

university of groningen

Decidability and complexity for substructural logics with weakening or contraction

Revantha Ramanayake

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence University of Groningen

Algebra | Coalgebra Seminar (ILLC) - November 3, 2021

- ▶ This talk is about decidability & complexity results for substructural logics
- Substructural logics are obtained by omitting some of the structural properties of intuitionistic/classical logic...

$$\frac{X, Y, Y \Rightarrow \Pi}{X, Y \Rightarrow \Pi} \text{ contraction } \frac{X \Rightarrow \Pi}{X, Y \Rightarrow \Pi} \text{ weakening}$$
$$\frac{X, A, B, Y \Rightarrow \Pi}{\overline{X, B, A, Y \Rightarrow \Pi}} \text{ exchange}$$

... and then adding proper axioms (many, many, many possibilities)

$$\begin{array}{ll} (p \to q) \lor (q \to p) & \neg (p \cdot q) \lor ((p \land q) \to p \cdot q) & p^{n-1} \to p^n \\ \neg p \lor \neg \neg p & \neg (p \cdot q)^n \lor ((p \land q)^{n-1} \to (p \cdot q)^n) & \dots \end{array}$$

more connectives! some connectives (that can be conflated in presence of structural rules) separate in their absence. E.g. omit w or c: \land separates as \land and \cdot . Omit e: implication \rightarrow separates as left and right implication.

- resource-consciousness (lots more expressivity, greater complexity)
- Many applications

software program verification fuzzy systems modelling computational linguistics static analysis of run-time memory allocation formal reasoning about vagueness syntax and syntactic types of natural language

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020) The above logics are in $\mathbf{F}_{\omega^{\omega}}$ (hyper-Ackermannian upper bound)

An immediate consequence:

Corollary The fuzzy logic MTL = FLew + $(p \rightarrow q) \lor (q \rightarrow p)$ is in $F_{\omega^{\omega}}$

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020) Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020) The above logics are in $\mathbf{F}_{\omega^{\omega}}$ (hyper-Ackermannian upper bound)

► FLec ≈ intuitionistic sequent calculus omitting weakening FLew ≈ intuitionistic sequent calculus omitting contraction

- ▶ decidability problem: F provable in FLec + Ax? ($F \in FLec + Ax$?)
- Hypersequent calculi extend sequent calculi (multisets of sequents) and support cut-free proof systems for many substructural logics

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020)

The above logics are in $\mathbf{F}_{\omega^{\omega}}$ (hyper-Ackermannian upper bound)

▶ Algebraic semantics as subvarieties of FL-algebras

 $\mathbf{A} = \langle A, \lor, \land, \cdot, \backslash, /, 1, 0 \rangle \text{ is } FL\text{-algebra if } \langle A, \lor, \land, \cdot, \backslash, /, 1 \rangle \text{ is a residuated lattice and } 0 \in A$

A FL-algebra satisfying

 $x \cdot y \leq y \cdot x \ (\forall x, y \in A)$ is called *commutative*

 $0 \le x \le 1$ ($\forall x \in A$) is called *weakenable* (integral & zero-bounded)

 $x \leq x \cdot x \ (\forall x \in A)$ is called *contractive*

FLec = logic of commutative contractive FL-algebras
 FLew = logic of commutative weakenable FL-algebras

Every extension of FLec that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020) Every extension of FLew that has a cut-free hypersequent calculus is decidable

Theorem (Balasubramanian, Lang, R, 2020) The above logics are in $\mathbf{F}_{\omega^{\omega}}$ (hyper-Ackermannian upper bound)

F_ω = decision problems whose running time is primitive recursive functions composed with single Ackermannian function
 F_ω^ω = decision problems whose running time is multiply-recursive functions composed with single hyper-Ackermannian function

 \blacktriangleright Urquhart 1999 showed that FLec is in \mathbf{F}_{ω} with matching lower bound

This talk is joint work and based on the following.

- 1. Extended Kripke lemma and decidability for hypersequent substructural logics. RR. LICS 2020.
- 2. Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics.

