Point-free geometries Foundations and systems

Rafał Gruszczyński
(joint work with Giangiacomo Gerla)

Department of Logic
Nicolaus Copernicus University in Toruń
Poland
Amsterdam 2018

Outline

(1) Point-based vs. point-free geometry
(2) Half-plane structures
(3) Oval structures

Point-based geometry

In Foundations of Geometry by K. Borsuk and W. Szmielew, with reference to David Hilbert's book of the same title, the authors examine structures of the form $\langle\mathbf{P}, \mathfrak{R}, \mathfrak{P}, \mathbf{B}, \mathbf{D}\rangle$, in which:

- \mathbf{P} is a non-empty set of points,
- \mathfrak{L} and \mathfrak{P} are subsets of $\mathcal{P}(\mathbf{P})$,
- B and D are, respectively, ternary and quaternary relation in \mathbf{P}.
- Elements of \mathfrak{Z} and \mathfrak{P} are called, respectively, lines and planes, \mathbf{B} is called betweenness relation and \mathbf{D} equidistance relation.
- We put specific axioms on $\mathbf{P}, \mathfrak{L}, \mathfrak{P}, \mathbf{B}$ and \mathbf{D}, and in this way we obtain a system of geometry that would probably satisfy Euclid and his contemporaries.

Incidence relation

- Sometimes an additional relation in $\mathbf{P} \times \mathfrak{L}$ and $\mathbf{P} \times \mathfrak{P}$ are introduced, the so called incidence relations, in our case will be denoted by ' ϵ '.
- In case p is a point and L is a line we read ' $p \in L$ ' as p is incident with L (similarly for planes)

Ontological commitments of region-based geometry

- Instead of the set of points we have the set of objects that are called solids, regions or spatial bodies. Let \mathbf{R} be the set of all regions.
- \mathbf{R} is ordered by the part of relation.
- The space \mathbf{s} (if is assumed to exists) is usually the unity of \mathbf{R}
- Lines and planes are not elements of \mathbf{R}. Intuitively, \mathbf{R} contains «regular» parts of space.

Points as distributive sets of regions

- Points are either sets of regions or sets of sets of regions. Let Π be the set of all points. Then:

$$
\Pi \subseteq \mathcal{P}(\mathbf{R}) \quad \text { or } \quad \Pi \subseteq \mathcal{P}(\mathcal{P}(\mathbf{R}))
$$

- $\Pi \neq \mathbf{s}$ (the set of all points is not the space).

Figures as sets of points

- A figure is defined in a standard way, as a nonempty set of points:

$$
\mathfrak{F}:=\mathcal{P}_{+}(\Pi) .
$$

- The set of all points is a figure: $\Pi \in \mathfrak{F}$.
- But:

$$
\Pi \cap \mathbf{R}=\emptyset=\Pi \cap \mathfrak{F}
$$

that is points are neither regions nor abstract figures.

- Lines and planes, similarly as in classical geometry, are distributive sets of points: $\mathfrak{L} \cup \mathfrak{B} \subseteq \mathfrak{F}$.

From type-theoretical point of view

- In point-based geometries \mathfrak{F} has the type (*) in a hierarchy of types over the base set.
- In point-free approach it has either the type ((*)) or $(((*)))$.

Summary

(1) $\mathbf{s} \neq \Pi$;
(1) $\mathbf{s} \in \mathbf{R}$ and $\mathbf{s} \notin \mathfrak{F}$ (the space is one of regions and is not an «abstract» figure, that is it is not a distributive set of points);
(1) $x \in \mathbf{R}$ and $x \neq \mathbf{s}$ iff $x \sqsubset \mathbf{s}$ (every region which is different from the space is its part and conversely, every part of the space is a region);
(0) $\Pi \subseteq \mathcal{P}(\mathbf{R})$ or $\Pi \subseteq \mathcal{P}(\mathcal{P}(\mathbf{R}))$ and $\mathfrak{L}, \mathfrak{P} \subseteq \mathfrak{F}$ (all points are sets whose elements are regions or sets of regions; all lines and planes are abstract figures, but they are not parts of \mathbf{s}).

