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1 Introduction

This paper is a natural follow up of a series of papers on polyhedral semantics for modal and in-
termediate logics. This research area became actively investigated in recent years by collaborating
groups centered in Amsterdam, Milan and Tbilisi [2, 4, 5]. The main distinction of polyhedral
semantics from standard topological semantics is in restricting valuation functions to range over
polyhedral subsets of the relevant space endowed with some kind of linearity structure – polyhedra
in Euclidean spaces being the prime examples.

Let Bn be the Boolean subalgebra of the full powerset Boolean algebra ℘(Rn) of all subsets of Rn

generated by (either open or closed) halfspaces. Elements of Bn are called polyhedral sets. Bn turns
out to be closed under the topological closure or derived set operators. It is well known that these
operators serve as a basis for two distinct topological interpretations for modal language. More
widely known C-semantics treats modality (the diamond) as the closure operator of a topological
space. In algebraic terms this amounts to dealing with the classes of closure algebras. Lesser known
d-semantics interprets the modal diamond as the derivative operator of a topological space. Alge-
braically this amounts to the investigation of the classes of derivative algebras. It is straightforward
that Bn can be treated as a closure algebra, since the closure C(P) of a polyhedron P is again a
polyhedron – C(P) ∈ Bn. In a similar way, the set d(P) of all limit points of a polyhedron P is a
polyhedron. To make a clear distinction between the resulting modal algebras, by Bn we denote
the closure algebra, while by Bn

d we denote the derivative algebra of all subpolyhedra of Rn. The C-
logic Log(B2) of two-dimensional polyhedra is studied and axiomatized in [4] while the d-logic of
two-dimensional polyhedra Log(B2

d) is studied and axiomatized in [5]. In the present contribution
we are interested in polyhedral d-logics.

Recall that the modal logic K4 = K + �p → ��p is the logic of transitive Kripke frames. The
logic K4.Grz is defined as K4.Grz= K4+�(�(p→ �p)→ p)→ �p. It turns out that Bn

d is a locally
finite K4.Grz-algebra.

For a relativization of Bn
d to a polyhedral set P ∈ Bn

d we will use notation P+. We consider
polyhedral d-logics – logics Log{P+i | i ∈ I}, generated by some family (Pi)i∈I of polyhedra Pi ∈B

ni
d .

Since each Bn
d is a locally finite K4.Grz-algebra, polyhedral d-logics are extensions of K4.Grz and

each one of them has the finite model property.
In the current work we axiomatize the largest polyhedral d-logic, i.e. the d-logic of all polyhedra.

We also study in details the d-logics of polyhedra of dimension 2 or less. In particular we fully
characterize flat polygonal d-logics, that is 2-dimensional d-logics generated by any class of polygons
Pi ∈B2

d embeddable inside the 2-dimensional plane R2.

2 Polyhedral d-Logics

Polyhedral d-logics are generated by algebras of type P+i where Pi ∈ B
ni
d is a polyhedron. Each

P+ is of finite height and hence, locally finite [3]. This has to do with the geometric dimension of
P being finite. It follows that polyhedral d-logics enjoy the finite model property and their study
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can be reduced to the study of the corresponding finite Kripke frames. Since P+ is always a K4.Grz-
algebra, its finite Kripke frames are finite weak partial orders i.e. frames (W, R) such that the reflexive
closure R◦ of R is a partial order. We call such frames w-posets. Note that w-posets are transitive
and antisymmetric.

Each polyhedral d-logic L has well-defined dimension dim L: it is either the smallest d for which
L forbids the (d + 1)-element reflexive chain, or infinity, if such a d does not exist. This happens
to coincide with the maximum of the geometric dimensions of the polyhedra P which validate L.
The polyhedral d-logics of finite dimension are of finite height and hence, locally finite. In the next
theorem we give the axiomatization of the logic of all polyhedra in d-semantics.

Theorem 1. The d-logic of all polyhedra is K4.Grz+�(�p→ p) = K4.Grz+σ
� �

+σ
� �

Here and in what follows by σ(F) we denote the subframe axiom of the w-poset F [6]. The
depiction of w-posets follows the convention of denoting reflexive points by white circles and the
irreflexive points by filled black circles.

In the following theorem we focus on the fixed dimension n and characterise/axiomatize the
minimal and maximal d-logics of dim n polyhedra.

Theorem 2. Let L be a polyhedral d-logic of dim n. Then K4.Grzn ⊆ L ⊆ PLd
n, where:

1. Maximal polyhedral d-logic of dim n is PLd
n = Log(Bn

d)

2. Minimal polyhedral d-logic of dim n is K4.Grzn := K4.Grz+�(�p→ p) +σ

� n

1
0

�

Where σ

� n

1
0

�

is the subframe axiom forbidding the (n+ 1)-element reflexive chain.

There is a single polyhedral d-logic of dim 0 – the logic of one irreflexive point characterised
by axiom �⊥. Let us denote by F •n the rooted w-poset of height 2 with irreflexive root and n-many
maximal reflexive points.

