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Solving equations between logic terms is a fundamental problem with many important applications in
mathematics, computer science, and artificial intelligence. It is needed to perform an inference step in rea-
soning systems and logic programming, to match a pattern to an expression in rule-based and functional
programming, to extract information from a document, to infer types in programming languages, to com-
pute critical pairs while completing a rewrite system, to resolve ellipsis in natural language processing,
etc. Unification and matching are well-known techniques used in these tasks.

Unification (as well as matching) is a quite well-studied topic for the case when the equality be-
tween function symbols is precisely defined. This is the standard setting. There is quite some number
of unification algorithms whose complexities range from exponential [22] to linear [20]. Besides, many
extensions and generalizations have been proposed. Those relevant to our interests are equational unifica-
tion (more precisely, associative unification with unit element) (see, e.g., [3]), word unification [5,10,19],
and sequence unification [14, 16, 17]. There are some good surveys on unification [4,6, 11, 12].

Nominal logic [7,21] extends first-order logic with primitives for renaming via name-swapping, for
freshness of names, and for name-binding. Such kind of constructs are important in meta-programming
and meta-deduction. Nominal logic provides a simple formalism for reasoning about abstract syntax mod-
ulo a-equivalence. A nominal term a.t is an example of abstraction, binding every occurrence of atom a in
t. Term equality (¢ ~ ¢’) in nominal language is considered modulo renaming of bound variables (atoms),
i.e., it is a-equivalence, formalized inside the language itself. The a-equivalence is a meta-relation in
first-order syntax, but it is formulated on object level in nominal languages. For such formulations it is
important to explicitly define which atom can be considered as a new atom for a given term. This relation
(a#tt), called freshness relation, is also formulated on the object level in nominal languages.

Solving equations between nominal terms needs a special unification algorithm [24], which is first-
order, but can be also seen from the higher-order perspective via mapping from/to higher-order pattern
unification [18]. The standard nominal language contains fixed-arity symbols and one kind of variable,
corresponding to individual variables from first-order syntax. In nominal languages, a unification prob-
lem, e.g. a.z &° b.y, is solved by a pair ({b#zx}, {y — (ab) - }). The first component of the solution,
the freshness constraint b#x, requires that b should not occur free in every possible instantiation of x.
The second component, the substitution, tells us that the solution must replace the variable y with the
term (a b) - x. The latter means that atoms a and b are swapped in every possible instantiation of x.

As we mentioned above, the constructs provided by nominal logic are important for meta-deduction.
However, this formalism, as well as many representation formats for formalized mathematics typically do
not provide a structural analog for ellipses (... ) which are commonly used in mathematical texts [8,9].
In the literature, the latter problem has been addressed by permitting unranked (also known as variadic,
flexary, or flexible arity) symbols in the language, introducing sequences in the meta-level, and extending
the language with sequence variables, see, e.g., [8,13,15].

In this talk we present a combination of these two approaches, extending nominal languages by un-
ranked symbols and studying the fundamental computational mechanism for them: unification. However,
unlike the above mentioned unranked languages, where sequences are introduced in the meta-level, nom-
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inal syntax allows us to introduce their analogs in the object level. This is done by generalizing already
existing syntactic constructs, pairs, to arbitrary tuples. They should be flat, which is achieved by imposing
a special a-equivalence rule for them.

Term pairs, which are a part of nominal syntax in some papers (e.g., [1, 24]) have been extended
to term tuples in [2], but our approach differs in that we additionally introduce variables that can be
instantiated by tuples (fuple variables), and the mentioned notion of flatness.

In our signature we have pairwise disjoint sets of atoms (a, b, . ..), function symbols (f, g, ...), in-
dividual variables (z,v, . ..), tuple variables (XY ...), and the tuple constructor (). Unranked nominal
terms (t, s, . ..) are defined by the grammar:

te=alat|m-z|m- X | f{ts, ..., tn) | {t1,. .. tn),

where 7 is a permutation: a finite (possibly empty) sequence of swappings, which are pairs of atoms
(ab). We write id for the identity (empty) permutation and 7, o 75 for concatenating two permutations.
Permutation action on terms is defined as follows:
as, ifm-a=ao,
—id-a=aand ((ayaz)om) -a= < as, ifm-a=a,
m-a, otherwise.