In light of the above remarks we can say that the conditions
(iii)-(iv) are natural assumptions of region-based geometry.

Keywords and goals

(1) A. N. Whitehead and ovate class of regions
(2) open convex subsets of \mathbb{R}^{2} - «the litmus paper»
(3) Aleksander Śniatycki and half-planes
(4) affine geometry
(5) follow geometrical intuitions

Affine geometry

- it is what remains of Euclidean geometry when the congruence relation is abandoned
- geometry of betweenness relation
- study of parallel lines
- Playfair's axiom

Basic notions

We examine triples $\langle\mathbf{R}, \leq, \mathbf{H}\rangle$ in which:

- \mathbf{R} is a non-empty set whose elements are called regions,
- $\langle\mathbf{R}, \leq\rangle$ is a complete Boolean lattice,
- $\mathbf{H} \subseteq \mathbf{R}$ is a set whose elements are called half-planes (we assume that $\mathbf{1}$ and $\mathbf{0}$ are not half-planes).

Specific axioms for half-planes

$$
h \in \mathbf{H} \longrightarrow-h \in \mathbf{H}
$$

Specific axioms for half-planes

$$
\begin{align*}
\forall_{x_{1}, x_{2}, x_{3} \in \mathbf{R}}\left(\exists_{h \in \mathbf{H}}\right. & \forall_{i \in\{1,2,3\}}\left(x_{i} \bigcirc h \wedge x_{i} \bigcirc-h\right) \vee \\
& \exists_{h_{1}, h_{2}, h_{3} \in \mathbf{H}}\left(x_{1} \leq h_{1} \wedge x_{2} \leq h_{2} \wedge x_{3} \leq h_{3} \wedge\right. \tag{H2}\\
& \left.\left.x_{1}+x_{2} \perp h_{2} \wedge x_{1}+x_{3} \perp h_{2} \wedge x_{2}+x_{3} \perp h_{1}\right)\right)
\end{align*}
$$

Lines and parallelity relation

Definition (of a line)

$L \in \mathcal{P}(\mathbf{H})$ is a line iff there is a half-plane h such that $L=\{h,-h\}:$

$$
\begin{equation*}
L \in \mathbb{Z} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{h \in \mathbf{H}} L=\{h,-h\} . \tag{I}
\end{equation*}
$$

Definition (of parallelity relation)

$L_{1}, L_{2} \in \mathcal{L}$ are parallel iff there are half-planes $h \in L_{1}$ and $h^{\prime} \in L_{2}$ which are disjoint:

$$
L_{1} \| L_{2} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{h \in L_{1}} \exists_{h^{\prime} \in L_{2}} h \perp h^{\prime}
$$

In case L_{1} and L_{2} are not parallel we say they intersect and write:
' $L_{1} \nVdash L_{2}$ '.

Specific axioms for half-planes

$$
\begin{equation*}
\forall_{h_{1}, h_{2}, h_{3} \in \mathbf{H}}\left(h_{2} \leq h_{1} \wedge h_{3} \leq h_{1} \longrightarrow h_{2} \leq h_{3} \vee h_{3} \leq h_{2}\right) \tag{H3}
\end{equation*}
$$

Figure: In Beltramy-Klein model there are half-planes contained in a given one but incomparable in terms of \leq. In the picture above h_{1} and h_{2} are both parts of h, yet neither $h_{1} \leq h_{2}$ nor $h_{2} \leq h_{1}$.

Angles and bowties. . .

Definition

- Given two intersecting lines L_{1} and L_{2} by an angle we understand a region x such that for $h_{1} \in L_{1}$ and $h_{2} \in L_{2}$ we have $x=h_{1} \cdot h_{2}$:
x is an angle $\stackrel{\text { df }}{\longleftrightarrow} \exists_{L_{1}, L_{2} \in \mathfrak{Z}}\left(L_{1} \nVdash L_{2} \wedge \exists_{h_{1} \in L_{1}} \exists_{h_{2} \in L_{2}} x=h_{1} \cdot h_{2}\right)$.
- An angle x is opposite to an angle y iff there are $h_{1}, h_{2} \in \mathbf{H}$ such that $x=h_{1} \cdot h_{2}$ and $y=-h_{1} \cdot-h_{2}$.
- A bowtie is the sum of an angle and its opposite.

