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spectra of finite Gödel Algebras.
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Given a class of structures C and a natural number k ≥ 1, the finite coun-
terparts of the Shelah’s classification in classical Model Theory can be given by
the following problems ([7]):

– Spectrum: counting the number of k-element structures in C;
– Fine Spectrum: counting the number of non-isomorphic k-element structures

in C;
– Free Spectrum: counting the elements of the free k-generated algebra in C

(when C is variety of algebras).

The variety of Gödel algebras is obtained by adding the prelinearity equation
to the class of Heyting algebras. Gödel algebras are the algebraic semantics
of Gödel logic, a non-classical logic whose studies date back to Gödel [8] and
Dummett [3]. Indeed, Gödel logic can be obtained by adding the prelinearity
axiom to Intuitionistic logic. Furthermore, Gödel logic is one of the three major
(many-valued) logics in Hajek’s framework of Basic Logic, that is the logic of all
continuous t-norms and their residua [5].

Given a finite Gödel algebra A, the set of prime filters of A ordered by
reverse inclusion forms a forest 1. Viceversa, given a forest F , the collection
of all subforests of F , equipped with properly defined operations, is a finite
Gödel algebra. This construction is functorial, meaning that it can be extended
to obtain a dual equivalence between the category of finite Gödel algebras and
their homomorphisms, and the category of finite forests and open maps 2.

1 A forest is a poset F where the downset of every element is totally ordered. Every
downset of F is itself a forest that we call subforest of F .

2 An order-preserving map between forests is open (or is a p-morphism) when it pre-
serves downsets.



The above duality is an adaptation of the Esakia duality [4] between Heyting
algebras and their homomorphisms, and posets and order-preserving open maps,
to the case of finite Gödel algebras (see [2, 1] for details and proofs).

In this talk we exploit the category of forests to solve two of the above
mentioned Spectra problems when C is the variety of Gödel algebras G, namely
the Free Spectrum and the Fine Spectrum problem.

Solutions to the Free Spectrum problem for G can be easily found in litera-
ture. Indeed, already in 1969 Horn has obtained a recurrence formula to compute
the cardinalities of free k-generated Gödel algebras [6]. Another solution to this
problem can be achieved by restating the Horn’s recurrence in terms of finite
forests [2].

Conversely, to the best of our knowledge, the Fine Spectrum problem for
G has never been considered before. We introduce an algorithm that given a
natural number k ≥ 1, it generates a set of forests Sk such that for every F ∈ Sk

the number of subforests of F is exactly k. That is, given a finite cardinal k we
can build the set of finite Gödel algebras with k elements, solving in this way
the Fine Spectrum problem for G.
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algebras. Ann. Pure Appl. Logic, 142(1-3):202–211, 2006.

3. M. Dummett. A propositional calculus with denumerable matrix. J. Symb. Log.,
24(2):97–106, 1959.

4. L. Esakia. Topological Kripke Models. Soviet Mathematics Doklady, 15:147–151,
1974.
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