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Abstract

Guided by the idea of letters with finite lists of pre-
decessors and successors, the paper develops the
Chomsky-Schützenberger theorem for languages
of arrows in any free prop with a finite set of
generators on the positive integers. The setting
of monoidal categories is essential to obtain a
well-behaved generalization of rational set, from
monoids to monoidal categories.

Introduction

String diagrams have been gaining popularity over
the last decade, especially in cross-disciplinary
work on physics, logic, and computation. They
arise in semantics of subject and object relative
pronouns [10] as the graphical language [11] of
compact closed categories. String diagrams are
very intuitive, yet have formal semantics and thus
bear the potential to convey theoretical subject
matter to a wide audience [12].

The present paper considers string diagrams as
syntactic entities that play the role of words in
formal language theory in the spirit of Lafont’s
work on Boolean circuits [8]. Alphabets will be
generalized to signatures of symbols with non-
empty lists of “inputs” and “outputs”. The arrows
of free props over such signatures can be seen as
acyclic layouts of logic gates [11, Theorem 3.12].

We generalize Chomsky grammars in the obvi-
ous way to study context-free languages of arrows
in free props. Intuitively, context-free languages
consist of (compositions of) string diagrams of
tree-like shape. As example, consider the string
diagram

NNP

NNP

VPZ

NP

NP

VP

S John loves Mary ,

which matches the phrase structure with its sen-
tence, embedded as a branch into a tree. Note that
this is not a tree but a non-trivial acyclic graph.

Our main contribution is the Chomsky-
Schützenberger theorem for context-free lan-
guages of free props, generalizing a classic result
of formal language theory. In comparison to simi-
lar work on trees [1], the proposed Dyck languages
of signatures are naturally seen as languages of
matching brackets. The relation to context-free
and recognizable graph languages [6] is left for
future research.

1 Prelude: dimension++
One trait that we can find in formal language the-
ory that extends existing results from words to
more general structures is an extra dimension in
illustrations of the objects that play the role of
words. For example, if we consider the grammar

S → aXYb X → c | cS Y → d | dX

we can use the illustration

X Y
c S d X

a X Y ba c
c dc d

in the x-z-plane to represent a parallel derivation:
sentential forms are like bead necklaces laid out
horizontally and derivation steps are rectangles.



We can read off the corresponding leftmost deriva-
tion by following the solid lines in direction of the
x-axis, switching z-coordinate along dotted arrows.
We apply a production whenever we encounter a
blue arrow, replacing the variable to the right of
the source by the sentential form to the right of its
target that forms the opposite side of a rectangle
in the x-z-plane (delimited by the next red arrow).

In the present paper, circuit diagrams [5] will
play the role of words. To guide the intuition
about context-free grammars of circuit diagrams,
we think of symbols as (placeholders for) gates
that are connected by wires and of productions
as implementation of non-terminal gates by more
complex circuits, which drive the derivation of
circuit layouts of basic gates.
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X Y
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d

Figure 1: Parallel derivation of a circuit grammar

The extra dimension of circuit diagrams w.r.t.
words is evident in Figure 1, which happens to
be the illustration of a derivation in a circuit
grammar—to be defined, after formalizing sequen-
tial and parallel composition of circuit diagrams
in symmetric monoidal categories.

2 Preliminaries and notation
We start with notational conventions for symmetric
monoidal categories and a definition of signature
that induces free product and permutation cate-
gories (prop) [9, 13].

Given a locally small category C and objects
A, B ∈ C, the homset of arrows from A to B is de-
noted by C(A, B). We shall use diagrammatic com-
position of arrows, denoted by the semicolon, i.e.,
the composition of arrows f : A→ B and g : B→C

in C, is denoted f ; g. The identity on an object
A ∈ C is idA : A→ A. The monoidal product ⊗ of
any prop (C,⊗ , I, γ) binds stronger than composi-
tion, i.e., f ; g ⊗ h; k = f ; (g ⊗ h); k whenever the
compositions are defined for arrows f , g, h, k in C.