A. R. Balasubramanian, Timo Lang, RR. LICS 2021.

A. R. Balasubramanian TU Munich

Timo Lang UCL

 \hookrightarrow starting point Kripke and Urquhart

Kripke's proof of decidability applied to FLec (1959)

Multiplicative fragment

$p \Rightarrow p$		$\frac{X, Y, Y \Rightarrow C}{X, Y \Rightarrow C}$	- contraction
$\frac{A, B, X}{A \cdot B, X} =$		$\frac{X \Rightarrow A}{X, Y} =$	$\frac{Y \Rightarrow B}{\Rightarrow A \cdot B}$
$\frac{A,X \Rightarrow}{X \Rightarrow A -}$		$\frac{X \Rightarrow A}{A \to B, \lambda}$	$\frac{B, Y \Rightarrow C}{C, Y \Rightarrow C}$
$\rightarrow 1$	$\frac{X \Rightarrow C}{1, X \Rightarrow C}$	$\begin{array}{c} X \Rightarrow \\ X \Rightarrow 0 \end{array}$	$\overline{0} \Rightarrow$

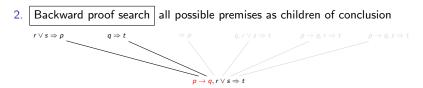
Additive rules

$$\frac{A_i, X \Rightarrow C}{A_1 \land A_2, X \Rightarrow C} \qquad \begin{array}{c} X \Rightarrow A \qquad X \Rightarrow B \\ \hline X \Rightarrow A \land B \\ \hline X \Rightarrow A \land B \\ \hline X \Rightarrow A \land B \\ \hline X \Rightarrow A_1 \\ \hline X \Rightarrow A_1 \lor A_2 \\ \hline \end{array}$$

No cut-rule!

 \hookrightarrow backward proof search tree

1. INPUT: formula OUTPUT: YES (it is provable) / NO

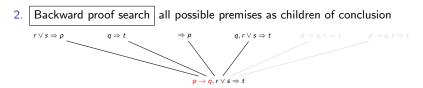


3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

1. INPUT: formula OUTPUT: YES (it is provable) / NO

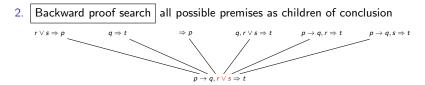


3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

1. INPUT: formula OUTPUT: YES (it is provable) / NO



Only subformulas of input occur: cut-elimination → subformula property

3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

- 1. INPUT: formula OUTPUT: YES (it is provable) / NO
- 2. Backward proof search all possible premises as children of conclusion Only subformulas of input occur: cut-elimination⇔subformula property
- 3. if it terminates then we obtain decision procedure

F is provable iff subtree of proof search tree is a proof

4. No termination since contraction can be applied backwards indefinitely

$$A, A, A \Rightarrow B$$
$$A, A \Rightarrow B$$
$$A \Rightarrow B$$
$$A \Rightarrow B$$

 \hookrightarrow how to solve contraction/get termination?

Structural proof theory: if there's a problematic rule...

 \hookrightarrow absorbing contraction

Structural proof theory: if there's a problematic rule... eliminate it!

 \hookrightarrow absorbing contraction

IDEA: permute contraction rules upwards as much as possible

$$\frac{p, r, r \Rightarrow q}{r, r \Rightarrow p \rightarrow q} \xrightarrow{\rightarrow \mathsf{R}} \qquad \stackrel{\rightarrow}{\longrightarrow} \qquad \frac{p, r, r \Rightarrow q}{p, r \Rightarrow q} \xrightarrow{\mathsf{C}} \qquad \stackrel{\rightarrow}{\longrightarrow} \qquad \frac{p, r, r \Rightarrow q}{r \Rightarrow p \rightarrow q} \xrightarrow{\mathsf{C}} \xrightarrow{\mathsf{R}}$$

When permutation is impossible...

