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1. Introduction

We propose a systematic study of a class of lattices of intermediate theories stemming from
Ruitenburg’s Theorem, among which we can find the lattice of negative variants of intermediate
logics.

Negative variants ([3, 7]) are theories obtained from intermediate logics by adding the clause
¬¬p ↔ p and closing under modus ponens, thus requiring that the ∨-free fragment of the
logic behaves classically. Inquisitive logic InqB ([5]), characterizable as the negative variant of
Medvedev’s logic, is an example of such logics extensively studied in the literature ([3, 4, 7]).

Building on Ruitenburg’s Theorem and a recent algebraic approach to InqB ([1]), we define
the lattices of χ-variants, generalizing negative variants, and develop a semantic framework to
study them. In particular, we will develop an algebraic semantics for these lattices, based on
the algebraic semantics introduced in [1]. For each lattice we will also define a suitable concept
of variety, obtaining a correspondence result in the style of Birkhoff.

As an application of this framework, we will show that negative logics extending InqB are
linearly ordered under inclusion. To prove this, we will define and study a suitable generalization
of locally-finite varieties in the framework of χ-variants.

2. χ-variants

Given an intermediate logic L, its negative variant is defined as the set L¬ := {φ(p) | φ[¬p/p] ∈
L}1. As shown in [3]§3.2, negative variants can be axiomatized by a special class of Hilbert-style
derivation systems, since L¬ = MP(L ∪ {¬¬p ↔ p | p atomic proposition})2—compare with
Definition 3.2.13 of [3]. This identity justifies the intuition that atoms behave like ¬¬-fixpoints
for negative variants.

A surprising result by Ruitenburg allows us to generalize the concept of negative logic, fol-
lowing the fixpoint intuition. Let χ(p) be a formula in one propositional variable. Ruiten-
burg’s Theorem ([8]; see also [6, 9] for a recent semantic proof) states that the sequence
p, χ(p), χ2(p) := χ(χ(p)), . . . is definitely periodic with period 2, modulo logical equivalence;
that is, there exists an n such that ` χn(p) ↔ χn+2(p), where ` is intuitionistic provability.
We will call the smallest n for which this holds the index of χ.

We define the χ-variant of an intermediate logic L as Lχ := {φ(p) | φ[χn(p)/p] ∈ L},
for n the index of χ. Intuitively, we are requiring atomic proposition to play the role of χ2–
fixpoints, in analogy with the case of negative variants. And in fact, we obtain an analogous
axiomatization result: Lχ = MP(L ∪ {χ2(p)↔ p | p atomic proposition}).

∗The authors would like to thank Nick Bezhanishvili for comments and discussions on this work. The first
author was supported by the European Research Council (ERC, grant agreement number 680220).

1With p we denote a sequence of variables p1, . . . , pk. Given χ(q) a formula with only one free variable, we
denote by χ(p) the sequence χ(p1), . . . , χ(pk). We denote by φ[ψ/p] the formula obtained by substituting every
instance of pi with the formula ψi.

2MP denotes the closure under modus ponens.
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3. Algebraic semantics for χ-variants

An algebraic semantics for InqB was presented in [1]. Following the same approach, we can de-
fine a semantics for χ-variants. The key to this generalization lies in an algebraic interpretation
of Ruitenburg’s Theorem.

Given an Heyting algebra A, we can treat χ
as an endomorphism of A, mapping a ∈ A
to Jχ(p)K[p 7→a]. Ruitenburg’s Theorem tells
us exactly that χ restricted to the set Aχ =
χn[A] is an involution, and so that Aχ are ex-
actly the χ2–fixpoints of the algebra. Notice
that, in the case of negation, A¬p is exactly
the set of regular elements of the algebra.

A
χ[A]

· · ·

χn[A]

We call a valuation3 σ : AP→ A a χ-valuation if the range of σ is contained in Aχ. We can
define a semantics suitable to study χ-variants simply by restricting the valuations we consider
to be χ-valuations: we say that φ is χ-valid on A if JφKAσ = > for every χ-valuation σ. We
will denote by Thχ(A) the set of valid formulas in A; for C a class of Heyting algebras, we will
denote by Thχ(A) =

⋂
{Thχ(A) | A ∈ C}.

