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One of the motivations for (some of) the substructural logics is to create a framework
for modelling reasoning in more realistic contexts. A classic example is Dunn-Belnap logic,
which was held by Belnap (1992) to be how a computer should think. Computers work with
data and data contained in databases are usually incomplete and often contradictory. But
classical logic does not seem to be an appropriate tool to work with such a kind of data. (As
Michael Dunn points out in one of his articles: If the database FBI contains the fact that my
car is blue and my car is red I certainly do not want them to infer that I am the enemy No 1.)

Belnap and Dunn introduced a four valued propositional logic to deal with incomplete
or contradictory information. A proposition ¢ in their framework might be not only True or
False, but also Neither (database contains no information about ¢) or Both (database contains
information that ¢ and information that —¢). There is an alternative approach — to maintain
classical truth values 7,F and to define evaluation as a set function into & ({T,F})

A first attempt to generalize the Belnap-Dunn logic probabilistically has been undertaken
by Dunn (2010) and Childers, Majer, Milne (20XX). Michael Dunn’s four valued probability
is a function which assigns to each event A a four valued vector (belief, disbelief, uncertainty,
conflict) of non-negative numbers. The vector is normalized, i.e. its entries add up to one. No
further dependencies between the four entries are assumed.

(Childers, Majer, Milne , 20XX) define probability directly over the propositions of Dunn
Belnap logic. Their probability does not satisfy the classical Kolmogorovian axioms, but their
weaker version (cf. also Priest (2006) or Mares (2014)):

Al 0 < p(¢) <1 (normalization)
A2 ¢ Fp ythen p(¢) < p(y) (monotony with respect to logical consequence)
A3 p(oAy)+p(eVy)=p(e)+ p(y) (inclusion/exclusion principle),

where F; denotes the logical consequence relation of Belnap-Dunn logic. These axioms give
rise to a non-standard notion of probability. In particular probabilities of ¢ and —¢ are not
complementary in the usual sense. Instead, they are connected by a much weaker condition:

p(@A=9)+p(eV—9)=p(e)+p(—e),

which allows for p(¢ A—¢) > 0 (positive probability of gluts) and 1 — p(¢@ V —¢) > 0 (positive
probability of gaps).

Both approaches are intertranslatable. The relation of “probability” (of @) in the latter ap-
proach to "belief” in Dunn’s setting, (i.e. b in the vector (b,d,u,c)) is the same as the relation
of at least true” to “exactly true” in the standard relevant logic, where, A is “exactly true”
when T € v(A) and F ¢ v(A). Similarly, Dunn’s b is a ”pure” belief in A , and can hence be
expressed as

b(A) = p(A) —p(AN-A)

where p stands for the second approach’s probability function. Similar translations apply to
disbelief and the remaining components:



d(A) = p(-A) =p(AN-A)  c(A)=p(AA-A)  u(A)=1-p(AV-A)

It is easy to check that the b,d,u and c hence defined sum up to unity. Dunn’s approach,
however, is more expressive than the Prague setting. In translating from the double valuation
approach, at least one of the conflict or uncertainty component has value O after the translation.
Lastly, we remark that this translation also works also in the other direction. Defining p as

P(A) =ba+ca p(—A) =ds+ca
PAV-A)=1—uy p(AAN-A)=ca

Besides clarifying the relation between the two approaches introduced above, this contribu-
tion expands either non-standard probability framework by considering logical relationships
between different formulas. Being informed about the probabilities of ¢ and v, we may for
instance ask about the (non-standard) probability of ¢ A y. Relatedly, we may be interested in
what happens if the agent learns v, i.e. we may ask about p(¢|y). Lastly, we may inquire into
combining probabilities of different sources. That is, if two agents differ in their non-standard
probabilities of ¢, we can ask about ways for combining these into a joint belief.

Notably, the frameworks discussed have remained largely silent about these questions.
Dunn’s 2010, for instance, suggested a definition for the non-standard probability ¢ A y. This
definition assumed ¢ and ¥ to be probabilistically independent, irrespective of their exact
form or content. This raises various problems. For instance, p(¢ A @) need not be the same
as p(@), as the former treats both occurrences of ¢ as probabilistically independent from each
other.

In the current contribution, we suggest an alternative, semantically based approach to the
probability of conjunctions p(@ A ). In a generalization of Bayes’ rule, we moreover show
how such conjunctive belief relates to conditional belief. As it turns out, defining conditional
beliefs requires to disambiguate various possible readings of the event learned. Within classic
probabilistic reasoning, learning y and forming p(¢|y) is a shorthand for learning that v is
true. Learning that v is false, similarly, relates to p(¢|—y). In a generalized setting, we could
learn more than the truth or falsity of y: we could, for instance, learn that it is at least true,
at least false, exactly true, true and false. ... We define a notion of conditional belief for each
of these possible updating events. Moreover, we also explore various approaches to settling
disagreement between non-standard probabilistic beliefs, i.e. for merging two non-standard
probability assignments on ¢.

Lastly, we relate our discussion to the underlying logical spaces. As is well known, every
classical probability assignment over a finite propositional language can be translated into
a probability assignment over the set of valuations of that language’s atoms. We explore
generalizations of this fact to non-standard probabilities. In particular, we will show that
non-standard probability distributions over a language with a finite set of atoms At naturally
correspond to a classic probability assignment over the set of non-standard valuations, that is
over

{91 g€ At} U{~q | q € At}

More specifically, if we define the truth sets [-] of formulas ¢ as

[p]={x|pex} [-p] ={x|-pex}
(oA y]=[p]N[y] oV y]=lplU[y]
oAy =[-oV-y] [=(eVy)=[-9oA~y]



for p atomic, we get that each classic probability assignment ¢ on the set of non-standard
valuations induces a probability function p, on Z(At), the logical language over At generated
by the propositional connectives, via

This induced probability function p, satisfies axioms [A1]-[A3] and is hence a non-standard
probability function in the sense defined above.

In fact, the converse also holds true: Every non-standard probability function p in the sense
defined above can be represented as a u,, for some p on the set of non-standard valuations for
the corresponding language. Hence, [A1]-[A3] is a sound and complete axiomatization with
respect to the class

{(Mmu)u M~ [0,1], Y p(m) = 1}

meM

where M is the set of non-standard valuations over the set of atoms At, i.e. My := Z({q|q €
At} U{{—q|q € At}}).

If time permits, we will moreover outline a theory of aggregation over non-standard proba-
bilities. That is, we consider settings where two expert advisers provide different non-standard
probabilities for some ¢. The question of aggregation, then, is which probabilities of ¢ to
adopt in light of these differing inputs. Within classic probability theory, options are fairly
limited. One could either decide to follow one of the agents, or build a weighted average be-
tween the two, possibly discarding one of the sources altogether. In non-standard probability,
in contrast, further options arise. One could, for instance take a credulous approach, setting
the new probabilities of ¢ and —¢ to be the maximum of the input probabilities of ¢ or —¢
respectively. Likewise, a defensive approach would suggest to set the new probabilities to the
minimum of the input probabilities of ¢ or —¢ respectively. Time permitting, we will charac-
terize various such options and relate them to various logical operations in the Belnap-Dunn
framework.
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