$$\underbrace{\begin{array}{c} p \rightarrow q \Rightarrow p & p \rightarrow q, q \Rightarrow \\ p \rightarrow q, p \rightarrow q, p \rightarrow q}_{3} \Rightarrow \rightarrow L \qquad \text{e.g. no way to permute c above this } \rightarrow L \end{array}$$

Absorb c instead of permuting it (i.e. add following variant rules to calculus)

$$\frac{p \to q \Rightarrow p \qquad p \to q, q \Rightarrow}{\underbrace{p \to q, p \to q}_{2} \Rightarrow} \to \mathsf{L}^{1}$$

 $\frac{p \rightarrow q \Rightarrow p \qquad p \rightarrow q, q \Rightarrow}{p \rightarrow q \Rightarrow} \rightarrow \mathsf{L}^2$

variant: one implicit contraction

variant: two implicit contractions

Curry's lemma

We obtain a new calculus by adding the finitely many variant rules.

Lemma (Curry's lemma: hp contraction in new calculus) If $X, Y, Y \Rightarrow C$ provable then $X, Y \Rightarrow C$ provable with no greater height

We are not yet home since variant rules incorporate some amount of contraction...

... so sequents can get bigger upwards

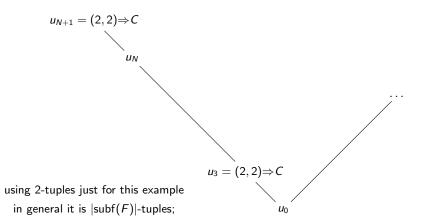
$$\frac{A \to B \Rightarrow A}{A \to B \Rightarrow} \xrightarrow{A \to B, B \Rightarrow} \to L^2$$

If $|A| \gg |B|$ then the left premise is much bigger than the conclusion

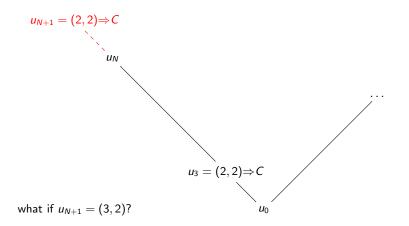
Represent the LHS of sequent in a proof of F as element in $\mathbb{N}^{|\mathsf{subf}(F)|}$: Fix an ordering of the subformulas of F

Suppose subf(F) = {p, q, r, r
$$\rightarrow$$
 q}
q, r \rightarrow q, q, p \Rightarrow r written as $\begin{pmatrix} p & q & r \\ 1, 2, 0, & 1 \end{pmatrix} \Rightarrow$ r

Terminating proof search tree via redundancy ver 1 (repetition check). A repetition of a sequent on the branch is detected

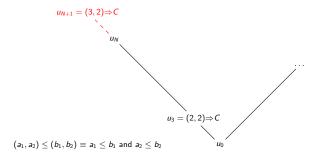


Terminating proof search tree via redundancy ver 1 (repetition check). $u_{N+1} = u_3$ hence u_{N+1} is redundant: any proof above it can be planted at u_3



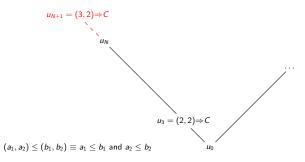
Terminating proof search tree via redundancy

ver 2 (order check). $u_{N+1} \ge u_3$ hence u_{N+1} is redundant: any proof above it can be made into a proof of u_3 of no greater height via Curry's lemma



 \hookrightarrow enough to get finite proof search tree

Terminating proof search tree via redundancy



1. every branch (u_0, u_1, \ldots, u_N) is a bad sequence i.e. i < j implies $u_i \not\leq u_j$

bad sequences example 1: 5,2,1,0

example 2: (2,2), (1,1), (0,3), (0,2), (0,1), (0,0)

- (ℕ^k, ≤) is a well-quasi-ordering i.e. every infinite sequence has an increasing pair u_i ≤ u_j with i < j
 i.e. an infinite sequence cannot be a bad sequence
- 3. finitely branching tree & no infinite branch = proof search tree finite