A signature is a graph on the natural numbers,
given by a triple Σ = (Σ, s, t) of a set Σ of symbols
and two functions s, t : Σ→ N, mapping symbols
to their arity and coarity, respectively; we call it
alphabet-like if both, arity and coarity of every
symbol are positive. For a symbol a ∈ Σ, we
write a : m→ n if s(a) = m and t(a) = n. The
coproduct of signatures (Σ1, s1, t1) and (Σ2, s2, t2)
is (Σ1 + Σ2, [s1, s2], [t1, t2]), the coproduct in the
comma category Set/IdSet × IdSet. The opposite of
a signature Σ = (Σ, s, t), denoted Σop, is (Σ, t, s).
A sub-signature of Σ is a signature Υ = (Υ, i, o)
such that Υ ⊆ Σ, i ⊆ s, and t ⊆ o (identifying
functions with their graphs).

We fix a signature Σ = (Σ, s, t) for the remainder
of the paper. The free prop with generators Σ is
denoted by FΣ. For any sub-signature Υ ⊆ Σ, we
assume FΥ to be a symmetric monoidal subcate-
gory of FΣ in the obvious manner. Finally, arrows
of free props are often called cicuit diagrams.

3 Grammars in free PROPs
We define the analogue of Chomsky grammars
and formal languages in the setting of free props,
focussing on the context-free case. A language
over a signature is a set of arrows in its free prop.
The basic idea of deriving in a context-free gram-
mar consists in replacing a (non-terminal) symbol
of the signature by an arrow in the free prop that
matches the arity and co-arity of the symbol and
is specified by the grammar. The basic principle at
work is rewriting or reduction in context, which is
common in formalisms of theoretical computer sci-
ence, such as the λ-calculus, configuration graphs
of automata in (coloured) product categories [4],
or graph rewriting [7], especially in relation to
symmetric monoidal theories [3].

A production in a free prop over Σ is a set
of pairs of FΣ arrows that share domain and
codomain, i.e., a subset

R ⊆
⋃

m,n∈N

FΣ(m, n) × FΣ(m, n).

Productions are thought of as directed and their



components are called left and right hand side,
respectively. Re-using notation for productions,
we have the following examples (cf. Figure 1).

S → a⊗ b;id1 ⊗ X ⊗ id1;γ ⊗ γ;id1 ⊗ Y ⊗ id1;γ ⊗ γ
X → c⊗ d
Y → γ

A rewriting context for a production (l, r) is
a quadruple ( f , i, j, g) of arrows f , g in FΣ and
natural numbers i, j such that f ; idi ⊗ l ⊗ id j; g
is defined in FΣ. The derivation relation of a
production (l, r), denoted by⇒l,r, relates two ar-
rows h and k in FΣ if h = f ; (idi ⊗ l ⊗ id j); g and
k = f ; (idi ⊗ r ⊗ id j); g hold for some rewriting
context ( f , i, j, g). A derivation of the above pro-
ductions is illustrated in Figure 1 (in its parallel
form).

The definition of grammar is as expected.

Definition 1 (Circuit grammar). A circuit gram-
mar is a quadruple G = (Σ,Υ, P, S ) where

• Σ = (Σ, s, t) and Υ = (Υ, ı, o) are signatures
of terminals and variables, respectively, such
that Υ ∩ Σ = ∅;

• P is a finite set of productions in the free prop
F (Σ∪Υ) whose left hand sides do not belong
to FΣ where Σ ∪ Υ is the component-wise
union (Σ ∪ Υ, s ∪ ı, t ∪ o); and

• S ∈ Υ is the start symbol.

The grammar G is context-free if left hand sides of
all productions are variables.

