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Abstract

The maximum entropy principle is widely used to determine non-
committal probabilities on a finite domain, subject to a set of constraints.
However, its application to infinite domains is notoriously problematic.
Two strategies have been put forward for applying the maximum entropy
principle on a first-order predicate language: (i) applying it to finite sub-
languages and taking the pointwise limit of the resulting probabilities as
the size n of the sublanguage increases; (ii) selecting a probability func-
tion on the language as a whole whose entropy on finite sublanguages of
size n dominates that of other probability functions for sufficiently large
n.

The entropy-limit conjecture says that, where the former approach
yields determinate probabilities, the latter approach yields the same prob-
abilities. If this conjecture is found to be true, it would provide a boost to
the project of seeking a single canonical inductive logic—a project which
faltered when Carnap’s attempts in this direction succeeded only in de-
termining a continuum of inductive methods.

Hitherto, the entropy-limit conjecture has been verified for languages
which contain only unary predicate symbols and also for the case in which
the constraints can be captured by a categorical statement of Σ1 quantifier
complexity. This paper shows that the entropy-limit conjecture also holds
for categorical statements of Π1 complexity, for various non-categorical
constraints, and in certain other general situations.
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Inductive logic. Inductive logic seeks to determine how certain a conclu-
sion proposition ψ is, on the basis of premiss propositions ϕ1, . . . , ϕk that may
themselves be uncertain. That is, the main task is to find Y such that

ϕX1
1 , . . . , ϕXk

k |≈ ψY ,

where |≈ signifies the inductive entailment relation and X1, . . . , Xk, Y are mea-
sures of certainty, such as probabilities or sets of probabilities. There are many
possible semantics for inductive logic (Haenni et al., 2011). One key approach
stems from the work of Carnap, who provided a continuum of inductive entail-
ment relations (Carnap, 1945, 1971, 1980; Paris and Vencovská, 2015).1 An

1While the discussion is often phrased in terms of probabilities in an inductive entailment
relation, one may also interpret the probabilities as degrees of belief representing an agent’s
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alternative approach, which is the focus of this paper, is to apply the maximum
entropy principle of Jaynes (1957a,b). According to this approach, one should
consider, from all the probability functions that satisfy the premisses, all those
with maximum entropy, and let Y be the set of probability values that these
functions give to ψ.

If the underlying logical language is a finite propositional language then
this latter proposal is rather straightforward to implement and has many nice
properties (Paris, 1994). However, if the language is a first-order predicate
language L with infinitely many constant symbols, certain intriguing questions
arise. In particular, there are two main ways to implement the proposal in the
predicate-language case, and it is not entirely clear as to whether the resulting
inductive logics agree.

The entropy-limit approach. Barnett and Paris (2008) proceed as follows:
(i) reinterpret the premisses as constraints on the probabilities of sentences of
a finite predicate language Ln that has n constant symbols; (ii) determine the
function Pn that maximises entropy on this finite language, subject to con-
straints imposed by the reinterpreted premisses; (iii) draw inductive inferences

using the entropy limit function P∞ defined by P∞(θ)
df
= limn→∞ Pn(θ) for

sentences θ of L.

The maximal-entropy approach. Williamson (2008, 2017), on the other
hand, proceeds differently: (i) consider probability functions defined on the lan-
guage L as a whole; (ii) deem one probability function P to have greater entropy
than another function Q if Hn(P ), where Hn is the entropy function on the finite
sublanguage Ln, dominates Hn(Q) for sufficiently large n; (iii) draw inductive
inferences using those maximal entropy functions P †, from all those probability
functions on L that satisfy the premisses, that have maximal entropy (i.e., no
other function satisfying the premisses has greater entropy).

