Isotropy Groups of Quasi-Equational Theories

Jason Parker (joint with Pieter Hofstra and Philip Scott, University of Ottawa)

Brandon University Brandon, Manitoba

Algebra | Coalgebra Seminar January 7, 2021

Introduction

- **Isotropy** is a (new) mathematical phenomenon with manifestations in category theory, algebra, and theoretical computer science.
- We will see that isotropy encodes a generalized notion of conjugation or inner automorphism for many prominent categories in mathematics.

Motivation

• Recall that an automorphism α of a group G is *inner* if there is an element $s \in G$ such that α is given by *conjugation* with s, i.e.

$$(g \in G)$$
 $\alpha(g) = sgs^{-1}.$

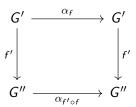
 It turns out that the inner automorphisms of a group can be characterized without mentioning conjugation or group elements at all!

Motivation

• To see this, observe first that if α is an inner automorphism of a group G (induced by $s \in G$), then for each group morphism $f: G \to H$ with domain G we can 'push forward' α to define an inner automorphism

$$\alpha_f: H \xrightarrow{\sim} H$$

by conjugation with $f(s) \in H$ (so that $\alpha_{id_G} = \alpha$), and this family of automorphisms $(\alpha_f)_f$ is *coherent*, in the sense that it satisfies the following *naturality* property: if $f: G \to G'$ and $f': G' \to G''$ are group homomorphisms, then the following diagram commutes:



Bergman's Theorem

For a group G, let us call an *arbitrary* family of automorphisms

$$\left(\alpha_f: \operatorname{\mathbf{cod}}(f) \xrightarrow{\sim} \operatorname{\mathbf{cod}}(f)\right)_{\operatorname{\mathbf{dom}}(f)=G}$$

with the above naturality property an extended inner automorphism of G.

Theorem (Bergman [1])

Let G be a group and $\alpha: G \xrightarrow{\sim} G$ an automorphism of G. Then α is an inner automorphism of G iff there is an extended inner automorphism $(\alpha_f)_f$ of G with $\alpha = \alpha_{\mathrm{id}_G}$.

This provides a completely *element-free* characterization of inner automorphisms of groups! They are exactly those group automorphisms that are 'coherently extendible' along morphisms out of the domain.

Covariant Isotropy

- We have a functor $\mathcal{Z}: \mathbf{Group} \to \mathbf{Group}$ that sends any group G to its group of extended inner automorphisms $\mathcal{Z}(G)$. We refer to \mathcal{Z} as the *covariant isotropy group (functor)* of the category **Group**.
- ullet In fact, any category ${\mathbb C}$ has a covariant isotropy group (functor)

$$\mathcal{Z}_{\mathbb{C}}:\mathbb{C}\to \textbf{Group}$$

that sends each object $C \in \mathbb{C}$ to the group of extended inner automorphisms of C, i.e. families of automorphisms

$$\left(\alpha_f : \operatorname{cod}(f) \xrightarrow{\sim} \operatorname{cod}(f)\right)_{\operatorname{dom}(f)=C}$$

in $\mathbb C$ with the same naturality property as before, i.e. natural automorphisms of the projection functor $C/\mathbb C \to \mathbb C$.

Covariant Isotropy

- We can also turn Bergman's characterization of inner automorphisms in **Group** into a *definition* of inner automorphisms in an arbitrary category \mathbb{C} : if $C \in \mathbb{C}$, we say that an automorphism $\alpha : C \xrightarrow{\sim} C$ is *inner* if there is an extended inner automorphism $(\alpha_f)_f \in \mathcal{Z}_{\mathbb{C}}(C)$ with $\alpha_{\operatorname{id}_C} = \alpha$.
- Notice that **Group** is the category of (set-based) *models* of an *algebraic theory*, i.e. a set of equational axioms between terms, namely the theory $\mathbb{T}_{\mathsf{Grp}}$ of groups. So $\mathsf{Group} = \mathbb{T}_{\mathsf{Grp}}\mathsf{mod}$.
- We will generalize ideas from the proof of Bergman's Theorem to give a 'syntactic' characterization of the (extended) inner automorphisms of $\mathbb{T}\mathbf{mod}$, i.e. of the covariant isotropy group of $\mathbb{T}\mathbf{mod}$, for any so-called *quasi-equational* theory \mathbb{T} .

