Flat Polygonal Logics in *d*-Semantics

David Gabelaia, Mamuka Jibladze, Evgeny Kuznetsov, and Levan Uridia

TSU A. Razmadze Mathematical Institute

1 Introduction

This paper is a natural follow up of a series of papers on polyhedral semantics for modal and intermediate logics. This research area became actively investigated in recent years by collaborating groups centered in Amsterdam, Milan and Tbilisi [2, 4, 5]. The main distinction of polyhedral semantics from standard topological semantics is in restricting valuation functions to range over *polyhedral subsets* of the relevant space endowed with some kind of linearity structure – polyhedra in Euclidean spaces being the prime examples.

Let \mathfrak{B}^n be the Boolean subalgebra of the full powerset Boolean algebra $\wp(\mathbb{R}^n)$ of all subsets of \mathbb{R}^n generated by (either open or closed) halfspaces. Elements of \mathfrak{B}^n are called *polyhedral sets*. \mathfrak{B}^n turns out to be closed under the topological closure or derived set operators. It is well known that these operators serve as a basis for two distinct topological interpretations for modal language. More widely known *C-semantics* treats modality (the diamond) as the closure operator of a topological space. In algebraic terms this amounts to dealing with the classes of *closure algebras*. Lesser known *d-semantics* interprets the modal diamond as the *derivative operator* of a topological space. Algebraically this amounts to the investigation of the classes of *derivative algebras*. It is straightforward that \mathfrak{B}^n can be treated as a closure algebra, since the closure $\mathbf{C}(P)$ of a polyhedron P is again a polyhedron $-\mathbf{C}(P) \in \mathfrak{B}^n$. In a similar way, the set $\mathbf{d}(P)$ of all limit points of a polyhedron P is a polyhedron. To make a clear distinction between the resulting modal algebras, by \mathfrak{B}^n we denote the closure algebra, while by \mathfrak{B}^n_d we denote the derivative algebra of all subpolyhedra of \mathbb{R}^n . The C-logic Log(\mathfrak{B}^2) of two-dimensional polyhedra is studied and axiomatized in [4] while the d-logic of two-dimensional polyhedral d-logics.

Recall that the modal logic $\mathbf{K4} = \mathbf{K} + \Box p \to \Box \Box p$ is the logic of transitive Kripke frames. The logic $\mathbf{K4}.\mathbf{Grz}$ is defined as $\mathbf{K4}.\mathbf{Grz} = \mathbf{K4} + \Box(\Box(p \to \Box p) \to p) \to \Box p$. It turns out that \mathfrak{B}_d^n is a locally finite $\mathbf{K4}.\mathbf{Grz}$ -algebra.

For a relativization of \mathfrak{B}_d^n to a polyhedral set $P \in \mathfrak{B}_d^n$ we will use notation P^+ . We consider *polyhedral d-logics* – logics Log{ $P_i^+ \mid i \in I$ }, generated by some family $(P_i)_{i \in I}$ of polyhedra $P_i \in \mathfrak{B}_d^{n_i}$. Since each \mathfrak{B}_d^n is a locally finite **K4.Grz**-algebra, polyhedral d-logics are extensions of **K4.Grz** and each one of them has the finite model property.

In the current work we axiomatize the largest polyhedral d-logic, i.e. the d-logic of all polyhedra. We also study in details the d-logics of polyhedra of dimension 2 or less. In particular we fully characterize $flat\ polygonal\ d$ -logics, that is 2-dimensional d-logics generated by any class of polygons $P_i \in \mathfrak{B}^2_d$ embeddable inside the 2-dimensional plane \mathbb{R}^2 .

2 Polyhedral *d*-Logics

Polyhedral d-logics are generated by algebras of type P_i^+ where $P_i \in \mathfrak{B}_d^{n_i}$ is a polyhedron. Each P^+ is of finite *height* and hence, locally finite [3]. This has to do with the geometric dimension of P being finite. It follows that polyhedral d-logics enjoy the finite model property and their study

can be reduced to the study of the corresponding finite Kripke frames. Since P^+ is always a **K4.Grz**-algebra, its finite Kripke frames are finite *weak partial orders* i.e. frames (W,R) such that the reflexive closure R° of R is a partial order. We call such frames w-posets. Note that w-posets are transitive and antisymmetric.