 $\hookrightarrow \mathsf{complexity}$

Urquhart's tight complexity bounds (1999)

- upper bound: what is the height of the proof-search tree under redundancy check? This is the dominant term for complexity
- 2. No bound in general for bad sequences. After all:
- 3. (1,0), (0,100) or even $(1,0), (0,1000) \dots$ i.e. arbitrarily large jumps
- 4. However no rule in FLec witnesses such a great jump from conclusion to premise

(for fixed calculus: every premise is some fixed polynomial in size of conclusion)

Controlled bad sequences

(Figueira, Figueira, Schmitz, Schnoebelen, 2011) (Schmitz, Schnoebelen, 2011)

1. bad sequence a_0, a_1, \ldots is (g, n)-controlled over a normed wqo $(A, || ||, \leq_A)$ if there is a primitive recursive g s.t.

 $\|a_0\| \le n$ $\|a_1\| \le g(n)$ $\|a_2\| \le g(g(n))$ $\|a_k\| \le g^k(n)$

and $\{a \in A \text{ s.t. } \|a\| \leq n\}$ finite for every $n \in \mathbb{N}$

- 2. dominant term in complexity: max length of bad sequence
- 3. The length function theorem expresses this length. Since
- 4. \exists control function g bounding premise size in terms of conclusion
- 5. FLec decision problem is in \mathbf{F}_{ω} i.e. primitive recursive functions composed with a single application of an Ackermannian function
- 6. Urquhart showed that this is tight by giving matching lower bounds.
- 7. Also: implicational fragment is 2EXPTIME-complete (Schmitz, 2016).

 \hookrightarrow questions? extending to other logics

Extending Kripke's argument to more logics

- "Meyer had a bit of a problem at this point. He knew that the conclusion was true...but he did not believe it. Visions of [infinite irredundant sequences] fluttered through his dreams...he wanted an argument that he did believe" (Riche and Meyer, 1998)...Dickson's lemma
- 2. Kripke's decidability argument is not too sensitive to the form of the proof rules
- 3. subformula property, contraction absorption, and suitable wqo to get finiteness of irredundant proof trees
- 4. How can we extend to other logics? Some isolated results since 1959
- sequent calculus meta-language too restrictive for cut-elimination/subformula property

Solution: extend meta-language to get cut-freeness

In other words: use a different type of proof system where $\operatorname{cut-elimination}$ holds

 $\hookrightarrow \mathsf{hypersequents}$

Hypersequent calculus - a calculus on multisets of sequents

E.g. of a hypersequent $p, q \Rightarrow r \mid p \land q \Rightarrow \mid r \Rightarrow r \lor p$

Example of a hypersequent rule

$$\frac{\cdots |\cdots |\cdots |X_1, X_2 \Rightarrow B \cdots |\cdots |\cdots |Y_1, Y_2 \Rightarrow C}{\cdots |\cdots |\cdots |X_1, Y_1 \Rightarrow B | Y_2, Y_2 \Rightarrow C} \text{ com}$$

Hypersequent calculi invented independently (Mints, Pottinger, Avron)

Let HFLe denote hypersequent calculus for FLe

- 1. lots of extensions of FLe have cut-free hypersequent calculi (Ciabattoni Galatos Terui 2008)
- 2. above paper: lots of extensions of FLec and FLew have cut-free hypersequent calculi. Our results will apply to all these calculi
- 3. Independent characterisation of extensions via substructural hierarchy

Representing hypersequents in $(\mathcal{P}_f(\mathbb{N}^n))^{n+1}$

- 1. Let F_0 be empty formula
- 2. A hypersequent built from formulas F_1, \ldots, F_n is written

$$\begin{split} \widetilde{X_1} \Rightarrow \widetilde{F_0} & |X_2 \Rightarrow F_0| \dots |X_{k_0} \Rightarrow F_0| \\ & Y_1 \Rightarrow F_1 |Y_2 \Rightarrow F_1| \dots |Y_{k_1} \Rightarrow F_1| \\ & \dots \\ & Z_1 \Rightarrow F_n |Z_2 \Rightarrow F_n| \dots |Z_{k_n} \Rightarrow F_n \end{split}$$