Notice that every pair $L_{1}=\left\{h_{1},-h_{1}\right\}, L_{2}=\left\{h_{2},-h_{2}\right\}$ of non-parallel lines determines exactly four pairwise disjoint angles: $h_{1} \cdot h_{2}, h_{1} \cdot-h_{2},-h_{1} \cdot h_{2}$ and $-h_{1} \cdot-h_{2}$.

. . . and stripes

Definition

If $L_{1}=\left\{h_{1},-h_{1}\right\}$ and $L_{2}=\left\{h_{2},-h_{2}\right\}$ are parallel, yet distinct, lines and h_{1} and h_{2} are their disjoint sides, then $-h_{1} \cdot-h_{2}$ is stripe.

Examples in the intended model

Figure: Fragments of a bowtie, a stripe and the complement of a stripe. These are all possible non-zero forms of the disjoint union of two distinct half-planes in the intended model. Any of the two shaded triangular areas of the bowtie is an angle.

Specific axioms for half-planes

$$
\begin{align*}
h_{1} \cdot h_{2} \leq & \left(h_{3} \cdot h_{4}\right)+\left(-h_{3} \cdot-h_{4}\right) \longrightarrow \\
& h_{3}=h_{4} \vee h_{1} \cdot h_{2} \leq h_{3} \cdot h_{4} \vee h_{1} \cdot h_{2} \leq-h_{3} \cdot-h_{4} . \tag{H4}
\end{align*}
$$

Figure: A geometrical interpretation of (H4).

Specific axioms for half-planes

$$
\begin{align*}
h_{1} \cdot h_{2} \leq & \left(h_{3} \cdot h_{4}\right)+\left(-h_{3} \cdot-h_{4}\right) \longrightarrow \\
& h_{3}=h_{4} \vee h_{1} \cdot h_{2} \leq h_{3} \cdot h_{4} \vee h_{1} \cdot h_{2} \leq-h_{3} \cdot-h_{4} . \tag{H4}
\end{align*}
$$

Figure: This two situations are excluded by the special case of (H4) in which $h_{1}=h_{2}$.

Points

Definition

Given lines L_{1}, \ldots, L_{k} by a net determined by them we understand the following set:

$$
\left(L_{1} \ldots L_{k}\right):=\left\{g_{1} \cdot \ldots \cdot g_{k} \mid \forall_{i \leqslant k} g_{i} \in L_{i}\right\} .
$$

Lines L_{1}, \ldots, L_{k} split a region x into m parts iff the set:

$$
\left\{x \cdot a \neq \mathbf{0} \mid a \in\left(L_{1} \ldots L_{k}\right)\right\}
$$

has exactly m elements.

Points

Definition

- If $L_{1}, \ldots, L_{k} \in \mathfrak{L}$, an arbitrary element of the Cartesian product $L_{1} \times \ldots \times L_{k}$ will be called an H-sequence.
- An H-sequence $\left\langle h_{1}, \ldots, h_{k}\right\rangle$ is positive iff $\left\{h_{1}, \ldots, h_{k}\right\}$ has a non-zero lower bound, otherwise it is non-positive.
- Two H-sequences $\left\langle h_{1}, \ldots, h_{k}\right\rangle$ and $\left\langle h_{1}^{*}, \ldots, h_{k}^{*}\right\rangle$ are opposite iff for all $i \leqslant n, h_{i}^{*}=-h_{i}$.
- Given a net $\left(L_{1} \ldots L_{k}\right)$, regions $x, y \in\left(L_{1} \ldots L_{k}\right)$ are opposite iff there are positive opposite H-sequences $\left\langle h_{1}, \ldots, h_{k}\right\rangle$ and $\left\langle h_{1}^{*}, \ldots, h_{k}^{*}\right\rangle$ in $L_{1} \times \ldots \times L_{k}$ such that:

$$
x=h_{1} \cdot \ldots \cdot h_{k} \quad \text { and } \quad y=h_{1}^{*} \cdot \ldots \cdot h_{k}^{*} .
$$

Points

Definition

A pseudopoint is any net $\left(L_{1} L_{2}\right)$ such that $L_{1} \times L_{2}$ contains four positive H-sequences.
For any pseudopoint ($L_{1} L_{2}$), the lines L_{1} and L_{2} will be called its determinants. In case we have two pseudopoints $\left(L_{1} L_{2}\right)$ and $\left(L_{1} L_{3}\right)$ we say that they share a determinant L_{1}.