Quasi-Equational Theories

- What is a quasi-equational theory? (Also known as: partial Horn theory, essentially algebraic theory, cartesian theory, finite limit theory.)
- First, we need the notion of a signature Σ , which consists of a non-empty set Σ_{Sort} of sorts, and a set Σ_{Fun} of (typed) function/operation symbols.
- For example, the signature for *groups* has one sort X and three function symbols $\cdot: X \times X \to X$, $^{-1}: X \to X$, and e: X. The signature for *categories* has two sorts O, A and four function symbols $\operatorname{dom}, \operatorname{cod}: A \to O, \operatorname{id}: O \to A, \operatorname{and} \circ: A \times A \to A.$

Quasi-Equational Theories

- We can then form the set $\mathbf{Term}(\Sigma)$ of terms over Σ , constructed from variables and function symbols, as well as the set $\mathbf{Horn}(\Sigma)$ of Horn formulas over Σ , which are finite conjunctions of equations between terms.
- A quasi-equational theory over a signature Σ is then a set of implications (the axioms of \mathbb{T}) of the form $\varphi \Rightarrow \psi$, with $\varphi, \psi \in \mathbf{Horn}(\Sigma)$ (see [6]).
- The operation symbols of a quasi-equational theory are only required to be *partially* defined. If t is a term, we write $t \downarrow$ as an abbreviation for t = t, meaning 't is defined'.

• Any algebraic theory, whose axioms all have the form $T\Rightarrow \psi$, where T is the empty conjunction. E.g. the theories of sets, semigroups, (commutative) monoids, (abelian) groups, (commutative) rings with unit, etc. For example, the theory $T_{\mathbf{Grp}}$ of groups has the following axioms:

 The theories of categories, groupoids, categories with a terminal object, and cartesian (i.e. finitely complete) categories. E.g. two of the axioms of the theory of categories are

$$g \circ f \downarrow \Rightarrow \mathsf{dom}(g) = \mathsf{cod}(f),$$

$$\mathsf{dom}(g) = \mathsf{cod}(f) \Rightarrow g \circ f \downarrow .$$

- The theory of strict monoidal categories.
- The theory of functors $\mathcal{J} \to \mathbb{T}\mathbf{mod}$ for a small category \mathcal{J} and quasi-equational theory \mathbb{T} . In particular, the theory of presheaves $\mathcal{J} \to \mathbf{Set}$.

Proof of Bergman's Theorem

- Let us focus on a specific idea in the proof of Bergman's Theorem.
- Consider the group $G\langle \mathbf{x}\rangle$ obtained from G by freely adjoining an indeterminate element \mathbf{x} . Elements of $G\langle \mathbf{x}\rangle$ are (reduced) group words in \mathbf{x} and elements of G.
- The underlying set of $G\langle \mathbf{x}\rangle$ can be endowed with a *substitution* monoid structure: given $w_1, w_2 \in G\langle \mathbf{x}\rangle$, we set $w_1 \cdot w_2$ to be the reduction of $w_1[w_2/\mathbf{x}]$, and the unit is \mathbf{x} itself.
- If $w \in G(\mathbf{x})$, w commutes generically with the group operations if:
 - ▶ In $G\langle \mathbf{x}_1, \mathbf{x}_2 \rangle$, the reduction of $w[\mathbf{x}_1/\mathbf{x}]w[\mathbf{x}_2/\mathbf{x}]$ is $w[\mathbf{x}_1\mathbf{x}_2/\mathbf{x}]$;
 - ▶ In $G(\mathbf{x})$, the reduction of w^{-1} is $w[\mathbf{x}^{-1}/\mathbf{x}]$;
 - ▶ In $G\langle \mathbf{x} \rangle$, the reduction of $w[e/\mathbf{x}]$ in $G\langle \mathbf{x} \rangle$ is e.

Proof of Bergman's Theorem

• E.g. if $g \in G$, then the word $gxg^{-1} \in G\langle x \rangle$ commutes generically with the group operations:

$$parbolder g x_1 g^{-1} g x_2 g^{-1} \sim g x_1 x_2 g^{-1}$$

$$(gxg^{-1})^{-1} \sim (g^{-1})^{-1}x^{-1}g^{-1} \sim gx^{-1}g^{-1}$$

- $geg^{-1} \sim gg^{-1} \sim e$.
- Let $\mathcal{Z}(G)$ be the group of extended inner automorphisms of G, and let $Inv(G\langle \mathbf{x}\rangle)$ be the subgroup of *invertible* elements of the substitution monoid $G\langle \mathbf{x}\rangle$. (E.g. $g\mathbf{x}g^{-1}$ is invertible, with inverse $g^{-1}\mathbf{x}g$.)
- Then the proof of Bergman's Theorem shows that the group $\mathcal{Z}(G)$ is isomorphic to the subgroup of $Inv(G\langle \mathbf{x}\rangle)$ consisting of all words that commute generically with the group operations.