A routine check shows that Thχ(C) = (Log(C))χ. In particular, every class of algebras
defines a χ-variant via the semantics introduced; and every negative logic Lχ is the class of
some class of Heyting algebras, since Th(Var(L)) = L4. Thus for every χ-variant Lχ, the
semantics introduced is correct and complete if restricted to the appropriate class of Heyting
algebras.

This result can be further refined, obtaining a correspondence between χ-variants and some
special varieties, in the same style as Birkhoff Theorem (Theorem 11.9 in [2]). The key observa-
tion is that, under a χ-valuation, the semantics of a formula in A is restricted to the sub-algebra
generated by Aχ. In case this sub-algebra coincides with the whole algebra, we say that A is
core-generated.

If we denote by VCG the set of core-generated elements of the variety V, the observation
above entails that VCG determines univocally Thχ(V ). Moreover, if VCG = V′CG then Thχ(V ) =
Thχ(V ′). This suggests the definition of the following closure operator on varieties: Clχ(V) :=
{B | ∃A ∈ V. A � B and Aχ = Bχ}5—notice that VCG = V′CG iff Clχ(V) = Clχ(V′). Indeed, it
is easy to verify that given a χ-variant Lχ, the set Varχ(Lχ) := {A | Lχ ⊆ Thχ(A)} is a variety
closed under the operation Clχ.

Theorem 1. Let ILχ and HAχ denote the lattice of χ-variants and
the lattice of varieties closed under Clχ respectively. The function
Varχ : ILχ → HAχ is an isomorphism and Thχ = (Varχ)−1.

IL

HA

ILχ

HAχ

Var Varχ

•χ

Clχ

3AP denotes the set of atomic propositions.
4With Var(L) we denote the variety of Heyting algebras validating all formulas in L.
5With A � B we denote that A is a subalgebra of B.
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4. Application: extensions of InqB

As an application of the framework introduced, we prove that negative logics extending InqB

are linearly ordered by inclusion. By Theorem 1, this implies that subvarieties of Var¬p(InqB)
are linearly ordered. An important feature, that we can exploit to prove this, is that core-
generated elements of Var¬p(InqB) are locally finite—compare with Lemmas 4.1 and 4.3 of [1].
This property corresponds to the usual locally-finiteness for varieties of Heyting algebras, and
can be studied more in general for varieties in HAχ.

We say a variety V ∈ HAχ is χ-locally-finite if all the algebras in VCG are locally-finite;
or equivalently, given A ∈ V and finitely many elements a1, . . . , ak ∈ Aχ, the sub-algebra
〈a1, . . . , ak〉A is finite. Notice that, under a χ-valuation, the interpretation of a formula φ lies in
the subalgebra generated by the core, so this seems a sensible generalization of locally-finiteness
to study χ-logics and the corresponding varieties. And in fact we have the following:

Lemma 2. If V is χ-locally-finite, then V is generated by its finite, subdirectly-irreducible,
core-generated elements.

So, since Var¬p(InqB) is ¬p-locally-finite, to determine its subvarieties it suffices to consider its
finite, subdirectly-irreducible, core-generated elements. These are exactly (up to isomorphism)
the finite inquisitive algebras H(B) studied in [1], for B a finite Boolean algebra. In particular,
denoting with Bk the unique (up to isomorphism) Boolean algebra with k generators, we have
H(Bk) ∈ Var({H(Bl)}) for k ≤ l.

Combining these observations with Theorem 1, we obtain that the negative variants extend-
ing properly InqB are all of the form InqBN := Th¬p({H(Bk) | k ≤ N}) for N ∈ N. Moreover,
these are all distinct theories since CN ∈ InqBN \ InqBN+1 for the following:

CN :=
∨
i 6=j

1≤i,j≤N+1

(pi → pj)

Therefore, we obtain the following characterization:

Theorem 3. The sublattice of negative variants extending InqB forms the chain:

InqB ( . . . ( InqB3 ( InqB2 ( InqB1 = CPC.
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