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Plain maps. Initially, we consider maps f : X → Y between two sets. Suppose that X and Y are
disjoint sets. consider a Kripke frame Ff = (Wf , Rf ), where Wf = X ⊔ Y , Rf = f , i.e. we say that,
pair of points (x, y) ∈ Wf × Wf is in the relation Rf , iff f(x) = y. The resulting Kripke frames are
called Functional Frames. We say that the height of a frame F = (W,R) is 2 if there exists w, u ∈ W ,
such that uRw and for any triple of distinct points (u, v, w) ∈ W ×W ×W either uRv or vRw fails. We
say that a Kripke frame F = (W,R) has no branching, if for any triple of points (u, v, w) ∈ W ×W ×W
either uRv or uRw fails. Irreflexive frames of height ≤ 2 are characterized by a formula 22⊥, the no
branching property is characterized by a formula 3p ∧ 3q → 3(p ∧ q). We show that a Kripke frame
is a Functional Frame iff it is irreflexsive, non branching frame of height ≤ 2. The mentioned two
formulas define the class of Functional Frames. Denote

Kf = K +
(
22⊥

)
+

(
3p ∧3q → 3(p ∧ q)

)
Proposition 1. The modal logic Kf is sound and complete with respect to the class of Functional
Frames.

Proposition 2. Kf has the finite model property.

We show that although the class of Functional Frames is modally definable, the subclasses of
injective and surjective functional frames are not. If we extend the modal language by using four
temporal operators , , and , then the injective and surjective functional frames become definable.
We interpret temporal operators as follows for a Kripke frame F = (W,R) and w ∈ W ,

1. w |= p iff ∀u ∈ W , wRu implies u |= p.
2. w |= p iff ∀u ∈ W , uRw implies u |= p.
3. p = ¬ ¬p, p = ¬ ¬p

We show that in the temporal language injective Functional Frames are determined by the formula

p → p,

while surjective Function Frames are determined by the formula

⊤ ∨ ⊤.

Order preserving maps. We consider the maps f : F1 → F2 between Kripke frames F1 = (W1, R1)
and F2 = (W2, R2). The Relational Functional Frame (RFF for brevity) associated with f is a bi-
relational frame fR = (W,R,Rf ), where W = W1 ⊔ W2, R = R1 ⊔ R2 and Rf = f . We say xRy if
either xR1y or xR2y.

Note that (W,Rf ) is a functional frame. In addition, the Relational Functional Frame fR possesses
the following coherence property: for any points x, y ∈ W , if Rf (x) ̸= ∅ and xRy∨yRx, then Rf (y) ̸= ∅.

Proposition 3. A bi-relational Kripke frame F = (W,R,Rf ) is an RFF (Relational Functional Frame)
if and only if Rf is irreflexive, its height is less than 3, it is non-branching and Rf , R have the coherence
property.
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Since we deal with bi-relational frames, in the syntactic signature we now have 2, 3 for Rf and
, for R, hence we switch to bi-modal language. Here 2, 3 are interpreted as in Functional Frames

and the , are interpreted as follows

• For any formula φ in a language, φ is satisfiable in w ∈ W if φ is true in all R-successors of w.
• For any formula φ in a language, φ is satisfiable in w ∈ W if there exists an R-successor u ∈ W

of w, such that φ is satisfiable in u.

The Coherence Property in RFFs corresponds to the following formulas

3⊤ → 3⊤
3⊤ → 3⊤

We show that the class of all RFFs is modally definable in the bi-modal language. Let KR be
defined as follows

KR = K +
(
22⊥

)
+

(
3p ∧3q → 3(p ∧ q)

)
+

(
3⊤ → 3⊤

)
+

(
3⊤ → 3⊤

)
Proposition 4. Bi-modal logic KR is sound and complete with respect to the class of all Relational
Functional Frames.

We now impose some natural conditions on the underlying map f to see if the class of resulting
RFFs is modally definable and finitely axiomatizable. Recall, that a map f : F1 → F2 is preserving iff
wR1v implies f(w)R2f(v) for all w, v ∈ W1. The map f is called reflecting iff for any w ∈ W1 and
u ∈ W2, whenever f(w)R2u holds, there exists u′ ∈ W1 such that wR1u

′ and f(u′) = u. The map f is
called a p-morphism iff it is both preserving and reflecting.

Let us adopt the following notation for the corresponding logics: Let Kpre denote the bi-modal
logic of all RFFs with f preserving; let Kref denote the logic of all RFFs with f reflecting and let Kp

denote the logic of all RFFs with f a p-morphism.

Proposition 5. The three logics are axiomatized as follows:

Kpre = KR +
(

3p → 3 p
)

Kref = KR +
(
3 p → 3p

)
Kp = KR +

(
3p ↔ 3 p

)
and define their respective classes of RFFs.

Moreover, we can show that KR and Kpre logics are determined by their finite frames, i.e.:

Proposition 6. KR and Kpre have the finite model property.

From the fmp and the finite axiomatization we conclude that KR and Kpre logics are decidable and
in fact, their decision problem turns out to be in PSPACE.

Continuous maps. Now instead of relations, we equip the domain and co-domain of a Functional
Frame with topological structure. Suppose f : X1 → X2 is a map between topological spaces (X1, τ1)
and (X2, τ2). Let us introduce fτ = (X, τ,Rf ) topological structure, where X = X1 ⊔ X2, τ is a
topology generated by τ1 ⊔ τ2, and Rf = f . A topological structure fτ = (X, τ,Rf ) is called a
Topological Functional Frame (TFF for brevity) if (X,Rf ) is a Functional Frame and R−1

f (X) = {x ∈
X | ∃y ∈ X with yRfx} is clopen (simultaneously closed and open according to τ). The latter condition
is the Coherence Property for TFFs.

Again, due to existence of two, topological and function structures, we have two kinds of modal
operators in our language, 2, 3 and , respectively. The operator 3 is interpreted as f−1. The
operator is interpreted as topological Interior operator and the operator – as topological Closure
operator.



We show that the class of all TFFs (Topological Functional Frames) is modally definable. The bi-
modal logic of Topological Functional Frames is denoted by S4R. We axiomatize this logic as follows:

S4R = KR + ( p → p) + ( p → p).

Proposition 7. Bi-modal logic S4R is sound and complete with respect to the class of all Topological
Functional Frames.

Furthermore, we characterize the subclasses of continuous, open and interior TFFs modally and
axiomatize the corresponding bi-modal logics. Let us recall that a map f : X1 → X2 is called continuous
if the f -pre-images of τ2-open sets are open in τ1; the map is open if the images of open sets are open
and the map is interior if it is both open and continuous.

Let us adopt the following notation for the corresponding bi-modal logics: let S4c denote the logic
of all TFFs with f continuous; let S4o denote the logic of all TFFs with f open and let S4i denote the
logic of all TFFs with f interior.

Proposition 8. The three logics are axiomatized as follows:

S4c = S4R +
(

3p → 3 p
)

S4o = S4R +
(
3 p → 3p

)
S4i = S4R +

(
3p ↔ 3 p

)
and define their respective classes of TFFs.

Moreover, we show that

Proposition 9. The logics S4R and S4c have the finite model property.

From the fmp and the finite axiomatization we conclude that S4R and S4c logics are decidable. In
fact, their decision problems are in the complexity class PSPACE.

The following literature was used:[1], [2], [3].
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