The Isotropy Group of a Quasi-Equational Theory

- Fix a quasi-equational theory $\mathbb T$ over a signature Σ , and let $\mathbb T \mathbf{mod}$ be the category of (set-based) models of $\mathbb T$. For simplicity, we will generally assume (in this talk) that $\mathbb T$ is single-sorted.
- We will now give a logical/syntactic characterization of the covariant isotropy group

$$\mathcal{Z}_{\mathbb{T}}: \mathbb{T}\mathsf{mod} \to \mathsf{Group}$$

of Tmod.

• Fix $M \in \mathbb{T}\mathbf{mod}$. As for groups, we can construct a \mathbb{T} -model $M\langle \mathbf{x} \rangle$, which is the coproduct of M with the free \mathbb{T} -model on one generator \mathbf{x} . Elements of $M\langle \mathbf{x} \rangle$ are (equivalence classes of) Σ -terms over \mathbf{x} and elements of M. We can then endow the underlying set of $M\langle \mathbf{x} \rangle$ with a substitution monoid structure, in the same way as for groups.

The Isotropy Group of a Quasi-Equational Theory

In my thesis, I proved:

Theorem ([7])

Let $\mathbb T$ be a quasi-equational theory over a (single-sorted) signature Σ . For any $M \in \mathbb T$ mod, the covariant isotropy group $\mathcal Z_{\mathbb T}(M)$, i.e. the group of extended inner automorphisms of M, is isomorphic to the group of invertible elements t of the substitution monoid $M\langle \mathbf x \rangle$ that commute generically with the function symbols of Σ , in the sense that if f is any f n-ary function symbol of f, then

$$t[f(\mathbf{x}_1,\ldots,\mathbf{x}_n)/\mathbf{x}]=f(t[\mathbf{x}_1/\mathbf{x}],\ldots,t[\mathbf{x}_n/\mathbf{x}])$$

holds in $M\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle$ (the coproduct of M with the free \mathbb{T} -model on n generators $\mathbf{x}_1, \dots, \mathbf{x}_n$).

The Isotropy Group of a Quasi-Equational Theory

• In particular, an automorphism $\alpha: M \xrightarrow{\sim} M$ in \mathbb{T} **mod** is *inner* iff there is some $t \in \mathcal{Z}_{\mathbb{T}}(M)$ that *induces* α , i.e.

$$(m \in M)$$
 $\alpha(m) = t[m/x] \in M.$

• Thus, Bergman's (syntactic) characterization of the (extended) inner automorphisms of $\mathbf{Group} = \mathbb{T}_{\mathbf{Grp}}\mathbf{mod}$ extends to the category $\mathbb{T}\mathbf{mod}$ of (set-based) models of any quasi-equational theory \mathbb{T} .

- If $\mathbb T$ is the theory of sets, then $\mathbb T$ has trivial isotropy group, i.e. $\mathcal Z_{\mathbb T}(S)\cong \{\mathbf x\}$ for any set S, so the only inner automorphism of a set is the *identity* function.
- If $\mathbb T$ is the theory of groups, then Bergman proved $\forall G \in \mathbb T \mathbf{mod} = \mathbf{Group}$ that

$$\mathcal{Z}_{\mathbb{T}}(G)\cong\{g\mathbf{x}g^{-1}\in G\langle\mathbf{x}\rangle\mid g\in G\}\cong G.$$

• If $\mathbb T$ is the theory of monoids, then $\forall M \in \mathbb T \mathbf{mod} = \mathbf{Mon}$ we have

$$\mathcal{Z}_{\mathbb{T}}(M) \cong \{m\mathbf{x}m^{-1} \in M\langle \mathbf{x}\rangle \mid m \text{ is invertible in } M\} \cong \mathbf{Inv}(M).$$

ullet If ${\mathbb T}$ is the theory of abelian groups, then $orall G\in {\mathbb T}{f mod}={f Ab}$ we have

$$\mathcal{Z}_{\mathbb{T}}(G)\cong\{\mathbf{x},-\mathbf{x}\}\cong\mathbb{Z}_{2}.$$

- If $\mathbb T$ is the theory of commutative monoids or unital rings, then the isotropy group of $\mathbb T$ is trivial.
- If $\mathbb T$ is the theory of (not necessarily commutative) unital rings, then $\forall R \in \mathbb T \mathbf{mod} = \mathbf{Ring}$ we have

$$\mathcal{Z}_{\mathbb{T}}(R) \cong \{r\mathbf{x}r^{-1} \in R\langle \mathbf{x}\rangle \mid r \in R \text{ is a unit}\} \cong \mathbf{Unit}(R).$$

• If \mathbb{T} is the theory of categories, groupoids, or categories with a terminal object, then the isotropy group of \mathbb{T} is trivial.