Points

Definition

Lines L_{1}, L_{2} and L_{3} are tied iff $L_{1} \times L_{2} \times L_{3}$ contains two different non-positive and opposite H-sequences.

Non-tied lines

Non-tied lines

h_{1}	h_{3}					
$-h_{1}$						
	h_{2}					
	$-h_{2}$		h_{1}	h_{2}	h_{3}	P
---:	---:	---:	---:			
h_{1}	h_{2}	$-h_{3}$	P			
h_{1}	$-h_{2}$	h_{3}	N			
h_{1}	$-h_{2}$	$-h_{3}$	N			
$-h_{1}$	h_{2}	h_{3}	P			
$-h_{1}$	h_{2}	$-h_{3}$	P			
$-h_{1}$	$-h_{2}$	h_{3}	P			
$-h_{1}$	$-h_{2}$	$-h_{3}$	P			

Tied lines

Definition

A pseudopoint $\left(L_{1} L_{2}\right)$ lies on L_{3} iff L_{1}, L_{2} and L_{3} are tied.

Points

Fact

$\left(L_{1} L_{2}\right)$ lies on both L_{1} and L_{2}.

h_{1}	h_{2}	h_{1}	P
h_{1}	h_{2}	$-h_{1}$	N
h_{1}	$-h_{2}$	h_{1}	P
h_{1}	$-h_{2}$	$-h_{1}$	P
$-h_{1}$	h_{2}	h_{1}	P
$-h_{1}$	h_{2}	$-h_{1}$	P
$-h_{1}$	$-h_{2}$	h_{1}	N
$-h_{1}$	$-h_{2}$	$-h_{1}$	P

Collocation

Definition

Psedopoints $\left(L_{1} L_{2}\right)$ and ($L_{3} L_{4}$) are collocated (in symbols: $\left.\left(L_{1} L_{2}\right) \sim\left(L_{3} L_{4}\right)\right)$ iff $\left(L_{1} L_{2}\right)$ lies on both L_{3} and L_{4}.

Definition

Collocation of pseudopoints is an equivalence relation, therefore points can be defined as its equivalence classes:

$$
\begin{equation*}
\Pi:=\pi / \sim . \tag{dfП}
\end{equation*}
$$

Incidence relation

Definition

$\alpha \in \Pi$ is incident with a line L iff there is a pseudopoint $\left(L_{1} L_{2}\right) \in \alpha$ such that $\left(L_{1} L_{2}\right)$ lies on L.

Betweenness relation

Definition

- $\alpha \in \Pi$ lies in the half-plane h iff there is $\left(L_{1} L_{2}\right) \in \alpha$ such that for every $x \in\left(L_{1} L_{2}\right), x \cdot h \neq \mathbf{0}$.
- A line $L=\{h,-h\}$ lies between points α and β iff α lies in h and β lies in $-h$.

Definition

Points α, β and γ are co-linear iff some three pseudpoints from, respectively, α, β and γ share a determinant L.

Betweenness relation

Definition

A point γ is between points α and β iff there are $P \in \gamma, Q \in \alpha$ and $R \in \beta$ such that:

- P, Q and R share a determinant L (i.e. α, β and γ are co-linear) and
- a determinant L^{\prime} of R which is different from L lies between α and β.

Śniatycki's Theorem

Theorem

Consider an H -structure:

$$
\langle\mathbf{R}, \leq, \mathbf{H}\rangle .
$$

Individual notions of point and line and relational notions of incidence and betweenness are definable in such a way that the corresponding structure $\langle\Pi, \mathfrak{Q}, \epsilon, \mathbf{B}\rangle$ satisfies all axioms of a system of geometry of betweenness and incidence.

