
Decidability and complexity for substructural logics with
weakening or contraction

Revantha Ramanayake

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
University of Groningen

Algebra|Coalgebra Seminar (ILLC) - November 3, 2021

1

I This talk is about decidability & complexity results for substructural logics

I Substructural logics are obtained by omitting some of the structural
properties of intuitionistic/classical logic. . .

X ,Y ,Y ⇒ Π
contraction

X ,Y ⇒ Π

X ⇒ Π weakening
X ,Y ⇒ Π

X ,A,B,Y ⇒ Π
exchange

X ,B,A,Y ⇒ Π

I . . . and then adding proper axioms (many, many, many possibilities)

(p → q) ∨ (q → p) ¬(p · q) ∨ ((p ∧ q)→ p · q) pn−1 → pn

¬p ∨ ¬¬p ¬(p · q)n ∨ ((p ∧ q)n−1 → (p · q)n) . . .

more connectives! some connectives (that can be conflated in presence of
structural rules) separate in their absence. E.g. omit w or c: ∧ separates
as ∧ and ·. Omit e: implication → separates as left and right implication.

I resource-consciousness (lots more expressivity, greater complexity)

I Many applications

software program verification static analysis of run-time memory allocation
fuzzy systems modelling formal reasoning about vagueness
computational linguistics syntax and syntactic types of natural language

1

Theorem (R, 2020)

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

The above logics are in Fωω (hyper-Ackermannian upper bound)

An immediate consequence:

Corollary

The fuzzy logic MTL = FLew + (p → q) ∨ (q → p) is in Fωω

2

Theorem (R, 2020)

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

The above logics are in Fωω (hyper-Ackermannian upper bound)

I FLec ≈ intuitionistic sequent calculus omitting weakening

FLew ≈ intuitionistic sequent calculus omitting contraction

I decidability problem: F provable in FLec + Ax? (F ∈ FLec + Ax?)

I Hypersequent calculi extend sequent calculi (multisets of sequents) and
support cut-free proof systems for many substructural logics

2

Theorem (R, 2020)

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

The above logics are in Fωω (hyper-Ackermannian upper bound)

I Algebraic semantics as subvarieties of FL-algebras

A = 〈A,∨,∧, ·, \, /, 1, 0〉 is FL-algebra if 〈A,∨,∧, ·, \, /, 1〉 is a residuated
lattice and 0 ∈ A

I A FL-algebra satisfying

x · y ≤ y · x (∀x , y ∈ A) is called commutative

0 ≤ x ≤ 1 (∀x ∈ A) is called weakenable (integral & zero-bounded)

x ≤ x · x (∀x ∈ A) is called contractive

I FLec = logic of commutative contractive FL-algebras
FLew = logic of commutative weakenable FL-algebras

2

Theorem (R, 2020)

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

The above logics are in Fωω (hyper-Ackermannian upper bound)

I Fω = decision problems whose running time is primitive recursive
functions composed with single Ackermannian function

Fωω = decision problems whose running time is multiply-recursive
functions composed with single hyper-Ackermannian function

I Urquhart 1999 showed that FLec is in Fω with matching lower bound

2

This talk is joint work and based on the following.

1. Extended Kripke lemma and decidability for hypersequent substructural
logics. RR. LICS 2020.

2. Decidability and Complexity in Weakening and Contraction Hypersequent
Substructural Logics.
A. R. Balasubramanian, Timo Lang, RR. LICS 2021.

A. R. Balasubramanian
TU Munich

Timo Lang
UCL

↪→ starting point Kripke and Urquhart
3

Kripke’s proof of decidability applied to FLec (1959)

Multiplicative fragment

p ⇒ p
X ,Y ,Y ⇒ C

contraction
X ,Y ⇒ C

A,B,X ⇒ C

A · B,X ⇒ C

X ⇒ A Y ⇒ B
X ,Y ⇒ A · B

A,X ⇒ B

X ⇒ A→ B

X ⇒ A B,Y ⇒ C

A→ B,X ,Y ⇒ C

⇒ 1
X ⇒ C

1,X ⇒ C
X ⇒
X ⇒ 0 0⇒

Additive rules

Ai ,X ⇒ C

A1 ∧ A2,X ⇒ C

X ⇒ A X ⇒ B
X ⇒ A ∧ B

A,X ⇒ C B,X ⇒ C

A ∨ B,X ⇒ C

X ⇒ A1

X ⇒ A1 ∨ A2

No cut-rule!