- (at) = (m-a).(7-t).
-7m-(r'x)=(ron')-zand7- (7" - X) = (ror)  X.
T (f(tr, . tn) = flm-(t,.. . tp))and m- (t1,... t,) = (7w -t1,..., 7T ty).

The terms 7 -  and 7 - X are called suspensions. We skip 7 if 7 = id.

A freshness environment (denoted by V) is a list of freshness constraints a#z and a# X, meaning
that the instantiations of x and X cannot contain free occurrences of a. The flatness property of tuples is
formalized by the axiom (where n > 0,k > 0,m > n)

Vet o ) bty oo tn) R (t b e bty o e )

Substitution 1s a mapping from individual variables to terms (which are neither tuples not tuple variables)
and from tuple variables to tuples such that all but finitely many individual variables are mapped to
themselves, and all but finitely many tuple variables are mapped to singleton tuples consisting of that
variable only (i.e., mapping X to (X)). They are usually written as finite sets, e.g., [z1 — t1,..., 2, —
by X1 = (t11y - ting )y e ooy X = (i, - tin,,)]- Application of a substitution o to a term ¢ is
defined as follows:

- a0 =a, (at)o =ato, (f{ti,...,tn))o = f{t1,...,t,)0.
= (t1,...,tp)o = (t10,...,t,0), where nested tuples are flattened.
- (m-x)o=m-o0(x), (7-X)o=m-0(X),where 7 acts on o(z) and o(X) as permutation action.

For instance, we have

a.f{(ab) -z, (ab)- X, (ab) - Y)[z — f(b.b), X = {(a, flcc,(ac) - Z)), Y — ()] =
a.f(f(a.a), b, f(cc,(ab)(ac)- Z)).

An unranked nominal unification problem P is a finite set of equational ¢ ~° ¢’ or freshness problems
a#+’t. Tuples occurring in the unification problem are always flattened. A solution for P is a pair (V, o)
such that for all problems in P we have V I- o(t) ~ o(t') and V F a#o(t).

To describe the unification algorithm we use so called labeled transformation of unification problems:

P=% Pand P =% P (due to space limitation, we cannot list the rules here). The algorithm is divided
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into two phases: first apply as many == transformations as possible. It might cause branching due to

tuple variables. On some branches, there might be no equational problems left. We expand them by N

transformations as long as possible. If we do not end up with the empty problem, then halt with failure,

. . \Y v .
otherwise from the sequence of transformations P = - .. =% P’ == ... =2 () construct the solution

(ViU---UV,,,0,0---007). Some branches might directly lead to failure after application of == rules.
Some branches might cause more and more branching, leading to infinite set of solutions. Employing
some fair strategy of search tree development, we can have a complete method to enumerate them.

Example 1. We give examples of some unification problems and their solutions:

Problem: f{a.(X,z,Y)) =" f(b.{f(X),z,b,c)).Solution: (), {X — ),z +— fO,Y = (f(),a,c)}).

Problem: a.b. f(X,b) ~° b.a.f{a, X). Solution: (#, {X > ()}).

Problem: f(X,a) ~" f{a,Y). Solutions: (), {X ~ (),Y — ()}) and (0,{X — (a,Z),Y

(Z, a)}). If instead of Y we had X, then there would be infinitely many solutions: (§, {X — ()}),

0,{X = (a)}), (0, {X = {a,a)}), .

Problem: a.f(X,a) ~" b.f (b, X). Solution: 04X = (), Y = (O}.

Problem: a.f(X,a) =’ bf( ,Y'). Solutions: (0,{X — (),Y — ()}) and ({b#Z},{X — (a,Z),
Y

Y — {((ab)- Z,b)}).
Problem: a.f(X,c) =" b.f(c,Y). Solutions: (), {X > (),
Y = {(ab)-Z c)}).

= (}) and ({0#2}, {X = (c, Z),
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