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Henkin introduced the general idea of dependent quantifiers extending clas-
sical first-order logic [2], cf. [3] for an overview. This leads to the notion of a
partially ordered quantifier with m universal quantifiers and n existential quan-
tifiers, where F is a function that determines for each existential quantifier on
which universal quantifiers it depends (m and n may be any finite number). The
simplest Henkin quantifier that is not definable in ordinary first-order logic is
the quantifier QH binding four variables in a formula. A formula A using QH

can be written as AH =

(
∀x ∃u
∀y ∃v

)
A(x, y, u, v). This is to be read ”For every

x there is a u and for every y there is a v (depending only on y)” such that
A(x, y, u, v). If the semantical meaning of this formula is given in second-order
notation, the above formula is semantically equivalent to the second-order for-
mula ∃f∃g∀x∀yA(x, y, f(x), g(y)), where f and g are function variables.

Systems of partially ordered quantification are intermediate in strength be-
tween first-order logic and second-order logic. Similar to second-order logic, first-
order logic extended by QH is incomplete [5]. In proof theory incomplete logics
are represented by partial proof systems, c.f. the wealth of approaches dealing
with partial proof systems for second-order logic. In an analytic setting, these
partial systems allow the extraction of implicit information in proofs, i.e. proof
mining. However, in contrast to second-order logic only few results are dealing
with the proof theoretic aspect of the use of branching quantifiers in partial
systems.1

This lecture provides a globally sound but possibly locally unsound sequent
calculus LH++ for QH , which is cut-free for a natural partial semantics. LH++ is
based on the calculus LK++ of [1]. It is shown that it is impossible to construct
an analytic locally sound sequent calculus for QH . This methodology can be
extended to all Henkin quantifiers.
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