↪→ backward proof search tree
4

Checking provability in FLec via backward proof search

1. INPUT: formula OUTPUT: YES (it is provable) / NO

2. Backward proof search all possible premises as children of conclusion

r ∨ s ⇒ p q ⇒ t ⇒ p q, r ∨ s ⇒ t p → q, r ⇒ t p → q, s ⇒ t

p → q, r ∨ s ⇒ t

Only subformulas of input occur: cut-elimination↪→subformula property

3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

5

Checking provability in FLec via backward proof search

1. INPUT: formula OUTPUT: YES (it is provable) / NO

2. Backward proof search all possible premises as children of conclusion

r ∨ s ⇒ p q ⇒ t ⇒ p q, r ∨ s ⇒ t p → q, r ⇒ t p → q, s ⇒ t

p → q, r ∨ s ⇒ t

Only subformulas of input occur: cut-elimination↪→subformula property

3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

5

Checking provability in FLec via backward proof search

1. INPUT: formula OUTPUT: YES (it is provable) / NO

2. Backward proof search all possible premises as children of conclusion

r ∨ s ⇒ p q ⇒ t ⇒ p q, r ∨ s ⇒ t p → q, r ⇒ t p → q, s ⇒ t

p → q, r ∨ s ⇒ t

Only subformulas of input occur: cut-elimination↪→subformula property

3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

↪→ no termination since contraction
5

Checking provability in FLec via backward proof search

1. INPUT: formula OUTPUT: YES (it is provable) / NO

2. Backward proof search all possible premises as children of conclusion

Only subformulas of input occur: cut-elimination↪→subformula property

3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

A⇒ B

A,A⇒ B

A,A,A⇒ B

↪→ how to solve contraction/get termination?
5

Structural proof theory: if there’s a problematic rule. . .

↪→ absorbing contraction
6

Structural proof theory: if there’s a problematic rule. . . eliminate it!

↪→ absorbing contraction
6

IDEA: permute contraction rules upwards as much as possible

p, r , r ⇒ q
→Rr , r ⇒ p → q
cr ⇒ p → q

p, r , r ⇒ q

cp, r ⇒ q
→Rr ⇒ p → q

When permutation is impossible. . .

p → q ⇒ p p → q, q ⇒
→Lp → q, p → q, p → q︸ ︷︷ ︸

3

⇒ e.g. no way to permute c above this →L

Absorb c instead of permuting it (i.e. add following variant rules to calculus)

p → q ⇒ p p → q, q ⇒
→L1

p → q, p → q︸ ︷︷ ︸
2

⇒ variant: one implicit contraction

p → q ⇒ p p → q, q ⇒
→L2

p → q ⇒ variant: two implicit contractions

Curry’s lemma
7

We obtain a new calculus by adding the finitely many variant rules.

Lemma (Curry’s lemma: hp contraction in new calculus)

If X ,Y ,Y ⇒ C provable then X ,Y ⇒ C provable with no greater height

We are not yet home since variant rules incorporate some amount of
contraction. . .

. . . so sequents can get bigger upwards

A→ B ⇒ A A→ B,B ⇒
→L2

A→ B ⇒
If |A| � |B| then the left premise is much bigger than the conclusion

↪→ representing sequents
8

Aside. Simplifying the notation: LHS as sequent as n-tuple

Represent the LHS of sequent in a proof of F as element in N|subf(F)|:

Fix an ordering of the subformulas of F

Suppose subf(F) = {p, q, r , r → q}

q, r → q, q, p ⇒ r written as (
p

1,
q

2,
r

0,
r→q

1)⇒ r

↪→ define a branch termination condition
9

Terminating proof search tree via redundancy
ver 1 (repetition check). A repetition of a sequent on the branch is
detected

u0

. . .

u3 = (2, 2)⇒C

uN

uN+1 = (2, 2)⇒C

using 2-tuples just for this example

in general it is |subf(F)|-tuples;

10

Terminating proof search tree via redundancy
ver 1 (repetition check). uN+1 = u3 hence uN+1 is redundant: any proof
above it can be planted at u3

u0

. . .

u3 = (2, 2)⇒C

uN

uN+1 = (2, 2)⇒C

what if uN+1 = (3, 2)?