Each polyhedral d-logic L has well-defined $dimension \dim L$: it is either the smallest d for which L forbids the (d+1)-element reflexive chain, or infinity, if such a d does not exist. This happens to coincide with the maximum of the geometric dimensions of the polyhedra P which validate L. The polyhedral d-logics of finite dimension are of finite height and hence, locally finite. In the next theorem we give the axiomatization of the logic of all polyhedra in d-semantics.

Theorem 1. The d-logic of all polyhedra is
$$\mathbf{K4.Grz} + \Box(\Box p \to p) = \mathbf{K4.Grz} + \sigma\left(\P\right) + \sigma\left(\P\right)$$

Here and in what follows by $\sigma(\mathfrak{F})$ we denote the subframe axiom of the w-poset \mathfrak{F} [6]. The depiction of w-posets follows the convention of denoting reflexive points by white circles and the irreflexive points by filled black circles.

In the following theorem we focus on the fixed dimension n and characterise/axiomatize the minimal and maximal d-logics of dim n polyhedra.

Theorem 2. Let L be a polyhedral d-logic of dim n. Then $\mathbf{K4.Grz}_n \subseteq L \subseteq \mathbf{PL}_n^d$, where:

- 1. Maximal polyhedral d-logic of dim n is $\mathbf{PL}_n^d = \mathsf{Log}(\mathfrak{B}_d^n)$
- 2. Minimal polyhedral d-logic of dim n is $\mathbf{K4.Grz}_n := \mathbf{K4.Grz} + \Box(\Box p \to p) + \sigma\begin{pmatrix} \Diamond n \\ \Diamond 1 \\ \Diamond n \\ \Diamond n \end{pmatrix}$

Where
$$\sigma\begin{pmatrix} 0^n \\ 0 \\ 0 \end{pmatrix}$$
 is the subframe axiom forbidding the $(n+1)$ -element reflexive chain.

There is a single polyhedral d-logic of dim 0 – the logic of one irreflexive point characterised by axiom $\Box \bot$. Let us denote by \mathfrak{F}_n^{\bullet} the rooted w-poset of height 2 with irreflexive root and n-many maximal reflexive points.

Theorem 3. Polyhedral d-logics of dim 1 form a countable chain (under inclusion) between **K4.Grz**₁ and PL_1^d which is presented as follows:

$$K4.Grz_1 \subseteq \cdots \subseteq Log(\mathfrak{F}_n^{\bullet}) \subseteq \cdots \subseteq Log(\mathfrak{F}_n^{\bullet}).$$

We now turn to *flat polyhedra* – those dim n polyhedra that are embedded into the ambient Euclidean space \mathbb{R}^n of the *same dimension*. The relevant algebraic notion is that of *relativization*, while the relevant modal notion is that of *downward subframization* [6], [1]. Call the polyhedral d-logic L of dim n flat iff L is complete wrt some class $(P_i^+)_{i\in I}$ of polyhedral derivative algebras such that $P_i \in \mathfrak{B}^n_d$ are polyhedra of dim n inside \mathbb{R}^n for all $i \in I$.

Theorem 4. The least flat polyhedral d-logic \mathbf{Flat}_n^d of dim n is the downward subframization of \mathbf{PL}_n^d .

Our main results concern the flat d-logics of dim 2 – we call them $Flat\ Polygonal\ d$ -Logics. By definition, such logics are generated by a family of relativizations of \mathfrak{B}^2_d . In other words, flat polygonal logics are complete wrt some class $(P_i^+)_{i\in I}$ where each P_i is a flat polygon – a polygonal subset of the Euclidean plane \mathbb{R}^2 . We will give a full characterization of flat polygonal d-logics, using an explicit collection of Jankov-Fine axioms for certain finite w-posets. It turns out that \mathbf{Flat}^d_2 is the logic of finite $\mathbf{K4.Grz}_2$ -frames which are not up-reducible to the poset

Theorem 5. Flat $_2^d = K4.Grz_2 + \chi\left(\bigcirc \bigcirc \bigcirc \right)$ where $\chi\left(\bigcirc \bigcirc \bigcirc \right)$ is the Jankov-Fine axiom forbidding the reflexive 3-fork (as an up-reduction). Flat polygonal logics are all in the interval [Flat $_2^d$, PL $_2^d$].