Theorem 3. Polyhedral d-logics of dim 1 form a countable chain (under inclusion) between K4.Grz1
and PLd

1 which is presented as follows:

K4.Grz1 ⊆ · · · ⊆ Log(F •n) ⊆ · · · ⊆ Log(F •2).

We now turn to flat polyhedra – those dim n polyhedra that are embedded into the ambient
Euclidean space Rn of the same dimension. The relevant algebraic notion is that of relativization,
while the relevant modal notion is that of downward subframization [6], [1]. Call the polyhedral
d-logic L of dim n flat iff L is complete wrt some class (P+i )i∈I of polyhedral derivative algebras such
that Pi ∈Bn

d are polyhedra of dim n inside Rn for all i ∈ I .

Theorem 4. The least flat polyhedral d-logic Flatd
n of dim n is the downward subframization of PLd

n.

Our main results concern the flat d-logics of dim 2 – we call them Flat Polygonal d-Logics. By
definition, such logics are generated by a family of relativizations of B2

d . In other words, flat polyg-
onal logics are complete wrt some class (P+i )i∈I where each Pi is a flat polygon – a polygonal subset
of the Euclidean plane R2. We will give a full characterization of flat polygonal d-logics, using an
explicit collection of Jankov-Fine axioms for certain finite w-posets. It turns out that Flatd

2 is the
logic of finite K4.Grz2-frames which are not up-reducible to the poset .

2
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Theorem 5. Flatd
2 = K4.Grz2 +χ

� �

where χ
� �

is the Jankov-Fine axiom forbidding

the reflexive 3-fork (as an up-reduction). Flat polygonal logics are all in the interval [Flatd
2 ,PLd

2].

K4.Grz2

PLd
2

Flatd
2

Figure 1: The (flat) polygonal logics inside the
lattice of all extensions of K4.Grz2

To describe the flat polygonal logics occurring be-
tween Flatd

2 and PLd
2 , we introduce w-posets F •m,n

with irreflexive root depicted below that are ordered
by reducibility – F is reducible to G if there exists an
onto p-morphism from F to G. The poset of these
frames is depicted on Figure 2.

The reducibility among F •m,n can be described as
follows: F •m,n reduces to F •m′,n′ iff m+n¾ m′+n′ and
m¾ m′. Denote the poset of these frames by Q.

Lemma 6. The dual poset of Q is a well partial order, i.e. Q contains neither infinite strictly ascending
chains, nor infinite antichains.

n
︷︸︸︷

m
︷︸︸︷

F •m,n :=
· · ·

· · ·

F •1,1F •2,0

F •1,2F •2,1F •3,0

F •1,3F •2,2F3,1F •4,0
F •1,n−1

F •n,0 ...............

............

Figure 2: Poset Q of the frames F •m,n ordered by reducibility

For every antichain α inQ the cor-
responding d-logic Lα is obtained by
adding to Flatd

2 the Jankov-Fine ax-
ioms χ(F •m,n) for each F •m,n ∈ α. It is
not difficult to see, that Lα ⊆ Lβ iff
α ⊆ ↓β . Moreover:

Theorem 7. The d-logics Lα, for α ⊂
Q an antichain, are all different, and
exhaust all flat polygonal d-logics, that
is all polygonal d-logics between Flatd

2
and PLd

2 .

It follows that there are only
countably many flat polygonal d-
logics, each of which is finitely axiom-
atizable and decidable. In the talk we will also present a way to describe the Kripke frames for each
flat polygonal d-logic L based on the upset of L-frames inside Q and a certain operation on w-posets
defining PLd

2 and PLd
1 – ir-crown frames [5] and n-forks with irreflexive root F •n.

References
[1] G. Bezhanishvili, N. Bezhanishvili and J. Ilin Subframization and stabilization for superintuitionistic logics

Journal of Logic and Computation, 29(1):1–35, 2019

[2] N. Bezhanishvili, V. Marra, D. Mcneill, and A. Pedrini. Tarski’s theorem on intuitionistic logic, for polyhedra.
Annals of Pure and Applied Logic, 169(5):373–391, 2018.

[3] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press,
Oxford University Press, New York, 1997. Oxford Science Publications.

[4] D. Gabelaia, K. Gogoladze, M. Jibladze, E. Kuznetsov, and M. Marx. Modal logic of planar polygons.
Preprint available at https://arxiv.org/abs/1807.02868.

[5] D. Gabelaia, K. Gogoladze, M. Jibladze, E. Kuznetsov and L. Uridia An Axiomatization of the d-logic of
Planar Polygons Accepted for publication in the proceedings of TbiLLC-2017, Springer, 2019.

[6] F. Wolter The structure of lattices of subframe logics, Annals of Pure and Applied Logic, 86(1):47–100,
1997.

3

https://arxiv.org/abs/1807.02868

	Introduction
	Polyhedral d-Logics