10

Terminating proof search tree via redundancy
ver 2 (order check).uN+1 ≥ u3 hence uN+1 is redundant: any proof above it
can be made into a proof of u3 of no greater height via Curry’s lemma

u0

. . .

u3 = (2, 2)⇒C

uN

uN+1 = (3, 2)⇒C

(a1, a2) ≤ (b1, b2) ≡ a1 ≤ b1 and a2 ≤ b2

↪→ enough to get finite proof search tree
10

Terminating proof search tree via redundancy

u0

. . .

u3 = (2, 2)⇒C

uN

uN+1 = (3, 2)⇒C

(a1, a2) ≤ (b1, b2) ≡ a1 ≤ b1 and a2 ≤ b2

1. every branch (u0, u1, . . . , uN) is a bad sequence i.e. i < j implies ui 6≤ uj

bad sequences example 1: 5, 2, 1, 0

example 2: (2, 2), (1, 1), (0, 3), (0, 2), (0, 1), (0, 0)

2. (Nk ,≤) is a well-quasi-ordering i.e. every infinite sequence has an
increasing pair ui ≤ uj with i < j
i.e. an infinite sequence cannot be a bad sequence

3. finitely branching tree & no infinite branch = proof search tree finite

↪→ complexity
10

Urquhart’s tight complexity bounds (1999)

1. upper bound: what is the height of the proof-search tree under
redundancy check?
This is the dominant term for complexity

2. No bound in general for bad sequences. After all:

3. (1, 0), (0, 100) or even (1, 0), (0, 1000) . . . i.e. arbitrarily large jumps

4. However no rule in FLec witnesses such a great jump from conclusion to
premise

(for fixed calculus: every premise is some fixed polynomial in size of
conclusion)

↪→ controlled bad sequences
11

Controlled bad sequences

(Figueira, Figueira, Schmitz, Schnoebelen, 2011) (Schmitz, Schnoebelen, 2011)

1. bad sequence a0, a1, . . . is (g , n)-controlled over a normed wqo (A, ‖ ‖,≤A)
if there is a primitive recursive g s.t.

‖a0‖ ≤ n ‖a1‖ ≤ g(n) ‖a2‖ ≤ g(g(n)) ‖ak‖ ≤ g k(n)

and {a ∈ A s.t. ‖a‖ ≤ n} finite for every n ∈ N

2. dominant term in complexity: max length of bad sequence

3. The length function theorem expresses this length. Since

4. ∃ control function g bounding premise size in terms of conclusion

5. FLec decision problem is in Fω i.e. primitive recursive functions composed
with a single application of an Ackermannian function

6. Urquhart showed that this is tight by giving matching lower bounds.

7. Also: implicational fragment is 2EXPTIME -complete (Schmitz, 2016).

↪→ questions? extending to other logics
12

Extending Kripke’s argument to more logics

1. “Meyer had a bit of a problem at this point. He knew that the conclusion
was true. . . but he did not believe it. Visions of [infinite irredundant
sequences] fluttered through his dreams. . . he wanted an argument that he
did believe” (Riche and Meyer, 1998). . . Dickson’s lemma

2. Kripke’s decidability argument is not too sensitive to the form of the proof
rules

3. subformula property, contraction absorption, and suitable wqo to get
finiteness of irredundant proof trees

4. How can we extend to other logics? Some isolated results since 1959

5. sequent calculus meta-language too restrictive for
cut-elimination/subformula property