Basic notions

We will now consider structures $\langle\mathbf{R}, \leq, \mathbf{O}\rangle$ such that:

- elements of \mathbf{R} are called regions,
- $\leq \subseteq \mathbf{R}^{2}$ is partial order,
- $\mathbf{O} \subseteq \mathbf{R}$ and its elements are called ovals.

First axioms

$\langle\mathbf{R}, \leq\rangle$ is a complete atomless Boolean lattice.
\mathbf{O} is an algebraic closure system in $\langle\mathbf{R}, \leq\rangle$ containing $\mathbf{0}$. \mathbf{O}^{+}is dense in $\langle\mathbf{R}, \leq\rangle$.

The hull operator

Definition

Let hull: $\mathbf{R} \longrightarrow \mathbf{R}$ be the operation such that:

$$
\operatorname{hull}(x):=\bigwedge\{a \in \mathbf{O} \mid x \leq a\} .
$$

For $x \in \mathbf{R}$ the object hull (x) will be called the oval generated by x.

Lines in the oval setting

Definition

By a line we understand a two element set $L=\{a, b\}$ of disjoint ovals, such that for any set of disjoint ovals $\{c, d\}$ with $a \leqslant c$ and $b \leqslant d$ it is the case that $a=c$ and $b=d$:

$$
\begin{align*}
& X \in \mathbb{Q} \stackrel{\text { df }}{\longleftrightarrow} \exists_{a, b \in \mathbf{O}^{+}}(a \perp b \wedge X=\{a, b\} \wedge \tag{dfI}\\
&\left.\forall_{c, d \in \mathbf{O}^{+}}(c \perp d \wedge a \leqslant c \wedge b \leqslant d \longrightarrow a=c \wedge b=d)\right) .
\end{align*}
$$

For a line $L=\{a, b\}$ the elements of L will be called the sides of L.

Lines in the oval setting

Definition

Two lines $L_{1}=\{a, b\}$ and $L_{2}=\{c, d\}$ are paralell iff there is a side of L_{1} which is disjoint from a side of L_{2} :

$$
L_{1} \| L_{2} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{a \in L_{1}} \exists_{b \in L_{2}} a \perp b
$$

In case L_{1} is not parallel to L_{2} we say that L_{1} and L_{2} intersect and write ' $L_{1} \nVdash L_{2}$ '.

Half-planes in the oval setting

Definition

A region x is a half-plane iff $x,-x \in \mathbf{O}^{+}$; the set of all half-planes will be denoted by ' \mathbf{H} ':

$$
\begin{equation*}
x \in \mathbf{H} \stackrel{\mathrm{df}}{\longleftrightarrow}\{x,-x\} \subseteq \mathbf{O}^{+} . \tag{dfH}
\end{equation*}
$$

Half-planes and lines in oval setting

Definition

Let B_{1}, \ldots, B_{n} be non-empty spheres in \mathbb{R}^{2} such that for
$1 \leqslant i \neq j \leqslant n: \mathrm{Cl} B_{i} \cap \mathrm{Cl} B_{j}=\emptyset$. Consider the subspace \mathscr{B}_{n} of \mathbb{R}^{2} induced by $B_{1} \cup \ldots \cup B_{n}$. Put:

- $\mathrm{r} \mathscr{B}_{n}:=\left\{x \mid x\right.$ is a regular open element of $\left.\mathscr{B}_{n}\right\}$
- $\mathbf{O}:=\left\{a \in \mathrm{r} \mathscr{B}_{n} \mid a=\bigcup_{1 \leqslant i \leqslant n} B_{n} \vee \exists_{1 \leqslant i \leqslant n} \exists_{b \in \mathrm{Conv}} a=B_{i} \cap b\right\}$

We will call $\mathbb{B}_{n}:=\left\langle\mathrm{r} \mathscr{B}_{n}, \subseteq, \mathbf{O}\right\rangle$ the n-sphere structure.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_{3}.