 \bullet If $\mathbb T$ is the theory of strict monoidal categories, then for any strict monoidal category $\mathbb C$ we have

$$\mathcal{Z}_{\mathbb{T}}(\mathbb{C})\cong \mathsf{Inv}\left(\mathbb{C}_{O},\otimes^{\mathbb{C}},e^{\mathbb{C}}
ight),$$

the group of invertible elements of the object monoid $(\mathbb{C}_O, \otimes^{\mathbb{C}}, e^{\mathbb{C}})$ of \mathbb{C} . In particular, if $F: \mathbb{C} \xrightarrow{\sim} \mathbb{C}$ is a (strict monoidal) automorphism of a strict monoidal category \mathbb{C} , then F is *inner* iff there is some invertible object $c \in \mathbb{C}$ such that F is given by *conjugation* with c, i.e.

$$(a \in \mathbb{C}_O) \qquad \qquad F(a) = c \otimes a \otimes c^{-1}$$

and

$$(f \in \mathbb{C}_A) \qquad \qquad F(f) = \mathrm{id}_c \otimes f \otimes \mathrm{id}_{c^{-1}}.$$

Isotropy Groups of Functor Categories

- We can also characterize the covariant isotropy groups of *functor* categories of the form $\mathbb{T}\mathbf{mod}^{\mathcal{J}}$, for a quasi-equational theory \mathbb{T} and small category \mathcal{J} . In particular, we can characterize the covariant isotropy groups of presheaf categories $\mathbf{Set}^{\mathcal{J}}$.
- Fix a quasi-equational theory \mathbb{T} . Given a small category \mathcal{J} , we can define a quasi-equational theory $\mathbb{T}^{\mathcal{J}}$ whose models are functors $\mathcal{J} \to \mathbb{T}\mathbf{mod}$, i.e.

 $\mathbb{T}^{\mathcal{J}}\mathsf{mod} \cong \mathbb{T}\mathsf{mod}^{\mathcal{J}}.$

Isotropy Groups of Functor Categories

In my thesis, I then proved the following theorem:

Theorem ([7])

Let $\mathbb T$ be a (single-sorted) quasi-equational theory (satisfying a few technical assumptions), and let $\mathcal J$ be a small category, with $\mathbf{Aut}(\mathbf{Id}_{\mathcal J})$ the group of natural automorphisms of $\mathbf{Id}_{\mathcal J}: \mathcal J \to \mathcal J$ (which we may call the \mathbf{global} isotropy group of $\mathcal J$). For any functor $F: \mathcal J \to \mathbb T \mathbf{mod}$, we have

$$\mathcal{Z}_{\mathbb{T}\text{mod}^{\mathcal{J}}}(F) \cong \text{lim}(\mathcal{Z}_{\mathbb{T}} \circ F) \times \text{Aut}(\text{Id}_{\mathcal{J}}) \in \text{Group}.$$

In particular, for any functor $F: \mathcal{J} \to \textbf{Set}$, we have

$$\mathcal{Z}_{\mathbf{Set}^{\mathcal{J}}}(F) \cong \mathbf{Aut}(\mathbf{Id}_{\mathcal{J}}).$$

Isotropy Groups of Functor Categories

• In particular, if $F: \mathcal{J} \to \mathbf{Set}$ is a functor and $\alpha: F \xrightarrow{\sim} F$ is an automorphism, then α is *inner* iff there is some $\psi \in \mathbf{Aut}(\mathbf{Id}_{\mathcal{J}})$ with

$$(k \in \mathcal{J})$$
 $\alpha_k = F(\psi_k) : F(k) \xrightarrow{\sim} F(k).$

- So the covariant isotropy group functor $\mathcal{Z}: \mathbf{Set}^{\mathcal{J}} \to \mathbf{Group}$ is constant on the global isotropy group $\mathbf{Aut}(\mathsf{Id}_{\mathcal{J}})$ of \mathcal{J} .
- This contrasts dramatically with the *contravariant* isotropy group functor $(\mathbf{Set}^{\mathcal{J}})^{\mathsf{op}} \to \mathbf{Group}$, which is *representable* (cf. [3]).