Solution: extend meta-language to get cut-freeness

In other words: use a different type of proof system where cut-elimination
holds

↪→ hypersequents
13

Hypersequent calculus - a calculus on multisets of sequents

E.g. of a hypersequent p, q ⇒ r | p ∧ q ⇒ | r ⇒ r ∨ p

Example of a hypersequent rule

· · · | · · · | · · · |X1,X2 ⇒ B · · · | · · · | · · · |Y1,Y2 ⇒ C
com· · · | · · · | · · · |X1,Y1 ⇒ B |Y2,Y2 ⇒ C

Hypersequent calculi invented independently (Mints, Pottinger, Avron)

Let HFLe denote hypersequent calculus for FLe

1. lots of extensions of FLe have cut-free hypersequent calculi (Ciabattoni
Galatos Terui 2008)

2. above paper: lots of extensions of FLec and FLew have cut-free
hypersequent calculi. Our results will apply to all these calculi

3. Independent characterisation of extensions via substructural hierarchy

↪→ representing hypersequents
14

Representing hypersequents in (Pf (Nn))n+1

1. Let F0 be empty formula

2. A hypersequent built from formulas F1, . . . ,Fn is written

sequent also called component︷ ︸︸ ︷
X1 ⇒ F0 |X2 ⇒ F0 | . . . |Xk0 ⇒ F0 |

Y1 ⇒ F1 |Y2 ⇒ F1 | . . . |Yk1 ⇒ F1 |
. . .

Z1 ⇒ Fn |Z2 ⇒ Fn | . . . |Zkn ⇒ Fn

↪→ hypersequent is an element of
15

Representing hypersequents in (Pf (Nn))n+1

1. Let F0 be empty formula

2. A hypersequent built from formulas F1, . . . ,Fn is written

{X1,...,Xk0
}∈Pf (Nn)︷ ︸︸ ︷

X1 ⇒ F0 |X2 ⇒ F0 | . . . |Xk0 ⇒ F0 |
Y1 ⇒ F1 |Y2 ⇒ F1 | . . . |Yk1 ⇒ F1 |

. . .

Z1 ⇒ Fn |Z2 ⇒ Fn | . . . |Zkn ⇒ Fn

3. So a hypersequent is an element of

Pf (Nn)× Pf (Nn)× . . .× Pf (Nn)︸ ︷︷ ︸
n+1

↪→ what else to get FLec extensions
15

HFLec extensions: what do we need to extend?

1. absorb contraction by adding variant rules

h1 hN r
h0

original

h1 hN
r (k,l) with h0 k

c h′ l
EC gg

variants k ≤ K , l ≤ L

2. need to show that these variants suffice to eliminate all contractions

3. For (X1, . . . ,Xn+1), (Y1, . . . ,Yn+1) ∈ (Pf (Nn))n+1 define

(X1, . . . ,Xn+1) ≤min (Y1, . . . ,Yn+1) iff ∀y ∈ Yi∃x ∈ Xi (x ≤ y) for every i

4. X ≤min Y means we can go from Y to X by hypersequent Curry’s lemma

5. Using length function theorem for controlled bad sequences for this wqo
(Balasubramanian, 2020): decision problem for each of the FLec
extensions under consideration is in Fωω

6. single application hyper-Ackermannian & multiply-recursive functions

↪→ summary
16

What we have seen so far

INPUT: formula of size n (so at most n subformulas)

branch of naive proof search tree ! sequence in (Pf (Nn))n+1

branch with no hypersequent
hp-contractible to an earlier
hypersequent (order check)

! bad sequence in (Pf (Nn))n+1

no infinite bad sequence (wqo) ! proof search terminates

proof search with order check
& premise size is fixed polynomial in
conclusion

!
a branch is a controlled bad
sequence in (Pf (Nn))n+1

if there is length function theorem:
max length for controlled bad
sequences

!
there is a max length for a
branch ↪→ upper bound

↪→ case of weakening
17

Extensions of HFLew: contraction replaced by weakening

X ⇒ A weakening
X ,Y ⇒ A

1. Prominent logic: monoidal t-norm based fuzzy logic

MTL = FLew + (p → q) ∨ (q → p) prelinearity axiom

Describes the common behaviours of all fuzzy logics based on
left-continuous t-norms

2. Previous argument insufficient when c replaced by w
If we encounter (4, 4) we can prohibit smaller elements like (4, 3). . .