Representing hypersequents in $(\mathcal{P}_f(\mathbb{N}^n))^{n+1}$

1. Let F_0 be empty formula

2. A hypersequent built from formulas F_1, \ldots, F_n is written

$$\overbrace{X_1 \Rightarrow F_0 \mid X_2 \Rightarrow F_0 \mid \dots \mid X_{k_0} \Rightarrow F_0}^{\{X_1, \dots, X_{k_0}\} \in \mathcal{P}_f(\mathbb{N}^n)}$$

$$Y_1 \Rightarrow F_1 \mid Y_2 \Rightarrow F_1 \mid \dots \mid Y_{k_1} \Rightarrow F_1 \mid$$

 $Z_1 \Rightarrow F_n \,|\, Z_2 \Rightarrow F_n \,|\, \dots \,|\, Z_{k_n} \Rightarrow F_n$

3. So a hypersequent is an element of

$$\underbrace{\mathcal{P}_f(\mathbb{N}^n) \times \mathcal{P}_f(\mathbb{N}^n) \times \ldots \times \mathcal{P}_f(\mathbb{N}^n)}_{n+1}$$

. . .

 \hookrightarrow what else to get FLec extensions

HFLec extensions: what do we need to extend?

 $1. \ \mbox{absorb}$ contraction by adding variant rules

$$\frac{h_1 \qquad h_N}{h_0} r \qquad \qquad \text{origina}$$

$$\frac{h_1}{g} \frac{h_N}{r^{(k,l)}} \text{ with } h_0 \rightsquigarrow_c^k h' \rightsquigarrow_{EC}^l g \qquad \text{ variants } k \leq K, l \leq L$$

2. need to show that these variants suffice to eliminate all contractions

3. For
$$(X_1, \ldots, X_{n+1}), (Y_1, \ldots, Y_{n+1}) \in (P_f(\mathbb{N}^n))^{n+1}$$
 define
 $(X_1, \ldots, X_{n+1}) \leq_{\min} (Y_1, \ldots, Y_{n+1})$ iff $\forall y \in Y_i \exists x \in X_i (x \leq y)$ for every

- 4. $\textbf{X} \leq_{\min} \textbf{Y}$ means we can go from Y to X by hypersequent Curry's lemma
- 5. Using length function theorem for controlled bad sequences for this wqo (Balasubramanian, 2020): decision problem for each of the FLec extensions under consideration is in $\mathbf{F}_{\omega^{\omega}}$
- 6. single application hyper-Ackermannian & multiply-recursive functions

1

What we have seen so far

INPUT: formula of size *n* (so at most *n* subformulas)

 \longleftrightarrow

 \leftrightarrow

branch with no hypersequent hp-contractible to an earlier hypersequent (order check) no infinite bad sequence (wqo)

proof search with order check & premise size is fixed polynomial in conclusion

if there is length function theorem: max length for controlled bad sequences \iff bad sequence in $(\mathcal{P}_f(\mathbb{N}^n))^{n+1}$

www proof search terminates

a branch is a controlled bad sequence in $(\mathcal{P}_f(\mathbb{N}^n))^{n+1}$

there is a max length for a branch \hookrightarrow upper bound

Extensions of HFLew: contraction replaced by weakening

 $\frac{X \Rightarrow A}{X, Y \Rightarrow A}$ weakening

1. Prominent logic: monoidal t-norm based fuzzy logic

$$\mathsf{MTL} = \mathsf{FLew} + (p
ightarrow q) \lor (q
ightarrow p)$$
 prelinearity axiom

Describes the common behaviours of *all* fuzzy logics based on left-continuous t-norms

2. Previous argument insufficient when c replaced by w If we encounter (4,4) we can prohibit smaller elements like (4,3)...