Fact

For every $n \in \mathbb{N}, \mathbb{B}_{n}$ is a complete Boolean lattice and the axioms (01) and (02) are satisfied in \mathbb{B}_{n}.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_{3}.

Fact

For every $n \in \mathbb{N}$, the set of lines of \mathbb{B}_{n} contains sets $\left\{B_{i} \cap h, B_{i} \cap-h\right\}$, where h is a half-plane in the prototypical structure \mathbb{R}^{2} and both $B_{i} \cap h$ and $B_{i} \cap-h$ are non-empty. Two lines contained in different balls are always parallel.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_{1}.

Fact

In \mathbb{B}_{1} the set of lines is equal to the set of all unordered pairs of the form $\left\{B_{1} \cap h, B_{1} \cap-h\right\}$. The sides of a line in \mathbb{B}_{1} are half-planes in this structure.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_{2}.

Fact

B_{1} and B_{2} are the only half-planes of \mathbb{B}_{2} and thus $\left\{B_{1}, B_{2}\right\}$ is the only line of \mathbb{B}_{2} whose sides are half-planes. This line is parallel to every other line. In general, in \mathbb{B}_{n} for $n \geqslant 2$ any pair $\left\{B_{i}, B_{j}\right\}$ with $i \neq j$ is a line parallel to every line in \mathbb{B}_{n}.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_{3}.

Fact

There are no half-planes in \mathbb{B}_{n} for $n \geqslant 3$, and thus there are no lines whose sides are half-planes.

Specific axioms

Definition

A finite partition of the universe $\mathbf{1}$ is a set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbf{R}$ whose elements are pairwise disjoint and such that $\bigvee\left\{x_{1}, \ldots, x_{n}\right\}=\mathbf{1}$. For a partition $P=\left\{x_{1}, \ldots, x_{n}\right\}$ and $x \in \mathbf{R}$ by the partition of x induced by P we understand the following set:

$$
\left\{x \cdot x_{i} \mid 1 \leqslant i \leqslant n \wedge x \bigcirc x_{i}\right\} .
$$

The sides of a line form a partition of $\mathbf{1}$; equivalently: the sides of a line are half-planes.

Specific axioms

For any $a, b, c \in \mathbf{O}$ which are not aligned there is a line which separates a from $\operatorname{hull}(b+c)$.

Specific axioms

If distinct lines L_{1} and L_{2} both cross an oval a, then they split a in at least three.

Figure: L_{1} and L_{2} split the oval into 3 parts, while L_{3} and L_{4} split it into 4 parts.

Specific axioms

No half-plane is part of any stripe and any angle.
The purpose of (06) is to prove that parallelity of lines is transitive.

Figure: In Beltramy-Klein model: h is a part of the angle $h_{2} \cdot-h_{1}$.

O-structures

Definition

A triple $\langle\mathbf{R}, \leq, \mathbf{O}\rangle$ is an O -structure iff $\langle\mathbf{R}, \leq, \mathbf{O}\rangle$ satisfies axioms (00)-(06).

Main theorems

Theorem

Let $\mathfrak{D}=\langle\mathbf{R}, \leqslant, \mathbf{O}\rangle$ be an O-structure and $\mathfrak{D}^{\prime}:=\langle\mathbf{R}, \leqslant, \mathbf{O}, \mathbf{H}\rangle$ be the structure obtained from \mathfrak{D} by defining \mathbf{H} as the set of all ovals whose complements are ovals. Then \mathfrak{D}^{\prime} satisfies all axioms for H-structures.

Theorem

If \mathfrak{D}^{\prime} is the extension of an O-structure \mathfrak{D}, then individual notions of point and line and relational notions of incidence and betweenness are definable from the operations and notions of \mathfrak{D}^{\prime} in such a way that all the axioms of a system of affine geometry are satisfied by the corresponding structure $\langle\mathbf{P}, \mathfrak{L}, \epsilon, \mathbf{B}\rangle$.

Support

Research supported by National Science Center, Poland, grant Applications of mereology in systems of point-free geometry, no. 2014/13/B/HS1/00766.

The End