(4, 3)⇒ F
height-preserving weakening

(4, 4)⇒ F

But how to prohibit infinitely many larger elements? (infinite branch)

(4, 4), (4, 5), (4, 6), . . . , (4, 100), . . .

3. Time to go down the Lambek calculus forward proof search

↪→ forward proof search
18

Forward proof search from input F

S0 is the (finite) set of initial sequents built from subformulas in F

Def of S1

u ∈ S0

...
weakening

(how much?)

...
v rw

?w ∈ S1?

u ∈ S0

...
essential

weakening

...
surplus

weakening
v rw

u ∈ S0

...
essential

weakening

...

∃v ′ r
w ′ ∈ S1

surplus

weakening

w 6∈ S1

1. surplus weakening: weakening that is permutable from before r to after r

2. Obtain (S0, S1, . . .) s.t. Si+1 finite and computable from Si

3. what ‘essential” means depends on the rules in the calculus

4. aim: show there exists N s.t. SN+1 = SN

↪→ what else to get FLew extensions
19

What do we need to extend?

1. a hypersequent is an element of (Pf (Nn))n+1

2. For (X1, . . . ,Xd), (Y1, . . . ,Yd) ∈ (Pf (Nn))n+1 define

(X1, . . . ,Xn+1) ≤maj (Y1, . . . ,Yn+1) iff ∀x ∈ Xi∃y ∈ Yi (x ≤ y) for every i

3. X ≤maj Y means that we can go from X to Y by hypersequent Curry
lemma analogue

4. majoring ordering is a wqo so there exists N such that SN+1 = SN

5. Using length function theorem (Balasubramanian 2020) to get max value
for N: each FLew extensions under consideration is in Fωω

↪→ Further questions
20

Further questions

1. Can we find a logic in Fωω − Fω ?

cut-freeness seems to need hypersequents naturally lead to Fωω

2. lower bound and sharper upper bounds for MTL

This was first syntactic proof and first complexity bound for MTL
(many would suspect that more modest bounds should hold)

3. Simpler lower bound problem? lower bounds for FLec / FLew +

X ,X ,Z ⇒ F Y ,Y ,Z ⇒ F
scom

X ,Y ,Z ⇒ F

‘double antecedent, share between premises’
For example

p, q4 ⇒ p3, q2 ⇒
p2, q3 ⇒

What type of (counter?) machine could we embed here?

4. Is uninorm logic HFLe + com decidable ?
Some extensions of HFLe are undecidable: Galatos and St. John, 2021.

21

[1] A. R. Balasubramanian. Complexity of controlled bad sequences over finite
sets of Nd. LICS 2020.

[2] A. Ciabattoni, N. Galatos, K. Terui. From axioms to analytic rules in
nonclassical logics. LICS 2008.

[3] D. Figueira, S. Figueira, S. Schmitz, P. Schnoebelen. Ackermannian and
primitive-recursive bounds with dickson’s lemma. LICS 2011.

[4] N. Galatos, G. St. John. Most simple extensions of FLe are undecidable.
JSL 2021.

[5] S. Kripke. The problem of entailment (abstract). J. Symbolic Logic. 1959.

[6] D. Larchey-Wendling. Constructive Decision via Redundancy-Free
Proof-Search. IJCAR 2018.

[7] J. Riche, R. Meyer. Kripke, Belnap, Urquhart and Relevant Decidability &
Complexity. CSL 1998.

[8] S. Schmitz. Implicational relevance logic is 2-EXPTIME-COMPLETE. J.
Symbolic Logic. 2016.

[9] S. Schmitz, P. Schnoebelen. Multiply-recursive upper bounds with
Higman’s lemma. ICALP 2011.

[10] A.Urquhart. The complexity of decision procedures in relevance logic. II.
J. Symbolic Logic. 1999.

22