Isotropy Groups of *G*-Sets

- For any group G, the covariant isotropy group functor
 Z: Set^G → Group of the category of G-sets is constant on the centre Z(G) of the group G.
- More generally, for any monoid M, the covariant isotropy group functor $\mathcal{Z}: \mathbf{Set}^M \to \mathbf{Group}$ of the category of M-sets is *constant* on the group $\mathbf{Inv}(Z(M))$ of invertible elements of the centre of M.

Connections with Topos Theory

- If $\mathbb T$ is a quasi-equational theory, then $\mathbb T$ has a classifying topos $\mathcal B(\mathbb T)$, which is a cocomplete topos that has a universal model of $\mathbb T$ and classifies all topos-theoretic models of $\mathbb T$ ([4], [5]).
- It has been shown that any Grothendieck topos \mathcal{E} has a canonical internal group object called the *isotropy group* of the topos, which acts canonically on every object of the topos and formally generalizes the notion of conjugation ([3]).
- The covariant isotropy group $\mathcal{Z}_{\mathbb{T}}$ of a quasi-equational theory \mathbb{T} is in fact the isotropy group object of the classifying topos $\mathcal{B}(\mathbb{T})$ of \mathbb{T} ([3], [4]).

Conclusions

- Bergman's element-free characterization of the inner automorphisms of groups can be used to define inner automorphisms in arbitrary categories.
- We have extended Bergman's *syntactic* characterization of the (extended) inner automorphisms of groups, i.e. of the covariant isotropy group of $\mathbf{Group} = \mathbb{T}_{\mathbf{Grp}}\mathbf{mod}$, to the covariant isotropy group of $\mathbb{T}\mathbf{mod}$ for *any* quasi-equational theory \mathbb{T} .
- Using this characterization, we have obtained concrete descriptions of the (extended) inner automorphisms in several different categories: $\mathbf{Set}, \mathbf{Group}, \mathbf{Mon}, \mathbf{Ab}, \mathbf{Ring}, \mathbf{Cat}, \mathbf{StrMonCat}, \mathbb{T}\mathbf{mod}^{\mathcal{J}}, \mathbf{Set}^{\mathcal{J}}, \dots$
- This work also represents a contribution to the more general project of characterizing the isotropy group objects of Grothendieck toposes.

Some Future Directions

- Given (disjoint) theories \mathbb{T}_1 and \mathbb{T}_2 , characterize the covariant isotropy group of the category of models of \mathbb{T}_1 in \mathbb{T}_2 mod (i.e. the category of models of $\mathbb{T}_1 \otimes \mathbb{T}_2$) in terms of the covariant isotropy groups of \mathbb{T}_1 and \mathbb{T}_2 (subsuming the examples of strict monoidal categories and functor categories $\mathbb{T}\mathbf{mod}^{\mathcal{J}}$).
- Characterize the covariant isotropy groups of Grothendieck toposes, i.e. categories $Sh(\mathbb{C}, J)$ in terms of the (small) site presentation (\mathbb{C}, J) . Categories of the form $Sh(\mathbb{C}, J)$ are categories of models for an (infinitary) quasi-equational theory.
- Characterize covariant isotropy *monoids*, in connection with Freyd's notion of core algebras ([2]) in the study of polymorphism.

Thank you!

Jason Parker

Isotropy Groups of Quasi-Equational Theories

References I

- G. Bergman. An inner automorphism is only an inner automorphism, but an inner endomorphism can be something strange. Publicacions Matematiques 56, 91-126, 2012.
- P. Freyd. Core algebra revisited. Theoretical Computer Science 374, 193-200, 2007.
- J. Funk, P. Hofstra, B. Steinberg. Isotropy and crossed toposes. Theory and Applications of Categories 26, 660-709, 2012.
- P. T. Johnstone. *Sketches of an Elephant: A Topos Theory Compendium*. Clarendon Press, 2002.
- S. Mac Lane, I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer-Verlag, 1992.
- E. Palmgren, S.J. Vickers. Partial Horn logic and cartesian categories. Annals of Pure and Applied Logic 145, 314-353, 2007.

References II

J. Parker. Isotropy Groups of Quasi-Equational Theories. PhD thesis, University of Ottawa, 2020.