SUBCOMPLETIONS OF ATOMIC **REPRESENTABLE RELATION ALGEBRAS**

ROGER D. MADDUX

Extended Abstract. Hodkinson [1] solved a problem of Monk [2] by constructing an atomic representable relation algebra $\mathbf{B} \in \mathsf{RRA}$ whose completion \mathbf{C} is not representable. Since RRA is a variety and C is not in RRA, there must be an equation ϵ that holds in RRA but fails in C. The subalgebra **A** of **C** generated by the finitely many values assigned to the variables occurring in ϵ is not representable because it too fails to satisfy ϵ . A is an example of a finitely-generated relation algebra that is a subalgebra of the non-representable completion of an atomic RRA. What relation algebras can occur as \mathbf{A} ? We show that every finite Monk algebra with six or more colors is such an algebra.

A Monk algebra is any atomic symmetric integral relation algebra A obtained by splitting from some \mathbf{E}_q^{23} with $4 \leq q \in \omega$. \mathbf{E}_q^{23} is the finite symmetric integral relation algebra with q atoms such that if a, b are distinct diversity atoms then a; b = 0 and $a; a = \overline{a}$. A is obtained from \mathbf{E}_q^{23} by splitting if $\mathbf{E}_q^{23} \subseteq \mathbf{A}$, every atom x of **A** is contained in an atom $\mathbf{c}(x)$ of \mathbf{E}_q^{23} , and for all atoms x, y of **A**, if $x, y \leq 0$? then

$$x; y = \begin{cases} \mathsf{c}(x); \mathsf{c}(y) \cdot 0' & \text{if } x \neq y \\ \mathsf{c}(x); \mathsf{c}(y) & \text{if } x = y. \end{cases}$$

The q-1 diversity atoms of the subalgebra $\mathbf{E}_q^{23} \subseteq \mathbf{A}$ are called the **colors** of \mathbf{A} . From an arbitrary finite symmetric integral relation algebra \mathbf{A} and its subalgebra \mathbf{E} we construct a complete atomic algebra $C_{\mathbf{E}}(\mathbf{A})$ and let **B** be the subalgebra of $C_{\mathbf{E}}(\mathbf{A})$ generated by the atoms of $C_{\mathbf{E}}(\mathbf{A})$. This construction and its properties are the main contribution of this paper. In particular, every finitely-generated subalgebra of $C_{\mathbf{E}}(\mathbf{A})$ is *finite*. When $7 \leq q < \omega$ and \mathbf{A} is a Monk algebra obtained from \mathbf{E}_q^{23} , there is a subalgebra $\mathbf{E} \subseteq \mathbf{E}_q^{23} \subseteq \mathbf{A}$ such that

- B is a countable, atomic, symmetric, integral relation algebra generated by its atoms,
- $C_{\mathbf{E}}(\mathbf{A})$ and **B** have the same atom structure,
- $C_{\mathbf{E}}(\mathbf{A})$ is isomorphic to the complex algebra of the atom structure of \mathbf{B} ,
- $C_{\mathbf{E}}(\mathbf{A})$ is the completion of \mathbf{B} ,
- there is a subalgebra $\mathbf{A}' \subseteq C_{\mathbf{E}}(\mathbf{A})$ with $\mathbf{A}' \cong \mathbf{A}$,
- every finitely generated subalgebra of **B** is finite,
- **B** is representable,
- **B** is not completely representable,
- $C_{\mathbf{E}}(\mathbf{A})$ is not representable,
- $C_{\mathbf{E}}(\mathbf{A})$ is isomorphic to the relation algebraic reduct of a complete atomic q-dimensional cylindric algebra $\mathbf{Ca}(B_q(C_{\mathbf{E}}(\mathbf{A}))) \in \mathsf{CA}_q$ such that $\mathbf{Ca}(B_q(C_{\mathbf{E}}(\mathbf{A}))) \notin \mathsf{SNr}_q\mathsf{CA}_{q+1}$.

Thus the atom-generated subalgebra **B** of the complete atomic relation algebra $C_{\mathbf{E}}(\mathbf{A})$ is an atomic symmetric integral representable relation algebra with finite finitely-generated subalgebras whose completion $C_{\mathbf{E}}(\mathbf{A})$ contains a copy of the Monk algebra \mathbf{A} .

References

- 1. Ian Hodkinson, Atom structures of cylindric algebras and relation algebras, Ann. Pure Appl. Logic 89 (1997), no. 2-3, 117-148. MR 1490103 (99c:03103)
- 2. J. Donald Monk, Completions of Boolean algebras with operators, Math. Nachr. 46 (1970), 47-55. MR 0277369 (43 # 3102)

DEPARTMENT OF MATHEMATICS, 396 CARVER HALL, IOWA STATE UNIVERSITY, AMES, IOWA 50011-2066, USA *E-mail address*: maddux@iastate.edu

Date: June 15, 2012.