But how to prohibit infinitely many larger elements? (infinite branch)

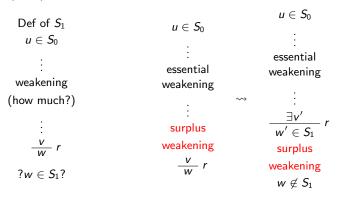
$$(4, 4), (4, 5), (4, 6), \dots, (4, 100), \dots$$

3. Time to go down the Lambek calculus forward proof search

 $\hookrightarrow \text{ forward proof search}$

Forward proof search from input F

 S_0 is the (finite) set of initial sequents built from subformulas in F



1. surplus weakening: weakening that is permutable from before r to after r

- 2. Obtain (S_0, S_1, \ldots) s.t. S_{i+1} finite and computable from S_i
- 3. what 'essential" means depends on the rules in the calculus
- 4. aim: show there exists N s.t. $S_{N+1} = S_N$

 \hookrightarrow what else to get FLew extensions

What do we need to extend?

- 1. a hypersequent is an element of $(\mathcal{P}_f(\mathbb{N}^n))^{n+1}$
- 2. For $(X_1, \ldots, X_d), (Y_1, \ldots, Y_d) \in (P_f(\mathbb{N}^n))^{n+1}$ define $(X_1, \ldots, X_{n+1}) \leq_{maj} (Y_1, \ldots, Y_{n+1})$ iff $\forall x \in X_i \exists y \in Y_i (x \leq y)$ for every i
- 3. $\textbf{X} \leq_{maj} \textbf{Y}$ means that we can go from X to Y by hypersequent Curry lemma analogue
- 4. majoring ordering is a wqo so there exists N such that $S_{N+1} = S_N$
- 5. Using length function theorem (Balasubramanian 2020) to get max value for N: each FLew extensions under consideration is in $\mathbf{F}_{\omega^{\omega}}$

Further questions

1. Can we find a logic in $\mathbf{F}_{\omega^{\omega}}-\mathbf{F}_{\omega}$?

cut-freeness seems to need hypersequents naturally lead to ${\bf F}_{\omega^\omega}$

- 2. lower bound and sharper upper bounds for MTL This was first syntactic proof and first complexity bound for MTL (many would suspect that more modest bounds should hold)
- 3. Simpler lower bound problem? lower bounds for FLec / FLew +

$$\frac{X, X, Z \Rightarrow F \qquad Y, Y, Z \Rightarrow F}{X, Y, Z \Rightarrow F} \text{ scom}$$

'double antecedent, share between premises'

For example

$$\frac{p,q^4 \Rightarrow p^3,q^2 \Rightarrow}{p^2,q^3 \Rightarrow}$$

What type of (counter?) machine could we embed here?

 Is uninorm logic HFLe + com decidable ? Some extensions of HFLe are undecidable: Galatos and St. John, 2021.

- [1] A. R. Balasubramanian. Complexity of controlled bad sequences over finite sets of Nd. LICS 2020.
- [2] A. Ciabattoni, N. Galatos, K. Terui. From axioms to analytic rules in nonclassical logics. LICS 2008.
- [3] D. Figueira, S. Figueira, S. Schmitz, P. Schnoebelen. Ackermannian and primitive-recursive bounds with dickson's lemma. LICS 2011.
- [4] N. Galatos, G. St. John. Most simple extensions of FLe are undecidable. JSL 2021.
- [5] S. Kripke. The problem of entailment (abstract). J. Symbolic Logic. 1959.
- [6] D. Larchey-Wendling. Constructive Decision via Redundancy-Free Proof-Search. IJCAR 2018.
- [7] J. Riche, R. Meyer. Kripke, Belnap, Urquhart and Relevant Decidability & Complexity. CSL 1998.
- [8] S. Schmitz. Implicational relevance logic is 2-EXPTIME-COMPLETE. J. Symbolic Logic. 2016.
- [9] S. Schmitz, P. Schnoebelen. Multiply-recursive upper bounds with Higman's lemma. ICALP 2011.
- [10] A.Urquhart. The complexity of decision procedures in relevance logic. II. J. Symbolic Logic. 1999.