Figure 1: The (flat) polygonal logics inside the lattice of all extensions of **K4.Grz**₂

To describe the flat polygonal logics occurring between Flat_2^d and PL_2^d , we introduce w-posets $\mathfrak{F}_{m,n}^{\bullet}$ with irreflexive root depicted below that are ordered by $\operatorname{reducibility} - \mathfrak{F}$ is reducible to \mathfrak{G} if there exists an onto p-morphism from \mathfrak{F} to \mathfrak{G} . The poset of these frames is depicted on Figure 2.

The reducibility among $\mathfrak{F}_{m,n}^{\bullet}$ can be described as follows: $\mathfrak{F}_{m,n}^{\bullet}$ reduces to $\mathfrak{F}_{m',n'}^{\bullet}$ iff $m+n \ge m'+n'$ and $m \ge m'$. Denote the poset of these frames by Q.

Lemma 6. The dual poset of Q is a well partial order, i.e. Q contains neither infinite strictly ascending chains, nor infinite antichains.

For every antichain α in Q the corresponding d-logic L_{α} is obtained by adding to \mathbf{Flat}_2^d the Jankov-Fine axioms $\chi(\mathfrak{F}_{m,n}^{\bullet})$ for each $\mathfrak{F}_{m,n}^{\bullet} \in \alpha$. It is not difficult to see, that $L_{\alpha} \subseteq L_{\beta}$ iff $\alpha \subseteq \downarrow \beta$. Moreover:

Theorem 7. The d-logics L_{α} , for $\alpha \subset \mathbb{Q}$ an antichain, are all different, and exhaust all flat polygonal d-logics, that is all polygonal d-logics between \mathbf{Flat}_2^d and \mathbf{PL}_2^d .

It follows that there are only countably many flat polygonal *d*-logics, each of which is finitely axiom-

Figure 2: Poset Q of the frames $\mathfrak{F}_{m,n}^{\bullet}$ ordered by reducibility

atizable and decidable. In the talk we will also present a way to describe the Kripke frames for each flat polygonal d-logic L based on the upset of L-frames inside Q and a certain operation on w-posets defining \mathbf{PL}_2^d and \mathbf{PL}_2^d and \mathbf{PL}_2^d ir-crown frames [5] and n-forks with irreflexive root \mathfrak{F}_n^{\bullet} .

References

- [1] G. Bezhanishvili, N. Bezhanishvili and J. Ilin *Subframization and stabilization for superintuitionistic logics* Journal of Logic and Computation, 29(1):1–35, 2019
- [2] N. Bezhanishvili, V. Marra, D. Mcneill, and A. Pedrini. Tarski's theorem on intuitionistic logic, for polyhedra. *Annals of Pure and Applied Logic*, 169(5):373–391, 2018.
- [3] A. Chagrov and M. Zakharyaschev. *Modal logic*, volume 35 of *Oxford Logic Guides*. The Clarendon Press, Oxford University Press, New York, 1997. Oxford Science Publications.
- [4] D. Gabelaia, K. Gogoladze, M. Jibladze, E. Kuznetsov, and M. Marx. Modal logic of planar polygons. Preprint available at https://arxiv.org/abs/1807.02868.
- [5] D. Gabelaia, K. Gogoladze, M. Jibladze, E. Kuznetsov and L. Uridia An Axiomatization of the d-logic of Planar Polygons Accepted for publication in the proceedings of TbiLLC-2017, Springer, 2019.
- [6] F. Wolter The structure of lattices of subframe logics, Annals of Pure and Applied Logic, 86(1):47–100, 1997.