Concerning syntacticity of grammars, it can be
shown that each production has a corresponding
expression of the following specification.

f ::= u | γ | id0 | id1 | (f;f) | (f⊗f) (u ∈ Σ ∪ Υ)

An arrow f in FΣ is derivable in a grammar
(Σ,Υ, P, S ) if

S ⇒l1,r1 f1 · · · ⇒ln,rn fn = f

holds for some sequence of productions (li, ri) ∈ P
and arrows fi in F (Σ ∪ Υ) (i = 1, . . . , n). The
language of a grammar G, denoted by L(G), is the
set of all FΣ-arrows that are derivable. Finally,
a context-free circuit language is the language of
some context-free circuit grammar.

4 The theorem
We shall introduce natural counterparts of Dyck
languages and rational sets to generalize the
Chomsky-Schützenberger Theorem.

Theorem 1 (Chomsky-Schützenberger). A lan-
guage L over an alphabet Σ is context-free if, and
only if, there exists an alphabet Ξ, a rational set R
over Ξ + Ξ = {0, 1} × Ξ, and a homomorphism
h : (Ξ + Ξ)∗ → Σ∗ such that L = h(DΞ ∩ R).

Concerning the Dyck language, note that it cor-
responds to the least sub-monoid DΞ of the free
monoid over Ξ + Ξ = {0, 1} × Ξ that contains the
word (0, u)w(1, u) whenever u ∈ Ξ is a letter and
the word w belongs toDΞ. Replacing sub-monoid
by monoidal subcategory, the Dyck category over
Ξ is the least monoidal subcategory DΞ of the
free prop F (Ξ + Ξop) such that (0, u); f ; (1, u) is
aDΞ-arrow whenever u : m→ n is a symbol of Ξ
and f : n→ n is aDΞ-arrow. The Dyck language,
denoted by DΞ, is the set of arrows of the Dyck
category.

Monoidal rational sets in a free prop FΞ are
the elements of the least set R such that

• R contains all finite sets of FΞ-arrows;

• L; L′ ∈ R whenever L, L′ ∈ R where

L; L′ =

{
f ; g

∣∣∣∣∣∣ f ∈ L, g ∈ L′,
f ; g is defined.

}
;

• L ⊗ L′ ∈ R whenenver L, L′ ∈ R where
L⊗ L′ = { f ⊗ g | f ∈ L, g ∈ L′};

• L∗⊗ :=
⋃

k∈N Lk⊗ ∈ R whenever L ∈ R where
L0⊗ = {id0} and Lk⊗ = L(k−1)⊗ ⊗ L; and

• L∗; :=
⋃

k∈N Lk; ∈ R whenever L ∈ R where
L0; = {id1}

∗⊗ and Li; = L(i−1);; L.

Note that we also have a monoidal version of the
Kleene star, as otherwise one could specify only
prop languages of arrows of bounded path width.

Theorem 2. A prop language L over an alphabet-
like signature Σ is context-free if, and only if, there
exists a signature Ξ, a monoidal rational set R
over Ξ+Ξop, and a functorH : F (Ξ+Ξop)→ FΣ
such that L = H(DΞ ∩ R).



The proof re-uses the ideas of Ref. [2]. In par-
ticular the encoding of derivations in words over
an extended alphabet can be adapted to encodings
of derivations in circuit grammars—at least if the
signature is alphabet-like. It is an open problem
whether this restriction can be dropped.

5 Conclusion
Besides the rather natural notion of context-free
languages of circuit diagrams, which are consid-
ered elsewhere [14], we have introduced Dyck
languages in free props that naturally fit the intu-
ition of matching brackets. The main contribution
is the Chomsky-Schützenberger theorem for lan-
guages of arrows in circuit props for alphabet-like
signatures; this generalization hinges on the no-
tion of monoidal rational set, involving a monoidal
Kleene star, similar to Ref. [4]. The theorem illus-
trates that free props are a suitable setting for the
development of classic results of language theory.

To the author’s knowledge, this is the first time
that the Chomsky-Schützenberger theorem has
been developed for a non-trivial class of graph-
like structures that do not consist of trees [1]. Be-
sides future work on the relation to Courcelle’s
work [6], the notion of look-ahead in parsing of-
fers itself as a promising research field, as part of
a formal language theory for props and pros à la
Chomsky.
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