The entropy-limit approach has the advantage that it is more constructive, so it
is typically easier to calculate the probabilities required for inductive inference.
The maximal-entropy approach is apparently more general. This is because
the entropy-limit approach faces what is known as the finite model problem:
premisses can become inconsistent when reinterpreted as applying to a finite
domain. Thus, there are cases where the maximal-entropy approach gives a
solution but the entropy-limit approach does not.

These approaches to inductive logic would be strengthened if it could be
shown that they give the same results where they are both applicable. Then
one could use the maximal entropy approach to provide a general semantics for
inductive logic, but use the entropy-limit approach where a more constructive
approach is helpful.

The entropy-limit conjecture. This is the conjecture that

where P∞ exists and satisfies the constraints, it is the unique func-
tion with maximal entropy, i.e., P † = P∞ (Williamson, 2017, p. 191).

credal state for the purposes of a maximally accurate representation and/or maximally good
decisions.
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What is known so far. Rafiee Rad (2009, Theorem 29) shows that the
entropy-limit conjecture is true in the case of a predicate language that contains
only unary predicate symbols. Moreover, Rafiee Rad (2019, Corollary 1) shows
that the conjecture is true in the categorical Σ1 case, i.e., the case in which
the premiss propositions ϕ1, . . . , ϕk are all Σ1 statements and no uncertainty
attaches to these propositions, X1 = · · · = Xk = 1. These premisses can
equivalently be expressed by

∧k
i=1 ϕ

1
i with

∧k
i=1 ϕi ∈ Σ1.

Furthermore, Rafiee Rad (2009, §4.3) shows that there exist cases in which
no function has maximum entropy: for any probability function satisfying the
premiss ∃x∀yRxy ∈ Π2 there is another probability function with greater en-
tropy that also satisfies that premiss. On the other hand, Rafiee Rad (2009,
§4.1) shows that there are cases with a single premiss ϕ ∈ Π2 in which P∞

does not exist but P † does. Rafiee Rad (2009, Theorem 29) shows that if the
premisses involve only unary predicate symbols, then both P∞ and P † exist, are
unique and coincide, i.e., the entropy-limit conjecture holds in such a situation.

This paper. This paper contains three main sets of results.
First, we show that for X = 1 and all ϕ ∈ Π1 such that P=(ϕ) > 0 (where

P= is the equivocator function assigning every state description on each finite
sublanguage the same probability), the entropy-limit conjecture holds, P † =
P∞. This is achieved by constructing P∞ and showing that it is the unique
function with maximum entropy. For X = 1 and ϕ ∈ Π1 such that P=(ϕ) = 0
we also show that the conjecture holds. Unfortunately, we do not (yet!) know
how to construct P∞ in this case.

Second, we show that, if the entropy limit P∞ϕ exists for ϕ1 and P∞¬ϕ exists
for ¬ϕ1 for an arbitrary sentence ϕ ∈ SL, then the entropy limit for the non-
categorical premisses ϕc,¬ϕ1−c (where c ∈ (0, 1)) exists and is obtained by
Jeffrey updating with the categorical entropy limits: P∞ = c ·P∞ϕ +(1−c) ·P∞¬ϕ.

On top of that, if P †ϕ is the unique maximum entropy function for the premiss ϕ1

and if P †¬ϕ is the unique maximum entropy function for the premiss ¬ϕ1, then

P † = P∞ = c · P †ϕ + (1− c) · P †¬ϕ for the non-categorical premisses ϕc,¬ϕ1−c.
Third, we show that the entropy-limit conjecture is true under some rather

general conditions: if Pn converges sufficiently rapidly to P∞ and either dom-
inates P∞ in n-entropy or P∞ is the equivocator function. The proof of this
appeals to several basic information-theoretic results. These results can be used
to check whether the entropy-limit conjecture holds in a particular case without
constructing P †.

Conclusions. These results extend the range of situations in which the entropy-
limit conjecture in known to hold and provide inductive support for the truth
of the conjecture in general. They thus provide a boost to a new research
programme for inductive logic that differs in important ways from Carnap’s
programme.
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