the other direction seems unlikely, probably N is not derivable from WF + the axioms of Lemma 4.

We can now extend the translation results of Corsi [3] and others [4, 1] on subintuitionistic logics into modal logics to weaker logics. We consider the translation \Box from \mathcal{L} , the language of IPC, to \mathcal{L}_{\Box} , the language of modal propositional logic. It is given by:

- 1. $p^{\Box} = p;$
- 2. $(A \wedge B)^{\square} = A^{\square} \wedge B^{\square};$
- 3. $(A \lor B)^{\square} = A^{\square} \lor B^{\square};$
- 4. $(A \to B)^{\square} = \square(A^{\square} \to B^{\square}).$

Theorem 2. For all formulas A, $WF_N \vdash A$ iff $EN \vdash A^{\Box}$. For all formulas A, $WF_NI_RI_L \vdash A$ iff $M \vdash A^{\Box}$.

Here classical modal logic E, based on $\frac{A\leftrightarrow B}{\Box A\leftrightarrow \Box B}$, is the smallest non-normal modal logic, and EN extends E by adding necessitation. Also a system of modal logic is *monotonic* iff it is closed under RM ($\frac{A\rightarrow B}{\Box A\rightarrow \Box B}$), and M is the smallest monotonic modal logic [2, 5]. In [7], I_L is the rule $\frac{A\rightarrow B}{(C\rightarrow A)\rightarrow(C\rightarrow B)}$ and I_R is the rule $\frac{A\rightarrow B}{(B\rightarrow C)\rightarrow(A\rightarrow C)}$. In the meantime we have been able to show that rule I_L is equivalent to the axiom Č: $(A\rightarrow B\wedge C)\rightarrow (A\rightarrow B)\wedge (A\rightarrow C)$, and rule I_R to the axiom Ď: $(A\vee B\rightarrow C)\rightarrow (A\rightarrow C)\wedge (B\rightarrow C)$.

In [7] the relationship between the logic WF and the non-normal modal logic EN was already indicated. But because of the difference of the models we were able to prove only the direction $\vdash_{\mathsf{WF}} A \Rightarrow \vdash_{\mathsf{EN}} A$. A similar situation arose between the basic monotonic modal logic M and our system $\mathsf{WFI}_{\mathsf{R}}\mathsf{I}_{\mathsf{L}}$.

References

- S. Celani, R. Jansana, A Closer Look at Some Subintuitionistic Logics, Notre Dame Journal of Formal Logic 42(4): 225-255, 2001.
- [2] B. Chellas, Modal logic: An Introduction, Cambridge University Press, 1980.
- [3] G. Corsi, Weak Logics with strict implication, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematic, 33:389-406, 1987.
- [4] K. Došen. Duality between modal algebras and neighborhood frames, *Studia Logica*, 48:219-234, 1989.
- [5] H.H. Hansen, Monotonic Modal Logics, Master thesis, University of Amsterdam, 2003.
- [6] S.C. Kleene, Disjunction and existence under implication in elementary intuitionistic formalisms. Journal of Symbolic Logic, 27:11-18, 1962.
- [7] F. Shirmohammadzadeh Maleki, D. de Jongh, Weak Subintuitionistic Logics, Logic Journal of the IGPL, (2017) 25 (2): 214-231.